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This paper proposes an efficient method for the simultaneous estimation of the state of a quan-
tum system and the classical parameters that govern its evolution. This hybrid approach benefits
from efficient numerical methods for the integration of stochastic master equations for the quantum
system, and efficient parameter estimation methods from classical signal processing. The classical
techniques use Sequential Monte Carlo (SMC) methods, which aim to optimize the selection of
points within the parameter space, conditioned by the measurement data obtained. We illustrate
these methods using a specific example, an SMC sampler applied to a nonlinear system, the Duff-
ing oscillator, where the evolution of the quantum state of the oscillator and three Hamiltonian
parameters are estimated simultaneously.
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I. INTRODUCTION

Stochastic master equations provide a model for the evo-
lution of open quantum systems subject to continuous
measurements [1–3]. The trajectories that the stochas-
tic master equations generate represent the evolution of
the state of an individual quantum system, conditioned
on a particular measurement record. In theoretical stud-
ies, the measurement record is a simulated sequence cor-
responding to a particular realization of the evolution.
However, recent experiments that implement continu-
ous quantum measurements have demonstrated that the
evolution of individual quantum systems can be recon-
structed from experimental data [4–7]. The generation
of such trajectories in real time during the measure-
ment process will be an important step towards state-
dependent feedback control of individual quantum sys-
tems [1–3]. Feedback control has been demonstrated in
quantum systems using the output measurement record
as an input signal to the control system in optical [8, 9],
opto-mechanical [10–12], and mesoscopic superconduct-
ing systems [13, 14]. In most of these examples, while the
direct use of the measurement record in the control sys-
tem demonstrates the utility of quantum feedback con-
trol, it is limited by the fact that the evolution of the un-
derlying state of the system is not included in the genera-
tion of the controls. State-dependent control is more flex-
ible and can include quantities that are estimated from,
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but are not directly measured in experiments.

Given a measurement record, a Stochastic Master
Equation (SME) provides an estimate of the quantum
state at each point in time, and – in the case of mixed
states – an indication of the uncertainty associated with
this state in terms of an estimate of its purity. The SME
is derived by taking a single quantum system and cou-
pling it weakly to environmental degrees of freedom that
mediate a continuous measurement process. The con-
tinuous measurement of the coupled system is realized
by continuously measuring the state of the environment,
which can be modeled as a sequence of projective mea-
surements on successive environmental degrees of free-
dom. The simplest example of this process is the mea-
surement of the electromagnetic radiation emitted by the
system, in which case the environment is the electromag-
netic field [2, 3]. In the most common form of the SME,
a Markovian condition is applied, meaning that the en-
vironment carries information away from the system but
does not by itself feed this information back to affect the
system at a later time. The resulting evolution of the
system is continuous and stochastic, with the stochastic
term arising from the effect of the sequence of measure-
ments on the combined system.

In simulations, an SME is used to analyze the proper-
ties of an open system under the action of a continuous se-
quence of measurement operators, using a realization for
the noise process and calculating the evolution of the sys-
tem conditioned on this realization. When interpreting
experiments, the SME is used to reconstruct the estimate
of the quantum state as a function of time from the given
measurement record provided by the experiment. In this
regard, the SME is very similar to classical state estima-
tion techniques (often referred to as ‘target tracking’ or
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‘object tracking’ [32–34]), which are used to interpret se-
quences of classical noisy sensor measurements to form a
coherent picture of the world. These classical techniques
have been developed to interpret sensor data (radar or
sonar signals, and sequences of images) where objects
are moving against noisy backgrounds. The motion of
the objects may be unpredictable or uncooperative, their
identity may not be known from the measurements, they
may be occluded for periods of time, and individual ob-
jects may not be fully resolved by the sensor. Classical
state estimation techniques provide methods to solve all
of these problems and ambiguities.

With a continuous quantum measurement, the mea-
surement record contains information about the evolu-
tion of the particular quantum state (a quantum trajec-
tory) but the properties of this trajectory also contain
information about the classical parameters that govern
the dynamics of the system: the classical parameters in
the Hamiltonian and the strength of the coupling to the
environment. In this paper, we demonstrate how the
stochastic master equation can be augmented with tech-
niques drawn from classical state estimation, Sequential
Monte Carlo (SMC) methods, to estimate several Hamil-
tonian parameters efficiently alongside the quantum tra-
jectories.

We begin our presentation by first reviewing other ap-
proaches to Hamiltonian parameter estimation, and the
development of a set of Hybrid SMEs for the quantum
evolution and the Kushner-Stratonovich equation for the
classical parameters [15] in sections II and III, respec-
tively. In section IV, we then discuss how efficient classi-
cal parameter estimation techniques [16] can be applied
to the solution of the classical aspects of the Hybrid SME.
Section V introduces an example system, the Duffing os-
cillator, which contains a number of relevant experimen-
tal parameters, and Section VI presents results for the
simultaneous estimation of the quantum trajectories for
the oscillator and up to three Hamiltonian parameters.
Section VII discusses how such methods may be useful in
practical systems and draws conclusions from the results
presented.

II. HAMILTONIAN PARAMETER
ESTIMATION

The problem of estimating the dynamical parameters
of a quantum system has been studied previously by a
number of authors, including those who have adopted a
continuous measurement approach. This estimation pro-
cess is often referred to as Hamiltonian parameter esti-
mation. This is because the basic description of quantum
dynamics is encapsulated by the Hamiltonian operator,
which determines the equations of motion, and values of
the classical parameters in the Hamiltonian determine
the specifics of the evolution.

A standard method for determining the dynamics of a
quantum system is to prepare it many times in a range

of different initial states, allow it to evolve, and then
measure it before re-preparation. The results of the
measurements can then be combined in a tomographic-
like process to obtain the equation of motion for linear
Schrödinger evolution [17]. An alternative approach, and
the one in which we are interested here, is to prepare the
system only once and to continually monitor its subse-
quent evolution to build a picture of its dynamics. A
full description of the problem involves starting with a
prior probability density for the parameters one wishes
to determine and then using Bayes’ theorem to contin-
ually update this probability density from the stream of
measurement results as they are obtained. A number of
authors have considered this problem [15, 18–28]. This
is of particular interest when the parameters of a system
change slowly with time, and one wishes to be able to
track the variations in the parameters. It is also rele-
vant to the problem of using quantum systems as probes
to measure time-varying classical fields (such as gravity
waves [29] and magnetic fields [30]), as these fields appear
as parameters in the Hamiltonian.

As discussed in the introduction, a dynamical equation
referred to as the stochastic master equation (SME) can
be used to track the evolution of a quantum system from
the results of a continuous measurement so long as the
dynamical parameters of the system are known. If they
are not known then the full estimation problem involves
both the SME and a Kushner-Stratonovich equation that
evolves the probability density for the parameters of the
system. The combined set of dynamical equations has
been referred to as a Hybrid SME [15]. The first papers
on the subject of Hamiltonian parameter estimation via
continuous measurements were concerned mainly with
deriving the Hybrid SME and applying it to the estima-
tion of a single parameter [18, 19]. Subsequently, Tsang
and collaborators considered the more general problem of
smoothing in which a time-varying parameter (a signal
or wave-form) is estimated from all the measurement re-
sults obtained, and determined the ultimate limits to this
procedure [21–24, 26]. An alternative and interesting ap-
proach to the problem was proposed recently by Bassa et
al. [27]. While most of the related work on parameter
estimation employs continuous measurements, this ap-
proach considered a sequence of instantaneous measure-
ments, and employed a discrete version of the Hybrid
SME where several classical parameter values were en-
coded in an expanded quantum state.

A major problem with the Hybrid SME is that it is
highly demanding from a computational point of view;
in order to evolve the Kushner-Stratonovich equation for
the probability density describing the observer’s knowl-
edge of the parameters, the SME must be evolved for
every value of the parameters for which this density
is appreciable. The grid of points for which the SME
must be evolved becomes large very quickly as the num-
ber of parameters increases. Two previous papers have
put forward methods aimed at addressing this difficulty.
Ralph et al. [15] and Cortez et al. [28] considered the es-
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timation of a single frequency parameter, and presented
methods to bypass the Kushner-Stratonovich equation.
These papers estimate the natural oscillation frequency
of a qubit directly from the measurement record. This
approach has many benefits in terms of computational
efficiency, but it has the disadvantage of not providing a
simultaneous estimate of the quantum state of the sys-
tem – which would be provided by the full solution of
the Hybrid SME. Here, we will explore the use of a po-
tentially more powerful technique in which the proba-
bility density is replaced with a finite set of samples of
the parameters that are evolved instead. The examples
given below typically use 50-100 quantum states and the
equivalent of thousands to millions of classical parame-
ter values. The purpose is again to reduce the number
of copies of the quantum state that must be evolved in
parallel using the SME, but we will apply this method to
the challenging problem of estimating multiple parame-
ters simultaneously.

III. HYBRID STOCHASTIC MASTER
EQUATIONS

The simultaneous estimation of the quantum state of a
system and the classical Hamiltonian parameters that
govern its evolution was considered in Ref. [15], where an
approach was presented based on a set of parallel SMEs,
each using a different set of parameter values contained
in a vector λ, which have an associated probability. The
final mixed state is then constructed by averaging over
the probabilities for the classical parameters. The prob-
abilities associated with the different parameter vectors
evolve via a Kushner-Stratonovich equation and are con-
ditioned on the continuous measurement record [15].

For a quantum system subject to a continuous mea-
surement, with a known set of Hamiltonian parameters,
the evolution of the quantum state, ρc(t), conditioned on
the measurement record, y(t), is given by the stochas-
tic master equation [1–3]. In general, the interaction
with the environment can be represented by a set of sys-
tem operators which are coupled to environmental de-
grees of freedom, some of which are not measured V̂j
(j = 1 . . .m) (‘unprobed’ operators), and some of which
are measured and generate the continuous weak measure-
ment L̂r (r = 1 . . .m′). In an ideal case, the measurement
record is 100% efficient, with all of the available infor-
mation being reflected in the measurement record. Un-
fortunately, real measurements are rarely ideal and the
continuous measurement record is often corrupted with
extraneous (classical) noise sources. These extraneous
degrees of freedom can be characterized by an efficiency
parameter for the measurement operators, L̂r has an effi-
ciency ηr. Specifically, ηr is the fraction of the total noise
power due to the quantum measurement as opposed to
power contained in the other extraneous noise sources.

For unprobed operators V̂r and measurement operators

L̂r, the general form for the SME is given by,

dρc = −i
[
Ĥ, ρc

]
dt

+

m∑
j=1

{
V̂jρcV̂

†
j −

1

2

(
V̂ †j V̂jρc + ρcV̂

†
j V̂j

)}
dt

+

m′∑
r=1

{
L̂rρcL̂

†
r −

1

2

(
L̂†rL̂rρc + ρcL̂

†
rL̂r

)}
dt

+

m′∑
r=1

√
ηr

(
L̂rρc + ρcL̂

†
r − Tr(L̂rρc + ρcL̂

†
r)
)
dWr

(1)

where Ĥ is the Hamiltonian of the system, dt is an in-
finitesimal time increment, and the measurement record
for each of the measurement operators L̂r during a time
step t → t + dt is given by, y(t + dt) − y(t) = dyr(t) =
√
ηjTr(L̂rρc + ρcL̂

†
r)dt + dWr. We will take dWr to

be a real Wiener increment such that dWr = 0 and
dWrdWr′ = δrr′dt for simplicity, but this is not strictly
necessary. More general forms of complex increments
may also be used [35].

Where the evolution of a quantum system is governed
by a set of Hamiltonian parameters that are not known
exactly, we can describe the parameters in terms of a
classical probability density, P (λ), where λ = (λ1, λ2, ...).
The system is then described by a set of SMEs, one for
each set of possible parameter values,

dρc,λ = −i
[
Ĥ(λ), ρc,λ

]
dt

+

m∑
j=1

{
V̂jρc,λV̂

†
j −

1

2

(
V̂ †j V̂jρc,λ + ρc,λV̂

†
j V̂j

)}
dt

+

m′∑
r=1

{
L̂rρc,λL̂

†
r −

1

2

(
L̂†rL̂rρc,λ + ρc,λL̂

†
rL̂r

)}
dt

+

m′∑
r=1

√
ηr

(
L̂rρc,λ + ρc,λL̂

†
r

−Tr(L̂rρc,λ + ρc,λL̂
†
r)dWr

)
(2)

The evolution of the probability density P (λ) is gov-
erned by a Kushner-Stratonovich stochastic differential
equation, derived in [15] for a single efficient measure-
ment operator and in the absence of additional unprobed
environmental operators. Any unprobed environmental
operators affect the evolution of the individual SMEs but
they do not play a role in the evolution of P (λ). How-
ever, the equation given in [15] generalizes naturally to
include measurement inefficiencies and is given by,

dPr(λ) =
√
ηr(Tr(L̂rρc,λ + ρc,λL̂

†
r)− Tr(L̂rρc + ρcL̂

†
r))

×(dyr(t)−
√
ηrTr(L̂rρc + ρcL̂

†
r)dt)P (λ) (3)

where dPr(λ) is the update to the probability density due
to a measurement increment dyr(t) corresponding to the
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measured operator L̂r, such that

P (dyr(t)|λ) =
e(−(dyr(t)−

√
ηTr(L̂rρc,λ+ρc,λL̂

†
r))

2/dt)

√
2πdt

(4)

and the full conditional density matrix ρc is given by,

ρc =

∫
λ

P (λ)ρc,λdλ (5)

IV. SEQUENTIAL MONTE CARLO METHODS

Sequential Monte Carlo methods originate in the field of
multi-target tracking [31]), but have been adopted and
generalized to form a set of very efficient methods for pa-
rameter and state estimation in classical signal process-
ing and nonlinear filtering. SMC methods are sometimes
referred to as particle filters, but particle filters are a spe-
cial case of the general approach. An SMC method relies
on the approximation of a continuous probability distri-
bution by a finite set of points (or particles) which sam-
ple the parameter space. The importance of each sam-
ple point changes in response to (is conditioned by) the
measurements associated with the parameters being esti-
mated, and the sample points can be periodically resam-
pled to concentrate sampling towards regions of higher
relative probability.

In particle filters, the sample points are allowed to
evolve according to some dynamical process, generating
a time dependent history or a track within the param-
eter space. In the example presented in this paper, the
parameters are selected to be constant and another SMC
method is more suitable. We adopt an approach used
recently for parameter estimation in classical differen-
tial equations [16], which is an example of a Sequen-
tial Monte Carlo sampler. This approach is particularly
well-suited to the estimation of fixed parameters; how-
ever, the SMC sampler used here still embodies all of the
key features of a general SMC method: sampling, con-
ditioning/updating, and resampling. A number of very
approachable tutorials and introductions to particle fil-
ters and general SMC methods have been published. For
example, a comprehensive guide to SMC methods and
their applications is available in [36], a mathematical in-
troduction is given in [37], and a widely cited tutorial to
particle filters and SMC methods is contained in [38].

Formally, an SMC method approximates a (classical)
expectation for a function h(x) over a probability distri-
bution p(x) defined on some parameter space Λ, x ∈ Λ,
given by

h̄ =

∫
h(x)p(x)dx

using a finite sum of a set of points x(i) (i = 1 . . . N)
drawn from p(x), which is known as the target distribu-
tion. The expectation value for an arbitrary function can

be approximated by,

h̄ ' 1

N

N∑
i=1

h(x(i))

The larger the number of sample points, the better the
approximation – in fact, under reasonable assumptions,
the variance of the error in h̄ can be shown to scale as
1/N in any number of dimensions [39]. The problem is
that, in most practical cases, the probability distribution
is unknown. It needs to be estimated from a sequence
of measurements. To do this, another distribution, the
proposal distribution q(x), is introduced such that [37],

h̄ =

∫
h(x)q(x)

p(x)

q(x)
dx =

∫
h(x)q(x)w(x)dx

'
N∑
i=1

w(i)∑N
j=1 w

(j)
h(x(i)) (6)

where w(x) = p(x)/q(x) and the w(i)’s are (unnormal-
ized) weights associated with each sample point. In our
case, each sample point is associated with a parameter
value or a vector of values for each of the parameters be-

ing sought, w(i) ↔ λ(i), where λ(i) ∈ Λ. Initially, the
sample points are randomly selected from a prior dis-
tribution, which covers the entire range of possible pa-
rameter values, and are given a uniform weight. As new
measurements are added, the accuracy of the estimated
quantity h̄ is improved by updating the weights associ-
ated with the particles to reflect the new information that
the measurement contains. Some weights are increased
and some weights are reduced when the measurement
supports or contradicts the corresponding sample point,
respectively.

The values w(i) are referred to as ‘weights’ rather than
probabilities because, although they are related to prob-
abilities, they are not necessarily normalized after each
time step and do not necessarily sum to one. In prac-
tice, it is convenient to normalize the weights after each
time step. Here, we denote the normalized weights by
w̃(i) [16]. When sample points have very low weight,
and hence very low probability, they can be removed and
replaced with alternative particles, but this resampling
process must be done carefully so as to ensure that the
statistical quantities remain unbiased and will converge
efficiently to the desired values.

The proposal distribution should be simple to calculate
and different choices of q(x) are used in different variants
of the SMC approach [36–38]. The secret to working with
SMC methods is to pick a suitable proposal distribution
to solve the problem in a robust manner using limited
computational resources. In particular, a good choice of
proposal distribution allows classical parameters to be
estimated significantly more efficiently than when using
an enumerative or grid based method [38], as was used
for a one parameter Hybrid SME problem in [15, 27].

For our Hybrid SME problem, we start by selecting
an initial set of sample points in the parameter space
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using a prior distribution and initialize an SME (2) for
each of the sample points. For the examples shown be-
low, the quantum state of the system is initialized to be
a thermal mixed state, and the prior distribution is cho-
sen to be uniform over some finite range within which
the true parameter values are known to lie. An accu-
rate initial prior distribution can significantly reduce the
number of particles required by the SMC sampler, but
in many situations the prior is not well defined. Once
the points have been selected, the weights are initialized

with w
(i)
0 = w̃

(i)
0 = 1/N .

For each time step, the individual SMEs are integrated
using the increment (2) found using the parameter value

λ(i) associated with the particle. A corresponding mea-
surement probability is found from (4) and used to up-

date the (unnormalized) particle weight w
(i)
k−1,r → w

(i)
k,r

using [16]

w
(i)
k,r = p(dyr(tk)|λ(i))w(i)

k−1,r (7)

for the k’th measurement from measurement operator L̂r
at time tk. All particles are updated after the measure-
ment increment and then weights are normalized.

Resampling to generate new particles only occurs when
the distribution of weights amongst the particles is such
that the effective sample size (or the effective number of
particles) Neff = 1/(

∑
i(w̃

(i))2) falls below some thresh-
old value – indicating that the weight is being concen-
trated in a relatively small number of particles and a sig-
nificant number of particles have low weight and do not
contribute to the estimates; a problem known in the SMC
literature as sample impoverishment or weight degeneracy
[37]. It is known that the variance of the weight distri-
butions across different realizations of the SMC sampler
is guaranteed to grow with each time step [38]. However,
since a given realization (i.e. one run of the algorithm)
does not have access to the ensemble of all possible real-
izations, it is convenient to monitor something that can
be computed from a single realization. The effective sam-
ple size is well established as such a quantity [40] and it
can be considered to be a noisy measurement of the (in-
verse of the) variance. Between resampling events, the
variance of the weight distributions will (on average) in-
crease and the effective sample size will decrease. While
the precise threshold value used is a somewhat arbitrary
choice for the algorithm designer, it is common (across
the vast range of applications of SMC samplers and par-
ticle filters) to consider threshold values between N/10
and N/2. In the cases shown below the threshold value
for Neff was set to be N/2 [16].

When the particles are resampled, the new candi-
date values λ̃ are sampled from the distribution formed
from the current particle weights. The particles with
the highest weights are more likely to be selected, al-
though the particles with relatively low weights still
have a chance of being selected. The new particle pa-
rameter values are then selected using the distribution

q(λ̃|λ(i)) = N (λ̃;λ(i),Σ), where N (x;µx, S) is a normal

distribution with mean µx and covariance S, and Σ is
related to the covariance matrix associated with the cur-
rent particle weights, Σk. The role of q(λ̃|λ(i)) is to select

new points, λ̃
(i)

, around the current particles with large
weights, but not at exactly the same point. In this pa-
per, we use a defensive strategy [16, 41], where 90% of
resampled points use a covariance which is 10% of the
current covariance, Σ = 0.1Σk, and 10% of the resam-
pled points use the full covariance matrix Σ = Σk. This
allows for small perturbations in parameter space around
the high weight sample points, including the correlations
between different parameters seen in the covariance ma-
trix, and a small number of large excursions, to explore
more of the parameter space than is currently being cov-
ered by the sample points with large weight. There are
two specific design considerations relevant to the choice
of the distribution, q. The first is to ensure that having
more samples will give rise to more accurate estimates
of quantities of interest, which is manifest empirically as
robustness. Put simply, this demands that samples are
proposed in a way that explores possible but potentially
low probability states. The second is to ensure that the
SMC method is computationally efficient, i.e. that it gets
as accurate an estimate as is possible with a given num-
ber of samples. This demands that samples are placed
in high probability areas. A defensive proposal is an ad-
vanced, but relatively standard technique, used in parti-
cle filters and SMC samplers, that combines robustness
with efficiency by having two elements to the proposal,
one that is designed to ensure the sampler is robust and
the other that is designed to ensure that it is efficient.

When the new sample points have been selected, they

are initially assigned the weight w̌
(i)
0 = 1/N and then

the unnormalized weight for the new candidate points
is calculated reusing the entire record of measurement
increments,

w̌
(i)
k =

∏
r,k p(dyr(tk)|λ̃

(i)
)∏

r,k p(dyr(tk)|λ(i))
w̌

(i)
0 (8)

Once all of the new weights have been recalculated they
can be renormalized, and the integration of the Hybrid
SME can continue as normal. Where the new sample
weights are still degenerate and the effective number of
particles is still below the threshold value, the resampling
(and recalculation) needs to be performed again.

To summarize, the SMC method used here can be de-
scribed in the following five steps:

(a) Initialize the individual density matrices ρc,λ(i) using
thermal mixed states, and select a set of classical pa-

rameter values (sample points or particles) λ(i) using
a uniform distribution covering the full range of pos-
sible parameter values, and assign uniform weights to

each of these w̃
(i)
0 = 1/N .

(b) Evolve the quantum state using the individual SMEs
(2), using the corresponding classical parameters and
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FIG. 1: (Color online) Schematic process, showing the main
steps in the SMC Sampler for a one parameter example.

updating their weights using (7). Continue this evo-
lution until Neff drops below the threshold value.

(c) If Neff is below the threshold value, the classical
parameter values are resampled using a cumulative
probability distribution calculated from the particle
weights. This resampling creates a new set of par-
ticles/sample points, where the classical parameters
are selected around the ‘parent’ values. The defen-
sive strategy introduces small perturbations around
the parent values and the occasional large perturba-
tion to explore a wider parameter space – the new
weights associated with each of the new parame-
ter values/sample points are uniformly distributed at
this point.

(d) Once the new values have been selected, the com-
plete evolution of each quantum state is recalculated
using new initial thermal states and the individual
SMEs (using the same measurement record), and the
uniform weights from step (c) are recalculated using
(8).

(e) Return to step (b) with evolution of the quantum
state and weights determined by the individual SMEs

and the weight update (7), until Neff drops below
the threshold value again, at which point the resam-
pling step (c) and the re-weighting step (d) are again
required.

A schematic example of the estimation process for a one
dimensional parameter example is shown in Figure 1. In
this example, it is possible to see that the initial uniform
weighting of the particles evolves so that the relatively
large number of particles below a parameter value of 1.0
carry very little weight, and the distribution of particles
immediately after resampling is concentrated more to-
wards the values above 1.0. The re-weighted parameter
values shown in (d) represent a better approximation to
the underlying probability distribution than those shown
in (b), which contains significant gaps towards the peak
of the distribution. For a more detailed description of the
implementation, a full description of the SMC method is
given as pseudo-code in [16].

The recalculation over the entire measurement history
is an unfortunate, but necessary, computational cost in
the SMC sampler. Recalculating the weights for the en-
tire history of measurement increments will often take a
significant amount of time. However, the need to regu-
larly resample the entire set of particles reduces as the
distribution of the particles improves to reflect the infor-
mation contained in the measurements [16]. This means
that the computational load introduced is biased towards
the start of the calculation of a quantum trajectory. In
addition, for resampled points very close to the parent
particles, some approximations are possible based on the
fact that the ratio between the products in (8) is very
close to one. It is not possible to remove the recalcula-
tion entirely however without constraining the resampled
parameter values and therefore not exploring the full pa-
rameter space.

V. EXAMPLE SYSTEM – DUFFING
OSCILLATOR

The properties of the quantum trajectories generated by
the Duffing oscillator have been studied extensively in
terms of the appearance of chaotic behavior from quan-
tum systems in the classical limit [42–52], but it is also
a model used for a number of other practical systems
where quantum effects in classical nonlinear systems are
of interest. For example, it has been used to describe the
motion of a levitated particle in an electromagnetic trap
[53, 54], and is the basis for the analysis of the properties
of vibrating beam accelerometers [55–57]. The Hamilto-
nian for the Duffing oscillator can be written in the gen-
eral form, using dimensionless position and momentum
operators q̂ and p̂,

Ĥ(λ) =
1

2
p̂2+

1

2
ω2q̂2+

1

4
µq̂4+g cos(t)q̂+

Γ

2
(q̂p̂+ p̂q̂) (9)

where the vector λ = (ω, µ, g) contains the three Hamil-
tonian parameters of interest: the natural (linear) oscil-
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lation frequency ω, the nonlinear coefficient µ, and the
strength of the external driving term g. The measure-
ment is applied via a Linblad operator L̂ =

√
2Γâ, and

â is the harmonic oscillator lowering operator so that
q̂ = (â† + â)/

√
2 and p̂ = i(â† − â)/

√
2 with [â, â†] = 1

and ~ = 1. We fix the measurement strength so that
Γ = 0.125 for all of the results presented here. The
final term in the Hamiltonian is included because, in
combination with the dissipative measurement process,
it generates linear damping in momentum. This is a use-
ful numerical addition because it keeps the phase space
contained, thereby restricting the numbers of states re-
quired in the simulation, without affecting the underlying
physics.

The numerical integration of the individual SMEs uses
a method developed by Rouchon and colleagues [58, 59]
specifically for stochastic master equations. This method
has been demonstrated to provide significant benefits
in terms of accuracy versus computational resources
when compared to standard methods, such as Milstein’s
method [60], for both systems involving small numbers
of basis states [59] and large numbers of basis states [61].
We also employ a moving basis method used by Schack,
Brun and Percival [42, 43] to shift basis states to be cen-
tred on the current expectation value of the state. Al-
though not strictly necessary [42, 43], we shift the basis
after each time step. This comes at a computational cost
but it also ensures that the number of basis states em-
ployed is minimized. Once the evolution of the individual
SMEs has been calculated, using the appropriate set of
parameters, the combined density operator is calculated
by averaging over all of the individual states, weighted
appropriately by the particle weights.

The increment to the state ρ
(n)
c,λ for the time step from

tn = n∆t to tn+1 = (n+ 1)∆t is calculated using

ρ
(n+1)
c,λ =

M̂n,λρ
(n)
c,λM̂

†
n,λ + (1− η)L̂ρ

(n)
c,λL̂

†∆t

Tr
[
M̂n,λρ

(n)
c,λM̂

†
n,λ + (1− η)L̂ρ

(n)
c,λL̂

†∆t
] (10)

where ∆ρ
(n)
c,λ = ρ

(n+1)
c,λ − ρ(n)c,λ and M̂n,λ is given by

M̂n,λ = I −
(
iĤ +

1

2
L̂†L̂

)
∆t+

η

2
L̂2(∆W (n)2 −∆t)

+
√
ηL̂
(√

ηTr[L̂ρ
(n)
c,λ + ρ

(n)
c,λL̂

†]∆t+ ∆W (n)
)

where the ∆W ’s are independent Gaussian variables with
zero mean and a variance equal to ∆t. Once the incre-
ment has been calcluated, center of the basis is moved
to the new location of the state in phase space, as given
by the expectation values of the phase space operators,

(q(n+1),λ, p(n+1),λ) = (Tr[q̂ρ
(n+1)
c,λ ],Tr[p̂ρ

(n+1)
c,λ ]), using the

displacement operator [42, 43],

D̂(p(n+1),λ, q(n+1),λ) = exp
(
i(p(n+1),λq̂ − q(n+1),λp̂)

)
(11)

and the conditioned state in the shifted basis is given by

ρ
(n+1)
c,λ → D̂(p(n+1),λ, q(n+1),λ)ρ

(n+1)
c,λ D̂(p(n+1),λ, q(n+1),λ)†

(12)

VI. RESULTS

The Duffing Hamiltonian (9) has four classical param-
eters but we will fix the measurement strength so that
Γ = 0.125 and we will concentrate on the estimation
of the other three parameters: the linear oscillator fre-
quency ω, the coefficient of the nonlinear term µ, and
the magnitude of the drive term g. The estimated val-
ues for these three parameters are denoted by ω̃, µ̃, and
g̃ respectively. For all of the examples shown below, the
actual values for parameter values were set to be ω = 1.2,
µ = 0.15, and g = 3.0. The numerical integration of the
SMEs was performed using time steps ∆t = 2π/500 so
that there were 500 steps per period of the drive term.
The individual SMEs for each particle/sample point used
a moving basis with 15 harmonic oscillator states, and the
composite state was calculated by combining the density
matrices from the individual SMEs using (5), using a
moving basis with 60 harmonic oscillator states.

Figure 2 shows two examples for the estimation of the
linear oscillator frequency ω̃. The examples correspond
to the same stochastic record (i.e. the same realization)
but with different measurement efficiencies. The blue
lines correspond to the case where the measurement is
100% efficient (with η = 1). This shows a rapid con-
vergence to the actual value, ω = 1.2, within about 50-
100 periods/cycles of the drive term. The 3 sigma er-
rors predicted for the estimate are also shown, together
with the resampling events as blue circles. The conver-
gence is fairly rapid and the estimate is relatively stable
once converged. The red line on the same figure shows
an example where the measurement is inefficient, corre-
sponding to a measurement efficiency of 40% or η = 0.4
(chosen to match the estimated efficiency reported in [5]).
In this case, the convergence is much slower, indicating
that the measurement record contains less information
upon which a parameter estimate can be constructed.
In this case, the estimated parameter value only stabi-
lizes after around 150-200 cycles of the drive term, and
the larger estimated errors indicate this increased uncer-
tainty. In both cases shown, there are slight variations
in the estimated values (seen around 200-250 cycles) but
these are relatively small and are well within the esti-
mated errors. In addition, where the estimation process
takes longer, the number of resampling events (red cir-
cles) tends to increase and they often occur later in the
process than the corresponding resampling events for effi-
cient measurements, leading to increased computational
demands to recalculate the weights after resampling. In
addition to the estimates, Figure 2 also shows the pu-
rity of the full estimated quantum state for both cases
as an inset. For efficient measurements, the conditioned
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quantum state purifies very rapidly (1-2 periods of the
drive term) and remains pure throughout the estimation
process. For inefficient measurements, the conditioned
quantum state purifies somewhat but then the purity
fluctuates between 0.8 and 0.9. The state remains mixed
because information about the quantum state is being
corrupted by extraneous noise. This is a characteristic
of inefficient measurements in quantum systems, and it
is not affected by, and does not itself affect, the classical
parameter estimation process.

FIG. 2: (Color online) Examples of estimated values for the
linear parameter (ω̃) using SMC sampler with efficient mea-
surements (η = 1.0, solid blue line) and inefficient measure-
ments (η = 0.4, solid red line) with an actual linear parameter
value ω = 1.2 (solid black line) and 101 sample points (other
parameters are given in the text). Three standard deviation
errors are indicated in each case with dotted lines, and the re-
sampling points are indicated by circles along the solid black
line. The inset figure shows the purity values for the estimated
state in each case.

Figure 3 shows the evolution of the effective number
of particles Neff as a function of time for the examples
shown in Figure 2. The resampling events are marked on
Figure 2 as large dots, but they are also seen in Figure 3
as large jumps in Neff after the resampling. The data in
this figure is useful when optimizing the resampling pa-
rameters. It provides information regarding the average
number of particles being used. An efficient SMC pro-
cess would expect to have rapid fluctuations in Neff in
the initial phases of the estimation process, with frequent
resampling, which would become more gradual drops in
Neff as the estimates improve. As time increases, and
more measurements are added, the resampling events be-
come less frequent, as is shown in Figures 2 and 3.

The estimation of the frequency of the linear oscilla-
tor term is relatively straightforward, and this is also
found to be the case for the magnitude of the drive term
g. Estimating the coefficient of the nonlinear term µ is
more challenging however. When the external drive is
very small, the Duffing oscillator will appear to be ap-

FIG. 3: (Color online) Examples of the effective number of
particles Neff for the estimates shown in Fig.2 for efficient
measurements (η = 1.0, solid blue line) and inefficient mea-
surements (η = 0.4, solid red line).

proximately linear and estimating the degree of nonlin-
earity is problematic. As the amplitude of the drive is
increased, the system will explore more of the nonlin-
ear potential and µ will become easier to estimate. This
fact is reflected in the results obtained. For the param-
eter values selected, the drive term is sufficiently strong
to explore the nonlinearity of the potential, but not suf-
ficiently strong so as to require very large numbers of
basis states or to make the estimation process easy com-
pared to the other two parameters. An example of the
estimation of the nonlinear coefficient is shown in Figure
4, where the convergence to a stable value takes much
longer than either example shown in Figure 2, requiring
over 500 periods of the drive term to stabilize the esti-
mated value (note the different x-axis compared to Figure
2).

Each of the examples shown in Figures 2 and 4 show
the estimation of one parameter, the other parameters
are assumed to be known. The estimation of one pa-
rameter is relatively straightforward and a value can be
found using a grid-based method (as was the case in [15]
and [27]). The number of particles required for the esti-
mation of ω̃ and µ̃ is around 101 sample points in each of
the SMC examples shown above. The number of resam-
pling events is around 4-6 in the cases shown in Figures 2
and 4, and the maximum number of quantum trajectories
that would need to be calculated is approximately equiv-
alent to 200-300 trajectories on a fixed grid Hybrid SME.
The expected errors for a fixed grid approach are related
to the grid spacing, which is related to the initial range
over which these grid points are initially distributed. For
the cases considered here, with an initial distribution of
points for a parameter value λ between 0.5λ ≤ λ(i) ≤
1.5λ. Assuming that the actual values of λ are uniformly
distributed across each interval, the expected error for
a fixed grid approach with Ngrid points would be lim-

ited by σλ,grid > (λ/Ngrid)/
√

12 ' 0.1%− 0.15%λ. This
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FIG. 4: (Color online) An example of estimated values for
the nonlinear parameter (µ̃) using SMC sampler with effi-
cient measurements (η = 1.0, solid blue line) with an actual
nonlinear parameter value µ = 0.15 (solid black line) and 101
sample points (other parameters are given in the text). Three
standard deviation errors are indicated in each case with dot-
ted lines, and the resampling points are indicated by circles
along the solid black line.

FIG. 5: (Color online) An example of values for all three
parameters (ω̃, µ̃, and g̃) estimated simultaneously using SMC
sampler with efficient measurements (η = 1.0, solid blue line)
and 1001 sample points (other parameters are given in the
text). Three standard deviation errors are indicated in each
case with dotted lines, and the resampling points are indicated
by circles along the solid black line.

value is achievable only in the long time limit and the
actual error is likely to be significantly larger than this.
In the examples given above, the SMC sampler produces
parameter estimates with errors approaching this limit
within a few hundred cycles. There is therefore a small
but potentially significant benefit in using the SMC sam-
pler method for one parameter estimation.

Moving from single to multiple parameter estimation
presents a serious problem for grid-based methods. The
number of points required scales exponentially in the
number of dimensions to achieve the same accuracy. The
error from a grid-based approach results from approxi-
mating an integral of functions in D dimensions, where
the error is O((Ngrid)

(−1/D)). The error for an SMC sam-
pler comes from approximating the integral directly (us-
ing Monte-Carlo integration) and therefore is O(1/Ngrid)
whatever value D takes [39]. (See reference [40] for
proofs for the convergence of SMC and particle filter
based methods). So, for D = 1, the two approaches
offer similar scaling of error with Ngrid, in higher dimen-
sions, an SMC sampler will asymptotically outperform a
grid-based method as Ngrid tends to infinity. Of course,
differences in constants of proportionality mean that a
computational benefit from using the SMC sampler in a
small number of dimensions (number of parameters) is
not guaranteed. Estimating all three parameters in our
example, at a level of accuracy equivalent to the one pa-
rameter examples above, would require around ten mil-
lion grid points, (300)3 = 9 × 106. With SMC methods,
this number is dramatically reduced.

Figure 5 shows an example of the simultaneous esti-
mation of all three parameters using 1001 sample points.
The values for ω̃ and g̃ still converge rapidly whilst µ̃
takes longer to establish a stable estimate. When com-
paring this with a grid based method, we note that the
number of trajectories is larger than for the single pa-
rameter case and the number of resampling events is also
increased, approximately 20 in the case shown in Figure
5. This is equivalent to a run-time for approximately
10,000 trajectories on a fixed grid. Using the same as-
sumptions as before, this would give errors limited by
σλ,grid > (λ/ 3

√
Ngrid)/

√
12 ' 1.5%λ. The errors found

using the SMC sampler described above are nearly an
order of magnitude smaller than this limit for one of the
three parameters (ω) and comparable for the remaining
two parameters (µ and g). There is an additional bene-
fit, in that the sample points not only provide estimates
of the parameter values, they also provide information
regarding the correlations between the different parame-
ters. For the example shown in Figure 5, the mean vector
and the estimated covariance matrix (S) are given by ω̃

µ̃
g̃

 =

 1.1981
0.1557
3.0874


S =

(
4.0308 × 10−3 −1.6449 × 10−6 9.2270 × 10−6

−1.6449 × 10−6 3.9795 × 10−4 −2.8254 × 10−6

9.2270 × 10−6 −2.8254 × 10−6 1.1586 × 10−2

)
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Note also that in Figure 5, the standard deviation of
the linear parameter (ω̃) is larger than in Figure 2 and
the convergence is slower than for the single parameter
case. This is partly due to the larger uncertainty gener-
ally in the three unknown parameters, and in part due
to the slower convergence of the nonlinear parameter (µ̃).
The coupling between the parameters, shown by the non-
negligible correlations shown in the covariance matrix,
means that uncertainty in the nonlinear parameter in-
creases the standard deviation of the other two parame-
ters.

The use of an SMC sampler to estimate the Hamil-
tonian parameter values directly from the quantum tra-
jectories is more efficient than an equivalent grid-based
method but it still presents a computational challenge.
Solving a single SME can be simplified using a stochastic
integration method designed specifically for SMEs, like
Rouchon’s method [58, 59], and using efficient numerical
tools, like moving basis states [42, 43]. However, solv-
ing many simultaneous SMEs to determine the evolution
of the particle weights still requires significant compu-
tational resources. The number of combinations of pa-
rameter values explored using the SMC sampler is sig-
nificantly less than that required by a conventional grid-
based method, but each sample point explored requires
the full trajectory to calculated, or recalculated after re-
sampling. The number of SMEs required to be calculated
can be said to be relatively small but it is still not a triv-
ial exercise. In their favor, SMC methods are amenable
to parallelization [16], since the evolution of SME and
the recalculation of each trajectory after resampling are
largely independent processes and can be distributed sim-
ply across a number of processors. However, at present,
it is more likely that this type of technique is more likely
to be used for post-processing experimental data rather
than as part of an on-line closed-loop control system.

VII. CONCLUSIONS

Continuous quantum measurements, and their asso-

ciated stochastic master equations (SMEs), provide a
means to monitor the dynamical evolution of a quan-
tum system and to provide an estimate of the underly-
ing quantum state. In addition, the quantum trajecto-
ries resulting from the integration of stochastic master
equations contain useful information about the param-
eters that govern the evolution of the system. Hybrid
stochastic master equations provide a means to extract
the information regarding these classical parameters. Hy-
brid SMEs involve running many parallel SMEs, each one
having a different value for the parameter (or parame-
ters). The classical probabilities attached to the individ-
ual SMEs and the associated parameter values can then
be found by integrating a Kushner-Stratonovich equa-
tion. This classical estimation process is numerically
costly, and is even more so when estimates are required
for multiple parameters. This paper has demonstrated
how such estimates can be found using a technique taken
from classical state estimation and nonlinear filtering, a
Sequential Monte Carlo (SMC) sampler. The SMC sam-
pler used in this paper has been demonstrated to allow
the simultaneous estimation of three Hamiltonian param-
eters, together with their statistical correlation and the
associated quantum trajectories, in a computationally
tractable form, with a relatively small number of can-
didate parameter values and parallel SMEs.

Even with such methods, the computational task in
solving the Hybrid SME is formidable, and is currently
beyond the point where it could be used as part of a
closed-loop quantum control system. At present, the
strength of such techniques is in the ability to post-
process experimental measurement data to verify the
quantum states used in an experiment but also to provide
an independent, in-situ means to check the parameters
that govern their evolution.
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