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Abstract 

This study proposes a mode shape scaling and parameterization scheme for modal identification 

with known input. Through the derivation of the equations for known input modal identification 

using the proposed mode shape scaling and parameterization scheme, the study provides insight 

into the relationship between the identified modal parameters and information required in the 

forced vibration test. In typical applications of modal identifications, when there is sufficient 

amount of data, the formulation using the proposed mode shape scaling and parameterization 

scheme shows that it allows modal parameters to be determined efficiently in a globally 

identifiable manner. An illustrative example using synthetic data is provided in this study. The 

findings show that an appropriate mode shape scaling and normalization scheme could reduce 

the information required in the modal identification procedure for some modal parameters, i.e. 

natural frequencies, damping ratios and mode shapes. This significantly simplifies the procedure 

of the forced vibration test, and hence, it can be carried out in a more robust manner. 

 

Keywords: Modal identification; forced vibration; exciter; Bayesian; mode shape scaling 

 

 



1. Introduction  

Modal identification is a technique that allows extraction of the modal parameters, such as natural 

frequencies, damping ratios, and mode shapes, of a structure from measured vibration data [1]. The 

identified modal parameters can then be used for structural model updating [2] and damage 

detection [3]. In the last decade, vibration tests have been carried out different on different types of 

structures, e.g. bridge [4], tower [5] and building [6].  

Forced vibration test makes use of a special device, such as shaker or impact hammer, to 

produce vibration response of structures for identifying modal properties. Memari et al. [7] carried 

out a forced vibration study on a six story steel frame building during the construction stage. The 

forced vibration was carried out when steel frames, floor slabs and some of the walls were 

completed. An unbalanced mass exciter was installed at the roof of the building to induce the 

excitation. Natural frequencies, damping ratios and mode shapes were identified from the measured 

acceleration data. Halling et al. [8] conducted a forced vibration test on a concrete deck steel girder 

bridge. An eccentric mass shaking machine was used to generate the required excitation on the 

bridge. The study identified the natural frequencies and mode shapes. These identified modal 

parameters were also used to update a finite element model of the bridge. Burgueno et al. [9] carried 

out a forced vibration test on a fiber reinforced polymer (FRP) composite bridge. They employed a 

long stroke electro-dynamic force generator to excite the bridge and the measured acceleration data 

was used to identify the natural frequencies and mode shapes.  

Although more demanding in terms of budget and logistics, it has several advantages over 

free [10] or ambient vibration tests. Essentially, the signal-to-noise ratio of data can be significantly 

improved and the information of input excitation can significantly reduce the identification 

uncertainty of modal parameters [11]. In typical applications, the location and direction of the 

artificial excitation is assumed to be known, although in some cases it is difficult to control them in 

field testing conditions [12].  



The objective of this study is to demonstrate that an appropriate mode shape scaling scheme 

can reduce the information required in the modal identification procedure for some modal 

parameters, such as natural frequencies, damping ratios and mode shapes, allowing forced vibration 

tests to be performed in a more robust manner. A mode shape scaling and parameterization scheme 

is first proposed, which allows modal parameters to be determined efficiently in a globally 

identifiable manner. Based on this scheme, implications on the required information in the modal 

identification are discussed. A Bayesian context is assumed as it allows uncertainties to be 

fundamentally quantified, but the implications on identifiability are general and applicable to other 

non-Bayesian or deterministic approaches.  

 Section 2 first summarizes the formulation of the known input modal identification. Section 

3 proposes the mode shape scaling and parameterization scheme and its formulation of the known 

input modal identification. Section 4 discusses the relationship between modal identification and the 

information of the exciter configuration. Section 5 presents the formulation of the Bayesian 

approach under the proposed mode shape scaling and parameterization scheme. Insights and 

practical aspects are discussed in Section 6. Section 7 presents an illustrative example. Finally, 

conclusions are provided in Section 8. 

 

2. Modal identification with known single input 

Consider a multi-degree-of-freedom (MDOF) structure satisfying the dynamic equation: 

  M!!x(t)+C!x(t)+Kx(t) = F(t)   (1) 

where M , C  and K  are respectively the conventional mass, damping, stiffness matrices; and F(t)   

is the force vector. With mass normalization, the i-th modal force is given by  

 pi (t) =
ϕ(i)T F(t)
ϕ(i)TMϕ(i)  

(2) 

and ϕ(i)∈Rn  is the (partial) mode shape vector of the i th mode confined to the n  measured dofs. 

Without loss of generality, suppose the acceleration response of the structure is measured at n  



degrees of freedom (dofs). Assuming m  contributing modes, the measured data in the frequency 

domain can be modeled as 

 
 
Fk = ϕ(i)hikPik

i=1

m

∑ + ε k
 

(3) 

where  ℱ! is the fast Fourier transform (FFT) of measured data at frequency fk = k / NΔt  (Hz); N is 

the number of samples per data channel; Δt is the time step; Pik is the FFT of the modal force at k-th 

frequency; ε k is the prediction error (e.g., measurement noise). For a given mode i , hik  is the 

transfer function between modal excitation and modal acceleration: 

 hik = − βik
2 −1( ) + i 2ζ iβik( )⎡⎣ ⎤⎦

−1
  (4) 

where βik = fi / fk  is a frequency ratio; i2 = −1 . if  (Hz) and iζ  are respectively the natural 

frequency and damping ratio. 

During testing measurement, suppose the structure is subjected to a single dominant source 

of artificial excitation that is also measured. Depending on the direction of the applied excitation on 

the structure, the force can be distributed to more than one dof. For convenience in analysis, assume 

without loss of generality that the force on the j th measured dof is given by majs(t) , where m  

(kg) is a nominal mass value (e.g., moving mass of a shaker), aj  
is a dimensionless factor 

accounting for the contribution of force to the dof, which has value between 0 – 1, and it is zero on 

other unmeasured dofs. )(ts  ( 2/ sm ) is a time-varying function of excitation (e.g., acceleration of 

shaker mass). In this context, ϕ(i)T F(t) = ms(t)ϕ(i)T a , where a = [a1,...,an ]
T . The modal force and 

its FFT are given by 

 pi (t) = ri[ϕ(i)
T a]s(t)  (5) 

 Pik = ri[ϕ(i)
T a]Sk  (6) 

where Sk  is the FFT of )(ts  and  

 ri =
m

ϕ(i)TMϕ(i)  
(7) 



is the ratio of nominal mass to the modal mass. Substituting Equations (4) and (6) into Equation (3), 

we have 

 
 
Fk = Skhikri[ϕ(i)

T a]ϕ(i)
i=1

m

∑ + ε k
 

(8) 

 

3. Mode shape scaling and parameterization scheme 

Equation (8) is the basic equation that relates the data {ℱ!} and {Sk}  to modal parameters. The 

modal parameters include, for each mode, if  (natural frequency), iζ  (damping ratio), ir  (modal 

mass ratio) and ϕ(i)  (mode shape); and parameters defining the statistical properties of the 

prediction error. The mode shape is subjected to a scaling constraint. 

Using Equation (8) directly to identify the modal parameters does not lead to an effective 

scheme, primarily because of its quadratic dependence on mode shape ϕ(i) , which is also subjected 

to scaling constraint. For example, Equation (8) will lead to a fourth-order dependence on mode 

shape in the objective function of a least square approach. Here, a mode shape scaling and 

parameterization scheme is proposed that allows the parameters to be determined efficiently in a 

globally identifiable manner and reduce the information required in the modal identification 

procedure. Beyond significance of computational nature, an interesting implication of the scheme is 

that the identification results are found to be invariant to the vector a , which reflects the location 

and orientation of the artificial excitation. These practical implications shall be discussed in the 

Sections 4 – 6. 

Conventionally, mode shapes may be scaled to be 1 at a particular dof or to have unit norm 

[13-16]. Neither of these can eliminate the quadratic dependence in Equation (8) on mode shape. 

Upon investigation of the mathematical structure of the problem, it is found that the following 

scaling constraint allows the problem to be resolved while allowing for flexible implementation 

without prior information 

 ϕ(i)T a = 1 for i = 1,...,m  (9) 



so that  

 
 
Fk = Skhikriϕ(i)

i=1

m

∑ + ε k  (10) 

becomes a linear function of ϕ(i) . Note that ir  and ϕ(i)  are subjected to the constraint ϕ(i)T a = 1 . 

The formulation can be further simplified by combining them into an unconstrained vector  

 ϕ r (i) = riϕ(i)  (11) 

so that  

 
 
Fk = Skhikϕ r (i)

i=1

m

∑ + ε k
 

(12) 

The parameters to be identified now comprise, for each mode i , if , iζ , ϕ r (i)  with no constraint; 

and parameters specifying the statistical properties of ε k . Once these parameters are identified, the 

modal mass ratio can be recovered by using Equation (9) and (11) 

 ri = ϕ r (i)
T a  (13) 

 

4. Invariance to exciter configuration 

In addition to providing an effective formulation for modal identification, the mode shape scaling 

and parameterization scheme in the Section 3 also leads to an interesting implication on how 

identification results depend on exciter configuration. Specifically, for given data ({ℱ!} and{Sk} ), 

the information of a, which is related to exciter location and orientation, is not needed to identify if

, iζ  and ϕ r (i)  as shown in Equation (12) and the same for other parameters related to the statistical 

modeling of prediction error. However, different values of a does affect the identification results 

because it affects the excitation magnitude. Although the scaling constraint on ϕ(i)  in Equation (9) 

depends on a, ϕ(i)  is in fact invariant because it has the same ‘shape’ as ϕ r (i) . To see this, 

ϕ(i) = ri
−1ϕ r (i)  makes the same hyper-angle with any vector u  asϕ r (i) : 

 
ϕ(i)T u

||ϕ(i) || || u ||
= ri

−1ϕ r (i)
T u

ri
−1 ||ϕ r (i) || || u ||

= ϕ r (i)
T u

||ϕ r (i) || || u ||  
(14) 

The only parameter that is affected by a  is the modal mass ratio ri = ϕ r (i)
T a .  



5. Bayesian approach 

To illustrate how the considerations in the previous sections enter into the formulation of a modal 

identification method, consider adopting a Bayesian approach for modal identification. Assume that 

the FFTs {ℱ!} on a selected frequency band with N f  frequencies (often around the modes of 

interest) are used for making inference and the prediction errors {ε k}  are independent and 

identically distributed with (unknown) power spectral density (PSD) eS . Based on Equation (12), 

the set of modal parameters θ  should comprise { fi ,ζ i ,ϕ r (i)}i=1
m  and eS , so that the likelihood 

function, i.e., the PDF of {ℱ!} for given θ  and {Sk} , can be determined. Assuming a constant prior 

PDF for θ , its posterior PDF is proportional to the likelihood function: 

  p(θ | {Fk},{Sk})∝ p({Fk} | θ,{Sk}) = e
−L(θ)  (15) 

where 

 L(θ) = nN f lnπ + nN f lnSe + Se
−1J θ( )  (16) 

is the negative log-likelihood function (NLLF). J(θ) is given as 

 
 
J θ( ) = Fk − Skhikϕ r (i)[ ]* Fk − Skhikϕ r (i)[ ]

k
∑

i=1

m

∑  (17) 

It can be shown that [17] for sufficient data the posterior PDF of θ  can be approximated by a 

Gaussian PDF with mean equal to the most probable value (MPV) (minimum of the NLLF) and 

covariance matrix equal to the inverse of Hessian of the NLLF at the MPV. Clearly the MPV and 

covariance matrix do not depend on a . 

The MPV of eS  can be determined analytically in terms of the remaining parameters 

because the NLLF is of the form ee SbSa /ln +  for some constant c , which has a minimum of 

)/ln(1 ab+  at abSe /= . Substituting this into the NLLF gives a log of a quadratic function ofϕ r (i)

. Expanding the quadratic form of J(θ)  in Equation (17), it becomes 

 
 
J θ( ) = ϕ r :( )T A fi ,ζ i{ }( ) ϕ r :( )− 2 ϕ r :( )T B fi ,ζ i{ }( )+ Fk

*Fk
k
∑  (18) 



where 

 A fi ,ζ i{ }( ) = Sk
2 Re hk

*hk( )
k
∑⎡
⎣⎢

⎤
⎦⎥
⊗ In  (19) 

 
 
B fi ,ζ i{ }( ) = Re Sk

*hk
* ⊗Fk( )

k
∑  (20)    

‘ ⊗ ’ denotes the Kronecker product and In ∈R
n×m  is the identity matrix. hk = [h1k ,...,hmk ] . 

(ϕ r :)∈R
mn  denotes the ‘vectorization’, which is defined as 

 

 

ϕ r :( ) =
ϕ r 1( )
!

ϕ r m( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (20) 

Minimizing the quadratic function in Equation (18) with respect to (ϕ r :)  gives the MPV of ϕ r (i)  

in terms of the frequencies and damping. Consequently the MPV of θ  can be determined efficiently 

by optimizing with respect to the frequencies and damping ratios only.  

 

5.1. Posterior uncertainty of identified modal parameters 

Using Bayesian approach, the uncertainty of the set of modal parameters can be obtained from the 

posterior covariance matrix C , which is the inverse of the Hessian of the NLLF with respect to  

{θ,Se} . Since the cross derivatives of NLLF with respect to both θ  and Se   are all zero, the 

Hessian of the NLLF with respect to {θ,Se}  is a block-diagonal (2m+mn+1)-square matrix. The 

covariance matrix of θ  and the variance of Se  can be evaluated separately as 

 C =
SeHJ

−1

Ŝe
2

nN f

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   (21) 

where Ŝe  is the MPV of Se . HJ ∈R
2m+mn( )× 2m+mn( )  is the Hessian of J(θ) . The posterior uncertainty 

of the identified natural frequencies and damping ratios can then be obtained from the covariance 

matrix C . 

 



5.2. Posterior uncertainty of mode shape 

Suppose we want to obtain a mode shape scaled to have unit norm, i.e.,  

 ϕ(i) =||ϕ r (i) ||
−1 ϕ r (i)  (22) 

Substituting the MPV of ϕ r (i)  gives the MPV of ϕ(i) : 

 ϕ̂(i) =|| ϕ̂ r (i) ||
−1 ϕ̂ r (i)  (23) 

where a hat ‘^’ denotes MPV. On the other hand, by means of perturbation, the posterior covariance 

matrix of ϕ(i)  can be obtained from that of ϕ r (i)  given by 

 Cϕ(i ) = [∇ϕ̂(i)] Cϕr (i )
[∇ϕ̂(i)]T  (24) 

where Cϕr (i )
 is the covariance matrix ofϕ r (i) , equal to the corresponding partition in the full 

covariance matrix of θ ; and 

 ∇ϕ̂(i) =|| ϕ̂ r (i) ||
−1 [In − ϕ̂(i)ϕ̂(i)

T ]  (25) 

is the gradient of ϕ(i)  with respect to ϕ r (i)  at MPV; In is nn×  identity matrix. Clearly, the 

calculation of MPV and covariance matrix of ϕ(i)  does not require knowing a . 

 

5.3. Posterior uncertainty of modal mass 

The modal mass ratio ri = ϕ r (i)
T a  is explicitly depends on a . Its MPV and variance are given 

respectively by 

 r̂i = ϕ̂ r (i)
T a  (26) 

 σ ri
2 = aTCϕr ( i )

a  (27) 

 

6. Insights and Practical Aspects 

In this section we discuss the insight and practical aspects based on the formulation of modal 

identification with known forced vibration data in Sections 3, 4 and 5. Although the formulation in 

Section 5 is based on the Bayesian approach, the findings are general and applicable to the 

deterministic approach. The Bayesian approach allows quantification of the uncertainties associated 



with the identified modal parameters, by which the covariance matrix (Hessian of the NLLF at the 

MPV) provides a relationship between the provided information of the forced vibration test and the 

associated uncertainties of the identified modal parameters. This allows us to evaluate the accuracy 

of the identified modal parameters against the provided information. 

 Since the modal identification is achieved by minimizing the NLLF in Equation (16) 

through varying a set of unknown modal parameters θ , Equations (16) and (18) indicates the 

information required in the modal identification; and the covariance matrix reflects the impact of 

this information on the uncertainties of the identified modal parameters. When the mode shape is 

scaled to be 1 at a particular dof or to have unit norm, which is common in the literature [13-16], 

both of them lead to the quadratic dependence on mode shape as shown in Equation (8). In 

particular, the former explicitly assumes that the modal identification requires the information of 

exciter location and orientation for scaling the particular dof to be 1. However, the proposed mode 

shape scaling and parameterization scheme, i.e. Equation (9), explicitly shows that the required 

information in the identification of natural frequencies, damping ratio and mode shapes as Equation 

(8) can be reduced to Equation (12), in which the quadratic dependence in Equation (8) on mode 

shape is also eliminated. Since Equation (12) is invariant to the vector a , the identification of 

natural frequencies, damping ratios and mode shapes only requires the measured sensor and exciter 

acceleration. The information of the exciter location and orientation is only required for recovering 

the modal mass ratios. 

Within the context of Bayesian approach, since the covariance matrix, i.e. uncertainties, of 

the identified natural frequencies, damping ratios and mode shapes, is the Hessian of the NLLF at 

the MPV, this also implies that their uncertainties do not depend on the exciter configuration. This 

means that the accuracy of the exciter location and orientation does not affect the precision of the 

identified natural frequencies, damping ratios and mode shapes, and also the uncertainties of the 

results. However, as shown in Equation (27), the uncertainty of the modal mass ratio is still affected 

by the exciter configuration as vector a  contains the information of the exciter configuration. 



In practice, this means the natural frequencies, damping ratios and mode shapes can be 

identified without precisely placing the exciter in the required location and orientation in the forced 

vibration test unless the modal mass ratio is of primary interest. Table 1 summarizes the 

information required for identifying each modal parameter and quantifying the corresponding 

uncertainty in modal identification with known input. 

It should be noted that although the modal identification procedure of the aforementioned 

modal parameters does not require knowing a, it will still affect the identification result. This is due 

to the fact that the excitation with different values of a will lead to different identification results as 

the excitation magnitudes are different. However, the differences are usually very small in practical 

engineering applications, for example, without placing the exciter precisely. This effect will also be 

investigated and discussed in the illustrative example in Section 7. 

 

[Table 1: Summary of information required for identifying each modal parameter and quantifying 
the corresponding uncertainty in known input modal identification] 

Modal parameter  Required information in forced vibration test 
Natural frequency Sensor and exciter acceleration only 

Damping ratio Sensor and exciter acceleration only 
Mode shape Sensor and exciter acceleration only 

Modal mass ratio Sensor and exciter acceleration &  
Precise exciter location and orientation 

 
 

7. Illustrative example using synthetic data 

To illustrate the aforementioned practical aspects and insights in Section 6, we consider a forced 

vibration test carried out on a two-dimensional two-story shear building. The height of the first and 

second stories is 4 m and 3 m, respectively. The inter-story stiffness of the first and second stories is 

1.769×107 N/m and 1.244×107 N/m. The shear building has uniform mass 5600 kg at each floor. 

The damping ratio is assumed to be 1% for all modes. The shear building has natural frequencies 

3.261 Hz and 11.211 Hz. The simulation is performed at a sampling rate of 5000 Hz and the 

acceleration data is then decimated by 50 to a sampling rate of 100 Hz. An accelerometer is 

installed at each floor to measure the horizontal acceleration and the exciter is installed at the roof. 



The excitation signal is a pseudo-random excitation with flat root PSD from 0.1 Hz to 15 Hz.  The 

measured data covers 10 s before the shaker is turned on, 140 s forced vibration during which the 

shaker is turned on, and 35 s free vibration after the shaker is turned off, that is, a total of 185 s. The 

measured acceleration is contaminated by i.i.d. Gaussian white noise with a root PSD of 1×10-7

g / Hz . Figure 1 shows the root PSD spectra of the measured acceleration responses from the two-

story shear building. Obviously both modes are adequately excited as indicated by their resonance 

peaks apparent.  

 

[Figure 1: Root power spectral density spectra (solid line: first floor data; dashed line: second 
floor data)] 

 

7.1. Identification results using proposed mode shape scaling and parameterization scheme 

The modal identification is then carried out using the fast Bayesian FFT modal identification 

method with proposed mode shape scaling and parameterization scheme in Equation (9). The bars 

in Figure 1 indicate the frequency band within that the FFT data used for the modal identification. 

In this study, the two vibration modes are identified separately with a single mode (m = 1) assumed 

within each band. 

 To carry out the modal identification using the proposed mode shape scaling and 

parameterization scheme, it requires the FFT data of sensor and exciter accelerations within the 

selected frequency band. The fi   and ζ i  can be identified by numerically minimizing J in Equation 

(18). After that the ϕ r (i)  can be identified using Equation (18) again with fi   and ζ i  being their 

MPV values. In identifying these modal parameters, the information of vector a is not required. The 



vector a is only required if the modal mass ratio is also of the interest and it can be recovered from 

the MPV of ϕ r (i)  using Equation (26). 

 The posterior uncertainty of the identified modal parameters can be obtained using Bayesian 

approach. Once the MPV of the modal parameters are obtained, the posterior uncertainties can be 

calculated from the covariance matrix with respect to the set of modal parameters θ  using Equation 

(21). The uncertainties of the natural frequencies, damping ratios and mode shapes can be 

determined without knowing the vector a as shown in Sections 5.1 and 5.2. The same as calculating 

the MPV, the vector a is only required to determine the uncertainty of modal mass ratio using 

Equation (27). 

The identified natural frequencies, damping ratio, modal mass ratio and the corresponding 

posterior coefficient of variation (c.o.v.) are summarized in Table 2. The posterior c.o.v. is the 

square root of the posterior variance divided by the MPV. The results show that the identified 

modal parameters agree very well with their exact values. The posterior c.o.v.s of the natural 

frequencies are smaller than that of damping ratios and modal mass ratios. Figure 2 shows the 

identified mode shapes. There is good agreement between the identified mode shape and their exact 

counterparts. 

 

[Table 2: Summary of modal identification results without exciter angle error] 
 Mode 1 Mode 2 

f 
Exact (Hz) 3.261 11.211 
MPV (Hz) 3.261 11.211 
c.o.v. (%) 0.0017 0.0096 

ζ  
Exact (%) 1.000 1.000 
MPV (%) 1.002 1.002 
c.o.v. (%) 0.233 0.144 

r 
Exact (10-4) 14.434 9.495 
MPV (10-4) 14.442 9.497 
c.o.v. (%) 0.179 0.136 

 



 

[Figure 2: Identified mode shape (solid line: most probable value; dashed line: exact value)] 

 

7.2. Effect of exciter angle error 

In practical situation there is always error in the measurement and excitation direction. For example, 

the exciter may not be installed perfectly at the expected angle, i.e. not completely align with the 

expected dof. In this situation, the actual magnitude of the excitation applied at the expected dof is 

smaller than the expected magnitude by a factor of cos(φe ) , where φe  is the angle error of the 

exciter direction. φe = 0° means no error in the exciter direction. In this study, different angle errors 

in the exciter direction, φe = 10°, 20°, 30° and 40° are considered. In the simulations of these cases, 

the force of the exciter is factorized by cos(φe ) , however, the modal identifications are still carried 

out using a = [0;1]. This simulates the angle error of the exciter direction in the modal identification 

and demonstrates the independence of vector a in identifying natural frequencies, damping ratios 

and mode shapes. 

The identified modal parameters are summarized in Table 3. The percentage differences 

between the identified modal parameters obtained from data with and without exciter angle error 

are also shown in the Table 3. The results show that when the exciter angle error increases, the 

identified natural frequencies and damping ratios still agree very well with the values identified 

using data without the exciter angle error. The maximum percentages difference for natural 

frequencies and damping ratios is 0% and -0.052%, respectively. For the identified modal mass 

ratios, the results in Table 3 show that the percentage differences between the identified modal mass 



ratios from the data with and without exciter angle error are significantly affected by the magnitude 

of the exciter angle error. The maximum percentage difference for the modal mass ratio is 23.393%. 

This indicates that exciter angle error only affects the identification of modal mass ratio. This is 

consistent with the findings obtained and discussed in Section 6. 

 

[Table 3: Modal identification results and percentage difference between identified results using 
data with and without exciter angle error] 

Exciter 
angle error Mode f (Hz) Diff. of f  

(%) 
ζ  (%) Diff. of ζ  

(%) 
r  (10-4) Diff. of r 

(%) 

10° 1 3.261 0 1.002 -0.00 14.203 1.520 
2 11.211 0 1.002 -0.00 9.353 1.519 

20° 1 3.261 0 1.002 -0.01 13.552 6.034 
2 11.211 0 1.002 -0.01 8.924 6.030 

30° 1 3.261 0 1.002 -0.03 12.489 13.405 
2 11.211 0 1.002 -0.03 8.225 13.396 

40° 1 3.261 0 1.002 -0.05 11.046 23.409 
2 11.211 0 1.002 -0.05 7.275 23.393 

Note: Diff. (%) is the percentage difference of the identified values between the results of with and 
without exciter angle error 
 

The associated uncertainties of the identified modal parameters are quantified as posterior 

c.o.v. values and summarized in Table 4. In general, the posterior c.o.v. slightly increases with the 

exciter angle error. The signal-to-noise ratio of the measured accelerations is reduced due to the 

exciter angle error. With the exciter angle error, the excitation does not completely align with the 

expected dof, and hence, the magnitude applied at the expected is reduced. This means that 

although the accuracy of determining the MPVs and uncertainties of the natural frequencies, 

damping ratios and mode shapes does not depend on the accuracy of the exciter location and 

orientation, it still depends on how well the subject vibration mode is excited, as it affects the 

signal-to-noise ratio of the measured acceleration. Therefore the exciter still needs to be installed 

correctly at the required position, but it does not require very accuracy for identifying the natural 

frequencies, damping ratios and mode shapes. This significantly simplifies the field testing 

procedure as it is always difficult to accurately install the exciter at the required position in the field 



testing condition. However, if the primary objective of the forced vibration test is to determine the 

modal mass, the exciter still needs to be placed accurately at the required position. 

 

[Table 4: Posterior c.o.v. of the modal identification results using data with and without exciter 
angle error] 

Exciter 
angle error Mode c.o.v. of f 

(%)  
c.o.v. of	
ζ (%) 

c.o.v. of 
r (%) 

10° 1 0.0017 0.233 0.182 
2 0.0010 0.144 0.138 

20° 1 0.0018 0.244 0.190 
2 0.0010 0.151 0.145 

30° 1 0.0020 0.265 0.207 
2 0.0011 0.164 0.157 

40° 1 0.0022 0.300 0.234 
2 0.0013 0.185 0.178 

 

8. Conclusions 

This paper has proposed a mode shape scaling and parameterization scheme for identifying modal 

parameters. Besides significance of computational nature, the formulation has provided insights into 

the relationship between the identified modal parameters and information required in a forced 

vibration test. An illustrative example using synthetic data has been provided in this study. It is 

found that only the sensor and exciter acceleration are required for identifying the natural 

frequencies, damping ratios and mode shapes. An appropriate mode shape scaling scheme could 

reduce the information required in the modal identification, and hence, the procedure of the forced 

vibration can be significantly simplified. However, to determine the modal mass ratio, accurate 

placement of the exciter is still essential. It is hoped that these findings can improve understanding 

of some practical aspects in carrying out forced vibration tests with known input, such as those with 

electrodynamic shaker or impulse hammer. 
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