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Time delay arising in a genetic regulatory network may cause the instability. This paper is concerned with the stability analysis of
genetic regulatory networks with interval time-varying delays. Firstly, a relaxed double integral inequality, named asWirtinger-type
double integral inequality (WTDII), is established to estimate the double integral term appearing in the derivative of Lyapunov-
Krasovskii functional with a triple integral term. And it is proved theoretically that the proposed WTDII is tighter than the
widely used Jensen-based double inequality and the recently developed Wiringter-based double inequality. Then, by applying the
WTDII to the stability analysis of a delayed genetic regulatory network, together with the usage of useful information of regulatory
functions, several delay-range- and delay-rate-dependent (or delay-rate-independent) criteria are derived in terms of linear matrix
inequalities. Finally, an example is carried out to verify the effectiveness of the proposed method and also to show the advantages
of the established stability criteria through the comparison with some literature.

1. Introduction

In the past few years, genetic regulatory networks (GRNs),
which describe the interactions of many molecules (DNA,
RNA, proteins, etc.), have been becoming a new research area
of biological and biomedical sciences [1–4]. Mathematical
modelling based on the extracted functional information
from the time-series data provides a useful tool for study-
ing gene regulation processes in living organisms [5, 6],
and a large variety of formalisms have been proposed to
model and simulate GRNs, such as directed graphs, Boolean
networks, and nonlinear differential equations [7]. Among
them, the nonlinear differential equation model can provide
more detailed understanding and insights into the nonlinear
dynamical behavior exhibited by GRNs [8].

Since mRNAs and proteins in the GRNs may be synthe-
sized at different locations, an important issue in modelling
GRNs is that the slow processes of transcription, translation,
and translocation result in sizable delays [9–11]. Time delays

arising in the GRNsmay lead to wrong prediction of dynamic
behaviors [12, 13], which may lead to very serious conse-
quences. The stability is essential for designing or controlling
genetic regulatory networks [14]; it is of a great significance
to study the influence of delays on the stability of the GRNs.

Up to now, a huge number of results on the stability of the
delayed GRNs have been reported in the literature (see, e.g.,
[15–58]). The sufficient and necessary local stability criteria
were firstly given for the GRNs with constant delay in [15,
16]. However, local stability is not enough for understanding
nonlinear GRNs; the globally asymptotical stability of GRNs
with SUM regulatory functions has been widely investigated
[17–22]. Meanwhile, by taking into account the unavoidable
uncertainties caused by modelling errors and parameter
fluctuations, many scholars paid attentions to the robust
stability analysis of the delayed GRNs [23–36]. Moreover,
both the intrinsic noise derived from the random births and
deaths of individual molecules and the extrinsic noise due to
environment fluctuations make the gene regulation process
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an intrinsically noisy process [59]. Thus, many researches
aimed at the robust stability analysis of the GRNs in con-
sideration of those noises [37–46]. Also, some results have
considered both the uncertainties and the noises [47–52]. In
addition, based on the definition of convergence rate index,
the exponential stability problemwas also studied in [53–57].

On the other hand, no matter what type of stability
problems is concerned, the analysis methods for finding
stability criteria have always been an important topic. To
the best of the authors’ knowledge, there are mainly two
methods that have been used for the delayed GRNs. The
first type of method is the 𝑀-matrix-based method. For
example, the delay- and rate-independent stability criteria
were proposed in [20], the delay-independent but rate-
dependent criteria were established in [23, 44], and the delay-
and rate-dependent criteria were developed in [21, 22]. The
stability of the GRNs through those𝑀-matrix-based criteria
is judged by verifyingwhether or not amatrix is a nonsingular𝑀-matrix. Although the computational complexity is low,
those criteria are just available for slow-varying delay case
[20–23, 44]. However, the time delays encountered in GRNs
may be fast-varying or random changing. The 𝑀-matrix-
based method is inapplicable for those cases. The second
type of method is based on the framework of Lyapunov-
Krasovskii functional (LKF) and linear matrix inequality
(LMI). The LKF-based method can be used to handle all
time delays mentioned before and it is available for not only
stability analysis but alsomany other problems, like controller
synthesis, state estimation, filter design, passivity analysis,
and so on [13, 59–70]. Meanwhile, the LMI-based criteria
can be easily checked through MATLAB/LMI toolbox for
determining the system stability. Therefore, most existing
researches for theGRNs are based on this type ofmethod [17–
19, 25–43, 45–56].

The problem of stability analysis by using the LKF
and the LMI is that the criterion obtained has more or
less conservatism. It is well-known that the criterion with
less conservatism means that it can derive an admissible
maximum upper bound such that the understudied GRNs
maintains global asymptotical stability. It is predictable that
the form of the LKF candidate is tightly related to the
conservatism of the obtained criteria. Thus, the key point of
the stability analysis based on such framework is to find an
LKF satisfying some requirements for ensuring the globally
asymptotical stability of the GRNs.

In most researches, the used LKFs were constructed by
introducing delay-based single and/or double integral terms
into the typical nonintegral quadratic form of Lyapunov
function for delay-free systems [17, 18, 28–33, 35–42, 46–
50, 53–55]. Based on a predictable fact that the conservatism-
reducing of criteria can be achieved by constructing more
general LKF, two types of more general LKFs have been
developed to reduce the conservatism. The first one is the
delay-partition-based LKFs, which is constructed by dividing
the delay interval into several small subintervals and then
replacing the original integral terms with multiple new
integral terms based on delay subintervals. This type of LKF
has been used to investigate the robust stability of various
GRNs [25, 26, 51], the exponential stability of switch GRNs

[56], and the stochastic stability of jumpingGRNs [27, 43, 45].
The other is the augmented LKF constructed by using various
state vectors (current and delayed and/or integrated state
vectors, etc.) to augment the quadratic terms of original LKFs,
and it has been used to derive the improved stability criteria
of the GRNs [19, 34, 52].

Beside the above-mentioned two types of improved LKFs,
a new LKF including triple integral terms firstly developed in
[71] is proved to be very useful to reduce the conservatism.
However, only a few researches of theGRNshave applied such
type of LKF. The LKF with triple integral terms was used to
discuss the asymptotical stability of the GRNs [19, 34]. The
following formof double integral termwill be introduced into
the derivative of the LKF with a triple integral term:

−∫𝑏
𝑎
∫𝑏
𝑠
𝑦𝑇 (𝑢) 𝑍𝑦 (𝑢) 𝑑𝑢 𝑑𝑠, 𝑍 > 0. (1)

As mentioned in [72], the effective estimation of the above
term is strongly linked to the conservatism of the criteria.
To the best of the authors’ knowledge, for the researches
referring to the triple integral term in the LKFs, most
literature directly applied the Jensen-based double integral
inequality (JBDII) (see (17) for details) to achieve the esti-
mation task [34]. Although an improved integral inequality
was developed in [19], it is also derived based on Jensen
inequality. Very recently, a Wirtinger-based double integral
inequality (WBDII) was developed to general linear time-
delay system and it was proved to be less conservative than
the JBDII [72]. However, such inequality has not been used
to discuss the GRNs. Furthermore, the gap between term
(1) and its estimated value obtained by the WBDII still
leads to conservatism. Therefore, it can be expected that the
results may be further improved if a new estimation method
that brings tighter gap is applied for term (1). This is the
motivation of the paper.

This paper further investigates the delay-dependent sta-
bility of the GRNs by developing a more effective inequality
to estimate the double integral term (1). The contributions of
the paper are summarized as follows:

(1) A relaxed double integral inequality, that is,
Wiringter-type double integral inequality (WTDII),
is established to estimate the double integral term.
Compared with the widely used JBDII and the
recently developed WTDII, the presented WTDII is
theoretically proved to be the tightest.

(2) Two less conservative stability criteria of the GRNs
are derived. For the GRNs with time-varying delays
satisfying different conditions, two stability criteria
are, respectively, established by applying the proposed
WTDII to estimate the double integral terms appear-
ing in the derivative of the LKFs.

The rest of the paper is organized as follows. Problem
statements and preliminaries are presented in Section 2. In
Section 3, the development and the comparison of theWTDII
approach are discussed in detail. Two stability criteria of
the GRN with time-varying delay are derived through the
WTDII in Section 4. An example is given to show the validity
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Figure 1: GRNs with time-varying feedback regulation delays and translational delays.

of the obtained results in Section 5. Finally, in Section 6, the
conclusions are drawn.

In the Notations, the list of notations and abbreviations
used throughout this paper is shown.

2. Problem Formulation and Preliminary

This section describes the problem to be investigated and
gives some necessary preliminaries.

2.1. Problem Formulation. The following nonlinear differ-
ential equations have been used recently to describe the
GRNs with time-varying feedback regulation delays and
translational delays [28]:

𝑚̇𝑖 (𝑡) = −𝑎𝑖𝑚𝑖 (𝑡)
+ 𝑏𝑖 (𝑝1 (𝑡 − 𝜎 (𝑡)) , 𝑝2 (𝑡 − 𝜎 (𝑡)) , . . . , 𝑝𝑛 (𝑡 − 𝜎 (𝑡))) ,

𝑝̇𝑖 (𝑡) = −𝑐𝑖𝑝𝑖 (𝑡) + 𝑑𝑖𝑚𝑖 (𝑡 − 𝜏 (𝑡))
(2)

as shown in Figure 1, where 𝑚𝑖(𝑡) and 𝑝𝑖(𝑡) are the concen-
trations of the 𝑖th mRNA and protein, respectively. 𝑎𝑖 > 0
and 𝑐𝑖 > 0 are the positive real numbers that represent the
degradation rate of the 𝑖th mRNA and protein, respectively.𝑑𝑖 > 0 is the positive real number that represents the
translating rate frommRNA 𝑖 to protein 𝑖. 𝑏𝑖 is the regulatory
function of the 𝑖th gene. 𝜎(𝑡) and 𝜏(𝑡) are the transcriptional
and translational delays, respectively.

Since each transcription factor acts additively to regulate
the gene, it is usual to assume that the regulatory function 𝑏𝑖
satisfies the following SUM logic [37]:

𝑏𝑖 (𝑝1 (𝑡) , 𝑝2 (𝑡) , . . . , 𝑝𝑛 (𝑡)) = 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑝𝑗 (𝑡) (3)

and 𝑏𝑖𝑗 is a monotonic function of the Hill form; that is,

𝑏𝑖𝑗

=
{{{{{{{{{{{{{

𝛼𝑖𝑗
1 + (𝑥/𝛽𝑗)𝐻𝑗 , if transcription factor 𝑗 represses gene 𝑖
𝛼𝑖𝑗 (𝑥/𝛽𝑗)𝐻𝑗
1 + (𝑥/𝛽𝑗)𝐻𝑗 , if transcription factor 𝑗 activates gene 𝑖,

(4)

where 𝛼𝑖𝑗 is bounded constant that denotes the dimensionless
transcriptional rate of transcription factor 𝑗 to gene 𝑖, 𝛽𝑗 is a
positive scalar, and 𝐻𝑗 is the Hill coefficient that represents
the degree of cooperativity.

The transcriptional and translational delays,𝜎(𝑡) and 𝜏(𝑡),
are assumed to satisfy the following two different conditions.

Case 1. 𝜏(𝑡) and 𝜎(𝑡) satisfy
0 ≤ 𝜏1 ≤ 𝜏 (𝑡) ≤ 𝜏2,
0 ≤ 𝜎1 ≤ 𝜎 (𝑡) ≤ 𝜎2,
̇𝜏 (𝑡) ≤ 𝜏𝑑,
𝜎̇ (𝑡) ≤ 𝜎𝑑.

(5)

Case 2. 𝜏(𝑡) and 𝜎(𝑡) satisfy
0 ≤ 𝜏1 ≤ 𝜏 (𝑡) ≤ 𝜏2,
0 ≤ 𝜎1 ≤ 𝜎 (𝑡) ≤ 𝜎2. (6)

Clearly, based on (3), GRN (2) can be rewritten as [19]

𝑚̇𝑖 (𝑡) = −𝑎𝑖𝑚𝑖 (𝑡) + 𝑛∑
𝑗=1

𝑤𝑖𝑗𝑔𝑗 (𝑝𝑗 (𝑡 − 𝜎 (𝑡))) + 𝑙𝑖,
𝑝̇𝑖 (𝑡) = −𝑐𝑖𝑝𝑖 (𝑡) + 𝑑𝑖𝑚𝑖 (𝑡 − 𝜏 (𝑡)) ,

(7)
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where 𝑙𝑖 = ∑𝑗∈V𝑖 𝛼𝑖𝑗 with V𝑖 being the set of all the
transcription factors 𝑗which are repressors of gene 𝑖;𝑤𝑖𝑗 = 𝛼𝑖𝑗
if transcription factor 𝑗 activates gene 𝑖, 𝑤𝑖𝑗 = 0 if there is no
connection between 𝑗 and 𝑖, and 𝑤𝑖𝑗 = −𝛼𝑖𝑗 if transcription
factor 𝑗 represses gene 𝑖; and 𝑔𝑗(𝑥) = (𝑥/𝛽𝑗)𝐻𝑗/(1 +(𝑥/𝛽𝑗)𝐻𝑗), 𝑥 ≥ 0 is a monotonically increasing function
satisfying

𝜌 ≤ 𝑔𝑗 (𝑠1) − 𝑔𝑗 (𝑠2)𝑠1 − 𝑠2 ≤ 𝜌𝑖 (8)

with 𝜌 = min𝑠≥0 ̇𝑔𝑗(𝑠) = 0 and
𝜌𝑖 = max
𝑠≥0

̇𝑔𝑗 (𝑠) = (𝐻𝑗 − 1)
(𝐻𝑗−1)/𝐻𝑗 (𝐻𝑗 + 1)(𝐻𝑗+1)/𝐻𝑗4𝛽𝑗𝐻𝑗 . (9)

GRN (7) can be expressed as the following vector-matrix
form:

𝑚̇ (𝑡) = −𝐴𝑚 (𝑡) + 𝑊𝑔 (𝑝 (𝑡 − 𝜎 (𝑡))) + 𝑙,
𝑝̇ (𝑡) = −𝐶𝑝 (𝑡) + 𝐷𝑚 (𝑡 − 𝜏 (𝑡)) , (10)

where 𝑚(𝑡) = [𝑚1(𝑡), 𝑚2(𝑡), . . . , 𝑚𝑛(𝑡)]𝑇, 𝑝(𝑡) = [𝑝1(𝑡),𝑝2(𝑡), . . . , 𝑝𝑛(𝑡)]𝑇, 𝐴 = diag{𝑎1, 𝑎2, . . . , 𝑎𝑛} > 0, 𝐶 = diag{𝑐1,𝑐2, . . . , 𝑐𝑛} > 0, 𝐷 = diag{𝑑1, 𝑑2, . . . , 𝑑𝑛} > 0, 𝑔(𝑝(𝑡)) =[𝑔1(𝑝1(𝑡)), 𝑔2(𝑝2(𝑡)), . . . , 𝑔𝑛(𝑝𝑛(𝑡))]𝑇, 𝑊 = [𝑤𝑖𝑗]𝑛×𝑛, and 𝑙 =[𝑙1, 𝑙2, . . . , 𝑙𝑛].
Let (𝑚∗, 𝑝∗) be the equilibrium point (steady state) of

(10); that is, −𝐴𝑚∗ + 𝑊𝑔(𝑝∗) + 𝑙 = 0 and −𝐶𝑝∗ + 𝐷𝑚∗ = 0.
Using the transformations 𝑥(𝑡) = 𝑚(𝑡) − 𝑚∗ and 𝑦(𝑡) =𝑝(𝑡) − 𝑝∗, one can shift the equilibrium point (𝑚∗, 𝑝∗) to the
origin and rewrite (10) as the following GRN:

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,
̇𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐷𝑥 (𝑡 − 𝜏 (𝑡)) , (11)

where 𝑓(𝑠) = [𝑓1(𝑠), 𝑓2(𝑠), . . . , 𝑓𝑛(𝑠)]𝑇 and 𝑓𝑖(𝑦(𝑡)) =𝑔𝑖(𝑦(𝑡) + 𝑝∗) − 𝑔𝑖(𝑝∗) with 𝑓𝑖(0) = 0. Then,

𝑓𝑖 (𝑠1) − 𝑓𝑖 (𝑠2)𝑠1 − 𝑠2 = 𝑔𝑖 (𝑠1 + 𝑝∗) − 𝑔𝑖 (𝑠2 + 𝑝∗)𝑠1 + 𝑝∗ − (𝑠2 + 𝑝∗) . (12)

Thus, it follows from (8) and 𝑓𝑖(0) = 0 that
0 ≤ 𝑓𝑖 (𝑠1) − 𝑓𝑖 (𝑠2)𝑠1 − 𝑠2 ≤ 𝜌𝑖, 𝑠1 ̸= 𝑠2, (13)

0 ≤ 𝑓𝑖 (𝑠)𝑠 ≤ 𝜌𝑖, 𝑠 ̸= 0. (14)

This paper aims to analyze the asymptotical stability of
GRN (2) and to determine the delay bounds, named as
maximal admissible delay bounds (MADBs), under which
the GRN is asymptotically stable. In order to achieve this aim,
this paper will develop a new double integral inequality (i.e.,
WTDII) for estimating the double integral term (1) so as to
derive some less conservative stability criteria.

2.2. Preliminaries. Several lemmas used to obtain the main
results are given as follows.

For the estimation of single integral term, the most
popular technique is Wirtinger-based inequality, shown as
Lemma 1.

Lemma 1 (Wirtinger-based inequality [73]). For symmetric
positive-definite matrix 𝑅 ∈ R𝑛×𝑛, scalars 𝑎 < 𝑏, and vector𝜔 : [𝑎, 𝑏] 󳨃→ R𝑛 such that the integration concerned is well
defined, the following inequality holds:

∫𝑏
𝑎
𝜔𝑇 (𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠 ≥ 1𝑏 − 𝑎 [

𝜒𝑎𝜒𝑏]
𝑇 [𝑅 0
0 3𝑅][

𝜒𝑎𝜒𝑏] , (15)

where 𝜒𝑎 = ∫𝑏
𝑎
𝜔(𝑠)𝑑𝑠 and 𝜒𝑏 = 𝜒𝑎 − (2/(𝑏 −

𝑎)) ∫𝑏
𝑎
∫𝑠
𝑎
𝜔(𝑢)𝑑𝑢 𝑑𝑠 = −𝜒𝑎 + (2/(𝑏 − 𝑎)) ∫𝑏𝑎 ∫𝑏𝑠 𝜔(𝑢)𝑑𝑢 𝑑𝑠.

The auxiliary function-based integral inequality, which
encompasses theWirtinger-based inequality, has been devel-
oped in recent years.

Lemma 2 (auxiliary function-based integral inequality [74]).
For symmetric positive-definite matrix 𝑅 ∈ R𝑛×𝑛, scalars 𝑎 <𝑏, and vector 𝜔 : [𝑎, 𝑏] 󳨃→ R𝑛 such that the integration
concerned is well defined, the following inequality holds

(𝑏 − 𝑎) ∫𝑏
𝑎
𝜔̇𝑇 (𝑠) 𝑅𝜔̇ (𝑠) 𝑑𝑠

≥ 𝜒𝑇1 𝑅𝜒1 + 3𝜒𝑇2 𝑅𝜒2 + 5𝜒𝑇3 𝑅𝜒3,
(16)

where 𝜒1 = 𝜔(𝑏) − 𝜔(𝑎), 𝜒2 = 𝜔(𝑏) + 𝜔(𝑎) − (2/(𝑏 −
𝑎)) ∫𝑏
𝑎
𝜔(𝑠)𝑑𝑠, and 𝜒3 = 𝜔(𝑏) − 𝜔(𝑎) + (6/(𝑏 − 𝑎)) ∫𝑏𝑎 𝜔(𝑠)𝑑𝑠 −(12/(𝑏 − 𝑎)2) ∫𝑏

𝑎
∫𝑏
𝑠
𝜔(𝑢)𝑑𝑢 𝑑𝑠.

For the estimation of double integral term, the JBDII is
widely applied in [71], and, with its improvement, theWBDII
was developed in [72] very recently, respectively shown as
Lemmas 3 and 4.

Lemma 3 (Jensen-based double integral inequality (JBDII)
[71]). For symmetric positive-definite matrix 𝑍 ∈ R𝑛×𝑛,
scalars 𝑎 < 𝑏, and vector ] : [𝑎, 𝑏] 󳨃→ R𝑛 such that the
integration concerned is well defined, the following inequality
holds:

(𝑏 − 𝑎)22 ∫𝑏
𝑎
∫𝑏
𝑠
]𝑇 (𝑢) 𝑍] (𝑢) 𝑑𝑢 𝑑𝑠 ≥ 𝜒𝑇4𝑍𝜒4, (17)

where 𝜒4 = ∫𝑏𝑎 ∫𝑏𝑠 ](𝑢)𝑑𝑢 𝑑𝑠.
Lemma 4 (Wirtinger-based double integral inequality
(WBDII) [72]). For symmetric positive-definite matrix𝑍 ∈ R𝑛×𝑛, scalars 𝑎 < 𝑏, and vector ] : [𝑎, 𝑏] 󳨃→ R𝑛 such
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that the integration concerned is well defined, the following
inequality holds:

(𝑏 − 𝑎)22 ∫𝑏
𝑎
∫𝑏
𝑠
]𝑇 (𝑢) 𝑍] (𝑢) 𝑑𝑢 𝑑𝑠

≥ 𝜒𝑇4𝑍𝜒4 + 2𝜒𝑇5𝑍𝜒5,
(18)

where 𝜒5 = −𝜒4 + (3/(𝑏 − 𝑎)) ∫𝑏𝑎 ∫𝑏𝑠 ∫𝑏𝜃 ](𝑢)𝑑𝑢 𝑑𝜃 𝑑𝑠 with 𝜒4
given in Lemma 3.

For time-varying delay, when using the integral inequal-
ity, the reciprocally convex lemma is needed, and its simple
form can be reformulated as Lemma 5.

Lemma 5 (reciprocally convex combination lemma [75]).
For any vectors 𝛽1 and 𝛽2, symmetric matrix 𝑅, any matrix𝑆, and real scalar 0 ≤ 𝛼 ≤ 1 satisfying [ 𝑅 𝑆∗ 𝑅 ] ≥ 0, the following
inequality holds:

1𝛼𝛽𝑇1𝑅𝛽1 + 11 − 𝛼𝛽𝑇2𝑅𝛽2 ≥ [
𝛽1𝛽2]
𝑇 [𝑅 𝑆
∗ 𝑅][

𝛽1𝛽2] . (19)

3. A Relaxed Double Integral Inequality and
Its Advantages

This section develops a new integral inequality, that is, the
WTDII, to estimate the double integral terms existing. The
comparison of the WTDII and the existing double integral
inequalities is also given.

Based on the technique of integral in parts, the following
WTDII is given.

Lemma 6. For symmetric positive-definite matrix 𝑍 ∈ R𝑛×𝑛,
scalars 𝑎 < 𝑏, and vector ] : [𝑎, 𝑏] 󳨃→ R𝑛 such that the
integration concerned is well defined, the following inequality
holds:

(𝑏 − 𝑎)22 ∫𝑏
𝑎
∫𝑏
𝑠
]𝑇 (𝑢) 𝑍] (𝑢) 𝑑𝑢 𝑑𝑠

≥ 𝜒𝑇4𝑍𝜒4 + 8𝜒𝑇5𝑍𝜒5,
(20)

where 𝜒4 and 𝜒5 are defined in Lemmas 3 and 4.

Proof. For a function 𝜆(𝑢) = 𝑘1+𝑘2𝑢, the calculation through
integration by parts leads to

∫𝑏
𝑎
∫𝑏
𝑠
𝜆 (𝑢) ] (𝑢) 𝑑𝑢 𝑑𝑠

= 𝜆 (𝑎) ∫𝑏
𝑎
∫𝑏
𝑠
] (𝑢) 𝑑𝑢 𝑑𝑠

+ 2𝑘2 ∫𝑏
𝑎
∫𝑏
𝑠
∫𝑏
𝜃
𝑥 (𝑢) 𝑑𝑢 𝑑𝜃 𝑑𝑠.

(21)

By setting 𝜆(𝑎) = −1, 2𝑘2 = 3/(𝑏 − 𝑎), that is, 𝜆(𝑢) = (−𝑎 −2𝑏)/2(𝑏−𝑎)+ (3/2(𝑏−𝑎))𝑢, the above equality is rewritten as
∫𝑏
𝑎
∫𝑏
𝑠
𝜆 (𝑢) ] (𝑢) 𝑑𝑢 𝑑𝑠 = 𝜒5. (22)

Then the following equality is obtained for any vector 𝜒0 and
any matrix𝑀:

∫𝑏
𝑎
∫𝑏
𝑠
𝜆 (𝑢) 𝜒𝑇0𝑀] (𝑢) 𝑑𝑢 𝑑𝑠 = 𝜒𝑇0𝑀𝜒5. (23)

Similarly, the following equalities are derived:

∫𝑏
𝑎
∫𝑏
𝑠
𝜒𝑇0 𝐿] (𝑢) 𝑑𝑢 𝑑𝑠 = 𝜒𝑇0 𝐿𝜒4,

∫𝑏
𝑎
∫𝑏
𝑠
𝜒𝑇0 𝐿𝑅−1𝐿𝑇𝜒0𝑑𝑢 𝑑𝑠 = (𝑏 − 𝑎)22 𝜒𝑇0 𝐿𝑅−1𝐿𝑇𝜒0,

∫𝑏
𝑎
∫𝑏
𝑠
𝜒𝑇0 𝐿𝑅−1𝑀𝑇𝜆 (𝑢) 𝜒0𝑑𝑢 𝑑𝑠 = 0,

∫𝑏
𝑎
∫𝑏
𝑠
𝜆2 (𝑢) 𝜒𝑇0𝑀𝑅−1𝑀𝑇𝜒0𝑑𝑢 𝑑𝑠

= (𝑏 − 𝑎)216 𝜒𝑇0𝑀𝑅−1𝑀𝑇𝜒0.

(24)

Therefore, using the above five equalities and the Schur
complement derives the following equality:

∫𝑏
𝑎
∫𝑏
𝑠

[[
[

𝜒0𝜆 (𝑢) 𝜒0
] (𝑢)

]]
]

𝑇

⋅ [[[
[

𝐿𝑍−1𝐿𝑇 𝐿𝑍−1𝑀𝑇 𝐿
∗ 𝑀𝑍−1𝑀𝑇 𝑀
∗ ∗ 𝑍

]]]
]
[[
[

𝜒0𝜆 (𝑢) 𝜒0
] (𝑢)

]]
]
𝑑𝑢𝑑𝑠

= ∫𝑏
𝑎
∫𝑏
𝑠
]𝑇 (𝑢) 𝑅] (𝑢) 𝑑𝑢 𝑑𝑠 + Sym {𝜒𝑇0 𝐿𝜒4

+ 𝜒𝑇0𝑀𝜒5} + (𝑏 − 𝑎)22
⋅ 𝜒𝑇0 (8𝐿𝑍−1𝐿𝑇 +𝑀𝑍−1𝑀𝑇8 )𝜒0 ≥ 0.

(25)

By letting 𝜒𝑇0 = [𝜒𝑇4 , 𝜒𝑇5 ], 𝐿 = −(2/(𝑏 − 𝑎)2)[𝑍, 0]𝑇, and𝑀 = −(16/(𝑏 − 𝑎)2)[0, 𝑍], that is, 𝜒𝑇0 𝐿 = −(2/(𝑏 − 𝑎)2)𝜒𝑇4𝑍
and 𝜒𝑇0𝑀 = −(16/(𝑏 − 𝑎)2)𝜒𝑇5𝑍, then (25) leads to

∫𝑏
𝑎
∫𝑏
𝑠
]𝑇 (𝑢) 𝑍] (𝑢) 𝑑𝑢 𝑑𝑠

≥ 2
(𝑏 − 𝑎)2 (𝜒𝑇4𝑍𝜒4 + 8𝜒𝑇5𝑍𝜒5) .

(26)

Thus (20) holds. This completes the proof.

Remark 7. Based on the comparison of the proposedWTDII
(20) with the widely used JBDII (17) and the recently devel-
oped WBDII (18), it can be found that WTDII (20) provides
the tightest estimation value of the double integral term (1).
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More specifically, compared with the widely used JBDII (17),
the extra positive term 8𝜒𝑇5𝑍𝜒5 reduces the gap between the
original double integral term (1) and its estimated value;
and, compared with the recently developed WBDII (18), the
extra positive term 6𝜒𝑇5𝑍𝜒5 reduces the estimation gap. As
mentioned in [72–74], it is helpful to reduce the conservatism
by reducing such estimation gap. Therefore, the proposed
WTDII (20) will lead to less conservative criteria than the
ones derived by JBDII (17) [19] or WBDII (18).

By setting ](𝑢) = 𝜔̇(𝑢), the following lemma can be
directly obtained from Lemma 6.

Lemma 8. For symmetric positive-definite matrix 𝑍 ∈ R𝑛×𝑛,
scalars 𝑎 < 𝑏, and vector 𝜔̇ : [𝑎, 𝑏] 󳨃→ R𝑛 such that the
integration concerned is well defined, the following inequality
holds:

∫𝑏
𝑎
∫𝑏
𝑠
𝜔̇𝑇 (𝑢) 𝑍𝜔̇ (𝑢) 𝑑𝑢 𝑑𝑠 ≥ 2𝜃𝑇1𝑍𝜃1 + 16𝜃𝑇2𝑍𝜃2, (27)

where 𝜃1 = (1/(𝑏 − 𝑎))𝜒4|](𝑢)=𝜔̇(𝑢) = 𝜔(𝑏) − ∫𝑏𝑎 (𝜔(𝑠)/(𝑏 − 𝑎))𝑑𝑠
and 𝜃2 = (1/(𝑏 − 𝑎))𝜒5|](𝑢)=𝜔̇(𝑢) = −(1/2)𝜔(𝑏) − ∫𝑏𝑎 (𝜔(𝑠)/(𝑏 −𝑎))𝑑𝑠 + 3 ∫𝑏

𝑎
∫𝑏
𝑠
(𝜔(𝑢)/(𝑏 − 𝑎)2)𝑑𝑢 𝑑𝑠.

4. Delay-Dependent Stability Analysis of GRN

This section derives delay-dependent stability criteria ofGRN
(2) by constructing the LKF with triple integral terms and
applying the proposed WTDII (20) to estimate the double
integral terms appearing in its derivative.

The following notations are introduced at first for simpli-
fying the representation of subsequent parts:

𝜏1𝜏 (𝑡) = 𝜏 (𝑡) − 𝜏1,
𝜏2𝜏 (𝑡) = 𝜏2 − 𝜏 (𝑡) ,
𝜎1𝜎 (𝑡) = 𝜎 (𝑡) − 𝜎1,
𝜎2𝜎 (𝑡) = 𝜎2 − 𝜎 (𝑡) ,
𝑥𝜏1 (𝑡) = 𝑥 (𝑡 − 𝜏1) ,
𝑦𝜎1 (𝑡) = 𝑦 (𝑡 − 𝜎1) ,
𝑥𝜏 (𝑡) = 𝑥 (𝑡 − 𝜏 (𝑡)) ,
𝑦𝜎 (𝑡) = 𝑦 (𝑡 − 𝜎 (𝑡)) ,
𝑥𝜏2 (𝑡) = 𝑥 (𝑡 − 𝜏2) ,
𝑦𝜎2 (𝑡) = 𝑦 (𝑡 − 𝜎2) ,
V1 (𝑡) = ∫𝑡

𝑡−𝜏1

𝑥 (𝑠)𝜏1 𝑑𝑠,
V4 (𝑡) = ∫𝑡

𝑡−𝜏1

∫𝑡
𝑠

𝑥 (𝑢)𝜏21 𝑑𝑢 𝑑𝑠,
V2 (𝑡) = ∫𝑡−𝜏1

𝑡−𝜏(𝑡)

𝑥 (𝑠)𝜏1𝜏 (𝑡)𝑑𝑠,

V5 (𝑡) = ∫𝑡−𝜏1
𝑡−𝜏(𝑡)

∫𝑡−𝜏1
𝑠

𝑥 (𝑢)𝜏21𝜏 (𝑡)𝑑𝑢 𝑑𝑠,

V3 (𝑡) = ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

𝑥 (𝑠)𝜏2𝜏 (𝑡)𝑑𝑠,

V6 (𝑡) = ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

∫𝑡−𝜏(𝑡)
𝑠

𝑥 (𝑢)𝜏22𝜏 (𝑡)𝑑𝑢 𝑑𝑠,

V7 (𝑡) = ∫𝑡
𝑡−𝜎1

𝑥 (𝑠)𝜎1 𝑑𝑠,

V10 (𝑡) = ∫𝑡
𝑡−𝜎1

∫𝑡
𝑠

𝑥 (𝑢)𝜎21 𝑑𝑢 𝑑𝑠,

V8 (𝑡) = ∫𝑡−𝜎1
𝑡−𝜎(𝑡)

𝑥 (𝑠)𝜎1𝜎 (𝑡)𝑑𝑠,

V11 (𝑡) = ∫𝑡−𝜎1
𝑡−𝜎(𝑡)

∫𝑡−𝜎1
𝑠

𝑥 (𝑢)𝜎21𝜎 (𝑡)𝑑𝑢 𝑑𝑠,

V9 (𝑡) = ∫𝑡−𝜎(𝑡)
𝑡−𝜎2

𝑥 (𝑠)𝜎2𝜎 (𝑡)𝑑𝑠,

V12 (𝑡) = ∫𝑡−𝜎(𝑡)
𝑡−𝜎2

∫𝑡−𝜎(𝑡)
𝑠

𝑥 (𝑢)𝜎22𝜎 (𝑡)𝑑𝑢 𝑑𝑠,
𝜁 (𝑡) = [𝑥𝑇 (𝑡) , 𝑥𝑇 (𝑡 − 𝜏1) , 𝑥𝑇 (𝑡 − 𝜏 (𝑡)) , 𝑥𝑇 (𝑡 − 𝜏2) ,

V𝑇1 (𝑡) , V𝑇2 (𝑡) , . . . , V𝑇6 (𝑡) , 𝑦𝑇 (𝑡) , 𝑦𝑇 (𝑡 − 𝜎1) ,
𝑦𝑇 (𝑡 − 𝜎 (𝑡)) , 𝑦𝑇 (𝑡 − 𝜎2) , V𝑇7 (𝑡) , V𝑇8 (𝑡) , . . . , V𝑇12 (𝑡) ,
𝑓𝑇 (𝑦 (𝑡)) , 𝑓𝑇 (𝑦 (𝑡 − 𝜎1)) , 𝑓𝑇 (𝑦 (𝑡 − 𝜎 (𝑡))) ,
𝑓𝑇 (𝑦 (𝑡 − 𝜎2))]𝑇 ,

(28)
𝑒𝑥 = [−𝐴, 0𝑛×21𝑛,𝑊, 0𝑛×𝑛] ,
𝑒𝑦 = [0𝑛×2𝑛, 𝐷, 0𝑛×7𝑛, −𝐶, 0𝑛×13𝑛] ,
𝑒0 = [0𝑛×24𝑛] ,
𝑒𝑖 = [0𝑛×(𝑖−1)𝑛, 𝐼𝑛×𝑛, 0𝑛×(24−𝑖)𝑛] , 𝑖 = 1, 2, . . . , 24,
Σ = diag {𝜌1, 𝜌2, . . . , 𝜌𝑛} .

(29)

4.1. Stability of GRN (2) with Delay Satisfying (5). For GRN
(2) with a delay satisfying (5), the following stability criterion
is derived by using the proposed WTDII (27), together with
Lemmas 1, 2, and 5, to estimate the derivative of the LKF.

Theorem 9. For given scalars 𝜏𝑖, 𝜎𝑖, 𝑖 = 1, 2, 𝜏𝑑, and 𝜎𝑑,
GRN (2) with the time delay satisfying (5) and regulatory
function satisfying (3) is asymptotically stable, if there exist
symmetric matrices 𝑃 > 0, 𝑄𝑖 > 0, 𝑅𝑗 > 0, 𝑍𝑘 >0, 𝑖 = 1, 2, . . . , 6, 𝑗 = 1, 2, . . . , 5, and 𝑘 = 1, 2, . . . , 4; diagonal
matrices Λ 1 > 0, Λ 2 > 0, 𝐻𝑗 > 0, 𝑗 = 1, 2, . . . , 4, 𝑈𝑙𝑘 >
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0, 𝑙 = 1, 2, . . . , 4, and 𝑘 = 𝑙 + 1, . . . , 4; and any matrices𝑆𝑖, 𝑖 = 1, 2, such that the following LMIs hold:

[𝑅̃2𝑖+1 𝑆𝑖
∗ 𝑅̃2𝑖+1] > 0, 𝑖 = 1, 2, (30)

Ψ1 = Ξ𝜏(𝑡)󵄨󵄨󵄨󵄨𝜏(𝑡)=𝜏1 +
8∑
𝑖=1

Ξ𝑖 ≤ 0, (31)

Ψ2 = Ξ𝜏(𝑡)󵄨󵄨󵄨󵄨𝜏(𝑡)=𝜏2 +
8∑
𝑖=1

Ξ𝑖 ≤ 0, (32)

where 𝜏12 = 𝜏2 − 𝜏1, 𝜎12 = 𝜎2 − 𝜎1, and
Ξ𝜏(𝑡) = −𝜏1𝜏 (𝑡) [𝑒𝑇6𝑅2𝑒6 + 3 (2𝑒9 − 𝑒6)𝑇 𝑅2 (2𝑒9 − 𝑒6)]
− 𝜏2𝜏 (𝑡) [𝑒𝑇7𝑅2𝑒7 + 3 (2𝑒10 − 𝑒7)𝑇 𝑅2 (2𝑒10 − 𝑒7)] ,

(33)

Ξ1 = Ξ11 + Ξ𝑇11, (34)

Ξ11 = [ 𝑒1𝑒11]
𝑇 𝑃[𝑒𝑥𝑒𝑦] + [(Σ𝑒11 − 𝑒21)

𝑇Λ 1 + 𝑒𝑇21Λ 2]
⋅ 𝑒𝑦,

(35)

Ξ2 = 𝑒𝑇1𝑄1𝑒1 − 𝑒𝑇2 (𝑄1 − 𝑄2 − 𝑄3) 𝑒2 − 𝑒𝑇4𝑄2𝑒4 − (1
− 𝜏𝑑) 𝑒𝑇3𝑄3𝑒3,

(36)

Ξ3 = Ξ31 + Ξ32 + Ξ33, (37)

Ξ31 = 𝑒𝑇𝑥 (𝜏21𝑅1 + 𝜏212𝑅3) 𝑒𝑥 + 𝜏12𝑒𝑇1𝑅2𝑒1, (38)

Ξ32 = 𝐸𝑇1 𝑅̃1𝐸1, 𝑅̃1 = diag {𝑅1, 3𝑅1, 5𝑅1} , (39)

Ξ33 = [𝐸2𝐸3]
𝑇 [𝑅̃3 𝑆1∗ 𝑅̃3][

𝐸2𝐸3] ,
𝑅̃3 = diag {𝑅3, 3𝑅3, 5𝑅3} ,

(40)

Ξ4 = Ξ41 + Ξ42 + Ξ43, (41)

Ξ41 = 𝑒𝑇𝑥 (𝜏
2
12 𝑍1 + 𝜏

2
2 − 𝜏212 𝑍2 − 𝜏1𝜏12𝑍2) 𝑒𝑥, (42)

Ξ42 = −2 [𝑒1 − 𝑒5]𝑇𝑍1 [𝑒1 − 𝑒5] − 16 [3𝑒8 − 𝑒12
− 𝑒5]𝑇𝑍1 [3𝑒8 − 𝑒12 − 𝑒5] ,

(43)

Ξ43 = −2 [𝑒2 − 𝑒6]𝑇𝑍2 [𝑒2 − 𝑒6] − 16 [3𝑒9 − 𝑒22
− 𝑒6]𝑇𝑍2 [3𝑒9 − 𝑒22 − 𝑒6] − 2 [𝑒3 − 𝑒7]𝑇𝑍2 [𝑒3
− 𝑒7] − 16 [3𝑒10 − 𝑒32 − 𝑒7]

𝑇𝑍2 [3𝑒10 − 𝑒32 − 𝑒7] ,
(44)

Ξ5 = [𝑒11𝑒21]
𝑇𝑄4 [𝑒11𝑒21] + [

𝑒12𝑒22]
𝑇 (𝑄5 + 𝑄6 − 𝑄4)

⋅ [𝑒12𝑒22] − [
𝑒14
𝑒24]
𝑇

𝑄5 [𝑒14𝑒24] − (1 − 𝜎𝑑) [
𝑒13
𝑒23]
𝑇

⋅ 𝑄6 [𝑒13𝑒23] ,

(45)

Ξ6 = Ξ61 + Ξ62 + Ξ63, (46)

Ξ61 = 𝑒𝑇𝑦 (𝜎21𝑅4 + 𝜎212𝑅5) 𝑒𝑦, (47)

Ξ62 = 𝐸𝑇4 𝑅̃4𝐸4, 𝑅̃4 = diag {𝑅4, 3𝑅4, 5𝑅4} , (48)

Ξ63 = [𝐸5𝐸6]
𝑇[
[
𝑅̃5 𝑆2
∗ 𝑅̃5

]
]
[𝐸5𝐸6] ,
𝑅̃5 = diag {𝑅5, 3𝑅5, 5𝑅5} ,

(49)

Ξ7 = Ξ71 + Ξ72 + Ξ73, (50)

Ξ71 = 𝑒𝑇𝑦 (𝜎
2
12 𝑍3 + 𝜎

2
2 − 𝜎212 𝑍4 − 𝜎1𝜎12𝑍4) 𝑒𝑦, (51)

Ξ72 = −2 [𝑒11 − 𝑒15]𝑇𝑍3 [𝑒11 − 𝑒15] − 16 [3𝑒18 − 𝑒112
− 𝑒15]𝑇𝑍3 [3𝑒18 − 𝑒112 − 𝑒15] ,

(52)

Ξ73 = −2 [𝑒12 − 𝑒16]𝑇𝑍4 [𝑒12 − 𝑒16] − 16 [3𝑒19 − 𝑒122
− 𝑒16]𝑇𝑍4 [3𝑒19 − 𝑒122 − 𝑒16] − 2 [𝑒13 − 𝑒17]𝑇

⋅ 𝑍4 [𝑒13 − 𝑒17] − 16 [3𝑒20 − 𝑒132 − 𝑒17]
𝑇

⋅ 𝑍4 [3𝑒20 − 𝑒132 − 𝑒17] ,

(53)

Ξ8 = Ξ81 + Ξ𝑇81, (54)

Ξ81 = 4∑
𝑖=1

[(Σ𝑒1𝑖 − 𝑒2𝑖)𝑇𝐻𝑖𝑒2𝑖]

+ 4∑
𝑖=1

4∑
𝑗=𝑖+1

[Σ (𝑒1𝑖 − 𝑒1𝑗) − (𝑒2𝑖 − 𝑒2𝑗)]𝑇

⋅ 𝑈𝑖𝑗 (𝑒2𝑖 − 𝑒2𝑗) ,

(55)

𝐸1 = [[
[

𝑒1 − 𝑒2𝑒1 + 𝑒2 − 2𝑒5𝑒1 − 𝑒2 + 6𝑒5 − 12𝑒8
]]
]
, (56)
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𝐸2 = [[[
[

𝑒2 − 𝑒3
𝑒2 + 𝑒3 − 2𝑒6

𝑒2 − 𝑒3 + 6𝑒6 − 12𝑒9
]]]
]
, (57)

𝐸3 = [[[
[

𝑒3 − 𝑒4
𝑒3 + 𝑒4 − 2𝑒7

𝑒3 − 𝑒4 + 6𝑒7 − 12𝑒10
]]]
]
, (58)

𝐸4 = [[[
[

𝑒11 − 𝑒12
𝑒11 + 𝑒12 − 2𝑒15

𝑒11 − 𝑒12 + 6𝑒15 − 12𝑒18
]]]
]
, (59)

𝐸5 = [[[
[

𝑒12 − 𝑒13
𝑒12 + 𝑒13 − 2𝑒16

𝑒12 − 𝑒13 + 6𝑒16 − 12𝑒19
]]]
]
, (60)

𝐸6 = [[[
[

𝑒13 − 𝑒14
𝑒13 + 𝑒14 − 2𝑒17

𝑒13 − 𝑒14 + 6𝑒17 − 12𝑒20
]]]
]
. (61)

Proof. Construct the following LKF candidate:

𝑉 (𝑡) = 7∑
𝑖=1

𝑉𝑖 (𝑡) , (62)

where

𝑉1 (𝑡) = [𝑥 (𝑡)𝑦 (𝑡)]
𝑇

𝑃[𝑥 (𝑡)𝑦 (𝑡)] +
𝑛∑
𝑖=1

∫𝑦𝑖
0
[𝜆1𝑖 (𝜌𝑖𝑠 − 𝑓𝑖 (𝑠))

+ 𝜆2𝑖𝑓𝑖 (𝑠)] 𝑑𝑠,
𝑉2 (𝑡) = ∫𝑡

𝑡−𝜏1

𝑥𝑇 (𝑠) 𝑄1𝑥 (𝑠) 𝑑𝑠 + ∫𝑡−𝜏1
𝑡−𝜏2

𝑥𝑇 (𝑠)

⋅ 𝑄2𝑥 (𝑠) 𝑑𝑠 + ∫𝑡−𝜏1
𝑡−𝜏(𝑡)

𝑥𝑇 (𝑠) 𝑄3𝑥 (𝑠) 𝑑𝑠,

𝑉3 (𝑡) = 𝜏1 ∫0
−𝜏1

∫𝑡
𝑡+𝜃
𝑥̇𝑇 (𝑠) 𝑅1𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫−𝜏1
−𝜏2

∫𝑡
𝑡+𝜃
[𝑥𝑇 (𝑠) 𝑅2𝑥 (𝑠)

+ 𝜏12𝑥̇𝑇 (𝑠) 𝑅3𝑥̇ (𝑠)] 𝑑𝑠 𝑑𝜃,
𝑉4 (𝑡) = ∫0

−𝜏1

∫0
𝜃
∫𝑡
𝑡+𝑠
𝑥̇𝑇 (𝑢) 𝑍1𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠 𝑑𝜃

+ ∫−𝜏1
−𝜏2

∫−𝜏1
𝜃
∫𝑡
𝑡+𝑠
𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠 𝑑𝜃,

𝑉5 (𝑡) = ∫𝑡
𝑡−𝜎1

[ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))]

𝑇𝑄4 [ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))] 𝑑𝑠

+ ∫𝑡−𝜎1
𝑡−𝜎2

[ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))]

𝑇𝑄5 [ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))] 𝑑𝑠

+ ∫𝑡−𝜎1
𝑡−𝜎(𝑡)

[ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))]

𝑇𝑄6 [ 𝑦 (𝑠)
𝑓 (𝑦 (𝑠))] 𝑑𝑠,

𝑉6 (𝑡) = 𝜎1 ∫0
−𝜎1

∫𝑡
𝑡+𝜃

̇𝑦𝑇 (𝑠) 𝑅4 ̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃
+ 𝜎12 ∫−𝜎1

−𝜎2

∫𝑡
𝑡+𝜃

̇𝑦𝑇 (𝑠) 𝑅5 ̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜃,
𝑉7 (𝑡) = ∫0

−𝜎1

∫0
𝜃
∫𝑡
𝑡+𝑠

̇𝑦𝑇 (𝑢) 𝑍3 ̇𝑦 (𝑢) 𝑑𝑢 𝑑𝑠 𝑑𝜃
+ ∫−𝜎1
−𝜎2

∫−𝜎1
𝜃
∫𝑡
𝑡+𝑠

̇𝑦𝑇 (𝑢) 𝑍4 ̇𝑦 (𝑢) 𝑑𝑢 𝑑𝑠 𝑑𝜃
(63)

and 𝑃 > 0, 𝑄𝑖 > 0, 𝑅𝑗 > 0, 𝑍𝑘 > 0, 𝑖 = 1, 2, . . . , 6, 𝑗 =1, 2, . . . , 5, and 𝑘 = 1, 2, . . . , 4 are the symmetric positive-
definite matrices and Λ 𝑖 = diag{𝜆𝑖1, 𝜆𝑖2, . . . , 𝜆𝑖𝑛} > 0, 𝑖 =1, 2, are the symmetric positive-definite diagonal matrices.

Calculating the derivative of the LKF along the solutions
of GRN (11) yields

𝑉̇ (𝑡) = 7∑
𝑖=1

𝑉̇𝑖 (𝑡) , (64)

where

𝑉̇1 (𝑡) = 2 [𝑥 (𝑡)𝑦 (𝑡)]
𝑇 𝑃[𝑥̇ (𝑡)̇𝑦 (𝑡)]

+ 2 {[Σ𝑦 (𝑡) − 𝑓 (𝑦 (𝑡))]𝑇Λ 1 + 𝑓𝑇 (𝑦 (𝑡)) Λ 2}
⋅ ̇𝑦 (𝑡) = 𝜁𝑇 (𝑡) (Ξ11 + Ξ𝑇11) 𝜁 (𝑡) ,

𝑉̇2 (𝑡) = 𝑥𝑇 (𝑡) 𝑄1𝑥 (𝑡) + 𝑥𝑇𝜏1 (𝑡) (𝑄2 + 𝑄3 − 𝑄1) 𝑥𝜏1 (𝑡)
− 𝑥𝑇𝜏2 (𝑡) 𝑄2𝑥𝜏2 (𝑡) − (1 − ̇𝜏 (𝑡)) 𝑥𝑇𝜏 (𝑡) 𝑄3𝑥𝜏 (𝑡)
≤ 𝑥𝑇 (𝑡) 𝑄1𝑥 (𝑡) + 𝑥𝑇𝜏1 (𝑡) (𝑄2 + 𝑄3 − 𝑄1) 𝑥𝜏1 (𝑡)
− 𝑥𝑇𝜏2 (𝑡) 𝑄2𝑥𝜏2 (𝑡) − (1 − 𝜏𝑑) 𝑥𝑇𝜏 (𝑡) 𝑄3𝑥𝜏 (𝑡)
= 𝜁𝑇 (𝑡) Ξ2𝜁 (𝑡) ,

𝑉̇3 (𝑡) = 𝑥̇𝑇 (𝑡) (𝜏21𝑅1 + 𝜏212𝑅3) 𝑥̇ (𝑡) + 𝜏12𝑥𝑇 (𝑡) 𝑅2𝑥 (𝑡)
− 𝜏1 ∫𝑡

𝑡−𝜏1

𝑥̇𝑇 (𝑠) 𝑅1𝑥̇ (𝑠) 𝑑𝑠
− ∫𝑡−𝜏1
𝑡−𝜏2

(𝑥𝑇 (𝑠) 𝑅2𝑥 (𝑠) + 𝜏12𝑥̇𝑇 (𝑠) 𝑅3𝑥̇ (𝑠)) 𝑑𝑠,
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𝑉̇4 (𝑡) = 𝑥̇𝑇 (𝑡) (𝜏212 𝑍1 + 𝜏
2
2 − 𝜏212 𝑍2 − 𝜏1𝜏12𝑍2) 𝑥̇ (𝑡)

− ∫𝑡
𝑡−𝜏1

∫𝑡
𝑠
𝑥̇𝑇 (𝑢) 𝑍1𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠

− ∫𝑡−𝜏1
𝑡−𝜏2

∫𝑡−𝜏1
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠,

𝑉̇5 (𝑡) = [ 𝑦 (𝑡)
𝑓 (𝑦 (𝑡))]

𝑇

𝑄4 [ 𝑦 (𝑡)
𝑓 (𝑦 (𝑡))]

+ [ 𝑦𝜎1 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎1))]

𝑇

(𝑄5 + 𝑄6 − 𝑄4)

⋅ [ 𝑦𝜎1 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎1))] − [

𝑦𝜎2 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎2))]

𝑇

⋅ 𝑄5 [ 𝑦𝜎2 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎2))] − (1 − 𝜎̇ (𝑡))

⋅ [ 𝑦𝜎 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))]

𝑇

𝑄6 [ 𝑦𝜎 (𝑡)
𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))]

≤ 𝜁𝑇 (𝑡) Ξ5𝜁 (𝑡) ,
𝑉̇6 (𝑡) = ̇𝑦𝑇 (𝑡) (𝜎21𝑅4 + 𝜎212𝑅5) ̇𝑦 (𝑡)
− 𝜎1 ∫𝑡

𝑡−𝜎1

̇𝑦𝑇 (𝑠) 𝑅4 ̇𝑦 (𝑠) 𝑑𝑠

− 𝜎12 ∫𝑡−𝜎1
𝑡−𝜎2

̇𝑦𝑇 (𝑠) 𝑅5 ̇𝑦 (𝑠) 𝑑𝑠,

𝑉̇7 (𝑡) = ̇𝑦𝑇 (𝑡) (𝜎212 𝑍3 + 𝜎
2
2 − 𝜎212 𝑍4 − 𝜎1𝜎12𝑍4) ̇𝑦 (𝑡)

− ∫𝑡
𝑡−𝜎1

∫𝑡
𝑠
̇𝑦𝑇 (𝑢) 𝑍3 ̇𝑦 (𝑢) 𝑑𝑢 𝑑𝑠

− ∫𝑡−𝜎1
𝑡−𝜎2

∫𝑡−𝜎1
𝑠

̇𝑦𝑇 (𝑢) 𝑍4 ̇𝑦 (𝑢) 𝑑𝑢 𝑑𝑠,
(65)

where Ξ11, Ξ2, and Ξ5 are defined in (35), (36), and (45),
respectively.

Using Lemma 2 to estimate the 𝑅1-dependent single
integral terms in 𝑉̇3(𝑡) yields

− 𝜏1 ∫𝑡
𝑡−𝜏1

𝑥̇𝑇 (𝑠) 𝑅1𝑥̇ (𝑠) 𝑑𝑠 ≤ −𝜂𝑇1 (𝑡) 𝑅̃1𝜂1 (𝑡)
= 𝜁𝑇 (𝑡) Ξ32𝜁 (𝑡) ,

(66)

where 𝑅̃1 and Ξ32 are defined in (39) and

𝜂1 (𝑡) = [[[
[

𝑥 (𝑡) − 𝑥𝜏1 (𝑡)𝑥 (𝑡) + 𝑥𝜏1 (𝑡) − 2V1 (𝑡)𝑥 (𝑡) − 𝑥𝜏1 (𝑡) + 6V1 (𝑡) − 12V4 (𝑡)
]]]
]
. (67)

Using Lemma 1 to estimate the 𝑅2-dependent single
integral terms in 𝑉̇3(𝑡) yields

− ∫𝑡−𝜏1
𝑡−𝜏2

𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 = −∫𝑡−𝜏1
𝑡−𝜏(𝑡)

𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠
− ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

𝑥𝑇 (𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠 ≤ −𝜏1𝜏 (𝑡)
⋅ [V𝑇2 (𝑡) 𝑅2V2 (𝑡)
+ 3 (2V5 (𝑡) − V2 (𝑡))𝑇 𝑅2 (2V5 (𝑡) − V2 (𝑡))]
− 𝜏2𝜏 (𝑡) [V𝑇3 (𝑡) 𝑅2V3 (𝑡)
+ 3 (2V6 (𝑡) − V3 (𝑡))𝑇 𝑅2 (2V6 (𝑡) − V3 (𝑡))]
= 𝜁𝑇 (𝑡) Ξ𝜏(𝑡)𝜁 (𝑡) ,

(68)

where Ξ𝜏(𝑡) is defined in (33).
Using Lemmas 2 and 5, together with (30), to estimate the𝑅3-dependent single integral terms in 𝑉̇3(𝑡) yields
− 𝜏12 ∫𝑡−𝜏1

𝑡−𝜏2

𝑥̇𝑇 (𝑠) 𝑅3𝑥̇ (𝑠) 𝑑𝑠
= −𝜏12 ∫𝑡−𝜏1

𝑡−𝜏(𝑡)
𝑥̇𝑇 (𝑠) 𝑅3𝑥̇ (𝑠) 𝑑𝑠

− 𝜏12 ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

𝑥̇𝑇 (𝑠) 𝑅3𝑥̇ (𝑠) 𝑑𝑠
≤ − 𝜏12𝜏 (𝑡) − 𝜏1 {𝜂𝑇2 (𝑡) 𝑅̃3𝜂2 (𝑡)}
− 𝜏12𝜏2 − 𝜏 (𝑡) {𝜂𝑇3 (𝑡) 𝑅̃3𝜂3 (𝑡)}

≤ − [𝜂2 (𝑡)𝜂3 (𝑡)]
𝑇 [𝑅̃3 𝑆1∗ 𝑅̃3][

𝜂2 (𝑡)𝜂3 (𝑡)] = 𝜁
𝑇 (𝑡) Ξ33𝜁 (𝑡) ,

(69)

where 𝑅̃3 and Ξ33 are defined in (40) and

𝜂2 (𝑡) = [[[
[

𝑥𝜏1 (𝑡) − 𝑥𝜏 (𝑡)𝑥𝜏1 (𝑡) + 𝑥𝜏 (𝑡) − 2V2 (𝑡)𝑥𝜏1 (𝑡) − 𝑥𝜏 (𝑡) + 6V2 (𝑡) − 12V5 (𝑡)
]]]
]
,

𝜂3 (𝑡) = [[[
[

𝑥𝜏 (𝑡) − 𝑥𝜏2 (𝑡)𝑥𝜏 (𝑡) + 𝑥𝜏2 (𝑡) − 2V3 (𝑡)𝑥𝜏 (𝑡) − 𝑥𝜏2 (𝑡) + 6V3 (𝑡) − 12V6 (𝑡)
]]]
]
.

(70)
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Using Lemma 8 to estimate the 𝑍1-dependent double
integral terms in 𝑉̇4(𝑡) yields
− ∫𝑡
𝑡−𝜏1

∫𝑡
𝑠
𝑥̇𝑇 (𝑢) 𝑍1𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠 ≤ −2 [𝑥 (𝑡) − V1 (𝑡)]𝑇

⋅ 𝑍1 [𝑥 (𝑡) − V1 (𝑡)] + 16 [3V4 (𝑡) − 𝑥 (𝑡)2 − V1 (𝑡)]𝑇

⋅ 𝑍1 [3V4 (𝑡) − 𝑥 (𝑡)2 − V1 (𝑡)] = 𝜁𝑇 (𝑡) Ξ42𝜁 (𝑡) ,
(71)

where Ξ42 is defined in (43).
Using Lemma 8 to estimate the 𝑍2-dependent double

integral terms in 𝑉̇4(𝑡) yields
− ∫𝑡−𝜏1
𝑡−𝜏2

∫𝑡−𝜏1
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠
= −∫𝑡−𝜏1
𝑡−𝜏(𝑡)

∫𝑡−𝜏1
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠
− ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

∫𝑡−𝜏1
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠
≤ −∫𝑡−𝜏1
𝑡−𝜏(𝑡)

∫𝑡−𝜏1
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠
− ∫𝑡−𝜏(𝑡)
𝑡−𝜏2

∫𝑡−𝜏(𝑡)
𝑠

𝑥̇𝑇 (𝑢) 𝑍2𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠
≤ −2 [𝑥𝜏1 (𝑡) − V2 (𝑡)]𝑇𝑍2 [𝑥𝜏1 (𝑡) − V2 (𝑡)]
− 16 [3V5 (𝑡) − 𝑥𝜏1 (𝑡)2 − V2 (𝑡)]

𝑇

⋅ 𝑍2 [3V5 (𝑡) − 𝑥𝜏1 (𝑡)2 − V2 (𝑡)]
− 2 [𝑥𝜏 (𝑡) − V3 (𝑡)]𝑇𝑍2 [𝑥𝜏 (𝑡) − V3 (𝑡)]
− 16 [3V6 (𝑡) − 𝑥𝜏 (𝑡)2 − V3 (𝑡)]𝑇

⋅ 𝑍2 [3V6 (𝑡) − 𝑥𝜏 (𝑡)2 − V3 (𝑡)] = 𝜁𝑇 (𝑡) Ξ43𝜁 (𝑡) ,

(72)

where Ξ43 is defined in (44).
Similarly, using Lemmas 2, 5, and 8 to estimate the single

and double integral terms in 𝑉̇6(𝑡) and 𝑉̇7(𝑡) yields
−𝜎1 ∫𝑡
𝑡−𝜎1

𝑥̇𝑇 (𝑠) 𝑅4𝑥̇ (𝑠) 𝑑𝑠 ≤ 𝜁𝑇 (𝑡) Ξ62𝜁 (𝑡) ,
−𝜎12 ∫𝑡−𝜎1

𝑡−𝜎2

𝑥̇𝑇 (𝑠) 𝑅5𝑥̇ (𝑠) 𝑑𝑠 ≤ 𝜁𝑇 (𝑡) Ξ63𝜁 (𝑡) ,
− ∫𝑡
𝑡−𝜎1

∫𝑡
𝑠
𝑥̇𝑇 (𝑢) 𝑍3𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠 ≤ 𝜁𝑇 (𝑡) Ξ72𝜁 (𝑡) ,

− ∫𝑡−𝜎1
𝑡−𝜎2

∫𝑡−𝜎1
𝑠

𝑥̇𝑇 (𝑢) 𝑍4𝑥̇ (𝑢) 𝑑𝑢 𝑑𝑠 ≤ 𝜁𝑇 (𝑡) Ξ73𝜁 (𝑡) ,

(73)

where Ξ62, Ξ63, Ξ72, and Ξ73 are defined in (48)–(53).

Taking into account the assumption of the activation
function, (13) and (14), the following inequalities hold [76,
77]:

ℎ𝑖 (𝑠) = 2 [Σ𝑦 (𝑠) − 𝑓 (𝑦 (𝑠))]𝑇𝐻𝑖𝑓 (𝑦 (𝑠)) ≥ 0,
𝑢𝑖𝑗 (𝑠1, 𝑠2) = 2 [Σ (𝑦 (𝑠1) − 𝑦 (𝑠2))
− (𝑓 (𝑦 (𝑠1)) − 𝑓 (𝑦 (𝑠2)))]𝑇𝑈𝑖𝑗 × (𝑓 (𝑦 (𝑠1))
− 𝑓 (𝑦 (𝑠2))) ≥ 0,

(74)

where 𝐻𝑖, 𝑖 = 1, 2, . . . , 4, and 𝑈𝑖𝑗, 𝑖 = 1, 2, . . . , 4, 𝑗 =𝑖 + 1, . . . , 4, are the symmetric diagonal matrices. Thus, the
following inequality holds:

𝐻(𝑡) + 𝑈 (𝑡) = ℎ1 (𝑡) + ℎ2 (𝑡 − 𝜎1) + ℎ3 (𝑡 − 𝜎 (𝑡))
+ ℎ4 (𝑡 − 𝜎2) + 𝑢12 (𝑡, 𝑡 − 𝜎1)
+ 𝑢13 (𝑡, 𝑡 − 𝜎 (𝑡)) + 𝑢14 (𝑡, 𝑡 − 𝜎2)
+ 𝑢23 (𝑡 − 𝜎1, 𝑡 − 𝜎 (𝑡))
+ 𝑢24 (𝑡 − 𝜎1, 𝑡 − 𝜎2)
+ 𝑢34 (𝑡 − 𝜎 (𝑡) , 𝑡 − 𝜎2)

= 𝜁𝑇 (𝑡) Ξ8𝜁 (𝑡) ≥ 0,

(75)

where Ξ8 is defined in (54).
Finally, combining (64), (65), (66), (68), (69), (71), (72),

(73), and (75) yields

𝑉̇ (𝑡) ≤ 𝜁𝑇 (𝑡) [Ξ𝜏(𝑡) + 8∑
𝑖=1

Ξ𝑖] 𝜁 (𝑡) , (76)

where the related notations are defined in (31).
Therefore, if LMIs (31) and (32) hold, then the following

holds for a sufficiently small scalar 𝜖 > 0 based on convex
combination method [78, 79]:

𝑉̇ (𝑡) ≤ −𝜖 (‖𝑥 (𝑡)‖2 + 󵄩󵄩󵄩󵄩𝑦 (𝑡)󵄩󵄩󵄩󵄩2) (77)

which shows the asymptotical stability of GRN (2) with time
delay satisfying (5). This completes the proof.

4.2. Stability of GRN (11) with Delay Satisfying (6). For
some cases, the change rates of the time-varying delays are
unmeasurable, that is, time delay satisfying (6). For this case,
the following stability criterion can be derived by using the
proposed WTDII (27), together with Lemmas 1, 2, 5, and 8,
to estimate the derivative of the LKF.

Theorem10. For given scalars 𝜏𝑖 and𝜎𝑖, 𝑖 = 1, 2, GRN (2)with
the time delay satisfying (6) and regulatory function satisfying
(3) is asymptotically stable, if there exist symmetric matrices𝑃 > 0, 𝑄𝑖 > 0, 𝑅𝑗 > 0, 𝑍𝑘 > 0, 𝑖 = 1, 2, 4, 5, 𝑗 = 1, 2, . . . , 5,
and 𝑘 = 1, 2, . . . , 4; diagonal matrices Λ 1 > 0, Λ 2 > 0, 𝐻𝑗 >
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0, 𝑗 = 1, 2, 3, 4, 𝑈𝑙𝑘 > 0, 𝑙 = 1, 2, . . . , 4, and 𝑘 = 𝑙 + 1, . . . , 4;
and anymatrices 𝑆𝑖, 𝑖 = 1, 2, such that the following LMIs hold:

[𝑅̃2𝑖+1 𝑆𝑖
∗ 𝑅̃2𝑖+1] > 0, 𝑖 = 1, 2,

Ψ3 = Ξ𝜏(𝑡)󵄨󵄨󵄨󵄨𝜏(𝑡)=𝜏1 + ∑
𝑖=1,3,4,6,7

Ξ𝑖 + Ξ2 + Ξ5
≤ 0,

Ψ4 = Ξ𝜏(𝑡)󵄨󵄨󵄨󵄨𝜏(𝑡)=𝜏2 ∑
𝑖=1,3,4,6,7

Ξ𝑖 + Ξ2 + Ξ5
≤ 0,

(78)

where Ξ𝑖, 𝑖 = 1, 3, 4, 6, 7, are defined in Theorem 9 and

Ξ2 = 𝑒𝑇1𝑄1𝑒1 − 𝑒𝑇2 (𝑄1 − 𝑄2) 𝑒2 − 𝑒𝑇4𝑄2𝑒4,
Ξ5 = [𝑒11𝑒21]

𝑇𝑄4 [𝑒11𝑒21] + [
𝑒12𝑒22]
𝑇 (𝑄5 − 𝑄4) [𝑒12𝑒22]

− [𝑒14𝑒24]
𝑇𝑄5 [𝑒14𝑒24] .

(79)

Proof. The above stability criterion can be obtained by setting𝑄3 = 0 and 𝑄6 = 0 in Theorem 9.

4.3. Some Remarks. This part gives some remarks for the
above criteria.

Remark 11. During the proof of the above two stability
criteria, the double integral terms arising in the derivative of
the LKFs are estimated by using the proposed WTDII, that
is, Lemma 8. As discussed in Section 3, the WTDII is tighter
than the widely used JBDII (17), which was used for the GRN
[19, 34], and the recently developed WBDII (18), which has
not been used for the GRN. Thus, the proposed criteria are
less conservative than the ones reported in [19, 34].

Remark 12. Compared with the literature, more information
of regulatory function has been used during the proof of
criteria. Specifically, in the literature, only (14) is used during
the estimation of the derivative of the LKF, while, in this
paper, extra information of regulatory function (13) is also
used for estimating task. It has been proved in [77] that such
additional information is helpful to reduce the conservatism.

Remark 13. The conditions given inTheorems 9 and 10 are in
the form of LMI. Such LMI conditions can be easily checked
by using MATLAB/LMI toolbox [80]. One can refer to [81–
83] for more details.

Remark 14. Although this paper has just investigated the
asymptotical stability, the proposed method can be extended
to the robust stability analysis by taking into account the
parameter uncertainties and/or noises of the GRNs. More-
over, the proposed method can also be extended to other

1
lacl

3
cl

2
tetR

Figure 2: The repressilator network.

problems discussed in Section 2, like controller synthesis,
state estimation, filter design, passivity analysis, and so on
[13, 59–70].

5. Illustrative Example

In this section, an example will be presented to illustrate the
effectiveness of our results. As mentioned in Section 2, the
important aim of the stability analysis of delayed GRNs is
to determine the MADBs. And the stability criterion that
provides bigger MADBs is less conservative than the one that
gives smaller ones.Therefore, the advantages of the proposed
criteria are demonstrated via the comparison of the MADBs
calculated by various criteria. Moreover, the index of the
number of variables (NoV) is applied to show the complexity
of criteria.

Example 1. For the GRN model which is theoretically pre-
dicted and experimentally investigated in Escherichia coli in
[4], the genetic network is composed of three repressilators
(lacl, tetR, and cl) which form a cyclic negative feedback
loop, each repressor protein inhibits the transcription of
its downstream repressor gene, as shown in Figure 2, the
protein of 𝑙𝑎𝑐𝑙 represses the gene transcription of 𝑡𝑒𝑡𝑅,
and the protein of 𝑡𝑒𝑡𝑅 inhibits the gene transcription of𝑐𝑙 simultaneously, and, finally, the transcription of 𝑙𝑎𝑐𝑙 is
inhibited by 𝑐𝑙, which completes the cycle.

The kinetics of the genetic network are modelled as the
GRN (2) with the following parameters [19]:

𝐴 = diag {3, 3, 3} ,
𝐶 = diag {2.5, 2.5, 2.5} ,

𝑊 = [[
[
0 0 −2.5
−2.5 0 0
0 −2.5 0

]]
]
,

𝐷 = [[
[
0.8
0.8
0.8
]]
]
,

𝑏𝑖 (𝑥) = 𝑥21 + 𝑥2 , 𝑖 = 1, 2, . . . , 𝑛.

(80)

It follows from (9) and (29) that

Σ = diag{3√38 , 3
√38 , 3

√38 } . (81)
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Table 1: The MADBs of 𝜏2 for various 𝜏1 and the NoVs of various criteria.

Criteria NoVs 𝜏1
0.1 0.5 1

[29, 31, 34] — <5.5 <5.9 <6.4
[19] 40.5𝑛2 + 16.5𝑛 5.5 5.91 6.41
Theorem 9 32𝑛2 + 22𝑛 9.2681 9.6682 10.1681

Table 2: The MADBs of 𝜏2 for various 𝜏1 and the NoVs of various criteria.

Criteria NoVs 𝜏1
0 1 2

[19] 38𝑛2 + 15𝑛 2.3101 3.3101 4.3102
[19] 29.5𝑛2 + 20.5𝑛 4.1647 5.1647 6.1646

(1) CalculationResults.Thefirst study case is that the changing
rates of the time-varying delays aremeasurable; that is, delays
satisfy (5). Assume that 𝜎1 = 0.1, 𝜎2 = 0.3, 𝜎𝑑 = 0.7,
and 𝜏𝑑 = 1.5 [19], and the MADBs of 𝜏2 with respect to
various 𝜏1 obtained by the proposed criteria are given in
Table 1, where the MADBs reported in the literature are also
listed for comparison.

The second study case is that the changing rates of the
time-varying delays are nonmeasurable; that is, delays satisfy
(6). Assume that 𝜎1 = 1 and 𝜎2 = 2, and the MADBs of 𝜏2
with respect to various 𝜏1 obtained by the proposed criteria,
together with the ones provided by the least literature [19], are
given in Table 2.

Moreover, the NoVs of criteria reported in the least
literature [19] and that of criteria established in this paper are
also given in tables to compare the computation complexity.

From the results in the tables, it can be easily found
that the proposed stability criteria can provide the larger
MADBs for two cases compared to those given in the existing
literature. It shows that the proposed criteria are indeed less
conservative than the ones reported in the literature. On
the other hand, it is found that the NoV of the proposed
criteria (Theorem 9) is smaller than the one reported in [19],(40.5𝑛2 + 16.5𝑛) − (32𝑛2 + 22𝑛) = 8.5𝑛2 − 5.5𝑛 > 0 and(38𝑛2 + 15𝑛) − (29.5𝑛2 + 20.5𝑛) = 8.5𝑛2 − 5.5𝑛 > 0 for
any 𝑛. Both of those observations show the advantages of the
proposed criterion.

(2) Simulation Verification. From the given parameters, the
equilibrium points of the GRN can be obtained as

𝑚∗ = [0.7840, 0.7840, 0.7840] ,
𝑝∗ = [0.2509, 0.2509, 0.2509] . (82)

Simulation studies for the following two types of time-
varying delays are carried out.

Case 1. The initial conditions 𝑚(𝑡) = [0.70, 0.85, 0.80]𝑇, 𝑡 ∈[−10.1681, 0], and 𝑝(𝑡) = [0.15, 0.20, 0.30]𝑇, 𝑡 ∈ [−0.3, 0],

and the following delays satisfy 𝜎1 = 0.1, 𝜎2 = 0.3, 𝜎𝑑 =0.7, 𝜏1 = 1, 𝜏2 = 10.1681, and 𝜏𝑑 = 1.5:
𝜏 (𝑡) = 9.1681 sin2 (0.1636𝑡) + 1,
𝜎 (𝑡) = 0.2 sin2 (3.5𝑡) + 0.1. (83)

Case 2. The initial conditions 𝑚(𝑡) = [0.70, 0.85, 0.80]𝑇, 𝑡 ∈[−6.1746, 0], and 𝑝(𝑡) = [0.15, 0.20, 0.30]𝑇, 𝑡 ∈ [−2, 0], and
the randomdelays satisfy 𝜎1 = 1, 𝜎2 = 2, 𝜏1 = 2, 𝜏2 = 6.1746.

Based on Tables 1 and 2, the GRN with the above delays,
respectively, is stable.The trajectories of the concentrations of
mRNA and protein are shown in Figures 3 and 4. The results
show that they are stable at their equilibrium points.

6. Conclusions

This paper has investigated the stability of the GRN with
time-varying delays, and its contributions have been revealed
from two aspects. The novel WTDII has been developed for
the estimation of the double integral terms, and it has been
also proved to be tighter than the widely used JBDII and
the recently developed WBDII for the same task. Then, with
benefit from the WTDII, two LMI-based stability criteria
with less conservatism have been derived for checking the
stability of the GRN with time delays. Finally, the advantages
of the proposed inequality and the established criteria have
been verified through an example.

Notations

‖ ⋅ ‖: The Euclidean vector norm
R𝑛×𝑚: The set of all 𝑛 × 𝑚 real matrices𝑁𝑇 (𝑁−1): The transpose (inverse) of the matrix𝑁𝑃 > 0: 𝑃 is a real positive-definite matrix
diag{⋅ ⋅ ⋅ }: A block-diagonal matrix𝐼 (0): The identity (zero) matrix
Sym{𝑋}: 𝑋 + 𝑋𝑇[𝑋 𝑌∗ 𝑍 ]: [ 𝑋 𝑌

𝑌𝑇 𝑍
]
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Figure 3: The trajectories of concentrations of mRNA and protein for Case 1.
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Figure 4: The trajectories of concentrations of mRNA and protein for Case 2.

GRNs: Genetic regulatory networks
LKF: Lyapunov-Krasovskii function
LMI: Linear matrix inequality
JBDII: Jensen-based double integral inequality
WBDII: Wirtinger-based double integral inequality
WTDII: Wiringter-type double integral inequality
MADB: Maximal admissible delay bounds
NoV: The number of variables.
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