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Multi-branch Attention Networks for Action
Recognition in Still Images
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Abstract—Contextual information plays an important role in
visual recognition. This is especially true for action recogni-
tion as contextual information such as the objects a person
interacts with and the scene in which the action is performed,
is inseparable from a predefined action class. Meanwhile, the
attention mechanism of humans shows remarkable capability
compared with the existing computer vision system in discovering
contextual information. Inspired by this, we applied the soft
attention mechanism by adding two extra branches in the original
VGG16 model in which one is to apply scene-level attention
whilst the other is region-level attention to capture the global
and local contextual information. To make the multi-branch
model well converged and fully optimized, a two-step training
method is proposed with an alternating optimization strategy.
We call this model Multi-branch Attention Networks. To validate
the effectiveness of the proposed approach on two experimental
settings: with and without the bounding box of the target person,
three publicly available datasets on human action were used for
evaluation. This method achieved state-of-the-art results on the
PASCAL VOC action dataset and the Stanford 40 dataset on both
experimental settings and performed well on Humans Interacting
with Common Objects (HICO) dataset.

Index Terms—multi-branch CNN, soft attention mechanism,
contextual information, action recognition.

I. INTRODUCTION

Action recognition is one of the central issues in computer
vision as actions often serve as the key instrument for the
semantic description of an image containing humans. Actions
are also directly linked to mid-level concepts for high level
tasks such as image captioning. Despite the tremendous pro-
gresses made, there still exist many obstacles, particularly the
description of the variations in human pose, the objects a per-
son interacts with, and the scene where the action takes place.
There are two pathways to study action recognition, namely
video-based and still image-based. Among the two, video-
based action recognition has been relatively well investigated
[1], [2]. Still image based action recognition, on the other
hand, has been studied less. The lack of motion information
is arguably one of the major obstacles for still image based
action recognition.

In the recent years, many methods have been proposed
to tackle action recognition problems. Among them, human-
object interactions have been studied as one of the important
instruments toward the recognition of object related actions
[3], [4]. As the human pose often plays a fundamental role
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Fig. 1. Example of similar pose leading to different actions. The left image
is ‘brushing teeth’ whilst the right image is ‘blowing bubbles’ though they
have a similar pose.

in action recognition, another interesting approach is to find
solutions for human pose estimation [5]. However, that ap-
proach is limited by the fact that similar poses can be associate
with different actions. This is well illustrated in Fig. 1. The
two children in the figure have similar poses. However, one
is brushing her teeth whilst the other is blowing bubbles.
The problem can be alleviated by either the introduction of
contextual information, which is one of the main subjects of
this paper, or an appropriate combination of pose and human-
object interaction as proposed in [6], in which a conditional
random field is applied to jointly model the pose and objects
a person is interacting with. Other approaches for still image
based action recognition include the part-based model, with
the Deformable Part Model (DPM) [7] as the most influential
one. The Poselets model [8] further developed DPM, which
employs key points to build an ensemble model of human
body parts, achieving improved performance in some vision
tasks.

Intuitively, the solutions to human action classification hinge
on the acquisition of local and global contextual information.
To be more specific, local information associated with discrim-
inative parts or objects provides detailed contextual features
which would be important to action recognition. Object-related
actions are associated with particular objects, which often
provide key hints for recognition. Additionally, the global
contextual information about the configuration of surrounding
scenes is also instrumental. To summarize, the comprehensive
description of an action comprises the articulation of body
parts, the objects a person interacts with and the scene in
which the action is performed. This can be well illustrated
by the action types in sports. For example, for the action
of ‘playing football’, the poses of players, the football itself
and the football pitch are all strong evidence for this action
category.

Specifically, to fully consider the contextual information
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Fig. 2. System diagram of our proposed Multi-branch Attention Networks.
There are a total of three branches: (1) the top one is the scene attention.
(2) the middle one is the target person region classification. (3) the bottom
one is the region attention. The classification scores from three branches are
summed and forwarded to a softmax layer for final classification.

when recognizing actions, we exploit two types of contextual
information: the scene-level context and region-level context,
corresponding to the global and the local context respectively.
The scene-level context is to consider the surrounding scene
while the region-level context is to exploit the important body
parts or objects a person is interacting with. The scene-level
context is coarse-grained and the region-level context is more
fine-grained. In practice, given an image, the scene often
means the background and region-level context are around the
target person. Hence, these two kinds of context can be dealt
with at the same time.

The relationship between contextual cues and visual at-
tention has long been recognized [9]. Human perception is
characterized by an important mechanism of focusing attention
selectively on different parts of a scene. In Natural Language
Processing (NLP), the attention model has also been extensive-
ly studied, with applications including sequence to sequence
training in machine translation [10], with the aid of two types
of attention model, namely, hard attention and soft attention.
Soft attention is deterministic and can be trained using back-
propagation [11], which has also been extended and applied
to the image captioning task [11]. Sharma, et al. [12] used
pooled convolutional descriptors with soft attention based
models for video-based action recognition and achieved good
results. However, the above works on attention based networks
are all implemented with recurrent neural networks (RNNs).
It would be very interesting to investigate the applicability
of attention mechanism in the general CNN frameworks to
which static images are the subjects to process. Though
the spatial transformer networks proposed in [13] can be
considered as an approach to realize soft attention in general
CNN framework, our motivation is different from theirs as
our model operates on both the region level and scene level.
To our best knowledge, we are the first to incorporate soft
attention mechanism into CNNs for action recognition from
still images. For convenience, the proposed scheme is formed
as Multi-branch Attention Networks. The CNN model with
multi-branch attention mechanism can be trained in an end-
to-end way, which can be illustrated by the system diagram
shown in Fig. 2.

II. RELATED WORKS

In this section, we review recent research on action recog-
nition and attention models and discuss the relevance to our

research.

A. Action Recognition

Video based action recognition has been well studied.
The recently published papers [14] provide good literature
review. Still image-based action recognition can be roughly
categorized into three groups. The first group makes use of
the human body information [5], [15]. Normally the bounding
box of the human is used to indicate the location of the
person. For instance, Thurau et al. [5] exploit human poses by
learning a pose primitive for action recognition. There are also
approaches making use of information from human body parts
to aid the action recognition. Maji et al. [16] developed a body
pose representation approach by learning and forming Poselets
which are patches learned from body parts. Gkioxari et al. [15]
concentrated on human body parts within a CNN model and
developed a part-based approach by leveraging convolutional
features, with the effectiveness demonstrated using several
publicly available datasets.

The second group use the human-object interaction to
discover the action categories by modeling the human-object
pair and its interactions. For example, Yao et al. [6] modeled
a person’s body parts and objects by a conditional random
field to recognize actions from still images. Yao et al. [4]
developed Grouplet to recognize human object interactions by
encoding appearance, shape and spatial relations of multiple
image patches. Desai et al. [17] formulated the problem of
action recognition as a latent structure labeling problem and
developed a unified, discriminative model for human object
interaction. Recently, deep CNNs have also been employed
for action recognition. For instance, Gkioxari et al. [18]
proposed an interesting method by automatically selecting
the most informative regions (normally the objects) around
the person bounding box and achieved promising results on
several datasets.

The third group have recourse to the scene context informa-
tion. The background in an image can be taken as the context
or scene of an executed action. For example, Delaitre et al. [19]
studied the efficiency of different strategies based on the Bag-
of-Visual-Words (BoVW) approaches. It was found that the
information extracted from the background does help to boost
the performance of the recognition task. Similarly, Gupta et al.
[20] encoded the scene for action image analysis and achieved
good results.

As a contrast to the previously published approaches, we
considered both the objects a person is interacting with and
the scene as contextual information and model them explicitly
to form a unified, effective model. This is achieved with the aid
of a soft attention mechanism embedded into a CNN model.

B. Attention Model

One important property of human perception is that we do
not tend to process a whole scene in its entirety at once. Instead
humans pay attention selectively on parts of the visual scene to
acquire information where it is needed [21]. Different attention
models have been proposed and applied in object recognition
and machine translation. Mnih et al. [21] proposed an attention
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mechanism to represent static images, videos or as an agent
that interacts with a dynamic visual environment. Also, Ba
et al. [22] presented an attention-based model to recognize
multiple objects in images. The two above-mentioned models
are all related with RNNs and with the aid of reinforcement
learning strategy.

Bahdanau et al. [10] proposed a novel attention model
for neural machine translation without the prerequisite of
reinforcement learning, which can be trained end-to-end by
back propagation method. It is called a soft attention model.
Later, a comprehensive study for hard attention bound with
reinforcement learning and soft attention for the task of image
captioning was published by Xu et al. [11]. Followed up
researches include action recognition with soft attention pro-
posed by Sharma et al. [12] and video description generation
[23].

A related research topic, saliency detection, is also moti-
vated by human perceptions. However, most of the saliency
detection methods [24], [25], [26] used low-level image fea-
tures, e.g., contrast, edge, intensity, which can be considered
as fixed and bottom-up approach in contrast with the top-down
approach of attention mechanism. Normally these methods
cannot capture the task-specific information. Zhou et al. [27]
applied global average pooling [28] to discriminate salient
CNN features for the target object category. It is a kind of
task-relevant approach. However, it is still not flexible enough
to operate on the region-level as the soft attention does in
this paper. The region-level context, which is a more fine-
grained feature, can be captured by region-level attention
easily. In short, attention mechanism is a more recent and
flexible approach, which is able to learn relevant features for
the specific task and plays a significant role in various vision
tasks.

As an overview of the published works, soft attention
models were mainly realized with the leverage of RNNs for
handling sequences or time-domain information. To directly
process static image, it is much desirable to implement soft
attention models in the general CNN frameworks. Teh et al.
[29] applied the soft attention mechanism in CNNs for weakly
supervised object localization and achieved good results on the
PASCAL VOC detection challenge [30]. They emphasized the
relative importance on candidate proposals to automatically
select target regions with only region-level considered.

III. APPROACH

In this section, we introduce the proposed approach of
Multi-branch Attention Networks for action recognition. The
augmented CNN system contains three branches: target person
region classification, scene-level attention and region-level
attention.

Our model was built on the VGG16 [31], which is a
very effective CNN structure for large scale image analysis.
According to [31], the VGG16 network has five convolutional
blocks, each with three convolutional layers. We retained the
structure of convolutional layers unchanged, with attention
networks cascading these convolutional layers.

A. Classification of target person region

Normally the benchmark action recognition datasets provide
the bounding box of the target person, e.g., the PASCAL VOC
2012 Action Challenge [30] and Stanford 40 Action Dataset
[32]. As our model is fully supervised, we designed this branch
of CNN model to perform the classical recognition of person
regions. We applied RoI pooling developed by Girshick [33]
for the purpose of pooling different size regions into fixed
size feature maps to facilitate the following classification. This
branch is built based on Fast RCNN [33], only with some
minor modifications. Specifically, we select the foreground
with a overlap more than 0.5 with the target person region, and
set the foreground over background ratio as 1, which indicates
the framework is used for classification instead of detection.
This can also be considered as a kind of data augmentation
because the model samples on candidate regions instead of
limiting the samples only on target person region.

B. Region-level Attention

To exploit the fine-grained properties of a given image, we
design the second branch for the CNN to explicitly capture
more informative regions regarding the action performed. We
take a similar strategy of selecting regions as in the R*CNN
[18]. In the R*CNN, a set of regions called secondary region
is selected based on the overlap ratio with the bounding box of
the target region. In our research, we also set a ratio threshold
to select regions for this branch. Intuitively, the regions that
overlap with a certain ratio normally indicate the parts of a
person or objects a person is interacting with. The regions
far away from a person will be ignored based on the overlap
smaller than the threshold. As a result, more related regions
will be selected for further processing at the first step.

Subsequently, selected regions are aggregated with RoI
pooling resulting the fixed size feature maps. In this branch,
we use the fully connected features instead of convolution
features because there is certain number of regions to process.
Feature from fully connected layers have lower dimension and
hence can largely reduce the computational burden. All the
extracted features are forwarded to a linear layer to generate
score map. If there are n regions each with d dimension, we
can reshape the n feature maps to one feature map with a
dimension of n×d. Then the score map S is with a dimension
of n×1. In practice, this is a fully connected layer which can
be easily implemented. The soft attention model requires a
region location softmax to generate the attention map which
is expressed as follows:

Ai =
exp(Si)∑n
i=1 exp(Si)

(1)

where Ai is the element of the attention map for the ith
region. To allocate weights on regions, this attention map is
elementwise multiplied with the features F:

F̃ = A� F (2)
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Fig. 3. Illustration of region Attention: this attention branch is to allocate
attentive weights on candidate regions around the target person. Regions with
higher weights will provide more contributions to the final classification.

Fig. 4. Illustration of scene Attention: this attention branch is to exploit the
more informative regions in the scene. This is achieved by allocating attentive
weights in each location of an image corresponding to different receptive fields
of the original image.

where F̃ is the attentive feature map. To obtain a final feature
representation of the regions, we sum all the weighted features
into one representation:

E =

n∑
i=1

F̃i (3)

The feature representation of all weighted regions E can
be used by the fully connected layer to obtain classification
scores. More details of the block diagram of region attention
branch are illustrated by Fig. 3.

C. Scene-level Attention

This branch of the CNN model is to consider the scene-
level context of an action category. As previously explained,
scene or background information often plays a supportive role
in action recognition. However, indiscriminative extraction of
all of the background would be counterproductive as some
subregions of the scene may not be relevant to the action
of interest. To solve this problem, we exploit the attention
model to discriminatively select the most informative locations
within the background. Hence, we applied soft attention over
the CNN features of the scene or background as one branch
to aid the action recognition.

As a scene normally means the entire image, we firstly
pooled the original convolutional features into a fixed size
feature map by a new pooling layer: global RoI pooling,
which divides the entire image or feature map into several
grids and then performs max pooling inside each grid. The
obtained feature map will have the same size regardless of
the original image size. More formally, we can pool an image
with arbitrary size into a feature map F with size w×h×d, in
which w, h and d are the width, height and channel size of
the feature map, respectively.

The pooled feature map is then convolved by a 1×1
convolution layer and the output channel of this convolution
layer is also 1. A score map Z of w×h×1 can be consequently

obtained. Following the practice of soft attention in [11], the
score map is further processed by a location softmax which is
defined as follows:

Aij =
exp(Zij)∑w

i=1

∑h
j=1 exp(Zij)

(4)

where Aij is the element of the attention map at position (i,j).
Then the attention map A is elementwise multiplied with the
feature map F which can be expressed as follows:

F̃ = A� F (5)

where F̃ is the attentive feature map. To obtain the final
feature representation of the scene, the attentive feature map
is summed over positions which can be described by:

E =

w∑
i=1

h∑
j=1

F̃ij (6)

The feature E is subsequently forwarded to the fully con-
nected layers to obtain the classification scores. Fig. 4 further
explains the scene-level attention mechanism implemented in
the Multi-branch Attention Networks.

D. Networks Architecture

TABLE I
NETWORK CONFIGURATION

Inputs (Images, candidate regions and labels)
Convolution Blocks (Conv1-Conv5) derived from VGG16 [31].

Scene-level attention Target person region Region-level attention
Global RoI Pooling RoI Pooling RoI Pooling
(Pooled size: 7×7) (Pooled size: 7×7) (Pooled size: 7×7)
1×1 Convolution FC1 Region-FC1

(Channel number: 1) (Dimension: 4096) (Dimension: 4096)
Softmax FC2 Linear

(Over location) (Dimension: 4096) (Dimension: 1)

Elementwise Product

Score

Softmax
(Over input regions)

Sum Elementwise Product(Over Location)
Scene-FC1 Sum

(Dimension: 512) (Over Input regions)

Scene-core

Region-FC2
(Dimension: 4096)

Region-FC3
(Dimension: 4096)

Region-score
Sum Scores

(Dimension: Number of Categories)
Softmax

Cross Entropy Loss

The details of the CNN architecture are given in Table I.
The convolutional blocks are derived from the VGG16 model
[31] which includes 5 blocks. More detailed explanation can
be referred to [31].

There are a total of 3 branches following the convolutional
blocks starting from a Global RoI Pooling layer followed by
two RoI Pooling layers. The Global RoI Pooling compresses
the entire image into 7×7 feature map, which is used for
scene-level attention networks. It starts from a 1×1 convolu-
tion layer with channel number of 1. A location softmax layer
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is connected to generate the attention map. The feature map
and attention map are subsequently processed simultaneously
and fused into a weighted sum of feature from each location.
The following fully connected layer is named ‘Scene-FC1’
of size 512. The ‘Scene-score’ can be obtained based on the
outputs of the fully connected layer.

The first RoI Pooling (the middle column in Table I) pools
the region of the target person into a fixed size feature to
perform classical CNN recognition. The second RoI Pooling
(the right column in Table I) pools candidate regions gener-
ated with selective search algorithm into fixed size feature
maps. These feature maps are then forwarded to the fully
connected layers ‘Region-FC1’ to generate feature maps with
a dimension of 4096. The region softmax transfers outputs
from a linear layer into an attention map over regions. The
attention map is elementwise multiplied with the features and
summed into a whole feature representation before another
two fully connected layer. The ‘Region-score’, ‘Score’ and
‘Scene-score’ are summed and activated by the Softmax layer
with Cross Entropy Loss for the training.

E. Training Strategy
We followed the common pre-training plus fine-tuning

practice of applying CNN model. Specifically, the pre-trained
VGG16 model on ImageNet [34] was fine-tuned for the task
at hand.

The two branches of the attention mechanism can be
considered as subsets of parameters towards image features,
which are to be found by overall optimization for the action
classification task. Such paramters on the optimization task,
make the direct application of stochastic gradient descent
(SGD) very challenging. Our intuition is to borrow the idea
from alternating optimization [35].

More formally, we can consider the full parameter set of
the CNN model as X = {X1, X2}, where X1 corresponds
to the parameters from the branch of the target person region
classification and region-level attention and X2 indicates the
parameters from the branch of scene-level attention. The task
is to optimize the CNN model which is a function of these pa-
rameters: F = F (X). Alternating optimization is an iterative
procedure to minimize all the variables by alternating restricted
minimizations over the individual subsets of variables X , in
this case, X1 and X2 [35]. Specifically, we propose a two-step
training strategy for our networks: the target person region
recognition and region-level attention are trained jointly at
first. This is equal to optimize over the subset of X1. Then
we add the scene-level attention to the network while keeping
the weights from the convolutional blocks, the target person
region classification and the region-level attention unchanged.
This means the optimization over subset X2 is performed
subsequently. In the first-step training, the maximum iterations
were set as 40,000. Once trained, the model was added with
the scene-level attention branch and further trained with other
25,000 iterations.

As indicated in [33], training all the convolutional layers of
VGG16 model would be unnecessary. Instead, we kept the first
two convolutional blocks unchanged and trained other layers
during the first-step training.

During training, 50 candidate boxes were randomly selected
based on a threshold of overlap ratio for training of region
attention as we found 50 boxes can reach a balance of training
efficiency and generalization capability. 500 candidate boxes
were selected for region-level attention network when testing
as 500 boxes can cover most of the meaningful regions.
Further increasing this number may introduce noise and also
slow the testing process.

IV. EXPERIMENTS

The Multi-branch Attention Networks were implemented
based on the Caffe platform [36]. The training was conducted
with stochastic gradient descent (SGD) with a batch size of
32. All the experiments were conducted with a Nividia Titan
X GPU installed in a PC running the Ubuntu 14.04 operating
system.

A. Experimental Setting 1 (with the bounding box of the target
person)

1) PASCAL VOC 2012 Action Dataset: The PASCAL VOC
Action dataset serves as one of the PASCAL VOC 2012 chal-
lenges [30], which consists of 10 different actions, jumping,
phoning, playing an instrument, reading, riding bike, riding
horse, running, taking photo, using computer, walking as well
as examples of people not performing some of these actions,
which are labeled as other. The target person boxes containing
the people are provided both at training and testing time.
During testing, for every sample we estimate the probabilities
for all actions and compute the Average Precision (AP).

The challenge organizers require participators to make use
of the validation set for parameter optimization and the test
set to report performance [30]. Hence, we firstly measured
the performance on the validation set and then submitted
results of test set to the evaluation server. When evaluating
the validation set, the training set was used only for training.
Both the training set and the validation set were applied for
training when submitting results for the test set and evaluating
performance.

The comparative experiments were conducted to optimize
parameters and confirm the effectiveness of the proposed
model. Table II provides the AP results on the validation set.
From the table, following observations can be obtained:

a) Baseline approach: The Fast RCNN [33] was set as
the baseline approach because it is generally acknowledged as
a better object detection model with much improved perfor-
mance than RCNN [39]. However, Fast RCNN is not limited to
detection and can also be applied in action recognition from
still images [18], with some modifications. Specifically, we
set the foreground over background ratio in Fast RCNN as 1
during training, which indicates the model does not need to
discriminate foreground from background as in the detection
scheme.

For Fast RCNN without bounding box regression, 82.6%
AP was reported. Adding bounding box regression can boost
the AP performance to 84.3% which testifies again that multi-
task training with bounding box regression can boost the
performance reported earlier [33].
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TABLE II
THE AP RESULTS ON PASCAL VOC VALIDATION SET

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)
Image classification (VGG16 model) 78.9 64.0 91.5 71.6 88.6 92.6 83.2 71.1 89.7 53.9 78.5

Fast RCNN (single branch, no regression) [33] 82.4 69.9 90.7 72.1 93.5 97.0 84.1 82.7 87.6 65.6 82.6
Fast RCNN (single branch, with regression) [33] 87.4 70.2 91.2 75.0 95.4 97.8 85.7 81.6 85.9 72.4 84.3

Two branch (no regression, with threshold) 86.3 76.6 90.8 79.6 93.6 97.0 85.6 84.4 92.5 67.4 85.4
Multi-branch attention (no regression, with threshold) 87.8 77.0 92.3 81.4 94.4 96.5 86.2 82.8 92.2 71.3 86.2

Two branch (with regression, no threshold) 85.8 73.2 90.0 81.8 93.3 96.3 85.0 78.2 90.7 70.3 84.5
Multi-branch attention (with regression, no threshold) 85.6 72.7 91.4 81.3 93.4 96.6 84.8 79.1 90.4 70.8 84.6

Two branch (with regression, with threshold) 87.8 77.1 92.5 81.4 94.3 96.5 86.3 83.3 92.2 71.1 86.3
Multi-branch attention (with regression, with threshold) 87.8 78.4 93.7 81.1 95.0 97.1 86.0 85.5 93.1 73.4 87.1

TABLE III
COMPARISON OF EACH OF THE THREE BRANCHES AND THEIR RANDOM COMBINATIONS ON PASCAL VOC VALIDATION SET.

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)
Fast RCNN alone (the first branch) 87.4 70.2 91.2 75.0 95.4 97.8 85.7 81.6 85.9 72.4 84.3

Region-level attention alone (the second branch) 80.7 70.0 88.8 79.7 89.6 94.4 81.3 75.4 88.8 66.3 81.5
Scene-level attention alone (the third branch) 66.3 67.0 82.5 66.9 77.9 84.4 71.4 62.5 85.2 46.5 71.0

The first and second branch 87.8 77.1 92.5 81.4 94.3 96.5 86.3 83.3 92.2 71.1 86.3
The first and third branch 83.2 70.0 90.3 72.7 89.5 92.6 82.0 74.4 89.7 65.3 81.0

The second and third branch 83.9 78.1 93.8 80.9 93.6 95.4 84.9 82.7 93.0 69.9 85.6
Multi-branch attention 87.8 78.4 93.7 81.1 95.0 97.1 86.0 85.5 93.1 73.4 87.1

TABLE IV
THE AP RESULTS ON PASCAL VOC TEST SET

Approach CNN layers jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)
Oquab et al. [37] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [38] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3
Action Part [15] 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Simonyan et al. (VGG16 model) [31] 16&19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0
R*CNN [18] 16 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Multi-branch attention (ours) 16 92.7 86.0 93.2 83.7 96.6 98.8 93.5 85.3 91.8 80.1 90.2 *

* The official results: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb noeq.php?challengeid=11&compid=10

Fig. 5. Visualization of region attention and scene attention on the PASCAL
VOC test set, the brighter areas of an image means the attentive regions of the
image. Region attention is the row below the original image which generates
attentive boxes. The scene-level attention is the row below region attention in
which the brighter parts means higher importance. Note all the images in the
figure are sampled randomly.

b) Our methods: Experiments were conducted for the
two-step training strategy as explained above. The AP per-
formance from the first-step model which uses a two-branch
network (target person region and region-level attention) is
reported first. Borrowing the benefit of bounding box regres-
sion in Fast RCNN, we added a regression layer in the first-
step training. It turns out that our model achieves better AP
results than Fast RCNN, with 85.4% AP without bounding
box regression and 86.3% AP when adding the bounding box
regression layer. Also, the threshold for selecting candidate
boxes plays a significant role in promoting performance.
Specifically, boxes overlap more than 0.1 and less than 0.7
with bounding boxes of the target person were selected for
the branch of region attention. The obvious improvement of
AP performance when adding threshold is clearly indicated in
Table II. This is reasonable because only bounding boxes that
overlap with the person in a range can exploit useful context
information such as the objects the person interacts with.
After this, the second-step training was conducted to train
the Multi-branch Attention Model. As the weights from the
branch of target person bounding box classification are kept
as constants, there is no need to add bounding box regression
in the second-step training. In summary, our proposed Multi-
branch Attention Networks produce the best mean AP value
(87.1%) among all the experimental settings which validate
the effectiveness of this model.

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_noeq.php?challengeid=11&compid=10
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To further evaluate our method and compare it with other
newly proposed approaches, the experimental results on the
test set were generated and submitted to the PASCAL VOC
evaluation server for the final evaluation. We follow the
training strategy explained in Section III-E considering both
the training set and validation set of PASCAL VOC 2012 as
training set. This is a reasonable deployment as the challenge
organizers allow the validation set to be used in training when
reporting results on test set. Once trained with alternating
optimization of 40,000 and 25,000 iterations as the first step
and second step, respectively, the model was directly used for
testing. Also, current leading method such as R*CNN [18],
which will be discussed later, used a similar strategy. Hence,
it is also a fair deployment. Table IV shows the AP results of
the proposed approach and other competing methods. Oquab
et al. [37] trained an 8-layers network on the box of the target
person to perform action recognition. Hoai et al. [38] used an
8-layers CNN model to extract features from fully-connected
layers from regions at multiple locations and scales inside
the image and accumulate their scores for prediction, which
is more comprehensive than only training on the box from
target person. The results of this method are also better than
Qquab et al. [37]. Simonyan et al. [31] combined the VGG16
and VGG19 network and re-trained classifier such as SVMs
using fully connected features from the target person region
and entire image.

The current top ranked method on PASCAL VOC 2012
Action dataset is R*CNN [18] which was trained on the
target person region with a secondary box. The secondary
box was selected using the multi-instance learning method
during training and testing. Specifically, R*CNN applied the
max operation on scores generated by secondary boxes and
combined them with the target person region for recognition.
Our methods achieved same mean AP results with R*CNN,
with a 90.2% mean AP value on the testing set.

A visualization of the attention model is provided in Fig. 5.
We plot the original image, region-level attention and scene-
level attention in separate three rows. The brighter a place
of an image is, the more important it is for recognition.
The region-level attention generates important bounding boxes
while scene-level attention captures attentive regions as indi-
cated by the figure. It is interesting to discover that normally
the two attention models generate different regions which
implies that they are complementary. Note that all the example
images are randomly selected.

c) Analysis of each of the three branches: Table III
presents the AP results of each of the three branches and
their random combinations. In single branch settings, the
branch of general image features (Fast RCNN branch) yields
the best results, which shows that the person regions play a
fundamental role in recognition. Beside this branch, the most
important branch is the second branch (region-level attention),
which discover the fine-grained contextual information. From
the table, it is obvious that the third branch alone (scene-
level branch) cannot provide very good results. However,
as discussed previously, when fused together with the other
two branches, satisfactory results can be obtained, which
indicates that there are little correlations between scene-level

Fig. 6. The AP results for different categories on the Stanford 40 dataset:
the yellow bars are our method while the blue bars are the AP results of Fast
RCNN.

TABLE V
THE AP RESULTS ON THE STANFORD 40 DATASET AND COMPARISON

WITH PREVIOUS RESULTS.

Method Mean AP(%)
Object bank [40] 32.5

LLC [41] 35.2
EPM [42] 40.7

DeepCAMP [43] 52.6
Khan et al. [44] 75.4

Semantic parts [45] 80.6
VLAD spatial pyramids [46] 88.5

Fast RCNN alone [33] 85.3
Region-level attention alone 81.0
Scene-level attention alone 72.1

Two branch (ours) 90.6
Multi-branch Attention Networks (ours) 90.7

attention branch and the other two branches. This is also what
we intended to accomplish by the alternating optimization
initially, which is to guarantee that the scene-level attention
is to capture complementary information of the other two
branches. In the random combinations of two branches, the
first and second branch together generates best results. This
phenomenon shows consistency with the performance of single
branch as the first and second branch are the two most
important parts of the networks.

2) Stanford 40 Dataset: The proposed method was also
evaluated on the Stanford 40 dataset [32] which is a larger
database containing 40 different types of daily human actions.
It has 9352 images in total. The number of images for each
class ranges from 180 to 300. The dataset provides the training
and testing splits for each class, namely 100 images of each
class for training and the rest for testing.

Fig. 6 shows the bar chart of the AP values over the 40
action categories from the Fast RCNN (the baseline) and
our Multi-branch Attention Networks. It is apparent from the
figure that our approach outperforms the baseline by a large
margin, with a 90.7% mean AP compared with 85.3% mean
AP of baseline approach.

Table V shows a comparison of our methods with alter-
native approaches. The model with two branches (from first-
step training) shows good results. The improvement of the
mean AP result by adding the branch of scene-level attention
is obvious. With the Multi-branch Attention Networks, we
further improved the mean AP result to 90.7%. To conclude,
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we achieved the best result on the Stanford 40 dataset with a
5.4% higher mean AP than Fast RCNN which is the baseline
method.

B. Experimental Setting 2 (without the bounding box of the
target person)

The bounding boxes of target persons are very important
during training as they provide the fundamental feature for
the person to be recognized. However, they are often hard to
obtain during real-world applications as the manual annotation
for the bounding boxes is rather time-consuming and painful.
Also, the requirements of inputting bounding boxes severely
discourage further applications of the topic. Hence, in this
section, we show that when the annotations of the bounding
boxes of target person are not provided, our model can also
perform well in the task of action recognition.

As we do not use the bounding box of the target person
during training and testing, we modify the model architecture
to facilitate the recognition. From results of experimental
settings 1, if lacking the general CNN features of the target
person, the most important branch is the region-level attention.
Hence, in order to make the networks effective and simple, we
set two branches in the networks for this experimental settings:

• Image classification Branch: The entire image is forward-
ed to a Global RoI pooling layer and perform general
image classification. This is a fundamental branch which
also provide a baseline of our two branch model.

• Region-level attention Branch: The region attention
branch is to automatically retrieve relevant regions during
recognition, this is similar with the region attention
branch explained previously. The only difference here is
that the bounding box selection is omitted as the region
of the target person is not provided.

During training, the two branches are trained jointly with
40,000 iterations under the Caffe platform. We then report the
AP results on PASCAL VOC 2012 action dataset.

1) PASCAL VOC 2012 Action Dataset: As shown in Table
VI, the model achieved 80.0% mean AP performance on
PASCAL VOC validation dataset whilst the general image
classification only achieved 78.5% mean AP result. To fur-
ther validate the proposed methods, we then report the AP
results from PASCAL VOC evaluation server. As shown in
Table VII, the proposed model got 84.5% mean AP, which
are the state-of-the-art results among the methods without
training bounding boxes. This can be attribute to our region-
level attention branch, which serves as a model which can
automatically retrieve not only the contextual information but
also the person region, in experimental setting 2.

2) Stanford 40 Dataset: Table VIII provides the perfor-
mance on Stanford 40 action dataset on the experimental
setting 2. Our method achieves 85.2% mean AP results on
the 40 action categories of the dataset, which is competitive
with the mean AP results (85.3%, see Table V) of Fast
RCNN (with training bounding boxes). Also, our method
leads the scheme in [47], which is a recently proposed action
recognition method without the training bounding boxes.

TABLE VIII
THE AP RESULTS ON THE STANFORD 40 DATASET WITH EXPERIMENTAL

SETTINGS 2.

Method Mean AP(%)
Image classification (VGG16 model) 81.4

Zhang et al. (Minimum annotations) [47] 82.6
Ours 85.2

Fig. 7. The learnt region-attention map of HICO dataset in the experimental
setting 2: it can clearly show that the attention region contains the objects and
the person region which contribute most for a certain action category. All the
images are sampled randomly.

3) HICO dataset: The PASCAL VOC action dataset and s-
tanford 40 dataset can be considered as medium-sized datasets.
To further test the generalization capability of the proposed
approach on a big dataset, we also conducted experiments on
Humans Interacting with Common Objects (HICO) dataset
[48]. This dataset is currently the largest one for action
recognition, which consists of 50,000 images labeled to 600
human-object interaction categories. It is also related to MS
COCO dataset [49] as each category in the HICO dataset is
composed of a verb-object pair, with objects belonging to the
80 object categories from MS COCO. However, the HICO
dataset does not provide human bounding boxes for a pre-
defined action category. Hence, it is only suitable for the
experimental setting 2 in this paper.

Different from PASCAL VOC action dataset and stanford 40
dataset in which the action categories are exclusive, more than
one human-object interaction category is labeled for a single
instance. Actually, these action categories can be considered
as mid-level features, in contrast with those as high-level
actions in PASCAL VOC and Stanford 40 dataset. Hence,
we treat each of the human-object interaction category as a
binary classification problem and use Sigmoid as the activation
function instead of Softmax. As the dataset is larger, we train
them with 60,000 iterations in Caffe platform and report the
mean AP results of our approach.

Table IX demonstrates the mean AP results of our approach
and comparison with other methods. Specifically, the baseline
approach reported in [48] applied an AlexNet and SVM
classifier for recognition, with only 19.4% mean AP. [50]
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TABLE VI
THE AP RESULTS ON PASCAL VOC VALIDATION SET (EXPERIMENTAL SETTING 2)

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)
Image classification (VGG16 model) 78.9 64.0 91.5 71.6 88.6 92.6 83.2 71.1 89.7 53.9 78.5

Ours 78.4 72.1 91.4 75.4 88.9 93.7 84.3 70.2 90.3 55.5 80.0

TABLE VII
THE AP RESULTS ON PASCAL VOC TEST SET (EXPERIMENTAL SETTING 2)

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)
Simonyan et al. (Image classification) [31] - - - - - - - - - - 79.2
Zhang et al. (Minimum annotations) [47] 86.7 72.2 94.0 71.3 95.4 97.6 88.5 72.4 88.8 65.3 83.2

Ours 87.2 81.5 89.9 78.8 94.4 94.9 90.0 73.8 90.0 65.3 84.5

TABLE IX
THE MEAN AP RESULTS ON THE HICO DATASET WITH EXPERIMENTAL

SETTINGS 2.

Method Mean AP(%)
AlexNet+SVM [48] 19.4

VGG16, Image classification [50] 29.4
VGG16, R*CNN [50] 28.5

VGG16, Scene-RCNN [50] 29.0
RoI and Scene fusion [50] 33.6

Ours 32.8

reported results of several methods. They first applied VGG16
for general image classification approach, achieved 29.4%
mean AP. For R*CNN approach, they used a pre-trained
Faster RCNN object detector to detect human bounding boxes.
With these bounding boxes, they then trained R*CNN and
Scene-RCNN as in [18]. However, the mean AP results of
R*CNN and Scene-RCNN is even worse than general image
classification, the possible reason, as explained in [50], is that
R*CNN try to find a single box using multi-instance learning,
which is not able to cover all 600 action categories. This is not
a problem in our method because we fully exploit region-level
attention and sample 500 boxes to facilitate the recognition.
As shown in Table IX, our approach achieved competitive
results with the one proposed in [50] but are simpler and
more efficient as we do not rely on bounding boxes at all.
A visualization of learnt attention region is shown in Fig. 7.

C. Testing the Statistical Significance of Experimental Results

For a more comprehensive evaluation of the proposed
model, in addition to the mean AP evaluation protocol, we
follow [51], [52], [53] to test the statistical significance of
our experimental result through Fisher-Pitman permutation
tests. Specifically, we apply the evaluation protocol of [54] to
calculate the upper-tailed p-value of the AP results from the
baseline (image classification using VGG16) and the proposed
model. To test if we can reject a null hypothesis, p-value
calculated using permutation tests is a suitable evaluation
protocol [55].

A result has statistical significance when it has a low proba-
bility of occurring given the null hypothesis [56]. Specifically,
we set the null hypothesis as that the proposed model does not

bring an improvement on the performance. We then perform
permutation tests on all the datasets used for both of the
Experimental Setting 1 and Experimental Setting 2. The results
can be seen in Table X. As indicated by the results, the upper-
tailed p-values from the listed datasets are close to 0. Also,
all the upper-tailed p-values are smaller than 0.05, which [55],
indicates we can reject the null hypothesis with statistical
significance. This validates the research hypothesis that the
proposed model is able to improve the performance.

V. CONCLUSION

This paper proposed a novel CNN model abbreviated as
Multi-branch Attention Networks for action recognition in still
images. This model incorporates a soft attention mechanism
into a CNN model to explicitly exploit scene-level context
and region-level context. The two context branches and tar-
get person region classifications are integrated for the final
prediction. A two-step training strategy was proposed based
on alternating optimization. Comprehensive experiments have
been conducted for comparisons on both experimental settings
with and without the bounding boxes of the target person,
with results on the PASCAL VOC action dataset, the Stanford
40 dataset and HICO dataset verifying the advantages of the
proposed model.
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