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Abstract. Iterated monodromy groups of postcritically-finite ra-
tional maps form a rich class of self-similar groups with interesting
properties. There are examples of such groups that have interme-
diate growth, as well as examples that have exponential growth.
These groups arise from polynomials. We show exponential growth
of the IMG of several non-polynomial maps. These include ratio-
nal maps whose Julia set is the whole sphere, rational maps with
Sierpiński carpet Julia set, and obstructed Thurston maps. Fur-
thermore, we construct the first example of a non-renormalizable
polynomial with a dendrite Julia set whose IMG has exponential
growth.
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1. Introduction

The iterated monodromy group (IMG) is a group that is defined in a
natural way for certain dynamical systems, like iteration of a rational
function on the Riemann sphere Ĉ. It was defined by Nekrashevych, see
for instance [BGN03], and independently by Kameyama in [Kam03],
see also [Kam01]. Recently, the theory of IMG’s, and its applications
to the study of dynamical systems, has been developed rapidly, see
in particular [Nek05, Nek11]. Many important problems in complex
dynamics have been solved with the help of IMG’s, such as the Hubbard
twisted rabbit problem [BN06]. Iterated monodromy groups are in fact
self-similar groups, that is, they act on a certain regular rooted tree in
a “self-similar” fashion, and frequently have some interesting algebraic
properties. Furthermore, their connection to dynamics provides new
methods for the study of self-similar groups.

Iterated monodromy groups have been best understood for postcriti-
cally-finite polynomials (in dynamics a map is said to be postcritically-
finite if each of its critical points has finite orbit). In particular, Nekra-
shevych gave a complete description of the IMG’s of postcritically-finite
polynomials in terms of automata generating them [Nek05, Nek09].

The study of algebraic properties of IMG’s plays an important role in
self-similar group theory as well as dynamics. For example, the growth
properties of iterated monodromy groups have been investigated in the
last decade. Recall that a finitely generated group has either poly-
nomial, intermediate, or exponential growth depending on the volume
growth of balls in the Cayley graph of the group, see Section 2.3. It
has been known for a while that the iterated monodromy group of the
polynomial P1(z) = z2 + i is of intermediate growth, see [BP06]. Note
that the Julia set of P1 is a dendrite, see Figure 1a. On the other hand,
the iterated monodromy group of the Basilica map P2(z) = z2 − 1 is
of exponential growth; this was proved (for an isomorphic group) in
[GŻ02]. Note that the closures of the Fatou components of P2 con-
taining 0 and −1 intersect, see Figure 1b. Having these two examples
in mind, various people have been trying to establish connections be-
tween dynamical properties of a map and algebraic properties of its
iterated monodromy group. For instance, it can be shown that any
postcritically-finite polynomial of “Basilica type” has iterated mon-
odromy group of exponential growth, see Theorem 2.5. At the same
time, for the airplane polynomial, that is, the unique polynomial of the
form P3(z) = z2 + cair, where cair ≠ 0 is real and satisfies P 3

3 (cair) = cair
(cair = −1.75488 . . . ), the growth of IMG(P3) is unknown. Note that
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Figure 1. Julia sets of some quadratic polynomials.

two distinct bounded Fatou components of P3 have disjoint closures,
see Figure 1c.

For a postcritically-finite rational map f that is not a polynomial,
the iterated monodromy group is much less understood. With the
exception of Lattès maps (which have iterated monodromy group that
is virtually Z2) and rational maps whose Julia set “contains a copy” of
the Julia set of a polynomial (that is, they are renormalizable and their
IMG’s contain an IMG of a polynomial in a natural way), the growth
of the IMG of a rational map f has previously been unknown.

The first result we show in this paper is the following.

Theorem 1.1. There exists a postcritically-finite rational map f ∶ Ĉ→
Ĉ with Julia set equal to the whole sphere Ĉ and iterated monodromy
group of exponential growth.

We point out that this is the first non-Lattès example of a rational
map whose Julia set is the whole Riemann sphere where the growth is
known.

The key ingredient of this paper is to use geometric tilings of the
sphere Ĉ associated with a rational (or more generally, branched cov-
ering) map f . We use them to describe the iterated monodromy action
in a simple combinatorial way (via “rotation of tiles in flowers”). So
these tilings may be viewed as representations of the Schreier graphs of
the action of IMG(f) (on the levels of the dynamical preimage tree). To
prove exponential growth of IMG(f), we find a free semigroup inside it
using the properties of the constructed tilings. We also provide another
proof, similar to the one in [GŻ02] for the Basilica group, which uses
computations with the wreath recursions associated with the IMG, see
Appendix A.2.
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Next, we consider some rational maps whose Julia set is a Sierpiński
carpet (that is, homeomorphic to the standard Sierpiński carpet). In
particular, this means that distinct Fatou components have disjoint
closures.

Theorem 1.2. There exists a postcritically-finite rational map with
Julia set equal to a Sierpiński carpet and iterated monodromy group of
exponential growth.

Again, this is the first example of such a rational map where the
growth of the iterated monodromy group is known.

The methods that we develop here use rather the “combinatorial
information” about the maps than their holomorphic nature. In par-
ticular, our methods apply to some obstructed Thurston maps, that is,
postcritically-finite branched covering maps f ∶S2 → S2 that are not
“Thurston equivalent” to a rational map, see Section 2.1 for the defi-
nitions.

Theorem 1.3. There exists an obstructed Thurston map f ∶S2 → S2

with iterated monodromy group of exponential growth.

Since it was shown that P1(z) = z2+i has iterated monodromy group
of intermediate growth, it was conjectured that polynomials that are
“similar to” P1 have IMG of intermediate growth. However, the pre-
cise meaning of “similar to” is not clear, and indeed has changed over
time. As already noted, the Julia set J of P1 is a dendrite. Further-
more, every finite (that is, distinct from ∞) point in the postcritical
set post(P1) = {i,−i,−1+ i,∞} is a leaf of J , that is, does not separate
J , see Figure 1a. Finally, P1 is not renormalizable. Roughly speaking,
this means that we cannot extract a simpler polynomial from any it-
erate P n

1 , see Section 10 for details. The following conjecture is quite
natural and has been studied by the community for quite some time.

Conjecture. Let P be a postcritically-finite non-renormalizable (qua-
dratic) polynomial, such that its Julia set JP is a dendrite. Then
IMG(P ) is of intermediate growth.

This conjecture is supported by quite a few examples of polynomials:

P (z) = z2+i [BP06], P (z) = z3(−3
2+i

√
3
2 )+1 [FG91], the quadratic poly-

nomials with the kneading sequences 11(0)ω and 0(011)ω [DKR+12].
The hypothesis of non-renormalizability rules out the counterexamples
that arise from tuning, a reverse operation to renormalization [McM94].
The tuning operation allows to construct examples of polynomials with
dendrite Julia set whose IMG’s are of exponential growth, see [Nek08,
Section 5.5]. However, those maps will be renormalizable.

In this paper we show the following result.

Theorem 1.4. There exists a postcritically-finite polynomial P with
the following properties.
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(1) The Julia set J of P is a dendrite.
(2) Every finite postcritical point of P is a leaf of J .
(3) P is not renormalizable.
(4) The iterated monodromy group of P is of exponential growth.

Theorem 1.4 and its proof show that the conjecture stated above is
not valid for all polynomials, namely for the ones of sufficiently high
degree. However it may be still true for quadratic polynomials. This
shows that the question when the IMG of a polynomial is of interme-
diate growth is even more subtle than previously thought.

The maps in Theorems 1.1-1.4 are explicitly constructed in a com-
binatorial fashion. The proof of exponential growth relies strongly on
this combinatorial description and is essentially the same for all con-
sidered maps. In each case it is easy to generalize the construction to
obtain infinite families of maps with IMG’s of exponential growth.

Based on our examples, we provide a quite general criterion for ex-
ponential growth of the IMG’s of Thurston maps, see Theorem 6.3.
This sufficient condition is not the most general that we can obtain,
but rather was formulated to be easily applicable to various examples.

The paper is organized as follows. In Section 2 we review some
standard material about Thurston maps, complex dynamics, growth
of groups, and iterated monodromy groups. This section also contains
an overview of the main properties of IMG’s that are relevant for our
paper, in particular, in the context of growth of groups. In Section 3
the map f1 that serves as the example in Theorem 1.1 is constructed.
In Section 4 we review the cell decompositions associated with f1 and
describe the iterated monodromy action in terms of them. In Section 5
we show exponential growth of IMG(f1), that is, prove Theorem 1.1.
In Section 6 we extract from the proof of Theorem 1.1 a general crite-
rion for exponential growth of IMG’s in our setting. In Section 7 we
consider a family of postcritically-finite rational maps with Sierpiński
carpet Julia set, in particular, we prove Theorem 1.2. In Section 8
we consider an obstructed Thurston map that proves Theorem 1.3. In
Section 9 we construct the polynomial P from Theorem 1.4 and prove
exponential growth of its iterated monodromy group. In Section 10 we
review renormalization theory and prove that P is not renormalizable.
In Appendix A.1 we review some standard material about actions on
rooted trees and self-similar groups. In Appendix A.2 we give an al-
ternative proof of exponential growth of IMG(f1), show that it is a
regular branch group, and conclude with some further properties.

1.1. Notation. We denote by N the set of positive integers, while N0

denotes the set of non-negative integers, that is, N0 = N ∪ {0}.
Let X be a topological space and U ⊂ X. We denote by U , int(U),

and ∂U the topological closure, the interior, and the boundary of the
set U , respectively.
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The n-th iterate of a map f ∶S → S on a set S is denoted by fn for
n ∈ N. We set f 0 ∶= idS. Suppose a subset U ⊂ S is given. We denote by
f−n(U) the preimage of U under fn, that is, f−n(U) = {x ∈ S ∶ fn(x) ∈
U}. For simplicity, we denote f−n(y) ∶= f−n({y}) for y ∈ S. Also we
denote the restriction of f to U by f ∣U .

The identity element of a group is denoted by 1. The notation “H <
G” means that H is a subgroup of G, as usual.

We consider right group actions. So if a group G acts on a set X,
then the image of x ∈X under the action of an element g ∈ G is denoted
by xg, and in a product g1g2 the element g1 acts first, that is, xg1g2 =
(xg1)g2 . We therefore write [g1, g2] = g−11 g−12 g1g2 and gg21 = g−12 g1g2.

In a group G, ord(g) denotes the order (or period) of a group element
g ∈ G, that is, the smallest positive integer n such that gn = 1. If no
such n exists, g is said to have infinite order and we set ord(g) =∞.

2. Background

2.1. Thurston maps. We provide a brief overview here, but refer the
reader to [BM, Chapter 2] for details. Let f ∶S2 → S2 be a branched
covering map of the topological 2-sphere S2. That is, f is a continuous
and surjective map, that we can write locally around each point p ∈ S2

as z ↦ zd for some d ∈ N (depending on p) in orientation-preserving
homeomorphic coordinates in domain and target. The integer d ≥ 1 is
uniquely determined by f and p, and called the local degree of the map
f at p, denoted by deg(f, p).

A point c ∈ S2 with deg(f, c) ≥ 2 is called a critical point of f .
The image of a critical point is called a critical value. The set of
all critical points of f is finite and denoted by crit(f). The union
post(f) = ⋃∞

n=1 f
n(crit(f)) of the orbits of critical points is called the

postcritical set of f . The map f is said to be postcritically-finite if
its postcritical set post(f) is finite, in other words, the orbit of every
critical point of f is finite.

Definition 2.1. A Thurston map is an orientation-preserving, post-
critically-finite, branched covering f ∶S2 → S2 of topological degree d ≥
2.

Natural examples are given by postcritically-finite rational maps on
the Riemann sphere Ĉ and postcritically-finite polynomial maps on the
complex plane C. In this paper we consider Thurston maps defined by
a subdivision rule on the sphere S2. See for example the construction
of the map f1 in Section 3; in greater generality this may be found in
[CFKP03] and [BM, Chapter 12].

The ramification function of a Thurston map f ∶ S2 → S2 is a function
αf ∶S2 → N ∪ {∞} such that αf(p) is the lowest common multiple of
all local degrees deg(fn, q), where q ∈ f−n(p) and n ∈ N are arbitrary.
Thus αf(p) = 1 for all p ∈ S2 ∖ post(f).
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The orbifold associated with f is Of ∶= (S2, αf). The Euler charac-
teristic of Of is

χ(Of) ∶= 2 − ∑
p∈post(f)

(1 − 1

αf(p)
) .

It satisfies χ(Of) ≤ 0. We call Of hyperbolic if χ(Of) < 0, and parabolic
if χ(Of) = 0. A Lattès map is a rational Thurston map with parabolic
orbifold that does not have periodic critical points (a point p ∈ S2 is
called periodic if fn(p) = p for an n ∈ N).

Two Thurston maps f ∶S2 → S2 and g∶ S̃2 → S̃2, where S̃2 is another
topological 2-sphere, are called Thurston equivalent if there are home-
omorphisms h0, h1∶S2 → S̃2 that are isotopic rel. post(f) such that
h0 ○ f = g ○ h1.

2.2. Julia and Fatou sets. The reader is referred to [Mil06] for back-
ground in complex dynamics.

Let f ∶ Ĉ → Ĉ be a rational map. Then the Julia set Jf of f is the
closure of the set of repelling periodic points. If f is postcritically-finite
then Jf coincides with the set of limit points of the full backwards orbit

⋃n≥0 f−n(t) of any point t ∈ Ĉ ∖ post(f). The Fatou set of f is the set

Ff = Ĉ ∖ Jf . A Fatou component is a connected component of the
Fatou set.

If f is a polynomial, then Jf coincides with the boundary of the set

Kf ∶= {z ∈ C ∶ {fn(z)}n≥0 is bounded},
called the filled Julia set.

2.3. Growth of groups. Given a finitely generated group G with
symmetric set of generators S one defines the word length of an element
g ∈ G with respect to S by

`G,S(g) ∶= min{n ∈ N0 ∶ g = s1 . . . sn, where sj ∈ S for j = 1, . . . , n};

and the growth function of G with respect to S by

growthG,S(n) ∶= #{g ∈ G ∶ `G,S(g) ≤ n}.
The group G is said to be of

(1) polynomial growth, if growthG,S(n) is bounded above by a polyno-
mial, that is, growthG,S(n) ≤ Cnk for some constants C > 0, k ∈ N;

(2) exponential growth, if growthG,S is bounded below by an exponen-
tial function, that is, growthG,S(n) ≥ c exp(αn) for some constants
c,α > 0;

(3) intermediate growth, otherwise.

It can be shown that whether G has polynomial, intermediate, or
exponential growth does not depend on the choice of the generating
set S.
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Milnor was the first to ask whether groups of intermediate growth
exist [Mil68]. This was answered in the positive by Grigorchuk in
[Gri83]. The example of a group of intermediate growth constructed
by Grigorchuk in this paper, now called the Grigorchuk group, is a self-
similar group. This means it acts on a binary rooted tree in a certain
“self-similar” fashion, see Definition 11.2 and [Nek05, Chapter 1]. Self-
similar groups often exhibit very interesting behavior and have been
studied intensely in the last decades. For more information on the
theory of growth of groups we refer the reader to the recent survey
[Gri14] by Grigorchuk, see also [BGN03], a survey on self-similar groups
and their properties.

2.4. Iterated monodromy action and group. Let f ∶S2 → S2 be
a Thurston map and post(f) be its postcritical set. Since post(f) ⊂
f−1(post(f)), f induces a covering

f ∶M1 = S2 ∖ f−1(post(f))→M = S2 ∖ post(f).
Let d be the topological degree of f . Fix a basepoint t ∈ M. We

consider the backward orbit of t, meaning the formal disjoint union
Tf = ⊔∞

n=0 f
−n(t). Then Tf has a natural structure of a d-ary rooted

tree: the root, that is, the unique point on the level 0, is the basepoint
t ∈ f−0(t) = {t}, and a vertex p ∈ f−n(t) (of the n-th level) is connected
by an edge to the vertex f(p) ∈ f−(n−1)(t) (of the (n − 1)-th level),
for n ∈ N. The set Tf viewed as a rooted tree is called the dynamical
preimage tree of f at the basepoint t.

The fundamental group π1(M, t) acts naturally on the set of preim-
ages f−n(t), n ∈ N0: the image p[γ] of a point p ∈ f−n(t) under the
action of a loop [γ] ∈ π1(M, t) is equal to the endpoint of the unique
fn-lift of γ that starts at p. It is easy to see that the action of the
fundamental group on the vertices of the dynamical preimage tree Tf

preserves the tree structure, that is, the fundamental group acts on Tf

by automorphisms of the rooted tree. Thus, we have defined a group
homomorphism

φf ∶ π1(M, t)→ Aut(Tf)
from the fundamental group ofM = S2∖post(f) to the automorphism
group Aut(Tf) of the d-ary rooted tree Tf .

Definition 2.2. The iterated monodromy action is the action of π1(M, t)
on the dynamical preimage tree Tf . The quotient of π1(M, t) by the
kernel of its action on Tf is called the iterated monodromy group of f
and is denoted by IMG(f). That is,

IMG(f) = π1(M, t)/Ker(φf) ≅ φf(π1(M, t)).
2.5. Selected properties of IMG’s. The iterated monodromy group
of a Thurston map f is self-similar [Nek05, Proposition 5.2.2]. Fur-
thermore, if f is a postcritically-finite rational map, then the iterated
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monodromy group (together with the associated wreath recursion, see
Appendix A.1) contains all the “essential” information about the dy-
namics of the map f : one can reconstruct from IMG(f) the action of
f on its Julia set Jf . In this case the limit space of the iterated mon-
odromy group is homeomorphic to the Julia set of the map [Nek05,
Theorem 6.4.4]. Moreover, one can approximate the Julia set Jf by a
certain sequence of finite graphs.

Definition 2.3. Let G be a group generated by a finite set S and
acting on a set X. The labeled Schreier graph Γ(G,S,X) is a labeled
directed (multi)graph with the set of vertices X and the set of directed
edges X×S, where the edge (x, s) starts at x, ends at xs, and is labeled
by s, for each x ∈X and s ∈ S.

Nekrashevych showed that given a postcritically-finite rational map
f , the sequence of the Schreier graphs of the action of IMG(f) on the
n-th level of the dynamical preimage tree Tf converges to the Julia set
of f , see [Nek05, Chapters 3 and 6].

It was observed that even very simple maps generate iterated mon-
odromy groups with complicated structure and exotic properties which
are hard to find among groups defined by more “classical” methods, see
[BGN03]. For instance, IMG(z2 + i) is a group of intermediate growth
[BP06] and IMG(z2 − 1) is an amenable group of exponential growth
[GŻ02, BV05]. Below we list the most important results relevant to
the growth theory of IMG’s that are known at the moment.

Theorem 2.4 ([Nek11]). Let f be a postcritically-finite rational map.
Then IMG(f) does not contain a free group of rank 2.

Theorem 2.5 ([Nek11]). If a postcritically-finite polynomial f has two
finite Fatou components with intersecting closures, then IMG(f) con-
tains a free semigroup of rank 2 and is of exponential growth.

Theorem 2.6 ([BKN10]). If f is a postcritically-finite polynomial,
then IMG(f) is amenable.

For more information on the theory of iterated monodromy groups
we refer the reader to [Nek05, Chapters 5–6] and [Nek11].

3. Construction of the map f1

Here we describe the map f1∶ Ĉ → Ĉ that will serve as our main
example. It is a postcritically-finite rational map, such that no critical
point is periodic. This means that the Julia set of f1 is the whole
Riemann sphere Ĉ (see [Mil06, Corollary 16.5]). Since we are mainly
interested in the combinatorial behavior of f1, we will construct f1 in
a combinatorial fashion.

We consider two polyhedral surfaces ∆ and ∆′ constructed as follows.
Let T be a Euclidean triangle with angles π/2, π/3, π/6. The surface
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−1 1

∞

∞

a1

a1

c1

a0

a0

0
c0

∆′ g1

−1 1

∞

∞
∆

Figure 2. The polyhedral surfaces ∆′ (left) and ∆
(right) and the map g1∶∆′ →∆.

∆ is obtained by gluing two identical copies of T together along their
boundaries. The surface ∆′ is obtained by gluing two Euclidean tri-
angles with angles 2π/3, π/6, π/6 together along their boundaries. The
two triangles of ∆, as well as ∆′, are called the top and bottom faces.
They correspond to the top and bottom triangles in Figure 2. The ver-
tices of each such triangle are labeled −1,1,∞; they correspond to the
vertices of ∆ and ∆′. We color the top face of ∆ white, and the bottom
one black. Each face of ∆′ can be divided into 6 triangles T ′ that are
similar to T ; we color them black and white as shown in Figure 2.

The map g1∶∆′ → ∆ is now constructed as follows. Each of the 6
white triangles T ′ ⊂ ∆′ is mapped by a similarity to the white face of
∆, that is, each vertex of T ′ is mapped to the one of the same angle.
Similarly, each of the 6 black triangles T ′ ⊂ ∆′ is mapped to the black
face of ∆ in the same fashion. To illustrate the mapping behavior, the
vertices of ∆ are colored red, blue, and green in Figure 2, and each
vertex v of a triangle T ′ ⊂ ∆′ is colored the same as g1(v).

It is a standard fact that every polyhedral surface can be equipped
with a conformal structure in a natural way, see for example [Bea84,
Section 3.3]. By the uniformization theorem this means that there are

conformal maps ϕ∶∆→ Ĉ and ϕ′∶∆′ → Ĉ. To normalize these maps, we
demand that the vertices of ∆ and ∆′ labeled −1,1,∞ are mapped to
−1,1,∞ ∈ Ĉ respectively. The symmetry then implies that the top face
of ∆, as well as the top face of ∆′, are mapped to the upper half-plane
H+; the other face of ∆, and respectively of ∆′, is mapped to the lower

half-plane H− (otherwise, the map p↦ ϕ(p) is distinct from ϕ violating
its uniqueness1).

In the case at hand, we can actually construct the maps ϕ and ϕ′

explicitly. Indeed, ϕ maps the white triangle in ∆ to the upper half-
plane by the Riemann map normalized so that the vertices labeled
−1,1,∞ are mapped to the points −1,1,∞ ∈ Ĉ. Also ϕ maps the

1Here p denotes the point in ∆ obtained from p ∈ ∆ by reflection along the edge
[−1,1], see Figure 2.
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black triangle to the lower half-plane by a Riemann map with same
normalization. Similarly, ϕ′ is constructed by mapping the top and
bottom face of ∆′ to the upper and lower half-plane with the same
normalization.

The map f1∶ Ĉ → Ĉ given by f1 ∶= ϕ ○ g1 ○ (ϕ′)−1 is now our desired
map2. It is elementary to check that it is indeed a rational map.

By a slight abuse of notation, let us denote the images of the vertices
in ∆′ labeled by a0, a1, c0, c1 under ϕ′ again by a0, a1, c0, c1. Note also
that by symmetry, the vertex in ∆′ labeled 0 is mapped to 0 ∈ Ĉ by ϕ′.

Then the set of critical points of f1 is crit(f1) = {a0, a1, c0, c1,0,∞} ⊂
Ĉ and the set of postcritical points is post(f1) = {−1,1,∞} ⊂ Ĉ.

Recall that the ramification portrait of a Thurston map f ∶ S2 → S2

is a directed graph with the vertex set V = ⋃n≥0 fn(crit(f)) consisting
of the union of all orbits of all critical points of f . For v,w ∈ V there
is a directed edge from v to w in the graph if and only if f(v) = w.
Moreover, if deg(f, v) = dv ≥ 2, that is, v is a critical point of f of
degree dv, we label the directed edge from v to w = f(v) by “dv ∶ 1”.
Put differently, the ramification portrait illustrates how critical points
are mapped by the map f . For instance, the ramification portrait of
f1 is shown below.

(3.1) c0
3∶1

!!

a0

2∶1
��−1 // 1

��

∞4∶1
oo 0

2∶1
oo

c1

3∶1
==

a1

2∶1

OO

We conclude that the ramification function αf1 of f1 (see Section 2.1)
is given by

αf1(1) = 24, αf1(−1) = 3, αf1(∞) = 2.

This means that the orbifold associated with f1 is hyperbolic.

Remark 3.1. The map f1 may be given explicitly in the following two
forms:

f1(z) = 2(3

4
)
3 z2 − 1

z2(z2 − 9
8)2

+ 1 =
2(z2 − 3

4)3
z2(z2 − 9

8)2
− 1.(3.2)

It is elementary to check that the two expressions agree. Thus the

critical points are in fact c0 =
√
3
2 , c1 = −

√
3
2 , a0 = 3

2
√
2
, a1 = − 3

2
√
2

(as

2The map f1 was originally constructed in [Mey02] (where is was called R6). Its
purpose then was to construct a quasisymmetric map from a certain fractal surface
to Ĉ. This, however, will not be relevant here.
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−1 1

∞

∞

Figure 3. The 2-tiles of f1.

well as 0 and ∞). Nevertheless, these precise values and the explicit
formula (3.2) will be of no importance to us.

4. Tiles, flowers, and the iterated monodromy group

In this section we describe tilings and the iterated monodromy action
associated with a Thurston map f ∶ S2 → S2 which has an f -invariant
Jordan curve C, such that post(f) ⊂ C. For simplicity, here we only
discuss the case f = f1. However, all the definitions and statements can
be naturally adapted to the general case.

Note that the extended real line R̂ = R ∪ {∞} ⊂ Ĉ is f1-invariant,

meaning that f1(R̂) ⊂ R̂, since f1 is a real function. Furthermore

post(f1) ⊂ R̂. The closures of the components of Ĉ ∖ R̂, that is, of the
upper and lower half-planes, are called 0-tiles. The one containing the
upper half-plane is colored white and denoted byX0

w ; the one containing
the lower half-plane is colored black and denoted by X0

b .
Let n be a non-negative integer. The closure of a component of

Ĉ ∖ f−n1 (R̂) is called an n-tile. Note that for any such n-tile X the set
fn1 (X) is one of the two 0-tiles. We color X by the color of fn1 (X), that

is, black or white. The subdivision of the sphere Ĉ in 2-tiles is shown
in Figure 3 (where Ĉ is identified with ∆′ as in the previous section).

Note that f1(R̂) ⊂ R̂ is equivalent to f−11 (R̂) ⊃ R̂, which in turn

implies f−(n+1)(R̂) ⊃ f−n(R̂) for all n ∈ N0. It follows that each (n+ 1)-
tile is contained in an n-tile. For example, when comparing Figure 2
and Figure 3 one sees that every 1-tile contains (is subdivided into) six
2-tiles.

Each point in f−n1 (post(f1)) is called an n-vertex. Note that the
set of n-vertices contains all critical points of fn1 . Furthermore, each
postcritical point is an n-vertex for any n ∈ N0, since f1(post(f1)) ⊂
post(f1). We say that the n-vertex v is of type a, b, or c if fn1 (v) =∞, 1,
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t

1

∞

−1

b

a

c

(a) Generators of IMG(f1).

tj

tj+1

Xj

Xj+1

(b) Action of b on the white
tiles of a b-flower.

Figure 4. The iterated monodromy action for f1.

or −1, respectively. Note that each n-vertex v is also an (n+1)-vertex,
but the type of v as an n-vertex may be different from the type of v as
an (n + 1)-vertex.

The closure of any component of f−n1 (R̂) ∖ f−n1 (post(f1)) is called
an n-edge. Thus, the postcritical points −1,1,∞ of f1, which we called
0-vertices, divide R̂ into the three 0-edges [−1,1], [1,∞], and [−∞,−1].

Let v ∈ Ĉ be an n-vertex, and let dv ∶= deg(fn, v). Then v is contained
in, or incident to, dv white as well as dv black n-tiles. Furthermore, the
colors of n-tiles alternate when going around v. Consider the union of
all such n-tiles,

W n(v) ∶= ⋃
n-tile X,
s.t. v ∈ X

X.

This set is called the flower of level n centered at v. We call dv the
degree of W n(v). We say that the flower W n(v) is an a-, b-, or c-
flower, if the n-vertex v is of type a, b, or c, respectively. Note that the
terminology is slightly different from the one in [BM], where flowers
are always open.

Let us now choose generators of the iterated monodromy group of
f1. We first choose an arbitrary basepoint t in the (interior of the)
upper half-plane. In particular t ∉ post(f1). Let a = γ∞, b = γ1, and
c = γ−1 be loops based at t around ∞, 1, and −1, respectively. More
precisely, we fix a small simple positively oriented circle around ∞
(Here, “small circle” means that it is inside a neighborhood U of ∞
such that post(f1)∖ {∞} ⊂ Ĉ∖U). The loop a connects t to this circle
in the upper half-plane, traverses it, and returns to t in the upper
half-plane. The loops b and c are defined in an analogous fashion, see
Figure 4a. By abuse of notation we identify the equivalence classes of
a, b, and c in IMG(f1) = π1(Ĉ∖post(f1), t)/Ker(φf1) (see Section 2.4)

with a, b, and c, respectively. Since a, b, c generate π1(Ĉ ∖ post(f1), t),
they generate IMG(f1). In fact, any two of the elements a, b, c generate
IMG(f1), since acb = 1.
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Figure 5. The first level Schreier graph of IMG(f1).

Note that for any white n-tile X the map fn1 ∶X →X0
w is a homeomor-

phism, see [BM, Proposition 5.17(i)]. Thus each white n-tile contains
exactly one point from f−n1 (t). So we may identify the set of white
n-tiles with the n-th level of the dynamical preimage tree Tf1 on which
IMG(f1) acts. Furthermore, each white n-tile, and thus any p ∈ f−n1 (t),
is contained in exactly one a-flower, exactly one b-flower, as well as ex-
actly one c-flower of level n. Next we are going to describe how to read
off the action of IMG(f1) on tiles from the tiling picture.

Consider a b-flower W n(v) of level n. From (3.1) we see that its
degree is dv ∈ {1,3,4,8}. Note that αf1(1) = 24 is the lowest com-
mon multiple of these degrees by definition of the ramification func-
tion. Let X0, . . . ,Xdv−1 be the white n-tiles contained in W n(v) la-
beled mathematically positively around v. Fix one such white n-tile
Xj ⊂ W n(v). Let us consider the lift b̃ of the loop b starting at
the point tj ∈ f−n1 (t) ∩ Xj. Then its endpoint is the unique point
tj+1 ∈ Xj+1 ∩ f−n1 (t) (here the index is taken mod(dv)). We conclude
that b acts on white n-tiles by rotations around the centers of b-flowers.
This is illustrated in Figure 4b, where blue arrows represent lifts of b
(up to homotopy). The analog description holds for the generators a
and c.

The Schreier graph for IMG(f1) acting on f−1(t) (the first level of
the dynamical preimage tree) is shown in Figure 5. Here, we colored
the edges red, blue, and greed instead of labeling them by generators
a, b, and c, respectively. In this way, we may think of the sphere tiling
generated by the n-tiles as a graphical representation of the Schreier
graph of the action of IMG(f1) on the n-th level of the dynamical
preimage tree Tf1 .

Lemma 4.1. The order of each chosen generator of IMG(f1) is given
by the value of the ramification function at the corresponding postcrit-
ical point:

ord(a) = αf1(∞) = 2, ord(b) = αf1(1) = 24, ord(c) = αf1(−1) = 3.
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6

Figure 6. Labeling of the 1-tiles of f1.

Proof. If k = αf1(1) = 24, then k is a multiple of the degree of each
b-flower. Hence bk acts trivially on each white n-tile, n ∈ N0. This
means that bk = 1 in IMG(f1). Conversely, if k ≥ 1 is not a multiple of
24, there is a b-flower W n(v) whose degree dv does not divide k. Then
bk does not act trivially on the white n-tiles in W n(v), so bk ≠ 1. Thus
ord(b) = αf1(1) = 24. The argument is completely analogous for the
generators a and c. �

Let us now give the wreath recursions of the generators a, b, c, see
Appendix A.1. To do this we label the white 1-tiles as indicated in
Figure 6. Let tj ∈ f−11 (t) be the preimage of t contained in the 1-tile
labeled by j ∈ {1, . . . ,6}. Note that f1([−∞,−1]∪[1,∞]) ⊂ [1,∞], that

is, [−∞,−1] ∪ [1,∞] forms a forward-invariant tree in Ĉ joining the
postcritical points of f1. This allows us to naturally choose connecting
paths from the basepoint t to the points in f−11 (t) = {t1, . . . , t6} and
define a labeling on the dynamical preimage tree Tf1 . Namely, we
connect t to tj, j ∈ {1, . . . ,6}, by a path `j that does not intersect

[−∞,−1] ∪ [1,∞] ⊂ R̂ ⊂ Ĉ, meaning that `j stays in the interior of
the domain in Figure 6. These choices define the label of every vertex
of Tf1 uniquely by iterative lifting of the paths `1, . . . , `6, see [Nek05,
Chapter 5.2] for more details. With respect to this labeling the action
of IMG(f1) on the regular rooted tree Tf1 becomes self-similar, see
Definition 11.2. The wreath recursions of a, b, and c are then given by

a = ⟪b−1,1, b, c−1,1, c⟫ (13)(25)(46)(4.1)

b = ⟪b, b−1,1, c, c−1,1⟫ (2356)
c = (123)(456).

We will however not need the wreath recursions to prove exponential
growth of IMG(f1).

5. Exponential growth of IMG(f1)
In this section we prove that the iterated monodromy group of the

map f1 has exponential growth. More precisely, we construct a free
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1
⋯∞

Figure 7. b-flowers on [1,∞].

semigroup inside IMG(f1). We remind the reader that a more classical,
a la Basilica, proof which only uses computations with the wreath
recursions (4.1) can be found in Appendix A.2.

Recall that the map f1 has three postcritical points −1, 1, and ∞,
which we call 0-vertices, that divide R̂ into the three 0-edges [−1,1],
[1,∞], and [−∞,−1]. The reader is advised to consult Figure 2. The
0-edge [1,∞] will be of special importance to us.

Lemma 5.1. Any a-flower of level n ≥ 1 has degree 2.

Proof. From (3.1) we see that every preimage of ∞ is a critical point
of local degree 2, which is not a postcritical point. The statement
follows. �

Note that Lemma 5.1 is stronger than the statement that ord(a) = 2,
since the latter does not rule out a-flowers of degree 1.

Lemma 5.2 (Flowers on [1,∞]). Let n ∈ N0. The 0-edge [1,∞] has
the following properties.

(1) f1([1,∞]) = [1,∞]. Consequently, the 0-edge [1,∞] is (for-
ward) f1-invariant.

(2) For every n-vertex v ∈ (1,∞) of type b the degree of W n(v) is
8. The degree of the b-flower W n(1) is 1.

(3) There are exactly 2n + 1 n-vertices on [1,∞]. Moreover, their
type alternates between b and a.

(4) For any n-vertex v ∈ (1,∞), the number of white n-tiles in the
flower W n(v) that are contained in X0

w equals the number of
white n-tiles in W n(v) that are contained in X0

b .
(5) For any n-vertex v ∈ [1,∞) there is a unique white n-tile X(v) ∈

W n(v) ∩X0
w that intersects R̂ in an n-edge.
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The situation is illustrated in Figure 7. The n-vertices on [1,∞] of
type b are marked as blue dots, the ones of type a as red dots. Also
the b-flowers on [1,∞] are outlined in blue.3

Proof.
(1) Note that [1,∞] = [1, a0]∪ [a0,∞], and f1 maps [1, a0] as well as

[a0,∞] homeomorphically to [1,∞], see Figure 2.

(2) Note that (1,∞) contains no 1-vertices of type b (that is, there
is no point v ∈ (1,∞) with f(v) = 1). The only 2-vertex of type
b on (1,∞) is a0 (which satisfies f1(a0) = ∞ and f 2

1 (a0) = 1). It
follows from (1) that for any n-vertex v ∈ (1,∞) of type b the orbit
v, f1(v), f 2

1 (v), . . . , fn1 (v) = 1 contains exactly 2 critical points of f1,
namely a0 and ∞. Thus deg(fn1 , v) = deg(f1, a0)deg(f1,∞) = 8 is the
degree of W n(v) as desired. Clearly, deg(fn1 ,1) = 1 for all n ∈ N0.

(3) The statement follows from the description above and an elemen-
tary induction.

(4) Recall that X0
w and X0

b are the closures of the upper and lower
half-planes, respectively. So we need to show that each flower W n(v),
v ∈ (1,∞), contains as many white n-tiles above the real line as below.

First note that f1 is a real function, meaning that f1(z) = f1(z).
Thus the n-tiles are symmetric with respect to the real axis. Since
deg(fn1 , v) is even, the number of n-tiles in W n(v) below and above
the real line is the same even number. As colors of tiles around v
alternate the statement follows.

(5) The statement follows from the above considerations. �

Corollary 5.3. ab4, ab12, and ab20 are distinct elements of infinite
order in IMG(f1).

Proof. Since ord(b) = 24 it follows that ab4, ab12, and ab20 are distinct
in IMG(f1).

Let n ≥ 2 be an integer. Consider an n-vertex v ∈ [1,∞) of type b and
the white n-tile X(v) as in Lemma 5.2(5). Let v′ be the n-vertex of
type b to the right of v on [1,∞] and X(v′) ⊂W n(v′)∩X0

w be the white
n-tile according to Lemma 5.2(5). In the latter we assume that v′ is
different from ∞. Then by the description of the iterated monodromy
action on tiles from Section 4 as well as Lemmas 5.1 and 5.2 it follows
that ab4 maps X(v) to X(v′). Put differently, ab4 “shifts white n-tiles
in X0

w on the 0-edge [1,∞) to the right”. Since the degree of W n(v′)
is 8, it follows that ab12 and ab20 act on X(v) in exactly the same way
as ab4, that is, by shifting X(v) to X(v′) on the right.

3For purely aesthetic reasons we have cut the Riemann sphere Ĉ along [−∞,1]
and applied a 6-th root, that is, the picture shows the tiles after applying the map
z ↦ (z−1)1/6. This ensures that the b-flowers on [1,∞] have roughly the same size.
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(a) The flower centered at c0. (b) The b-flowers around c0.

Figure 8. Flowers around c0.

Note that by Lemma 5.2(3) there are 2n−1 n-vertices of type b on
[1,∞). From the above considerations, the elements ab4, ab12, and
ab20 are of infinite order in IMG(f1). �

Lemma 5.4. The elements ab4, ab12, and ab20 generate a free semi-
group in IMG(f1).

Put differently, we consider the words of the form

(5.1) abk1abk2 . . . abkN ,

where N ∈ N0 and kj ∈ {4,12,20} for j = 1, . . . ,N . We will show that
if two such words are distinct, then they are distinct as elements of
IMG(f1).

Proof. Suppose that n ≥ 2 is an integer. Let us consider the critical
point c0, see Figure 2 and (3.1). Note that fn1 (c0) = 1 and deg(fn1 , c0) =
3. Thus, c0 is an n-vertex of type b and the degree of W n(c0) is 3.
Figure 8a shows such a flower W n(c0).

Note that the 0-edge [1,∞] has three f 2
1 -preimages at c0. More pre-

cisely, there are three analytic closed arcs A1,A2,A3, such that they
intersect (pairwise) precisely in c0 and f 2

1 ∶Aj → [1,∞] is a homeo-
morphism for j = 1,2,3. Denote by A′

j the arc Aj with the endpoint
different from c0 removed.

Let j ∈ {1,2,3}. It follows that on each arc A′
j the combinatorial

picture of level n is the same as on [1,∞) for level n − 2 (the latter
one is described by Lemma 5.2). The only difference is that the degree
of W n(c0) is 3, while the degree of W n(1) is 1. In particular, we can
associate to each n-vertex v ∈ A′

j of type b a white n-tile X(v) ⊂W n(v),
so that X(v) is mapped by abk to X(v′), for k = 4,12,20. Here, v′ is
the next n-vertex of type b on Aj that follows v, when traversing Aj
starting from c0. Figure 8b shows the b-flowers on the arcs A1,A2,A3
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⋯

⋯
⋯

Figure 9. A subgraph of the Schreier graph at c0.

for sufficiently large n (Figure 8a is a close-up of Figure 8b). For
the convenience of the reader we also show a subgraph of the n-level
Schreier graph in Figure 9, which may be viewed as a schematic version
of Figure 8b.

Consider now two distinct words w1 and w2 of the form (5.1). By
multiplying from the left with the inverse of the common initial word,
it is enough to assume that

w1 = bk1abk2 . . . abkN , w2 = bm1abm2 . . . abmN ,

where k1, . . . , kN ,m1, . . . ,mN ∈ {4,12,20}, and k1 ≠ m1. Fix a suffi-
ciently large n (in fact it will be enough to demand that 2n−3 > N). Fix
one white n-tile X in W n(c0). Let us apply the two words w1 and w2

to X. Note that bk1 and bm1 map this tile to distinct n-tiles X1 and
X2 in W n(c0), since 8 is not a multiple of 3. We conclude that the
remaining subwords abk2 . . . abkN and abm2 . . . abmN of w1 and w2 shift
these n-tiles along two distinct arcs among A1,A2,A3. Thus w1 and
w2 map X to distinct n-tiles. Consequently, w1 and w2 are distinct
elements in IMG(f1).

The previous argument can be applied to show that distinct words of
the form (5.1) are distinct in IMG(f1) even if they have different length.
However, we note that there is a special case when after cancellation
of the common initial part of the two given words we are left with
w1 = 1 and w2 ≠ 1. In this case w1 fixes the n-tile X selected above,
while w2 shifts it along one of the arcs A1,A2,A3. Thus w1 and w2 are
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distinct elements in IMG(f1). Hence we have proved that the elements
ab4, ab12, ab20 generate a free semigroup in IMG(f1). �

From the previous lemma it follows immediately that IMG(f1) is of
exponential growth. This proves Theorem 1.1.

6. A criterion for exponential growth

Here we analyze the essential ingredients used in Section 5 to prove
exponential growth of the iterated monodromy group of the map f1.
This will result in a somewhat general sufficient condition for the IMG
of a Thurston map to be of exponential growth. However, we point out
that this criterion is far from being necessary. Moreover, the imposed
conditions on the Thurston map can be further relaxed.

Let g∶S2 → S2 be a Thurston map (see Definition 2.1). We fix a
Jordan curve C ⊂ S2 with post(g) ⊂ C. As in Section 4, the 0-edges
are the closed arcs into which post(g) divides C. For the map f1 we
considered the 0-edge [1,∞] which was f1-invariant. So in general we
demand that

there is a g-invariant 0-edge E with endpoints p, q ∈ post(g)(a)

such that g∣E∶E → E is not a homeomorphism.

Put differently, g(E) = E and dE ∶= deg(g∣E) ≥ 2. It follows that the
0-edge E is subdivided into dnE n-edges by n-vertices for each n ∈ N0.

Further, we assume that

(b) g(p) = p.
Note that from g(E) = E it follows that g({p, q}) ⊂ {p, q}, which means
that at least one of the points p, q is a fixed point of g2. So the main
purpose of condition (b) is to fix the notation, since p and q will play
somewhat different roles.

Let v be an n-vertex on E for some n ∈ N0, meaning that v ∈
g−n(post(g))∩E. Since E is g-invariant, it follows that either gn(v) = p
or gn(v) = q. In the first case we say that the n-vertex v is of type p,
otherwise we say that it is of type q. We again note that v is an (n+1)-
vertex as well, and as such may be of different type. Recall that each
n-edge e in E is mapped by gn homeomorphically to E. If follows that
one endpoint of e is an n-vertex of type p and the other one is of type
q. Put differently, the types of the n-vertices on E alternate.

The second essential ingredient for the example f1 was that for all n-
vertices v ∈ (1,∞) of a fixed type the degrees of the flowers W n(v) were
the same. In general we demand that there are constants kp, kq ∈ N,
such that for each n ∈ N every n-vertex v ∈ E ∖ {p, q} of type p, and
every n-vertex w ∈ E ∖ {p, q} of type q, satisfies

(c) deg(gn, v) = kp and deg(gn,w) = kq.
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There is an elementary way to check that condition (c) is true. Let
Vp ∶= g−1(p)∩ (E ∖ {p, q}) and Vq ∶= g−1(q)∩ (E ∖ {p, q}). These are the
1-vertices on E ∖ {p, q} of type p and q respectively. We first note that
(c) implies that there are constants kp, kq ∈ N with

(c1) kp = deg(g, v) and kq = deg(g,w)
for all v ∈ Vp and w ∈ Vq.

Let v ∈ E ∖ {p, q} be an n-vertex of type p, then by (b) it is an
(n + 1)-vertex of type p as well. Assuming (c) it follows that

kp = deg(gn+1, v) = deg(gn, v)deg(g, p) = kp deg(g, p).
Thus (c) implies

(c2) deg(g, p) = 1.

The other 0-vertex q satisfies either g(q) = q or g(q) = p. In the first
case we obtain from an exactly analogous argument that (c) implies

(c3) deg(g, q) = 1 in the case g(q) = q.
Furthermore, in this case the three conditions (c1), (c2), (c3) imply
(c). Indeed, for any n-vertex v ∈ E ∖ {p, q} of type p the sequence
v, g(v), . . . , gn(v) = p contains exactly one critical point of g, which is
contained in Vp, and thus has local degree kp. Hence deg(gn, v) = kp.
Similarly, deg(gn,w) = kq for each n-vertex w ∈ E ∖ {p, q} of type q.

Let us now consider the second case g(q) = p. Suppose w ∈ Vq. Then
g2(w) = p. From (c) it follows that kp = deg(g2,w) = deg(g,w)deg(g, q) =
kq deg(g, q). Thus we obtain the condition

(c4) kp = kq deg(g, q) in the case g(q) = p.
Conversely, in this case the conditions (c1), (c2), (c4) imply that for
any n-vertex v ∈ E∖{p, q} of type p, the sequence v, g(v), . . . , gn(v) = p
contains either exactly one point in Vp or the point q and exactly one
point in Vq. In both situations deg(gn, v) = kp. The argument that
deg(gn,w) = kq for each n-vertex w ∈ E ∖ {p, q} of type q is the same
as in the first case.

In conclusion, we have seen that

(c1), (c2), (c3), (c4)⇔ (c).
In practice we often consider the ramification portrait of g restricted

to E. Let v ∈ Vp ∪ Vq ⊂ E ∖ {p, q}. Since v is incident to two 1-edges
contained in E, both of which are mapped to E, it follows that v is
a critical point of g. Thus the ramification portrait of g does indeed
contain all 1-vertices in E, and we may restrict it to the set of these
vertices. We note that for a (critical) point v ∈ Vp∪Vq ∪{p, q} of degree
dv = deg(g, v) we label the directed edge from v to g(v) by “dv ∶ 1”.
Note that dv differs in general from deg(g∣E,v) (which is always 2 for
v ∈ Vp ∪ Vq).
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For example, the ramification portrait of f1 restricted to [1,∞] is

a0
2∶1
// ∞ 4∶1

// 1.
��

Given the restricted ramification portrait of a g-invariant 0-edge, it is
immediate to verify that conditions (c1), (c2), (c3) (c4) (as well as (b))
are satisfied.

Condition (c) is not yet sufficient to ensure that a suitable word
(which was ab4 for the example f1) acts by “shifting white n-tiles along
E”. Let v ∈ E ∖ {p, q} be an n-vertex. Then there are n-edges e, e′ ⊂ E
that intersect in v. Then any n-tile in the flower W n(v) of level n
centered at v is either contained in the sector between e and e′ or in
the sector between e′ and e. We refer to these two sectors as the sectors
into which E divides W n(v). In this setting we demand that

for each n-vertex v ∈ E ∖ {p, q} the two sectors into which E(d)

divides W n(v) contain the same number of n-tiles.

Let dv = deg(gn, v). Then there are 2dv n-edges that contain v. Let
e0, e1, . . . , e2dv−1 be these n-edges labeled cyclically around v so that
e = e0 ⊂ E. Then (d) is equivalent to the requirement that e′ = edv ⊂ E.

Since E is invariant, gn(e0) = gn(edv) = E. At the same time gn maps
ej to E if and only if j is even. It follows that dv is even. Consequently,
conditions (a) and (d) imply that the two sectors into which E divides
W n(v) contain an (equal) even number of n-tiles. Thus the numbers
kp and kq from condition (c) are even.

Let us color the 0-tiles black and white. As in Section 4, the dynamics
of g defines a coloring on the n-tiles respecting the above choice for all
n ∈ N. The colors of the n-tiles containing v (that is, the n-tiles in
the flower W n(v)) alternate cyclically around v. From the discussion
above, it follows that conditions (a) and (d) mean that the numbers of
white n-tiles in the two sectors into which E divides W n(v) are equal.

Note that (d) is automatically satisfied if E ⊂ R̂ and g is a real

rational function, that is, g(R̂) ⊂ R̂.
As for condition (c), there is an equivalent condition that only in-

volves 1-vertices, 1-tiles, and 1-flowers. More precisely, we demand
that

for each 1-vertex v ∈ E ∖ {p, q} the two sectors into which E(d’)

divides W 1(v) contain the same number of 1-tiles.

Lemma 6.1. Let E be a g-invariant 0-edge with the endpoints p and
q as in (a). Then condition (d) is equivalent to condition (d’).

Proof. The implication (d) ⇒ (d’) is trivial.
Let us show the other implication. First consider a 1-vertex v ∈

E ∖ {p, q}; recall that v then is an n-vertex as well for all n ∈ N.
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Since the 0-edge E is g-invariant, g(v) ∈ {p, q}. Assume that g(v) =
p. The other case is completely analogous and will not be treated
separately. Let E and Ẽ be the 0-edges incident to p. Then the 1-edges
containing v are alternatingly mapped to E and Ẽ by g. Suppose that
the 1-edges around v are e0, ẽ0, e1, ẽ1, . . . , edv = e0 in cyclic order. Here
dv = deg(g, v), g(ej) = E, and g(ẽj) = Ẽ for j = 0, . . . , dv−1. Let e0 ⊂ E,
then by conditions (a) and (d’) it follows that the other 1-edge in E
containing v is edv/2.

Fix an n ∈ N and view the 1-vertex v ∈ E ∖ {p, q} as an n-vertex.
Consider all the (n−1)-edges containing g(v) = p. Denote these (n−1)-
edges by K0, . . . ,Km−1 so that K0 ⊂ E, where m = 2 deg(gn−1, g(v)).
Then every 1-edge ej, defined above, contains an n-edge kj,0 incident
to v, such that g(kj,0) = K0. Moreover, between ej and ej+1 there are
exactly (m − 1) n-edges containing v. It follows that the two sectors
in W n(v) between the two n-edges in E containing v, namely k0,0 and
kdv/2,0, contain the same number of n-edges, proving the lemma in this
case.

Consider now an n-vertex v ∈ E ∖ {p, q} that is not a 1-vertex. Then
there is a j ≤ n−1 such that w ∶= gj(v) ∈ E∖{p, q} is a 1-vertex. Since w
is not a postcritical point of g, it follows that v is not a critical point of
gj. Thus there is a neighborhood of v on which gj is a homeomorphism.
Consequently, gj maps n-edges containing v to (n−j)-edges containing
w bijectively, and at the same time E to E. The desired statement
for v follows now from the corresponding statement for the 1-vertex w
already proved above. �

Finally, we assume the following condition.

There is a point c ∈ S2 with gk(c) = p for a k ∈ N(e)

such that dc ∶= deg(gk, c) is not a divisor of kp.

As for the map f1 we define the elements a and b of IMG(g) as being
represented by loops around q and p, respectively. More precisely, we
fix a basepoint t in the interior of the white 0-tile denoted by X0

w . Then
the loop a is represented by connecting t in X0

w to a small circle around
q. Similarly, the loop b is represented by connecting t in X0

w to a small
circle around p.

Assuming conditions (a)–(d), one shows exactly analogous to Corol-
lary 5.3 that akq/2bkp/2 is of infinite order in IMG(g). If we also assume
condition (e), it follows exactly as in Lemma 5.4 that akq/2bkp/2 and
akq/2bkp/2bkp generate a free semigroup in IMG(g). This means we have
proved the following.

Theorem 6.2. Let g∶S2 → S2 be a Thurston map, and C ⊂ S2 be a
Jordan curve with post(g) ⊂ C that satisfies conditions (a)–(d). Then
IMG(g) contains an element of infinite order.
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Theorem 6.3. Let g∶S2 → S2 be a Thurston map, and C ⊂ S2 be a
Jordan curve with post(g) ⊂ C that satisfies conditions (a)–(e). Then
IMG(g) is of exponential growth.

Let us provide some remarks on how our conditions may be relaxed.

Remarks 6.4.
(1) For any Thurston map g∶S2 → S2, IMG(g) is isomorphic to

IMG(gn) for any n ∈ N. Thus to prove exponential growth of IMG(g)
it is enough to check that our conditions are satisfied for some iterate
gn.

(2) Two Thurston maps f ∶S2 → S2 and g∶S2 → S2 that are Thurston
equivalent have isomorphic iterated monodromy groups [Nek05, Corol-
lary 6.5.3]. Thus our conditions, in particular (a), need only be satisfied
up to isotopy rel. post(g).

(3) For simplicity, let us denote x ∶= akp/2bkq/2. By (b) there exists
a unique point t0 ∈ g−1(t) ∩ W 1(p). Conditions (a)–(d) imply that
there is a sequence of distinct points t0, t1, . . . , tn−1 ∈ g−1(t), such that
tj+1 mod (n) = txj , that is, the lift xj of x starting at tj ends at tj+1 mod (n)
for each j = 0, . . . , n − 1. In fact, n = dE = deg(g∣E). Let γ be the
closed curve in S2 ∖ post(f) obtained by concatenation of the paths
xj, j = 0, . . . , n − 1. It follows that the curve γ is homotopic to x rel.
post(g). Furthermore deg(g∣γ) = n > 1. Loosely speaking, we can say
that x acts on the white n-tiles sharing an edge with E by “permuting
them cyclically around E”. In this way, one can relax conditions (a),
(c), and (d) by requiring existence of an element x ∈ IMG(g) with
the properties mentioned above. This element x will be automatically
of infinite order in IMG(g). However, one will also need to adapt
condition (e) in a certain way to conclude the exponential growth of
IMG(g). The resulting criterion however is somewhat cumbersome and
will not be formulated here.

7. Sierpiński carpet rational maps

In this section we present a family of postcritically-finite rational
maps, such that each map in the family has a Sierpiński carpet as its
Julia set, and iterated monodromy group of exponential growth. Here,
we call a set S ⊂ Ĉ a Sierpiński carpet if and only if it is homeomorphic
to the standard Sierpiński carpet. By Whyburn’s characterization, this
is the case if and only if S is compact, connected, locally connected,
has topological dimension 1, and no local cut-points. Equivalently,
there exists a sequence {Dj}j∈N of Jordan domains in Ĉ having pair-

wise disjoint closures, such that S = Ĉ ∖ (⋃jDj) has empty interior
and diam(Dj) → 0 as j → ∞, see [Why58]. These two characteriza-
tions show that a Sierpiński carpet is a universal object and justify the
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study of rational maps with Sierpiński carpet Julia set. The first ex-
ample of such a rational map is due to Milnor and Tan Lei, see [Mil93,
Appendix].

The rational maps we will consider now have originally been stud-
ied by Häıssinsky and Pilgrim in [HP12] (with one difference that we
address at the end of the section). We briefly review the construction,
which is similar to the way the map f1 from Section 3 was defined.

To keep the discussion elementary, we first consider one concrete map
from our family. Let ∆ and ∆′ be the two polyhedral surfaces shown
in Figure 10. Here, ∆ is a pillow obtained by gluing two copies of the
unit square [0,1]2, called faces of ∆, together along their boundaries.
The polyhedral surfaces ∆′ is constructed from 2 × 11 squares of side
length 1/3, called 1-squares of ∆′ (they correspond to 1-tiles in the
terminology of Section 4). More precisely we take two copies of

Y ∶= [0,1]2 ∪ [0, 13] × [−1
3 ,0] ∪ [−1

3 ,0] × [0, 13] ⊂ R2

and glue them together along their boundaries. We call each copy
of Y ⊂ ∆′ a face of ∆′. Clearly ∆ and ∆′ are homeomorphic to S2.
As polyhedral surfaces, ∆ and ∆′ may both be naturally viewed as
Riemann surfaces. With this point of view, there are conformal maps

ϕ∶∆→ Ĉ and ϕ′∶∆′ → Ĉ.
By symmetry, we may assume that ϕ and ϕ′ map one face of ∆ and,
respectively, ∆′ to the upper half-plane and the other face to the
lower half-plane, so that the points marked −1,0,1,∞ in Figure 10
are mapped to −1,0,1,∞ ∈ R̂ ⊂ Ĉ, respectively. In fact, ϕ and ϕ′ may
be constructed explicitly by mapping each face of ∆ and, respectively,
∆′ by a Riemann map to the upper or lower half-plane, where the four
marked points are mapped as indicated.

The map g∶∆′ → ∆ is now given as follows. Each 1-square of ∆′ is
mapped (conformally) by a similarity that scales by the factor 3 to a
face of ∆ as indicated in Figure 10. We define the map

f ∶= ϕ ○ g ○ (ϕ′)−1∶ Ĉ→ Ĉ.
Note that f is holomorphic, hence a rational map. Consider the points
in ∆′ where at least four 1-squares of ∆′ intersect. Their images un-
der ϕ′ are exactly the critical points of f . Furthermore, the points
−1,0,1,∞ ∈ Ĉ, which are the images of the vertices of ∆ under ϕ, are
exactly the postcritical points of f . So, f is a rational Thurston map
with post(f) = {−1,0,1,∞}. Moreover, the Julia set of f is a Sierpiński
carpet, see [HP12].

We mention in passing that we may think of f as being constructed
via a two-tile subdivision rule in the sense of Cannon-Floyd-Parry (see
[CFKP03] and [BM, Chapter 12]). Alternatively, f is constructed from
a Lattès map by “adding a flap” or “blowing up an arc” in the sense
of [PT98].
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Figure 10. Construction of a Sierpiński carpet map.

Let C ∶= R̂, E ∶= [1,∞] ⊂ C, p ∶= 1, and q ∶= ∞. The ramification
portrait of f restricted to E is

b0
2∶1
// 1
��

a0
2∶1
// ∞.


Again, by a slight abuse of notation, we denote the images of the points
labeled by a0, b0, and c0 in Figure 10 under ϕ′ by a0, b0, and c0,
respectively.

Note that the critical point c0 of f satisfies deg(f, c0) = 3, see Fig-
ure 10. It is now elementary to check that with the above choices
conditions (a)–(e) from Section 6 are satisfied. It follows from Theo-
rem 6.3 that IMG(f) is of exponential growth. Thus we have proved
Theorem 1.2.

We may vary the construction of the map f . In particular, divide
each of the two faces of the pillow ∆ in n × n squares of side length
1/n, where n ≥ 3 is an odd number, and add two diagonally symmetric
flaps as in Figure 10 to obtain a polyhedral surface ∆′. Then repeat the
above construction. Again the resulting rational map f has a Sierpiński
carpet as its Julia set, and IMG(f) is of exponential growth. The
maps in [HP12] are constructed in the same fashion, but there n ≥ 2 is
even. This results in a hyperbolic rational map f , meaning that every
critical point of f is contained in the Fatou set Ff . For each such
map f condition (c) is not satisfied. Consequently, Theorem 6.3 does
not apply. We do not know if these hyperbolic maps have iterated
monodromy groups of exponential growth. However, the argument in
[HP12], showing that f has a Sierpiński carpet Julia set, is equally
valid independently of whether n is even or odd.

8. A family of obstructed maps

Here, the example from the previous section is slightly modified to
obtain an infinite family of obstructed Thurston maps with iterated
monodromy groups of exponential growth.
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The construction is very similar to the one in Section 7. The only
difference is that instead of “adding two flaps” to a Lattès map we
add only one; see Figure 11 and compare with Figure 10. As before,
we obtain a map g∶∆′ → ∆ and define homeomorphisms ϕ∶∆ → Ĉ
and ϕ′∶∆′ → Ĉ that are normalized as in the previous section. That
is, the top and bottom faces of ∆ (and ∆′) are mapped to the upper

and lower half-planes in Ĉ, respectively, so that the points labeled by
−1,0,1,∞ in ∆ (and ∆′) are mapped to −1,0,1,∞ ∈ Ĉ, respectively.

We obtain a Thurston map f ∶= ϕ ○ g ○ (ϕ′)−1∶ Ĉ→ Ĉ such that IMG(f)
is of exponential growth (using Theorem 6.3 in the exact same form as
in the previous section).

However, we want to point out a crucial difference from the situation
in Section 7. Namely, here each face of ∆′ is not symmetric with respect
to the (diagonal) geodesic joining the vertices labeled by 0 and ∞ (in

the respective face). This means we cannot choose the map ϕ′∶∆′ → Ĉ
to be conformal with our normalization. Consequently, the constructed
map f is not rational.

With a slight abuse of notation consider now an arbitrary Thurston
map f ∶S2 → S2. Thurston gave a criterion when the map f is Thurston
equivalent to a rational map. We present it only in the case when f has
4 postcritical points and a hyperbolic orbifold. We refer to [DH93] for
the general statement, as well as the terminology. Let γ ⊂ S2 ∖post(f)
be a Jordan curve that is non-peripheral, meaning that each component
of S2∖γ contains at least 2 postcritical points (since # post(f) = 4 this
means that each component contains exactly 2 postcritical points). Let
γ1, . . . , γk be the components of f−1(γ) that are non-peripheral. The
curve γ is called invariant if one (or, equivalently in our case, each) of
the curves γj, j = 1, . . . , k, is homotopic to γ rel. post(f). Denote by
dj the degree of the restriction f ∶γj → γ for j = 1, . . . , k. Assume that
γ is invariant and define

(8.1) λf(γ) ∶=
k

∑
j=1

1

dj
.

Then the curve γ is called a Thurston obstruction if λf(γ) ≥ 1. Thurston’s
theorem now says that f is Thurston equivalent to a rational map if
and only if f has no Thurston obstruction. Otherwise f is called an
obstructed Thurston map.

It follows that the map f ∶ Ĉ → Ĉ constructed in this section has a
Thurston obstruction γ as shown in Figure 11. Here, we choose to draw
γ in ∆ and its preimages γ1, . . . , γ4 in ∆′ for simplicity. In reality, we
consider the images of these curves under ϕ and ϕ′ in Ĉ, respectively.
Then λf(γ) = 1 (note that the component γ4 of f−1(γ) is peripheral,
thus it does not contribute to the sum (8.1)). Consequently, γ is a
Thurston obstruction. Thus f is not Thurston equivalent to a rational
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Figure 11. Construction of an obstructed map.

map by Thurston’s theorem, meaning it is obstructed. We have proved
Theorem 1.3.

9. A non-renormalizable polynomial P with IMG of
exponential growth

Here, we present an example of a postcritically-finite, non-renormaliz-
able polynomial P ∶ Ĉ → Ĉ with dendrite Julia set and iterated mon-
odromy group of exponential growth. This polynomial serves as an
example in Theorem 1.4. In fact, P is given by

P (z) = 2

27
(z2 + 3)3(z2 − 1) + 1 = 2

27
z8 + 16

27
z6 + 4

3
z4 − 1.

From these two expressions we immediately see that P has the (finite)

critical points ±
√

3i of local degree 3, and 0 of local degree 4. Further-
more, they are mapped as follows

±
√

3i
3∶1

// 1
��

−1oo 0.
4∶1
oo

Thus post(P ) = {−1,1,∞}. Let p ∶= 1, q ∶= −1, C ∶= R̂, E ∶= [−1,1],
and c ∶=

√
3i. With these choices conditions (a)–(e) are satisfied. From

Theorem 6.3 it follows that IMG(P ) has exponential growth. Hence P
satisfies property (4) of Theorem 1.4.

Clearly P is postcritically-finite and has no (finite) periodic critical
points. It follows that the Julia set J of P , shown in Figure 12b, is
a dendrite (that is, a compact, connected, locally connected set with
empty interior which does not separate the plane), see [Bea91, §11.2].
Consequently, P satisfies property (1) of Theorem 1.4.

Since J is a dendrite, the Hubbard tree of P may be defined as the
smallest continuum in J containing all (finite) postcritical points (see
[DH84]). From P ([−1,1]) = [−1,1] we conclude that [−1,1] is con-
tained in the Julia set J (because each orbit in [−1,1] is bounded).



EXPONENTIAL GROWTH OF SOME ITERATED MONODROMY GROUPS 29

−1↦1 1↦10↦−1
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(a) The pre-Hubbard tree/
dessin d’enfant of P . (b) The Julia set of P .

Figure 12. Visualizing P .

Hence, H = [−1,1] is the Hubbard tree of P and the Julia set J coin-
cides with the closure

⋃
n≥0

P −n(H).

Let us color the point 1 black and −1 white. The preimage H ′ ∶=
P −1(H) of the Hubbard tree H is schematically shown in Figure 12a.
Here, we color the points in P −1(1) black and the points in P −1(−1)
white, and indicate how they are mapped for convenience (even though
this information is already contained in the coloring). We also label
the critical and postcritical points.

Let us recall that a point x of a dendrite X is called a leaf of X if
X ∖ {x} is connected. Clearly, the points 1 and −1 are leaves of the
Hubbard tree H and the pre-Hubbard tree H ′. It follows that each set
P −n(H), n ∈ N0, is a planar tree and its set of leaves contains points
1, −1. Consequently, the postcritical points 1 and −1 are leaves of the
dendrite Julia set J . Thus P satisfies property (2) of Theorem 1.4.

The polynomial P is in fact a Shabat (or Bely̆ı) polynomial. This
means that P has exactly 2 finite critical values. The diagram in Fig-
ure 12a is the dessin d’enfant of P . For a general Shabat polynomial,
its dessin d’enfant is obtained as the preimage of an arc connecting
its two finite critical values. It is evident that the dessin d’enfant of
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any Shabat polynomial is a tree. Conversely, every planar tree T is
the dessin d’enfant of a Shabat polynomial, see [LZ04, Theorem 2.2.9].
Roughly speaking, one considers a set of half-planes

⊔
edges e of T

{H+
e ,H−

e},

that is, two half-planes for each edge e of the tree T . Then, one con-
structs an abstract Riemann surface ∆′ by gluing these half-planes
together as indicated by the structure of T . There is a natural holo-
morphic map g∶∆′ → C that maps the half-planes in ∆′ alternatingly
to the upper and lower half-planes in C. Using the uniformization the-
orem one obtains a conformal map ϕ∶∆′ → C. The map g ○ϕ−1 is then
the desired map, which can be shown to be a Shabat polynomial. Put
differently, the construction of a Shabat polynomial is very similar to
the construction of the rational maps in Section 3 and Section 7. The
half-planes H+

e and H−
e correspond to the white and black 1-tiles from

which ∆′ was constructed there. Finally, we note that a general dessin
d’enfant is not necessarily planar or a tree. The concept was introduced
by Grothendieck in [Gro97] as a way to describe algebraic curves.

10. P is not renormalizable

Here, we show that the polynomial P from the previous section is
not renormalizable. That is, we verify that P satisfies property (3) of
Theorem 1.4. This means P is a counterexample to the the conjecture
stated in Section 1. However the conjecture may be still valid for
quadratic polynomials. We first recall some relevant definitions.

A continuous map f ∶U → V is said to be proper if f−1(K) is compact
in U for every compact K ⊂ V . Assume now in addition that U and
V are Jordan domains in C and that f is holomorphic. In this case
f extends continuously to ∂U and this extension (still denoted by f)
satisfies f(∂U) = ∂V . The map f ∶∂U → ∂V is topologically conjugate
to zd∶S1 → S1 for a d ∈ N (here we view the unit circle S1 as the
boundary of the unit disk D). Furthermore, every point in V has
exactly d preimages in U when counted with multiplicity (see [Mil06,
Problem 15-c]). The number d is then called the degree of the proper
map f ∶U → V .

Definition 10.1. A polynomial-like map of degree d ≥ 1 is a triple
(f,U,V ), where U,V ⊂ C are Jordan domains such that U is a compact
subset of V and f ∶U → V is a proper holomorphic map of degree d.

Polynomial-like maps were introduced by Douady and Hubbard in
[DH85]. The above definition differs slightly from the typical one found
in the literature, as we allow the case d = 1. The filled Julia set of a
polynomial-like map (f,U,V ), denoted by K(f ∣U), is the set of points
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in U that never leave U under iteration of f , that is,

K(f ∣U) = ⋂
n≥0

(f ∣U)−n(U).

It is a compact subset of U .

Definition 10.2. Let P ∶C → C be a polynomial of degree d ≥ 2 with
connected Julia set. Let n ∈ N, then P n∶U → V is called a renormal-
ization of P if

(1) (P n, U, V ) is a polynomial-like map;
(2) K(P n∣U) is connected;
(3) the degree δ of (P n, U, V ) satisfies

2 ≤ δ < dn.
If such a renormalization P n∶U → V exists for some n ∈ N, then we call
the polynomial P renormalizable.

Condition (3) in the above definition excludes trivial polynomial-like
restrictions, that is, P itself or maps of degree 1. Renormalization
has been mostly considered in the case of quadratic polynomials, see
for example [McM94]. The higher degree case has been considered in
[Ino02], see also [LMS15]. Note that in the non-quadratic case there
are several distinct definitions of renormalization. We have chosen the
most general one.

Theorem 10.3. Let P ∶C → C be a polynomial with exactly two finite
postcritical points that does not have finite periodic critical points. Then
P is not renormalizable.

For the proof we use the following elementary fact that is a con-
sequence of the Riemann-Hurwitz formula [Mil06, Theorem 7.2]. Let

V ⊂ Ĉ be a Jordan domain that contains a single postcritical point p of
a polynomial P . Then every component of P −1(V ) is a Jordan domain
that contains exactly one point from P −1(p).

Proof. Let P be a polynomial as in the statement. Assume that P is
renormalizable, that is, there exists a polynomial-like map (P n, U, V )
as in Definition 10.2 for some n ∈ N. Denote by δ its degree. Let p and
q be the two finite postcritical points of P and K(P n∣U) be the filled
Julia set of (P n, U, V ).

Clearly, if V contains no postcritical point of P , then the polynomial-
like map (P n, U, V ) has degree δ = 1 by the Riemann-Hurwitz formula.
Thus (P n, U, V ) is not a renormalization of P .

Without loss of generality, we may assume from now on that p ∈ V .
Two cases remain, namely q ∈ V and q ∉ V .

First suppose that q ∈ V . This means that

{p, q} = post(P ) ∖ {∞} = post(P n) ∖ {∞} ⊂ V.
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Thus the closed Jordan domain A∞ ∶= Ĉ∖V contains a single postcriti-
cal point of P n, namely ∞, in its interior. Note that every component of
P −n(A∞) contains a preimage of ∞, hence there is only one such compo-
nent. Using the remark before the proof, we conclude that P −n(A∞) =
Ĉ ∖ P −n(V ) is a Jordan domain. It follows that P −n(V ) consists of a
single component, namely U . This in turn implies that the degree of
the polynomial-like map (P n, U, V ) is δ = deg(P n) = deg(P )n. This
contradicts condition (3) in Definition 10.2, meaning that (P n, U, V ) is
not a renormalization of P .

Now suppose that q ∉ V , that is, V contains exactly one postcritical
point, namely p. By the remark after Theorem 10.3, U contains exactly
one point in P −n(p), which we denote by c. Then c is a critical point
of P n; for otherwise the degree of (P n, U, V ) is δ = 1, contradicting
condition (3) in Definition 10.2. Since P has no periodic critical points,
c ≠ p. Thus the set (P n∣U)−1(c) = (P n∣U)−2(p) contains exactly δ
distinct points c1, . . . , cδ. It follows that (P n∣U)−1(U) = (P n∣U)−2(V )
has exactly δ components U1, . . . , Uδ (where cj ∈ Uj for j = 1, . . . , δ).

Furthermore, Uj ⊂ U for each j, since U ⊂ V and P n ∶ U → V is proper.
Iterating this process, we see that each Uj contains δ components of
(P n∣U)−2(U), and so on. It follows that Uj ∩ K(P n∣U) ≠ ∅ for all
j = 1, . . . , δ. Hence K(P n∣U) is disconnected, contradicting condition
(2) in Definition 10.2. Thus (P n, U, V ) is not a renormalization of P .

�

Theorem 10.3 implies that the polynomial P from Section 9 is not
renormalizable. Thus P satisfies property (3) of Theorem 1.4. This
finishes the proof of Theorem 1.4.

11. Appendix A

In the literature, one usually studies properties of a self-similar group
G via its wreath recursion. In particular, see the proof of exponential
growth of the Basilica group, that is, IMG(z2 − 1), in [GŻ02, Propo-
sition 4] or the study of iterated monodromy groups of postcritically-
finite quadratic polynomials in [BN08]. The goal of this appendix is to
show how these techniques apply in our setting, that is, when G is the
iterated monodromy group of a Thurston map.

11.1. Appendix A.1: Actions on rooted trees and self-similar
groups. For the convenience of the reader we review the definition of
self-similar groups and some closely related notions, more details can
be found in [Nek05, Chapters 1 and 2].

Choose an alphabet X of d letters. The set of all words in X of length
n ∈ N is denoted by Xn. The empty word is the only word of length 0
and denoted by ∅. Consequently we set X0 = {∅}. Let X∗ = ⋃n∈N0

Xn

be the set of all finite words in the alphabet X. Then X∗ has a natural
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structure of a d-ary rooted tree: we define the root to be ∅ and connect
every word v ∈ Xn to all words of the form vx ∈ Xn+1 for an arbitrary
letter x ∈ X and each n ∈ N0. The set X∗ viewed as a rooted tree is
called the tree of words in the alphabet X and is denoted by T . It is
evident that the n-th level of the tree T is given by the words in Xn,
n ∈ N0.

Let Aut(T ) be the automorphism group of the tree T , that is, the
group of all bijective maps g ∶ T → T that preserve the adjacency of the
vertices of T . We consider the right action of Aut(T ) on the tree T .
So, the image of a vertex v under the action of an element g ∈ Aut(T )
is denoted by vg, and in the product g1g2 the element g1 acts first.

Definition 11.1. Let G be a subgroup of Aut(T ). The n-th level
stabilizer is the subgroup StabG(n) of those elements of G that fix
pointwise all vertices of the n-th level Xn of the tree T . That is,

StabG(n) = {g ∈ G ∶ vg = v for all v ∈Xn}.

The n-th level stabilizer is a normal subgroup in G of finite index for
all n ∈ N0.

Let v ∈ X∗ be an arbitrary vertex of the tree of words T . Denote
by Tv the subtree of T rooted at v such that the vertex set of Tv is
{vx ∶ x ∈ X∗}. Clearly, Tv is isomorphic to the whole tree of words T
via the shift ιv ∶Tv → T defined by vu↦ u for u ∈X∗.

For every g ∈ Aut(T ) and v ∈ X∗, we define an automorphism g∣v ∶
T → T , called the restriction of g to the subtree Tv, by

g∣v = ιvg ○ g ○ ι−1v .

To simplify the notation assume that X = {1, ..., d}. Denote by
Σ(X) the symmetric group of permutations of the set X. Then every
element g ∈ Aut(T ) can be written in the following form, called the
wreath recursion of g,

g = ⟪g∣1, . . . , g∣d⟫σg,

where ⟪g∣1, . . . , g∣d⟫ ∈ StabAut(T )(1) ≅ Aut(T )X , that is, an element
of the direct product Aut(T ) × ⋯ ×Aut(T ) with d = #X factors, and
σg ∈ Σ(X) is the permutation equal to the action of g on X1. Formally,
there is a canonical isomorphism

(11.1) ψ ∶ Aut(T )→ Aut(T )X ⋊Σ(X),

where the semidirect product is taken with respect to the natural ac-
tion of Σ(X) on the factors of Aut(T )X (an element σ ∈ Σ(X) acts on
Aut(T )X by the permutation of the factors coming from its action on
X, that is, (g1, . . . , gd)σ = (g1σ , . . . , gdσ)). In other words, the automor-
phism group Aut(T ) is isomorphic to the permutational wreath product
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Aut(T ) ≀ Σ(X). That is, the wreath recursions of arbitrary elements
g, h ∈ Aut(T ) are multiplied according to the rule

⟪g1, . . . , gd⟫σ ⋅ ⟪h1, . . . , hd⟫τ = ⟪g1h1σ , . . . , gdhdσ⟫στ.

Definition 11.2. A group G < Aut(T ) acting faithfully on the tree
T = X∗ is said to be self-similar if for every g ∈ G and every x ∈ X
there exist h ∈ G and y ∈X such that

(xv)g = y(v)h

for all v ∈X∗. Put differently, G is called self-similar if each restriction
g∣v belongs to G for all g ∈ G and v ∈X∗.

It is clear from the definition that a groupG < Aut(T ) is self-similar if
and only if g∣x ∈ G for all x ∈X1 and all generators g of G. Furthermore,
every self-similar group G has an associated wreath recursion, that is,
a homomorphism ψ ∶ G → G ≀ Σ(X) given by the restriction of the
canonical isomorphism (11.1) to G.

Definition 11.3. Let G < Aut(T ) be a self-similar group. G is said to
be recurrent (or self-replicating) if its action is transitive on the first
level X1 of the tree T = X∗ and for some (and thus for all) x ∈ X the
homomorphism ψx ∶ Gx → G given by g ↦ g∣x is onto, where Gx = {g ∈
G ∶ xg = x} is the stabilizer of x in G.

Note that if a self-similar group is recurrent, then it is transitive on
every level of the tree T (the group is then called level-transitive).

Definition 11.4. A self-similar group G < Aut(T ) is called regular
branch if there exists a finite index subgroup H of G such that HX <
ψ(H), where ψ ∶ G→ G ≀Σ(X) is the wreath recursion associated with
G. In such a case we say that G is regular branch over H.

11.2. Appendix A.2: Further properties of IMG(f1). Here we
revisit the iterated monodromy group of the map f1 from Section 3.
Let a, b, c be the generators of IMG(f1) as in Section 4. That is,
IMG(f1) acts on the dynamical preimage tree Tf1 that is identified
with {1, . . . ,6}∗ and the wreath recursions of the generators are given
by (4.1). We use this to prove additional properties of IMG(f1). The
discussion is kept rather short, to avoid excessive details.

We start with giving alternative proofs of Corollary 5.3 and Lemma
5.4 (which implies exponential growth of IMG(f1)).

Proof. To save space we will only prove that x ∶= ab4 and y ∶= ab12

generate a free semigroup in IMG(f1) (the proof is analogous if we
introduce the third generator z ∶= ab20).
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Using (4.1) one can compute the following identities

x2 = ⟪x, ⋅, xs, ⋅, ⋅, ⋅⟫(11.2)

y2 = ⟪y, ⋅, ys, ⋅, ⋅, ⋅⟫
xy = ⟪y, ⋅, xs, ⋅, ⋅, ⋅⟫
yx = ⟪x, ⋅, ys, ⋅, ⋅, ⋅⟫,

where s = ab−1 and ⋅ represents the omitted terms.
The first two identities imply that x and y are elements of infinite

order in IMG(f1). Indeed, the order of x cannot be an odd number,
because x acts as the permutation (13)(25)(46) on the first level of the
dynamical preimage tree Tf1 . If ord(x) = 2n, n ∈ N, then (11.2) imply
that xn = 1, contradiction. The same argument applies to y.

Now let w be an arbitrary word in x and y. Here and throughout the
proof, ∣w∣ denotes the length of the word w with respect to the alphabet
{x, y}. If ∣w∣ is even, w can be written uniquely as a product of x2,
y2, xy, and yx. From (11.2) it follows that ψ1(w) is a word in {x, y}
and ∣ψ1(w)∣ = ∣w∣/2, where ψ1 denotes the projection onto the first
coordinate in the canonical isomorphism (11.1), that is, ψ1(w) = w∣1.
Moreover, ψ1(w) ends with the same letter (x or y) as w.

Consider now any two distinct words w1 and w2 in the alphabet
{x, y}. We are going to show that they represent different group ele-
ments in IMG(f1). The proof is by induction on ∣w1∣+∣w2∣.

The base cases ∣w1∣ + ∣w2∣ ∈ {1,2} can easily be verified. Now let
∣w1∣ + ∣w2∣ ≥ 3. By multiplying from the right with the inverse of the
common ending word, it is enough to assume that w1 and w2 end with
different letters. We can further assume that the parity of ∣w1∣ and ∣w2∣
is the same (for otherwise, w1w−1

2 does not fix the first level). If ∣wi∣
is odd set w′

i = xwi, otherwise set w′
i = wi, for i = 1,2. Then ψ1(w′

1)
and ψ1(w′

2) are two distinct words in {x, y}. Indeed, they end with
different letters since w′

1 and w′
2 do. Furthermore,

∣ψ1(w′
1)∣ + ∣ψ1(w′

2)∣ ≤
∣w1∣ + 1

2
+ ∣w2∣ + 1

2
< ∣w1∣ + ∣w2∣.

Thus the induction hypothesis applies to ψ1(w′
1) and ψ1(w′

2), which
finishes the proof. �

To simplify the notation we denote the iterated monodromy group
IMG(f1) by G from now on.

Lemma 11.5. G is recurrent, consequently, it is level-transitive.

Proof. It is evident that G acts transitively on the first level of Tf1 , see
Figure 5. Using (4.1), we check that b, (b4)c ∈ G1 (= {g ∈ G ∶ 1g = 1})
and ψ1(b) = b , ψ1((b4)c) = c−1b−1. Since ⟨b, c−1b−1⟩ = G, the statement
follows. �
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Proposition 11.6. G is regular branch over

H ∶= ⟨[b2, c]⟩G = ⟨[b2, c]g ∶ g ∈ G⟩.

Proof. First we verify that H6 < ψ(H). To this end, we use the wreath
recursions (4.1) and the fact that (bc)2 = c3 = 1 to obtain the following
identities. 4

b−8 = ⟪b−8, (cb)2, (bc)2, c−8, (bc)2, (cb)2⟫
= ⟪b−8,1,1, c,1,1⟫

b8c−1b−4c = ⟪b9c, (b−1c−1)2b−4, (c−1b−1)2cb, c9b, (c−1b−1)2c−4, (b−1c−1)2bc⟫
= ⟪b9c, b−4, cb, b, c−1, bc⟫

(b8c−1b−4c)2 = ⟪(b9c)2, b−8,1, b2, c,1⟫.
Then we consider the following commutator

[(b8c−1b−4c)2, b−8] = ⟪[(b9c)2, b−8],1,1, [b2, c],1,1⟫(11.3)

= ⟪1,1,1, [b2, c],1,1⟫.

Here we use that [(b9c)2, b−8] = 1 as one can verify (At the same time,
[b9c, b−8] ≠ 1. For that reason H is not chosen to be the commutator
subgroup [G,G] of G).

Since G is recurrent, (11.3) implies that 1× 1× 1×H × 1× 1 < ψ(H),
consequently, H6 < ψ(H).

Thus, we are only left to check that H has finite index in G. By
construction, H is a normal subgroup of G. Furthermore, a generic
element of the quotient group G/H can be written in the form

(11.4) (b)c±1bc±1 . . . bc±1bk, k ∈ {0, . . . ,23},
where the notation “(b)” means that b may or may not appear as the
first letter in the word. Since (bc)2 = 1, we can further normalize (11.4)
to

(b)c±1bk, k ∈ {0, . . . ,23}.
Hence the quotient subgroup G/H is finite. �

We close the appendix with two corollaries of the previous proposi-
tion.

Corollary 11.7. G contains a subgroup isomorphic to Zn for each
n ∈ N.

Proof. First, we observe that [c, b4] ∈ H is of infinite order. Indeed,
[c, b4] ∈ StabG(1) and ψ1([c, b4]) = (ab4)b−1 . Now the statement follows
from H6 < ψ(H). �

4The “FR package”, written by L. Bartholdi, for the computer algebra system
GAP, is very helpful for such computations.
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Corollary 11.8. IMG(f1) has a finite endomorphic presentation, that
is, a finite recursive presentation as introduced in [Bar03]. However, it
is not finitely presented.

Proof. An immediate corollary of [Bar03, Theorem 1], since iterated
monodromy groups of postcritically-finite rational maps are contracting
[Nek05, Theorem 6.4.4]. �
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[BP06] K.-B. Bux and R. Pérez. On the growth of iterated monodromy groups.
In Topological and asymptotic aspects of group theory, volume 394 of
Contemp. Math., pages 61–76. Amer. Math. Soc., Providence, RI, 2006.

[BV05] L. Bartholdi and B. Virág. Amenability via random walks. Duke Math-
ematical Journal, 130(1):39–56, 2005.

[CFKP03] J.W. Cannon, W.J. Floyd, R. Kenyon, and W.R. Parry. Constructing
rational maps from subdivision rules. Conform. Geom. Dyn., 7:76–102,
2003.

https://arxiv.org/abs/1009.3647
https://arxiv.org/abs/1009.3647


38 MIKHAIL HLUSHCHANKA AND DANIEL MEYER

[DH84] A. Douady and J.H. Hubbard. Étude dynamique des polynômes
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