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Data-driven Distributionally Robust
Energy-Reserve-Storage Dispatch

Chao Duan, Lin Jiang, Wanliang Fang, Jun Liu,, Shiming Liu

Abstract—This paper proposes distributionally robust energy-
reserve-storage co-dispatch model and method to facilitate the
integration of variable and uncertain renewable energy. The
uncertainties of renewable generation forecasting errors are
characterized through an ambiguity set which is a set of
probability distributions consistent with observed historical data.
The proposed model minimizes the expected operation costs
corresponding to the worst-case distribution in the ambiguity
set. Distributionally robust chance constraints are employed
to guarantee reserve and transmission adequacy. The more
historical data is available, the smaller the ambiguity set is
and the less conservative the solution is. The formulation is
finally cast into a mixed integer linear programming whose
scale remains unchanged as the number of historical data
increases. Inactive constraint identification and convex relaxation
techniques are introduced to reduce the computational burden.
Numerical results and Monte Carlo simulations on IEEE 118-
bus systems demonstrate the effectiveness and efficiency of the
proposed method.

Index Terms—economic dispatch, energy storage, distribution-
ally robust optimization, chance constraints, reserve scheduling

NOMENCLATURE

B,L, T Set of all buses, lines and time periods.
cgi Generation price of the ith generator.
ccsi/c

d
si Charge/discharge price of the ith storage.

d+gi/d
−
gi Upward/downward reserve availability price of the

ith generator.
d+si/d

−
si Upward/downward reserve availability price of the

ith storage.
f+gi/f

−
gi Upward/downward reserve utilization price of the

ith generator.
f+si/f

−
si Upward/downward reserve utilization price of the

ith storage.
P gi/P gi Lower/upper limits of output power of the ith

generator.
R

+

gi/R
−
gi Ramp up/down rate limits of the ith generator.

P
c

si/P
d

si Upper limits for the charge/discharge power of the
ith storage.

Cl Capacity of transmission line l.
πlgi/π

l
si Load shift factor from generator/storage/load i to

line l.
πldi Load shift factor from load i to line l.
ηcsi/η

d
si Charge/discharge efficiency of the ith storage.
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ε̃i(t) Random forecasting error of composite load at the
ith bus in time t.

Pdi(t) Forecasted composite load at the ith bus in time t.
P̃di(t) Random composite load at the ith bus in time t.
Pgi(t) Output power setting point of the ith generator in

time t.
P̃gi(t) Random actual output power of the ith generator

in time t.
S̃l(t) Random line power flow on line l in time t.
P̃si(t) Random actual output power of the ith storage in

time t.
Esi(0) Initial stored energy of the ith storage.
αgi(t) Participation factor of the ith generator in time t.
αsi(t) Participation factor of the ith storage in time t.
P csi(t)/P dsi(t) Charge/discharge power setting point of the

ith storage in time t.
R+
gi(t)/R−gi(t) Upward/downward reserve of the ith gen-

erator in time t.
R+
si(t)/R−si(t) Upward/downward reserve of the ith stor-

age in time t.
P A probability measure/distribution.
EP Expectation respect to probability measure P.
P0(S) Set of all probability measures with support S.
IS(·) Indicator function of set S, i.e. IS(x) = 1 when

x ∈ S and 0 otherwise.
(x)+ max{x, 0}.

I. INTRODUCTION

Large-scale integration of renewable energy has brought a
high level of variability and uncertainty into power system
operation, which poses a great challenge to system schedule
and dispatch. Energy storage systems (ESS) are recognized
as underpinning technologies to meet such challenge due to
their ability to provide time-varying energy management and
alleviate the intermittence of renewable generation [1]. To
minimize operation costs while guarantee system reliability
under variability and uncertainty, the operation of ESSs must
be integrated into the conventional economic dispatch and
reserve scheduling problems.

The investigation of the optimal operation of power system
with ESSs requires the multi-period optimal power flow (OPF)
models because the operation of ESS is strongly coupled
over time by charge/discharge dynamics. Both DC and AC
power flow models are applied to this problem. Jabr et al
developed a robust multi-period DC OPF with ESS to address
the uncertainties of renewable generation [2]. DC flow based
multi-period OPF is also employed in [3] to optimize storage
allocation and portfolio. Since DC power flow neglects voltage
magnitude and reactive power, its results might be unreason-
able for practical operation. Thus, full AC formulations of
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multi-period OPF are also introduced to address the optimal
operation of distribution networks in [4] and [5]. But due
to the non-convexity of the problem formulation, only local
optimality is guaranteed. By extending the seminar work of
Lavaei and Low [6], semi-definite program (SDP) relaxations
of AC flow based multi-period OPF are discussed in [7] where
global optimal solutions are achievable in some cases.

Conventionally, spinning reserve is not explicitly handled
in economic dispatch but treated separately in the reserve
scheduling problem [8], [9]. Due to the ever-increasing level
of uncertainty and the commercialization of spinning reserve
as an auxiliary service, co-optimization of energy and reserve
becomes a trend in recent literature [10]–[12]. When the load
and renewable generation deviate from the predicted values,
spinning reserve needs to be utilized to maintain real-time
power balance. The process of reserve procurement is usually
handled in two different approaches. The first is the affinely
adjustable approach [2], [13] where a generator uses its reserve
according to the associated participation factor. The second is
the fully adjustable approach [11], [14] in which the reserve
procurement is treated as a sub-level optimization problem
after the realization of uncertainties. The advantages of affinely
adjustable approach are its compatibility with existing auto-
matic generation systems (AGC) and the numerical tractability
of the optimization model. Nevertheless, the affine policy is
more restrictive thus brings some conservatism compared with
full recourse strategy.

Besides above-mentioned aspects related to problem for-
mulation, a more prominent issue is how to deal with un-
certainties. Stochastic programming (SP) [15], [16], robust
optimization (RO) [2], [10], [11], [13], [14], [17], [18] and
distributionally robust optimization (DRO) [9], [12], [19],
[20] have been employed to tackle uncertainties in power
system operation. SP assumes operational uncertainties follow
a pre-specified probability distribution and characterizes the
uncertainties by scenarios sampled from that distribution. In
contrast to SP, RO does not require any probabilistic informa-
tion of the uncertainties. Instead, randomness is represented
by a deterministic uncertainty set, and RO seeks strategies
that are immune against all realizations of the uncertainty
set. In practice, the probability distribution of uncertainties
truly exists but must be estimated from historical data and
is therefore itself uncertain. To bridge the gap between the
specificity of SP and conservatism of RO, DRO assumes that
the true distribution lies in an ambiguity set and immunizes the
operation strategies against all distributions in the ambiguity
set. The ambiguity set employed in [9], [12], [19], [20] is
the set of all probability distributions sharing given mean
and covariance. Paper [19] further assumes the unimodality
of the distribution to reduce conservatism. However, the DRO
approach discussed in [9], [12], [19] has the following draw-
backs. First, the ambiguity set characterized only by the first
two moments is in fact very large thus the method is still
very conservative. Second, moments also need to be estimated
from historical data therefore are uncertain as well. Third,
the problems are finally cast into a sequence of semi-definite
programmings which are very computationally intensive.

In this paper, we propose novel formulation and method for

co-optimization of energy, reserve, and storage under the spirit
of DRO [21]. The contributions are threefold:

1) Problem formulation: We extend the robust multi-period
OPF formulation [2] to co-dispatch of energy, reserve,
and storage. Distributionally robust chance constraints
(DRCC) are employed to provide explicit reliability
guarantee for reserve and transmission adequacy. The
objective is to minimize the expected operation costs w.r.t.
the worst-case distribution in the constructed ambiguity
set, which provides robustness for economical system
operation.

2) Data-driven and data-exploiting features: The pro-
posed method is data-driven in the sense that the ambigu-
ity set for DRO is constructed from historical data without
any prior knowledge about the distribution. The method
can automatically extract and exploit the probabilistic
information contained in the data set. The more historical
data is available, the less conservative the solution is.

3) Efficient solution approach: The problem is finally for-
mulated as a mixed integer linear programming (MILP)
for which off-the-shelf solvers are available. The scale of
the MILP remains unchanged as the number of available
data increases. Computational issues, including the elim-
ination of inactive line capacity constraints and convex
relaxation of binary variables, are considered in the
solution approach to significantly improve the numerical
tractability.

II. DISTRIBUTIONALLY ROBUST OPTIMIZATION

A. Basic Concepts

In power system, some operational strategy x is needed to
minimize the cost function f(x, ξ̃) while satisfy the technical
and security constraints g(x, ξ̃) ≤ 0 where both the cost
function and constraints are affected by some uncertainty
represented by random variable ξ̃. In practice, the probabil-
ity distribution of ξ̃ is unknown and only some historical
data is available. Theoretically, the precise description of
the probability distribution cannot be obtained from finite
sample data. Therefore, the probability distribution itself is
uncertain. However, the historical data does provide us some
reliable information about the distribution, and based on these
information we can construct an ambiguity set P , i.e. a
set of probability distributions consistent with the observed
historical data. Hence the distributionally robust optimization
seeks decisions that are immune against all distributions and
perform best in view of the worst-case distribution from the
ambiguity set, i.e.

min
x

max
P∈P

EP[f(x, ξ̃)]

s.t. P[g(x, ξ̃) ≤ 0] ≥ 1− β,∀P ∈ P.
(1)

The performance and numerical tractability of the above
problem largely rely on the structure of the ambiguity set. A
desirable ambiguity set should possess the following proper-
ties: 1) P contains the underlying true probability distribution;
2) to reduce conservatism, P can be made as small as possible
by incorporating more observed data; 3) the structure of P
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allows the reformulation of distributionally robust optimization
problem (1) into tractable deterministic problem.

B. Construction of Ambiguity Set
In this subsection, we provide one approach to construct the

ambiguity set P based on confidence bands for cumulative
distribution function (CDF) from non-parametric statistics.
Consider a one-dimensional random variable ξ̃ whose proba-
bility distribution is unknown whereas the ascendingly ordered
sample set S = {ξ̂(1), ξ̂(2), · · · , ξ̂(n)} is available. Let F (x) =
P∗{ξ ≤ x} be the CDF of true distribution P∗. The 1−α confi-
dence bands for F (x) is a pair of sample-dependent functions
P (x) and P (x) for which P (x) ≤ F (x) ≤ P (x), ∀x ∈ R
with probability 1 − α over the choice of sample set S.
One approach to obtain the confidence bands for F (x) is the
Dirichlet method [22] summarized blow:

Lemma 1: Let S = {ξ̂(1), ξ̂(2), · · · , ξ̂(n)} be the ascend-
ingly ordered sample set of random variable ξ generated in-
dependently according to true distribution P∗ with continuous
CDF F (x). Bαk,n denote the α-quantile of the β(k, n+ 1− k)

distribution. For given n and α, define p
k

= B
α̃/2
k,n and

pk = B
1−α̃/2
k,n where

α̃ = exp
(
−c1(α)− c2(α)

√
ln[ln(n)]− c3(α)[ln(n)]c4(α)

)
(2)

with c1(α) = −2.75 − 1.04ln(α), c2(α) = 4.76 − 1.20α,
c3(α) = 1.15− 2.39α, and c4(α) = −3.96 + 1.72α0.171. Add
ξ̂(0) = −∞ and ξ̂(n+1) =∞ to the ascending sequence of the
sample set S, and define p

0
= 0 and pn+1 = 1. Then

P (x) = max{p
k

: ξ̂(k) ≤ x} (3)

P (x) = min{pk : ξ̂(k) ≤ x} (4)

are the 1− α confidence bands for F (x).
Note that P (x) and P (x) have the following properties: 1)
they are stair-step functions that take values p

k
and pk at ξ̂(k),

respectively; 2) the empirical CDF F̂ (x) = 1
n

∑n
i=1 I{ξ̂(i)≤x}

is lower and upper bounded by P (x) and P (x), i.e. P (x) ≤
F̂ (x) ≤ P (x); 3) as the size of the sample set n → ∞,
sup|P (x) − P (x)| → 0. In other words, P (x) and P (x)
represent the reliable information that can be extracted from
finite samples and the information becomes more and more
accurate as the size of the sample set grows.

Based on the confidence bands for CDF, the ambiguity set
P employed in this paper takes the form

P =
{
P ∈ P0([ξ, ξ])

∣∣∣P[ξ̃ ≤ ξ̂(k)] ∈ [p
k
, pk], k = 1, · · · , n

}
(5)

where P0([ξ, ξ]) denotes the set of all probability measures
whose supports are the interval [ξ, ξ]. The proposed CDF-
based ambiguity set P is designed to encode the information
from confidence bands for CDF and does not assume any prior
knowledge about the distribution type. Due to the convergence
property of the confidence bands, the ambiguity set P is made
smaller and smaller by incorporating more and more histor-
ical data. Moreover, the structure defined in (5) allows very
efficient reformulation of distrituionally robust optimization
problems, which will be analyzed in section IV.

III. PROBLEM FORMULATION

The problem formulation of distributionally robust energy-
reserve-storage dispatch proposed in this paper is directly
extended from Jabr’s robust multi-period OPF with storage
and renewables [2]. The extension is made from two aspects.
First, spinning reserve is explicitly handled in the formulation,
and the availability and utilization costs of the spinning
reserve are thus reflected in the objective function. Second,
instead of robust optimization, the problem is formulated as a
distributionally robust optimization problem as (1).

The uncertainties of system operation mainly originate
from the the load and renewable forecasting errors uniformly
represented by the forecasting errors of composite load:

P̃di(t) = Pdi(t) + ε̃i(t). (6)

To maintain real-time power balance under uncertainties, the
proposed formulation inherits the affinely adjustable approach
from [2] where both the conventional generators and the en-
ergy storages participate in the frequency regulation according
to the associated participation factors:

P̃gi(t) = Pgi(t) + αgi(t)
∑
k∈B

ε̃k(t), (7)

P̃si(t) = P dsi(t)− P csi(t) + αsi(t)
∑
k∈B

ε̃k(t). (8)

Although the affinely adjustable approach [2], [13], [17], [18]
is only conservative approximation to the fully adjustable
approach [12], [14], affine policy is directly compatible to the
AGC and numerically more tractable. To reduce the dimension
of the random variables, we further define

φ̃t =
∑
k∈B

ε̃k(t) (9)

θ̃lt =
∑
k∈B

πldk ε̃k(t). (10)

Under above definitions, we have P̃gi(t) = Pgi(t) + αgi(t)φ̃t
and P̃si(t) = P dsi(t)−P csi(t)+αsi(t)φ̃t. Furthermore, by using
equation (6)∼(10), the power flow on line l at time t takes the
form as in equation (11).

Let Plt denote the probability distribution for 2-dimensional
random variable (φ̃t, θ̃lt) with marginal distributions Pφt and
Pθlt . Using the historical data of φ̃t and θ̃lt, we can con-
struct the ambiguity sets as defined in (5) for Pφt and
Pθlt , denoted as Pφt and Pθlt , respectively. Then the am-
biguity set of joint distribution Plt is defined as P lt ={
Plt ∈ P0(R2)

∣∣∣Pφt ∈ Pφt ,Pθlt ∈ Pθlt }.
Under the affinely adjustable framework described above,

the real-time power balance is guaranteed by

∑
i∈G

Pgi(t) +
∑
i∈S

(P dsi(t)− P csi(t)) =
∑
i∈B

Pdi(t) (12)

∑
i∈G

αgi(t) +
∑
i∈S

αsi(t) = 1 (13)

αgi(t) ≥ 0, αsi(t) ≥ 0, (14)
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S̃l(t) =
∑
i∈G

πlgiP̃gi(t) +
∑
i∈S

πlsiP̃si(t)−
∑
i∈B

πldiP̃di(t) (11a)

=
∑
i∈G

πlgi(Pgi(t) + αgi(t)φ̃t) +
∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ̃t) −

∑
i∈B

πldiPdi(t)− θ̃lt (11b)

where the setting values of generator power, storage
charge/discharge power and generator/storage participator fac-
tors need to be dynamically adjusted to minimize costs while
ensure system security. The followed constraints (15)∼(17)

P gi +R−gi(t) ≤ Pgi(t) ≤ P gi −R
+
gi(t) (15)

R−gi(t) ≥ 0, R+
gi(t) ≥ 0 (16)

−R−gi +R−gi(t+ 1) +R+
gi(t) ≤ Pgi(t+ 1)− Pgi(t)

≤ R+

gi −R+
gi(t+ 1)−R−gi(t).

(17)

together ensure the procurability of upward and downward
spinning reserve from conventional generators considering
generator capacity limits (15) and ramp rate limits (17).
By introducing binary decision variable ωi(t), the following
constraints

0 ≤ P csi(t) ≤ P
c

siωi(t) (18a)

0 ≤ P dsi(t) ≤ P
d

si(1− ωi(t)) (18b)
ωi(t) ∈ {0, 1}, i ∈ S, t ∈ T (18c)

not only set the storage charge/discharge power limits but also
avoid simultaneous charging and discharging. The followed
constraints (19)∼(22)

−P csi +R−si(t) ≤ P
d
si(t)− P csi(t) ≤ P

d

si −R+
si(t) (19)

R−si(t) ≥ 0, R+
si(t) ≥ 0 (20)

Esi(0)+

t∑
τ=1

(
ηcsiP

c
si(τ)− 1

ηdsi
P dsi(τ) + ηcsiR

−
si(τ)

)
∆t ≤ Esi

(21)

Esi(0)+

t∑
τ=1

(
ηcsiP

c
si(τ)− 1

ηdsi
P dsi(τ)− 1

ηdsi
R+
si(τ)

)
∆t ≥ Esi

(22)
together guarantee the procurability of spinning reserve from
energy storages by considering the charge/discharge power
limits (19) and the stored energy upper/lower limits (21)(22).
The following cycling constraint

Esi(0) +

T∑
τ=1

(
ηcsiP

c
si(τ)− 1

ηdsi
P dsi(τ)

)
∆t = Esi(0) (23)

sets the final stored energy to be the initial values.

In addition, the adequacy of downward/upward spinning
reserve and line capacity is ensured by distributionally robust
chance constraint (DRCC)

Pφt
[
−R−gi(t) ≤ αgi(t)φ̃t, ∀i ∈ G
−R−si(t) ≤ αsi(t)φ̃t, ∀i ∈ S

]
≥ 1− β1,∀Pφt ∈ P

φ
t

(24)

Pφt
[
αgi(t)φ̃t ≤ R+

gi(t), ∀i ∈ G
αsi(t)φ̃t ≤ R+

si(t), ∀i ∈ S

]
≥ 1− β2,∀Pφt ∈ P

φ
t

(25)
and

Plt



− Cl ≤
∑
i∈G

πlgi(Pgi(t) + αgi(t)φ̃t)

+
∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ̃t)

−
∑
i∈B

πldiPdi(t)− θ̃lt ≤ Cl


≥ 1− γ,
∀Plt ∈ P lt

(26)
where the parameter β1, β2 and γ are pre-specified allow-
able probability for renewable curtailment, load shedding and
transmission line overload, respectively. In order for (24)∼(24)
to be feasible, it requires γ ≥ β1 + β2. We will shed more
light on the DRCC (24)∼(26) by looking at their deterministic
counterparts in section-IV-A.

The objective function consists of the costs of conven-
tional generation (27a), storage charge/discharge (27b), up-
ward/downward reserve availability of generators (27c), up-
ward/downward reserve availability of storages (27d) and the
expected costs of reserve utilization (27e), formally stated as

F (Pg,P
d
s ,P

c
s ,R

+
g ,R

−
g ,R

+
s ,R

−
s ,αg,αs)

=
∑
t∈T

∑
i∈G

cgiPgi(t) (27a)

+
∑
t∈T

∑
i∈S

(cdsiP
d
si(t) + ccsiP

c
si(t)) (27b)

+
∑
t∈T

∑
i∈G

(d+giR
+
gi(t) + d−giR

−
gi(t)) (27c)

+
∑
t∈T

∑
i∈S

(d+siR
+
si(t) + d−siR

−
si(t)) (27d)

+
∑
t∈T

max
Pφt ∈P

φ
t

EPφt
[Qt(αg(t),αs(t), φ̃(t))]. (27e)

In light of (1), the expectation in (27e) is evaluated w.r.t. the
worst-case distribution in the ambiguity set, which guarantees
that the obtained strategy can perform well in the absence
of precise knowledge about the underlying true probability
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distribution. The explicit formula for reserve utilization costs
Qt(αg(t),αs(t), φ̃t) is given by

Qt(αg(t),αs(t), φ̃t) =∑
i∈G

(
f+gi(αgi(t)min{φ̃t, φ

′
t})+ + f−gi(−αgi(t)max{φ̃t, φ′t})

+
)

+
∑
i∈S

(
f+si(αsi(t)min{φ̃t, φ

′
t})+ + f−si (−αsi(t)max{φ̃t, φ′t})

+
)
.

(28)

where [φ′, φ
′
], that will be analyzed in section-IV-A, is the

dispatchable range of total forecasting error determined by the
DRCC (24)∼(26).

To sum up, the proposed distributionally robust energy-
reserve-storage dispatch (ERSD) problem takes the form:

min F (Pg,P
d
s ,P

c
s ,R

+
g ,R

−
g ,R

+
s ,R

−
s ,αg,αs)

s.t. (12) ∼ (26).
(29)

IV. SOLUTION APPROACH

The major obstacles to solve problem (29) are the DRCCs
(24)∼(26) and the worst-case expectation in the objective
function (27). In this section, we show the DRCCs can be re-
placed by some deterministic linear constraints and the worst-
case expectation can be evaluated by a linear programming.
Therefore, the problem (29) can be cast into a MILP.

A. Deterministic Reformulation of Distributionally Robust
Chance Constraints

Let Φt(x) and Φt(x) be the confidence bands for the CDF
of random variable φ̃t, and further define φ′

t
= Φ

−1
t (β1) and

φ
′
t = Φ−1t (1− β2). Then DRCC (24) is satisfied if{

−R−gi(t) ≤ αgi(t)φ
′
t
, ∀i ∈ G

−R−si(t) ≤ αsi(t)φ
′
t
, ∀i ∈ S,

(30)

which can be easily seen from Pφt [φ̃t < φ′
t
] ≤ Φt(φ

′
t
) = β1,

∀Pφt ∈ P
φ
t . Similarly, DRCC (25) is satisfied if{

αgi(t)φ
′
t ≤ R+

gi(t), ∀i ∈ G

αsi(t)φ
′
t ≤ R+

si(t), ∀i ∈ S,
(31)

since Pφt [φ̃t > φ
′
t] ≤ 1 − Φt(φ

′
t) = β2. In addition,

let Θl
t(x) and Θ

l

t(x) be the confidence bands for the CDF
of random variable θ̃lt, and θ′lt = (Θ

l

t)
−1(γ−β1−β2

2 ) and
θ
′
lt = (Θl

t)
−1(1− γ−β1−β2

2 ). Then we have ∀Plt ∈ P lt ,

Plt
[
φ̃t /∈ [φ′

t
, φ
′
t] or θ̃lt /∈ [θ′lt, θ

′
lt]
]

≤Pt[φ̃t < φ′
t
] + Pt[φ̃t > φ

′
t] + Pt[θ̃lt < θ′lt] + Pt[θ̃lt > θ

′
lt]

=Pφt [φ̃t < φ′
t
] + Pφt [φ̃t > φ

′
t] + Pθlt [θ̃lt < θ′tl] + Pθlt [θ̃lt > θ

′
lt]

≤Φt(φ
′
t
) + 1− Φt(φ

′
t) + Θ

l

t(θ
′
lt) + 1−Θl

t(θ
′
lt) = γ.

(32)
Therefore, DRCC (26) is satisfied if the line overload does
not happen when (φ̃t, θ̃lt) takes values at the vertices of
polyhedron {(φ̃t, θ̃lt)|φ̃t ∈ [φ′

t
, φ
′
t] and θ̃lt ∈ [θ′lt, θ

′
lt]}, which

can be further written as deterministic constraint (33) by
noticing θ′lt < θ

′
lt.

As revealed in deterministic constraints (30), (31) and (33),
the system can safely respond to random variable φ̃t in the
range of [φ′, φ

′
] which we call the dispatchable range of total

forecasting error. To ensure the system security, the system
operator resorts to load shedding when φ̃t exceeds φ

′
t and

renewable curtailment when φ̃t goes below φ′
t
. Therefore, the

reserve utilization costs (28) are the saturating linear function
of total forecasting error φ̃t.

B. Evaluation of Worst-case Expectation

In the objective function (27), we need to evaluate the
worst-case expectation of the reserve utilization costs which
is a piece-wise linear function of the decision variables. The
structure of the ambiguity set (5) allows the reformulation of
the worst-case expectation as a LP, formally stated as

Lemma 2: Let φ̂
(1)
t , φ̂

(2)
t , · · · , φ̂(n)t be the ascendingly

ordered samples of random variable φ̃t. Without loss of
generality, assume φ̂(k)t ≤ 0,∀k ≤ m and φ̂(k)t > 0,∀k > m.
The ambiguity set Pφt is constructed as in (5), i.e. Pφt ={
P ∈ P0([φ

t
, φt])

∣∣∣P[φ̃t ≤ φ̂(k)t ] ∈ [pk
t
, pkt ], k = 1, · · · , n

}
.

For notational convenience, let φ̂(0)t = φ
t
, φ̂(n+1)

t = φt and
pn+1
t

= pn+1
t = 1. The worst-case expectation in (27) is

equal to the optimum of the following LP [23]:

max
Pφt ∈P

φ
t

EPφt
[Qt(αg(t),αs(t), φ̃(t))]

= arg min
λkt ,λ

k
t

k=m−1,··· ,m+2

m+2∑
k=m−1

(λ
k

t p
k
t − λ

k
t p
k
t
)

+

m−2∑
k=1

(fdnt (φ̂
(k−1)
t )− fdnt (φ̂

(k)
t ))pkt

+

n∑
k=m+3

(fupt (φ̂
(k)
t )− fupt (φ̂

(k+1)
t ))pk

t
+ fupt (φ̂

(n+1)
t )pn+1

t

s.t.



λkt ≥ 0, λ
k

t ≥ 0, k = m− 1, · · · ,m+ 2∑m+2
i=k (λ

i

t − λ
i
t) + fupt (φ̂

(m+3)
t ) ≥ fdnt (φ̂

(k−1)
t ),

k = m− 1,m,m+ 1∑m+2
i=k (λ

i

t − λ
i
t) + fupt (φ̂

(m+3)
t ) ≥ fupt (φ̂

(k)
t ),

k = m+ 1,m+ 2
(34)

where

fupt (φ̃t) = gupt φ̃t − gupt (φ̃t − φ
′
t)

+ (35)

fdnt (φ̃t) = −gdnt φ̃t − gdnt (−φ̃t + φ′
t
)+ (36)

gupt =
∑
i∈G

f+giαgi(t) +
∑
i∈S

f+siαsi(t) (37)

gdnt =
∑
i∈G

f−giαgi(t) +
∑
i∈S

f−siαsi(t). (38)
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∑
i∈G

πlgi(Pgi(t) + αgi(t)φ
′
t
) +

∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ

′
t
)−

∑
i∈B

πldiPdi(t)− θ
′
lt ≤ Cl, ∀l ∈ L (33a)∑

i∈G
πlgi(Pgi(t) + αgi(t)φ

′
t) +

∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ

′
t)−

∑
i∈B

πldiPdi(t)− θ
′
lt ≤ Cl, ∀l ∈ L (33b)

− Cl ≤
∑
i∈G

πlgi(Pgi(t) + αgi(t)φ
′
t
) +

∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ

′
t
)−

∑
i∈B

πldiPdi(t)− θ
′
lt, ∀l ∈ L (33c)

− Cl ≤
∑
i∈G

πlgi(Pgi(t) + αgi(t)φ
′
t) +

∑
i∈S

πlsi(P
d
si(t)− P csi(t) + αsi(t)φ

′
t)−

∑
i∈B

πldiPdi(t)− θ
′
lt, ∀l ∈ L (33d)

C. Deterministic MILP Formulation

In summary, evaluating the worst-case expectation in (27)
with the LP (34) and replacing the DRCC (24)∼(26) with
the deterministic reformulation (30)∼(33), we can cast the
proposed formulation into a MILP model for which off-the-
shelf solvers are available.

D. Eliminating Inactive Line Capacity Constraints

The number of line capacity constraints (33) are 4×|L|×|T |
which could be prohibitively large for real-world power sys-
tems with small dispatch intervals. Fortunately, in practice,
most of the line capacity constraints are inactive thus redun-
dant for the optimization model. If the inactive constraints can
be identified and eliminated before solving the problem, the
computational burden can be significantly reduced. Here we
extend the fast identification method in [24] to the problem
formulation in this paper.

Consider the following problems:

Λlt,max(φ̃t, θ̃lt)
(

Λlt,min(φ̃t, θ̃lt)
)

= arg max(min)
Pg(t),Ps(t),αg(t),αs(t)

∑
i∈G

πlgi(Pgi(t) + αgi(t)φ̃t)

+
∑
i∈S

πlsi(Psi(t) + αsi(t)φ̃t)

−
∑
i∈B

πldiPdi(t)− θ̃lt

(39)

subject to∑
i∈G

(Pgi(t) + αgi(t)φ̃t) +
∑
i∈S

(Psi(t) + αsi(t)φ̃t)

=
∑
i∈B

Pdi(t) + φ̃t
(40a)

P gi ≤ Pgi(t) + αgi(t)φ
′
t

(40b)

Pgi(t) + αgi(t)φ
′
t ≤ P gi (40c)

− P csi ≤ Psi(t) + αsi(t)φ
′
t

(40d)

Psi(t) + αsi(t)φ
′
t ≤ P

d

si. (40e)

where (40a) is obtained by multiplying (13) by φ̃t and adding
to (12); (40b)∼(40c) are deduced from (15), (30) and (31).
Therefore, the feasible sets of the above optimization problems
are relaxations of the feasible set of the original MILP model.
Minimization (maximization) w.r.t. the feasible set defined by
(40) yields a lower (upper) bound of the minimum (maximum)

w.r.t the feasible set of the original MILPmodel. The objective
function (39) is just the possible line flow at each line in each
time period. Similar to the analysis in [24], [25], we have the
following lemma.

Lemma 3: For any l ∈ L and t ∈ T , we have

• If Λlt,max(φ
t
, θlt) ≤ Cl, constraint (33a) is inactive;

• If Λlt,max(φt, θ
l
t) ≤ Cl, constraint (33b) is inactive;

• If Λlt,min(φ
t
, θ
l

t) ≥ −Cl, constraint (33c) is inactive;

• If Λlt,min(φt, θ
l

t) ≥ −Cl, constraint (33d) is inactive.

To simplify the above LP (39)(40), we further define H =
G ∪ S and for any i ∈ H:

Pi(t) =

{
Pgi(t) + αgi(t)φ̃t − P gi, i ∈ G
Psi(t) + αsi(t)φ̃t + P

c

si, i ∈ S
(41a)

πli =

{
πlgi, i ∈ G
πlsi, i ∈ S

(41b)

P i =

{
P gi − P gi, i ∈ G

P
d

si + P
c

si, i ∈ S
(41c)

Dt =
∑
i∈B

Pdi(t)−
∑
i∈G

P gi +
∑
i∈S

P
c

si (41d)

Kl
t = −

∑
i∈B

πldiPdi(t) +
∑
i∈G

πlgiP gi −
∑
i∈S

πlsiP
c

si (41e)

Then we have

Λlt,max(φ̃t, θ̃lt)
(

Λlt,min(φ̃t, θ̃lt)
)

= arg max(min)
P (t)

∑
i∈H

πliPi(t) +Kl
t − θ̃lt

s.t.


∑
i∈H

Pi(t) = Dt + φ̃t

0 ≤ Pi(t) ≤ P i

(42)

LP (42) has a analytical solution according to the analysis
in [24]. Let i1, i2, · · · , i|H| be a permutation of 1, 2, · · · , |H|
such that {πli1 , π

l
i2
, · · · , πli|H|} are in descending (ascending)

order, and there exists an integer 1 ≤ m ≤ |H| such that∑m−1
k=1 P ik ≤ Dt + φ̃t ≤

∑m
k=1 P ik . Then

Λlt,max(φ̃t, θ̃lt)
(

Λlt,min(φ̃t, θ̃lt)
)

=

m−1∑
k=1

(πlik − π
l
im)P ik + πlim(Dt + φ̃t) +Kl

t − θ̃lt.
(43)
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(a) Feasible set of constraint (18) (b) Convex hull defined by (44)

Fig. 1: Illustration of Convex Relaxation of (18) to (44).

Based on the analytical expression (43), lemma 3 gives a
computationally cheap way to identify most of the inactive
line capacity constraints in (33).

E. Convex Relaxation

The non-convexity of the proposed optimization model
comes only from the binary variables introduced in (18)
to avoid simultaneous charging and discharging of energy
storages. The analysis in [26] and [27] show that simultaneous
charging and discharging could only happen when the local
marginal price goes below a negative threshold value, which is
very unusual in practical operation. Considering such feature,
we employ an iterative scheme similar to the successive
constraint enforcement in [2], [17]. In our implementation,
we first relax all the constraint (18) to its convex hull:

P csi(t) ≥ 0, P dsi(t) ≥ 0 (44a)

P csi(t)/P
c

si + P dsi(t)/P
d

si ≤ 1 (44b)

which is illustrated in Fig. 1. In this way, we obtain a LP re-
laxation to the original MILP. If the solution of relaxed model
happens to lie in the feasible set of the original MILP model,
we can conclude that this solution is also the global optimal
solution of the original MILP problem. Therefore, after solving
the LP model, we check whether P csi(t)P

d
si(t) = 0 for all

i ∈ S, t ∈ T . If so, the solution to the orginal MILP model is
found. Otherwise, the constraint (44) has to be changed back to
constraint (18) for those i and t where P csi(t)P

d
si(t) > 0. Hence

we obtain a relaxed MILP model which is still much simpler
than the orignal MILP model. Again we solve the relaxed
model and then check the exactness of the relaxation. This
process is repeated until P csi(t)P

d
si(t) = 0 for all i ∈ S, t ∈ T .

V. NUMERICAL RESULTS

The proposed formulation and method were programmed
in MATLAB with Gurobi as the MILP and LP solver running
on a Win 8 PC with a 3.0GHz CPU and 24 GB RAM. The
simulation was carried out on IEEE-118 bus system modified
according to [28]. Five wind farms were installed at bus 16,
37, 48, 75 and 83 with each capacity of 100MW. Storage
was assumed to be installed at each non-generator bus. The
energy capacity for each storage was 32 MW, and the charge
& discharge power capacity were both set to be 8 MW/h. The
charge & discharge efficiency were both 0.9. The ramp rates
over each hour for conventional generator were set to be 50%

TABLE I: Reserve Availability and Utilization Prices

R+
gi/R

−
gi f+

gi/f
−
gi R+

si/R
−
si f+

si /f−
si cdsi/c

c
si

0.1∼0.3
cgi

0.8∼1.1 cgi
0.1∼0.3
cdsi/c

c
si

0.8∼1.1
cdsi/c

c
si

15/10
$/WMh

of the rated capacity. We considered a time horizon of 24
h with each time step 30 min. The half-hourly forecasting
load and wind generation profile were obtained from [2]
and NREL WIND Toolkit. All uncertainties were assumed
to originate from the forecasting errors of wind generation.
Different types of probability distributions were employed
to generate “realistic” data of wind power forecasting errors
whose mean and variance were set according to the typical
day-ahead forecasting errors in U.S. reported in [29]. The
confidence level α for the confidence bands of CDF is set to
0.05. In addition, the reserve availability and utilization prices
of generators and storages were randomly selected from the
ranges shown in Table I.

The proposed method is data-driven and distribution-free,
so it can deal with wind power forecasting errors following
any probability distributions. Thus, we tested the method
with wind power forecasting errors generated from normal,
laplace, beta and hyperbolic distributions, and Monte Carlo
simulations with 106 samples were employed to assess the
performance of the proposed method. Fig. 2 illustrates the
evolution of optimization objective function (solid blue line)
and the operation costs from Monte Carlo simulation (dotted
red line) as the number of available historical data increases.
Firstly, we observe that the operation costs from Monte Carlo
simulation are always upper bounded by the objective function
of the optimization model. This exhibits the distributional
robustness of the proposed method: the objective function
represents the costs w.r.t the worst-case distribution in the
ambiguity set whereas the underlying true distribution could
be different from the worst-case one. Secondly, as more
historical data is available, both the objective functions and
the simulated costs decrease, which shows the value of data:
the more historical data is employed, the less conservative the
solution is. Finally, the gaps between the objective functions
and the simulated costs are narrowed by incorporating more
historical data which reveals that the ambiguity set shrinks to
the underlying true probability distribution as the number of
historical data increases. Table II further lists the percentage
gaps between objective functions and simulated costs.

Since the proposed problem formulation is a direct exten-
sion of the robust multi-period OPF [2], we compared the
proposed CDF-based DRO approach with the RO approach
in [2]. The RO approach can be implemented in our problem
formulation by: 1) replacing the DRCC (24)∼(26) with linear
robust constraints using the support of the random variable
as the uncertainty set; 2) eliminating the reserve utilization
term in the objective function (27). The operation costs of the
strategies obtained by both methods are compared in Fig. 3. In
Fig. 3a, the wind power forecasting follows beta distribution
with different variances. The proposed CDF-based DRO ap-
proach achieves lower operation costs than RO approach under
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each level of forecasting errors. The difference of the operation
costs tends to increase as the variances of the forecasting error
increase. In Fig. 3b, the similar comparison is carried out under
different types of distributions of the forecasting errors. It
is also shown that the proposed CDF-based DRO approach
obtains more economical operation strategies than the RO
approach. In short, the proposed CDF-based DRO approach
captures the detailed probabilistic information from historical
data while the RO approach ignores such information. When
more data is available, the proposed method can produce a
more economic strategy whereas the RO does not have a
mechanism to take advantage of more data.

Another major competitor of the CDF-based DRO is the
moment-based DRO appears in [9], [12], [19], [20], etc. The
ambiguity set for moment-based DRO is the set of all prob-
ability distributions with given mean and covariance (usually
sample mean and sample covariance). To initiate a meaningful
comparison, we implement the moment-based DRO in our
problem formulation as follows: 1) the chance constraints
(24)∼(26) can be reformulated as SOCP constraints by lever-
aging the Chebyshev inequality P{|ξ̃ − µ| ≥

√
1/ρσ} ≤ ρ

[20]; 2) the evaluation of worst-case expectation in (27e) can
be also cast into a SOCP using duality theory of moment
problem. Fig. 4 compares the operational costs by two methods
when different number of historical data is available. The
curves under different types of underlying true distributions
show the similar pattern. The costs of moment-based DRO
is always higher than that of the CDF-based DRO and the
difference is enlarged when more data is at hand. By merely
relying on the information of the first two moments, the
moment-base DRO is unable to fully take advantage of the
abundance of data, which is in stark contrast to the data-
exploiting feature of the CDF-based DRO. Fig. 5 and fig. 6
confirm the foregoing conclusion by observing the violation
probability of chance constraint (24) and (25). In this group
of test, we have set the β1 = β2 = 0.05. Fig. 5 and Fig.
6 show that both methods ensure higher reliability level than
required due to their “distributionally robust” nature. As more
data is available, the proposed CDF-based DRO gradually
and safely reduce the guaranteed reliability level to pursue
higher economic efficiency. In contrast, the conservatism of
the moment-based DRO remains significant even with 106

data. To further reveal the nature of both methods, we then
investigate the relationship between β and the minimal τ that
ensure P[|ξ−µ| ≤ τ ] ≥ 1−β,∀P ∈ P when P is the moment-
based ambiguity set or CDF-based ambiguity set constructed
from the different number of data. It is shown in Fig. 7 that
the true relation between β and τ for the specific distribution
under study is always upper bounded by those provided by
the DRO approaches. The curve given by the moment-based
DRO is very far away from the true curve, and the curves
provided by the CDF-based DRO approach the true curve as
more and more data is available. In summary, the CDF-based
DRO extracts much more probabilistic information from data
than the moment-based DRO approach, which leads to less
conservative operation strategy. In addition, when more data
is at hand, the moment-based DRO can merely have a more
accurate guess of the mean and covariance, whereas the pro-

TABLE II: Percentage Gap Between the Objective Function
and the Costs by Monte Carlo Simulation

data num. 500 1000 2000 5000 10000 50000

normal 0.041% 0.028% 0.020% 0.013% 0.009% 0.004%
laplace 0.494% 0.291% 0.198% 0.120% 0.081% 0.035%

beta 0.907% 0.593% 0.416% 0.252% 0.177% 0.079%
hyperbolic 0.481% 0.288% 0.196% 0.119% 0.080% 0.035%

TABLE III: Solver Time (sec.) of the RO, the moment-based
DRO and the CDF-based DRO.

method RO M-
DRO

CDF-
DRO
(102)

CDF-
DRO
(103)

CDF-
DRO
(104)

CDF-
DRO
(105)

normal 3.8 146.3 6.1 3.6 7.9 11.6
laplace 4.4 132.9 6.2 4.3 7.8 12.3

beta 6.7 187.6 6.2 8.8 10.7 11.7
hyperbolic 3.9 128.5 7.1 3.8 4.3 12.5

posed CDF-based DRO can extract more detailed information
about the whole distribution. The CDF-based DRO thus has
much stronger ability to exploit data.

The focus is then given to the computational efficiency
of the proposed method. Table III lists the solver time of
the proposed CDF-based DRO approach using the different
number of data points along with the solver time of the RO and
the moment-based DRO approaches. The solver time of the
proposed method does not necessarily grow with the number
of historical data due to the fact that the scale of the proposed
MILP model is irreverent to the number of data points. The
variation of the solver time with the number of data points is
just due to numerical issues of the solver. Compared with the
RO approach, the computational burden of the proposed CDF-
based DRO approach is slightly more intensive on average
due to the larger number of decision variables and constraints.
The moment-based DRO, on the other hand, can be solved
much slower than the other two approaches due to its SOCP
formulation.

Table IV demonstrates the effectiveness of the inactive con-
straint elimination and convex relaxation procedures discussed
in section IV. It is shown that more than 88% of the line capac-
ity constraints are identified to be inactive thus redundant to
the optimization model. In all our tests, the average solver time
of the proposed method without inactive constraint elimination
is around 38.7s. After elimination, the average solver time
reduces to 9.6s which is approximately 1/4 of that without
redundant constraint elimination. Moreover, the relaxation of
constraint (18) to constraint (44) is 100% exact for the energy
storages, which indicates the local marginal prices at the
storage buses are always beyond the threshold values for
exact relaxation [26], [27]. The underlying physical reason
for this phenomenon is the relatively adequate transmission
and storage capacity of the case under study [27]. Both the
elimination of the inactive line capacity constraints and the
convex relaxation of constraint (18) significantly contribute to
the improvement of numerical tractability.
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Fig. 2: Evolution of objective function and simulated costs as
the increase of available historical data.
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Fig. 3: Cost comparison between CDF-based DRO and RO

VI. CONCLUSION

In this paper, an energy-reserve-storage co-optimization
model and a data-driven distributionally robust method are
proposed to achieve economical and reliable operation of
power systems with variable and uncertain renewable sources.
Compared with the SP approach, the proposed method as-
sumes no prior knowledge of the probability distribution
of the uncertainties and achieve operational robustness by
considering the worst-case distribution consistent with the
observed data. Compared with the RO approach, the proposed
method exploits detailed probabilistic information learned
from historical data and the conservatism of the solution can
be reduced by incorporating more historical data. Numerical
studies demonstrate the favorable features of the proposed
methods.

TABLE IV: Percentages of Identified Inactive Line Capacity
Constraints and Exact Convex Relaxations

distribution normal laplace beta hyperbolic

inactive line constraint (%) 89.57% 88.78% 88.55% 88.82%
relaxation exactness (%) 100% 100% 100% 100%
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Fig. 4: Comparison between the CDF-based DRO and the
moment-based DRO for the operational costs by MCS under
different types of distributions.
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Fig. 5: Comparion of the violation probability of chance
constraint (24) between the moment-based DRO and the CDF-
based DRO with different number of data.
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based DRO with different number of data.
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