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Abstract

Vulnerability and robustness are major concerns for future power grids. Ma-
licious attacks and extreme weather conditions have the potential to trigger
multiple components outages, cascading failures and large blackouts. Robust
contingency identification procedures are necessary to improve power grids re-
silience and identify critical scenarios. This paper proposes a framework for ad-
vanced uncertainty quantification and vulnerability assessment of power grids.
The framework allows critical failure scenarios to be identified and overcomes
the limitations of current approaches by explicitly considering aleatory and epis-
temic sources of uncertainty modelled using probability boxes. The different
effects of stochastic fluctuation of the power demand, imprecision in power grid
parameters and uncertainty in the selection of the vulnerability model have been
quantified. Spectral graph metrics for vulnerability are computed using differ-
ent weights and are compared to power-flow-based cascading indices in ranking
N − 1 line failures and random N − k lines attacks. A rank correlation test
is proposed for further comparison of the vulnerability metrics. The IEEE 24
nodes reliability test power network is selected as a representative case study
and a detailed discussion of the results and findings is presented.

Keywords: Vulnerability Assessment, Contingency Ranking, Power Grid,
Uncertainty, Overload Cascading Failures, Spectral Graph Metrics

1. Introduction

The Power Grid is the world’s largest, man-made interconnected structure
and plays a critical role in the well-being of society. The working productivity,
comfort and safety of local citizens relies on on power grids integrity and even
modest power outages can seriously compromise their welfare. Severe black-5

outs may have a huge social and economic impact and is therefore necessary to
develop resilient future power grids, capable of withstanding their occurrences.
This requires vulnerability assessments of the electric power supply, the identi-
fication of critical scenarios, contingency plans and a high degree of confidence
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in the results. It is also necessary to better understand the relationship between10

power grids operational risks and those associated with a vulnerable topologi-
cal structure. This will help mitigate the effects of unexpected and hazardous
failures, and enhance the overall network robustness and resilience.

The structure and operations of power grids are changing radically [1]-[2]:15

The growing share of intermittent and uncertain renewable power sources is
making grid behaviour less predictable; climate change is predicted to increase
the intensity and frequency of extreme weather events with the potential to
deeply compromise grid integrity [3]; and as highly meshed (non-radial) distri-
bution grid topology is expected to become more common in the future [4], it20

is likely to see an increasing structural complexity and interconnection between
the power grid components. Due to this scenario of increasing complexity and
uncertainty, it is important to assess both the inherent variability in the system
and imprecision affecting the network parameters. Topological and operational
weaknesses have to be better understood in order to provide superior network25

designs capable of promptly react to unexpected hazardous situations. One
potential method of achieving higher grid resilience is by enhancing existing
frameworks for power grid vulnerability assessment and by adopting sophisti-
cated uncertainty quantification techniques.

30

The robustness of power networks is defined as the degree to which the grid
is able to withstand unexpected events without degradation in performance [5].
A closely related concept is the vulnerability, which is generally regarded as the
lack of robustness. Vulnerability metrics can be obtained in several ways and,
in the literature, overload cascading indices based on power-flow evaluations35

have been proposed to assess the effect of cascading failure events [6]-[7]. This
approach has proven adequate in cases where the cascades are mainly driven
by overload line trippings [7]. Alternative approaches have focused on the grid
topology by using graph theory to analyse its structure [5]-[8]-[9]-[10]-[11]-[12]-
[13]-[14]. The so-called pure topological analysis use unweighted adjacency ma-40

trices to calculate vulnerability whilst extended topological approaches enrich
the analysis by incorporating electrical engineering information in the weights
of the graph. The extended metrics have been introduced based on the idea
that pure topological approach may fail in exhaustive captivation of the electric
network complexity. Whether or not pure topological approaches and their ex-45

tended version are capable of fully capture vulnerabilities of power grids is still
an open debate [15].

Imprecision is a common problem for power grid models and their parame-
ters, appearing in the calculations due to a number of factors such as, tolerance50

errors, scarcity of data, inconsistent information, and experts’ judgement. This
type of uncertainty is generally referred as epistemic or subjective. For example,
earlier works dealt with this type of uncertainty using fuzzy power flow anal-
ysis [16] or stochastic frameworks for reliability analysis [17]. To the authors’
knowledge, topological approaches are generally applied by assuming an exact55
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knowledge of the network parameters and do not account for uncertainty in the
calculations. Authors of Ref. [9] analysed the correlation between vulnerability
metrics and power flow models. E. Bompard et al. [10] compared two enhanced
metrics (i.e. the extended betweenness and net-ability) by ranking components
with respect to the system vulnerability. Recently, Lucas Cuadra et al. [15]60

reviewed power grid robustness metrics which were computed by adopting com-
plex network theory approaches. G. J. Correa et al. [9]-[18] investigated power
network structural vulnerability to single and multiple failures and compared
graph-theory approaches against power flow approaches. S. Cvijić and M. Ilić
[11] discussed the applicability of graph-theory methods (generally applicable in65

transportation networks) to power grids. It was showed that some of the phys-
ical laws applied to power systems are limiting factors but, when graph-theory
methods are applied, the computational cost of analysis is greatly reduced. P.
Hines et al. [12] discussed the use of topological measures for power grid vul-
nerability analysis. Through the analysis of random failures it was argued that70

topological measures can be useful as general trend indicators of vulnerability,
although physical-based models (e.g. power flow models) are believed to be
more realistic. S. LaRocca et al. [13] investigated different measures for power
grids vulnerability and risk assessment by randomly removing grid components.
Similarly, R. Rocchetta and E. Patelli [14] compared graph-theoretic spectral75

vulnerability metrics to power flow based vulnerability metrics in ranking power
grid most critical lines. They showed that load demand uncertainty and toler-
ance imprecision affect the results of the contingency ranking.

To the authors knowledge, none of the reviewed works analysed the effects of80

both aleatory and epistemic uncertainty on the computation of graph-theoretic
spectral vulnerability metrics. However, it is known that sources of uncertainty
will inevitably affect power grids robustness. There are several representative
examples which consider these effects in the power grid reliability assessment lit-
erature. Few notable approaches include reliability assessments of power grids85

allocating renewable energy sources [19], increasing interdependency between
different networks (e.g. telecommunication network transportation network,
etc.) and the inherent variability of the (changing) external environmental con-
ditions [3]. Accounting for relevant sources of uncertainty affecting power grid
robustness and vulnerability may help to improve the overall confidence in the90

results and better identify critical scenarios. Being able to distinguish between
the (inherently variable) aleatory component of the uncertainty and the (in
principle) reducible epistemic uncertainty can be beneficial for the analysis and
for improve confidence in the results. Furthermore, many vulnerability metrics
have been proposed in the literature and the results will be inevitably affected95

by a specific metric selection. It is therefore necessary to assess the level of
uncertainty associated to power grid robustness when different metrics are em-
ployed for vulnerability analysis.

In this work, drops in performance due to single and multiple line failures are100

analysed by employing algorithms developed by the authors. A novel weighting
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factor based on the line percentage of rating is also introduced and compared
to weights applied in the literature. Load demand is inherently variable and the
increasing allocation of non programmable renewable energy sources are mak-
ing its behaviour even more uncertain. Thus, the aleatory and the epistemic105

uncertainty affecting load demands and network parameters are accounted for
and propagated to the vulnerability metrics and respective contributions high-
lighted. The proposed framework is flexible and can account for renewable
energy sources uncertainty. This can be done by proposing a different charac-
terisation of the uncertainty in the load. One of the main contributions of this110

work is a systematic comparison of the vulnerability based on operational flow-
based models and topological approaches (pure and extended). Furthermore,
none of the reviewed works compared spectral vulnerability metrics for contin-
gency ranking purposes embedding the methods within advanced uncertainty
quantification framework. Thus, similarities and differences of the different met-115

rics are discussed for increasing damage size and accounting for uncertainties
due to stochastic loads and line parameters imprecision.

The paper is structured as follows: A concise review on power grid modelling
and spectral graph analysis is proposed in Section 2. In Section 3, vulnerability120

metrics are defined. The uncertainty modelling and contingency analysis are de-
scribed in Section 4. The developed algorithms and framework are summarised
within Section 5. In Section 6 presents the analysis of the IEEE reliability
test system. The limitation faced are discussed in Section 7 and in Section 8
conclusions are drawn.125

2. Background and Power Grid Modelling

A power network structure can be modelled using weighted or unweighted
undirected graphs G = {N ,L,w}, where N is the set of network buses (or
nodes set), L is the set of lines connecting the nodes (i.e. links set) and w
is the set of weights associated to the lines [10]-[20]-[21]-[22]. Generally when130

graph-theory approaches are used, a conservative (pessimistic) hypotesis is made
on the network structure, to ease the calculations. Self-loops such as parallel
lines are removed from the graph G and replaced by the equivalent single line
model. Different weights define different graph models of the power network, for
instance, if w =1 the model and following analysis will be named purely topo-135

logical [15], since no electrical quantities are employed. Alternatively, weights
can be used to represent specific electrical engineering information. Quanti-
ties such as the line susceptance (Bij) or power flow (fij) have been previously
adopted as line weights, see e.g. [8]-[23], where i and j represent the generic
nodes. The number of buses and the number of branches in the power network140

is represented by the cardinality of the node set Nb = |N | and the cardinality of
the line set NL = |L|, respectively. To simplify the notations the line subscript
(ij) ∈ L can be replaced with the subscript l representing the line index.
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2.1. Overflow Cascading Vulnerability

A ‘cascade’ is a sequential succession of dependent events [6]. In power
systems cascading analysis a failure sequence (lines tripping) can be defined as
load-driven when the thermal expansion results in the line dropping beneath
its safety clearance, or load-independent such as in case of a mechanical failure.
The metric adopted in this paper focuses on load-driven failures and is used to
assess the network vulnerability to overload cascading events. The cascading
index (CEI) is is obtained computing the ‘immediate’ post-contingency power-
flow operative state and it is defined as follows [6]:

CEI(CN−k) =
∑
l∈L

P(Cl|CN−k) · Sl(CN−k) (1)

where P(Cl|CN−k) is the probability of a secondary (post-contingency) trip145

of the line (l) after the contingency denoted as CN−k occurred. The severity
Sl(CN−k) is a overload severity function for the line l due to the occurrence of
a single trip (k = 1) or multiple failures (k > 1).

Severity functions can be used to quantify the operational risk due to com-
ponents failures [3]. The continuous severity function for overload is specifically
defined for each circuit (lines and transformers). It measures the extent (sever-
ity) of failures in terms of line percentage of rating PRl = fl

femerg,l
. The quantity

femerg,l is the emergency rating of the line l ∈ L and is related to its thermal
limit and fl is the power flow in the line. The expression for the continuous
severity due to overload (Sl) of a line l is defined as follows [3]:

Sl(CN−k) = d ∗ PRl(CN−k) + c for PRl ≥ PRminl (2)

where Sl is zero for values of the flow rating less than a safety limit PRminl =0.9.
The deterministic limit for the violation of line l is PRl=1, the near violation
region is 0.9≤ PRl <1, and the value PRl under 0.9 is regarded as safe, param-
eters of the severity model are d=10 and c=-9. Continuous severity functions
provides non zero values for scenarios close to the performance limits, which
reflects the realistic sense that close to failure scenarios have non-zero risk (but
deterministically safe). The probability of cascading trip of line l after an initi-
ating contingency CN−k occurs can be expressed as follows [6]:

P(Cl|CN−k) =
fl(CN−k)− f0,l
ftrip,l − f0,l

(3)

where fl(CN−k) is the flow on the line l after the contingency CN−k occurred,150

ftrip,l is the flow leading to a certain trip of the line l (assumed to be 1.25 times
its thermal limit [6]) and f0,l is the flow in the line l before contingency CN−k.
The rationale underpinning Eq.3 is that higher load levels and larger transients
increase the likelihood of the secondary contingency (i.e. cascading) on the line
l after an initiating event CN−k. The probability P(Cl|CN−k) is set equal 1 for155
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each fl(CN−k) ≥ ftrip,l.

The cascading index has indeed some limitations (i.e. the criteria for post-
trip probability calculation is based on expert judgement and pre-contingency
trip probabilities are neglected). Nevertheless, the computational time needed160

for its calculation is very small (i.e. that of a single power flow calculation) and
this makes it suitable for advanced frameworks for uncertainty quantification,
which are generally computationally very demanding.

2.2. Spectral Graph Analysis for Power Grids

The topology of the graph G can be fully characterised by its adjacency
matrix W . An adjacency matrix is a N × N symmetric matrix in which the
non-null elements represent weights of existing lines connecting different nodes.
In general, the weight are associated to some measure of interest or set equal
to 1 (i.e. unweighted adjacency matrix). The matrix D is the diagonal matrix
which contains information about the degrees of each node and its diagonal
elements (di) are equal the sum of the weights of the lines connected to the
node i. The Laplacian L of the matrix W is simply L = D − W and the
elements can computed as follows [23]:

[L]ij =


N∑
j

wij if i = j

wij , if i 6= j, (ij) ∈ L
0, otherwise

(4)

where the term
N∑
j

wij is the degree (di) of the node i.165

Spectral graph analysis has been recently used to assess power grids robust-
ness [8] and to tackle islanding problems [23]-[24]. The eigen-proprieties of the
adjacency matrix are obtained as follows:

W = ΦWΛΦTW

Λ = [λ1, .., λN ]
(5)

Analogously, the spectrum of the network Laplacian is obtained as follows:

L = ΦLΨΦTL

Ψ = [µ1, .., µN ]
(6)

where Φ = [Φ1, ..,ΦN ] is the set of eigenvectors, Λ is the set of eigenvalues of
the adjacency matrix and Ψ is the set of eigenvalues of the Laplacian, such that
0 = µ1 ≤ µ2 ≤ ... ≤ µN . The eigenvalues of L are non-negative and the smallest
(µ1) is equal to 0. The multiplicity of µ1 is equal to the number of connected
components. If the graph is disconnected, µ2 = 0 and at least two separate170

grids exist. Further details are going to be discussed in Section 3.
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3. Vulnerability Metrics and Spectral Analysis for Power Networks

An N − k contingency is defined as the unexpected simultaneous loss of
k components in the network [25] (e.g. lines, generators, transformers). Vul-
nerability indices can be used to quantify the reliability of power networks by
assessing relative changes in performance metrics. The network vulnerability
V(CN−k) associated to the contingency (CN−k) can be generally quantified as
follows [15]:

V(CN−k) =
|M−M(CN−k)|

M
(7)

whereM(CN−k) is a vulnerability metric after contingency CN−k andM is the
metric value for the undamaged network.

3.1. Pure and Extended Spectral Vulnerability Metrics175

Power network structural vulnerability can be assessed by using pure or ex-
tended topological models of the grid. The first uses the unweighted adjacency
matrix and lines are regarded as identical [15] whilst the second extends the
approach by including electrical parameters to weight to the adjacency matrix.
Extended topological approaches often made use of the DC approximation, con-180

veniently used to build the adjacency matrix using the grid susceptance matrix
[8]. Active power flows have also been used as an alternative weighting fac-
tor [15].

In this work, a new weighting factor based on the line percentage of rating185

is introduced. The weight is compared to existing weights taken from the liter-
ature. Thus, the adjacency matrices will built using 4 different weights for each
line l (i.e. 1, Bl, fl and PRl). The first 3 weights are selected based on earlier
works while the percentage of rating is selected on the idea that by weighting
lines using fl relevant information might be missing. For instance, a line that190

has a very small fl (e.g. few MW flowing into the lines), can be nonetheless very
close to failure (e.g. high PRl). It is worth remarking that analysis performed
using unweighted adjacency matrix or weighted using susceptances have to be
regarded as a static analysis (because weights do not change over time). Con-
versely, using wl = fl or wl = PRl the analysis has to be regarded as dynamic195

because weights change over time [23].

Recently, vulnerability metrics obtained from spectral decomposition of W
and L have been used to extract indicators of the grid robustness [3]. The
metrics considered are: the spectral radius (ρG) [26], the algebraic connectiv-
ity (µ2) [8]-[3], the natural connectivity λG [27] and effective graph resistance
RG [8]. The Spectral radius is the largest eigenvalue of W whilst µ2 is the sec-
ond smallest eigenvalue of L. The natural connectivity and the effective graph
resistance can be computed as follow:

λG = ln

(
1

N
·
N∑

1=1

eλi

)
(8)
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Spectral Graph-Theoretic Metrics: λG RG ρG µ2

Type: Static Dynamic
Weights: wij = 1 wij = Bij wij = fij wij = PRij

Approach: Topological Extended topological

Table 1: The spectral graph metrics considered in this work and the weighting factors. Each
weight can be associated to different type of approaches (i.e. extended topological, topological,
dynamic and static).

RG = N ·
N∑
i

1

µi
(9)

where λi is the ith eigenvalue of W and µi is the ith eigenvalue of the L and
the sum is such that null µi are neglected. The measure ρG can be regarded
as an indicator of robustness of networks against dynamic processes (e.g. virus200

spreading, synchronization processes and phase transition behaviours), high µ2

indicates a highly connected network (difficult to be partitioned into indepen-
dent components). The natural connectivity quantifies the redundancy of alter-
native paths by quantifying the weighted number of closed walks of all lengths.
The physical meaning is related to the Helmholtz free energy of a network [28] .205

Finally, RG computed using susceptances is the sum of effective resistances Rl
between all l, the lower it is the higher the network robustness is. The graph
spectral radius, the natural connectivity, the algebraic connectivity and the ef-
fective graph resistance are computed using the 4 lines weights and used to
assess drops in power grids robustness as summarised within Table 1. The over-210

load cascading index presented in Section 2.1 will be for additional comparison
between the metrics.

4. Treatment of Uncertainty

4.1. Uncertainty Characterisation

Given a probability space (Ω,F ,P), a random variable X is defined as a map215

X : ω ∈ Ω → X(ω) ∈ IX ⊂ R, which relates basic events ω in the event space
Ω to a value X(ω) included in the random variable support IX , subset of the
real line. In classical probability theory, the measure X(ω) is a crisp (precise)
value, which is obtained assuming exact knowledge of the underlying proba-
bility density function fX(x) (PDF) and related cumulative probability distri-220

bution function FX(x) (CDF). Generally speaking, uncertainty can be divided
in aleatory and epistemic [29]-[30]. The aleatory uncertainty (not reducible)
explains stochastic behaviours and randomness in events and variables whilst
the epistemic uncertainty is commonly related to lack of knowledge, imprecision
and poorly designed models and is in theory reducible. In case of incomplete225

knowledge and lack of sufficient information on X(ω), it is advisable to relax
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Figure 1: A comparison between two P-boxes. The one on the right hand side has a strong
epistemic component.

the assumption on precise probabilistic model. This can be done by employing
dedicated theories and approaches (e.g. Evidence theory [31], Imprecise proba-
bility [32], Possibility theory [33]).

230

Probability boxes (P-boxes) are powerful and versatile tools to characterise
quantities affected by both aleatory and epistemic uncertainty [32]. P-boxes
are strongly connected to Dempster-Shafers theory of evidence [31]-[34]-[35].
Mathematically, a P-box defines upper and lower bounds on CDFs of a random
variable, denoted by FX(x) ≤ FX(x) ≤ FX(x) ∀x ∈ IX . The probability boxes235

can be parametric (or distributional) if the underlying probability distribution
family is known (e.g. Gaussian with imprecise mean and variance) or non-
parametric (or distribution-free) if the distribution family is not known, e.g.
the only information available is on the CDF bounds [29]. Two examples of
distribution-free P-boxes are depicted in Fig.1. The distance between the upper240

and lower CDFs represents the amount of epistemic uncertainty associated to
the vulnerability. It can be observed that the P-box on the right hand is strongly
affected by epistemic uncertainty. Conversely, the P-box on the left hand side
has a stronger aleatory component and the epistemic uncertainty appear to be
less relevant.245

In this work, the sources of uncertainty investigated are:

1) The aleatory uncertainty associated to load demand variability. The ag-
gregated load connected to a node i (PL,i) can be described by a Normal

distribution [3] f(PL,i) = 1√
2πσi

e
−

(PL,i−µi)
2

2σ2
i , where PL,i is the load de-

mand at node i, µi is the load mean value and σi is the standard deviation250

at node i ∈ N . The parameter of the distribution can be estimated from
historical records of load demand per node.

2) Imprecision in the lines parameters (Bl), attributable to design tolerance
modelled as intervals (i.e. epistemic uncertain).
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Figure 2: A conceptual comparison between advanced uncertainty quantification and classical
uncertainty quantification methods.

3) Uncertainty in the selection of the vulnerability model. Different vulner-255

ability metrics computed using different models (e.g. power-flow model,
pure or extended topological models) will be compared and discussed.

Once uncertain inputs are propagated through the computational model, the
vulnerability outputs will be characterised by a mixture of aleatory and epis-
temic uncertainty and described using P-boxes.260

4.2. Uncertainty Propagation

Consider a deterministic (computational) vulnerability model MV , is a map
from the M-dimensional input space x to the O-dimensional vulnerability out-
put space V. Formally, it is MV : x ∈ IX ⊂ RM → V = MV(x) ∈ RO,
where x = (x1, ..., xM ) and V = (V1, ...,VO). The computational model can265

be treated as a black-box of which only the input and output vectors can be
processed. If x is affected by aleatory uncertainty, it will be characterised using
appropriate probability distribution function (and corresponding CDF). Once
propagated through MV (e.g. using classical Monte Carlo) the output will result
in a well-defined CDF. If x is affected by epistemic or mixed aleatory-epistemic270

uncertainty, P-boxes will be suitable for the characterisation. After uncertainty
propagation, the outputs will produce bounds on the vulnerability CDFs (i.e.
P-boxes).

A simple example which compares a classical probabilistic method to an275

advanced uncertainty quantification (UQ) method is depicted in Fig.2. A vul-
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nerability measure is computed using the mode MV (sum of A and B), where
input A has a well-known aleatory behaviour (e.g. it is distributed as a normal
PDF) and the B is a parameter affected by purely epistemic uncertainty (e.g.
a tolerance interval). The parameter B does not have a stochastic behaviour,280

but it is rather imprecisely defined. This is due, for instance, to a limited pre-
cision in the available measurements for B. This interval can be narrowed down
by providing better instruments for the measurements, i.e. reducing the epis-
temic uncertainty associated. In order to run a plain MC, uniform distribution
is assumed within the interval bounds. Once the probabilistic model is well-285

defined and uncertainty propagated, the output will have a precise probabilistic
description (i.e. a crisp CDF in longdashed line). This might result inappro-
priate for two main reasons. First, assumptions might be difficult to justify
and might produce wrong results. Secondly and perhaps most importantly, the
system analysts will be unable to distinguish between the contribution of epis-290

temic uncertainty and aleatory uncertain to the output [32]. Consequently, the
analyst will be unable to determine if the output uncertainty is attributable to
information deficiency (epistemic problem), that can in theory be reduced, or if
is due to randomness and inherent variability (aleatory problem), thus not re-
ducible but just quantifiable. To overcome this limitation, classical probabilistic295

approaches can be coupled to advanced uncertainty quantification which allows
differentiating between epistemic and aleatory uncertainty in the output without
introducing assumptions (i.e. uniform random behaviour of a parameter within
a tolerance interval) and with weaker or fewer assumptions compared to the
classical counterpart. Results are lower and upper bounds on the CDF, in solid300

and dashed line respectively. The drawback of those methods is the generally
higher computational cost [29]-[36] and an imprecise probabilistic description of
the output [32], which is the price to pay for slaking the assumptions on the
probabilistic model. Nevertheless, generalised probabilistic frameworks provide
a valuable perspective on the result and, being non-intrusive, are applicable to305

any computational model [29].

P-boxes can propagated using different strategies, examples are the double
loop Monte Carlo algorithm or the slicing method [37]. Fig.3 presents graphi-
cally the two methods. For the slicing method (or focal element propagation) a
total of Ns independent samples are directly obtained from the P-box bounds.
For each input P-box a so-called ‘alpha-cut’ α is obtained by sampling from the
uniform probability distribution U(0, 1). Then, the bounds of the P-boxes are
inverted to obtain the input interval as follows:

FX(α)−1 = {x|FX(x) = α} ∀α ∈ [0, 1]

FX(α)−1 = {x|FX(x) = α} ∀α ∈ [0, 1]

The combination of the input intervals corresponds to a Parameter cell which
is defined by the hyper-rectangle:

IX,i : [FX1(α1)−1, FX1(α1)−1]× ...× [FXm(αm)−1, FXm(αm)−1]

11



Once the IX is sampled, minimum and maximum vulnerabilities are obtained
as Vi = min

x∈IX,i
MV(x) and Vi = max

x∈IX,i
MV(x), respectively. The procedure stops

when a total of Ns hyper-rectangles IX are sampled and empirical upper and
lower CDF bounds computed as:

F e(V) =
1

Ns

Ns∑
i=1

1V≤Vi F e(V) =
1

Ns

Ns∑
i=1

1V≤Vi

In order to obtain Vi and Vi, a variety of methods can be used. For instance,
bounds can be approximated by sampling within IX , using vertex methods [38]
or by global optimisation approaches [29]. In this work, a simple and effective310

(but not efficient) double loop MC [29] is employed. A first loop (outer loop)
samples from the epistemic uncertainty space. Each epistemic space realisa-
tion correspond a traditional probabilistic uncertainty quantification problem
for which only aleatory type of uncertainty has to be accounted. Then, a MC
is used in the inner loop to propagate aleatory uncertainty. The result of the315

inner loop are not to be averaged over the outer loop but only collected and post
processed in order to obtain CDF bounds on the quantity of interest. If a mono-
tonic behaviour of the outputs with respect to the imprecise inputs is observed,
the epistemic samples can be focused on the vertex of IX , greatly reducing the
computational cost. For further details on the computational strategy, mathe-320

matical foundation and, p-box bounds determination, the reader is referred to
[29]-[37]-[32]-[34].

4.3. Contingencies and Combinatorial Problem

In some power flow applications, contingency analysis is performed to con-
strain the network to safe operational states, for instance, by means of Security325

Constrained Optimal Power Flows. Those states are safe (e.g. thermal con-
straints are met and no cascading sequence occur) even if one of the contin-
gencies listed is faced by the grid. In general, even if the network has modest
size (e.g. small distribution grid), analyse a complete list of all possible failures

is infeasible. A comprehensive contingency list will include
N∑
k=1

N !/k!(N − k)!330

failures, where k is the number of failed components and N the number of net-
work components. Consider, as example, a very small network of just N = 50
components, exhaustive contingency list includes 50 single component failures
(i.e. N −1 contingencies), 4900 N −2, 705600 N −3, more than 1.32 ·108 N −4
contingencies and so on. In order to proceed with the calculations, a subset of335

failures is generally selected from the full set of combinations, the one considered
more likely and with higher consequences. Higher order contingencies are often
forsaken by assuming a negligible probability of facing those events, too low to
be relevant. Nevertheless, targeted malicious attacks, extreme weather induced
failures and other common cause failure mechanisms have the potential to in-340

crease the likelihood of face severe N − k contingencies[39] and have generally
higher consequences for the system. In this paper, the complete set of N − 1
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Figure 3: A conceptual comparison of the double loop Monte Carlo (in the top panel) method
and the slicing method (in the bottom panel). Figure modified from [37].

single line failure are analysed and the most severe are identified using different
vulnerability metrics. Random N − k contingencies are also analysed and for
increasing damage size k. The most threatening events will be ranked and the345

average network vulnerability for increasing k discussed. Relevant sources of
uncertainty have been accounted in all the phases of the calculation.

5. The Proposed Framework

Algorithms (designed by the authors) are presented here and will be used
to analyse the power grid under N − 1 and N − k line contingency scenarios.350

These will be later coupled to advanced, non-intrusive, uncertainty quantifica-
tion approaches. Algorithm 1 is used for the N−1 contingency analysis. First, a
power grid case study is loaded (e.g. a MATPOWER ‘Case’ [40]) and additional
input provided. A pre-contingency power flow (AC or DC) is solved and lines
flows fl and rating PRl are obtained for the undamaged network. The weights355

wl are selected, the undamaged adjacency and Laplacian matrices (Wund and
Lund) obtained and used to compute vulnerability as explained in Sections 2.2
and 3. Single-line failures are evaluated one-at-a-time, either using ‘Power-Flow
Analysis’ and ‘Topological Analysis’ methods.
The ‘Power-Flow Analysis’ method works as follows:360

1) Removed the line l from the undamaged network structure.
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2) Compute post-failure fl and PRl using the post-contingency power flow
presented in Algorithm 2 which is summarised by steps (3-5).

3) Run the depth-first-search algorithm to find the connected components
(cc) in the damaged grid.365

4) If the network is fully connected (i.e. cc = 1), the power flow is solved,
line post-contingency flows obtained and percentage of rating computed.

5) If the network is not fully connected (i.e. cc > 1), the islands Gis with
a single node are removed (the islanding is assumed unsustainable). For
the remaining islands Gis, a slack bus is selected among the P-V nodes370

generator nodes) and the post-contingency fj(Cl) and PRj(Cl) obtained.
If the grid island has no generators, the partition is set as isolated (outage).

6) Compute the overload severity and the cascading probability for all sur-
vived lines j and the cascading index CEI(Cl) for the failed line l (i.e.
the one removed in step 1).375

7) The algorithm steps from 1) to 6) are repeated until all N −1 line failures
are analysed.

Similarly, the ‘Topological Analysis’ method proceeds as follows:

1) Remove the line l from Wund and compute the damaged network L.

2) Compute eigen-proprieties (ΦWund
, ΦLund , Ψ, Λ).380

3) Compute the effective graph resistance, the natural connectivity, the spec-
tral radius and the algebraic connectivity as explained in Section 3.1.

4) Evaluate vulnerability to the analysed contingency V(Cl) as in Equa-
tions 7.

5) Repeat the Algorithm steps 1) to 4) until all the single line failures are385

analysed.

The method used for the N − k line contingency analysis is summarised in
the Algorithm 3. First the network data, the size of the contingency k and the
number of contingency scenarios to be analysed NC are selected. Then, k lines
are randomly removed from the undamaged network and the consequence are390

evaluated using both Algorithm 2 and spectral analysis of the damaged adja-
cency matrix W . The procedure is repeated until NC scenarios are analysed
and the results are statistical description of the vulnerability of each line (e.g.
expectations and CDFs). For instance, the expectation of the vulnerability is

computed as E [V(CN−k)] =

NC∑
i=1
Vi(CN−k)

NC
.395

Main difference between Algorithm 1 and 3 is that the first analyses all the
possible single line failures while the second considers random line failures of
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Algorithm 1 Vulnerability to N − 1 Line Contingencies

1: procedure N − 1 Line Contingency
2: Load Power Grid ‘Case’
3: Input: Load power demand and line parameters
4: Run: pre-contingency AC (or DC) power flow
5: Select wl ∈ {1, Bl, fl, PRl} and build Wund and Lund

6: Compute & Save ΦWund ,ΦLund ,Ψ, Λ and M = {ρG , µ2, λ,RG}
7:

8: Power-Flow Analysis
9: for each line l ∈ L do

10: Reset undamaged state and remove line l
11: Run: Post-Contingency Algorithm 2
12: Compute Sj(Cl) and P(Cj |Cl) for each line in service j.
13: Compute CEI(Cl)
14: end for
15:

16: Topological Analysis
17: for each line l ∈ L do
18: Set W = Wund and wl = 0, build L
19: Obtain ΦW ,ΦL,Ψ and Λ and M(Cl) = {ρG , µ2, λ,RG}
20: Compute V(Cl) for each metric
21: end for
22: end procedure

Algorithm 2 Post-Contingency Power Flow

1: procedure Post-Contingency Power Flow
2: Search for connected components (cc) (depth-first-search)
3: if cc > 1 then
4: Check and remove isolated node
5: ∀ island:
6: Select one slack among the P-V nodes
7: Run: AC (or DC) power flows
8: end if
9: if cc = 1 then

10: Run: AC (or DC) power flows
11: end if
12: end procedure

15



Algorithm 3 Vulnerability to the N − k Line Contingencies

1: procedure Vulnerability to an N − k Line Contingency
2: Input: Load Power Grid ‘Case’, set k and NC

3: Run: Pre-contingency AC (or DC) power flow
4: Select one wl ∈ {1, Bl, fl, PRl} and build Wund and Lund

5: Compute ΦWund , ΦLund , Ψ, Λ and obtain M = {ρG , µ2, λ,RG}
6: for i = 1 to NC do
7: Remove k lines randomly and compute L
8: Obtain ΦW , ΦL, Ψ, Λ and M(CN−k) = {ρG , µ2, λ,RG}
9: Compute Vi(CN−k) for each metric

10: Run: Post-Contingency Algorithm 2
11: Compute Sl(CN−k) and P(Cl|CN−k) for each line in service k.
12: Compute CEIi(CN−k) and restore undamaged topology
13: end for
14: Compute CDFs and expectations:
15: FCEIi(CN−k), FV(CN−k), E [V(CN−k)], E [CEIi(CN−k)]
16: end procedure

order k. The main drawback is that it can result time consuming for large size
network. Different networks and weights can be easily selected and compared400

and both topology-based and flow-based analysis performed in a common flexi-
ble computational framework. The Algorithms for N−1 contingency analysis is
used in combination with non-intrusive uncertainty propagation methods. The
effect of aleatory uncertainty (stochastic load demand) and epistemic uncer-
tainty (parameters tolerances) on the vulnerability output of Algorithm 1 are405

propagated using classical MC and double loop MC methods.

6. A Case Study: IEEE 24 node reliability test system

The selected case study is a modified version of the IEEE 24 nodes reliability
test system [41]. The grid is realistic, fairly complex and suitable to test the
proposed framework. The modified network counts 24 nodes, 17 loads, 34 lines410

and 33 generators distributed over 11 nodes. Within the grid, there are 11
P-V nodes (i.e. generator nodes) and 13 P-Q nodes (i.e. load nodes). The
original network topology has been modified to substitute parallel lines with
equivalent single lines (i.e. the lines l19−20, l15−21, l18−21 and l20−23). The
modified structure is presented in Fig.4 whilst the design data can be found in415

Refs.[40]-[41].

6.1. Results: N-1 line failures

The N−1 line failures are analysed using the Algorithm 1 and using ‘Power-
Flow Analysis’ and ‘Topological Analysis’ methods as presented in Section 5.
The vulnerability results obtained using ‘Topological Analysis’ method are dis-420

played in Fig.5. The Y-axis display relative changes in spectral vulnerability
metrics due to failure of the line l, i.e. V(Cl). Each line is identified by an
identification number (ID) and displayed on the X-axis. On the right hand side
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Figure 4: The modified IEEE-RTS 24 nodes layout.

of Fig.5 are presented vulnerability results obtained using µ2 (the top plot) and
RG (the bottom plot). The relative drops in ρG and λ are presented on the425

left-hand-side in the bottom and top panels, respectively. Red solid lines are
obtained using pure topological analysis (wl = 1), the bars are obtained weight-
ing adjacency with susceptances (wl = Bl), the black dashed lines using the line
active flows (wl = fl) and the green marked lines using percentage of rating
(wl = PRl).430

The analysis is performed very efficiently and the 5 most vulnerable lines
are ranked in approximatively 0.15 seconds (which is the overall time for all
the metrics and weights). The ranking results are presented in Table 2 and
pure topological rankings are reported in the first column on the left. The435

results show similarities and differences in ranks. For instance when algebraic
connectivity is employed, the lines l7−8 and l11−14 are identified as vulnerable,
independently from the choice of the lines weights.

The AC power flow and the DC linearised version are used to solve the
network and by running the method ‘Power-Flow Analysis’ the cascading indices440

CEI are obtained and line failures ranked. The ranking results for the 5 most
vulnerable lines are presented in Table 3. The DC results are quite similar
the AC results, although the DC approximation overestimates slightly some
of the line flows. This is probably due to the errors introduced by the DC
approximation when the network is in contignency state (e.g. for higher system445

stress, possibly higher losses and larger voltage angles [42]). Furthermore for the
selected MATPOWER case, the PV nodes have voltage magnitudes greater than
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Figure 5: The grid vulnerability to the N − 1 line failures obtained as relative changes in
performance metrics. Comparison between four spectral metrics (µ2, ρG , λG , RG) and different
adjacency matrix weights (wl ∈ {1, Bl, fl, PRl}).
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wij = 1 wij = Bij wij = fij wij = PRij
Rank Algebraic Connectivity µ2

1 l7−8 l7−8 l7−8 l7−8
2 l3−24 l16−17 l15−24 l11−14
3 l15−24 l11−14 l3−24 l14−16
4 l11−14 l14−16 l5−10 l15−24
5 l16−17 l3−24 l11−14 l16−19

Rank Natural Connectivity λG
1 l12−13 l16−17 l16−17 l16−17
2 l9−12 l15−16 l14−16 l14−16
3 l10−12 l17−18 l17−18 l7−8
4 l9−11 l16−19 l17−22 l17−18
5 l10−11 l14−16 l16−19 l12−23

Rank Spectral Radius ρG
1 l9−12 l16−17 l16−17 l16−17
2 l10−12 l15−16 l14−16 l14−16
3 l9−11 l17−18 l17−18 l17−18
4 l10−11 l16−19 l17−22 l17−22
5 l12−13 l14−16 l16−19 l16−19

Rank Effective Resistance RG
1 l3−24 l16−17 l15−24 l11−14
2 l15−24 l11−14 l3−24 l14−16
3 l16−19 l14−16 l5−10 l15−24
4 l16−17 l16−19 l11−14 l16−19
5 l20−23 l15−24 l14−16 l20−23

Table 2: The most vulnerable lines for the IEEE 24 nodes reliability test system. The top
5 most vulnerable lines are compared with respect to the 4 spectral metrics obtained using 4
different weighs for the adjacency matrix.
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Rank CEIAC CEIDC
1 l15−21 1.00 l15−21 1.33
2 l21−22 0.17 l15−24 0.64
3 l15−24 0.07 l3−24 0.64
4 l3−24 0.07 l16−19 0.22
5 l20−23 0.02 l21−22 0.21

Table 3: The 5 most vulnerable lines from an operational prospective. Comparison between
AC and DC results.

1 per-unit, whilst the DC formulation assumes flat voltage profile (i.e. voltage
magnitudes set to 1 per-unit). This is likely to affect the calculation and lead
to a relevant differences between the DC and AC solutions. Nonetheless, a very450

good agreement exists between AC and DC rankings (failure of lines l15−21,
l15−24, l21−22 and l3−24 were identified in both lists). It can be concluded that
for the analysed network the DC method approximates the AC solutions fairly
well also for the aim of contingency ranking. The computational time for the
solution for both AC and DC N − 1 contingency is about 0.9 seconds on a455

typical desktop PC (8.00 Gb RAM and 2.00 GHz processor). The line l15−24
is identified among the 5 most vulnerable by both µ2 and RG . None of the
topological metrics (pure or extended) were able to identify the vulnerability
of line l15−21, which scored highest from the overloading cascading perspective.
This can be interpreted as a limitation of the topological approaches, which are460

unable to capture important features in the network operations.

6.1.1. Correlation analysis

An analysis of rank correlations is proposed to assess similarities and differ-
ences between the vulnerability metrics. The Spearman’s correlation coefficient
is a non-parametric measure of rank correlation and it can be used to mea-465

sure the statistical dependence between metrics. It is sometimes defined as the
Pearson correlation coefficient between ranked variables [43]. The matrix of
Spearman’s rank correlation coefficients is calculated for 2 CEI indices ( com-
puted using the AC and DC methods) and for 16 spectral graph metrics (the 4
metrics and 4 weights for each metric). Table 4 presents the correlation results470

calculated from the ranking of the 10 most vulnerable lines. Figure 6 displays
graphically the correlation matrix. It can be observed, as expected, a very high
positive correlation between the AC and DC cascading indices (close to 0.8). It
can be also observed high/moderate correlations (from 0.6 to 0.9) between the
same spectral vulnerability metric but computed with different weights. Alge-475

braic connectivity and effective resistance are also highly correlated, which can
be explained as both are computed using the eigenvalues of the Laplacian ma-
trix. Many pairs of vulnerability metrics are weakly correlated (i.e. coefficients
<0.3). However, other metrics display a high degree of correlation (i.e. coeffi-
cients between 0.6 and 0.9) or a moderate degree of correlation (i.e. coefficients480
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Figure 6: The matrix of Spearman’s rank correlation coefficients. It can be observed high
correlation between the two CEI indices and between the same topological metric computed
using different weights.

between 0.3 and 0.6).

6.1.2. Uncertainty Quantification

The aleatory uncertainty in the power demand is propagated to the cascad-
ing index and to the extended topological metrics using the MC method. For485

each MC run, a random realisation of the load profile is obtained (i.e. a vector
containing 17 random loads PL,i) and forwarded to the N − 1 solver (Algo-
rithm 1). The network vulnerability is then evaluated using cascading indices
computed with the AC and DC power flow methods. Spectral metrics are com-
puted using 2 different weights for the line (fij and PRij). The results for the490

remaining weights (wij = 1 and wij = Bij) are not affect by load variability and
thus neglected here. The Monte Carlo method stops when a predefined number
of realisations is reached (set to 500).
Figs. 7-8 display the uncertainty quantification results for CEI and the spec-
tral vulnerability metrics, respectively. The red solid lines display the expected495

vulnerability whilst the blue dashed lines show the expectation plus or minus 2
times the sample standard deviation (E[V(l)] ± 2 2

√
Var[V(l)]). The red mark-
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Table 4: The matrix of the Spearman’s rank correlation coefficients. Comparison between
the top 10 most vulnerable lines accordingly to the CEI indices (AC and DC) and to the 16
spectral graph metrics (4 metrics and 4 weights for each metric).
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Figure 7: Comparison between AC and DC solver with respect to the variability in the flow-
based vulnerability metric. The analysis is performed for the cascading index due to single
line failure and random load profiles.

ers are the vulnerability realisations of the MC method (i.e. CEI and V for
each line and for each load demand sample). A 2-sigma rule has been used
to robustly rank the 5 most vulnerable lines under uncertainty the results are500

compared to the deterministic case. Using of a 2-sigma rule means that the
rank is based on the upper tail of the vulnerability distribution (i.e. the value
selected for the ranking includes 97.73% of the vulnerability realisations if as-
sumed normally distributed). The result significantly changes if compared to
the deterministic results presented in Table 3. Table 6 shows the results for the505

uncertainty quantification on the cascading index applying the AC and the DC
solvers. Accordingly to the AC results, the 5 most vulnerable lines are l15−21,
l15−24, l3−24, l6−10 and l21−22, whilst for the DC result the most vulnerable
lines are l15−21, l15−24, l3−24, l16−19 and l14−16. The overall computational time
needed for the power flow analysis was about 7-8 minutes. On the other hand,510

the time needed to perform the Topological Analysis method was significantly
lower, just 68 seconds were needed (i.e. about 17 seconds for each line weight).

The effect of parameter imprecision on the vulnerability result is also as-
sessed. Sources epistemic uncertainty considered are: 10 % imprecision inter-515

vals on the 34 lines susceptances, which are attributable to design tolerances.
Both the imprecision on Bl and the aleatory uncertainty in the load profile are
propagated using a double loop MC approach and without mixing aleatory and
epistemic components. Previous analysis suggested that the metrics adopted
to assess the vulnerability of the power grid G vary monotonically with respect520

the imprecise parameters Bl. Thus, the upper and lower bounds on the CDFs
can be efficiently approximated by random search within the vertex boundaries
of the hyper-rectangle IX = [0.95B1, 1.05B1] × ... × [0.95B34, 1.05B34]. Five-
hundred random realisations of Bl from the epistemic space are generated in
the outer loop and forwarded to the inner loop where a classical MC samples525
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wij = fij wij = PRij wij = fij wij = PRij
Rank Expected µ2 +2σ Expected λG +2σ

1 l7−8 l7−8 l16−17 l16−17
2 l15−24 l11−14 l17−18 l14−16
3 l5−10 l14−16 l14−16 l7−8
4 l1−5 l16−19 l17−22 l17−18
5 l3−24 l20−23 l15−16 l6−10

Rank Expected RG +2σ Expected ρG +2σ
1 l15−24 l11−14 l16−17 l16−17
2 l1−5 l14−16 l17−18 l14−16
3 l3−24 l16−19 l14−16 l17−18
4 l5−10 l1−5 l17−22 l17−22
5 l1−3 l20−23 l15−16 l16−19

wij = fij wij = PRij wij = fij wij = PRij
Rank Expected µ2 +2σ Expected λG +2σ

1 1 1 0.36 0.25
2 0.84 0.82 0.10 0.10
3 0.77 0.81 0.09 0.09
4 0.72 0.77 0.06 0.09
5 0.71 0.72 0.03 0.08

Rank Expected RG +2σ Expected ρG +2σ
1 0.57 0.53 0.35 0.26
2 0.56 0.51 0.09 0.12
3 0.43 0.49 0.08 0.09
4 0.4 0.45 0.05 0.05
5 0.39 0.44 0.03 0.03

Table 5: The most vulnerable lines for the IEEE 24 nodes reliability test system accordingly
to the expectations plus 2σ of topological vulnerability measures.

Rank Expected CEIAC+2σ Expected CEIDC+2σ
1 l15−21 1.05 l15−21 1.84
2 l15−24 0.59 l15−24 1.07
3 l3−24 0.57 l3−24 1.02
4 l6−10 0.51 l16−19 0.69
5 l21−22 0.29 l14−16 0.62

Table 6: The 5 most vulnerable lines accordingly to the CEI expectations plus 2σ. Com-
parison between AC and DC results.
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Figure 8: Quantification of the variability of spectral vulnerability metrics due to N − 1 line
failures and random load profiles.
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Figure 9: An example of output P-boxes obtained using advanced UQ methods. The vulner-
ability is greatly affected by aleatory uncertainty, but also epistemic uncertainty plays a role
(metrics computed for wij = PRij).

500 load realisations. The vulnerability is obtained as a P-box and an example
is depicted in Fig.9 which presents 4 CDF envelopes (i.e. P-boxes) for the 4
considered metrics and weight wij = PRij . For sake of synthesis, only vulnera-
bility scores due to failure of l11−14 are plotted (other lines produces analogous
results). In can be noticed that the aleatory component is dominating the uncer-530

tainty associated to the spectral vulnerability metrics. The effect of parameters
imprecision has been quantified and it resulted small but observable. Same
uncertainty sources have been propagated on the cascading index CEI solving
the network using the DC power flow method. The P-boxes of CEI and for
two of the most vulnerable lines have been reported in Fig.10. Especially for535

the failure of the line connecting node 15 to node 21 the CEI precision results
highly affected by parameter tolerances. This is an interesting result showing
that some failure scenarios are more sensitive to a data deficiency, tolerance
imprecision and epistemic uncertainty.

6.2. Results: N-k line failures540

Higher order N − k contingencies are analysed using the Algorithm 3 pre-
sented in Section 5. The contingency analysis is carried out by increasing dam-
age sizes, i.e. k = 1, .., 8. The random number of failures NC is set equal to
1000 for each damage size k. Fig.11 shows that the average topological vulner-
abilities computed weighting adjacency elements by susceptances, which result545

increasing for increasing k. It is interesting to notice that average drops in
spectral radius and the natural connectivity result very similar and that have
the lower gradient with respect to the contingency size. Conversely, the mean
drop in algebraic connectivity has the higher gradient and for a contingency of
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Figure 10: An example of output P-boxes for the CEI indices associated to two vulnerable
lines in the system. The index associated to line l15−21 is greatly affected by both epistemic
and aleatory uncertainty.

type N − 8, it results close to 1. This indicates that it is highly unlikely to face550

an N − 8 failure which keeps the power grid fully connected (i.e. µ2 6= 0 for
the damaged network). Furthermore, the relative drop in algebraic connectivity
will be of little use to analyse higher order contingencies (i.e. the vulnerability
result will be likely equal to 1).

555

7. Discussion

The vulnerability of the IEEE 24 nodes reliability test system has been anal-
ysed. Different metrics have been compared in ranking contingencies and the
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Figure 11: Comparison between the expected vulnerability when facing an N−k contingencies
using different spectral metrics. Adjacency built using Bij as weights.
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uncertainty due to load demands variability and line parameters imprecision has
been quantified.560

The comparison between pure topological and extended topological approaches
shows significant correlation (similarities) between the ranking results. Spectral
analysis of the network requires a moderate computational cost for obtaining a
full spectrum of eigenvalues and eigenvectors for each contingency; significantly565

less than the cascading indices. The higher computational complexity is at-
tributable to the (at least two) power flow solutions which have to be computed
to obtain the cascading indices. Of course, the larger the network size the higher
will be the computational cost for the analysis. Nevertheless, adjacency matrices
for real world power network are often sparse matrix and, therefore, dedicated570

approaches can be used to speed up the procedure when just few eigenvalues
are needed, e.g. spectral radius and algebraic connectivity. In this case, the
on-line applicability of the spectral vulnerability metric for contingency ranking
also accounting uncertainties might be feasible.

575

However, the spectral vulnerability metrics, even if enhanced by electrical
engineering concepts, seem unable to fully capture the complexity of the network
operation, i.e. major difference has been observed between cascading index re-
sults and results using extended topological approaches. Nevertheless, many of
the lines which have been ranked using cascading indices resulted in a null con-580

tribution to the vulnerability (due to null post-failure overload severity). This
might be regarded as a limitation of the CEI metric which has not been able
to fully capture all the relevant consequences of certain line failures.

The uncertainty in vulnerability metrics, due to the load demands variability585

and lines parameters imprecision (tolerances) has been quantified. This provides
a more robust identification of the critical components. The line ranking results
under uncertainty differ from the deterministic results, although some of the
most critical line contingencies have been similarly identified. Analysing the
output P-boxes, it has been observed that the vulnerability computed using590

spectral vulnerability metrics and power flow as the weighting factor is greatly
affected by the stochastic load profile. Also tolerance imprecision (epistemic
uncertainty) has a non-negligible effect, although its contribution to the uncer-
tainty seems less significant on spectral vulnerability metrics. Conversely, some
of cascading indices show high sensitivity to parameters imprecision.595

As expected, the uncertainty propagation using advanced uncertainty quan-
tification techniques was very demanding, especially for the power-flow methods.
This is a clear limitation of the advanced UQ approach which makes it difficult
to apply to on-line analysis. Nevertheless, the method is powerful and versatile600

and can be effectively used to point out how much of the output uncertainty
is reducible by further data collection (i.e. due to lack of information). This
can be useful in may ways. For instance, a decision makers can use the method
to to determine if a power grid is robust, if it is vulnerable, or if the available
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information is not sufficient to provide a clear answer to questions relating to605

the network ability to withstand targeted or random contingencies.

To summarise, select good vulnerability metrics for the identification of rel-
evant contingencies is not an easy task. Among the different metrics considered
in this work, pure topological metrics present two relevant features: 1) less610

information is generally required (only the structure of the grid was needed);
2) uncertainty associated to operative variables (e.g. load demand) and im-
precision associated with power grid parameters are not affecting the metrics.
These may be regarded as positive features, nonetheless, it might be argued
that the pure topological metrics (being less sensitive to variability) are less615

effective in capturing complex behaviours which are typical of varying operative
states in power grids. Although a correlation analysis pointed out some simi-
larity between topological metrics and the cascading indices, their capabilities
for contingency ranking prospects are still questionable. Further comparisons
between graph-theory methods and traditional approaches are necessary.620

8. Conclusions

In this paper, a novel framework for assessing power grids vulnerability has
been presented. The vulnerability assessment framework is embedded to ad-
vanced uncertainty quantification methods used to quantify the level of epis-
temic and aleatory uncertainty on the results. Single line and multiple line625

contingencies have been analysed and their vulnerability ranked with respect to
topology-based metrics, flow-based metrics and accounting for model impreci-
sion and stochastic loads. Four spectral vulnerability metrics have been com-
puted using four different weighting factors (taken from literature and newly
defined) and used to assess the robustness of a modified version of the IEEE630

24 nodes RTS. Different effects of epistemic and aleatory uncertainty on net-
work operational weaknesses (i.e. AC and DC overflow cascading models) and
structural vulnerabilities have been discussed and relevant differences in the con-
tingency ranking have been pointed out. Major differences in ranking results
are attributable to the different vulnerability metrics rather than to different635

line weights. In case that only one vulnerability metric is selected, the choice of
metric must be done with a high degree of care and done so whilst accounting
for all the relevant sources of uncertainty which may generate misleading results.
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