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Abstract

We consider dynamic routing in multi-hop wireless networks with ad-
versarial traffic. The model of wireless communication incorporates in-
terferences caused by packets’ arrivals into the same node that overlap in
time. We consider two classes of adversaries: balanced and unbalanced.
We demonstrate that, for each routing algorithm and an unbalanced ad-
versary, the algorithm is unstable against this adversary in some networks.
We develop a routing algorithm that has bounded packet latency against
each balanced adversary.

Keywords: Wireless network, routing, adversarial queuing, interference,
queue size, packet latency.

1 Introduction

Models of wireless data networks that abstract from incidental systems details
and concentrate on the essential aspects of communication are most conducive to
studying routing algorithms. One of such aspects are interferences. The model
of radio networks [8] assumes that when multiple packets arrive simultaneously
into a node then this results in interference experienced by the receiving node.
Such networks are considered in this paper.

Adversarial methodologies of traffic generation make it possible to consi-
der worst-case behavior of routing. We use such an approach to study routing
in radio networks. Such networks pose unique challenges to design of routing
algorithms because of the need to coordinate activities of the nodes whose trans-
missions may reach some node simultaneously.

Related work. The methodology of adversarial routing in wired networks was
pioneered by Borodin et al. [5] and Andrews et al. [2]. Lotker et al. [13] showed
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that, in wired networks, every greedy scheduling policy is stable if the injection
rate is smaller than 1/(L + 1), where L is the length of the longest route used
by any packet.

Stability in general wireless networks without explicit interferences was stu-
died by Andrews and Zhang [3, 4] and Cholvi and Kowalski [10]. Lim et al. [12]
analyzed the stability of the max-weight protocol in wireless networks with in-
terferences, but assuming the existence of a set of feasible edge rate vectors
sufficient to keep the network stable.

Chlebus et al. [9] and Anantharamu et al. [1] studied adversarial broadcasting
in the case of using single-hop radio networks. Chlebus et al. [7] considered
interactions among components of routing in wireless networks, which included
transmission policies, scheduling policies to select the packet to transmit from a
set of packets parked at a node, and hearing control mechanisms to coordinate
transmissions with scheduling.

Our results. We study dynamic routing in multi-hop radio networks with a
specific methodology of adversarial traffic that reflects interferences. We demon-
strate that there is no routing algorithm guaranteeing stability for an injection
rate greater than 1/L, where the adversary’s parameter L is the largest num-
ber of links which a packet needs to traverse while routed to its destination.
We give a routing algorithm that guarantees stability for injection rates smaller
than 1/L.

2 Routing against Interferences

We consider communication in multi-hop radio networks. A network is modeled
as a (simple) undirected connected graph G = (V,E) with some n = |V | nodes.
An edge in E represents two directed communication channels connecting the
endpoints; an oriented edge from E is referred to as a link. An edge (u, v), when
interpreted as a link with tail u and head v, is denoted as u → v. Messages
are transmitted along the links according to the links’ orientation. At most one
link determined by an edge can be used at a time.

We say that some parameter of the communication environment is known
when it can be used in an algorithm’s code. Each node is assigned a unique
name, which is an integer in [1;n]. Every node knows n and its own name.

An execution of a communication algorithm is synchronous, in that it is
structured as a sequence of rounds. In each round, a node may either transmit
a message or listen trying to hear incoming messages. Messages are delivered
in the round of transmission. A message that is successfully received is said
to be heard by the receiving node. A node v can hear a message from its
neighbor u in a round t if v listens in round t and u is the only node among
v’s neighbors that transmits in this round. Messages delivered simultaneously
to a node but not heard by the node are said to collide or interfere with one
another at the node. Messages facilitate routing, in particular they may carry
packets traversing the network. Nodes may need to store multiple packets in
their private memory, which is referred to as the node’s queue. The number of
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packets residing simultaneously in such a queue is the queue’s size.

2.1 Routing

A routing algorithm handles packets that are injected at the nodes of graph G
and need to reach their respective destination nodes by traveling through the
network in a store-and-forward manner. A packet together with the round it
was injected in and the (simple) oriented path it needs to traverse, make a tour.
Each packet is encapsulated as a part of its tour at the time of injection and
during the network’s traversal. The number of links in a tour’s path is this
path’s length, also referred to as the tour’s length.

Consider a tour determined by a packet p injected in round t into node v1
that needs to pass through the nodes on the path 〈v1, . . . , vk〉 to reach vk. Each
link vi → vi+1 is said to be among the tour’s links, for 1 ≤ i < k. The start
node v1 is this tour’s source and the end node vk is this tour’s destination.
Packet p is routed by traversing the links according to the tour’s specification:
there are k − 1 rounds t1, . . . , tk−1 such that the node vi transmits packet p
in round ti and the node vi+1 hears p in this very round ti, for i ∈ [1, k − 1],
where t ≤ t1 < t2 < · · · < tk−1. The packet is delivered in round tk−1, which
is the round when the packet reaches the tour’s destination. The latency of
this specific routing of the tour is tk−1 − t, which is the number of rounds the
tour spends in the network between its packet’s injection at the source and its
delivery to the destination.

2.2 Interferences

We represent interferences as abstract conflicts between parts of a network. The
basic case is of a conflict between a node w with a link u → v. Intuitively, it
occurs when a transmission by w cannot be reconciled with having a different
message delivered successfully from u to v in the same round. A node w conflicts
with a link u→ v if either w = u or w = v or the nodes v and w are neighbors.
We extend this to say that a node w conflicts with a tour if w conflicts with
some among the tour’s links. This concept of conflict between a node and a
tour conservatively reflects the worst-case possibility of the node’s transmission
interfering with the tour’s packet when it is traversing the tour’s path.

When transmissions through links of a tour may prevent packet deliveries
along the links of another tour then these tours are said to be in conflict. For-
mally, tours f0 and f1 conflict with one another if either they pass through
the same node or there is a node in one of these tours fi, which is different
from fi’s destination, that conflicts with the other tour f1−i. Conflicting pairs
of tours can be interpreted as edges in a new graph. Formally, for a simple graph
G = (V,E) and a set of tours F in G, the conflict graph of F is a simple graph
with tours in F taken as the vertices and two different tours from F making an
edge when they conflict with each other.

Figure 1 gives an example of a conflict graph for a network and a set of
tours in it, where arrows represent the traversed paths. The graph on the left
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Figure 1: Four tours named f1, f2, f3, f4. Tour f1 conflicts with each of the
other tours fi, for i 6= 1, because it shares nodes with both f2 and f3, and the
start node r of f4 conflicts with the link u → s, which belongs to f1. Tour f2
conflicts with f4 because they share the node r, while f2 does not conflict with f3
because they do not share nodes and only their respective destination endpoints
s and u conflict with the other tour. Tours f3 and f4 conflict with each other
because they share the node w.

represents a network in which routing is performed, and the resulting conflict
graph for the specified tours is depicted on the right.

2.3 The static link scheduling problem

We now consider static routing, when a set of routing tours is given as input.
(This is an aside to the main topic of dynamic routing.) The problem is further
restricted such that each tour is just one link. The goal is to route all these tours
within the shortest possible interval of rounds. This is known as the static link
scheduling (SLS) problem [11]. We show that SLS is related to vertex-colorings
of conflict graphs. The minimum number of colors used in coloring vertices of
a graph, such that each pair of adjacent vertices are assigned distinct colors, is
the chromatic number of the graph.

Theorem 1. The minimum number of rounds to route an instance of the link
scheduling problem is equal to the chromatic number of the respective conflict
graph.

Proof. Consider a set F of one-link tours that makes an instance of the static link
scheduling problem. Let µ be the chromatic number of the respective collision
graph. Let T be the number of rounds of a shortest schedule S to route the
packets in F . We want to show that T = µ.

First we show that µ ≤ T . We may assume without loss of generality that
each packet is transmitted exactly once in S. Namely, we may replace S by
a minimal subset of transmissions in S such that each packet’s transmission
results in this packet’s delivery to its destination. This implies that packets of
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conflicting tours are transmitted in different rounds. Now assign the round of
transmission of a packet as the color of the node representing this packet’s tour.
This is a proper coloring because an edge connects two conflicting tours, which
are transmitted in different rounds. Therefore there exists a vertex coloring of
the conflict graph of T colors, and so µ ≤ T .

Next we show that T ≤ µ. Consider a coloring of the conflict graph with
µ colors. The colors could be identified with the integers in the interval [1, µ].
A schedule of transmissions in µ rounds can be defined as follows: a node of
color i transmits in round i. When a node transmits a packet then the packet
is heard by the destination node because no packets with conflicting tours are
transmitted in this round, as their tours are of different colors. It follows that
all the packets get delivered in µ rounds, so that T ≤ µ.

2.4 Adversaries inject tours

We model dynamic injection of tours by way of an adversarial model, in the spirit
of similar approaches used in [5, 2, 13, 9, 1, 10, 7]. An adversary represents
the users that generate packets to be routed in a given radio network. The
constraints imposed on packet generation by the adversary allow to consider
worst-case performance of deterministic routing algorithms handling dynamic
traffic.

An adversary is determined by three numbers (ρ, b, L), which together are
called its type. The number ρ is the injection rate and needs to satisfy 0 ≤ ρ ≤ 1.
The number b > 0 is called the burstiness and represents the maximum number
of tours injected in the same round that may conflict with a node. The number L
is the stretch and is a positive integer.

An adversary injects packets continuously by placing them in the nodes of a
network. An injected packet is encapsulated with the path it needs to traverse
into a tour.

Let τ be a time interval and v a node. We refer to the number of tours
injected during τ that v conflicts with as the load of node v in τ . This means
that a tour f contributes a unit to the load of each node v such that v conflicts
with f .

The adversary of a given injection rate ρ, burstiness b and stretch L is subject
to the following restrictions in how tours may be injected. First, for each time
interval τ and each node v the load of v in τ is at most ρ · |τ |+ b. Second, the
length of path of an injected tour is at most L.

An adversary of type (ρ, b, L) is called balanced when the inequality ρ ·L < 1
holds, and it is unbalanced when the inequality ρ · L > 1 holds.

3 Stability

A routing algorithm handles itineraries, which include the paths the packets
are to traverse. A critical part of a routing algorithms is a transmission policy
which determines which nodes transmit in a round, as well as the contents of
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the transmitted messages. We consider distributed transmission policies, when
each node decides in each round whether to transmit a message, and if so, then
it determines the contents of the transmitted message. A message contains one
tour stored in the node’s queue, and possibly additional control bits.

The immediate goal of transmitting the packet of a tour is to forward it to
the node designated in the tour as the next one on the path to be traversed by
the tour’s packet. A transmitted tour is heard by the intended recipient node
when that recipient node is not transmitting in this round and the transmitted
message does not interfere with other transmissions, following the radio network
model’s specification, as given in Section 2.

A routing policy is stable against an adversary when the number of tours in
queues at the nodes is bounded in all executions when packet injections conform
to the restrictions imposed by the adversary’s type.

Packet latency of a routing algorithm against an adversary is the maximum
latency attained by a tour in executions subject to the restrictions imposed by
the adversary’s type. When packet latency is bounded then queues are also
bounded, as each queue size in a node is the lower bound on the delay of a
packet already queued.

Theorem 2. For each unbalanced adversary and each sufficiently large integer
n > 0 there exists a network of n nodes such that every routing algorithm is
unstable when the adversary injects tours into this network.

Proof. Let (ρ, b, L) be the type of an unbalanced adversary, which means such
that ρ · L > 1. Take an arbitrary n > L and let the network be the clique of n
nodes.

An injected tour of a positive length contributes a unit to each node’s load,
because all nodes are neighbors. Therefore, the adversary can inject up to ρt+b
tours into all the nodes in the network in a time interval of length t. When
there are multiple disjoint time intervals of length t each, then the burstiness b
can be accounted for at most once, but up to ρt new packets can be injected in
each such an interval.

The adversary will inject packets that need to be forwarded exactly L times
each. In a complete network, at most one message can be heard in a round, so
at most one packet can be forwarded in a round. As each tour contains exactly
L links, the total number of message to be heard, in order to deliver the packets
injected in a time interval of length t, is at least

Lρt = t+ (Lρ− 1)t.

At most t messages can be heard in t rounds, so the adversary can generate, in
disjoint intervals of t rounds, a surplus of (Lρ− 1)t messages to be heard in the
future. Take an integer t such that (Lρ−1)t ≥ 1, which exists because ρ ·L > 1.

At least one packet is needed to account for L messages. Thus the adversary
can make the number of packets in the queues grow by at least one packet per
L intervals in a sequence of consecutive disjoint time intervals of t rounds each.
The resulting execution is unstable.
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4 Efficient Routing

We specify a routing algorithm that we call Old-Go-First. It provides boun-
ded packet latency when executed against balanced adversaries. In the algo-
rithm’s design, we rely on the Brook’s theorem [6], which states that a graph of
a maximum node degree ∆ can be colored with ∆ + 1 colors.

The algorithm’s execution is partitioned into disjoint intervals of rounds
called windows. Tours injected in a window are new in this window and become
old when the next window starts. Tours that are old in a window are transmitted
in the window, while the new tours wait for the next window to be transmitted
in it as old.

A window is partitioned into two phases, see Figure 2. The first phase
consists of preprocessing in order to prepare the second phase, which is spent
executing a transmission policy.

The phases are specified in greater detail next.
Phase 1 : preprocessing to prepare routing in the next phase:

1. Collect in each node the specification of all the old tours. Let L′ denote
the length of the longest old tour.

2. Build the conflict graph for the old tours. Let ∆ be the maximum degree
of a node in the conflict graph.

3. Color the vertices of this conflict graph with ∆ + 1 colors.

Phase 2 : tours are routed in the next time interval of L′(∆ + 1) rounds by the
following transmission policy:

1. Partition this time interval into L′ intervals, called super-rounds, each of
∆ + 1 rounds.

2. In each super-round: a node storing a tour of color i transmits this tour
in the ith round of the super-round.

A node stores at most one tour of each color in the beginning of a super-
round, because tours passing through a node conflict with each other, so they are
colored differently. Collecting the information about all the old tours originating
in each node can be accomplished by gossiping of what each node stores origi-
nally. We can use the algorithm given in [8], which runs in S(n) = O(n log4 n)
rounds in a network of n nodes. This algorithm uses “short” messages, in that
one rumor (the information to be gossiped that originates in one node) requires
one message, and it takes one round to transmit a message.

For the purpose to prepare a transmission policy for a window, a rumor
contains the information about all the old tours stored in a node at the end of
the previous window. Once gossiping is completed, building the conflict graph
and coloring its nodes [14] can be done in negligible time, concurrently by all
the nodes.
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Figure 2: A window of an execution of transmission policy Old-Go-First
consists of two phases. Phase one is preprocessing. Phase two consists of L′

super-rounds, each of ∆ + 1 rounds, where ∆ is the maximum degree of the
conflict graph of the old tours in this window, which was built in phase one.

Theorem 3. Routing algorithm Old-Go-First attains packet latency O
(
n log4 n+bL

1−ρL
)

when executed against a balanced adversary of type (ρ, b, L) on a network of n
nodes.

Proof. The number of tours injected in a window of length w that contribute to
the load of a node is at most ρw + b, each of stretch at most L. By the design
of Old-Go-First, in a super-round, each tour, that is still on its way, becomes
colored and so is transmitted at some round of this super-round. The message
with such a tour is heard immediately by the receiving node, by the definition of
coloring. Since phase two consists of L′ super-rounds, each old tour is delivered
to its destination within this window. Window size w needs to be sufficiently
large to accommodate the two phases. By the design of the two phases, it is
sufficient if w satisfies the following inequality:

S(n) + (ρw + b) · L ≤ w . (1)

This is because phase one takes S(n) rounds, and ∆ + 1 ≤ ρw + b, as at most
these many tours conflicting with a node can be injected during the previous
window. Bound (1) is equivalent to S(n) + bL ≤ w(1 − ρL), by algebra. Since
the inequality ρL < 1 holds, by the assumption that the adversary is balanced,
we may take the following quantity

u =
⌈S(n) + bL

1− ρL

⌉
as an upper bound of every window w. Packet latency is at most 2u, be-
cause a packet injected in the beginning of a window is delivered by the end
of the next window. Using the estimate S(n) = O

(
n log4 n

)
, we conclude that

O
(
n log4 n+bL

1−ρL
)

is an upper bound on packet latency.
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5 Conclusion

We proposed an adversarial framework to study stability of deterministic dis-
tributed routing algorithms in multi-hop wireless networks with interferences.
It is representative enough to deny stability for sufficiently strong adversaries,
namely, the unbalanced ones. We showed that there exists a deterministic distri-
buted routing algorithm that provides bounded packet latency against balanced
adversaries in all connected radio networks. This algorithm needs to know the
size of the network, which is required in gossiping, but the adversary does not
need to be known. Theorem 1 implies that achieving optimal packet latency
for static instances of routing, in the case when packets need to make one hop
only, is equivalent to finding the chromatic number of the respective conflict
graph. One can show that conflict graphs have sufficiently expressive topologies
to make the problem of their coloring NP-hard, as is the case for all simple
graphs; we omit the details.
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