
Integrating Data and Text Mining Processes for Digital
Library Applications

Robert Sanderson
University of Liverpool

Department of Computer Science
Ashton Street, Liverpool, L69 3GL

(+44) 151 795 4252

azaroth@liverpool.ac.uk

Paul Watry
University of Liverpool
Sydney Jones Library

Chatham Street, Liverpool, L69 3DA
(+44) 151 794 2696

pwatry@liverpool.ac.uk

ABSTRACT
This paper explores the integration of text mining and data mining
techniques, digital library systems, and computational and data
grid technologies with the objective of developing an online
classification service exemplar. We discuss the current research
issues relating to the use of data mining algorithms and toolkits
for textual data; the necessary changes within the Cheshire3
Information Framework to accommodate analysis workflows; the
outcomes of a demonstrator based on the National Library of
Medicine's Medline dataset; and the provision of comparable
metrics for evaluation purposes. The prototype has resulted in
extremely accurate online classification services and offers a
novel method of supporting text mining and data mining within a
highly scaled computational environment, integrated seamlessly
into the digital library architecture.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Libraries –
Collection, Systems issues. I.2.7 [Artificial Intelligence]: Natural
Language Processing.

General Terms
Algorithms, Performance, Design.

Keywords
Data Mining, Text Mining, Digital Libraries, Grid Processing.

1. INTRODUCTION
Recent years have shown increasing interest in the re-application
of methodologies and ideas from related areas of information
science and eScience within the digital library and digital
preservation contexts. The continued advancement of data and
text mining techniques has produced useful and accessible tools
with which to implement or improve digital library services,
including advanced document clustering and automated metadata
extraction as a means to improve discovery. The natural language
processing techniques used in text mining (following Hearst's
definition[6]) may also be applied to text and data sources in large

scale digital libraries and repositories. On the eScience side,
massively parallel computing and data grids are also being
incorporated into mainstream digital library solution: examples
include the integration[14] of the DSpace curation management
system with the Storage Resource Broker; and the integration of
the Cheshire3 Information Framework with the Storage Resource
Broker as part of the National Archives and Records
Administration digital preservation prototype[8].
The three areas of data and text mining, the grid, and digital
libraries have inter-related benefits and challenges. The scale of
digital libraries has continued to grow and is now at the point
where data grid-based storage solutions are becoming of great
relevance. Data grids are able to provide seamless access to
petabytes of storage, geographically distributed to different
locations, and stored in different types of repository. Files are
identified by a logical identifier, rather than a file name; a system
very familiar to digital libraries in terms of handles, DOIs and so
forth.
Given this increased amount of available data and metadata,
machine learning processes, supported by integration with digital
library systems, are able to be more accurately trained, reducing
manual labor and adding value to previous investment in content
creation. Data mining processes typically include classification
(predict if a given document is a member of a particular class or
domain), clustering (grouping together similar documents) and
association rule mining (discovering rules that interrelate
documents or terms within those documents). However, both data
and text mining processes are computationally expensive and can
benefit in turn from distribution across multiple machines for
parallel computation.
Exploratory prototypes have been developed to examine the
convergence of information access systems with tools for data
analysis. These advances point to further work required to
determine the extent to which, if at all, natural language
processing can aid in the accuracy and efficiency of data mining
being performed on a large collection of texts. In particular, can
classification engines be generated that are more accurate, faster
to classify or faster to train, handle more data at once, or all of the
above?
This paper begins to explore some of the synergy between these
overlapping areas, focusing on the text and data mining aspects.
We present our research into this integration and the
developments required within the Cheshire3 Information
Framework to support it, using a prototype service developed for
the National Centre for Text Mining (NaCTeM) in the UK to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL’07, June 18–23, 2007, Vancouver, British Columbia, Canada.
Copyright 2007 ACM 978-1-59593-644-8/07/0006...$5.00.

73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/146488024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

evaluate the success of the work. This application focuses on the
text and data mining integration work within a digital library
rather than simply using the data stored in it. The scale of the full
Medline[9] data set, currently some 16 million abstracts,
combined with the computational expense of both performing
natural language processing and then training machine learning
tools is an ideal scenario for also investigating the use of
distributed processing.
First, background and related work is considered, showing that
individually the components have been well researched by others,
but the full integration of all three areas has yet to be developed to
maximize the potential value. We then turn to the methodology
of how this integration was performed within the Cheshire3
architecture. The experiments and results of the NaCTeM
prototype are then discussed to demonstrate the correctness,
scalability and utility of the integration work and finally
conclusions are drawn.

2. BACKGROUND AND RELATED
WORK
The computational grid, although not yet the ubiquitous resource
envisioned by the NSF's Office of Cyberinfrastucture, has been
described in detail in the past and is becoming increasingly
important for digital libraries and information retrieval as for all
aspects of the information technology sector. As a data intensive
application, digital libraries require some dedicated infrastructure
to make efficient use of the available processing resources. The
requirements for such an infrastructure are currently being
investigated by several projects including DILIGENT[3] and
Cheshire, but it is also moving into mainstream industry with
Oracle discussing their own digital library solutions built on grid
technology at EGEE 06[10], for example.

Data grid solutions for massive storage have also made their way
into the core of digital library and digital preservation thinking,
with the Storage Resource Broker (SRB)[11] from the San Diego
Supercomputer Center in particular having been discussed in
international digital library proceedings in the past.

However, data mining and text mining applications within the
digital library context have been perhaps more specialized to date.
Machine learning technologies such as Hidden Markov Models
and Support Vector Machines have been used for name
disambiguation[5], metadata enhancement and to analyze service
generated metadata such as query logs and click streams, however
full advantage of the general techniques within digital library
services does not appear to be as widespread as one might expect,
given their utility. The major causes for this are, in the eyes of
the authors:

1. As digital libraries typically contain primarily
textual documents, only algorithms suited for text processing
are of interest. Many data mining algorithms balk at the high
dimensionality presented by a full document/term matrix.

2. Data mining toolkits often do not account for
sparse input vectors; instead they require an entry for every
attribute, even if the available algorithms would accept sparse
input. When each term is an attribute (and the frequency
within the document the value for each record), this leads to

an input data set which is too large to fit into main memory
for any reasonably sized collection.

3. Data mining processes are computationally very
expensive and technically challenging to implement, and
hence only solutions to specific problems tend to be
investigated. The co-integration of massively parallel
processing can help alleviate this factor.

Text mining processes within digital libraries are even less well
established, and for the most part simply use the digital library
infrastructure as a convenient location to discover texts to
process, rather than being fully integrated within services and
workflows. The "marrying" of the Greenstone digital library with
the GATE text mining environment[15] provides some initial
experimentation in this area, and considering the co-development
of the WEKA data mining toolkit, one might expect to see a fully
integrated solution available in time.

The computational expense to execute text mining based analysis,
point three above for data mining also, is believed to be the major
cause for the lack of widespread use of text mining processes.
There are only a very few natural language processing systems
available for general use that are fast enough to cope with even
medium scale digital libraries without parallel processing, and the
most advantageous method of integration into document
processing workflows is often not obvious.

Therefore, it is proposed that while the computational and data
grid integration is very important for dramatically increasing the
scalability of such systems within current models for digital
libraries, the real utility comes in the added integration of
computationally expensive processing such as data and text
mining applications embedded within the architecture for
seamlessly extending the information available for discovery and
analysis. When all of these subsystems are available in one
architecture, the disadvantages normally encountered (large
computational requirements, large storage requirements) are taken
care of, which has not been addressed by previous work in this
area.

In the next section we will describe the text and data mining
algorithms and implementations selected for this initial
integration research, and how they were integrated into the
Cheshire3 Information Framework.

3. METHODOLOGY
3.1 Algorithms
As outlined in points 1 and 2 above, not all algorithms and
toolkits are equally suited for dealing with textual data, often
represented as vectors for these purposes. Clustering and
Association Rule Mining (ARM) tend to deal more easily with
this sort of data and document clustering is well understood, so
we have focused initially on the classification process. Four
algorithms of varying degrees of sophistication and computational
requirements were selected for this first round of integration.

Fast Domain Finder is a TF/IDF based classification technique
developed internally at Liverpool. As the name suggests, it does
not require much computation and it can also be used
successfully with only a small number of training instances,
including when determining documents belong to multiple

74

domains. However it is only suitable for predicting the domain(s)
of a document from the set of classes it was trained on and is not a
general purpose classification algorithm.
For integration within the Cheshire3 architecture, FDF was
reimplemented from Java using native Cheshire3 processing
objects. This allows for the execution to be seamlessly distributed
between multiple machines.

Naïve Bayes is a probabilistic algorithm which is capable of
learning many classes simultaneously and can be trained
incrementally. It works best when there is a significant amount of
training data in order to fine tune the probabilities. When the
evidence suggests more than one possible class it can return the
calculated probabilities for each, which is important in scenarios,
for example, where an instance may have more than one valid
domain, similar to FDF above.

The Reverend library[4] was selected for this integration as a pure
python implementation that was easy to use and extend, while still
being reasonably fast. It does not support Bayesian Networks,
however applications that would use such a network would likely
catered for by a Support Vector Machine based classifier.
Reverend supports merging of trained models, which is important
for distributed processing as each machine in the compute cluster
can learn a subset of the model and once all subsets have been
finished, they need only be merged by one machine into the
complete model.

Support Vector Machines are a very accurate classification
technique and, once trained, are very fast to make predictions.
They are very good at supporting sparse data, and some
implementations can return probability information for the
predictions. On the flip side, SVM is a binary classifier – it can
only distinguish between two classes at once. It is possible to
train n-1 SVMs to predict between n classes, where each predicts
one class or not that class, however this is very slow for many
classes.
LibSVM[1] from the University of Taiwan proved to be a very
capable and fast implementation for integration. It includes
command line tools, instructions for use as a library within C
programs, and a Python wrapper library allowing it to be used
directly from within Cheshire3 rather than via a command line
shell pipe.

Classification Association Rule Mining (CARM) is a constrained
use of ARM, where the consequent of the generated rules is a
single class label attribute. The procedure is otherwise the same
as general ARM. CARM is capable of learning n classes natively
and supports sparse input, but perhaps the most important
distinction to make in comparison to the other three algorithms
above is that it the classification model generated is human-
understandable. The rules used to make the prediction can be
inspected to see why the given class was selected, unlike the more
mathematically oriented SVM, FDF and Bayesian classifiers.
Most CARM implementations do not allow for incremental
training, however.

The integrated CARM implementation comes from the
Department of Computer Science in Liverpool. TFPC[2] is an a-
priori based algorithm which makes use of novel and fast tree
structures to efficiently record the data from which the rules are
derived. Investigation into incremental uses of these structures is
currently being undertaken. Unlike the previous implementations,

TFPC is only available in Java at the current time so integration is
via external calls rather than natively within Python.

Natural language processing tools are the cornerstone of text
mining. In order to treat text as language rather than data, it is
essential for the machine to know as much as possible about the
words being processed. There are several key techniques which
have been integrated into Cheshire3: part of speech tagging,
phrase chunking, and deep parsing of the grammatical structures.
The tools integrated for these processes are all from the Tsujii
Laboratory at the University of Tokyo[13], through their
association with NaCTeM. As they are written in C++, the
integration is via input/output pipes to the command line utilities.

The integration of grid processing and storage in Cheshire3 has
been described in previous papers; for further details and general
descriptions of the Cheshire3 framework, interested parties are
referred in particular to [7], and [12].

3.2 Digital Library Architecture
A few changes to the Cheshire3 architecture were required in
order to properly integrate the tools described above. It would
have been possible to simply bolt them on as special cases,
however the aim was seamless integration without any
preconceptions or restrictions as to how they would be used.
They should fit as cleanly as possible within existing object
interactions and not require additional layers of code between
those interactions.
To summarize the architecture described in the papers referenced
above, Cheshire3 has 4 main types of object – data (a
representation of a document or dataset; gray rectangles), storage
(a layer over a database or persistent storage mechanism; gray
cylinders), processing (an object that implements some
transformation of a data object; gray ovals), and abstract (a
collection of other objects and associated metadata or attributes;
white rectangles). Figure 1 presents the most common
interactions between the different types of objects, but a short
example of a typical data ingest process will hopefully be
enlightening. The DocumentFactory is given the path to a
directory containing PDF files, which it sequentially loads and
makes available to the system. The PDF documents are then
turned into XML through a series of PreParsers, and the originals
are stored in a DocumentStore. A Parser then parses the XML
and the resulting Record is stored in a RecordStore for later
retrieval, before being given to a series of Index objects. Each
Index then extracts the data using XPath, and uses a series of
Normalisers to transform each term. The terms and record
pointers are stored in an IndexStore to enable discovery.
Many of the mappings for the text and data mining applications
within the architecture are very straight forward. The NLP tools
found natural homes as PreParsers and also Normalisers when it
was useful to work with only a section of text extracted during
indexing rather than the entire document. The annotation of the
text can be done either in the common inline fashion, where the
part of speech is appended to each term and separated by a '/'
character, or by adding additional attributes to the object
representing the term within the framework.
Classification was modeled as a multi-stage PreParser – it first
takes in a document representing the collection of training
instances, processes it and returns the model created as a second

75

document. This model can be stored and then loaded again at run
time via the configuration of the PreParser. The trained PreParser
then takes in individual documents which it annotates with the
predicted class as additional metadata. This split usage did not
require any substantial changes to the architecture, just an
awareness within the workflows that the learning phase was
needed if the model had not been pre-built.

It was the very first object used in most Cheshire3 ingestion
workflows that required the most extensive changes. Previously,
a collection of documents (for example a set of MARC or XML
files) was modeled as a data object called a DocumentGroup.
DocumentGroups had to be constructed outside of the architecture
as they were the main input into the system; they could not be
built by a processing object unlike other data objects. This
deficiency was recognized early on, and DocumentGroups were
replaced by a processing object called a DocumentFactory.
DocumentFactories fill exactly the same role, however being
processing objects they can be included in workflow chains.
Another change which this brought about is that
DocumentFactories could be configured before runtime in a
configuration file. This means that pre-configured applications
could set the default values that control the discovery of the
individual documents (such as the top level XML tag, or the
character encoding) once in the configuration, rather than
requiring them to be given every invocation. The most important
effect of the change, however, is that DocumentFactories could be
invoked remotely in parallel processing mode. This solved many
troublesome inconsistencies, such as when it is desirable to create
a subset of documents without passing the dataset around between
nodes, as this can now be done by a call to a DocumentFactory
instead.

While an important change since previous presentations of the
architecture, it was not quite sufficient to fully integrate the data

mining processes. A subclass of the DocumentFactory was also
required: an AccumulatingDocumentFactory. Normal
DocumentFactories identify their collection of documents from a
single call, and the documents are then instantly available to
iterate through. This does not work for the architecture for
classification described above, as each document, rendered
appropriately for the classifier, must be loaded individually,
whereas the classifier requires a single document with all of the
information available together.

The AccumulatingDocumentFactory makes this possible. Instead
of making the documents available instantly, it continues to
accumulate information until a document is requested. It is only
at the point of request that the output document(s) are created,
thus allowing all of the term vectors to be merged together into
the single document/term matrix required for training.

4. EXPERIMENTS
The National Centre for Text Mining in the UK is researching
ways in which to make text mining oriented services available,
both for use centrally and for integration into external workflows.
The particular work that concerns this paper is a prototype for a
classification service creation service; that is to say a service
which can be configured to create other online classification
services. A user of the service will select two or more
discriminating topics for the system to build a classification
model from, based on matching documents, and then both enable
evaluation against further unseen documents as well as process
documents uploaded by the user.

The ingestion process is the critical aspect, with respect to the
integrated architecture. Each document is natively in XML
including metadata, controlled access fields such as the MeSH
headings, the title and abstract. The text mining tools, however,

Figure 1. Cheshire3 Object Model

76

expect raw text, separated into individual sentences. Secondly, in
order to properly evaluate the different combinations of tools and
preprocessing, it is important to deal with the text as a term, rather
than annotating the record directly, to allow different tools to
create different indexes. As such, the appropriate modeling was

to use the NLP tools as Normalisers within the Cheshire3
framework rather than PreParsers.

Another important aspect of the ingestion workflow is the ability
to store extracted data as a Document. This means that the results
of computationally expensive processing phases can be stored
such that if, in the future, different post-processing is required or
desirable, the workflow can be restarted from the point after the
linguistic analysis. A DocumentFactory in the workflow takes
care of this aspect, and can store the results in the data grid rather
than locally, which will be important for when the service is built
for all 16 million records as this annotated data is much larger
than the original abstract.

The workflow uses two different part of speech taggers – the
basic 'tagger' and Genia, which also returns the linguistic stem of
the word along with the part of speech. This allows the
comparison at the same time of the standard porter stemming
algorithm with the term set produced by full linguistic analysis of
the root words. Filters can then be applied based on the results of
these tools. Indexes containing only verbs, nouns and adjectives
were created rather than using the more typical stoplist based
approach to omit unhelpful words.

After the terms have been combined in an inverted index and
assigned sequential term identifiers, one vector file per index is
created. These vectors will then be used in the model creation
stage to build one classifier each, allowing the utility of each term
preprocessing workflow to be analysed based on the accuracy of
the resulting classifier. Summary metadata concerning global
word frequencies is also generated at this time.

The prototype service built on top of this information combines
aspects of information retrieval, data mining and text mining
together to create an application that is only feasible in an
architecture with all three aspects fully integrated. IR techniques
are used to identify the most relevant documents to a particular
subject, given as a MeSH heading. The system first identifies all
of the headings below the given one in the hierarchy, and finds all
Records which have any of those headings. The term vectors for
the abstract are then used by an AccumulatingDocumentFactory
to create a Document representing the matrix for the selected
records. This matrix document is then ingested by an SVM
PreParser which creates a model based on the documents and is
saved for future use.

During the document selection process, every tenth document is
extracted to a test set, implemented as a second
AccumulatingDocumentFactory. Once the model has been
generated, it is possible to then check its accuracy by running
against these known Documents. It can thus be viewed as a
single fold of ten-fold cross validation. After the application has
been migrated to a service, it will also accept uploaded documents
of unknown class to have its terms extracted and processed by the
same natural language processing workflow, and then classify it
against the selected model.

5. RESULTS
The full integration of the various tools is able to demonstrate its
utility quite easily. To consider the IR aspects first, the linguistic
analysis of the stem has advantages over Porter, if computational
expense is not a factor such as when massively distributed
processing is available. Not only are the edge cases where Porter
generates a strange or inaccurate stem negated, the resulting term
list can be displayed more easily to a user for keyword browsing.
The more accurate stems will, intuitively, slightly improve
retrieval, but means that queries also need to be stemmed using
the same NLP based algorithms, which takes additional
processing at runtime.

The ability to distinguish parts of speech is also intuitively
important for determining relevance ranking, as there are many
words with the same orthography but very different meanings.
By calculating the relevance score on only the appropriate part of
speech for the query context, higher precision will naturally be
obtained. For example, 'ram' (male sheep) and 'ram' (to run into
forcefully) will likely be used in very different documents. This
has not been quantified yet, but will be in future work against the
TREC datasets.

By filtering on parts of speech (noun, verb and adjective only, for
example), the constructed indexes are significantly smaller than
the equivalent indexes created with a static stoplist, without losing
any accuracy. Additionally, and more importantly, it solves the
problem of words used as proper nouns which are normally
stoplisted. For example, 'The Who' would be tagged as a proper
noun phrase rather than discarded as an article and a 'wh' word.
This allows the server to correctly answer such a query without
the need to maintain the proximity based locations of every
occurrence of very common words.

Finally, it is possible to create multiword term indexes from
extracted noun or verb phrases only, rather than a simple N-gram
approach. Again this results in a more useful, smaller index that
allows for common adjacency queries to be answered with a
single look up without storing all combinations of words.

The vectors produced from the processed terms are then fed as
input to the classification components. This was found to
improve both the performance and speed of the classification.
Using a 10 class text classification problem from the dataset and
SVM learners, the following table summarizes the results from
using different vector sources.

Table 1. Vector Source and Accuracy Results

Vector Source Avg
Terms

TCV
Accuracy

Every word in document 99 85.7%

Porter Stem of words in document 95 86.2%

Part of Speech filtered words 69 85.2%

Porter Stem of filtered words 65 86.3%

Genia filtered words 68 85.5%

Genia Stem filtered words 64 87.2%

77

Using the linguistic stems, filtered for only nouns, verbs and
adjectives the average number of attributes per instance was
reduced from 99 down to 64, while at the same time the ten-fold
cross validation accuracy improved from 85.7% up to 87.2%.
Also notable is that while the filtering reduced the average
number of entries in each vector, it also required stemming in
order to also increase the accuracy of the system at the same time.
The magnitude of the improvement is low as the SVM algorithm
is very good at ignoring irrelevant attributes or instances. This is
not to say that the improvement should be brushed over. Quite the
opposite, as a 2% improvement in accuracy while significantly
reducing the number of terms before the SVM learning phase as it
shows that the text mining based filtering does a better job at
selecting terms for classification than the data mining process
does. In conjunction with other techniques available for
improving the accuracy of classifiers, further accuracy is also
doubtless attainable.

For smaller numbers of classes, the accuracy improves to greater
than 97% for most two class problems, “Antibodies” vs
“Behavioural Psychology” obtains 98% accuracy, for example. If
the second class is instead a random selection of documents not in
the first class, the accuracy drops to the low 90s as the maximum
margin hyperplane to be discovered between the two classes is
much less obvious when one of the two is essentially random.

Even difficult multi-class problems like “Bacteria” vs “Parasite”
vs “Virus” vs “Neoplasm” training with only 3000 instances of
each was able to obtain 81% accuracy. More widely separated
classes, such as 'Head' vs 'Acids' vs 'Sleep Disorders' vs 'Ethics'
trained with just 500 documents each obtained 87% accuracy.

These experiments were repeated using the Naïve Bayes
implementation as well, however the accuracy was not as high,
tending on average to be about 10% lower. The reason for this is
strongly believed to be that the library discards the frequency
information concerning each term and only records its presence,
whereas the SVM implementation makes appropriate use of it.
The CARM implementation is only slightly below the SVM
accuracy, and while FDF has been used very successfully in other
projects it was not applicable in this instance.

This demonstrates the possible improvements that can be made to
textual classification analyses through the use of tools originally
designed for text mining rather than data mining. Not only does
the required number of attributes drop significantly, the accuracy
increases at the same time.

6. CONCLUSIONS
Data mining, text mining and grid based tools within a digital
library architecture have been shown individually in the past to
enhance existing content and services. This research and
development work goes one step further and demonstrates the
new types of service and scales at which the techniques can be
applied which are only made possible by simultaneously having
seamless access to all of the components. The synergies between
the components have been demonstrated, providing evidence both
that the architecture is sound and scope for future applications is
broad enough to warrant additional research.

In particular, an increase in accuracy in the resulting classification
models has been shown, whilst at the same time reducing the
number of attributes required per instance. This improves the

speed of the algorithm, decreasing the amount of time required to
both learn the model and make predictions using it. The online
services generated by the experimental service were typically of
extremely high accuracy, greater than 95% in most 2 class
problems and greater than 85% for most others.

The integration was also shown to be important for information
retrieval purposes, reducing the size of the inverted indexes
required without adversely affecting retrieval precision. At the
same time, it solves many other problems related to stop lists,
such as when non-nouns are used as proper nouns.

7. ACKNOWLEDGMENTS
Design of the Cheshire3 system was supported by the NSF and
JISC (U.K.) under the International Digital Libraries Program
away #IIS-9975164. The National Centre for Text Mining is
supported by the JISC. The authors would also like to thank Ray
R. Larson, Brian Rea and Clare Llewellyn for their input to the
paper and research.

8. REFERENCES
[1] Chang, C., Lin, C. “LIBSVM: a library for support vector

machines”, 2001 http://www.csi.ntu.edu.tw/~cjlin/libsvm

[2] Coenen, F.P., Leng. P. and Goulbourne, “G. Tree Structures
for Mining Association Rules”. Journal of Data Mining and
Knowledge Discovery, 8(1) 2004 pp 25-51

[3] Diligent Project, “A Digital Library Infrastructure on Grid
Enabled Technology”, http://www.diligentproject.org/

[4] Divmod, “Reverend”,
http://divmod.org/trac/wiki/DivmodReverend

[5] Han, H., Giles, C. Lee, Manavoglu, E. et al. “Automatic
Document Metadata Extraction using Support Vector
Machines” In Proc. 2003 Join Conference on Digital
Libraries (JCDL 2003), pages 37-48, Houston, USA, 2003

[6] Hearst, M. A. “Untangling Text Mining”, Procs Annual
Meeting of the Association for Computational Linguistics.
University of Maryland, June 1999.

[7] Larson, R. R., and Sanderson, R. “Grid-Based Digital
Libraries: Cheshire3 and Distributed Retrieval” In Proc. 5th
ACM/IEEE Joint Conference on Digital Libraries (JCDL
2005), pages 112-113, Denver, USA, 2005

[8] Larson, R. R., and Sanderson, R. “Cheshire3: Retrieving
from Tera-Scale Grid-Based Digital Libraries”, Procs. of the
29th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, (2006)
p. 730, doi: 10.1145/1148170.1148343

[9] National Library of Medicine, “Pubmed Medline”,
http://www.ncbi.nlm.nih.gov/entrez/

[10] Oracle Corporation, “Oracle debates future Grid directions at
EGEE 06”,
http://www.oracle.com/global/eu/innovation/fs/egee06.html

[11] Rajesekar, M., Wan M., Moore, R., et al, “Storage Resource
Broker - Managing Distributed Data in a Grid.” Computer
Society of India Journal, 33(4):42-54, 2003

78

[12] Sanderson, R. and Larson, R. R. “Indexing and Searching
Tera-Scale Grid-Based Digital Libraries” In Proc. First
International Conference on Scalable Information Systems,
Hong Kong, 2006

[13] Tsuruoka, Y. and Tsujii, J., “Bidirectional Inference with the
Easiest-First Strategy for Tagging Sequence Data” In Proc.
HLT/EMNLP 2005, pp. 467-474

[14] UCSD, “DSpace/SRB Integration Project”,
https://libnet.ucsd.edu/nara/

[15] Witten, I., Tablan, V. et al. “Text Mining in a Digital
Library”,
http://www.dcs.shef.ac.uk/~valyt/download/greenstone-
gate.pdf

79

