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ABSTRACT 
 

Essays on Predictability & Excess Profitability of Quantitative Methods: 

Modelling Implied Volatility, Technical Trading, Data Snooping and Market 

Efficiency 

Ioannis Psaradellis1 

 

The first essay concentrates on the modelling and trading of three daily market 

implied volatility indices issued on the Chicago Board Options Exchange (CBOE) 

using evolving combinations of prominent autoregressive and emerging heuristics 

models, with the aim of introducing an algorithm that provides a better approximation 

of the most popular U.S. volatility indices than those that have already been presented 

in the literature and determining whether there is the ability to produce profitable 

trading strategies out-of-sample. A heterogeneous autoregressive process (HAR) is 

combined with a genetic algorithm–support vector regression (GASVR) model in two 

hybrid algorithms. The algorithms’ statistical performances are benchmarked against 

the best forecasters on the VIX, VXN and VXD volatility indices. The trading 

performances of the forecasts are evaluated through a trading simulation based on 

VIX and VXN futures contracts, as well as on the VXZ exchange traded note based 

on the S&P 500 VIX mid-term futures index. Our findings indicate the existence of 

strong nonlinearities in all indices examined, while the GASVR algorithm improves 

the statistical significance of the HAR processes. The trading performances of the 

hybrid models reveal the possibility of economically significant profits. 

This second essay investigates the debatable success of technical trading rules, 

through the years, on the trending energy market of crude oil. In particular, the large 

universe of 7846 trading rules proposed by Sullivan et al., (1999), divided into five 

families (filter rules, moving averages, support and resistance rules, channel 

breakouts, and on-balance volume averages), is applied to the daily prices of West 

Texas Intermediate (WTI) light, sweet crude oil futures as well as the United States 

Oil (USO) fund, from 2006 onwards. We employ the k-familywise error rate (k-

FWER) and false discovery rate (FDR) techniques proposed by Romano and Wolf 

                                                           
1 B.Sc., M.Sc., Athens University of Economics & Business. 
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(2007) and Bajgrowicz and Scaillet (2012) respectively, accounting for data snooping 

in order to identify significantly profitable trading strategies. Our findings explain 

that there is no persistent nature in rules performance, contrary to the in-sample 

outstanding results, although tiny profits can be achieved in some periods. Overall, 

our results seem to be in favour of the adaptive market hypothesis. 

The third essay examines technical trading rules performance on the statistical 

arbitrage investment strategy, pairs trading, using daily data over the period 1990-

2016 for 15 commodity, equity and “famous” currency pairs. Adopting the false 

discovery rate test of Barras et al., (2010) to control for data snooping bias and 

exercising 18,412 technical trading rules, we find evidence of significant 

predictability and excess profitability, especially for commodity spreads, where the 

best performing strategy generates an annualized mean excess return of 17.6%. In 

addition, we perform an out-of-sample analysis to cross-validate our results in 

different subperiods. We find that whilst the profitability of rules based on technical 

analysis exhibits a downward trend over the sample, the opportunities for pairs 

trading remains has increased in certain cases. 
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CHAPTER 1 

INTRODUCTION 

 

In recent years, rapid improvements in technology and statistics are reshaping the 

financial markets.  All major market players (J.P. Morgan, Goldman Sachs, 

CITADEL) have raised the need for hiring computer and data science experts to 

integrate new technology frameworks in their business activities. Firms such as 

McKinsey (2017) and the Boston Consulting Group (2015) have already predicted 

that the interaction between new quantitative techniques for analysing big data and 

machine learning will dominate the fields of financial risk management, corporate 

finance and asset management within the next decade. J. P. Morgan’s (2017) 

quantitative investing and derivatives strategy team reports that machine learning, 

artificial intelligence and computerized trading have become crucial to the future 

functioning of markets, while analysts, portfolio managers, traders and chief 

investment officers will have to familiarize themselves with these techniques.   

Big data and machine learning strategies are already eroding some of the 

advantage of fundamental analysts, equity long-short managers and macro investors, 

as well as systematic strategies increasingly adopt machine learning tools and 

methods. As data sets get larger and more complex, investors are sometimes forced to 

use sophisticated data analytics. The tools used for these tasks include machine 

learning (drawn from traditional statistics) or deep learning (inspired by the 

functioning of the human brain). Understanding however the economics behind the 

data and the signals triggered is always more important than developing complex 

techniques, as certain data may have no value and more complex techniques do not 

always produce better forecasts. 

In terms of statistical inference, the continuous growth of datasets, make 

hypothesis testing even more complex. For instance, portfolio managers’ aim is to 

assess datasets for their ability to generate alpha, the so-called ‘alpha content’. 

Searching for ‘alpha content’ however is gradually dependent upon the cost of the 

data, the amount of processing required and how well-used the dataset is already. In 

such way, the data snooping issue has nowadays become even more urgent because 

of the severe usage of big datasets, leading to promising results sometimes even by 
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pure luck. Despite that, data replication quite often involves the cost of incorrectly 

discovering a profitable strategy yielding alpha. Classical statistical inference 

focusing on single hypothesis testing for each rule, without paying attention to the 

performance of the rest of the strategies, usually leads to false rejections or the so 

called, Type I error due to extensive specification search. Recently, Harvey (2017) 

raises this issue as the p-hacking phenomenon (i.e. frequent falsely significant p-

values) based on numerous significant variables and explains that new, adjusted 

thresholds in multiple hypothesis testing reflecting genuine significance for an 

investment strategy should be defined. In his recent presidential address at the 

American Financial Association annual meeting (2017), he remarks that economic 

plausibility should also be a part of the statistical inference for computing such 

adjusted thresholds in order to control for data mining issues in big data analytics. In 

similar manner, Cochrane (2011) raises a concern about the discovery of a “zoo” of 

new significant factors in asset pricing literature over the last years and the need of 

adjusted discount theories. Thus, new multiple hypothesis frameworks developed to 

minimize such occurrences, while performing statistical inference are more than 

necessary nowadays. Although, there is an ongoing research towards this direction 

over the last years (Sullivan et al., 1999; Lo et al., 2000; Hansen, 2005; Hsu et al., 

2010; Neely and Weller, 2011; Brajgowicz and Scaillet, 2012), enhanced frameworks 

achieving a good balance between Type I and Type II errors still should be reviewed. 

This thesis studies expected returns using new technologies introduced by machine 

learning and data science. In particular, we investigate the predictability and excess 

profitability of financial markets using up-to-date powerful techniques pooled from 

machine learning and statistics, which accounting for data snooping effects. The 

motivation is to study the financial market predictability and to yield new insights in 

the empirical dynamics of asset pricing using statistical inference. This will guide us 

to revisit existing methods and to identify new advancements. For this purpose, we 

rebuilt trading strategies and systems, mainly in the second part, commonly utilized 

by portfolio managers (i.e., technical analysis in its algorithmic-trading version) to 

grasp to what extent markets are predictable and define the main factors explaining 

such predictability. We also extensively evaluate the out-of-sample performance of 

financial markets using the above techniques to understand the rationale underpinning 

predictability, as well as examining whether our findings reconcile with the Efficient 
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Market Hypothesis (EMH) or more recent formulations revisiting market efficiency 

such as the Adaptive Market Hypothesis (ADH) of Lo (2004). Another objective 

based on the above simulations and theories is to try to explain why do signals rise 

and disappear through time, which will provide us with a valuable awareness of the 

nature of short term market predictability. In fact, a trading strategy rarely reserves a 

uniform performance for more than a few years or even months. Finally, we also try 

to investigate the new horizons data science offers in the field of algorithmic trading, 

triggering a scientific revolution. Indeed, the analytical power of statistics in 

analysing big and complex data patterns and correlations can lead us to new scientific 

theories. 

The first part of the thesis exploits the use of machine learning and artificial 

intelligence techniques to evaluate the predictability of volatility and the exercise of 

trading strategies based on the employed technique’s forecasts. Volatility trading has 

been of growing interest not only from the quantitative financial analyst community 

but also from institutional and high-net-worth clients due to their characterization as 

alternative risk-premium strategies, (Sepp, 2016), as well as the availability of 

volatility-related indices and instruments (see CBOE) for trading purposes over the 

recent years. When it comes to machine learning we mostly focus on supervised 

learning and deep learning specifications even though various iterations exist (i.e., 

supervised, unsupervised, deep and reinforcement learning). The aim of supervised 

learning is primarily to determine the relationship between two datasets and to use 

one dataset to predict the other. The aim of deep learning is to employ artificial 

intelligence techniques, such as multi-layered neural networks, to estimate a trend, 

while it encourages the algorithms to explore and identify the most profitable trading 

strategies. 

We employ an empirical investigation, which concentrates on the modelling and 

trading of three daily market implied volatility indices issued on the Chicago Board 

Options Exchange (CBOE), namely the VIX, VXN and VXD, using evolving 

combinations of prominent autoregressive and emerging heuristics models. The aim 

is to develop an algorithm that provides a better approximation of the most popular 

U.S. volatility indices than those that have already been presented in the literature and 

to determine its ability to compose a profitable trading strategy. We combine the 

heterogeneous autoregressive process (HAR) of Corsi (2009), which captures long 
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memory, with a genetic algorithm–support vector regression (GASVR) model in two 

hybrid algorithms. We benchmark the algorithms’ statistical performances against the 

best forecasters on the VIX, VXN and VXD volatility indices. Moreover, we evaluate 

the trading performances of the forecasts through a trading simulation based on VIX 

and VXN futures contracts, as well as on the VXZ exchange traded note based on the 

S&P 500 VIX mid-term futures index. The main findings indicate the existence of 

strong nonlinearities in all indices examined, while the GASVR algorithm improves 

the statistical significance of the HAR processes. In terms of out-of-sample excess 

profitability of the hybrid models, we reveal the possibility of economically 

significant profits. The proposed methodology and the empirical evidence of this 

study have already been published in the International Journal of Forecasting (see, 

Psaradellis and Sermpinis, 2016). 

The second part deals more extensively with the issue of data snooping when a 

great number of trading signals occur, based on trading strategies employed in 

professional trading desks. We assess the rationale underpinning the emergence of 

trading signals and how the existence of significant ones can be consistent with 

current economic theories. We revisit the strategies of technical trading (i.e., technical 

indicators and oscillators) and statistical arbitrage built to be delta neutral (i.e., pairs 

trading). The notion is to shed new light in the world of professional trading, as 

trading desks do in practice to maximize their profits, while in the meantime to 

exercise emerging approaches controlling for data snooping effects in both back 

testing and out-of-sample environments. This will allow us to measure the 

significance of those profits yielded by some of the most puzzling principles in the 

field of asset pricing, momentum and mean reversion. 

We perform two empirical applications towards the above direction, which also 

constitute the third and fourth chapter of this thesis. In the third chapte we investigate 

the debatable success of technical trading rules, through the years, on the trending 

energy market of crude oil. In particular, we revisit the large universe of 7846 trading 

rules proposed by Sullivan et al., (1999), divided into five families (filter rules, 

moving averages, support and resistance rules, channel breakouts, and on-balance 

volume averages) and applied to the daily prices of West Texas Intermediate (WTI) 

light, sweet crude oil futures as well as the United States Oil (USO) fund, from 2006 

onwards. We employ the k-familywise error rate (k-FWER) and false discovery rate 
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(FDR) techniques proposed by Romano and Wolf (2007) and Barras et al., (2010) 

respectively, accounting for data snooping in order to identify significantly profitable 

trading strategies. We conclude that there is no persistent nature in rules performance, 

contrary to the in-sample outstanding results, although tiny profits can be achieved in 

some periods. In overall, our results seem to be in favour of the adaptive market 

hypothesis. 

In the fourth chapter, we examine technical trading rules performance when using 

a statistical arbitrage investment strategy, pairs trading, using daily data over the 

period 1990-2016 for 15 commodity, equity and “famous” currency pairs. Adopting 

again the false discovery rate test of Barras et al., (2010) to control for data snooping 

bias and exercising 18,412 technical trading rules this time, we find evidence of 

significant predictability and excess profitability, especially for commodity spreads, 

where the best performing strategy generates an annualized mean excess return of 

17.6%. In addition, we perform an out-of-sample analysis to cross-validate our results 

in different subperiods. We find that whilst the profitability of rules based on 

technical analysis exhibits a downward trend over the sample, the opportunities for 

pairs trading remains has increased in certain cases. 

The remainder of the thesis is structured as follows. In Chapter 2, we provide the 

methodology and empirical evidence of our first application on modelling and trading 

the U.S. implied volatility indices with hybrid models based on autoregressive and 

machine learning techniques. Chapter 3 describes the application of Sullivan’s et al., 

(1999) technical trading rules universe on the crude oil market as well as the detailed 

methodology and performance of the powerful k-FWER and FDR specifications for 

controlling data snooping on the generated returns. Chapter 4 presents our proposed 

universe of 18,412 technical trading rules, the construction of the pairs considered, as 

well as the former’s predictability and excess profitability after accounting for data 

snooping bias through the FDR approach. Finally, Chapter 5 presents the concluding 

remarks of the thesis. 
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CHAPTER 2 

MODELLING & TRADING THE U.S. IMPLIED VOLATILITY 

INDICES: EVIDENCE FROM THE VIX, VXN AND VXD 

INDICES. 
 

1. Introduction 

 

The Chicago Board Options Exchange (CBOE) implied volatility index (VIX), the 

so-called "investor fear gauge" (Whaley, 2000), has been widely used as a key 

measure of risk by both academics and practitioners, since it relies on the market 

expectations of volatility implied by the supply and demand of the S&P 500 index 

options. Its popularity as a hedging instrument for investors encouraged the CBOE to 

calculate several other volatility indices as well, measuring the expectations conveyed 

by option prices traded in other markets; for example, the Nasdaq-100 volatility index 

(VXN) and the Dow Jones Industrial Average volatility index (VXD). In particular, 

the VIX, VXN and VXD are forward-looking indicators that represent expected 

future market volatility over the next 30 calendar days. They are all characterized by 

sharp increases during periods of uncertainty and turmoil in the options market 

(Whaley, 2009). This specific feature of the volatility indices makes them very 

popular tools for decision makers and financial analysts, because they reveal whether 

or not the most liquid markets have reached an extreme level of sentiment. Thus, 

being able to predict these specific volatility indices accurately is of great importance 

not only for derivative markets but for the hedge fund industry in general. This paper 

concentrates on modelling the VIX, VXN and VXD using evolving combinations of 

prominent autoregressive and emerging heuristic techniques, which are distinguished 

by their forecasting potential.  

Examining the empirical evidence on modelling the term structure of implied 

volatility, we find a considerable degree of variation in the literature. Gonzales 

Miranda and Burgess (1997) and Malliaris and Salchenberger (1996) apply non-

parametric techniques successfully to the modelling of the Black-Scholes implied 

volatility of the S&P 100 ATM call options and Ibex35 index options, respectively. 

They find that Neural Networks (NN's) are able to express some characteristics of the 

data better than traditional models. Dumas et al. (1998) use a deterministic function 

(DVF) to capture the dynamic S&P 500 options’ implied volatility, employing the 
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asset prices, moneyness ratio and expiration date of options as inputs. The model that 

they examine does not show a significant stability across the implied volatility 

surface relative to a fully stochastic one. Following a similar methodology by 

Malliaris and Salchenberger (1996), Refenes and Holt (2001) take a step forward by 

not only applying a multi-layer perceptron network (MLP) for forecasting the implied 

volatility of Ibex35 options but also using the Durbin-Watson test on (NN) residuals 

for purposes of misspecification analysis. Gonçalves and Guidolin (2006) express 

these dynamics using a vector autoregressive (VAR) technique. They also assess the 

economic significance of the VAR's forecasts by constructing a variety of trading and 

hedging strategies.  Ahn et al., (2012) follow a different and unique approach by 

forecasting the directional movements of the implied volatility of the KOPSI 200 

options precisely as a function of Greeks using an artificial NN and a sliding window 

technique.  

Other researchers such as Blair et al. (2001a, b), Fleming et al. (1995) and Harvey 

and Whaley (1992) have conducted noteworthy research on the predictability of the 

VXO implied volatility of the S&P 100 index. The first approach is an economic 

variables model under the Black–Scholes assumptions. The last three methodologies 

demonstrate that the movements of the VXO are explained by a first-order 

autocorrelation model that incorporates mean reversion and an ARCH model that 

consolidates leverage effects, index returns and VIX observations. Similarly, Brooks 

and Oozeer (2002) also use a macroeconomic variables model to forecast and trade 

the implied volatility derived from at-the-money options on Treasury bond futures of 

LIFFE. 

There are numerous papers in the literature that have investigated the dynamics of 

the VIX, such as for pricing implied volatility derivatives or for predicting the 

directional movements of the S&P 500 index (see e.g. Dotsis et al., 2007). However, 

only a limited number of studies in the literature have addressed the question of 

forecasting the dynamics of the implied volatility indices directly. Ahoniemi (2006) 

uses a hybrid ARIMA-GARCH model to produce point forecasts for the VIX index, 

while Konstantinidi et al., (2008) examine the predictive ability of a mixture of 

methodologies, such as an economic variables model, a vector autoregressive (VAR) 

model and an autoregressive fractionally integrated moving average (ARFIMA) 

model for producing point and interval forecasts of several U.S. and European 



 

 

 

8 
 

implied volatility indices. Both studies indicate that the ARFIMA explains the U.S. 

volatility indices better, and apply out-of-sample forecasts for trading purposes. 

Clements and Fuller’s (2012) study focuses on the implementation of a long volatility 

hedge for an equity index, based on semi-parametric forecasts that capture increases 

in the VIX. Fernandes et al., (2014) use the heterogeneous autoregressive (HAR) 

process of Corsi (2009) to model the VIX, while considering numerous macro-

finance variables from the U.S. economy. The rationale behind the use of the HAR is 

the long memory which characterizes the implied and realized volatility of options 

(Bandi & Perron, 2006; Corsi, 2009; Koopman et al., 2005). They also develop a 

semi-parametric HAR model that includes a neural network (NN) term for capturing 

any nonlinearities of unknown form that define the index. Their stimulus lies in the 

fact that some macro-finance variables (e.g., the USD index) do not seem to have 

statistically significant effects on the VIX if one controls for nonlinear dependence; 

conversely, their effect on the index is significant in a linear structure. 

This study employs a heterogeneous autoregressive process (Corsi, 2009; Muller et 

al., 1997) to predict the VIX, VXN and VXD and combines it with one of the most 

promising heuristic techniques, a hybrid genetic algorithm-support vector regression 

(GASVR) model. GASVR is a promising, fully adaptive heuristic algorithm, that is 

free from the data snooping effect and parameterization bias, and has had only a small 

number of applications in the field of forecasting (Dunis et al., 2013: Pai et al., 2006; 

Sermpinis et al., 2014; Yuang, 2012). This is the first application of the GASVR to 

the modelling of option volatilities.  

Financial series (particularly tradable series such as the ones under study) are 

vulnerable to both behavioural (Froot et. al., 1992) and exogenous factors such as 

political decisions (Frisman, 2001). These factors are impossible to captured with 

mathematical models, and include noise to time-series estimations. Linear models 

(like those that dominate the relevant literature) on the other hand, will be only 

partially successful at capturing the relevant underlying trend.  They seem to unable 

to help traders to generate profitable series, and have low forecasting power and 

volatile behaviour through time (LeBaron, 2000; Qi & Wu 2006).  For instance, the 

HAR process is one of the most dominant approaches to modelling and forecasting 

the implied volatility in a linear form, based on three past volatility components 

(daily, weekly and monthly). However, when considering our proposed 



 

 

 

9 
 

semiparametric approach, we find that the daily component of the HAR specification 

is no longer statistically significant. This indicates that the series under study exhibits 

nonlinear characteristics. By combining the best linear performers for forecasting the 

U.S. volatility indices with one of the most up-to-date and promising non-linear 

heuristic approaches, this research aims to create a superior hybrid forecaster that will 

surpass the statistical and trading performance of the models presented previously in 

the relevant literature. More specifically, a HAR process (the most promising linear 

model according to Fernandes et al., 2014) is developed and combined with a 

GASVR model in two hybrid models. The forecasting performance of the hybrid 

models will indicate whether there are non-linear elements that HAR is unable to 

capture and whether the evolutionary concept of GASVR can actually mimic the 

market dynamics and be capable of producing profitable forecasts.  Their 

performances are benchmarked against a hybrid non-linear heuristic model 

(incorporating a HAR process and a recurrent neural network (RNN)), a simple HAR 

process, an ARFIMA model and a hybrid ARFIMA algorithm. In this study, we do 

not consider macro-finance variables models because their forecasting performances 

for predicting the VIX, VXN and VXD, are poor relative to those of stochastic 

processes (see Fernandes et al., 2014; Konstantinidi et al., 2008)2. We verify the 

robustness of our proposed methodology, by examining two out-of-sample datasets. 

The first one covers between the Lehmann Brothers collapse (mid-September 2008) 

and the end of 2009, the period of financial crisis. The second one is a more recent 

period, starting from January 2013 until April 2014.  The paper also performs a 

heuristic analysis based on the residuals obtained from the autoregressive models, 

with the aim of extracting any other unknown form of nonlinearity that is not 

captured by the residuals of HAR and ARFIMA specifications. The aim of the paper 

is not to map the series under study, as this would be impossible to achieve for any 

financial tradable series while using a mathematical model. Instead, this study aims to 

introduce an algorithm that approximates the examined indices better than those 

already presented in the literature.  

                                                           
2 Experimentation has shown that the use of explanatory variables, such as the continuously 

compounded return on the S&P 500 index, the S&P 500 volume change and the continuously 

compounded return on the one-month crude oil futures contract, as inputs, does not improve 

the performance of our hybrid algorithm. 
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The forecasting performance of the models under study are examined using three 

different predictive ability tests: the superior predictive ability (SPA) and model 

confidence set (MCS) tests of Hansen (2005) and Hansen et al., (2011) respectively, 

and the Giacomini and White (2006) test. Finally, we perform an out-of-sample 

realistic trading simulation by employing VIX and VXN futures contracts acquired 

from the Chicago Board Options Exchange (CBOE) volatility futures market in order 

to check for possible abnormal profits. For investigating the excess profitability of 

VIX index, we also employ exchange traded notes (ETNs), specifically the iPath S&P 

500 VIX mid-term futures index (VXZ). ETNs linked with volatility indices are 

strongly preferred by investors as a good diversification hedge, while they are 

available with tiny investor fee rates. Our results reveal that a HAR- GASVR residual 

hybrid model is the only algorithm that generates statistically significant excess 

profitability, when taking futures contracts into account. When considering trading 

performances for the VXZ ETN, in which the transaction costs are substantially 

lower, all HAR specifications are capable of yielding statistically significant profits. 

To the best of our knowledge, this is the first time that a HAR process has been 

employed for trading purposes other than modelling. 

The remainder of the paper is structured as follows. Section 2 provides a detailed 

description of the implied volatility indices, the VIX and VXN futures contracts and 

the VXZ ETN. Section 3 presents a synopsis of the benchmark models, the 

semiparametric architectures applied and the combination methods implemented. The 

statistical forecasting and trading performances are discussed in Sections 4 and 5, 

respectively. Finally, the last section presents our conclusions. 

 

2. Implied Volatility Indices and Related Financial Data 

 

The VIX was introduced on the Chicago Board Options Exchange (CBOE) in 

1993, while VXN and VXD were introduced a few years later.  All three indices are 

settled on daily basis. VIX, VXN and VXD represent weighted indices that mixed 

together different types of stock index options from S&P 500, Nasdaq-100 and DJIA 

respectively. As has been mentioned, the indices portray the expected future market 

volatility over the next 30 calendar days. Hence, they are forward-looking 
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illustrations of the level of volatility expected by the market in the short term. All 

indices apply the VIX algorithm (a model-free implied volatility estimator; see, Jiang 

&Tian, 2005) for the calculation of index values (see, Chicago Board Options 

Exchange, 2015). Thus, they do not depend on any particular option pricing structure 

such as the Black-Scholes model (Britten-Jones & Neuberger, 2000). 

In this paper, we examine two periods for which we have daily closing prices 

of the VIX, VXN and VXD, from August 2002 to November 2009 and from January 

2007 to April 2014, for the sake of robustness. The datasets were separated into in-

sample and out-of-sample subsets (see Table 1), in which, the out-of-sample subset 

consists of approximately the last 14 months of each dataset. The dataset was 

obtained from the CBOE website. Furthermore, the descriptive statistics for the three 

series are presented in Table 2.  

[Table 1] 

[Table 2] 

The three series under study are non-normal (see the Jarque-Bera p-values in 

levels at the 99% confidence level) and exhibit high levels of skewness and positive 

kurtosis. The series were therefore transformed into logarithms in order to overcome 

these issues. The summary statistics of the series (in logs) are also presented in Table 

2, in which we observe that a slight skewness still remains. 

The time series (in logs) were also tested for stationarity, a unit root and long 

memory through a variety of testing techniques (Table 3). including the augmented 

Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests. In addition, the KPPS 

test statistic for the null hypothesis of stationarity and the long memory rescaled 

variance test statistic (V/S) (see Giraitis et al., 2003) were employed to confirm that 

long memory models such as ARFIMA and HAR are appropriate for modelling our 

data. The number of lags for the KPSS test was selected using the quadratic spectral 

kernel with bandwidth choice (Andrews, 1991).  

[Table 3] 

Table 3 reports that the null hypothesis of a unit root is rejected at the 99% 

statistical level for the full sample according to the p-values of ADF and PP tests. 
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Likewise, the KPSS test cannot reject the null of stationarity at all the 10%, 5% and 

1% significance levels for the full sample, which confirms the stationarity property3. 

The V/S test null hypothesis for short memory is rejected for both levels of 

significance, indicating that our sample is characterized by long memory.  

In our trading simulation, we use VIX and VXN futures contracts4 from the 

Chicago Futures Exchange (CFE), as well as the iPath S&P 500 VIX mid-term 

futures ETN (VXZ)5. The VIX and the VXN future contracts may trade up to nine 

near-term serial months and five months on the February quarterly cycle. The final 

settlement date is the Wednesday that is thirty days prior to the third Friday of the 

next month, when the standard S&P 500 and Nasdq-100 index options expire. The 

contract multiplier for each future is $1000. Our application examines seven different 

futures contracts traded in the second out-of-sample data set, which expire in 2013 

and 20146. We trade the contracts much closer to their expiration dates, when the 

futures price is almost equal to the spot price, in order to minimize the basis risk. 

Finally, we minimize the effect of noisy data by rolling from every future contract 

series to the following one, five days before each matures (see Dotsis et al., 2007). 

Table 4 presents the characteristics of the VIX and VXN futures contracts considered.  

[Table 4] 

On the other hand, VXZ, offers investors’ a cheap alternative relative to the more 

expensive (in terms of transaction costs) futures contracts. In addition, trading an 

ETN does not require a margin account. The VXZ ETN is designed to offer exposure 

to the S&P 500 VIX mid-term futures index total return. This index provides access 

to a daily rolling long position in the fourth, fifth, sixth and seventh month VIX 

futures contracts. The investor fee rates for the VXZ ETN are 0.89% per annum. The 

VXZ ETN is the second biggest CBOE volatility index ETF in terms of total assets. 

                                                           
3 The small size of our sample does not allow us to distinguish reliably between long and 

short memory processes (Lee & Schmidt, 1996). 
4 We do not take VXD futures contracts into account because they were delisted from the 

CBOE Futures Exchange in 2009.  
5 The futures contract and ETN specifications and settlement processes were retrieved from 

the CBOE and Barclays websites respectively.   
6  VXN futures and the VXZ ETN were developed after the period of the first dataset, unlike 

the VIX futures. Contracts with trading volumes of settlement prices that are less than five 

are excluded. 
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The biggest is the iPath S&P 500 short-term VIX features ETN (VXX), which seeks 

to replicate the daily rolling long position in the immediately first and second month 

VIX futures contracts. We choose the VXZ ETN because it is exposed to less contago 

effect arising from the volatility forward curve7 and has lower basis risk compared to 

the VXX8. 

 

3. Forecasting Models 

 

3.1. ARFIMA model  

An ARFIMA (1, d, 1) model is employed as a benchmark for capturing the short 

and long memory properties of the implied volatility index. ARFIMA (1, d, 1) 

performs better than VAR models and other simple linear models based on economic 

variables for forecasting the U.S. implied volatility indices (Konstantinidi et al., 

2008). A hybrid model based on the residuals of ARFIMA (1, d, 1) regressions and 

the GASVR algorithm is also explored. The intuition of the hybrid model is that VIX, 

VNX and VXD are most likely to follow a nonlinear pattern. The GASVR algorithm 

attempts to extract these non-linear elements from the residuals and to combine them 

with the ARFIMA forecasts in order to present a superior forecasting model.  

The standard ARFIMA (p, d, q) process is given by  

𝑙𝑟𝑖𝑣𝑡 = (1 − 𝐿)−𝑑{𝜌(𝐿)}−1𝜃(𝐿)𝜀𝑡,  𝜀𝑡~𝑁(0, 𝜎𝜀
2)      (1) 

where 𝑙𝑟𝑖𝑣 is the logarithm of the volatility index, (1 − 𝐿)𝑑 is the fractional 

difference operator with a d order of fractional integration being required for 

stationarity, which is expressed in non-integer values; 𝜌(𝐿) = (1 − 𝜌1𝐿 − ⋯ − 𝜌𝑝𝐿𝑝) 

and 𝜃(𝐿) = (1 − 𝜃1𝐿 − ⋯ − 𝜃𝑞𝐿𝑞), are the lagged autoregressive and moving 

average polynomials, respectively, and 𝜀𝑡 is the Gaussian error term. 

 

                                                           
7 Volatility ETFs are subject to a contango effect arising from the volatility forward curve, 

which is upward sloping, because they track VIX futures, not the VIX index itself. 
8 We have computed the basis risk for the two ETNs in the in-samples subperiods. VXZ 

demonstrates less basis risk than the VXX in both subperiods.   
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3.2. HAR model 

Corsi (2009) proposes a heterogeneous autoregressive model for realised volatility, 

inspired by the Heterogeneous Market Hypothesis of Müller et al. (1993), which 

accepts the presence of heterogeneity across traders. Specifically, he focuses on the 

heterogeneity arising from different time horizons due to the divergent trading 

frequency of market agents. The notion is that there are three classes of market 

participants based on their trading frequencies. These agents are classified as short-

term (e.g., intraday traders or speculators and hedge funds), characterized by higher 

trading rates, usually daily; medium-term (e.g., commercial banks), who perform a 

weekly rebalancing of their assets and long-term (e.g., pension funds, insurance 

companies), defined by lower frequency of transactions, usually on a monthly basis. 

This leads to three different types of volatility components (daily, weekly, monthly), 

which create an overall volatility cascade from low to high frequencies. At each level 

of the cascade, the underlying volatility component consists not only of its past 

observation but also the expectation of longer horizon partial volatilities. The 

proposed model is defined as an additive linear structure of first-order autoregressive 

partial volatilities able to capture the long-range dependence: 

𝑙𝑟𝑖𝑣𝑡 = 𝛽0 + 𝛽(𝑑)𝑙𝑟𝑖𝑣𝑡−1
(𝑑)

+ 𝛽(𝑤)𝑙𝑟𝑖𝑣𝑡−1
(𝑤)

+ 𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1
(𝑚)

+ 𝜀𝑡,  𝜀𝑡~𝑁(0, 𝜎𝜀
2)  (2) 

where 𝑙𝑟𝑖𝑣(ℎ) =
1

ℎ
∑ 𝑙𝑟𝑖𝑣𝑡−𝑗+1

ℎ
𝑗=1  and  ℎ =  (1, 5, 22) ′ is an index vector that depicts 

the daily, weekly and monthly components of the volatility cascade. We use the HAR 

specification as a second benchmark for VIX, VXN and VXD modelling because of 

its excellent forecasting ability on implied and realised volatilities (see, Busch et al., 

2011; McAleer and Medeiros, 2008, amongst others). In addition, we also employ the 

HAR structure to construct our semiparametric approaches involving NNs and the 

GASVR algorithm. 

3.3 Neural network approach 

Our third benchmark model is a semiparametric approach evolving the HAR 

process and a recurrent neural network (RNN). As was discussed above, several 

researchers have applied NNs successfully to the task of identifying patterns in 

implied or realized volatilities. Usually, NN specifications have at least three layers. 

The first layer is called the input layer, and the number of nodes corresponds to the 

number of explanatory variables. The last layer is called the output layer, and the 
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number of nodes corresponds to the number of response variables. An intermediate 

layer of nodes, called the hidden layer, separates the input and output layers. The 

number of nodes in this layer controls the amount of complexity that the model is 

capable of fitting. In addition, the input and hidden layers each contain an extra node 

called the bias node. This node has a fixed value of one and has the same function as 

the intercept in traditional regression models. Normally, each node in a given layer is 

connected to all of the nodes in the next layer. The training of the network (which 

involves the adjustment of its weights such that the network maps the input values of 

the training data to the corresponding output values) starts with randomly chosen 

weights and proceeds by applying a learning algorithm called the backpropagation of 

errors (Shapiro, 2000). The iteration length is optimized by maximizing a fitness 

function in the test dataset.   

The RNNs have activation feedback that embodies short-term memory. In other 

words, the RNN architecture can provide more-accurate outputs because the inputs 

are (potentially) taken from all previous values. While Tenti (1996) notes that RNNs 

need more connections and memory than standard back-propagation networks, these 

additional memory inputs allow RNNs to yield better results than simple MLPs. For 

more information on RNNs, see Sermpinis et al. (2012). A similar hybrid HAR 

process and a simple NN model (NNHARX) performed equally well for forecasting 

the VIX relative to different types of HAR processes (see Fernandes et al., (2014)).  

Straightforward modelling of the implied volatility indices using only RNNs9 does 

not seem sufficient. The hybrid HAR-RNN method is defined as follows: 

𝑙𝑟𝑖𝑣𝑡 = 𝛽0 + 𝛽(𝑑)𝑙𝑟𝑖𝑣𝑡−1
(𝑑)

+ 𝛽(𝑤)𝑙𝑟𝑖𝑣𝑡−1
(𝑤)

+ 𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1
(𝑚)

 

   + ∑
𝜆𝑚

1+𝑒
−𝛼−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑑)
−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑤)
−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑚) +𝑀
𝑚=1 𝜀𝑡    (3) 

                                                           
9  We conduct NN experiments and a sensitivity analysis on a pool of autoregressive terms of 

VIX, VXN and VXD series. We find that a simple RNN approach performs poorly for both 

the in-sample and out-of-sample datasets. The problem is probably that a simple NN model 

cannot capture the long memory of implied volatilities efficiently, although it is very capable 

of capturing nonlinearities. 
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where 𝑙𝑟𝑖𝑣𝑡−1
(𝑑)

, 𝑙𝑟𝑖𝑣𝑡−1
(𝑤)

 and 𝑙𝑟𝑖𝑣𝑡−1
(𝑚)

 are the three volatility components of the HAR 

model, and ∑
𝜆𝑚

1+𝑒
−𝛼−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑑)
−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑤)
−𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1

(𝑚)
𝑀
𝑚=1  represents the transfer sigmoid 

function of the neural network.  The neural network architecture is trained through the 

backpropagation method and the regularization parameter is optimized based on a 

cross-validation algorithm. The number of hidden units, M is set through a trial and 

error procedure on the in-sample dataset, which reveals the optimal results. In our 

simulation, the optimal number of hidden units is 3. For our NNs, we apply an 

objective fitness function that focuses on minimizing the mean squared error (MSE) 

of the network’s outputs. After the networks have been optimized, the predictive 

value of each model is evaluated by applying it to the validation dataset (out-of-

sample dataset). 

 

3.4. HAR-GASVR framework 

3.4.1. The GASVR 

Support vector machines (SVMs) are nonlinear algorithms that are used to solve 

classification problems in supervised learning frameworks. SVM processes belong to 

the general category of kernel methods (Scholkopf & Smola, 2002). Their 

development involves, first, sound theory, then implementation and experiments, in 

contrast to the development of other heuristics that are purely atheoretic, such as 

NNs. Their main advantage is that, while they can generate nonlinear decision 

boundaries through linear classifiers, they still have a simple geometric interpretation. 

In addition, the solution to an SVM is global and unique; in other words, it does not 

suffer from multiple local minima such as the solutions of NNs occasionally do. 

Another advantage is that the practitioner can apply kernel functions to data such that 

their vector space is not fixed in terms of dimensions. SVMs can be used in 

regression problems by implementing the ε-sensitive loss function by Vapnik (1995). 

This function established SVRs as a robust technique for the construction of data-

driven and nonlinear empirical regression models. Recently, SVR and its hybrid 

applications have become popular for time-series prediction and financial forecasting 

applications (see, among others, Dunis et al., 2013; Pai et al., 2006; Sermpinis et al. 

2014; and Yuang, 2012). Finally, they also seem able to cope well with high-

dimensional, noisy and complex feature problems (Suykens et al., 2002). A 

theoretical framework for SVRs is provided in Appendix A. 
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Although SVR has emerged as a highly effective technique for solving nonlinear 

regression problems, the design of such a model can be impeded by the complexity 

and sensitivity of parameter selection. The performances of SVRs depend on all 

parameters being set optimally. Numerous different approaches to this optimization 

have been presented in the literature, such as setting ε to a non-negative constant for 

the sake of convenience (Trafalis & Ince, 2000), using data-driven approaches 

(Cherkassky & Ma, 2004), applying cross-validation techniques (Cao, Chua, & Guan, 

2003; Duan, Keerthi, & Poo, 2003), and controlling ε with v-SVR (Scholkopf, 

Bartlett, Smola, & Williamson, 1999). 

In this study, SVR parametrization is conducted via a genetic algorithm (GA)10. 

The resulting algorithm (GASVR), searches genetically over a feature space and then 

provides a single optimized SVR forecast for each series under study. We perform 

this process using a simple GA in which each chromosome comprises feature genes 

that encode the best feature subsets, and parameter genes that encode the best choice 

of parameters. For our hybrid approach, we implement a radial basis function (RBF) 

v-SVR kernel, which is specified generally as  

𝐾(𝑥𝑖, 𝑥) = exp(−𝛾‖𝑥𝑖 − 𝑥‖2) , 𝛾 > 0    (4) 

where 𝛾 represents the variance of the kernel function. We optimize the 𝛾 parameter 

along with regulation parameters controlling the balance between learning the SVR 

and training errors (slack variables) with the GA as described in Appendices A and B.  

RBF kernels are the most common in similar SVR applications (see, Ince and 

Trafalis, 2006, 2008, amongst others), because they overcome overfitting efficiently 

and seem to excel in forecasting applications. 

 

3.4.2. The HAR-GASVR 

Following the approach described above, this study combines the HAR model with 

a genetically optimized v-SVR. In this hybrid model, the v-SVR parameters (𝐶, 𝑣 and 

𝛾) are optimized through a genetic algorithm. This HAR-type genetic support vector 

(HAR-GASVR) model is specified as follows:  

                                                           
10 For a more detailed description of the GA algorithm see Appendix B. 
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𝑙𝑟𝑖𝑣 = 𝛽0 + 𝛽(𝑑)𝑙𝑟𝑖𝑣𝑡−1
(𝑑)

+ 𝛽(𝑤)𝑙𝑟𝑖𝑣𝑡−1
(𝑤)

+ 𝛽(𝑚)𝑙𝑟𝑖𝑣𝑡−1
(𝑚)

 

   + ∑ (𝑛
𝑖=1 𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑙𝑟𝑖𝑣𝑖
(ℎ)

, 𝑙𝑟𝑖𝑣) + 𝜀𝑡   (5) 

where 

 𝐾(𝑙𝑟𝑖𝑣𝑖
(ℎ)

, 𝑙𝑟𝑖𝑣) = exp (−𝛾‖𝑙𝑟𝑖𝑣𝑖
(ℎ)

− 𝑙𝑟𝑖𝑣0‖
2

) , 𝛾   (6)  

is an RBF Kernel function that uses the index vectors of the three volatility 

components as inputs. 

For the GA optimization, we set the crossover probability to 0.9. This setting 

enables our model to keep some population for the next generation, in hope of 

creating better new chromosomes from the good parts of the old ones. The mutation 

probability is set to 0.1 in order to prevent our algorithm from performing a random 

search, whereas the wheel roulette selection technique is applied to the selection step 

of the GA. Similar to NNs, our HAR-GASVR model requires the use of training and 

test subsets to validate the goodness of fit of each chromosome. The population of 

chromosomes is initialized in the training sub-period, and the optimal selection of 

chromosomes is achieved when their forecasts minimize the MSE in the test-sub 

period. Then, the optimized parameters and selected predictors of the best solution 

are used to train the SVR and produce the final optimized forecast, which is evaluated 

over the out-of-sample period. 

We adjust the GA initial population to 100 chromosomes, and the maximum 

number of generations is set to 200. However, the algorithm may terminate the 

evolution earlier if the population is deemed to have converged. The population is 

deemed to have converged when the average fitness across the current population is 

less than 5% away from the best fitness of the current population. More specifically, 

when the average fitness is less than 5% away, the diversity of the population is very 

low, and more generations of evolution are unlikely to produce different and better 

individuals than the existing ones or those examined by the algorithm in previous 

generations.  
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3.5. Modelling the residuals 

Adding to the previous models, we now proceed to a residual analysis of the 

implied volatility indices estimation approaches in order to express potential 

asymmetric effects that show up among the residuals. The GASVR regression 

method is applied to the residuals generated from our two linear benchmarks 

(ARFIMA and HAR). The idea behind these HAR and ARFIMA-type genetic 

support vector regression residual models (ARFIMA-GASVR(res) and 

HARGASVR(res), respectively) is to perform a heuristic analysis on the ARFIMA 

and HAR residuals and capture the nonlinear elements that are hidden in their noise. 

This specification should be able to forecast VIX, VXN and VXD more accurately 

than its linear counterparts.  

We follow a two-step approach. The first step is to feed and train the GASVR 

algorithm using the series of residuals derived from the ARFIMA and HAR 

estimations, respectively. In the second step, the GASVR forecasted values are added 

to the ARFIMA and HAR forecasts. Again, following the GASVR methodology 

described above, the main goals are to genetically optimize the v-SVR parameters and 

to minimize the mean squared error (MSE) between the residuals and those that 

emerge from the SVR regression by employing the same fitness function. For this 

purpose, the optimization problem describing the v-SVR is transformed into  

𝑓(𝜀) = ∑ (𝑛
𝑖=1 𝛼𝑖 − 𝛼𝑖

∗) exp(−𝛾‖𝜀𝑖 − 𝜀‖2) + 𝑏,  0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤

𝐶

𝑛
, 𝛾 > 0   (7) 

where 𝜀𝑖 are the lagged values of residuals for each benchmark model, 𝜀 are the 

actual ones, while 𝛼𝑖 and 𝛼𝑖
∗ represent langrage multipliers, helping to solve the 

above problem along with the kernel function (see Appendix A). In the absence of 

any formal theory for the selection of the inputs of a GASVR and based on the 

experiments during the in-sample period, we choose to feed our networks with the 

first five autoregressive lags of the VIX, VXN and VXD estimation residuals, 

representing a weekly time interval11. In addition, we keep the population and 

                                                           
11  We experimented with various different numbers of lags in the in-sample periods (orders 

three to fifteen). In all cases, we obtained the best forecasting performance when using the 

first five autoregressive lags. The performance of GA-SV is highly sensitive to the selection 

of the inputs (see, Dunis et. al. 2013; Pai et. al. 2006; and Sermpinis et. al. 2014, amongst 

others). 
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generation levels and the crossover and mutation probabilities the same as in the 

previous approach. 

 

4. Empirical findings 

 

4.1. Statistical Performance 

Tables 5 and 6 present the out-of-sample statistical performances12 of each of the 

models inspected for the two periods considered. We report the root mean squared 

error (RMSE) and the mean absolute error (MAE) criteria for the statistical evaluation 

of our daily forecasts for the two out-of-sample periods, in which a lower output 

value for a model indicates that it has a better forecasting accuracy13. Apart from the 

models mentioned above, we also consider the predictive ability of a random walk 

without drift14 and an AR(1) model15. 

[Table 5] 

Concerning the statistical performance of the global financial crisis out-of-sample 

period, we observe that the HAR-GASVR(res) displays the best statistical results 

according to both measures for all of the implied volatility indices. In case of the VIX 

index in particular, the HAR-GASVR(res) and HAR-GASVR models outperform 

their competitors considerably. For instance, the former clearly outperforms the 

ARFIMA model in forecasting accuracy and achieves even better results than the 

HAR and HAR-RNN methods, which were established recently as the most accurate 

techniques for forecasting the VIX (Fernandes et al., 2014). The second-best 

predictive ability is achieved by the HAR-GASVR method, which presents a 

considerably better performance than either the HAR or HAR-RNN. Only in the case 

                                                           
12 The in-sample statistical performances for both periods considered are available upon 

request. 
13 Daily forecasts are simply the forecasts for the rest days out-of-sample, compared with one-

day-ahead forecasts which are generated through a recursive estimation of the models. 
14 Note that we also computed a random walk model with a drift, but found that incorporating 

the drift had a negative impact on the forecasting performance. 
15 In addition to the proposed models, we also explored forecast combinations of the best 

three and six models under study (ARFIMA, HAR, HAR-RNN, HAR-GASVR, ARFIMA-

GASVR(res), HAR-GASVR(res)) with three different approaches: a simple average of the 

underlying forecasts, a Bayesian averaging method (Buckland et al., 1997), and a weighted 

average technique (Aiolfi and Timmermann, 2006). In all cases, the performances of the 

forecast combinations were inferior to that of our best model (HAR-GASVR(res)). 
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of VXN index does the HAR-GAVSR method perform equally with the above two 

processes. The results undoubtedly reveal the existence of nonlinearities and 

asymmetric effects on the implied volatility index, though from long memory and 

persistence. Strong evidence for this is provided by the recognition of HAR-

GASVR(res) approach as the best forecasting model for the in-sample period. This 

shows that our proposed specifications have the ability to perform equally well, even 

in periods of turmoil. 

[Table 6]  

Concerning the out-of-sample statistical performance for the second period, our 

results display almost the same picture as in the first period, with our proposed 

forecast combinations being more accurate than the ARFIMA, HAR and HAR-RNN 

approaches. Specifically, the HAR-type approach with the GASVR error term again 

seems superior to the statistical measures employed for modelling the implied 

volatility indices. The hybrid HAR-GASVR model follows. HAR and HAR-RNN are 

next, presenting almost equally less precise out-of-sample results. However, the 

performance of the HAR-GASVR approach is equal to those of its previous HAR 

approaches in the case of the VXD index.  

The above findings confirm the relative success of the HAR method bearing out 

the findings of Fernandes et al., (2014). Indeed, it is obvious that every HAR type 

specification outperforms the ARFIMA ones. This advantage might be attributable to 

the special ability of the HAR method to capture strong persistence in our dataset. A 

persistent nature really exists in VIX, VXN and VXD, which quantify the market 

expectations concerning the 22-trading-days ahead risk-neutral volatility. 

Furthermore, we find that there are also strong nonlinearities in the above indices, 

which makes our hybrid models perform better.  

 

4.2. Robustness checks 

We authenticate the results above by computing the unconditional Giacomini-

White (2006) test for out-of-sample predictive ability testing and forecast selection, 

when the model may be misspecified. The null hypothesis of the test is the 

equivalence of forecasting accuracy between two forecasting models. The sign of the 

test statistic indicates which model has superior forecasting performance. A positive 
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GW test statistic indicates that the second model is more accurate than the first one, 

which produces larger losses, whereas a negative statistic specifies the opposite. We 

calculate the test in terms of the mean squared error loss function (MSE) for each 

forecast for both out-of-sample periods. Tables 7-9 display the p-values of the 

statistic under the null hypothesis that the performance of the model in the column is 

equivalent to that of the model in the row, for every index separately. 

[Table 7] 

[Table 8] 

[Table 9] 

It is obvious from the Table 7 that all of the HAR processes outperform the 

ARFIMA models at the 5% and 1% significance levels when forecasting the VIX 

index, according to MSE loss function. The HAR-GASVR (res) approach is superior 

to all the HAR processes. Similarly, only the HAR-GASVR and the HAR-

GASVR(res) specifications produce significantly better forecasts than all of the 

competing models.  

The picture seems to be much the same in Table 8 when applying the Giacomini–

White test to the predictability of the VXN index. The results clearly show that the 

HARGASVR(res) model is again the best forecaster. However, the performance of 

our second proposed methodology, the HAR-GASVR model, is almost equal to that 

of the HAR-RNN approach for both periods. The rest of the specifications are inferior 

to the above ones, with the HAR methodology being superior to the ARFIMA models 

overall.  

Table 9 indicates that the Giacomini–White test provides nearly the same 

information for the VXD index as for the VIX and VXN indices, with the HAR-

GASVR(res) method being the most accurate approach for modelling VXD.  

Table 10 now exhibits some descriptive results from Hansen’s (2005) superior 

predictive ability (SPA) test and Hansen’s et al.’s, (2011) model confidence set 

(MCS) procedure in order to allow an equal comparison of various methodologies 

considered under the mean squared error (MSE) and (MAE) criteria. The SPA test 

focuses on a comparison of the relative forecasting performances of multiple 



 

 

 

23 
 

methodologies in a full set of models. The null hypothesis is that the benchmark 

forecast is not inferior to the best alternative one. Each model is used as the 

benchmark in turn each time we apply the SPA test, starting with the random walk. 

Low p-values indicate that the respective benchmark model is inferior to at least one 

alternative (rejecting the null), whereas high p-values specify the opposite.  

The MCS procedure deduces the ‘best’ models from a full set of models under 

specified criteria and at a given level of confidence. Actually, it is a random data-

dependent set of best forecasting models because a standard confidence interval 

covers the population parameter, while acknowledging the limitations of the data 

(Hansen et al., 2011). Hence, more-informative data can lead to only one best model, 

whilst less-informative data result in an MCS including several models because it is 

impossible to differentiate among the competing approaches. An equivalence test and 

an elimination rule are the key features of the MCS procedure. Low p-values indicate 

that it is unlikely that the model will belong to the set of the ‘best’ models. Therefore, 

p-values that exceed the usual levels of significance are preferable. 

[Table 10] 

The results of the SPA test indicate that most of examined models examined are 

inferior to at least one of the alternatives in almost all cases. This probably happens 

because the HAR-GASVR(res) model achieves the highest forecasting 

performance16. Only in the case of the VXN index do HAR processes seem to achieve 

the same performances during the global financial crisis period according to the MSE. 

In addition, HAR-GASVR and HAR-GASVR(res) yield the highest p-values for the 

VIX and VXN indices during the same period, which does not make them inferior to 

alternatives.  

The MCS findings reveal the same picture. HAR-GASVR and the HAR-

GASVR(res) are the only specifications that belong to the ‘best’ set for the VIX and 

VXN indices in the first out-of-sample period, whereas HAR-GASVR(res) is the only 

                                                           
16  Applying the SPA test without considering the HAR-GASVR(res) approach, we find that 

all of the models are beaten by the second-best algorithm, the HAR-GASVR approach. 
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superior model for the rest of the cases considered17. This allows us to conclude that 

the data examined are indeed informative. 

 

5. Economic Significance (Out-of-Sample Trading Simulation) 

 

In this section, we apply a simple trading strategy to assess the economic 

significance of our models by employing the time series of VIX18  and VXN futures 

and the VXZ ETN19 for the second out-of-sample period. This is of great importance 

because statistical accuracy is not always synonymous with trading profitability. The 

trading strategy is executed separately for each of our forecasting models, and 

involves seven different futures contracts (see Table 4) and one ETN. The transaction 

costs are estimated at $ 0.5 per transaction (see CBOE specifications) for future 

contracts and 0.89% per annum for the VXZ ETN (see Barclay’s specifications). 

We evaluate the trading efficiency of our forecasts and compare our results with 

those of previous studies by following a simple trading rule. The investor goes long 

(short) in the volatility futures and the ETN when the forecasted value of the implied 

volatility index is greater (smaller) than its current value.  

The annualized Sharpe ratio (SR) and the annual Leland’s (1999) alpha (𝐴𝑝) are 

considered as performance measures. We calculate the Sharpe ratio and Leland’s 

alpha using the continuously compounded annual U.S. Libor rate as the risk-free rate. 

Moreover, we bootstrap the 95% confidence intervals of the SRs and 𝐴𝑝 values for 

each forecasting model in order to assess the statistical significance of the returns. 

                                                           
17  The results remain the same whether we set the confidence level in our application to 10%, 

5% or 1%, with the number of replications set to 10,000. Only when we exclude the HAR-

GASVR(res) model and apply the procedure do we obtain a larger ‘best’ set. 
18 The regular VIX calculation uses the mid-point in the bid–ask spread of out-of-the money 

SPX options. The VIX futures settlement price is based on actually traded prices of SPX 

options. This difference can lead the VIX futures settlement price to diverge from the spot 

VIX, especially in some cases where the bid–ask spread in the SPX is very wide. However, 

Shu and Zhang (2011) have found that spot VIX and VIX futures generally react to 

information synchronously. 
19 It is also worth noting that the VIX and VXN futures and the VXZ ETN can be also applied 

as hedging tools on their respective indices. However, their efficiency is questionable 

(Alexander & Korovilas, 2013; Engle & Figlewski, 2015; Psychoyios & Skiadopoulos, 

2006). 
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Leland’s (1999) alpha is applied to tackle the existence of non-normality in the 

distribution of the returns found at the end of the trading strategies for each model20. 

It is specified as 

𝐴𝑝 = 𝐸(𝑟𝑃) − 𝐵𝑝[𝐸(𝑟𝑚𝑘𝑡) − 𝑟𝑓] − 𝑟𝑓,       (8) 

where 𝑟𝑃 is the return on trading strategy, 𝑟𝑓 is the risk-free rate, 𝑟𝑚𝑘𝑡 is the return on 

market portfolio, 𝐵𝑝 =
𝑐𝑜𝑣(𝑟𝑃,−(1+𝑟𝑚𝑘𝑡)−𝛾)

𝑐𝑜𝑣(𝑟𝑚𝑘𝑡,−(1+𝑟𝑚𝑘𝑡)−𝛾)
, is a measure of risk similar to the 

CAPM’s beta and 𝛾 =
ln[𝐸(1+𝑟𝑚𝑘𝑡)]−ln (1+𝑟𝑓)

𝑣𝑎𝑟 [ln(1+𝑟𝑚𝑘𝑡)]
 is a risk aversion criterion (see 

Konstantinidi and Skiadopoulos, 2011). In addition, the continuously compounded 

annual return of the S&P 500 and Nasdaq 100 index are used as proxies for the 

benchmark market portfolio.  The trading strategy presents an expected return over 

the risk adjusted degree, when 𝐴𝑝 > 0. The trading performances of our models are 

presented in Table 11, while Appendix C presents the cumulative returns of the two 

best models over time.  

[Table 11] 

It is obvious from Table 11, that the SR and the 𝐴𝑝 measures of the VIX and VXN 

futures’ trading performances are statistically significant for the half of the cases 

examined, during the most recent out-of-sample period. Rejections of the null 

hypothesis of a zero value at the 5% significance level are indicated by an asterisk. 

On the other hand, all HAR specifications are capable of producing significant 

profits, when taking into account the performance of the VXZ ETN.  

Specifically, our findings show that the HAR and HAR-GASVR(res) methods can 

produce significant profits for VIX and VXN future contracts, to some limited extent. 

However, the HAR specifications exhibit substantially larger gains when it comes to 

the trading simulation of the VXZ ETN. This is due to the very small investor fee 

rates for the volatility ETNs compared to the larger fees and margin requirements of 

futures contracts, as described earlier. The ARFIMA and ARFIMA-GASVR(res) 

models seem to produce losses for all products examined. The trading performances 

of the ARFIMA models seem to validate the conclusions of Konstantinidi and 

                                                           
20 A statistical analysis shows that the distributions of the returns of the individual models are 

non-normal and far from Gaussian. 
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Skiadopoulos (2011) and Konstantinidi et al. (2008), who trade VIX volatility futures 

with the same model.  

In summary, the HAR-GASVR(res) approach is to be found superior in terms of 

trading performances. It produces the largest gains for futures contracts and the ETN 

employed. In other words, it has a noteworthy prospect of achieving economically 

significant profits in the VIX and VXN volatility futures markets, which suggests that 

there is promise for the application of nonlinear methods, and specifically of the 

GASVR algorithm, even in trading strategies that involve future contracts and ETNs.  

 

6. Conclusions 

 

This paper examines the existence of nonlinearities in the evolution of the implied 

volatility. In particular, it provides evidence concerning the daily settlement of three 

market volatility indices, the VIX, VXN and VXD. Fernandes et al., (2014) recently 

showed that a HAR process seems to be very promising for forecasting the VIX, due 

to its long-range dependence and persistent nature. Two semiparametric 

methodologies are introduced as a combination of the HAR specification and one of 

the most promising heuristic techniques, a hybrid genetic algorithm–support vector 

regression (GASVR) model. The first semiparametric approach includes an extra 

optimization term in the HAR model. Specifically, the GASVR algorithm is fed the 

three volatility components (daily, weekly and monthly) of the HAR specification as 

inputs. The second specification performs a residual analysis for expressing the 

potential asymmetric effects that may be prevalent among the residuals. A heuristic 

regression between the residuals of HAR and its lagged values is applied to test for 

further persistence. The GASVR forecasted residuals are employed to develop the 

existing model. The performance of the proposed techniques is benchmarked with (1) 

an ARFIMA model, which predicts the US implied volatility indices well according 

to the literature (see Konstantinidi et al., 2008), (2) a semiparametric approach similar 

to our first, but using a recurrent neural network (RNN) instead of the GASVR 

algorithm, and (3) a semiparametric technique that is focused on the residual analysis 

of the ARFIMA model.  
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The HAR-GASVR(res) approach produces predictions that are more accurate than 

those of the other models by a significant margin. The second-best performance is 

achieved by the HAR-GASVR model. We authenticate the above results by applying 

the SPA test (Hansen, 2005), the MCS procedure (Hansen et al., 2011) and the 

Giacomini and White (2006) test. However, all of the HAR processes have better 

predictive abilities than the benchmark model. This justifies Fernandes et al.’s (2014) 

finding that this process cannot be beaten for forecasting the VIX, because of its 

persistent feature. The forecasting superiority of hybrid models confirms that the 

VIX, VXN and VXD indices exhibit nonlinear characteristics.  

Finally, the economic significance of the forecasts is assessed by implementing 

trading strategies with VIX and VXN futures contracts, as well as an S&P 500 VIX 

midterm futures index ETN. A HAR process has been evaluated economically for the 

first time by using futures and ETNs. The results indicate that the HAR 

specifications, and particularly those optimized using the GASVR algorithm, are 

capable of producing statistically significant profits in normal conditions to some 

extent, when trading futures contracts. On the other hand, the ETN trading 

performance reports that HAR specifications can achieve much higher gains because 

of their lower investor fee rates.  

  

Appendix A. SVR theoretical framework 

 

Considering the training data {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) }, where 𝑥𝑖 ∈ 𝑋⊆ 𝑅,  

𝑦𝑖 ∈ 𝑌⊆ 𝑅, 𝑖 = 1 … 𝑛 and 𝑛 is the total number of training samples, then the SVR 

function can be specified as 

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏                 (A.1) 

where 𝑤 and 𝑏 are the regression parameter vectors of the function and 𝜑(𝑥) is the 

nonlinear function that maps the input data vector 𝑥 into a feature space in which the 

training data exhibit linearity. 

The ε-sensitive loss function 𝐿𝜀 finds that the predicted points lie within the tube 

created by two slack variables, 𝜉𝑖 𝜉𝑖
∗: 



 

 

 

28 
 

𝐿𝜀(𝑥𝑖) = {
0  𝑖𝑓  |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜀

 |𝑦𝑖 − 𝑓(𝑥𝑖)| − 𝜀   𝑖𝑓 𝑜𝑡ℎ𝑒𝑟
  , ε≥0            (A.2) 

However, the lack of information on the noise in the training datasets makes the a 

priori ε-margin setting off ε-SVR a difficult task. In addition, the parameter 𝜀 takes 

non-negative unconstrained values, which makes the optimal setting very 

challenging; see Sermpinis et al., (2014). An alternative approach, the v-SVR, can 

decrease the computational burden and simplify the parametrization. 

The v-SVR approach encompasses the 𝜀 parameter in the optimization process and 

controls it with a new parameter 𝑣 ∈ (0, 1). The optimization problem transforms to 

 

Minimize 𝐶[𝑣𝜀 +
1

𝑛
∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)] +

1

2
‖𝑤‖2                       (A.3) 

subject to {
𝜉𝑖 ≥ 0

𝜉𝑖
∗ ≥ 0

𝐶 ≥ 0

} and {
𝑦𝑖 − 𝑤𝑇𝜑(𝑥) − 𝑏 ≤ +𝜀 + 𝜉𝑖

𝑤𝑇𝜑(𝑥) + 𝑏 − 𝑦𝑖 ≤ +𝜀 + 𝜉𝑖
∗} 

The above quadratic optimization problem is transformed into a dual problem, and its 

solution is based on the introduction of two Lagrange multipliers 𝛼𝑖 and 𝛼𝑖
∗and the 

mapping with kernel function 𝐾(𝑥𝑖, 𝑥): 

𝑓(𝑥) = ∑ (𝑛
𝑖=1 𝛼𝑖 − 𝛼𝑖

∗)𝐾(𝑥𝑖 , 𝑥) + b where 0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤

𝐶

𝑛
                       (A.4) 

The application of the kernel function transforms the original input space into one 

with more dimensions, in which a linear decision border can be identified. Factor b is 

computed following Karush–Kuhn–Tucker conditions. A detailed mathematical 

explanation of the above solution can be found in Vapnik (1995). Support vectors 

(SVs) (𝑥𝑖 in Eq. (7)) lie outside the ε-tube21, whereas non-SVs lie within the ε-tube. 

Increasing ε leads to less SV selection, whereas decreasing it results in ‘flatter’ 

estimates. The norm term ‖𝑤‖2 characterizes the complexity (flatness) of the model. 

The term  

                                                           
21  An SV is either a boundary vector ((𝛼𝑖 − 𝛼𝑖

∗) ∈ [−𝐶/𝑛, 𝐶/𝑛],  𝜉𝑖, = 𝜉𝑖
∗ = 0),  𝛼𝑖 , = 𝛼𝑖

∗ =
𝐶

𝑛
𝑎𝑛𝑑  𝜉𝑖, 𝜉𝑖

∗ >   0).   
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[𝑣𝜀 +
1

𝑛
∑ (𝑛

𝑖=1 𝜉𝑖 + 𝜉𝑖
∗)]  is the training error, as specified by slack variables. In 

particular, in the ‘v-trick’, as presented by Scholkopf et al., (1999), increasing 𝜀 leads 

to a proportional increase of the first term (training error) in Eq. (7), whereas its 

second term decreases proportionally to the fraction of side the ε-tube. Hence, 𝑣 can 

be considered the upper bound on the fraction of errors. Conversely, decreasing 𝜀 

leads again to a proportional change of the first term, but the change in the second 

term is also proportional to the fraction of SVs. In other words, 𝜀 will shrink as long 

as the fraction of SVs is smaller than 𝑣, meaning that 𝑣 is also the lower band in the 

fraction of SVs. Consequently, the introduction of the parameter 𝐶 satisfies the need 

to trade model complexity for training error, and vice versa (Cherkassky and Ma, 

2004). In general, both terms cannot be minimal or close to zero at the same time. 

The SVR algorithm estimates the 𝑤 and 𝑏 of the linear function of Eq. 4 with the 

predefined 𝜀 and 𝐶 for the resulting regression function so as to achieve a good 

generalization ability. This result should not be too complex, while at the same time 

avoiding many training errors. If this balance is achieved, then the SVR offers a 

solution to the overfitting problem.  

 

Appendix B. GA theoretical framework 

 

GAs, introduced by Holland (1995), are search algorithms that are inspired by the 

principle of natural selection. They are useful and efficient if the search space is large 

and complicated or if there is no mathematical analysis of the problem available. A 

population of candidate solutions, called chromosomes, is optimized via a number of 

evolutionary cycles and genetic operations, such as crossovers or mutations22. 

Chromosomes consist of genes, which are the optimizing parameters. At each 

iteration (generation), a fitness function is used to evaluate each chromosome, 

measuring the quality of the corresponding solution, and the fittest chromosomes are 

selected to survive. This evolutionary process is continued until certain termination 

criteria are met. In general, GAs can address large search spaces and do not become 

trapped in local optimal solutions like other search algorithms. 

                                                           
22  The specifications of the GA were based on the guidelines of Koza (1992). 
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The GA uses the one-point crossover and the mutation operator. The one-point 

crossover creates two offspring from each pair of parents. The parents and a 

crossover point 𝑐𝑥 are selected at random. The two offspring are made by 

concatenating the genes that precede 𝑐𝑥  in the first parent with those that follow (and 

include) 𝑐𝑥  in the second parent. The probability of selecting an individual as a 

parent for the crossover operator is called the crossover probability. The offspring 

produced by the crossover operator replace their parents in the population. 

Conversely, the mutation operator places random values in randomly selected genes 

with a certain probability, called the mutation probability. This operator is very 

important for avoiding local optima and ensuring the exploration of a larger surface 

of the search space. For the selection step of the GA, the roulette wheel selection 

process is used (Holland, 1995). In roulette wheel selection, chromosomes are 

selected according to their fitness. The better the chromosomes, the more chances 

they have of being selected. Usually, elitism is used to raise the evolutionary pressure 

on better solutions and to accelerate the evolution. Thus, we ensure that the best 

solution is copied to the new population without changes, so that the best solution 

found in a generation can survive at the end of that generation.  

 

Appendix C. Cumulative return figures 

 

Figs. C.1-C.3 present the cumulative returns of the best two models in terms of 

their profitability over time for the VIX futures, VXN futures and VXZ ETN. 

[Fig. C.1.] 

[Fig. C.2.] 

[Fig. C.3.] 

These figures show that all of the model strategies present relatively stable 

performances in terms of profitability, with no large drawdowns. 
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 List of tables  
 

Table 1. The VIX, VXN and VXD dataset-Neural Network's and GASVR algorithm 

training datasets. 

 Name of period Trading days Start date End date 

Dataset 1 Total dataset 1830 05 August 2002 06 November 2009 

 Training set 1538 05 August 2002 11 September 2008 

 Out-of-sample dataset 292 12 September 2008 06 November 2009 

Dataset 2 Total dataset 1830 03 January 2007 09 April 2014 

 Training set 1538 03 January 2007 11 February 2013 

 Out-of-sample dataset 292 12 February 2013 09 April 2014 

 

 

 

 

 

Table 2. Descriptive statistics for the levels and logarithms of the implied volatility 

indices. 

 VIX VXN VXD 

Summary statistics (levels)   

Mean 20.627 24.284 19.082 

Standard deviation 9.6471 10.132 8.8870 

Skewness 2.1375 1.8177 2.0846 

Kurtosis 9.2621 6.9029 8.7878 

Jarque-Bera  0.0000 0.0000 0.0000 

    

Summary statistics (logs)    

Mean 2.9442 3.1212 2.8671 

Standard deviation 0.3863 0.3532 0.3838 

Skewness 0.8226 0.8403 0.8715 

Kurtosis 3.4344 3.2800 3.4034 

Jarque-Bera  0.0000 0.0000 0.0000 

The period examined is from August 5, 2002, to April 4, 2014. We report the sample mean, 

standard deviation, skewness and kurtosis, as well as the p-values of the Jarque–Bera test for 

normality. 
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Table 3. Unit root, stationarity and long memory test for the logarithms of VIX, VXN 

and VXD indices. 

Tests VIX VXN VXD 

ADF 0.0000 0.0000 0.0000 

PP 0.0000 0.0000 0.0000 

KPSS 0.0690 0.0540 0.0650 

V/S 5.1570 5.2570 5.3820 

The p-values of the ADF and PP tests are reported. The table also shows the values of the 

KPSS test statistic for the stationarity property, the critical values of which are 0.119, 0.146 

and 0.216 at the 10%, 5% and 1% significance levels, respectively. Finally, the values of the 

V/S test for long memory are reported, with the critical values being 1.36 and 1.63 at the 5% 

and 1% levels, respectively. 

 

 

 

 

Table 4. Volatility Indices (VIX and VXN) futures contracts 

Delivery month of the contract Available trading days 

01 April 2013 190 

01 June 2013 188 

01 August 2013 186 

01 October 2013 167 

01 December 2013 188 

01 February 2014 185 

01 April 2014 187 
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Table 5. Out-of-sample performances of model specifications for each of the implied 

volatility indices from September 12, 2008 to November 6, 2009. 

12/09/2008-06/ 11/2009  VIX VXN VXD 

RW MAE 0.1791 0.1707 0.1874 

 RMSE 0.2103 0.1974 0.2166 

AR(1) MAE 0.0517 0.0450 0.0524 

 RMSE 0.0732 0.0620 0.0733 

ARFIMA MAE 0.0519 0.0456 0.0520 

 RMSE 0.0730 0.0622 0.0725 

ARFIMA-GASVR (res) MAE 0.0524 0.0457 0.0518 

 RMSE 0.0730 0.0633 0.0731 

HAR MAE 0.0470 0.0419 0.0472 

 RMSE 0.0646 0.0557 0.0636 

HAR-RNN MAE 0.0471 0.0418 0.0473 

 RMSE 0.0650 0.0565 0.0651 

HAR-GASVR MAE 0.0330 0.0418 0.0421 

 RMSE 0.0452 0.0568 0.0579 

HAR-GASVR (res) MAE 0.0300 0.0392 0.0383 

 RMSE 0.0430 0.0542 0.0521 

We report the out-of-sample performances of the models under study for the period 

September, 12, 2008 to November, 6, 2009, based on the mean absolute error (MAE) and 

mean squared error (MSE) criteria computed for each model’s out-of-sample forecasts. The 

smaller the value of each criterion the better the predictive ability of the model considered. 
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Table 6. Out-of-sample performances of model specifications for each of the implied 

volatility indices from February 2, 2013 to April 9, 2014. 

12/02/2013-09/04/2014  VIX VXN VXD 

RW MAE 0.0809 0.0724 0.0732 

 RMSE 0.1006 0.0850 0.0916 

AR(1) MAE 0.0490 0.0423 0.0451 

 RMSE 0.0720 0.0580 0.0634 

ARFIMA MAE 0.0488 0.0420 0.0442 

 RMSE 0.0716 0.0573 0.0623 

ARFIMA-GASVR (res) MAE 0.0480 0.0424 0.0459 

 RMSE 0.0681 0.0580 0.0657 

HAR MAE 0.0489 0.0411 0.0425 

 RMSE 0.0683 0.0545 0.0575 

HAR-RNN MAE 0.0490 0.0388 0.0395 

 RMSE 0.0685 0.0543 0.0532 

HAR-GASVR MAE 0.0470 0.0358 0.0405 

 RMSE 0.0610 0.0475 0.0548 

HAR-GASVR (res) MAE 0.0388 0.0317 0.0354 

 RMSE 0.0522 0.0435 0.0489 

We report the out-of-sample performances of the models under study for the period February, 

2, 2013 to April, 9, 2014, based on the mean absolute error (MAE) and mean squared error 

(MSE) criteria computed for each model’s out-of-sample forecasts. The smaller the value of 

each criterion the better the predictive ability of the model considered. 
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Table 7. Giacomini-White test for the mean squared error: the VIX index. 

VIX ARFIMA ARFIMA-

GASVR 

HAR HAR-RNN HAR-

GASVR 

12/09/2008-06/ 11/2009     

ARFIMA-GASVR 0.205     

HAR 0.038** 0.048**    

HAR-RNN 0.033** 0.043** 0.225   

HAR-GASVR 0.001*** 0.002*** 0.000*** 0.000***  

HAR-GASVR (res) 0.001*** 0.000*** 0.000*** 0.000*** 0.000*** 

12/02/2013-09/04/2014      

ARFIMA-GASVR 0.151     

HAR 0.186 0.133    

HAR-RNN 0.227 0.141 0.253   

HAR-GASVR 0.026** 0.004*** 0.000*** 0.001***  

HAR-GASVR (res) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

The out-of-sample periods covered run from September 12, 2008, to November 06, 2009, and from 

February 12, 2013, to April 9, 2014. The p-values of the GW statistic presented indicate agreement 

with the null hypothesis that the performance of the model in the column is equivalent to that of the 

model in the row in terms of mean squared errors. 

* Denotes a rejection of the null hypothesis at the 10% level of significance. 

** Denotes a rejection of the null hypothesis at the 5% level of significance. 

*** Denotes a rejection of the null hypothesis at the 1% level of significance 
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Table 8. Giacomini-White test for the mean squared error: the VXN index. 

VXN ARFIMA ARFIMA-

GASVR 

HAR HAR-RNN HAR-

GASVR 

12/09/2008-06/ 11/2009      

ARFIMA-GASVR 0.151     

HAR 0.030** 0.043**    

HAR-RNN 0.018** 0.031** 0.275   

HAR-GASVR 0.015** 0.028** 0.24 0.504  

HAR-GASVR (res) 0.001*** 0.006*** 0.024** 0.000*** 0.000*** 

12/02/2013-09/04/2014      

ARFIMA-GASVR 0.137     

HAR 0.000*** 0.001***    

HAR-RNN 0.040** 0.048** 0.627   

HAR-GASVR 0.000*** 0.000*** 0.000*** 0.154  

HAR-GASVR (res) 0.000*** 0.000*** 0.000*** 0.066* 0.000*** 

The out-of-sample periods covered run from September 12, 2008, to November 06, 2009, and 

from February 12, 2013, to April 9, 2014. The p-values of the GW statistic presented indicate 

agreement with the null hypothesis that the performance of the model in the column is 

equivalent to that of the model in the row in terms of mean squared errors. 

* Denotes a rejection of the null hypothesis at the 10% level of significance. 

** Denotes a rejection of the null hypothesis at the 5% level of significance. 

*** Denotes a rejection of the null hypothesis at the 1% level of significance 
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Table 9. Giacomini-White test for the mean squared error: VXD index. 

VXD ARFIMA ARFIMA-

GASVR 

HAR HAR-RNN HAR-

GASVR 

12/09/2008-06/ 11/2009      

ARFIMA-GASVR 0.255     

HAR 0.042** 0.052*    

HAR-RNN 0.011** 0.020** 0.128   

HAR-GASVR 0.002*** 0.013** 0.000*** 0.009***  

HAR-GASVR (res) 0.002*** 0.003*** 0.000*** 0.000*** 0.000*** 

12/02/2013-09/04/2014      

ARFIMA-GASVR 0.087*     

HAR 0.000*** 0.014**    

HAR-RNN 0.000*** 0.000*** 0.000***   

HAR-GASVR 0.000*** 0.000*** 0.000*** 0.139  

HAR-GASVR (res) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

The out-of-sample periods covered run from September 12, 2008, to November 06, 2009, and 

from February 12, 2013, to April 9, 2014. The p-values of the GW statistic presented indicate 

agreement with the null hypothesis that the performance of the model in the column is 

equivalent to that of the model in the row in terms of mean squared errors. 

* Denotes a rejection of the null hypothesis at the 10% level of significance. 

** Denotes a rejection of the null hypothesis at the 5% level of significance. 

*** Denotes a rejection of the null hypothesis at the 1% level of significance 
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Table 10. SPA and MCS tests for the out-of-sample periods: the VIX, VXN and VXD indices. 

 VIX    VXN    VXD    

 SPA  MSC  SPA  MCS  SPA  MSC  

12/09/2008-06/ 11/2009  MSE MAE MSE MAE  MSE MAE MSE MAE  MSE MAE MSE MAE 

RW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFIMA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFIMA-GASVR 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.0000 0.0000 0.0000 0.2287 0.0101 0.2923* 0.0573 0.0000 0.0000 0.0000 0.0000 

HAR-RNN 0.0000 0.0000 0.0000 0.0000 0.1542 0.0292 0.2923* 0.0573 0.0000 0.0000 0.0002 0.0000 

HAR-GASVR 0.2036 0.1870 0.4140* 0.0943 0.0981 0.0377 0.2306* 0.0573 0.0069 0.0065 0.0129 0.0107 

HAR-GASVR (res) 0.7964 0.9987 1.0000* 1.0000* 0.9669 0.6016 1.0000* 1.0000* 0.5129 0.5092 1.0000* 1.0000* 

12/02/2013-09/04/2014             

RW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(1) 0.0000 0.0000 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFIMA 0.0031 0.0010 0.0016 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ARFIMA-GASVR 0.0002 0.0000 0.0013 0.0003 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0001 0.0000 

HAR 0.0040 0.0010 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

HAR-RNN 0.0000 0.0000 0.0013 0.0002 0.0812 0.0035 0.0793 0.0014 0.0123 0.0068 0.0237 0.0050 

HAR-GASVR 0.0090 0.0010 0.0016 0.0002 0.0067 0.0001 0.0275 0.0009 0.0020 0.0002 0.0033 0.0008 

HAR-GASVR (res) 0.7763 0.7670 1.0000* 1.0000* 0.9308 0.6303 1.0000* 1.0000* 0.5225 0.5130 1.0000* 1.0000* 

The table reports the p-values of the SPA (Hansen, 2005) and MCS (Hansen et al., 2011) tests in terms of the MSE and MAE criteria. Low p-values indicate 

either that the respective benchmark model is inferior to at least one alternative (SPA) or that it is unlikely that the model will belong to the set of the ‘best’ 

models (MCS). 

* Denotes that the model examined belongs to the set of ‘best’ models at the 95% confidence level.
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Table 11. Trading performance of the VIX, VXN futures and the iPath S&P 500 VIX 

 mid-term futures index ETN from February 12, 2013, to April 9, 2014. 

 

We report the out-of-sample annualized Sharpe ratio (SR) and the annual Leland’s (1999) 

alpha (𝐴𝑝) for the period February 12, 2013, to April 9, 2014, based on the examined models’ 

forecasts. A simple trading rule is followed: The investor goes long (short) in the volatility 

futures and the ETN when the forecasted value of the implied volatility index is greater 

(smaller) than its current value. We also report the 95% confidence intervals of the SRs and 𝐴𝑝 

values for each forecasting model, based on bootstrap simulations, to assess the statistical 

significance of the returns. 

* Denotes the rejection of the null hypothesis of a zero return at the 5% level of significance. 

 

 VIX  VXN 

 Futures ETN (VXZ) Futures 

ARFIMA    

Sharpe ratio -0.046 -0.069 -0.037 

95% CI (-0.1)-0.01 (-0.12)-0.00 (-0.09)-0.02 

Leland’s Ap -0.039 -0.016 -0.023 

95% CI (-0.09)-0.01 (-0.02)-0.00 (-0.06)-0.01 

ARFIMA-GASVR (res)    

Sharpe ratio -0.053 -0.017 0.006 

95% CI (-0.11)-0.0 (-0.07)-0.04 (-0.05)-0.12 

Ap -0.044 -0.004 0.004 

95% CI (-0.09)-0.00 (-0.01)-0.01 (-0.03)-0.04 

HAR    

Sharpe ratio 0.088* 0.478* 0.084* 

95% CI 0.02-0.14 0.41-0.54 0.02-0.014 

Ap 0.088* 0.386* 0.060* 

95% CI 0.03-0.14 0.37-0.40 0.02-0.10 

HAR-RNN    

Sharpe ratio -0.027 0.519* 0.087* 

95% CI (-0.08)-0.03 0.45-0.58 0.02-0.14 

Ap -0.024 0.398* 0.061* 

95% CI (-0.08)-0.03 0.38-0.41 0.04-0.10 

HAR-GASVR    

Sharpe ratio 0.081* 0.096* 0.033 

95% CI 0.02-0.14 0.03-0.15 (-0.02)-0.09 

Ap 0.088* 0.294* 0.026 

95% CI 0.03-0.14 0.27-0.30 (-0.02)-0.07 

HAR-GASVR (res)    

Sharpe ratio 0.184* 0.721* 0.127* 

95% CI 0.10-0.26 0.63-0.80 0.07-0.18 

Ap 0.168* 0.451* 0.098* 

95% CI 0.09-0.24 0.43-0.47 0.03-0.16 
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Fig. C.1. Cumulative returns of HAR and HAR-GASVR(res) in the out-of-sample for 

VIX futures. 

 

Fig. C.2. Cumulative returns of HAR-RNN and HAR-GASVR(res) in the out-of-sample 

for VXN futures. 

 

 

Fig. C.3. Cumulative returns of HAR and HAR-GASVR(res) in the out-of-sample for 

VXZ ETN. 
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CHAPTER 3 

PERFORMANCE OF TECHNICAL TRADING RULES: EVIDENCE 

FROM THE CRUDE OIL MARKET 
 

1. Introduction 

Technical analysis (sometimes referred to as chartism) is believed to be one of the 

longest-established forms of investment analysis, being a set of graphical or 

mathematical techniques exploring future trading opportunities for financial assets just 

by analyzing the time-series history of their asset prices, volume data, and a summary of 

securities statistics. Brock et al. (1992) mention that technical trading rules “beating the 

market” is supposed to be as old as the U.S. stock market itself. Nowadays, investment 

funds, brokerage firms, and trading platforms from all over the world utilize numerous 

types of technical indicators and oscillators as prospective moneymaking tools.  

On the other hand, despite the undisputable popularity of technical analysis among 

practitioners, academia has been rather skeptical for a long time now about its merits, 

and there is an ongoing debate as to whether the generated profits are just lucky. On the 

effectiveness of this form of analysis and its power to yield profits, Malkiel (1981) 

describes it pertinently as the “anathema” of the academic world, which usually loves to 

pick on it. This argument is derived from the Efficient Market Hypothesis (EMH), 

which expresses that security prices reveal all the available information to investors. 

However, since the 1960s, prominent academics and practitioners have claimed that 

predictable patterns do exist in returns (especially in certain periods of time), which can 

lead to abnormal profits.23 In this regard, even Keynes (1936) outlines that most traders’ 

decisions can be deemed a consequence of “animal spirits”. This conclusion is closely 

connected with Lo’s (2004) proposed Adaptive Market Hypothesis (ADH) that assumes 

that evolutionary market dynamics, such as cycles, trends, and market inefficiencies, 

can trigger occasionally arbitrage opportunities. 

This fruitful debate has culminated in a large number of empirical studies employing 

technical trading rules in several markets and for different indices. Some have found 

results to support the notion that trading strategies are able to deliver superior returns, at 

                                                           
23 Earlier studies of technical analysis and patterns in stock returns include Alexander (1961, 

1964), Fama (1965, 1970), Fama and Blume (1966), Levy (1967), James (1968), Jensen and 

Benington (1970), and Sweeney (1980). 
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least in certain time periods (Neftci 1991; Brock et al. 1992; Neely et al. 1997; Conrad 

and Kaul 1998; Sullivan et al. 1999; Lo et al. 2000; Kavajecz and Odders-White 2004; 

Qi and Wu 2006; Hsu et al. 2010; Neely and Weller 2011; Shynkevich 2012; Taylor 

2014). Despite this, other papers report that technical trading strategies are unable to 

predict future prices, especially when transaction costs are considered (Bessembinder 

and Chan 1998; Allen and Karjalainen 1999; Ready 2002; Marshall et al. 2008; 

Bajgrowicz and Scaillet 2012; Yamamoto 2012).  

Inevitably, data snooping effects arise in most of the studies mentioned above, 

particularly when a large number of trading strategies are implemented and tested. 

Amongst the pioneers in studying the data snooping effects are Jensen and Benninghton 

(1970), defining it as “selection bias”, as well as Lo and MacKinlay (1990) who 

summarize that more likely patterns can emerge when data are severely exploited. This 

is apparently true if one considers that, by exploring a sizeable universe of different 

trading rules, it is highly likely one will find a rule that works well, even by chance. 

Many efforts have been made to minimize the undesirable consequences of data 

snooping, which are illustrated in the studies of White (2000), Romano and Wolf 

(2005), Hansen (2005), Romano and Wolf (2007), Romano et al., (2008), Hsu et al., 

(2010), Bajgrowicz and Scaillet (2012), and Hsu et al., (2014).  

In this paper, we evaluate the performance of the whole universe of 7846 technical 

trading rules (TTRs) proposed by Sullivan et al., (1999) on the crude oil market. This 

universe of rules is the most popular and common, and creates a connection with the 

previous literature in this field of research (Brajgowicz and Scaillet 2012; Marshall et 

al., 2008). In particular, we apply five families of strategies (i.e., filter rules, moving 

averages, support and resistance, channel breakout and on-balance volume averages) 

to the daily prices of West Texas Intermediate (WTI) light, sweet crude oil futures, as 

well as the United States oil (USO) fund, covering a period from April 2006 to January 

2016.24  

Crude oil futures offer the opportunity to trade one of the world's most liquid oil 

commodities on the New York Mercantile Exchange (NYMEX) for up to 108 

                                                           
24 We chose this specific period in order to examine the TTRs’ performance on the same trading 

days for crude oil futures and the USO, given that the inception date of the USO was in April 

2006.  



 

 

 

43 

 

consecutive months.25 In line with Marshall et al., (2008) and Wang and Yu (2004) we 

employ Datastream continuous price series of crude oil futures, which represent the 

price of the most actively traded contract. This guarantees that the underlying 

instrument should last longer than the observation period when analyzing the 

performance of the TTRs. Furthermore, futures markets are more attractive for pursuing 

active trading strategies than stock markets, since they involve much lower transaction 

costs (e.g. spreads and commissions), and short-selling is easily applied.  

The USO is the largest and most liquid oil-related exchange traded fund (ETF) ($3.7 

billion in assets), and is designed to track the daily price movements of WTI light, sweet 

crude oil.26 It is exposed to crude oil prices by means of holding positions on front-

month crude oil futures contracts. The USO is free of the substantial storage costs 

involved in other crude oil inventories, entailing low total costs of management, a 

feature that makes it very attractive to investors. As far as we are concerned, this is the 

first time that the effectiveness of TTRs will be tested specifically on the crude oil 

market. We believe that it is a rather interesting area of investigation, since crude oil 

prices have exhibited considerable fluctuations over the years in response to geopolitical 

and economic turmoil.27 Today the oil industry is being shaped by one of its most 

dramatic price movements of recent times, having experienced almost a 70% fall since 

June 2014. These extreme fluctuations mark the crude oil market out as a trending 

market, potentially lucrative for applying the TTRs, since trend following is one of the 

key aspects of technical analysis. Furthermore, since previous empirical findings on the 

hedge fund industry and the Dow Jones Industrial Average (DJIA) index have shown 

that TTRs perform quite well when strong negative or positive returns occur in the 

market (Fung and Hsieh 1997; Bajgrowicz and Scaillet 2012), we have a strong 

motivation to explore them on the crude oil market as well. 

                                                           
25 The final settlement date is the 4th U.S. business day prior to the 25th calendar day of the 

month preceding the contract month. 

26 The USO periodically "rolls over" its underlying futures contracts by selling those that are 

approaching expiration and buying those that expire farther into the future. The investment 

objective of the USO is publicized on its website (http://www.unitedstatesoilfund.com/). 

27 For instance, in 2008, crude oil reached its highest value, followed by a fall below $50 per 

barrel due to the Lehman Brothers crisis in 2009. 

http://www.unitedstatesoilfund.com/
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In this paper, the first contribution is to revisit the historical success of TTRs in the 

oscillated market of crude oil.28 For this purpose, we divide and assess the rules’ 

performance in four different subperiods, each one characterized mostly by having 

bearish or bullish trends. This allow us to access the power of multiple hypothesis 

testing methods in an environment in which momentum trading rules tend to work well 

by definition, and so measure the level of significance of rules yielding positive 

performance. As crude oil futures and ETFs have small expense ratios compared to 

other assets, there is a strong potential for trading rules to achieve gains. On the other 

hand, low transaction costs may help to increase market liquidity, leading to market 

efficiency (Hedge and McDermott 2004). Thus, the second contribution is to give an 

answer to the question of which one of the above two cases holds in the case of the 

crude oil market. With this aim, for the in-sample analysis, we compare the performance 

when applying TTRs to the USO and the crude oil futures to explore potential 

differences due to contango or backwardation effects as a result of rolling over crude oil 

futures in the case of the USO. An in-sample analysis including the impact of 

transaction costs is also reported. The transaction costs are embodied endogenously in 

the trading rule selection process, each time a buy or sell signal is generated. This helps 

investors foresee which TTRs’ performance can outweigh transaction costs ex ante 

(Bajgrowicz and Scaillet 2012). The reason for this is that strategies’ predictability is 

occasionally neutralized when TTRs are selected before the implementation of 

transaction costs because of frequent signals. Another contribution is that, instead of 

only using regular evaluation criteria, such as the mean return and the Sharpe ratio, we 

also employ the Calmar ratio criterion as an essential performance measure for technical 

traders, especially when momentum strategies are employed. Indeed, the Calmar ratio is 

an important indicator for the hedge fund industry in general since it displays the 

average annual return on an investment, per unit of maximum drawdown (Schuhmacher 

and Eling, 2011). In technical analysis its usage is particularly useful, especially when 

momentum strategies, which can suffer significant drawdown, are employed. 

Finally, a comprehensive persistence analysis of TTRs is employed. For that analysis 

the false discovery rate (FDR) technique (Bajgrowicz and Scaillet 2012; Barras, Scaillet 

and Wermers 2010) is used to minimize data snooping effects. The performance of the 

                                                           
28 Marshal et al. (2008) evaluate the performance of the Sullivan et al. (1999) universe of TTRs 

in 15 major commodities futures series, while considering naïve methods of accounting for data 

snooping effects. One of these series refers to crude oil futures covering the period 1984-2005. 
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FDR technique is compared with the equally powerful k-familywise error rate (k-

FWER) technique of Romano and Wolf (2007) and Romano et al., (2008), rather than 

more conservative methods such as the bootstrap reality check (BRC) of White (2000) 

or its stepwise extension proposed by Romano and Wolf (2005). The rationale behind 

this is our desire to investigate whether a generalized version of the conservative FWER 

measure could demonstrate the same performance level as the powerful FDR. In 

particular, we are the first to assess the out-of-sample performance of a portfolio of 

genuine TTRs, while applying the FDR and k-FWER methods respectively, and also 

including transaction costs. The portfolio is constructed and rebalanced on a semi-

annual basis, each time using data from the previous six months and evaluating its 

profitability in the next half of the year. We report that the powerful nature of the FDR 

approach to identifying genuine TTRs is also verified in the case of crude oil. 

Furthermore, we observe that the less conservative k-FWER than the strict FWER of 

Romano and Wolf (2005), can achieve similar results to the FDR in terms of trading 

performance, while also allowing a certain number of false selections to occur. 

Moreover, the FDR succeeds in selecting a larger amount of genuine TTRs than the k-

FWER portfolio. 

For the in-sample simulation period, the findings indicate that more than half of the 

TTRs exhibit great predictive power, especially in periods of substantial crude oil price 

movements. Additionally, the best TTRs are able to achieve high mean returns, as well 

as Sharpe and Calmar ratios, across the whole period considered. On the other hand, 

when it comes to persistence analysis, the TTRs selected by the data snooping methods 

show no persistent nature in the out-of-sample period. Although, the portfolios are able 

to generate positive performance in some periods, we observe that the superior returns 

are considerably small. However, there is only one period in which both portfolios 

achieve a Sharpe ratio slightly bigger than 1. This might be a justification of the ADH, 

which supports the notion that profits might occur over some horizons. Overall, we 

conclude that the best-performing TTRs are mostly accessible to investors observing the 

returns ex post, in an in-sample period, and therefore it is not easy for them to foresee 

truly out-of-sample profitable rules ex ante, without hindsight. 

The remainder of the paper is structured as follows. In Section 2, a detailed 

description of the universe of TTRs proposed by Sullivan et al. (1999), as well the 

performance criteria, are provided. Section 3 describes the time series and the 
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descriptive statistics of the data considered. Section 4 presents a synopsis of the existing 

methods accounting for data snooping. A detailed description of the FDR and k-FWER 

approaches, as well as the portfolios’ characteristics, is provided in the same section. 

Section 5 provides evidence of the TTRs performance in the in-sample period, with and 

without consideration of transaction costs. In Section 6, the persistence analysis is 

presented, while accounting for transaction costs at the same time. Finally, Section 7 

presents the concluding remarks. 

 

2. Technical trading rules universe and performance measures 

In Section 2.1, we review the universe of TTRs proposed by Sullivan et al. (1999). We 

briefly present the performance measurement tools of mean return, Sharpe ratio, and 

Calmar ratio in Section 2.2.  

 

 2.1. Technical trading rules universe 

Technical analysis incorporates a large spectrum of approaches as a form of 

predictive modeling. Although these methods use mostly graphical rather than 

mathematical or statistical tools, they use time series of past prices, volumes, and other 

observables to define whether a buy (long), neutral (out of the market), or sell (short) 

strategy should be taken within the next time period. As stated earlier, we adopt the 

whole universe of 7846 TTRs for each subperiod for comparison purposes. The 

universe is separated into five categories of indicators, while different parameterizations 

can be employed for each rule.29  

Filter rules: An investor buys if the price increases by a fixed percentage from a 

previous low, and he sells if the price decreases by a fixed percentage from a previous 

high. An alternative definition of subsequent highs (lows) can be defined as the highest 

(lowest) closing price observed over a prespecified number of previous days, excluding 

the current day. Thus, the filter rule allows the initiation of an investor’s position only in 

response to major price trends. We also consider the impact of two extra filters. The 

first one allows a neutral position when the price increases (decreases) from a previous 

                                                           
29 The interested reader can refer to the appendix of Sullivan et al., (1999) for a detailed 

description of each rule as well as the extra parameters used. 
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low (high) by a smaller percentage than the percentage needed to initiate a buy (sell) 

position. The second one assumes a position is held for a fixed number of periods. 

Moving averages: Assumes a crossover between short-long moving averages to 

generate a trade. Usually, an investor buys (sells) when the short-moving average 

moves above (below) the long-moving average. These upside (downside) penetrations 

of a moving average help an investor to discover new trends and maintain his position 

as long as the crossover remains. Three extra filters are applied. The first one demands 

that the short-moving average penetrates the long-moving average by a fixed 

percentage, otherwise no position is initiated. The second one applies a delay filter, 

which requires a signal to remain valid for a prespecified number of days before an 

action is taken. The third one considers a holding period similar to the one employed in 

filter rules. 

Support and resistance: A trader buys (sell) when the price rises above (below) the local 

maximum (minimum) over the previous n days. The intuition behind this rule is that 

usually investors think that sooner or later the movement of the equity’s price will tend 

to stop and return to a certain level (sell at the peak and buy at the bottom). However, if 

the price breaks through a certain resistance (support) level, it is more likely to continue 

drifting upward (downward) until it finds a new resistance (support) level. Thus, a buy 

(sell) signal is triggered. An alternative definition of extreme highs/lows is also used, 

similar to the one employed in filter rules. In addition to that, fixed-percentage-band, 

delay and holding-period filters are imposed. 

Channel breakouts: An investor buys (sells) when the price moves above (below) the 

channel. A channel occurs when the high over the previous, prespecified, days is within 

a fixed percentage of the low over the previous prespecified days. The graphical 

representation of a price channel is equal to a pair of parallel trend lines. As soon as one 

of these trend lines is “broken”, a buy or sell signal is generated. A fixed percentage 

band is also exercised around the channel, as well as a holding period for each position 

triggered. 

On-balance volume averages: These operate in a similar way to the moving-average 

rules (crossover between short/long on-balance volumes). However, the indicator here is 

the volume. The economic meaning is that the volume is greater on days when the price 

movement is an extreme fall (bearish) or an extreme rise (bullish). A technical trader 

adds (subtracts) the daily volume to (from) that of the previous day, when the current 
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closing price has increased (decreased), in order to construct the new on-balance 

volume indicator. Then, a moving average is applied. Furthermore, the same filters as in 

the case of the moving average are used. 

All of the trading rules described above are considered momentum or trend-following 

TTRs except for the support and resistance rules that can be deemed contrarian (mean-

reverting) trading strategies. 

 

2.2. Measuring performance 

The performance of the TTRs is mainly assessed through the mean return and 

Sharpe ratio criteria. The mean return is the absolute criterion of each rule’s returns, 

while the Sharpe ratio is a relative performance criterion since it represents the ratio of 

the average excess return to the total risk of the investment. Practically speaking, the 

TTRs earn the risk-free rate in periods when a neutral signal is triggered.30 In our 

analysis, we are the first in the relevant literature to evaluate the performance of TTRs 

by also employing the Calmar ratio. The Calmar ratio31 is an important indicator for 

investment banks as well as the hedge fund industry in general, since it displays the 

average annual return of an investment per unit of maximum drawdown. Furthermore, 

practitioners find it of great importance, especially when they are dealing with 

momentum strategies that can suffer a considerable drawdown. On the other hand, the 

Sharpe ratio is mostly applied for mean-reverting or contrarian strategies.32  

Specifically, let 𝑠𝑗,𝑡−1 denote the trading signal for each trading rule 𝑗, 1 ≤ 𝑗 ≤  𝑙 

(where 𝑙 = 7846) at the end of each prediction period 𝑡 − 1 (𝜏 ≤ 𝑡 ≤ 𝑇), where 

𝑠𝑗,𝑡−1 = 1, 0, 𝑜𝑟 − 1 represents a long, neutral or short position taken at time 𝑡. In 

addition to that let 𝑟𝑡  designate the return of the price series exercised, and 𝑟𝑡
𝑓

 be the 

                                                           
30 Actually, following the studies of Brock et al., (1992), Sullivan et al., (1999), and Bajgrowicz 

and Scaillet (2012) who implement the “double-or-out” trading strategy, a buy signal leads a 

trader to borrow money at the “risk-free” rate in order to double the investment in the 

commodity portfolio, a neutral signal leads to the trader simply holding the commodity, and 

when a sell signal occurs the trader liquidates and exits the market.  

31 Developed by Young (1991), the Calmar ratio stands for California Managed Account 

Reports. It is a performance measurement used to evaluate commodity trading advisors and 

hedge funds. 

32 We acknowledge Ernest P. Chan for pointing this out to us. 
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“risk-free” rate.33 The mean return criterion 𝑓
𝑗,𝑡

 for the trading rule 𝑗 at time 𝑡 is defined 

by  

𝑓
𝑗,𝑡

=
1

𝑁
∑ ln(1 + 𝑠𝑗,𝑡−1𝑟𝑡)𝑇

𝜏=𝑅 , 𝑗 = 1, … , 𝑙,           (1) 

where 𝑁 = 𝑇 − 𝜏 + 1 is the number of days examined. We denote as 𝜏 the start date for 

each subperiod, and even for the first one, since lagged values up to 250 days are 

employed in the universe of rules. Then, the Sharpe ratio criterion expression 𝑆𝑅𝑗  for 

trading rule 𝑗 at time 𝑡 is defined by 

𝑆𝑅𝑗,𝑡 =
1

𝑁
∑

ln(1+𝑠𝑗,𝑡−1𝑟𝑡−𝑟𝑡
𝑓

)

𝜎𝑗̂
,𝑇

𝑡=𝑅   𝑗 = 1, … , 𝑙,           (2) 

where 
1

𝑁
∑ ln(1 + 𝑠𝑗,𝑡−1𝑟𝑡 − 𝑟𝑡

𝑓
)𝑇

𝑡=𝑅  and 𝜎𝑗̂ are the mean excess return and the estimated 

standard deviation of the mean excess return respectively. Finally, the Calmar ratio 

criterion 𝐶𝑎𝑙𝑚𝑎𝑟𝑗 is obtained as the annualized mean return of each rule j over its 

maximum drawdown (𝑀𝐷𝐷𝑗): 

𝐶𝑎𝑙𝑚𝑎𝑟𝑗,𝑡 =
𝑓𝑗,𝑡∗252

𝑀𝐷𝐷𝑗
,   𝑗 = 1, … , 𝑙, where 𝑀𝐷𝐷𝑗 = min [𝑟𝑡 − max {∑ 𝑟𝑡}]𝑇

𝑡=𝑅 .      

      (3) 

 

3. Data description 

In this section, the settlement prices and trading volumes for the USO and crude oil 

futures for four different subperiods are analyzed. Table 1 reports the intervals covered 

for each one of them, while Fig. 1 represents the time series dynamics for the two 

underlying instruments examined from April 2007 to January 2016. 

[Fig. 1] 

[Table 1] 

Subperiod 1 is characterized by a sharp increase and subsequent fall in crude oil 

prices for both CL futures and USO due to the Lehman Brothers collapse and so it is 

characterized by mixed trends. Subperiod 2 reveals an upward trend for the CL futures 

series, but this is not quite observable for USO ones. However, we define this period as 

                                                           
33 We use as a risk-free rate the daily effective federal funds rate, in accordance with all the 

previous literature. 
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a bullish due to the upward trend in crude oil spot prices. Subperiod 3 mainly dominated 

by mixed trends for both cases, while Subperiod 4 includes their recent extreme fall and 

for that reason is characterized as bearish in terms of trend. 

The summary of descriptive statistics of daily buy-and-hold returns for the USO and 

crude oil futures for the four subperiods is reported in Table 2. We follow the existing 

literature and calculate the daily returns as the natural logarithm of price relatives. The 

distribution characteristics are described by the mean, standard deviation, skewness and 

kurtosis statistics as well as the first-order autocorrelation under the Ljung-Box (1978) 

Q statistics at the 5% significance level. 

[Table 2] 

The crude oil futures yield positive performance (with 10 basis points as the highest 

value) for the first three subperiods, with the only exception being the last one in which 

a highly negative mean return is reported, standing for the bearish market. The USO 

yields negative returns for all subperiods except the second. The standard deviation is 

also comparable across both USO and crude oil futures series. However, with regards to 

skewness, there is a split between negative and positive signs in the case of crude oil 

futures, while the USO exhibits mostly negative signs. Moreover, a considerable level 

of kurtosis is observed in both series for all subperiods. The Ljung-Box (1978) Q 

statistics test indicates that both crude oil futures and the USO have significant first-

order autocorrelations in half of the subperiods.34 Finally, for the last subperiod 

describing the extreme fall, the first-order autocorrelation is significant for both series.   

 

4. Data snooping bias 

Data snooping bias should always be adjusted for when examining the predictive 

ability of a large number of trading strategies (i.e., technical trading indicators). The 

issue emerges when the financial dataset is severely exploited by trading rules dependent 

to each other, such as in our case (i.e., weak dependence between same family rules). 

This may result in the identification of TTRs that generate profits purely out of luck, and 

for that reason multiple hypothesis testing is attempted to minimize data snooping bias. 

In addition, selecting one trading rule recognized as the best, without consideration of 

                                                           
34 Most of the trading rules employed in this study are designed to capture momentum. Their 

effectiveness is mainly based on the existence of significant autocorrelation of returns series.  
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the entire universe of strategies that it is pooled from, when its statistical inference is 

tested can also lead to false discoveries. In our paper, we employ and compare the FDR 

and the k-FWER which are two of the most powerful data snooping methodologies in 

the relevant literature. In Section 4.1, we review the existing data snooping methods. 

The data snooping specifications employed in this study are outlined in Sections 4.2 and 

4.3, respectively. The multiple hypothesis testing setup together with the construction of 

the portfolio of TTRs following the proposed methods are described in Sections 4.5 and 

4.6.  

 

4.1. Existing data snooping methods  

The finance literature introduces several methods for mitigating data snooping bias. 

The majority of these focus on two main statistical approaches for testing multiple 

hypotheses: the FWER and the FDR. The difference between the two is mostly intuitive, 

rather than based on conscious reasoning. FWER is defined as the probability of making 

at least one false rejection (which is unacceptable), while FDR views “unacceptability” 

in terms of a proportion (Harvey and Liu 2014). For instance, a 10% false discovery rate 

denotes that more than 10 false discoveries in 100 tests would be unacceptable. Thus, 

the FWER is more conservative than the FDR, especially when the universe of rules is 

large. 

In statistics, the most standard FWER method is the Bonferroni correction, in which 

individual null hypotheses (for each one of the total universe of rules) are rejected for 

each p-value less than a significance level of 𝛼 𝑙⁄  in a single-step procedure. This 

structure is employed in the BRC of White (2000) and is carried out in such a way as to 

reassure that the significance level of the contemporaneous test of all l rules is less than 

α. In this way, the BRC evaluates whether the “best” performing strategy (drawn from l 

strategies) has significant predictive power with respect to the performance of the whole 

universe in a two-tailed-hypothesis framework. The null hypothesis tested is that the 

performance of the best trading rule is no better than the benchmark (e.g. “risk-free” 

rate): 

𝐻0𝑗 : max
𝑗=1,..𝑙

𝜑𝑗 ≤ 0 , where 𝜑𝑗 is the performance measure of the jth rule           (4) 

Even though the BRC is used by Sullivan et al. (1999), we believe that it is a rather 

conservative measure that lacks power since it focuses only to the best strategy. Now, by 

also applying the Bonferroni correction, Hansen (2005) presents his superior predictive 
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ability (SPA) test, which minimizes the influence of poor and inconsistent strategies by 

using studentized instead of non-studentized test statistics35. However, it also focuses on 

the rule that appears best for the observed financial series. Furthermore, the call to 

identify more outperforming strategies and not relying only on the best strategy when 

undertaking investment decisions led to the Holm (1979) method. The Holm method 

works in a stepwise structure, with individual p-values ordered from smallest (most 

significant) to largest (least significant), and each one compared with a less strict 

significance level moving “down” the list. Following the Holm procedure, Romano and 

Wolf (2005) introduce their stepwise multiple testing (StepM) method as an 

improvement to the single-step BRC testing method of White (2000), while Hsu et al., 

(2010) develop a stepwise extension of the SPA test of Hansen (2005). Although 

stepwise approaches are powerful tools, their main drawback is that they do not select 

further rules once they have detected a rule whose performance is due to luck.  

In practice, investors do not search only for the best rule, but invest money in all 

possible outperforming strategies. Romano and Wolf (2007) develop a generalized 

methodology, controlling for the stringent FWER criterion. Their goal is to reject at least 

a specific number of false hypotheses to maximize diversification. In a similar way, Hsu 

et al., (2014) apply this generalization to the stepwise method of Hsu et al., (2010) to 

minimize the data snooping effects on the performance of the Commodity Trading 

Advisory fund. 

Moreover, the FDR tolerates a certain proportion of false rejections so as to construct 

a well-diversified portfolio of trading rules, while accounting for the data snooping 

effect. Thus, Bajgrowicz and Scaillet (2012) employ the modified FDR+/- version of 

Barras et al., (2010) in the context of identifying outperforming TTRs on the DJIA 

index. Their findings confirm the superiority of the FDR over the conservative FWER 

approach of Romano and Wolf (2005) in detecting and building a portfolio of genuine 

rules. 

 

4.2. Multiple hypothesis testing framework 

As data snooping techniques are actually multiple hypothesis testing procedures, in 

what follows we need first to define the test statistic. The Sharpe ratio criterion (as 

                                                           
35 A studentized test statistic refers to a simple test statistic divided by the consistent estimator 

of its standard deviation. This helps one to compare objects in the same units of standard 

deviation. 
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defined in Section 2.2) is chosen as the test statistic when performing the multiple 

hypothesis testing using the k-FWER and FDR methods for data snooping.36 We 

selected this ratio not only for comparison with previous studies, but also for its 

undoubtable popularity across traders. The test statistic for each rule j defines the setup 

under the null hypothesis (𝐻0𝑗: 𝜑𝑗 = 0) that rule j does not outperform the benchmark, 

where 𝜑𝑗 = 𝑆𝑅𝑗 in this case. On the contrary, the alternative hypothesis assumes the 

presence of abnormal performance, positive or negative (𝐻𝐴𝑗: 𝜑𝑗 > 0 𝑜𝑟 𝜑𝑗 < 0) in a 

two-tailed test. However, since we are mainly interested in identifying significantly 

outperforming rules, we define a technical trading rule j as significantly positive, if it 

displays abnormal performance (i.e., reject 𝐻0𝑗) and its performance metric is positive 

(i.e., 𝜑𝑗 > 0). The “risk-free” rate is used as a benchmark, describing an investor being 

out of the market.  

 

4.3. The FDR+/- method 

The FDR+/- has its foundations in the FDR statistical criterion introduced by 

Benjamini and Hochberg (1995), which assumes that, by tolerating a small proportion of 

false discoveries amongst all rejections (e.g., significant TTRs), one obtains a more 

powerful multiple hypothesis testing tool than via the conservative FWER method.37  

The FDR+/- has some unique features that make it suitable for traders that are not just 

looking for the best rule, but also for a class of strategies with genuine predictive power 

that can help them diversify risk. In Bajgrowicz and Scaillet (2012), the FDR approach 

provides a sensible trade-off between significantly positive and false selections, making 

it less strict than the FWER method. Additionally, its comparative advantage is the 

ability to find the outperforming rules, even if the performance of the best rule in the 

sample is due to luck. In practice, it is not unusual for such a rule with no significant 

predictability to achieve the greatest performance in terms of profits. This feature is not 

                                                           
36 We do not apply the Calmar ratio criterion since its formulation is based on at least a couple 

years of previous data, while in our persistence analysis we use a rebalancing period of six 

months (see Section 5). 

37 The initial FDR version of Benjamini and Hochberg (1995) adopted independence across 

multiple hypotheses. Later, studies by Benjamini and Yekuteli (2001), Storey (2002), and 

Storey et al. (2004) proved that the FDR holds under “weak dependence” conditions when the 

number of hypotheses is very large. Also, Bajgrowicz and Scaillet (2012) explain that the 

Sullivan et al. (1999) trading rules satisfy this feature, since the rules are dependent in small 

blocks (within the same family) and independent across different families. 
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available in the other methods, whose stepwise nature prevents them from detecting 

further outperforming rules once a “lucky” rule has been identified. 

The FDR concentrates on estimating the expected value of the ratio of erroneous 

selections over the rules showing significant performance. Specifically, the FDR+/- is 

defined as the expected value of the proportion of false selections, F, among the 

significant rules, R (positive or negative). The latter are just the rules that perform either 

better or worse than the benchmark while at the same time their p-value rejects the null 

hypothesis of no abnormal performance under some threshold γ. Thus, the estimate is 

given by 𝐹𝐷𝑅̂+ −⁄ = 𝐹̂+ −⁄ 𝑅̂+ −⁄⁄ , where  𝐹̂+ −⁄  and 𝑅̂+ −⁄  are the estimators of 𝐹+/−and 

𝑅+/−, respectively. For instance, an FDR+/- 100% conveys that, among both the 

outperforming and underperforming trading strategies, no rule generates genuine 

performance on average and vice versa. 

The estimation of FDR+/- is not very tedious, especially when the p-value of each 

rule’s corresponding test statistic has already been computed. In order to acquire the 

individual p-values, we follow the resampling procedure of Sullivan et al., (1999). Using 

the stationary bootstrap method of Politis and Romano (1994) to resample the returns of 

each strategy, the corresponding test statistic for each bootstrap series of returns is 

calculated.38 The p-value is obtained by comparing the original test statistic (𝜑𝑗) to the 

quantiles of each bootstrapped test statistic vector. The estimate of 𝐹𝐷𝑅̂ is given by  

𝐹𝐷𝑅̂(𝛾) = 𝐹̂ 𝑅̂⁄ =
𝜋0̂𝑙𝛾

#{𝑝𝑗≤𝛾;  𝑗=1,…,𝑙}
,             (5) 

where 𝑙 is the entire universe of TTRs, 𝛾 is the p-value cut-off and 𝜋0̂ =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
 

is an estimator of the proportion of rules that show no abnormal (either positive or 

negative) performance in the entire universe and for a two-sided framework. The 

estimation of 𝜋0̂ requires us to define the tuning parameter λ by visually examining the 

histogram of all p-values.39 Thus, in our study, λ is chosen by employing the same 

method. 

                                                           
38 The block length used is equal to q = 0.1, and the number of bootstrap realizations is set to B 

= 1000, following previous studies. 

39 Bajgrowicz and Scaillet (2012) set the value of λ just by looking for the level above which the 

histogram of p-values becomes fairly flat, representing the region of null p-values. There is also 

an automated version of this process described by Storey (2002). 
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Following Barras et al. (2010), and after estimating 𝜋0̂, we then focus on the right tail 

of the test statistic distribution (i.e. 𝜑𝑗 > 0), where the outperforming TTRs lie. Thus, 

we can compute a separate estimator for 𝐹𝐷𝑅+̂(𝛾).40 This holds under the assumption 

that the false discoveries spread evenly between TTRs with positive and negative 

performance and with equal tail significance 𝛾 2⁄ . Thus, the estimator is 

𝐹𝐷𝑅+̂(𝛾) = 𝐹̂+ 𝑅̂+⁄ =
1/2𝜋0̂𝑙𝛾

#{𝑝𝑗≤𝛾,𝜑𝑗>0;  𝑗=1,…,𝑙}
,           (6) 

Furthermore, the number of TTRs showing abnormal performance can be 

extrapolated as 𝜋𝛢 = 1 − 𝜋0. Now, defining the positive, 𝜋𝐴
+, and negative, 𝜋𝐴

−, 

proportions of rules in the population, we acquire 𝜋𝐴
+ =

𝑇(𝛾)++𝐴(𝛾)+

𝑙
 and 𝜋𝐴

− =

𝑇(𝛾)−+𝐴(𝛾)−

𝑙
, where 𝑇(𝛾)+ and 𝑇(𝛾)− symbolize the number of strategies with positive 

and negative returns, respectively, and p-values less than γ. On the other hand, 𝐴(𝛾)+and 

𝐴(𝛾)− indicate the size of alternative models showing positive and negative 

performance without rejecting the null hypothesis (p-value greater than γ), respectively.  

To conclude, 𝑇̂(𝛾)+ (likewise 𝑇(𝛾)−) is defined as the estimator of the significantly 

positive rules minus the estimator of false selections: 

𝑇̂(𝛾)+ = 𝑅+( 𝛾)̂ − 𝐹+(𝛾)̂ = #{𝑝𝑗 ≤ 𝛾, 𝜑𝑗 > 0;   𝑗 = 1, … , 𝑙} −
1

2
𝜋0̂𝑙𝛾.       (7) 

However, the most crucial part of identifying the genuine TTRs is the method of 

controlling a predetermined level of FDR+ (i.e. 10%) or, in other words, finding the right 

p-value cutoff γ above which lie the rules with no statistically significant performance. 

We achieve this by following Storey et al., (2004), while using point estimates of the 

FDR. In particular, the p-values of the TTRs with positive performance are placed in 

ascending order. Then, starting with the smallest one, while adding the next p-value 

corresponding to the second rule, the FDR+ is recomputed. This procedure is repeated 

until the desired FDR+ is attained. 

 

4.4. The k-FWER method 

The second method employed for data snooping bias in our study is the k-FWER 

approach developed by Romano and Wolf (2007) and Romano et al., (2008). The 

rationale for implementing it in our case is its flexibility in detecting a great number of 

genuine trading strategies once the strict FWER criterion is eased, making it more 

                                                           
40 The FDR- part can be calculated in a similar way. 
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suitable for investors who want to identify as many outperforming strategies as possible. 

However, we also want to examine whether a generalized version of the conservative 

FWER measure, allowing some false rejections, would achieve the same results as the 

powerful FDR+. Contrary to its predecessor, the k-FWER criterion is defined as 

𝑘 − 𝐹𝑊𝐸𝑅𝑝 = 𝑃{𝑅𝑒𝑗𝑒𝑐𝑡 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑘 𝑜𝑓 𝑡ℎ𝑒 𝐻0𝑗},          (8) 

which is the probability of rejecting at least k true null hypotheses. In the multiple 

hypothesis testing setup, under a statistical significance level of α, the k-FWER is 

controlled if  

𝑘 − 𝐹𝑊𝐸𝑅𝑝 ≤ 𝑎.              (9)  

The k-FWER framework has an analogous structure to that of the StepM-BRC 

technique of Romano and Wolf (2005). However, it allows for at least a small number of 

false selections to be retained. Moreover, a resampling mechanism also needs to be used. 

Thus, for comparison purposes, we also employ the stationary bootstrap of Politis and 

Romano (1994), while using the same procedure to calculate the bootstrapped test 

statistics and thus the critical values for the BRC, StepM-BRC, and FDR tests. Each 

bootstrap test statistic vector also needs to be centered on its original value. 

After the computation of the empirical bootstrapped distribution and the critical 

values, since the setup of the k-FWER approach is similar to that of the StepM-BRC test, 

only a few other steps need to be modified. The more general k-FWER approach needs 

to satisfy the criterion that at least k hypotheses will be rejected, instead of just one. 

Specifically, the TTR test statistics, 𝜑𝑗, of the strategies showing positive performance 

are relabelled in descending order, with the first referring to the largest. During the first 

stage, individual decisions are executed for each rule, the null hypothesis 𝐻0𝑗 being 

rejected if the test statistic, 𝜑𝑗, is greater than the critical value 

𝑐1̂ = 𝑐{1,…,𝑙}(1 − 𝑎, 𝑘, 𝑃𝑇̂) for 1 ≤ 𝑗 ≤ 𝑙, 41        (10) 

where 𝑐1̂ is the estimated smallest (1 − 𝑎) quantile of the re-centered sampling 

distribution of the kth largest rule under the bootstrapped probability measure 𝑃𝑇̂. Then, 

denote by 𝑅1  the number of statistically significant rules (hypotheses rejected) during 

                                                           
41 The critical value 𝑐1̂ asymptotically controls the k-FWER criterion. According to the theory  

𝑐1 = 𝑐𝐾(1 − 𝑎, 𝑘, 𝑃). However, the set K and the probability mechanism P are unknown. 

Therefore, K is replaced by the set of all rules {1, … , 𝑙} and the probability measure 𝑃𝑇̂ of the 

bootstrapped distribution is used instead of P. 
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the first stage. If 𝑅1 < 𝑘 the procedure is terminated. This happens because it is feasible 

that all significant rules are true rejections. On the other hand, if 𝑅1 > 𝑘 there is a strong 

possibility that some false rejections will have been included in the total number of 

rejections. Therefore, we need to move on to the second stage, excluding the test 

statistics of the rejected strategies. The remaining ones are tested in a new hypothesis 

testing setup. This time, each of the test statistics, 𝜑𝑗, is compared with the critical value 

𝑐2̂ = max {𝑐𝐾(1 − 𝑎, 𝑘, 𝑃𝑇̂)} for 𝑅1 + 1 ≤ 𝑗 ≤ 𝑙        (11) 

while individual decisions are also made, 𝑐2̂ depicts the maximum quantile of the set of 

quantiles, including the rejected 𝑘 − 1  hypotheses from the first step, as well as all the 

hypotheses that have not been rejected yet. The intuition is that we are not certain which 

of the rejected hypotheses might be true so both rejected and non-rejected hypotheses, 

together with the largest quantile, must be considered. Finally, if no further hypotheses 

are rejected in the second step, the procedure terminates. Otherwise, the stepwise setup 

is maintained, and new decisions are carried out involving new 𝑐𝑚̂ maximum critical 

values, until no other rejections occur.  

The steps described above reflect the one-sided framework, which is meaningful 

when searching for genuine TTRs among the entire set of rules, which display positive 

performance and fall within the right tail of the distribution. 

 

4.5. Portfolio construction 

We construct the portfolios of rules by selecting them in accordance with the FDR+ 

and k-FWER. In particular, we set the 𝐹𝐷𝑅+̂ and k-FWER equal to 10%, as a good 

trade-off between truly outperforming TTRs and wrongly chosen ones (Bajgrowicz and 

Scaillet 2012). Despite the fact that k is an integer in the case of k-FWER, we adjust it to 

a number that is equal to 10% of the rules showing positive performance for each 

interval examined. Thus, we acquire 10%-FDR+ and 10%-FWER portfolios, which 

means that which means that 90% of the total number of the portfolio’s rules, 

significantly outperform the benchmark. The signals of the chosen rules are pooled with 

equal weight, similarly to a forecast averaging technique. We do not attribute more 

weight to more effective rules since this would result in reducing the FDR+ and k-FWER 

portfolios below the desired level. We finally treat the neutral signals as totally 

liquidating our positions and do not invest a proportion of wealth, corresponding to 
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them, at the “risk-free” rate. This assumption helps us to measure the true performance 

of the FDR portfolios. 

 

5. In-sample performance 

5.1. In-sample performance with no transaction costs 

Table 3 reports the number of TTRs displaying a positive performance42 under the 

mean return, Sharpe ratio, and Calmar ratio criteria, for crude oil futures and USO, 

Subperiods 1-4. 

[Table 3] 

Concerning Subperiods 1 (18 April 2007 – 29 May 2009) and 4 (1 August 2013 – 1 

January 2016), that contain strong trends or an unstable environment, it seems that a 

significant proportion of the TTRs considered are able to achieve a positive 

performance for both crude oil futures and USO. This outcome could almost have been 

anticipated since the majority of the strategies are momentum or trend-following rules 

capturing extreme movements. On the other hand, the number of outperforming rules is 

reduced for the mean return and Sharpe ratio for Subperiods 2 (1 June 2009 – 31 May 

2011) and 3 (1 April 2011 – 31 July 2013), which show a more balanced evolution of 

prices. Regarding the Calmar ratio, the number of outperforming rules is even less (at 

most 25%), as a TTR needs to achieve a Calmar ratio above 1 to be considered a good 

strategy.43 It is also worth mentioning that, during Subperiod 3, the profitable TTRs on 

crude oil futures are almost half of those on the USO for the mean return, the Sharpe 

and the Calmar ratio. Moreover, the number of outperforming rules identified, based on 

the Sharpe ratio, is consistently less than or (almost) equal to those identified by the 

mean return criterion, for crude oil futures and USO. This feature stems from the 

subtraction of the risk-free rate, which results in the elimination of returns of a very 

small magnitude.     

For the same sample periods, Table 4 shows the in-sample performance of the best 

rule under the mean return, Sharpe ratio and Calmar ratio criteria respectively, free of 

                                                           
42 Positive performance means a mean return or Sharpe ratio above zero, or a Calmar ratio 

above one. 

43 A Calmar ratio value of 1-2 is assumed a good strategy, a value between 2-5 very good, and a 

value greater than 5 recognized as excellent (Young 1991). 
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transaction costs, for crude oil futures (Panel A) and USO (Panel B). The corresponding 

p-value of the BRC test for the best rule and for each performance criterion is also 

displayed in parenthesis.  The buy-and-hold strategy for the crude oil futures and the 

USO is also displayed in the columns on the right-hand side of the table.  

[Table 4] 

For both Panels A and B, the best rule results seem very encouraging compared with 

the buy-and-hold strategies, for crude oil futures and USO. The best rule’s performance 

indicates that profitable trading strategies exist in all subperiods, according to all 

criteria. Specifically, the Sharpe and Calmar ratios are high enough that the best rules 

can be characterized as very good trading opportunities in the majority of the years 

covered. However, we should mention that the evidence provided above has no 

economic value, since transaction costs are not considered, and it is just a trivial 

experiment concerning predictability. Moreover, the corresponding BRC p-values are 

quite high in half the cases, indicating that the performance of some of the best rules is 

not significant. Also, the information reported in Table 4 relies only on findings that are 

discovered ex post, and there is no guarantee that a trader will have selected the 

potentially best rule in advance only by looking at its long-term historical behavior. In 

practice, investors rebalance their positions more frequently to capture any changes in 

the economic and financial milieu. Despite the above, Tables 3 and 4 still reveal the 

existence of technical indicators that are able to capture patterns in the daily prices for 

both crude oil futures and the USO.  

 

5.2. In-sample performance including transaction costs 

Since predictive power is not always synonymous with profitability, an investor 

should always check carefully whether the returns gained from trading strategies are 

sufficient to cancel out the transaction costs. Indeed, trading rules pooled before 

transaction costs are more likely to generate frequent signals, thus increasing the 

probability of their performance benefits being eliminated once the transaction costs are 

included. 

The majority of the previous studies examine the performance of TTRs through a 

breakeven analysis, wherein the effect of transaction costs is computed ex post, once 

outperforming rules have been identified. However, this undoubtedly makes it more 

complicated for a trader to foresee profitable rules that will offset transaction costs a 
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priori. Contrary to that, we again follow Bajgrowicz and Scaillet (2012), handling 

transaction costs “endogenously” and not “exogenously” to the selection process. In 

particular, we subtract the transaction costs every time a buy or sell signal is triggered. 

Following the study of Locke and Venkatesh (1997), who estimate that futures markets’ 

one-way transaction costs range from 0.04 to 3.3 basis points, we consider the second, 

larger amount for the crude oil futures. Furthermore, we assume that an investor funds 

their position with 100% equity rather than using a margin, since we measure daily 

returns as the log of the difference in price relatives (Bessembinder, 1992; Miffre and 

Rallis, 2007; Marshall et al., 2008). For the case of the USO, we incorporate one-way 

transaction costs of 5 basis points on each trade. This level of transaction costs is 

justified based on the literature, as well as information from floor traders (Hsu et al. 

2010), for the trading of ETFs.  

Tables 5 and 6 display the number of outperforming rules as well as the in-sample 

performance for the crude oil futures and the USO when one-way transaction costs of 

3.3 and 5 basis points are considered, respectively, ex ante. Comparing the results with 

Table 3, in Table 5 we can see that the number of corresponding outperforming rules 

has decreased considerably for all evaluation methods, especially when the Calmar ratio 

is employed.  

[Table 5] 

[Table 6] 

In Table 6, the in-sample performance with transaction costs provides a similar 

picture. Thus, as expected, the values for all evaluation criteria are reduced. However, in 

Table 6, we also observe that the best trading rules are still able to achieve better 

performance than the buy-and-hold strategy, for all criteria and across all subperiods. 

Interestingly, compared with the values in Table 4, the Sharpe ratios for the best rules 

are lower. However, the trading strategies remain very promising, as the Sharpe ratios 

are still above 1.5. Similarly, in Table 6, the Calmar ratios are high enough that we can 

conclude that the generated returns are sufficient to outweigh the transaction costs. 

When it comes to the statistical significance of the best rules’ performance, Table 6 

demonstrates that none of the p-values from the BRC test are significant. However, this 

does not mean that TTRs with genuinely good performance do not exist among the most 

profitable rules. 
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Tables 7 and 8 demonstrate the impact of transaction costs on the historically best 

TTRs, selected with respect to the mean return, Sharpe ratio and Calmar ratio criteria, 

while accounting for zero and non-zero one-way transaction costs, for the crude oil 

futures and the USO, respectively, in each subperiod.  

 

[Table 7] 

[Table 8] 

Generally speaking, the best trading strategy nominated remains within the same 

family of rules, before and after one-way transaction costs are considered, in most cases, 

and for both the crude oil futures and the USO. In addition to this, Table 7 demonstrates 

that, in the case of crude oil futures, the small magnitude of transaction costs does not 

have a strong impact on the chosen best rule, and this applies to all criteria and across 

all subperiods. However, Table 8 portrays a contradictory picture, especially under the 

mean return and Sharpe ratio criteria, for the case of the USO. TTRs selected without 

consideration of the transaction costs produce more frequent trading signals than those 

for which the transaction costs have been taken into account endogenously. For 

instance, under the Sharpe ratio measure and Subperiod 1, a 25-50 day on-balance 

volume rule is more likely to trigger frequent signals than a channel breakout rule with a 

20-100 window of days, 0.075 channel width and a five-day holding period, which 

suffers more constraints. The best rules after the inclusion of transaction costs are not 

usually among the best ones before their inclusion. One explanation might be that 

trading the USO entails larger transaction costs than trading crude oil futures. 

 Moreover, the successful rules do not trade on longer-term price movements once 

transaction costs are incorporated, in either case. While there are cases (under the 

Sharpe ratio and in Subperiod 2 for the USO) where the best rule, in-sample, uses a 

larger window of 200 days of data when transaction costs are included, compared to a 

window of 10 days used by the best rule under zero transaction costs, this is not true in 

most of the cases. 

Another interesting finding emerges when employing the Calmar ratio criterion. The 

best rules derived before and after the inclusion of transaction costs are closely related, 

perhaps due to the maximum drawdown factor employed. Searching for the best 

strategy, while minimizing the maximum drawdown of its returns, increases an 

investor’s probability of ending up with a rule that generates less frequent signals, even 



 

 

 

62 

 

before the inclusion of transaction costs to avoid larger drawdowns. This might be the 

reason for TTRs selected under the Calmar ratio approach being almost the same before 

and after consideration of transaction costs in each sample period. 

Finally, the most important evidence gleaned from observing both tables together, is 

that the rules selected as the best ones based on technical analysis for the crude oil 

futures belong to a different family from those selected when trading the USO, under all 

criteria and across all subperiods considered. This may be a potential justification for 

the different dynamics that characterize the crude oil futures compared to the USO, with 

contango or backwardation outcomes having a significant effect on the calculation and 

redemption procedures for ETFs. On the other hand, the above findings may just reveal 

the considerable effects of data snooping bias, in that the best rule’s performance may 

be achieved merely through luck in most cases, leading to different rules being 

identified as the best for the two assets and for the different subperiods.  

 

6. Persistence analysis 

The economic evaluation of TTRs’ performance in the crude oil market is covered in 

this section. One of the fundamental questions that technical traders must answer when 

evaluating TTRs’ predictive power is whether the rules selected as superior ex ante 

during backtesting are also able to generate abnormal returns once the transaction costs 

are considered, for an out-of-sample period. We shed light on whether some of the 

outperforming rules would have been able to produce profits in practice due to the high 

volatility in the crude oil market, using only past price data.  

A persistence (out-of-sample) analysis of TTRs’ performance in the crude oil market 

is applied here for the very first time. With this aim, we build portfolios of 

outperforming rules, and re-evaluate the portfolios’ performance on a semi-annual basis. 

In the first six months, when the total universe of rules’ performance is tested, we 

construct equally weighted portfolios while accounting for data snooping bias using the 

FDR+ and k-FWER methods as described in Sections 4.2 - 4.5. Specifically, every six 

months, two portfolios are constructed employing price data from the previous six 

months. Then, the out-of-sample performance of the chosen rules is evaluated over the 

following half of the year. As mentioned earlier, the “risk-free” rate is considered as the 

benchmark. In particular, we assess the performance of rules in-sample (IS), before 
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constructing portfolios of the “genuine” (statistically significant) in-sample rules and 

measuring their performance out-of-sample (OOS). This structure matches how 

investors in practice set up their own strategies based only on a priori information. 

Table 9 displays the results of the persistence analysis under the annualized Sharpe 

ratio and 3.3 and 5 basis points of transaction costs for the crude oil futures and the 

USO respectively, in accordance with the 10%-FDR+ and 10%-FWER rules selection 

criteria, as well as the best rule’s performance, observed across the different in-sample 

and out-of-sample periods. The table also includes each portfolio’s median size as well 

as its percentage amount over the total universe of TTRs in brackets.  

[Table 9] 

The results clearly indicate that there is no persistence in the trading rules’ 

performance, as both selection criteria verify. However, in periods when both portfolios 

are able to generate positive performance out-of-sample, the Sharpe ratio levels are 

considerably smaller than those of the in-sample performance. For instance, no investor 

will choose a portfolio whose Sharpe ratio level is below one. However, the only case of 

a Sharpe ratio exceeding one is in Subperiod 2 for the trading of crude oil futures 

contracts, for both portfolios. The ADH, which describes how profit opportunities might 

be available during some periods, but then disappear in later ones, might shed some 

light on the above results. Overall, the picture is opposed to the evidence found 

regarding the in-sample performance in Section 5, which implies that the best-

performing rules are accessible only to investors observing the returns ex post. 

Additionally, comparing the 10%-FWER and 10%-FDR+ portfolios with the best rule’s 

performance, we notice that, in most cases, both portfolios achieve better performance 

out-of-sample than just employing the best rule, verifying the benefits of employing the 

proposed data snooping methods as portfolio construction techniques. To summarize, 

interestingly, the no hot hands phenomenon that is confirmed in Bajgrowicz and Scaillet 

(2012) for the DJIA also appears in the crude oil market. 

As presented in Table 9, one of the most important findings is the overall 

performance of the 10%-FWER and 10%-FDR+ specifications for data snooping as 

portfolio compilers. We could say that the two approaches seem able to achieve almost 

equal performance for the trading of crude oil futures, except in Subperiod 1 where the 

10%-FWER portfolio outperforms its counterpart. On the other hand, the FDR+ 

portfolio seems to generate slightly better performance in the case of the USO. The 
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generalization of the FWER measure (to allow for some false selections) improves its 

performance, which is demonstrated by the achievement of more or less similar Sharpe 

ratios to the FDR+ portfolio. The k-FWER circumvents the lucky rules that do not 

produce significantly good performance, while keeping only the genuine ones. 

Furthermore, it does not suffer from preventing the selection of further rules once it has 

identified a lucky one, as its predecessor did. When it comes to median portfolio size, 

the findings indicate that the median size of the 10%-FWER portfolios for both the 

crude oil futures and the USO, is less than that of the FDR+ portfolios at all times, with 

this difference considerable during specific subperiods. 

Finally, Table 10 presents both the 10%-FWER and 10%-FDR+ portfolios’ average 

decomposition according to each of the five families of TTRs for the crude oil futures 

and the USO respectively. In particular, we report the number of rules selected from 

each family divided by the total number of rules included in each portfolio, as a 

percentage44.  

[Table 10] 

We observe that the 10%-FWER and 10%-FDR+ portfolios show different selection 

preferences among the five families of rules. Furthermore, the preferences seem to 

differ depending on whether the crude oil futures or the USO are being traded. For 

instance, the 10%-FWER portfolio seems to mostly choose TTRs from the on-balance 

volume and channel breakout families, followed by the support and resistance rules, 

while the 10%-FDR+ portfolio selects TTRs mostly from the support and resistance and 

channel breakout families, with the on-balance volume rules coming next in order of 

preference. The filter rules family displays the smallest percentages for both portfolios, 

crude oil futures and USO, as well as across all subperiods. In general, the support and 

resistance, channel breakouts and on-balance volume rule families are the most 

significant in capturing the patterns of the crude oil market.  

 

 

 

                                                           
44 We should mention that the number of rules chosen varies substantially from one six-month 

period to the next. Sometimes, the portfolio consists of almost exclusively new rules, even after 

the first rebalancing.    
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7. Conclusion 

Evidence of the historical success of technical trading rules is revisited, this time in 

the trending crude oil market. Although, numerous efforts have been made in the field 

of evaluating the performance of technical trading rules (forex, stock, large/small cap 

markets, etc.), this is the first time it has been done for crude oil. Findings from 

previous studies are divided on whether technical analysis can achieve genuine 

abnormal performance. The motivation of this study was to examine whether technical 

trading indicators and oscillators could benefit from the severe fluctuations 

characterizing the crude oil market lately. The majority of these rules are designed to 

capture such patterns, being momentum and trend following strategies. We focus on the 

crude oil futures and the United States Oil fund (USO) as the largest and most liquid 

crude oil exchange traded fund (ETFs), developed to track the daily price movements of 

West Texas Intermediate ("WTI") light, sweet crude oil. 

First, we reassess the predictive power of Sullivan et al.’s (1999) universe of trading 

rules in the overall crude oil market, to verify that patterns exist. Evidence of the rules’ 

performance on crude oil futures as well as the USO in an in-sample simulation 

demonstrates that, during periods of dramatic crude oil price movements, more than half 

of the rules show great predictive power. However, the corresponding p-values of the 

best rules of the bootstrap reality check (BRC) test of White (2000) are not statistically 

significant most of the time. Popular performance measures used by fund managers and 

traders, such as the Sharpe and Calmar ratios, are employed to measure the profitability 

of rules. All of them show the best rule for each period to be a very good trading 

opportunity.  

Second, we endogenously incorporate transaction costs when evaluating trading 

rules’ performance in the case of crude oil futures contracts and the USO. Strategies 

employed by Brock et al., (1992) and Sullivan et al., (1999) can trigger very frequent 

signals, which might lead to the elimination of superior returns when transaction costs 

are considered. However, technical trading rules are still able to achieve profits, 

although their performance is decreased, because of the relatively small transaction 

costs applied when trading commodities futures and ETFs. 

Third, we employ two of the most powerful techniques for accounting for data 

snooping, in order to identify significantly profitable trading strategies. The false 

discovery rate (FDR) approach, as described by Bajgrowicz and Scaillet (2012) when 
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evaluating technical trading rules on the DJIA index, is used to control false discoveries. 

The k-familywise error rate (k-FWER) methodology developed by Romano and Wolf 

(2007) is also applied to check whether a generalized version of the conservative FWER 

criterion allowing for some false rejections performs equally well to the powerful FDR 

method. Both specifications are able to select more rules and better diversify against 

model uncertainty than the previous BRC and Romano and Wolf approaches that are 

prevented from searching for more rules once a “lucky” one has been detected.  

Finally, a persistence analysis is carried out for the purpose of economically 

evaluating the rules’ performance. The question that needs to be answered here is 

whether investors can foresee which rules will generate future returns – that will 

outweigh transaction costs – without prior knowledge. We respond to this argument by 

creating portfolios with the FDR and k-FWER approaches, using only past data in an in-

sample period, and evaluating their performance out-of-sample. The findings show that 

there is no persistent nature to the rules’ performance, contrary to the outstanding in-

sample results, although tiny profits can be achieved in some periods. The results seem 

to be in favor of the Adaptive Market Hypothesis (ADH) of Lo (2004). Moreover, the 

FDR+ and k-FWER approaches show almost equal performance. 

In terms of further research, some manipulation-proof versions of performance 

metrics can be used instead of regular ones. So far, we focus our experiments on the 

performance of multiple hypothesis testing frameworks on measures such as the mean 

return and Sharpe ratio. However, these measures are subject to manipulation and 

generate spectacular results to an uninformed investor employing dynamic strategies. 

For that reason, manipulation-proof measurement methods being consistent with 

standard financial market equilibrium conditions such as those of Ingersoll, Spiegel, 

Goetzmann and Welch (2008)  and the Morningstar Risk-Adjusted Rating introduced in 

July 2002, should be further investigated in our applications. 
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List of tables 

Table 1. Sample periods for crude oil futures and USO 

Sample period Dates Trading days Market trend 

Subperiod 1: 18 April 2007- 29 May 2009 534 Mixed 

Subperiod 2: 1 June 2009- 31 March 2011 464 Bullish 

Subperiod 3: 1 April 2011- 31 July 2013 586 Mixed 

Subperiod 4: 1 August 2013- 1 January 2016 618 Bearish 

 

 

 

 

 

 

Table 2. Descriptive statistics of daily returns on crude oil futures and USO 

Instrument Subperiod Mean (%) St.dev. (%) Skewness Kurtosis First AC 

Crude oil Subperiod 1 0.01 3.03 0.44 11.4 0.01 

futures Subperiod 2 0.10 1.59 -0.01 4.55 0.18** 

 Subperiod 3 0.01 1.42 -0.35 4.88 0.08 

 Subperiod 4 -0.19 1.77 0.66 5.97 0.12** 

       

USO Subperiod 1 -0.06 2.91 -0.19 4.28 -0.11** 

 Subperiod 2 0.04 1.92 -0.07 3.23 0.00 

 Subperiod 3 -0.02 1.75 -0.57 6.24 -0.06 

 Subperiod 4 -0.22 1.99 0.00 5.36 -0.10** 

This table reports the descriptive statistics of daily returns on the crude oil futures and the USO. 

Means and standard deviations are reported in percentage points (%). “First AC” stands for 

first-order autocorrelation. Asterisks (**) denote significant first-order autocorrelation for 

returns at the 5% level according to the Ljung-Box (1978) Q statistics. 
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Table 3. Numbers of outperforming rules for in-sample performance with no transaction 

costs 

Instrument Sample period Outperforming rules 

  Mean return Sharpe ratio Calmar ratio 

Crude oil futures  Subperiod 1 4049 

[51%] 

3979 

[50%] 

574 

[7%] 

 Subperiod 2 2226 

[28%] 

2222 

[28%] 

406 

[5%] 

 Subperiod 3 840 

[10%] 

838 

[10%] 

82 

[1%] 

 Subperiod 4 5148 

[65%] 

5147 

[65%] 

485 

[6%] 

     

USO Subperiod 1 4114 

[52%] 

4096 

[52%] 

2025 

[25%] 

 Subperiod 2 1774 

[22%] 

1774 

[22%] 

341 

[4%] 

 Subperiod 3 1920 

[24%] 

1919 

[24%] 

166 

[2%] 

 Subperiod 4 5000 

[63%] 

5000 

[63%] 

1445 

[18%] 

This table presents the outperforming rules in levels, and as percentages over the total universe 

in brackets, identified according to the positive daily mean return, annualized Sharpe ratio, and 

Calmar ratio criteria respectively, for the crude oil futures and the USO, across the different 

subperiods. 
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Table 4. In-sample performance with no transaction costs 

Sample period Best rule Buy-and-hold strategy 

Panel A 

Crude oil futures 

Mean  

return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe  

ratio 

Calmar 

ratio 

Subperiod 1 0.34 

(0.09)* 

1.82 

(0.05)** 

8.21 

(0.03)** 

0.01 0.30 0.25 

Subperiod 2 0.14 

(0.99) 

2.30 

(0.39) 

7.70 

(0.83) 

0.10 0.95 1.45 

Subperiod 3 0.12 

(0.97) 

1.71 

(0.80) 

8.83 

(0.43) 

0.01 0.09 0.07 

Subperiod 4 0.26 

(0.08)* 

2.10 

(0.06)* 

9.80 

(0.10)* 

-0.19 -1.3 -0.62 

   

Panel B 

USO 

      

Subperiod 1 0.38 

(0.09)* 

2.05 

(0.07)* 

6.95 

(0.11) 

-0.06 -0.13 -0.04 

Subperiod 2 0.17 

(0.96) 

2.07 

(0.71) 

8.92 

(0.69) 

0.04 0.37 0.54 

Subperiod 3 0.13 

(0.98) 

1.78 

(0.74) 

7.31 

(0.23) 

-0.02 -0.09 -0.05 

Subperiod 4 0.23 

(0.08)* 

2.19 

(0.07)* 

9.35 

(0.06)* 

-0.22 -1.69 -0.69 

This table reports the performance results of the best rule, and its corresponding BRC p-value in-

sample in parenthesis, as well as the buy-and-hold strategy for the crude oil futures and the USO 

respectively, under the daily mean return, annualized Sharpe ratio, and Calmar ratio criteria, and 

across the different subperiods. * denotes a rejection of the null hypothesis at the 10% level of 

significance, ** denotes rejection at the 5% level. 
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Table 5. Numbers of outperforming rules for in-sample performance with transaction costs 

Instrument/ 

Transaction costs 

Sample period Outperforming rules 

Crude oil futures  

(3.3 bps) 

 Mean return Sharpe ratio Calmar ratio 

 Subperiod 1 3623 

[46%] 

3558 

[45%] 

320 

[4%] 

 Subperiod 2 1555 

[19%] 

1559 

[19%] 

274 

[3%] 

 Subperiod 3 525 

[6%] 

525 

[6%] 

69 

[0.8%] 

 Subperiod 4 4569 

[58%] 

4565 

[58%] 

250 

[3%] 

USO  

(5 bps) 

    

 Subperiod 1 3777 

[48%] 

3739 

[47%] 

1341 

[17%] 

 Subperiod 2 1066 

[13%] 

1065 

[13%] 

168 

[2%] 

 Subperiod 3 931 

[11%] 

929 

[11%] 

79 

[1%] 

 Subperiod 4 4346 

[55%] 

4346 

[55%] 

363 

[4%] 

This table presents the outperforming rules in levels, and in percentages over the total universe 

in brackets, identified according to the positive daily mean return, annualized Sharpe ratio, and 

Calmar ratio criteria, for the crude oil futures and the USO, assuming 3.3 and 5 basis points 

(bps) one-way transaction costs respectively, across the different subperiods. 
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Table 6. In-sample performance with transaction costs 

Sample period Best rule Buy-and-hold strategy 

Panel A 

Crude oil futures 

Mean  

 return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Mean  

return (%) 

Sharpe 

ratio 

Calmar 

ratio 

Subperiod 1 0.30 

(0.25) 

1.73 

(0.15) 

7.76 

(0.29) 

0.01 0.30 0.25 

Subperiod 2 0.11 

(1.00) 

2.21 

(0.49) 

7.13 

(0.82) 

0.10 0.95 1.45 

Subperiod 3 0.08 

(0.99) 

1.69 

(0.81) 

7.80 

(0.42) 

0.01 0.09 0.07 

Subperiod 4 0.23 

(0.31) 

 

1.89 

(0.27) 

8.53 

(0.35) 

-0.19 -1.3 -0.62 

Panel B 

USO 

      

Subperiod 1 0.33 

(0.44) 

1.87  

(0.68) 

6.00 

(0.39) 

-0.06 -0.13 -0.04 

Subperiod 2 0.13 

(1.00) 

1.89 

(0.88) 

6.05 

(0.74) 

0.04 0.37 0.54 

Subperiod 3 0.08 

(1.00) 

1.60 

(0.91) 

5.11 

(0.53) 

-0.02 -0.09 -0.05 

Subperiod 4 0.18 

(0.33) 

2.09 

(0.22) 

8.67 

(0.28) 

-0.22 -1.69 -0.69 

This table reports the performance results of the best rule, and its corresponding BRC p-value in-sample 

in parenthesis, including one-way transaction costs for the crude oil futures and the USO, as well as the 

buy-and-hold strategies for the crude oil futures and the USO respectively, under the daily mean return, 

annualized Sharpe ratio, and Calmar ratio criteria, across the different subperiods. 
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Table 7. Best in-sample technical trading rules for crude oil futures 

Sample period Costs Best rule 

Mean return  

Subperiod 1 Zero Sup.&Res. (10-day alt. extrema, 0.05 band) 

 3 bps Sup.&Res. (20-day alt. extrema, 0.05 band) 

Subperiod 2 Zero Filter (0.01 pos. initiation, 5-day hold. per.) 

 3bps Filter (0.01 pos. initiation, 5-day hold. per.) 

Subperiod 3 Zero Moving Avg. (25-30 day, 25-day hold. per.) 

 3 bps Moving Avg. (25-30 day, 25-day hold. per.) 

Subperiod 4 Zero On-Bal.-Vol. (40-50 day, 10-day hold. per.) 

 3 bps On-Bal.-Vol. (40-50 day, 10-day hold. per.) 

Sharpe ratio  

Subperiod 1 Zero Chan.Br. (20-day, 0.075 width, 10-day hold. per.) 

 3 bps Chan.Br. (20-day, 0.075 width, 0.01 band, 10-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (10-day, 0.1 band) 

 3 bps Sup.&Res. (20-day, 0.03 band) 

Subperiod 3 Zero Chan.Br. (15-day, 0.05 width, 0.03 band 10-day hold. per.) 

 3 bps Chan.Br. (15-day, 0.05 width, 0.03 band 10-day hold. per.) 

Subperiod 4 Zero Chan. Br. (10-day, 0.05 width, 0.01 band 25-day hold. per.) 

 3 bps Chan. Br. (10-day, 0.03 width, 0.001 band 25-day hold. per.) 

Calmar ratio  

Subperiod 1 Zero Sup.&Res. (4-day al. extrema, 4-day delay, 5-day hold. per.) 

 3 bps Sup.&Res. (4-day alt. extrema 4-day delay, 25-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (200-day, 0.03 band, 5-day hold. per.) 

 3 bps Sup.&Res. (200-day, 0.03 band, 5-day hold. per.) 

Subperiod 3 Zero Chan.Br. (100-day, 0.1 width, 0.001 band, 50-day hold. per.) 

 3 bps Chan.Br. (100-day, 0.15 width, 0.01 band, 5-day hold. per.) 

Subperiod 4 Zero Sup.&Res. (150-day, 2-day delay, 25-day hold. per.) 

 3 bps Sup.&Res. (200-day, 2-day delay, 50-day hold. per.) 

This table presents the historically best-performing trading rule, chosen under the daily mean, 

annualized Sharpe ratio, and Calmar ratio criteria, for the crude oil futures, in each sample 

period and for either zero or 3.3 basis points (bps) one-way transaction costs. 
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Table 8. Best in-sample technical trading rules for USO 

Sample period Costs Best rule 

Mean return  

Subperiod 1 Zero Moving Avg. (5-25 day, 50-day hold. per.) 

 5 bps Moving Avg. (1-250 day, 50-day hold. per.) 

Subperiod 2 Zero On-Bal.-Vol. (10-50 day, 0.001 band) 

 5 bps On-Bal.-Vol. (5-50 day, 0.003 band) 

Subperiod 3 Zero On-Bal.-Vol. (15-200 day, 0.005 band) 

 5 bps On-Bal.-Vol. (50-125 day, 0.005 band) 

Subperiod 4 Zero Moving Avg. (1-25 day, 10-day hold. per.) 

 5 bps Moving Avg. (1-25 day, 10-day hold. per.) 

Sharpe ratio  

Subperiod 1 Zero On-Bal.-Vol. (25-50 day) 

 5 bps Chan.Br. (20-100 day, 0.075 width, 5-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (10-day, 0.01 band) 

 5 bps Sup.&Res. (200-day, 0.04 band, 10-day hold. per.) 

Subperiod 3 Zero On-Bal.-Vol. (75-100 day, 0.04 band) 

 5 bps Chan.Br. (25-day, 0.03 width, 0.05 band 10-day hold. per.) 

Subperiod 4 Zero Chan.Br. (10-day, 0.05 width, 0.1 band 25-day hold. per.) 

 5 bps Chan.Br. (10-day, 0.05 width, 0.1 band 25-day hold. per.) 

Calmar ratio  

Subperiod 1 Zero Chan.Br. (15-day, 0.075 width, 5-day hold. per.) 

 5 bps Chan.Br. (50-day, 0.1 width, 0.005 band 5-day hold. per.) 

Subperiod 2 Zero Sup.&Res. (5-day, 3-day delay, 50-day hold. per.) 

 5 bps Sup.&Res. (5-day, 3-day delay, 50-day hold. per.) 

Subperiod 3 Zero Chan.Br. (25-day, 0.03 width, 0.05 band 10-day hold. per.) 

 5 bps Sup.&Res. (20-day, 4-day delay, 5-day hold. per.) 

Subperiod 4 Zero Chan.Br. (10-day, 0.01 width, 5-day hold. per.) 

 5 bps Chan.Br. (10-day, 0.01 width, 5-day hold. per.) 

This table presents the historically best-performing trading rule, chosen under the daily mean, 

annualized Sharpe ratio, and Calmar ratio criteria, for the USO, in each sample period and for 

either zero or 5 basis points (bps) one-way transaction costs. 
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Table 9. Performance persistence analysis under the Sharpe ratio criterion with 

transaction costs and risk-free rate as benchmark. 

Sample period 10%-FWER portfolio 10%-FDR+ portfolio Best rule 

Crude oil futures Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 47 

[0.6%] 

3.37 0.19 50 

[0.6%] 

2.71 -0.32 3.64 -0.64 

Subperiod 2 26 

[0.3%] 

4.32 1.06 37 

[0.4%] 

4.44 1.01 3.46 0.68 

Subperiod 3 24 

[0.3%] 

3.27 -1.13 40 

[0.4%] 

3.44 -0.62 3.05 -0.72 

Subperiod 4 25 

[0.3%] 

3.20 -0.24 112 

[1.4%] 

3.98 -0.48 3.72 -1.20 

USO Median size IS OOS Median size IS OOS IS OOS 

Subperiod 1 123 

[1.5%] 

2.82 0.28 170 

[2.1%] 

2.71 0.37 3.64 -0.64 

Subperiod 2 28 

[0.3%] 

4.19 -0.15 73 

[0.9%] 

3.98 -0.29 3.46 0.68 

Subperiod 3 42 

[0.5%] 

3.30 -1.27 70 

[0.9%] 

3.00 -0.42 3.05 -0.72 

Subperiod 4 167 

[2.1%] 

3.37 -0.26 300 

[3.8%] 

3.66 0.23 3.72 -1.20 

This table indicates the in-sample (IS) and out-of-sample (OOS) annualized Sharpe ratio of trading rules 

chosen according to the 10%-FWER portfolio of Romano and Wolf (2007), and the 10%-FDR+ portfolio of 

Bajrowicz and Scaillet (2012), with a semi-annual rebalancing and a risk-free rate as benchmark, as well as 

the best rule in-sample. The table also displays the portfolios’ median sizes in levels, and in percentages of 

the total rules universe in brackets, across different subperiods.  
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Table 10. Portfolio decomposition into families of rules 

Sample period F   MA SR CB OBV 

Crude oil futures      

Subperiod 1 2% (1%) 18% (28%) 5% (22%) 30% (8%) 45% (39%) 

Subperiod 2 1% (2%) 0% (3%) 56% (64%) 40% (31%) 3% (0%) 

Subperiod 3 6% (0%) 8% (3%) 2% (66%) 26% (25%) 58% (6%) 

Subperiod 4 4% (1%) 16% (16%) 15% (49%) 43% (16%) 21% (18%) 

USO      

Subperiod 1 13% (1%) 34% (43%) 10% (24%) 21% (14%) 22% (17%) 

Subperiod 2 2% (2%) 1% (3%) 64% (81%) 9% (11%) 22% (2%) 

Subperiod 3 11% (0%) 17% (2%) 5% (95%) 25% (0%) 42% (2%) 

Subperiod 4 1% (1%) 15% (16%) 11% (26%) 29% (31%) 42% (25%) 

This table reports the average percentage of rules belonging to each family, in each 

portfolio constructed using the 10%-FWER (10%-FDR) methods, for the crude oil futures 

and the USO respectively, across each subperiod. F: filter rules, MA: moving averages, SR: 

support and resistance rules, CB: channel breakouts, and OBV: on-balance volume 

averages. 
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Fig.1.  The time series dynamics of crude oil futures (CL) and United States oil fund (USO) 
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CHAPTER 4  

PAIRS TRADING, TECHNICAL ANALYSIS & DATA SNOOPING:  

MEAN REVERSION VS MOMENTUM 
 

1. Introduction 

 

This study revisits the excess profitability of ‘pairs trading’, as one of the most 

popular short-term speculation strategies, through technical analysis by analysing time 

series history and employing self-financing trading rules, while controlling for data 

snooping effects. Being a representative of the general class of proprietary ‘statistical 

arbitrage’ techniques, severely exploited by hedge funds and investment banks, ‘pairs 

trading’ has a long history, back to mid-1980s, when the famous quant Nunzio Tartaglia 

tried to discover arbitrage opportunities in the equities markets by using sophisticated 

statistical methods through automated trading systems. His high-tech systems 

characterized by the successful recognition of pairs of securities whose prices tended to 

move together historically. The concept of ‘pairs-trading’ is quite simple then, go long 

the first component while going short the second when their spread widens and if the 

history repeats itself the prices will converge yielding profits. Thus, cointegration 

between the long and short components’ prices, contrarian principles and past prices 

dynamics are major mechanisms for a statistical arbitrage strategy expected to work. 

Those mechanisms and their potential profitability on pairs based on trading rules have 

been addressed by several studies in the past. Hogan et al., (2004) find that value and 

momentum trading strategies can constitute arbitrage opportunities in the equities 

market, while Gatev et al., (2006) verify the profitability of simple divergence-

convergence trading rules in terms of standard deviation due to temporary mispricing of 

securities. 

We investigate the evolution of excess profitability of pairs trading on daily data 

including spreads of commodities, equity indices and foreign exchange rates over the 

period January 1990 through December 2016, while employing a large universe of 

disciplined, consistent technical trading rules. We find an annualized mean excess 

return and Sharpe ratio of 17.6% and 1.20 respectively, for the top pair portfolio 

generated by the best technical trading rule over that period. 
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Technical analysis (sometimes referred to as chartism) is believed to be one of the 

longest-established forms of investment analysis, being a set of graphical or 

mathematical techniques exploring future trading opportunities for financial assets just 

by analysing the asset prices’ time-series history. Although there is an ongoing debate 

on the effectiveness of this form of analysis rooted in the lack of economic theory, 

numerous studies have revisited technical analysis’ predictability across several markets 

(e.g., Brock et al., 1992; Neely et al., 1997; Allen and Karjalainen 1999; Sullivan et al., 

1999; Lo et al., 2000; Kavajecz and Odders-White 2004; Marshall et al., 2008; Neely 

and Weller 2011; Bajgrowicz and Scaillet 2012; Hsu et al., 2016). More than half of 

them plead for technical trading significant profitability, while the rest are placed 

against. 

Nevertheless, we introduce for the first time a comprehensive and up-to-date analysis 

of technical analysis’ performance on pairs trading as being developed in practice by 

statistical arbitrageurs. In particular, we examine the predictability and excess 

profitability of over 18,000 momentum and mean-reverting technical trading rules on 

‘famous’ pairs being frequently advertised by trading websites or launched by financial 

market companies. Consistent with the findings of Gatev et al., (2006) we show that 

simple mean reversion is not the only factor responsible for generating significant 

profits but also momentum, while we examine a group of other ‘stylized facts’ derived 

from the literature on technical analysis in all the three markets examined (see 

Menkhoff and Taylor, 2007; Marshall et al., 2008; Brajgowicz and Scaillet, 2012), such 

as that technical analysis’ profitability has shrunk over time due to informational 

efficiency, and that transaction costs do not necessarily neutralize its excess returns. 

Moreover, in cases where the predictability and excess profitability of technical analysis 

on pairs trading is significant, we try also to justify the potential reasons for the 

outperformance.  

We also consider a multiple hypothesis testing framework accounting for data 

snooping effects arising when recruiting such a big dataset whose number of variables 

(i.e., trading rules) is larger than the number of observations. Multiple hypothesis 

frameworks focusing on the estimation of adjusted p-values and developed to limit such 

occurrences are more than necessary nowadays. Classical statistical inference of single 

hypothesis is highly likely to trigger false discoveries due to the enormous amount of 

information constantly utilized by investors (Harvey, 2016). We use the false discovery 



 

 

 

79 

 

rate control (FDR) of Barras et al., (2010) as one of the most powerful and suitable data 

snooping tool for investment decisions, although there is an ongoing effort in 

constructing such frameworks over the years by a series of methodological studies (see 

White, 2000; Hansen, 2005; Romano and Wolf, 2007; Hsu et al., 2010). The FDR 

successfully identifies the significantly profitable trading rules among those achieving 

positive performance, while allowing for a small number of false rejections to guarantee 

diversification benefits against risk. 

In addition, we explore the robustness of our results by conducting a break-even 

analysis of transaction costs as well as subperiod analysis to assess the time-varying 

predictability of technical trading rules by separating our dataset into five subperiods 

based on major historical events. Break-even transaction costs exceed even conservative 

historical estimates of actual transaction costs and so do not necessarily eliminate the 

chance of generating significant profits. Subperiod analysis rejects the existence of 

monotonic downward trend in the selection of outperforming technical trading rules on 

more than half of the pairs examined over the years. Thus, a natural question arising is 

whether our results imply violation of equilibrium asset pricing and of course of the 

efficient market hypothesis. Our findings are more in favour of the Adaptive Market 

Hypothesis (Lo, 2004), in which evolutionary market dynamics create arbitrage 

opportunities periodically, leading to the selection of a greater number of significant 

rules even in recent years. 

Finally, we perform a true out-of-sample analysis, which uses each subperiod’s last 

year of daily data as the out-of-sample period, providing an extra evaluation of the time-

varying excess profitability of technical analysis on pairs trading. We compare our 

results with statistical arbitrageurs’ common strategies, which set the ‘lookback’ period 

of contrarian rules equal to the spread’s half-time of mean-reversion. Although the 

major trend of the out-of-sample performance shows a decay in excess profitability, 

portfolios of significant rules on commodity pairs can still achieve a very healthy 

Sharpe ratio 1.83 in recent years. Moreover, we create combined portfolios consisting of 

commodity, equity and foreign exchange spreads to explore the out-of-sample 

performance and diversification benefits of a pairs trader exposed in every single market 

separately as well as in all markets together. Our results represent a continuance of the 

findings of Gatev et al., (2006) and so, they uncover something about the performance 

of relative-price arbitrage activities in practice. In addition to this, they can help 
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financial economists understand the risk and return characteristics of one of hedge 

fund’s actively trading strategy and provide empirical evidence on how market 

efficiency is maintained in practice. 

 

2. Data and descriptive statistics 

 

2.1. Data and pairs formation 

Our data consists of ‘famous’ spreads either actively traded by statistical arbitrage 

investors or being frequently advertised by trading websites or launched by financial 

market companies such as the CME and ICE groups 45. We consider daily data on pairs 

employed by using the spreads between the closing prices of commodities, equity 

indices and foreign exchange rates. In total, we examine 15 pairs including four 

commodity pairs (Brent-WTI crude oil, platinum-gold, platinum-palladium and corn-

ethanol), six equity indices pairs, three European and three U.S., (FTSE 100-CAC 40, 

Euro Stoxx 50-DAX, FTSE100-FTSE250, DJIA-Russell 1000, S&P 500-Russell 2000, 

Russell 1000-Russell 2000) and five foreign exchange rate pairs (CHF-EUR, CAD-

AUD, EUR-JPY, AUD-ZAR and CAD-ZAR). We denote the foreign exchange rates 

employed as the rates between the U.S. dollar and the foreign currency (i.e., U.S. dollars 

per unit of foreign currency), while for the formulation of the equity spreads we use 

directly the equity indices instead of any corresponding ETFs, following the previous 

literature. Furthermore, for our commodity spreads we employ the continuous price 

series of each commodity’s future contracts, which represent the daily closing price of 

the most actively traded contract. This ensures that the underlying instrument should 

last longer than the observation period when analysing the performance of technical 

trading. The sample dataset for all the pairs covers the period from January 1, 1990 to 

December 12, 2016, except from the corn-ethanol, whose sample period starts from 

March 30, 2006, due to data availability. We also consider daily data on short-term 

interest rates for every currency, since they constitute a major concern for currency 

traders, due to their effect on the overall return generated from a trading strategy. We 

                                                           
45 By using the term ‘famous’ pairs, we refer to pairs, which present a sufficient liquidity in 

terms of the number of quotations, as well as they are actively traded by investors. We have 

communicated with fund managers and algorithmic traders who suggested to us the majority of 

pairs, described above, for our application. 
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used the Datastream Thomson Reuters database to acquire all the closing prices 

explained above. 

To evaluate the technical analysis in pairs trading, we need first to define every 

single spread relative to its corresponding instruments. In the meantime, it is very 

essential to tackle the issue of non-simultaneous pricing plaguing such simulations, by 

ensuring that the closing times of each leg occur at the same time. Indeed, all the 

examined commodities contracts have the same trading hours as they are listed in the 

CBOT (agriculture), NYMEX (energy and precious metals) and COMEX (precious 

metals) exchanges respectively, which constitute the CME group derivatives 

marketplace. For example, the closing times of agricultural futures are 13:20 p.m. and 

7:45 a.m., while for the energy and precious metals ones is 17:00 p.m. eastern time. We 

should mention that the rolling forward procedure from a commodity futures contract 

which is near to maturity to a new month contract in the future it is also very important 

here. We use the same rollover procedure for both the underlying commodities futures, 

which is the one offered by the Datastream software to guarantee that no issues of non-

synchronous trading exist. This procedure rollovers the old futures contract to the first 

day of the new month’s most actively traded contract. As for the European equity 

spreads, each one consists of equity indices issued by the same or different stock 

exchanges (i.e., London and Frankfurt Stock Exchange and Euronext Paris), which have 

the same actual closing times after taking into account the hour time difference. The 

same holds for each of the U.S. indices considered, which are mainly issued by NYSE. 

In addition to this, since we obtain our foreign exchange rates data from the 

WM/Reuters FX benchmarks, all of them represent the closing spot rates fixed daily at 

16:00 p.m. London time. 

There are various ways for a market participant to construct a spread depending on 

what his principal goal is in terms of investment. In our study, we pair any two assets by 

just subtracting the closing price of the one underlying leg from the other since our aim 

is mainly to capture their dominant trends using technical analysis. This means that we 

allocate an equal proportion of our wealth to each side. Thus, the formation of a pair 𝑃𝑡, 

in which we go long a risky asset 𝑃1 and short another risky asset 𝑃2 at time 𝑡, is 𝑆𝑡 =

𝑃1,𝑡 − 𝑃2,𝑡. However, in the case of commodity spreads, we must take into consideration 

the fact that both commodity futures contracts are traded at different units before we 
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start calculating the spreads and therefore we need to adjust for that46. In the cases of 

equity and exchange rate spreads it doesn’t make a great difference the order we place 

each leg during the subtraction. Despite this, we decide to employ the rule that small 

cap usually lead the large cap segments, since the value of the former tend to change 

more regularly compared to the latter indices showing a more stable pattern (see 

Simons, 2010). Thus, for all the equity spreads investigated we go long the large cap, 

while we go short the small cap indices. For the foreign exchange rate spreads, we don’t 

follow a specific rule and just calculate the difference between the spot prices of the 

underlying exchange rates in any order. 

To estimate the daily gross return (without interest rates for the currency pairs) and 

therefore the investment performance from pairs trading, we employ the formula 

𝑟𝑡 = ln (
𝑃1,𝑡

𝑃1,𝑡−1
) − ln (

𝑃2,𝑡

𝑃2,𝑡−1
)             (1) 

where 𝑟𝑡 is the daily gross return from buying the pair and holding it for one day, while 

𝑃1,𝑡 and 𝑃2,𝑡 are the spot prices of the first and second components respectively, on day 

𝑡, while 𝑃1,𝑡−1 and 𝑃2,𝑡−1 are the spot prices of the two components on day 𝑡 − 1. 

 

2.2. Statistical behaviour and descriptive statistics 

Table 1 reports the descriptive statistics of the daily returns on all spreads formed 

along with the statistical behaviour between the time series of each pair’s underlying 

legs. Regarding the statistical behaviour, we employ the fractionally cointegrated vector 

autoregressive model (FCVAR) of Johansen and Nielsen (2012) to test for cointegration 

                                                           
46 For the Brent-WTI crude oil spread or the also called “crack” spread we use the 1:1 ratio by 

definition, since both are traded in U.S. $/barrel units. For the platinum-gold as well as for the 

platinum-palladium spread we use the 2:1 ratio, since the gold and palladium futures contract 

unit is 100 troy ounces, while for the platinum contracts is 50 troy ounces. The price quotation 

for the three of them is U.S. $/troy ounce. CME group has very recently announced the launch 

of first-ever platinum-gold and platinum-palladium spread futures. However, due to data 

unavailability we need to construct these spreads on our own, as indicated above. As for the 

corn-ethanol spread, we need to consider that the corn futures are priced in U.S. cents/bushel, 

while the ethanol futures are priced in U.S. dollars/gallon. At the time of writing 1 bushel of 

corn generates approximately 2.8 gallons of ethanol. Therefore, we define a spread traded at 

U.S. cents/bushel at time 𝑡 as 𝑆𝑡 = (2.8 ∗ 𝐸𝑡 ∗ 100) − 𝐶𝑡. 
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ranking47. As we have already mentioned, cointegration is synonymous to the mean-

reversion of a pair’s spread and therefore important to perform statistical arbitrage 

techniques, since it justifies mean-reversion in the long run equilibrium. For that reason, 

we present the p-values of the likelihood ratio (LR) statistic, also called as ‘trace 

statistic’, testing for cointegrating combinations between the underlying time series, 

under the null hypothesis of zero cointegration rank48. We also report the p-values 

testing for first-order autocorrelation under the Ljung-Box Q statistics of the daily 

returns of all spreads. 

[Table 1] 

Among the four commodity pairs only the Brent-WTI crude oil yields positive 

performance, on average (0.3 basis points per day or 0.78% annually). The rest of the 

commodity pairs display a negative performance, with the corn-ethanol generating the 

most negative returns (-9.2 basis points per day or -23.8 annually). Among the equity 

spreads three out of six yield positive mean returns, with the FTSE100-FTSE250 

generating the biggest ones (1.2 basis points per day or 3.04% annually), while S&P 

500-Russell 2000 pair yields the minimum performance (-0.8 per day or -2.16% 

annually). In the case of currency spreads the CAD-ZAR performs the most on average 

(2 basis points per day or 5.04% annually) and the CHF-EUR underperforms the most (-

0.7 basis points per day or -1.76% annually). 

In terms of standard deviation of daily gross returns, commodity spreads are in 

general more volatile than equity and exchange rate spreads respectively. The most 

volatile commodity spread is the corn-ethanol (0.19%), while the least volatile is the 

platinum-gold (0.12%). The most and least volatile spreads among the equity ones are 

the FTSE100-CAC 40 (0.76%) and the DJIA-Russell 1000 (0.33%) respectively. The 

currency pairs display similar levels, with the AUD-ZAR and CAD-ZAR being 

associated with the highest standard deviations (0.89%), and the EUR-CHF with the 

lowest (0.41%).  

                                                           
47 This method is an enhanced version of the CVAR model of Johansen (1995) accommodating 

for both fractional integration and cointegration. For instance, the FCVAR includes two 

additional fractional parameters d and b denoting the fractional integration order, and the degree 

of fractional cointegration respectively. For more information see Nielsen and Johansen (2012). 
48 We also have also computed the results from the Johansen (1995) cointegration test, which 

are available upon request. 
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The Ljung-Box test for residual autocorrelation per daily gross returns indicates 

persistence in almost the half of the cases at least at 10% significance level. We 

translate this into the existence of trends for the majority of spreads considered. Indeed, 

only the return series of platinum-gold doesn’t display a significant first order 

autocorrelation among all commodity pairs. In the case of equity pairs three out of five 

(Eurostoxx 50-DAX, DJIA-Russell 1000 and Russell 1000-Russell 2000) show residual 

autocorrelation at least at 5% significance level, while among the six currency pairs 

three appear significantly first order autocorrelated, of which two (EUR-CHF, CAD-

AUD) present this property at 1% level of significance. This evidence also justifies the 

exercise of trend-following technical trading rules and the comparison of their 

performance with this of contrarian trading rules.  

Finally, the computed p-values of the trace statistic testing for cointegrating 

relationships between the two legs of a pair, reveal the rejection of the null hypothesis 

for zero rank cointegration for the vast majority of all the spreads considered. However, 

this result was somehow expected, since all these spreads are actively used for statistical 

arbitrage trading by many trading institutions. For example, all commodity spreads 

reveal at least one cointegrating relation between their corresponding commodities at 

least at 5% statistical significance level. The same holds for the equity pairs, in which 

three out of six spreads (Euro Stoxx 50-DAX, FTSE100-FTSE250 and Russell 1000-Russell 

2000) present cointegration at 5% nominal level, while the rest of them validate at least 

one rank of cointegration at 1% statistical significance level. Contrary to the above, the 

currency spreads show the weakest cointegration relations between their corresponding 

foreign currencies, compared to commodity and equity pairs. Among all currency 

spreads two, namely the CAD/USD-AUD/USD and the AUD/USD-ZAR/USD, do not 

reject the null hypothesis of zero cointegration rank, while the rest exchange rate pairs 

validate cointegration at least at 10% significance level, from which the EUR-CHF and 

the EUR-JPY show cointegration at 5% nominal level. However, we will not discard the 

two non-cointegrating pairs from our technical trading rules’ exercise since one of the 

main goals of this study is to explore whether technical analysis yields a significant 

performance on ‘popular’ spreads heavily traded by investors or advertised by trading 

platforms.49 Another reason for trading those two non-cointegrating pairs, is the 

                                                           
49 The above examined currency pairs were suggested from hedge fund managers and statistical 

arbitrageurs performing pairs trading after making contact with them. 
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empirical links between the real exchange rates of Canada, Australia and South Africa 

and the real prices of commodities that they export (see Chen and Rogoff, 2003).  The 

primary reason is that commodities form a significant component of those countries’ 

exports and so of their economies, while the considerable connection between their 

exchange rates and commodity prices potentially explain a co-movement between their 

real exchange rates. 

 

3. Technical trading rules universe 

 

Technical analysis in its qualitative and most known form incorporates mainly 

graphical tools, such as chart analysis of past prices dynamics in order to capture 

specific patterns in the data, which investors use for future predictions. However, in our 

study, we focus on its strictly quantitative form, which uses quantitative modelling of 

time series data to generate forecasts and so trading signals. This type of modelling 

exploits the excess profitability of technical trading rules constructed in an algorithmic 

framework, while employing time series of past prices, volumes, and other observables 

to define whether a buy (long), neutral (out of the market), or sell (short) signal should 

be taken in the next trade. 

We consider seven families of technical trading rules based on past price data of the 

computed pairs as they are widely used by commodities, equities and forex traders50. 

Those classes of rules are categorized in momentum/trend-following rules and 

contrarian/mea-reverting rules usually employed by pair traders and try to identify 

‘overbought/oversold levels’. The momentum/trend-following rules include: filter rules, 

whose main characteristic is to follow strong trends by taking long (short) positions 

accordingly; moving averages, attempting to ride trends and taking positions when 

crossovers between the pair and a moving average of a given length or between two 

moving averages of different lengths occur signifying a break in the trend; support and 

resistance rules, which try to identify breaches of a pair’s price through local 

maximums (minimums) triggering further price movements towards the same direction 

and leading to long (short) signals; channel breakouts similar to having time-varying 

                                                           
50 We do not apply rules utilizing volumes transactions, such as the on-balance volume averages 

(see Sullivan et al., 1999) since it is not easy to accurately observe the exact volume of a pair of 

two assets, which do not actively traded into market. 
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support and resistance levels which form a channel of fixed percentage, leading to a 

signal when pair’s price penetrates the channel from above or below. The 

contrarian/mean-reverting rules include: relative strength indicators (RSI), which 

belongs to the general family of ‘overbought/oversold’ indicators and attempt to capture 

a correction towards the opposite direction of a pair’s price extreme movement; 

Bollinger band reversals, attempting to identify overbought and oversold market levels, 

defined as a particular distance of price from its moving average of a given length in 

terms of standard deviation; Commodity channel index rules (CCI), similar to a 

combination of RSIs and Bollinger band reversals, they try to quantify the connection 

among a pair’s price, its corresponding moving average and standard deviation, 

however a specific inverse factor is used to scale the index. 

Following previous studies (Sullivan et al., 1999; Hsu et al., 2016) we consider 

numerous variations of the above technical trading rules as well as a spectrum of 

different plausible parameterizations of each variation. These possible trading rules 

consist a large universe summing up to a total of 18,412 apparent technical trading rules 

including, 1932 filter rules, 7920 moving averages, 2310 support and resistance rules, 

2250 channel breakouts, 730 relative strength indicators, 2160 Bollinger bands and 

1110 commodity channel index rules. We present the exact details of each class of 

trading rules, their variations as well as the various parameterizations examined in 

Appendix A. 

 

4. Excess returns, transaction costs and performance metrics 

 

Before we assess the performance of technical trading rules, we must first compute 

the daily excess return from buying and holding each spread, (i.e., buying the first 

underlying asset and selling the second simultaneously) for each prediction period. For 

commodity and equity spreads the calculation of their daily excess return is the daily 

gross return, as defined before, net of the risk-free rate 𝑟𝑓  

𝑟𝑡 = [ln (
𝑃1,𝑡

𝑃1,𝑡−1
) − ln (

𝑃2,𝑡

𝑃2,𝑡−1
)] − ln (1 + 𝑟𝑓)          (2) 

We use as the risk-free rate the daily effective federal funds rate, in accordance with the 

previous literature. In order to calculate the daily excess return for currency spreads we 
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follow Hsu et al., (2016) and take into account the short-term interest rates of each 

currency, in which case the excess return is defined as  

𝑟𝑡 = [ln (
𝑃1,𝑡

𝑃1,𝑡−1
) − ln (

(1+𝑖 𝑡−1)

(1+𝑖1,𝑡−1
∗ )

)] − [ln (
𝑃2,𝑡

𝑃2,𝑡−1
) − ln (

(1+𝑖 𝑡−1)

(1+𝑖2,𝑡−1
∗ )

)]        (3) 

where  𝑖 𝑡−1 and 𝑖1,𝑡−1
∗  designate the daily interest rates on U.S. dollar deposits and the 

first foreign currency deposits, respectively, while 𝑖2,𝑡−1
∗  denote the daily interest rates 

on the second foreign currency deposits on day 𝑡 − 1. Thus, the excess return consists 

of the spread between the appreciations of each of the two foreign currencies against the 

domestic currency (U.S. dollar) over the holding period, ln (
𝑃1,𝑡

𝑃1,𝑡−1
) − ln (

𝑃2,𝑡

𝑃2,𝑡−1
), less the 

difference of the interest rate carries related with borrowing one unit of domestic 

currency and lending one unit of foreign currency overnight, ln [
(1+𝑖 𝑡−1)

(1+𝑖1,𝑡−1
∗ )

] −

ln [
(1+𝑖 𝑡−1)

(1+𝑖2,𝑡−1
∗ )

]. We transform the annualized risk-free and short-term interest rates 

downloaded from Datastream, into daily rates for our application. We achieve this by 

using the formula  𝑖𝑡 = ln(1 + 𝑖𝑡
𝑎) /360. 

Now let 𝑠𝑗,𝑡−1 denote the trading signal generated from a trading rule 𝑗, 1 ≤ 𝑗 ≤  𝑙 

(where 𝑙 = 18,412) at the end of each prediction period 𝑡 − 1 (𝜏 ≤ 𝑡 ≤ 𝑇) depending 

on the information given, where 𝑠𝑗,𝑡−1 = 1, 0, 𝑜𝑟 − 1 represents a long, neutral or short 

position taken at time 𝑡. We mainly use three performance metrics throughout this 

study, the mean excess return and Sharpe ratio criteria, as well as the compounded 

annual growth rate of an investment in our out-of-sample market portfolio simulation 

(see subsection 5.3). The mean excess return is the absolute criterion of each rule’s 

returns, while the Sharpe ratio is a relative performance criterion since it represents the 

ratio of the average excess return to the total risk of the investment estimated standard 

deviation of excess returns. Practically speaking, the technical trading rules earn the 

risk-free rate in periods when a neutral signal is triggered. The mean excess return 

criterion 𝑓
𝑗,𝑡

 for the trading rule 𝑗 is given by  

𝑓
𝑗,𝑡

=
1

𝑁
∑ 𝑠𝑗,𝑡−1𝑟𝑡

𝑇
𝑡=𝑅 , 𝑗 = 1, … , 𝑙,            (4) 

where 𝑁 = 𝑇 − 𝜏 + 1 is the number of days examined. We denote as 𝜏 the start date for 

each subperiod, since some of the trading rules employ lagged values up to one year 

(252 days), which we need to take into account. Then, the Sharpe ratio criterion 

expression 𝑆𝑅𝑗  for trading rule 𝑗 at time 𝑡 is defined by 
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𝑆𝑅𝑗,𝑡 =
𝑓𝑗,𝑡

𝜎𝑗,𝑡̂
, 𝑗 = 1, … , 𝑙,             (5) 

where 𝑓
𝑗,𝑡

 and 𝜎𝑗,𝑡̂ are the mean excess return and the estimated standard deviation of 

the mean excess return respectively. Except from measuring units of mean excess 

returns per unit of risk of an investment, the Sharpe ratio is strictly connected with the 

actual t-statistic of the empirical distribution of a strategy’s returns, which places this 

metric appropriate for our multiple hypothesis testing framework (see Harvey and Liu, 

2015)51. Compound annual growth rate (CAGR) is slightly different from the 

annualized mean excess return by assuming that we do not withdraw profits or add extra 

cash for offsetting losses and thus, we hold cash into our account each time period, 

while we maintain the same leverage throughout the process (see Chan, 2017). In such a 

way, we achieve a compounded growth rate over time for every asset, in which the 

gains and losses are rolled over, similar to investing $1, which grows daily at the rate of 

daily mean excess return. 

𝐶𝐴𝐺𝑅𝑗,𝑡 = (1 + ∑ 𝑠𝑗,𝑡−1𝑟𝑡
𝑇
𝑡=𝑅 )252/(𝑇−𝑅) − 1,  𝑗 = 1, … , 𝑙         (6) 

So far, we haven’t assumed the impact of transaction costs on the technical trading 

rules’ performance over the examined spreads. In practice, these may be quite 

significant especially for statistical arbitrage traders, which take long and short positions 

on two assets simultaneously. On the other hand, estimating the effect of transaction 

costs ex post, once outperforming rules have been identified, makes it more complicated 

for an investor to foresee which outperforming rules will offset transaction costs a 

priori. A potential predictability of a selected strategy before the implementation of 

transaction costs, can be easily neutralized when those are adjusted through the 

selection process, sometimes due to the impact of frequent signals (Timmerman and 

Granger, 2004). Thus, we handle transaction costs “endogenously” to the selection 

process. In particular, we subtract the transaction costs every time a buy or sell signal is 

triggered based on the prediction of the corresponding spread. This comes down to 

taking into consideration the one-way transaction costs of each component separately.  

                                                           
51 The t-statistic of a given sample of historical returns (𝑟1, 𝑟2, … 𝑟𝑡), testing the null hypothesis 

that the average excess return is zero, is usually defined as 𝑡 =
𝜇̂

𝜎̂ √𝑇⁄
, while the corresponding 

Sharpe ratio is given by the formula 𝑆𝑅 =
𝜇̂

𝜎̂
 . 
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Following the study of Locke and Venkatesh (1997), we consider 3.3 basis points 

one-way transaction costs for a position taken on each of the commodity futures 

employed to construct the commodity spreads. Furthermore, we assume that an investor 

funds their position with 100% equity rather than using a margin, since we measure 

daily returns as the log of the difference in price relatives (Miffre and Rallis, 2007; 

Marshall et al., 2008). After speaking with several brokerage firms, we assume 5 basis 

points one-way transaction costs for the corresponding European equity indices and 2 

basis points for the U.S. ones, which are the costs charged for institutional investors. 

Trading exchange rates doesn’t incorporate any fixed amount of brokerage costs such in 

equities or commodities markets. However, the only transaction costs investors facing, 

arise from the bid-ask spread in spot exchange rates and interest rates. Following Neely 

and Weller (2013) and Hsu et al., (2016), we calculate the one-way transaction costs of 

each currency from their corresponding bid-ask spread in forward exchange rates on any 

particular day. Specifically, we use the one third of the quoted one-month forward rate 

bid-ask spread in each currency, since several studies have realized that posted bid-ask 

spreads are usually larger than the rates that the effective ones are actually traded (see 

Lyons, 2001; Neely and Weller 2003). This results to average one-way transaction costs 

of 2.9 basis points for developed countries and 17.4 basis points for emerging countries 

(i.e., South Africa). 

 

5. The issue of data snooping bias 

 

5.1. Definition and existing data snooping methods  

The investigation of significant excess profitability of such a sizeable universe of 

technical trading rules involves the control of data snooping bias. The also called data 

mining issue has nowadays become even more urgent because of the severe usage of 

large datasets by investors and researchers, leading to promising results sometimes even 

by chance. We deem such data replication costly since it is quite easy to incorrectly 

discover a profitable trading rule. Classical statistical inference focusing on single 

hypothesis testing for each rule, without paying attention to the performance of the rest 

strategies, can lead to false rejections or the so called, Type I error due to extensive 

specification search. Multiple hypothesis frameworks developed to limit such 

occurrences are more than necessary nowadays. Recently, Harvey (2017) raises this 
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issue as the p-hacking phenomenon (i.e. frequent falsely significant p-values) and 

explains that new, adjusted p-values reflecting genuine significance for an investment 

strategy should be defined. 

Many efforts have been made so far to minimize the above undesirable consequences 

and we broadly divide them into two different categories: the first one controls the 

family-wise error rate (FWER), while the second one controls the false discovery rate 

(FDR). Their difference is mainly intuitive; the FDR calculates the false rejections in 

terms of proportion and it is defined as the proportion of false discoveries among the 

total number of rejections. On the other hand, the FWER estimates the probability of 

making at least one false rejection, which is more conservative by definition, especially 

when the number of hypotheses is large. 

A great number of the existing studies exercise their proposed data snooping methods 

mainly on technical trading rules performance (see among others Sullivan et al., 1999; 

Romano and Wolf, 2005; Hansen, 2005; Hsu et al., 2010; Bajgrowicz and Scaillet, 

2012). Large universes of technical trading rules provide a breeding ground to test the 

power of multiple hypothesis methods, since it is quite likely to discover a rule working 

well, even by chance, especially within the same classes of rules. 

White (2000) introduces the so called ‘bootstrap reality check’ (BRC), which focuses 

on the statistical significance of the ‘best’ performing strategy, drawn from l number of 

strategies, while contemporaneously tests whether the significance of all strategies is 

less than the nominal significance level α. Thus, the null hypothesis of the BRC test in a 

joint hypothesis framework is 

𝐻0𝑗 : max
𝑗=1,..𝑙

𝜑𝑗 ≤ 0,                     (7) 

where 𝜑𝑗 is the performance measure of the jth trading rule, no better than the 

benchmark. An important innovation of this procedure is the estimation for the first time 

of the empirical distribution of the reality check statistic through bootstrapping.  

Sullivan et al., (1999) also use the BRC test, to select significant technical trading rules, 

however we believe that it is a rather conservative approach since it concentrates only on 

the ‘best’ performing rule, and not to all rules showing positive performance. 

Focusing also to the maximal, trading rule, Hansen (2005) proposes the superior 

predictive ability (SPA) test, to correct drawbacks of the BRC test such as the influence 

of poor and inconsistent strategies, especially when the l is quite large, which leads to 
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low power. In this way, the SPA test employs studentized test statistics, while sets less 

weights to the test statistics of rules showing poor performance52. Both White’s (2000) 

BRC test and the Hansen’s (SPA) test use the Bonferroni correction method, a special 

case of the FWER, for multiple hypothesis testing, in which the individual null 

hypotheses are rejected for each p-value less than a significance level of 𝛼 𝑙⁄  in a single-

step procedure.  

Investors on the other hand are keen on discovering all the statistically significant 

trading rules showing positive performance instead of investing their wealth in the 

maximal one only, involving model risk. Incorporating this assumption, Romano and 

Wolf (2005) suggest their stepwise multiple testing (StepM) method as an improvement 

to the single-step BRC testing method of White (2000). They actually embrace the Holm 

(1979) procedure following a stepwise structure, in which individual p-values are placed 

in an acceding order, after bootstrapping the empirical distribution of each rule, similar 

to White (2000). During the first step, they compare each p-value with a nominal 

significance level, leading to selecting the significant rules. In the second step, they 

replicate the same mechanism after excluding the statistically significant rules of the 

first step. This helps to identify more significant trading rules likely appeared 

insignificant during the first step due to correlation and dependence among the trading 

rules. They repeat the whole procedure until no significant trading rule is identified. In a 

similar manner, Hsu et al., (2010) develop a stepwise extension of the SPA test of 

Hansen (2005) in order to minimize the influence of poor performers on the power of 

the test. 

Although the above stepwise approaches are quite powerful as multiple hypothesis 

testing tools, their main drawback is that they do not select further rules once they have 

detected a rule whose performance is due to luck. This may help in effectively 

controlling the Type I error on the one hand, but it may increase the probability of a 

Type II error (i.e. missing true discoveries) on the other. To achieve a good balance 

between those two types of errors, Romano and Wolf (2007) developed a generalized 

methodology, controlling for the stringent FWER criterion, while allowing for more 

than one false rejections to happen. Their goal is to reject at least a specific number of 

                                                           
52 A studentized test statistic refers to a simple test statistic divided by the consistent estimator 

of its standard deviation. This helps one to compare objects in the same units of standard 

deviation. 
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false hypotheses to have a good tradeoff between Type I and II errors, as well as 

selecting more significant rules.  

While in the case of FWER numerous developments have been made in the literature 

to achieve the above tradeoff, the FDR tolerates by definition a certain proportion of 

false rejections, so as to identify every statistically significant outperforming rule, while 

having a good balance in controlling Type I and Type II errors (see also Abramovich et 

al., 2006). This feature makes FDR a more powerful multiple hypothesis testing tool 

than the other conservative FWER methods. In financial literature, Barras et al., (2010) 

propose a modified FDR+/- version based on Storey’s (2004) FDR approach, to discover 

significant alphas in mutual fund performance. This modified version allows for the first 

time the separate quantification of the proportion of false discoveries among trading 

rules performing better or worse than the benchmark. Bajgrowicz and Scaillet (2012) 

employ the FDR+/- approach in the context of identifying outperforming technical 

trading rules on the DJIA index, while accounting for data snooping. Their findings 

confirm the power of the specific FDR approach over the conservative FWER method in 

detecting more significant technical trading rules, while it provides a reasonable balance 

between true positives and erroneous discoveries in diversifying against model risk. 

Another comparative advantage of the FDR+/- approach against the FWER methods, is 

the ability to find the outperforming rules, even if the performance of the best rule in the 

sample is due to luck. In practice, it is quite regular for the best rule, in terms of the 

highest excess returns, to possess no statistically significant profitability. For the above 

reasons, we adopt this FDR test as the most suitable multiple hypothesis testing 

specification in the context of controlling the data snooping effects arising from the 

application of our large technical trading rules’ universe in pairs trading. In the next 

subsections, we briefly describe the FDR+/- multiple hypothesis testing setup as well as 

its usage as a portfolio construction tool. 

 

5.2. Multiple hypothesis testing framework and the FDR methodology 

Elaborating on the FDR approach as a multiple hypothesis testing procedure, in what 

follows we need first to define the null hypothesis, 𝐻0, according to a test statistic, 𝜑. 

We use the mean return and the Sharpe ratio criteria as the test statistics for conducting 

our multiple hypothesis testing. The test statistic for each rule j defines the setup under 

the null hypothesis (i.e., 𝐻0𝑗: 𝜑𝑗 = 0), in which the rule j does not outperform the 
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benchmark53. On the contrary, the alternative hypothesis assumes the presence of 

abnormal performance, positive or negative (i.e., 𝐻𝐴𝑗: 𝜑𝑗 > 0 𝑜𝑟 𝜑𝑗 < 0). The FDR+/-  

method requires p-values, 𝑝𝑗 for 1 ≤ 𝑗 ≤ 𝑙, from a two-tailed test, since the main 

parameter we need to estimate is the proportion of rules with no abnormal performance, 

𝜋0, in the total universe, satisfying the 𝐻0𝑗. However, since we are mainly interested in 

identifying significantly outperforming rules, we define a technical trading rule j as 

significantly positive, if it displays abnormal performance (i.e., reject 𝐻0𝑗) and its 

performance metric is positive (i.e., 𝜑𝑗 > 0). 

The initial FDR version of Benjamini and Hochberg (1995) adopts independence 

across multiple hypotheses, while later, studies by Benjamini and Yekuteli (2001), 

Storey (2002), and Storey et al., (2004) prove that the FDR holds also under “weak 

dependence” conditions when the number of hypotheses is very large. Also, Bajgrowicz 

and Scaillet (2012) explain that technical trading being built likewise to our universe 

satisfy this feature, since the rules are dependent in small blocks, within the same family 

(e.g. filter rules), but essentially independent across different families. Thus, the more 

“local” the dependence, the more likely is to meet the weak dependence principle. 

The FDR concentrates on estimating the expected value of the ratio of erroneous 

selections over the rules showing significant performance. Specifically, define the 

FDR+/- as the expected value of the proportion of false selections, 𝐹+/−, among the 

significant rules, 𝑅+/− (positive or negative). The latter are just the rules that perform 

either better or worse than the benchmark while at the same time their p-values reject the 

𝐻0𝑗 under some nominal significance level α. Thus, the estimate of FDR+/-  is given by 

𝐹𝐷𝑅̂+ −⁄ =
𝐹+/−

𝑅+/−,

̂
, where  𝐹̂+ −⁄  and 𝑅̂+ −⁄  are the estimators of 𝐹+/−and 𝑅+/−, 

respectively. For example, an FDR+/- 100% conveys that, among both the outperforming 

and underperforming trading strategies, no rule generates genuine performance on 

average and vice versa. 

After acquiring all the individual p-values, using resampling procedures relevant to 

the previous literature, such as the stationary bootstrap of Politis and Romano (1994), 

the specific formula for the estimate of 𝐹𝐷𝑅+/−̂  under a threshold 𝛾 is as follows 

                                                           
53 Since we use the excess return and Sharpe ratio as the performance metrics, our benchmark is 

by definition the “risk-free” rate, describing an investor being out of the market. 
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𝐹𝐷𝑅+/−̂ (𝛾) = 𝐹+/−̂ 𝑅+/−̂⁄ =
𝜋0̂𝑙𝛾

#{𝑝𝑗≤𝛾;  𝑗=1,…,𝑙}
,           (8) 

where 𝑙 is the entire universe of technical trading rules, 𝛾 is the p-value cut-off and 𝜋0̂ =

#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
 is an estimator of the proportion of rules that show no abnormal 

performance. The estimation of 𝜋0̂ requires us to define the tuning parameter λ by 

visually examining the histogram of all p-values. 

Focusing now on the significantly positive technical trading rules, we can compute a 

separate estimator for the 𝐹𝐷𝑅+. This holds under the assumption that the false 

discoveries spread evenly between technical trading rules with positive and negative 

performance and with equal tail significance 𝛾 2⁄ , due to symmetry assumptions. Thus, 

the estimator is 

𝐹𝐷𝑅+̂(𝛾) = 𝐹̂+ 𝑅̂+⁄ =
1/2𝜋0̂𝑙𝛾

#{𝑝𝑗≤𝛾,𝜑𝑗>0;  𝑗=1,…,𝑙}
,           (9) 

where 𝑅̂+is now the number of trading rules chosen as significantly positive, while 

among them 𝐹̂+denotes those rules which have been selected falsely. Similarly, we can 

compute a separate estimator of the 𝐹𝐷𝑅− among the rules generating negative returns. 

However, this is out of the scopus of this paper.  

Finally, we can also extrapolate the proportion of trading rules displaying nonzero 

performance as 𝜋𝛢 = 1 − 𝜋0.  This may be useful for an investor who wants to divide 

𝜋𝛢 into the proportions of positive, 𝜋𝐴
+, and negative, 𝜋𝐴

−, rules in the population. 

Nevertheless, the critical part of the FDR method is to identify the right p-value cutoff γ 

by controlling the FDR+ at a predetermined level (i.e. 10%) in order to isolate the 

genuinely outperforming rules from the total population. We describe the precise steps 

of achieving this, the estimation of λ and so of  𝜋0̂, as well as the computation of 𝜋𝐴
+ and 

𝜋𝐴
− in the Appendix B. 

 

 5.3. Portfolio construction 

We construct the portfolios of rules by selecting them in accordance with the FDR+. 

In particular, we set the 𝐹𝐷𝑅+̂ equal to 10%, as a good trade-off between truly 

outperforming technical trading rules and wrongly chosen ones (Bajgrowicz and Scaillet 

2012). Thus, we built a 10%-FDR+ portfolio of trading rules for each pair, which means 

that 90% of the total number of the portfolio’s rules, significantly outperform the 

benchmark. We pool the signals of the chosen rules with equal weight, similarly to a 
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forecast averaging technique. We do not attribute more weight to more effective rules 

since this would result in decreasing the FDR+ portfolios below the desired level, similar 

to selecting fewer strategies. We finally treat the neutral signals as totally liquidating our 

positions and do not invest a proportion of wealth, corresponding to them, at the “risk-

free” rate. This assumption helps us to measure the true performance of the FDR 

portfolios.  

 

 

6. The full-sample performance of technical trading rules 

 

We try now to measure the empirical predictability of technical analysis on pairs 

trading, based on our full sample of 25-year period. In doing so, we need first to 

examine the statistical significance of such predictability by using the FDR approach 

based on the performance metrics of every technical trading rule described in the 

previous sections. Table 2 provides evidence not only for the highest performance 

metric and its corresponding p-value generated by the best among all rules, but also 

highlights the power of the FDR approach by reporting the number of predictive rules 

yielding statistically significant positive performance. 

[Table 2] 

Firstly, we present the findings based on the mean excess returns in panel A, which 

conveys that the ability of technical trading rules to forecast the examined pairs is 

limited in general in sample. Only three out of fifteen pairs are predictable at 1% 

significance level (i.e., the number of pairs with one asterisk) based on the mean excess 

returns’ performance, while two pairs are also predictable at 5% and 10% nominal level 

respectively.  

Of these, the three pairs belong to the commodity market, which leads to three out of 

four commodity pairs (i.e., 66%) being predictable, for instance the Brent-WTI, the 

platinum-gold and the corn-ethanol. The Brent-WTI seems to be the most predictable 

pair not only for the commodity market but also for the rest of the markets examined, 

based on the mean excess return criterion. The FDR method identifies 442 significantly 

predictive rules for this commodity pair, while in terms of the economic magnitude of 

this predictability, the best-performing rule yields an outstanding mean excess return of 
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17.6% per annum at the 1% level of statistical significance. In the corn-ethanol case, the 

second best most predictive pair, there exist 12 significantly predictive rules, from 

which the best-performing rule also generates a very promising 8.57% annualized mean 

excess return, while the platinum-gold is predictable by one rule only yielding a 2.03% 

annualized mean excess return. 

On the other hand, the evidence for the technical analysis’ forecasting ability, based 

on mean excess returns, drops for the constructed pairs in equity and foreign exchange 

markets. Only one out of the six equity pairs (i.e., 16%) is predictable at the 1% 

significance level, while the predictability comes mainly from the best-performing 

technical trading rule, generating a significant annual return of 1.70% (S&P 500-Russell 

2000). We get an analogous picture for technical rules’ predictiveness on foreign 

exchange pairs. In particular, there is also one out of five exchange rate pairs (i.e., 

20%), which is predictable this time at the 10% level. In addition to this, only the best 

rule is able of providing an excess profitability of 1.41% (JPY/USD-EUR/USD) per 

annum. 

Panel B now reports the predictability and excess profitability of technical analysis 

based on the Sharpe ratio performance metric. Specifically, we allow for risk adjusted 

returns in terms of volatility and explore whether technical trading rules can yield 

significantly positive annualized Sharpe ratios on the investigated pairs. Opposite to the 

results associated with the mean excess returns, technical analysis predictability appears 

significantly strong in pairs trading when we adjust for risk. All commodity pairs are 

significantly profitable under the Sharpe ratio criterion mainly at the 1% significance 

level, except from the corn-ethanol whose profitability is significant at the 5% level. 

Again, the most predictable pair is the Brent-WTI with 563 trading rules producing 

positive performance, compared to twelve for the gold-platinum, ten for the platinum-

palladium and six for the corn-ethanol. The annualized Sharpe ratios for the statistically 

significant, best-performing rules for commodity pairs range from 0.45 (corn-ethanol) 

to a very healthy 1.20 (Brent-WTI). 

In the case of the six equity pairs, five are significantly profitable after employing the 

technical trading rules at least at the 10% level, of which one is profitable at the 5% 

level and two at the 1% level. Although, the maximum Sharpe ratio of 0.54% is 

achieved by the best-performing among the nine outperforming rules of S&P 500-

Russell 2000, the FTSE 100-CAC 40 is the most predictable pair under this criterion 
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with 21 significantly outperforming technical trading rules and a maximum Sharpe ratio 

of 0.31. The rest top Sharpe ratios for each pair range from 0.31 to 0.45, while all of 

them reveal more than one predictive trading rule. 

Among the five exchange rate pairs, four generate genuinely positive Sharpe ratios 

using technical analysis, of which two are statistically significant at the 10% level and 

two at the 1% level. Similar to the technical analysis performance on equity pairs, the 

top generated Sharpe ratio in not synonymous with the strongest predictability of an 

exchange rate pair. For example, the CAD/USD-ZAR/USD generates the top Sharpe 

ratio of 0.50% with twelve outperforming trading rules, while the JPY/USD-EUR/USD 

is the most predictable pair with sixteen outperforming rules but the Sharpe ratio of the 

best one is only 0.34%. 

In overall terms, Table 2 reveals a considerable difference in selecting a trading rule 

depending on the significant mean excess return in contrast with the Sharpe ratio. 

Especially for equity and exchange rate pairs, we can hardly find any predictive rules 

based on the mean excess return criterion even with the powerful FDR method. 

However, when we adjust for risk the picture is totally different and we can identify 

numerous predictive rules amongst the total universe for almost every single pair. There 

are of course cases (i.e., FTSE 100-FTSE 250 and AUD/USD-ZAR/USD), in which we 

cannot select any significantly predictive trading rules with either the mean excess 

return or the Sharpe ratio metric. Moreover, there is only one case, such as the corn-

ethanol pair, in which we observe the number of predictive rules decreasing after taking 

risk into consideration.  

Another interesting investigation, and one of the main objectives of this study, is to 

pinpoint which technical trading rules are the best-performing for each pair according to 

our both criteria and especially the families of rules which concentrate the lion’s share 

on the number significantly predictive rules. Table 2 provides us with the relevant 

information about the best-performing trading rules for commodity, equity and 

exchange rate pairs. In particular, the majority of best-performing rules on commodity 

pairs belong to two mean-reverting families, for instance the relative strength indicators 

and Bollinger bands. Using the mean excess return as our criterion, the three cases that 

generate significant returns reveal three different rules as best-performing, namely a 

Bollinger band, a relative strength indicator and a support and resistance rule. 

Considering on the other hand the Sharpe ratio criterion all the best-performing rules 
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belong either to Bollinger band rules or relative strength indicators across all 

commodities spreads. 

For equity spreads, the highest performing rule, which produces the significant mean 

excess return for one case only, belong to the class of Bollinger bands, while a support 

and resistance rule assuming a holding period is the best-performing rule in the single 

case, in which a significant mean excess return is generated among the currency 

spreads. When we use the Sharpe ratio metric among all equity pairs, three cases 

indicate commodity channel indices as highest performing rules, while one is a channel 

breakout rule and one is a Bollinger band rule. Among foreign exchange rate pairs, there 

is a diversity on the rules generating significant Sharpe ratios. For example, we observe 

a moving average rule, a support and resistance rule, a channel breakout, a commodity 

channel index and a filter rule as best-performing. 

In overall, there is a penchant for mean-reverting rules to be best-performing and 

especially for those assuming a holding period c across all spreads examined. This was 

somehow anticipated since we trade pairs which cointegrate and mean-reversion is 

imminent in the long-run. 

Table 3 provide us now with more in-depth information about the families, in which 

the total number of significantly predictive rules of each pair belong in percentage 

terms. Using a powerful multiple hypothesis framework, such as the FDR, allow us to 

identify the families of all rules performing significantly best on each spread, giving a 

clearer picture for the patterns existing in each spread alone. We mostly focus on the 

families of rules producing significant Sharpe ratios under which we are able to identify 

a biggest number of predictive rules compared to those based on the mean excess 

returns. We however display the percentages of the latter metric in parenthesis. 

[Table 3] 

For commodity spreads, in the three out of four cases generating significant mean 

excess returns, the majority of predictive rules belong to mean-reverting rules except 

from the corn-ethanol case, in which the highest percentage of predictive rules is 

attributed to the support and resistance family. Moreover, when we employ the Sharpe 

ratio criterion we observe two cases (i.e., platinum-gold and platinum-palladium), in 

which the highest percentages of predictive rules concentrate on trend-following rules, 

for example the channel breakouts and support and resistance rules, while for the rest of 
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the cases, contrarian rules and especially the Bollinger bands remain dominant in terms 

of significance. 

Although there is only one case generating a significant mean excess return among 

equity pairs, this doesn’t also happen for the significant rules selected under the Sharpe 

ratio metrics, which needs further investigation. In four out of six spreads, contrarian 

technical trading rules seem to dominate in terms of predictability, substantially those 

belonging to the commodity channel indices. However, there are two occasions, namely 

the FTSE100-CAC 40 and Euro Stoxx 50-DAX, in which the predictability of technical 

trading rules is mostly attributed to momentum rules, even though their best-performing 

rules exist in the Bollinger bands family. For instance, channel breakouts appear 

dominant in the first case, while channel breakouts, moving averages and support and 

resistance rules concentrate the highest percentages in the second. 

The above findings are even more profound for currency spreads. For the majority of 

the cases (four out of five), momentum rules have the lion’s share among the significant 

rules, with moving averages and support and resistance concentrating the highest 

percentages, while filter rules and channel breakouts having the rest. There are also 

cases (i.e. CHF-EUR and EUR-JPY), in which no mean-reverting rules exists among 

the significant ones.  

 

7. Robustness checks 

 

7.1. Break-even transaction costs 

So far, we have reported the results of technical trading rules performance by 

handling transaction costs (brokerage fees and forward rate bid-ask spreads) as 

endogenous to the selection process. Moving one step forward and following previous 

studies, such as those of Bessembinder and Chan (1998), Neely and Weller (2013) and 

Bajgrowicz and Scaillet (2012), we try to identify the break-even transaction costs of 

the most significant technical trading rule for each corresponding pair. Typically, one-

way break-even transaction costs represent the level of transaction costs that neutralize 

the profits generated by a trading rule and so minimize the excess profitability exactly to 

zero. Thus, we compute the break-even transaction costs by increasing them up to the 

level that the most predictive trading rule is not able to generate positive performance 

under the FDR framework. This approach tackles the exogeneity problem of transaction 
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costs, described by Bajgrowicz and Scaillet (2012), by deriving ex ante break-even 

transaction costs computed endogenously. The overall procedure helps us to identify 

level of robustness of the results generated in the previous section by comparing the 

difference of the break-even transaction costs with the actual transaction costs we 

consider. The greater the difference the more robust the performance of a technical 

trading rule is deemed.  

Table 4 displays the break-even transaction costs as well as the actual one-way 

transaction costs employed in our study (in basis points). We also report the number of 

trades for the most significant trading rules. The first column corresponds to the actual 

transaction costs used for each pair, i.e. brokerage fees for commodity and equity pairs 

as well as the mean of estimated forward rate bid-ask spread for currency pairs. The 

next four columns relate to the one-way break-even transaction costs, as described 

above, and the number of trades triggered for the best significant technical trading rule 

selected under the mean excess return and the Sharpe ratio criterion respectively, over 

the full sample period. 

[Table 4] 

In terms of trading activity, the significant mean excess return-selected rules generate 

a considerably larger number of trades compared to those of the significant rules chosen 

under the Sharpe ratio metric. For instance, in the case of mean excess return criterion 

for commodity pairs the number of trades triggered span from 291 (platinum-gold) to 

2432 (Brent-WTI), while for the rules selected under the Sharpe ratio metric it spans 

from 3 (corn-ethanol) to 434 (Brent-WTI). This phenomenon becomes more intense 

when looking at the equity or the exchange rate pairs. The nature of Sharpe ratio to 

capture the average excess return per unit of total risk is probably the reason of 

choosing rules triggering less trades as best significant, aiming to minimize the total risk 

of the investment. Moreover, the trading rules of each three markets examined by both 

the mean excess return and Sharpe ratio criterion split into three different groups. 

Commodity pairs’ significant rules tend to trade on a higher frequency, while equity and 

currency pairs’ rules trade on medium and low frequency respectively, on average.  

However, given that we build our analysis on daily data covering a 25-year period 

(January 1990 to December 2016), which corresponds to a total of 7045 trading days 

(except from the corn-ethanol pair), the overall trading activity denotes that the genuine 

trading rules are quite prudent in overall. This picture stems from treating the 
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transaction costs endogenously to the selection process and so rules generating less 

signals are chosen. In other words, a considerable amount of transaction costs can offset 

the performance of trading rules triggering more frequent signals.     

Break-even transaction costs on the other hand, surpass by far the actual transaction 

costs in most cases, and especially when we consider the Sharpe-ratio-selected rules, 

since their number of trades is quite small compared to the full sample trading days. For 

instance, the break-even transaction costs of the best-performing rules selected by mean 

excess returns for commodity pairs range from 24 (corn-ethanol) to 26 (platinum-gold), 

while for the corresponding Sharpe ratio-selected ones range from 25 (gold-platinum) to 

552 (corn-ethanol) basis points. It is also worth to mention that, the commodity pairs’ 

rules achieve the highest break-even transaction costs on average, with second and third 

best those of foreign exchange and equity pairs’ rules respectively. Despite this there are 

quite few cases (e.g. JPY/USD-EUR/USD), in which the break-even transaction costs of 

significant mean excess return-selected rules are slightly above the actual transaction 

costs or less than ten basis points. In general, we are aware that it is difficult to measure 

the transaction costs precisely since they have declined over time. Nevertheless, the 

break-even transaction costs displayed in Table 4 exceed even conservative (high) 

historical estimates of actual transaction costs on average, for example Allen and 

Karjalainen (1999) and Ready (2002) use transaction costs ranging from 10 to 25 basis 

points to trade U.S. stock indices. Thus, it is noteworthy that technical predictability can 

be transformed to excess profitability given a fair level of transaction cost in pairs 

trading at least in a “backtesting” framework of genuinely selected rules under the FDR 

method. This robustness check also highlights that transaction costs do not necessarily 

eradicate the possibility of yielding significant profits on pairs trading using technical 

analysis.  

 

7.2. Subperiod analysis 

In this subsection we focus on shorter periods of time in order to assess the time-

varying predictability of technical trading rules on our corresponding pairs. Previous 

empirical studies on the performance of technical analysis reveal a considerable decay 

in the excess profitability and the evolution of predictability over the recent years as a 

sign of informational efficiency improvement across investors. For example, Sullivan et 

al. (1999) and Bajgrowicz and Scaillet (2012) provide relevant evidence from equities 
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markets, Menkhoff and Taylor (2007) and Neely et al., (2009) express lower 

profitability of technical analysis overtime in foreign exchange market, while Marshall 

et al., (2008) come to similar conclusions in commodities market. Moreover, Gatev et 

al., (2006) evidence lower profits in stock market pairs trading during more recent 

periods as a potential outcome of increased hedge fund activity. Our 25-year historical 

dataset allow us to revisit the evolution of predictability of technical trading rules, this 

time on pairs traded in different markets. 

We separate the whole sample into five subperiods: 1991-1996, 1997-2001, 2002-

2007, 2008-2011 and 2012-2016. (Although, our sample starts from 1990, this year is 

not included in our first subsample since we require data back to one year to generate 

some of the trading rules). Despite the fact that the above subperiods may not have the 

same size, they are closely related to major historical events for all markets considered, 

for example the Maastricht Treaty in 1992, the East Asian currency crisis in 1997, the 

“dotcom” bubble in 1999-2000 and the upcoming 2002 credit crunch, the appearance of 

euro in 2002 and the 2003-2007 energy crisis, the global financial crisis of 2008 and 

finally the recent crude oil downturn in 2014. 

Table 5 presents the numbers of significant rules in terms of predictability and after 

controlling for data snooping bias. We carry out the FDR procedure under the Sharpe 

ratio criterion in every subperiod and for every pair separately. For the rest of the paper 

we will mostly concentrate on the Shape ratio as our t-statistic for the multiple 

hypothesis testing. The reason behind this, is the Sharpe ratio’s strong linkage and 

equivalence with the true t-statistic testing for the null hypothesis, compared to the 

excess return (see Harvey and Liu, 2015; for details).  This equivalence explains the use 

of Sharpe ratio as a more suitable investment attractiveness metric. 

[Table 5] 

In the first panel of the table, we notice that technical analysis is able to predict the 

commodities spreads, almost across all subperiods. However, the number of significant 

rules differs from period to period. Except from the Brent-WTI crude oil case, which 

seems to be consistent with the findings of Marshall et al., (2008), and so highlights the 

decay on rules predictability in more recent decades, on the other hand this is not the 

case for the rest of commodities spreads. The overall picture indicates that technical 

predictability seems also strong during the more recent subperiods and for specific 
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spreads. For instance, the platinum-gold and corn-ethanol pairs are more predictable 

with technical analysis as we move towards the last year of our dataset, compared to the 

earlier years. There is also the case of platinum-palladium, in which we observe a more 

stable performance of technical trading rules over all the examined subperiods. The 

picture seems even more diverse for the equities pairs in the second panel. For all the 

pairs considered, there are times of considerable predictability, when the number of 

significant rules is larger, and times of weak performance, without revealing a specific 

pattern.  Only in the FTSE100-FTSE250 spread we can detect an evolutionary pattern in 

technical analysis predictability as we move towards the last two subperiods. Thus, 

previous evidence as those described by Brock et al., (1992), Sullivan et al., (1999) and 

Bajgrowicz and Scaillet (2012) are not consistent with those of equities on pairs trading. 

Finally, we remark a very similar picture in exchange rates case, however in pairs such 

as the CAD/USD-ZAR/USD and the AUD/USD-ZAR/USD the number or predictable 

rules is quite small, sometimes zero, over the majority of subperiods. The reason behind 

the low performance of technical analysis in these specific exchange rate pairs may be 

the large amount of transaction costs used, especially those for ZAR/USD currency. In 

overall, the commodities pairs appear to be more predictable using the technical trading 

rules than both the equities and exchange rate pairs across all the subperiods. The 

second best predictable pairs are those of the equities market. 

The most important finding of Table 5 lies on the fact that the predictability of 

technical analysis on pairs trading has different characteristics than on single assets. We 

show that mainly there is no uniformly monotonic downward trend in the performance 

of technical trading rules on pairs. As we mention above, this is opposite to the findings 

of other relevant studies focusing on single commodities, equity indices and foreign 

exchange markets. The evidence above generally supports the Adaptive Markets 

Hypothesis (Lo, 2004) instead of the Efficient Market Hypothesis, according to which 

evolutionary market dynamics create arbitrage opportunities periodically, when more 

significant rules are generated.  Nevertheless, since model predictability is not always 

synonymous with excess profitability, we investigate the validity of the Adaptive 

Market Hypothesis in our out-of-sample analysis section in a realistic simulation. 

Finally, the subperiod analysis exercise also emphasize the powerfulness and flexibility 

of FDR method in selecting significant rules even in short periods of time compared to 

previous approaches. 
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Fig. 1 is a scatterplot of each spread’s predictive rules against their evolution across 

every subperiod. Specifically, it provides information on the decomposition of each of 

the FDR portfolios of predictive rules into their corresponding families across all 

spreads through time. 

[Figure 1] 

We notice a specific pattern in the selection of significant trading rules, which 

remains the same almost across every subperiod. Interestingly, this pattern involves a 

large concentration of momentum rules, such as support and resistance, channel 

breakouts and filter rules, except from mean-reverting ones. In fact, the latter ones 

consist a smaller percentage of the total number of predictive rules, despite the fact that 

the best-performing rules of each spread belong in these families most of the times. The 

Fig.1 also validates the decline of the total number of significantly predictive rules as 

we reach the last subperiod.  

For instance, support and resistance, channel breakouts and filter rules appear to 

dominate in the excess profitability of pairs during the first subperiod. In the two 

following periods, the overall picture seems the same, however as we approach towards 

their end (i.e., 2001 and 2007) the Bollinger bands and commodity channel indices gain 

more ground in the predictability of the examined pairs, a feature which also appears 

during the last subperiod (i.e., 2012-2016). On the other hand, we can hardly find any 

contrarian technical trading rules in the fourth subperiod (2008-2011). Another 

important finding provided by the figure above, is the very sporadic appearance of 

moving averages among the significant outperforming rules across all spreads and 

subperiods. 

 

8. Out-of-sample analysis 

 

8.1. Out-of-sample performance for each pair 

So far, we have concentrated our analysis only on in sample (IS) performance which 

is mostly based on backtesting procedures, which emphasize on the predictive ability of 

technical trading rules. Empirical studies (see, Brajgowicz and Scaillet, 2012; Harvey et 

al., 2016; Hsu et al., 2016, among others) employ also an out-of-sample (OOS) analysis 

to further address the issue of data snooping, as well as to economically evaluate the 
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performance of a portfolio of rules, selected ex ante, likewise institutional investors 

would have done in practice in an upcoming period. However, OOS forecast has several 

constraints despite its universal acceptance. In fact, there is no genuine OOS analysis 

using historical data, since we already know what really happened in the economy (see 

Harvey and Liu, 2015) and even if this exists, Mclean and Pontiff (2016) demonstrate 

that OOS return predictability declines dramatically during the post-publication period 

of a study. Nevertheless, it remains a robust approach to assess the performance 

persistence, and so controlling for data snooping, of technical trading rules chosen 

under a multiple hypothesis testing method, such as the FDR, in the OOS period. 

Despite that are aware it is not always consistent with genuine profitability. 

Another important issue with the OOS estimation raised by Harvey and Liu (2015) is 

the data splitting in in-sample and out-of-sample intervals. This estimation procedure 

usually comes down to a tradeoff between type I (false discoveries) and type II errors 

(missed discoveries), which is closely related to the testing power of these periods. In 

particular, the shorter the in-sample dataset the greater the chance of missing true 

discoveries (type II error) and vice versa.  For instance, a 90-10 split of the data leads to 

an increase of type I error, while similarly a 50-50 split leads to an increase of II error. 

Although, multiple hypothesis testing frameworks, such as the FDR help to resolve the 

above issue, we adopt a 70-30 split for the IS and OOS intervals respectively to achieve 

a good balance between those two type of errors.  

We therefore accommodate an OOS investment performance by exercising the 

specific split in our dataset, while the FDR procedure is employed during the IS period 

for each pair in order to select the technical trading rules for evaluation in OOS. 

Specifically, we construct equally weighted portfolios (allocate $1 evenly) of significant 

rules, while accounting for data snooping bias under the FDR method using 70% 

percent of each subperiod’s historical data considered in subsection 7.2. The last 30% of 

the remaining data is used for the OOS estimation. This approach, provide us with 

almost the last year of every subperiod as out-of-sample horizon, while the previous 

years (no more than four years) constitute the in-sample period. Although we 

understand that this is still a stringent out-of-sample evaluation, it better matches to 

what traders do in practice, instead of using a single long-term in-sample horizon, dated 

back to early 90s, when totally different dynamics existed. The above structure will help 
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as exploit the different dynamics of each subperiod and invest in an out-of-sample 

horizon accordingly. 

Table 6 demonstrates the in-sample performance of the equally-weighted FDR 

portfolios of significant rules as well as their number, based on the Sharpe ratio criterion 

and for each corresponding pair. 

[Table 6] 

The in-sample evidence in Table 6 validates again the ability of the FDR method in 

selecting a sufficient number of predictive rules across all subperiods and for each pair, 

except from a number of few cases. The overall picture is similar to the one provided 

during the subperiod analysis in sub-section 7.2, in which we generally find no specific 

trend, upward or downward, in the evolution of the number of predictive rules 

throughout the years. 

What is more important in this table is in-sample performance measured under the 

Sharpe ratio metric. Consider first the findings for the commodity pairs. The Sharpe 

ratios are far above 1 in most cases, except from the platinum-palladium pair during the 

last subperiod. There is also no clear trend or shrinkage in the Sharpe ratios 

performance, validating the evolutionary dynamics of the Adaptive Market Hypothesis. 

In support of this evidence, there is also the case of the Brent-crude oil pair, in which 

the Sharpe ratio criterion is not able to identify any significant rule during the 2008-

2011 period. For the equity pairs, the evidence shows a similar performance. The 

Sharpe ratios range from 0.67 to 2.56, while this metric selects at least one predictive 

rule under the FDR method for each pair across all subperiods. Finally, for exchange 

rate pairs the Sharpe ratios range from 0.64 to 3.60, achieving the highest one, 

JPY/USD-EUR/USD pair, in the first subperiod considered. Nevertheless, the average 

number of genuine rules selected under the Sharpe ratio measure in every subperiod is 

the smallest compared to the ones of commodity and equity pairs, while there are two 

cases, CAD/USD-ZAR/USD and CAD/USD-AUD/USD, in which the Sharpe ratio 

criterion does not select any predictive rules during the first and last periods 

respectively. 

Moving now to the key evidence for investors, Table 7 reports the out-of-sample 

performance of the equally-weighted FDR portfolios of significant rules, as well as the 
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best significant one’s, based on the Sharpe ratio criterion and for each corresponding 

pair. 

[Table 7] 

Concentrate first on the findings for commodity pairs. There is at least one post-

sample period for each pair, in which either the FDR portfolio of significant technical 

trading rules or the best significant rule yield a positive Sharpe ratio. Those ratios span 

from 0.22 to 1.83 for the FDR portfolio and from 0.56 to 1.79 for the best rule. The 

Brent-crude oil pair seems the most promising one, yielding constantly positive Sharpe 

ratios above 1, consistent with both the FDR portfolio and the best rule. 

Notwithstanding this performance, it appears only during the first two post-sample 

periods, 1997 and 2001, and then decays to negative or zero Sharpe ratios over the 

recent periods. On the other hand, we observe commodity pairs, such as the platinum-

gold, whose predictive rules achieve positive Sharpe ratios as we move towards the 

more recent out-of-sample years, reaching the highest Sharpe ratio of 1.83 during 2011 

and then falling back to Sharpe ratios of 0.60 on average during 2016. It is also worth 

mentioning that the FDR portfolio of significant rules generates on average better 

performance than the best significant rule across all commodity pairs and post-sample 

periods, even when negative Sharpe ratios discovered. This result highlights the 

diversification benefits of the FDR method in constructing portfolios of significant 

rules, while minimizing the downside risk. 

Considering the results for equity pairs the overall picture is analogous to commodity 

pairs, showing no trend and excess profitability in specific time periods. Despite that, 

the technical trading rules yield a poorer performance with positive Sharpe ratios 

ranging from 0.22 to 1.48 for FDR portfolios, while Sharpe ratios exceeding 1 only in 

two cases, the FTSE 100-CAC 40 pair in 1996 and the S&P 500-Russell 2000 in 2007. 

The poor performance is also justified by numerous negative Sharpe ratios spanning 

from -0.06 to –2.23 for specific out-of-sample horizons, as well as by pairs, such as the 

DJIA-Russell 1000, demonstrating negative Sharpe ratios across all the five post-sample 

years. Interestingly, the highest negative Sharpe ratios concentrate on the earliest post-

sample periods. Moreover, it is unclear whether the FDR portfolio of significant rules 

achieves a better performance compared to the best significant rule across all equity 

pairs. 
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In terms of foreign exchange rate pairs’ out-of-sample performance, the results seem 

more encouraging since the significant rules yield positive Sharpe ratios for the majority 

of pairs, at least during the first three out-of-sample periods. Specifically, cases such as 

the JPY/USD-EUR/USD pair show a decay in the performance through the years, while 

others like the EUR/USD-CHF/USD pair reports considerable Sharpe ratios cyclically. 

There is also the special case of CAD/USD-ZAR/USD, whose Sharpe ratios are being 

cancelled out by the large transaction costs most of the times. Moreover, the out-of-

sample positive Sharpe ratios range from 0.15 to 1.32 for the FDR portfolio of 

significant rules and from 0.52 to 1.46 for the best significant rule for each pair. 

However, considering also the negative performance of the FDR portfolio and the best 

significant rule it is once again uncertain whether one of these two approaches depicts 

better performance. 

In general, the out-of-sample performance of technical trading rules on commodity 

pairs is on average higher than the almost equal performance of trading rules on equity 

and foreign exchange pairs. In addition to this, the FDR framework provides an efficient 

portfolio construction tool mostly in the case of commodity pairs, in which the 

diversification benefits appear to be strong. Nevertheless, we can also grasp FDR 

method’s benefits on equity and exchange rate pairs when the best significant rule is out 

of the market, generating zero Sharpe ratios, the FDR portfolio produces even a small 

amount of profits in many cases. Finally, the Adaptive Market Hypothesis seems more 

appropriate in explaining the overall out-of-sample performance of technical trading 

rules on the corresponding pairs in compliance with Table 7. Pair traders can exploit 

and arbitrage away returns in specific periods of time, as this is also the key feature of 

statistical arbitrage. On the other hand, these returns tend to diminish in the periods 

following especially when more traders deploy their strategies alleviating the existing 

arbitrage opportunities and leading to negative returns. This happens only until the 

market and business conditions change over time in an evolutionary rate creating new 

profit opportunities in future periods of time.  

 

8.2. Out-of-sample performance under mean reversion 

As John Maynard Keynes mentions “in the long run we are all dead”. So, pair traders 

often try to identify what is the expected holding period for a mean-reversal trade to 

take advantage of it. For instance, they may not want to trade pairs with long holding 
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period as a way of minimizing their exposure on the market, i.e. large drawdowns. Half-

life of mean-reversion usually defines this holding period.  However, it is an intrinsic 

property of the price time series, rather than a trading strategy. 

In order to model a mean-reverted process we adopt the Ornstein-Uhlenbeck formula 

accounting for mean-reversion. In such a way, we can compute the expected time (half-

life) of mean-reversion using daily prices via this formula. For instance, let 𝑧(𝑡) be the 

mean-reverting spread, then  

𝑑𝑧(𝑡) = −𝜃(𝑧(𝑡) − 𝜇)𝑑𝑡 + 𝑑𝑤          (10) 

where 𝑑𝑧 is the change of the spread value during 𝑑𝑡, 𝑑𝑤 is some Gaussian noise and 𝜇 

is the spread’s mean. This process defines a stochastic differential equation familiar to a 

derivatives trader. Thus, the expected value of 𝑧(𝑡) after integrating the process and 

using Ito’s lemma is 𝐸(𝑧(𝑡)) = 𝜇 + exp (−𝜃𝑡)(𝑧0 − 𝜇). The expected value of 𝑧(𝑡) 

now follows an exponential decay to 𝜇 at the rate 𝜃, while the half-life of this decay is 

equal to 
ln(2)

𝜃
, if 𝜃 > 054. This actually corresponds to the time required for the path 

above to progress half way toward its long-term expectation, and so the time needed 

before we can cash in any profit (see Meucci, 2009). Moreover, a higher mean-reversion 

𝜃, indicates a stronger cointegration between the time series and vice versa. Now, 

discretizing the Οrnstein-Uhlenbech formula, we can obtain both 𝜇 and 𝜃 by using a 

linear OLS regression on historical spreads: 

𝑧(𝑡 + 1) − 𝑧(𝑡) = −𝜃(𝑧(𝑡) − 𝜇)          (11) 

The new formulation leads to a vector autoregressive model of order one, denoted as 

VAR(1), which also includes cointegrated dynamics as we have already described in the 

application of  the fractional cointegrated vector autoregressive analysis of Johansen 

and Nielsen (2012) in Section 2. 

Technical traders employing contrarian trading rules usually set their lookback 

period (number of lags of daily values) equal to the half-life as an optimal mean-

reverting strategy. Following this approach, we proceed to an out-of-sample analysis 

measuring the performance of our contrarian families of rules only (RSIs, Bollinger 

bands and CCIs) for robustness purposes. In particular, we consider the same in-sample 

                                                           
54 In case where 𝜃 < 0 the trajectory follows an exponential explosion instead of mean 

reversion. 
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and out-of-sample data sets for every subperiod as in the previous subsection. We then 

calculate the half-life of each pair using the in-sample data given. In the next step, we 

exercise the families of mean-reverting rules by setting as a lookback period the half-

time of mean-reversion of each corresponding pair. This comes down to a new universe 

of 400 contrarian technical trading rules. During this backtesting procedure we also 

conduct the FDR test for multiple hypothesis testing to identify the significant rules for 

each pair and across all subperiods. Finally, we measure the excess profitability of the 

significant rules in the following out-of-sample periods by creating equally weighted 

portfolios of genuine rules for each pair in a similar way as in subsection 8.1.  

We report first the in-sample performance of this approach in the table below. In 

particular, Table 8 displays the number of significantly predictive contrarian rules 

created by taking into account the half-life of mean-reversion of each pair, as well as the 

performance of equally-weighted FDR portfolios of those rules, under the Sharpe ratio 

criterion and for every subperiod in-sample. 

[Table 8] 

All parts the three parts, upper, middle and lower, in Table 8 display a weak 

predictability of the specific statistical arbitrage traders’ approach for the commodity, 

equity and foreign exchange pairs respectively. The FDR method hardly selects a 

significant number of predictive rules, while for a considerable number of pairs, for all 

the three markets considered, it does not even select a single rule. For instance, the 

technical predictability of mean-reverting rules under the half-time criterion for 

commodity pairs, concentrates mostly in the case of Brent-crude oil spread. In this case, 

the FDR test chooses at least a single trading rule except from the fourth subperiod, 

while for the other pairs the predictability is close to zero. In addition, the in-sample 

Sharpe ratios of predictive rules range from 0.68 to 1.96, which are substantially below 

the relevant ones in the previous analysis using the whole universe of technical trading 

rules. 

The in-sample performance of “half-time” contrarian rules on equity spreads reveals 

a similar picture. The number of predictive rules remains in single digits for every pair 

and across all subperiods, while their corresponding Sharpe ratios span from 0.47 to 

1.27. In the case of currency pairs, the picture seems slightly better with positive Sharpe 

ratios ranging from 0.47 to 1.98, while the FDR method manages to select more 
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predictive rules for more pairs in almost every period. Those findings are far from 

encouraging for institutional traders in case they use the rule of thumb of a 50% haircut 

of in-sample Sharpe ratios in predicting the out-of-sample ones. Moreover, we observe 

that technical predictability is very weak during the second and fifth subperiods for both 

equity and exchange rate pairs, as we can only find one predictable pair for each market. 

We report the out-of-sample findings of the half-time of mean-reversion strategy in  

Table 9. Again, the table demonstrates the equally-weighted FDR portfolios’ 

performance of significant rules as well as the best significant one, based on the Sharpe 

ratio criterion and for each corresponding pair, for comparison purposes. We also report 

the median of half-time of mean-reversion of each pair computed in the in-sample 

period as an extra column. 

[Table 9] 

For commodity pairs, we obtain the only promising results by trading the Brent-

crude oil spread, whose returns also decay to zero after reaching the third post-sample 

year. For all other spreads the trading simulation reveals almost zero or negative returns 

over the rest out-of-sample periods. The positive Sharpe ratios range only from 0.15 to 

1.35, while the FDR portfolio of significant rules shows almost equal performance with 

the best significant rule. There are also cases, such as the platinum-gold pair, in which 

the significant rules produce no signals and stay out-of-the market across all post-

sample periods. The medians of half-time of mean reversion span from 10 to 201. 

Regarding the equity spreads, the overall message we get is the same as above with 

medians of half-time ranging however at higher levels (i.e. 167-416). Pairs trading via 

technical analysis can generate positive Sharpe ratios, even small ones, only in half of 

the cases and for specific out-of-sample periods. Trading the S&P 500-Russell 2000 and 

the Russell 1000-Russell 2000 pairs yields the most encouraging Sharpe ratios, namely 

1.31 and 0.89, for the 1996 and 2011 post-sample years, respectively. For all the other 

pairs, out-of-sample technical trading generates zero or negative returns. Again, the 

FDR portfolio’s performance is equivalent with that of best rule since for most of the 

cases the FDR portfolio consists only with the best strategy. 

The lower part of Table 9 indicates a shrinkage in any out-of-sample performance 

over the years on pairs yielding positive Sharpe ratios (EUR/USD-CHF/USD, 

AUD/USD-ZAR/USD), whose levels range from 0.92 to 1.14. Only in the case of 
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CAD/USD-AUD/USD spread the FDR portfolio and the best significant rule produce a 

positive Sharpe ratio of 0.73 in 2007, while technical profitability for the rest of the 

pairs shows zero or negative performance. Moreover, the average median of half-time 

for exchange rate pairs is higher than the relevant ones of commodity and equity pairs. 

We anticipated the above performance for a couple of reasons. First of all, in-sample 

cointegration between assets it is not always synonymous with out-of-sample results. 

According also to Atilio Meucci (2010), eigen series, which are relative to smallest 

eigen values and they are responsible for making quicker profits, are regularly least 

robust out-of-sample, while the most mean-reverting series leading to lesser potential 

returns, are usually neutralized by the transaction costs. 

 

8.3. Out-of-sample performance for portfolios of pairs 

The final out-of-sample simulation involves the performance examination of 

integrated market portfolios of technical trading rules across all post-sample periods, as 

a pairs trader would have done in practice. Usually, pairs’ traders expose themselves not 

only at a single market, but they are constantly searching for arbitrage opportunities 

across several markets and assets. We construct four portfolios (one for commodity 

pairs, one for equity pairs, one for foreign exchange pairs and a global one), using the 

all technical trading rules and so the pairs selected as significant in terms of Sharpe ratio 

for every in-sample period data. We apply this portfolio management procedure not 

only to all significant FDR rules, but also to the best significant rule for each pair, 

similar to Hsu et al., (2016), as we have presented in subsection 8.1 for comparison 

purposes. Furthermore, we also compare their performance with identical integrated 

portfolios constructed under the half-time, mean-reverting significant rules described 

this time in subsection 8.2. We assume no optimization for the integrated portfolios by 

assigning equal weight of our total wealth to every single rule identified as significant 

across all pairs, similar to constructing the FDR portfolios of significant rules in 

previous subsections. For instance, in the first post-sample period we invest $1 of total 

wealth and distribute it evenly across all pairs in a particular portfolio (e.g. commodities 

portfolio). This comes down to a further equal allocation of a specific pair’s wealth 

proportion across the signals of its corresponding significant FDR rules. In case where 

only one best significant rule considered, we allocate it the whole wealth proportion. 
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Therefore, the above portfolio construction approach is equivalent to simply averaging 

the excess return of its constituent assets.  

We present the out-of-sample performance of the four market portfolios across every 

out-of-sample subperiod and for every alternative portfolio composition employed, in 

Table 10.  

[Table 10] 

According to the first panel, using all significant rules of each pair to build the 

market representing portfolios, commodities achieve the best performance across all 

out-of-sample years, yielding mostly Sharpe ratios of up to 1.73 and CAGR of 6.44% 

during 2001, while it shows a positive performance in three out of five post-sample 

periods. On the other hand, the equity market portfolio does much worse yielding 

positive Sharpe ratios of only 0.36 and 0.25 during 2001 and 2007, with their 

corresponding CAGRs are considerable low, i.e. 0.24 % and 0.01%, while for the rest of 

post-sample periods achieves negative returns.  The foreign exchange market portfolio 

shows a slightly better performance, but only in specific periods, with Sharpe ratios 

being close to 1 (i.e. 0.98 and 0.83) in 2001 and 2011, even though their CAGRs are 

quite low to constitute attractive investments. In terms of global portfolio’s performance 

now, the diversification benefits we obtain are quite observable. The global portfolio 

actually retains the positive performance attributed to our best commodities’ portfolio 

during the same years, with Sharpe ratios remaining high and ranging from 0.83 to 1.82 

but this time the CAGRs have fallen to levels ranging from 0.81 to 2.30%.  

Employing now only the best significant rules of each pair to construct our four 

portfolios, the overall picture of the second panel doesn’t seem very encouraging in 

terms of performance. Although, all market portfolios are able to yield a positive 

performance from time to time, this is considerably low to act in support of excess 

profitability. Only during the first out-of-sample period the commodities’ portfolio 

achieves an outstanding Sharpe ratio of 1.56 and a CAGR of 8.37%, while the foreign 

exchange market portfolio produces a Sharpe ratio of 1.17 and a CAGR of 0.43%.  The 

global portfolio also depicts this performance yielding a Sharpe ratio of 1.43 and a 

CAGR of 2.57% in 1996, but this performance decays to zero or turns to negative 

returns for the rest of the periods. Comparing the second panel with the first panel 

results, we once again validate the power of FDR method in selecting a sufficient 
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number of significant rules, while diversifying against model uncertainty and achieving 

a better overall performance over time, instead of only using the best significant rule.  

Considering the analogous market portfolios constructed using FDR-significant rules 

under the half-time of mean-reversion criterion, we find that commodities’ portfolio 

yields a positive performance at least during the first three periods. Especially in 1996 

and 2001 the corresponding Sharpe ratios (0.86 and 1.05) and CAGRs (i.e. 4.32% and 

7.80%) indicate some good arbitrage opportunities, which then decay over the next 

periods. In the case of equities and foreign exchange currencies, the out-of-sample 

performance is again not very encouraging for most of the post-sample years. Although, 

we can find some periods of positive Sharpe ratios and CAGRs, those are not 

statistically significant different from zero in most cases. The highest Sharpe ratio and 

CAGR (i.e. 1.31 and 0.18%) is achieved by the equities portfolio in 1996. Moreover, 

the global portfolio is mainly driven by the commodities’ portfolio showing a similar 

performance with Sharpe ratios ranging from 0.32 to 1.05 and CAGRs from 0.03% to 

7.80%.  

In general, the profitability of pairs trading using technical analysis has shrunk over 

the years as justified from the all three panels of the table, especially for equities and 

foreign exchange rates markets. Consistent with the previous literature (Gatev et al., 

2006; Marshal et al., 2008; Neely et al 2009; Bajgrowicz and Scaillet, 2012), most the 

above findings emphasize the decomposition of technical analysis’ excess profitability 

over time, presumably due to the increased hedge fund and trading activity. Only in the 

case of commodities market, there might be some windows of excess profitability in 

more recent periods but its level is still questionable. Notwithstanding this profitability 

sets commodities’ market more lucrative for a pairs’ trader as revealed by the post-

sample performance of our three different commodity portfolios over time, and 

compared to the relevant performance for rest of markets reported.  
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9. Conclusion 

 

We investigate a hedge fund trading strategy based on the assumption of cointegrated 

prices in an informational efficient market, widely known as pairs trading, while we 

employ technical analysis to predict the prices movements of formatted spreads. The 

long-debated issue of whether and why technical analysis is still profitable is explored 

for the first time under statistical arbitrage conditions. 

We conduct a large-scale research of the predictability and excess profitability of 

technical trading rules across a large set of ‘famous’ commodity, equity and currency 

pairs, being actively traded by statistical arbitrageurs, in long sample periods. Our 

analysis involves a quite large number of technical trading rules split in generic 

momentum and contrarian classes. We also adopt recently developed multiple 

hypothesis testing methods, totally adequate in such applications as they allow us to 

create statistical inferences generating new, adjusted thresholds preserving against data 

mining issues. 

Our findings reveal that technical trading has predictive power for most of the 

spreads considered, especially in terms of yielding significant Sharpe ratios. 

Commodity pairs are in general more predictable with technical analysis compare to 

equity and currency spreads. Moreover, using technical analysis to trade our suitable 

formed pairs exhibits significant returns, which are robust to even conservative one-way 

transaction costs.  In addition to this, we contradict previous explanations for the pairs 

trading profits generated only by rules based on contrarian principles. A realistic out-of-

sample analysis made across five different subperiods reveals that although excess 

profitability of technical analysis has shrunk over time, some commodity pairs display 

an encouraging performance during recent periods. 

One possible reason for the declined profitability of pairs trading in recent years may 

be the increased hedge fund activity squeezing out potential returns. However, abnormal 

returns achieved using technical trading rules on certain spreads and periods may be a 

compensation to arbitrageurs for a temporarily no-fully-rational behaviour. Those 

findings seem to favour the Adaptive Market Hypothesis (Lo, 2004), which assumes 

that investors severely exploit arbitrage opportunities and therefore make them diminish 

as soon as the overall market learns and milks the profitable trading strategies until new 

opportunities arise again in evolutionary cycles. 
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In terms of further research, the manipulation-proof versions of performance metrics 

mentioned in chapter 3 could also employed in technical analysis performance on 

spread trading. Some possible candidates could be the measurement method developed 

by Ingersoll et al, (2008) and the Morningstar Risk-Adjusted Rating in 2002. Moreover, 

information derived by the fractionally cointegrating relationship of the examined pairs 

could be used further in the technical trading rules exercise. For example, we could 

calculate and take into account the optimal hedge ratio while forming a stationary 

spread portfolio based on the eigenvectors’ information or by just using the OLS 

coefficient between the components of a pair. 
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  Appendix A. Details of technical trading rules parameters  

 

In this section, we describe in precise detail the universe of our total technical trading 

rules, following the previous studies of Sullivan et al., (1999) and Hsu et al., (2016). 

A.1. Filter rules  

The filter rule allows the initiation of a pairs’ trader position only in response to major 

price trends. Therefore, an investor buys a pair if its price increases by a fixed 

percentage from a previous low, and he sells if the price decreases by a fixed percentage 

from a previous high. We assume three different filter rule variations as described 

below, while we set the previous low (high) as the most recent pair value between the 

daily closing prices of two assets that is less (greater) than the n previous daily pair 

value, for a given value of n. 

F1: If the daily pair value between the daily closing spot prices of two assets increases 

(decreases) by at least x percent from its previous low (high) and remains so for d days, 

then go long (short) the pair. 

The second variant allows also for neutral positions in lieu of always being either long 

or short according to the basic filter rule. 

F2: If the daily pair value increases by at least x percent from its previous low and 

remains so for d(x) days, then go long the pair until its daily value decreases at least y 

percent from its subsequent high and remains so for d(y) days at which time liquidate 

the long position. If the daily pair value decreases by at least x percent from its previous 

high and remains so for d(x)  days, then go short  the pair until its daily value increases 

at least y percent from its subsequent low and remains so for d(y) days at which time 

liquidate the short position. 

The third variation assumes a position is held for a fixed number of periods ignoring all 

other signals. 

F3:  If the daily pair value increases (decreases) by at least x percent from its previous 

low (high) and remains so for d days, then go long (short) the pair for c days and then 

neutralize the position. 

𝑛 = 1, 2, 5, 10, 15, 20 [6 values] 

𝑥 = 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0 in % [7 values] 

𝑦 = 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 20.0 in % [7 values]. Noting that 𝑦 < 𝑥, there are 21 

𝑥 − 𝑦 combinations. 
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𝑑 = 0, 1, 2, 5 [4 values]. Noting that 𝑑(𝑦) < 𝑑(𝑥), there are 6 𝑑(𝑥) − 𝑑(𝑦),  

combinations. 

𝑐 = 1, 5, 10, 15, 20, 25 [6 values] 

The total number of rules is: (𝑥 ∗ 𝑑 ∗ 𝑛) + ((𝑥 − 𝑦) ∗ (𝑑(𝑥) − 𝑑(𝑦) 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠) ∗

𝑛) + (𝑥 ∗ 𝑑 ∗ 𝑐 ∗ 𝑛) = 168 + 756 + 1008 = 1932. 

 

A.2. Moving averages 

One of the most popular and actively traded class of technical trading rules across 

several markets, which assumes a crossover between the pair value and a moving 

average of a given length or between short-long moving averages of a different length in 

order to generate a trade. These upside (downside) penetrations of a moving average 

help an investor to discover the emergence of new trends and maintain his position as 

long as the crossover remains. We provide four different variations as follows: 

MA1: If the daily pair value moves at least x percent above (below) the moving average, 

i.e. MA(n), and remains so for d days then go long (short) the pair until its closing value 

moves at least x percent below (above) MA(n) and remains so for d days, ay which time 

go short (long) the pair. 

Similar to the filter rules a variant of a moving average rule assuming we hold a 

position for a fixed number of periods, ignoring all other signals would be as described 

below: 

MA2:  If the daily pair value moves at least x percent above (below) the MA(n), and 

remains so for d days then go long (short) the pair for c days and then neutralize the 

position. 

A short/long double moving average as well as a similar one including a fixed number 

holding period are described in the next two paragraphs as: 

MA3: If the short moving average, i.e. MA(m), moves at least x percent above (below) 

the long moving average, i.e. MA(n), and remains so for d days then go long (short) the 

pair until MA(m) moves at least x percent below (above) MA(n) and remains so for d 

days, at which time go short (long) the pair.  

MA4: If the MA(m) moves at least x percent above (below) the MA(n) and remains so 

for d days then go long (short) the pair for c days and then neutralize the position. 

𝑛 = 2, 5, 10, 15, 20, 25, 50, 100, 150, 200, 250  [11 values] 
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𝑚 = 2, 5, 10, 15, 20, 25, 50, 100, 150, 200  [10 values]. Noting that  𝑚 < 𝑛 , there are 

55  

𝑚 − 𝑛 combinations. 

𝑥 = 0, 0.05, 0.1, 0.5, 1.0, 5.0 in % [6 values]. 

𝑑 = 0, 2, 3, 4, 5 [5 values].  

𝑐 = 5, 10, 25 [3 values] 

The total number of rules is: (𝑛 ∗ 𝑥 ∗ 𝑑) + (𝑛 ∗ 𝑥 ∗ 𝑑 ∗ 𝑐) + ((𝑚 − 𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠) ∗

𝑥 ∗ 𝑑) + ((𝑚 − 𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠) ∗ 𝑥 ∗ 𝑑 ∗ 𝑐) = 330 + 990 + 1650 + 4950 = 7920. 

 

A.3. Support and resistance  

Likewise filter trading rules, support and resistance rules try to discover major price 

movements beyond certain levels, which are difficult to been breached, rather than a 

most recent high or low.   The intuition behind this rule is that usually investors think 

that sooner or later the movement of the pair’s price will tend to stop and return to a 

certain level. However, if the price breaks through a certain resistance or support level 

by a certain amount, it is more likely to continue moving to the same direction until it 

finds new such levels. In this way, a long or short signal is generated in terms of rule’s 

construction. Again we pre-define the support and resistance levels as the minimum and 

maximum closing value of a pair over the previous n closing values respectively. 

SR1: If the daily pair value rises above (below) by at least x percent from the  local 

maximum (minimum) over the n previous pair values and remains so for d days, then go 

long (short) the pair. 

 In addition to the above, we impose a holding-period filter:   

SR2: If the daily pair value rises above (below) by at least x percent from the local 

maximum (minimum) over the n previous pair values and remains so for d days, then go 

long (short) the pair for c days and then neutralize the position. 

𝑛 = 2, 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 [11 values]. 

𝑥 = 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0 in % [7 values]. 

𝑑 = 0, 1, 2, 3, 4, 5 [6 values]. 

𝑐 = 1, 5, 10, 25  [4 values]. 

The total number of rules is: (𝑛 ∗ 𝑥 ∗ 𝑑) + (𝑛 ∗ 𝑥 ∗ 𝑑 ∗ 𝑐) = 462 + 1848 = 2310. 
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A.4. Channel breakouts 

Similar to having a time-varying support and resistance rule, a trading channel occurs 

when the highest value of a pair over the previous prespecified days is within a fixed 

percentage (b%) of the lowest value over the previous prespecified days. The graphical 

representation of a price channel is equal to a pair of parallel trend lines drifting 

together within a certain width. As soon as one of these trend lines is “broken”, a buy or 

sell signal is generated. Thus, an investor goes long (short) when the price moves above 

(below) the channel. The above time-varying support and resistance levels represent the 

lower and upper bounds of the channel, while their difference from the high and low 

respectively, over the previous prespecified days, doesn’t exceed the b%. 

CB1: If a b% trading channel occurs and if the daily pair value rises above (below) by 

at least x percent from the upper (lower) bound over the n previous days and remains so 

for d days, then go long (short) the pair. 

We consider also a holding period for each position triggered: 

CB2: If a b% trading channel occurs and if the daily pair value rises above (below) by 

at least x percent from the upper (lower) bound over the n previous days and remains so 

for d days, then go long (short) the pair for c days and then neutralize the position. 

𝑛 = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 [10 values]. 

𝑏 = 0.1, 0.5, 1.0, 5.0, 10.0 in % [5 values]. 

𝑥 = 0.05, 0.1, 0.5, 1.0, 5.0 in% [5 values]. Noting that 𝑥 < 𝑏, there are 15 (𝑥 − 𝑏) 

combinations. 

𝑑 = 0, 1, 2 [3 values]. 

𝑐 = 1, 5, 10, 25 [4 values]. 

The total number of rules is: (𝑛 ∗ (𝑥 − 𝑏) 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑑) + (𝑛 ∗ (𝑥 −

𝑏) 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∗ 𝑑 ∗ 𝑐) = 450 + 1800 = 2250. 

  

A.5. Relative Strength Indicator rules 

Introduced by Levy (1967), relative strength rules (RSI) belong to the general family of 

‘overbought/oversold’ indicators, or commonly called as oscillators, from which we 

also pool the rest of our proposed ‘reversal’ trading rules (i.e. Bollinger bands, CCIs). 

As already mentioned, RSIs attempt to reveal upcoming price corrections towards the 
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opposite direction of extreme upward or downward movements, in which a short or 

long signal is executed accordingly. The generic formula of RSI is  

𝑅𝑆𝐼𝑡(𝑛) = 100 −
100

1+
𝑈𝑡(𝑛)

𝐷𝑡(𝑛)

= 100 [
𝑈𝑡(𝑛)

𝑈𝑡(𝑛)+𝐷𝑡(𝑛)
]     (A.1) 

where 𝑈𝑡(𝑛) and 𝐷𝑡(𝑛) represent the cumulated upward and downward trend, 

calculated as the sum of first differences between monotonically increasing or 

decreasing closing prices in absolute terms over the previous n days. In other words, the 

𝑈𝑡(𝑛) denotes the total gains of a potential upward movement, while the 𝐷𝑡(𝑛) denotes 

the total losses of a potential downward movement over the previous n days. Thus, 

normalized to the scale of 100, the RSI estimates the dominance of an upward relative 

to the dominance of a downward trend. In its simplest version, an RSI of a value 70 

characterize a specific pair as overbought, while a value of 30 rates the pair as 

overbought55. Except from this naïve RSI variant we also consider two more 

modifications as have been introduced by Hsu et al, (2016): 

RSI1: If 𝑅𝑆𝐼𝑡(𝑛) rises above 70 then go short the pair. Alternatively, if 𝑅𝑆𝐼𝑡(𝑛) falls 

below 30 then go short the pair. 

RSI2: If 𝑅𝑆𝐼𝑡(𝑛) rises above 50 + 𝑘 for at least d days and then subsequently falls 

below 50 + 𝑘, go short the pair. Alternatively, if 𝑅𝑆𝐼𝑡(𝑛) falls below 50 − 𝑘 for at least 

d days and then subsequently rises above 50 − 𝑘, go long the pair. 

RSI3: If 𝑅𝑆𝐼𝑡(𝑛) rises above 50 + 𝑘 for at least d days and then subsequently falls 

below 50 + 𝑘,go short the pair for c days and then neutralize the position. 

Alternatively, if 𝑅𝑆𝐼𝑡(𝑛) falls below 50 − 𝑘 for at least d days and then subsequently 

rises above 50 − 𝑘, go long the pair for c days and then neutralize the position. 

𝑛 = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 [10 values]. 

𝑘 = 10, 15, 20, 25 [4 values]. 

𝑑 = 1, 2, 5 [3 values]. 

𝑐 = 1, 5, 10, 20, 25 [5 values]. 

The total number of rules is: 𝑛 + (𝑛 ∗ 𝑘 ∗ 𝑑) + (𝑛 ∗ 𝑘 ∗ 𝑑 ∗ 𝑐) = 10 + 120 + 600 =

730. 

 

                                                           
55  This is the most naïve RSI rule and it can be found in several trading websites and platforms. 
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A.6. Bollinger Bands 

Developed by the famous technical trader John Bollinger in the 1980s, Bollinger bands 

are volatility indicators trying to take advantage of unjustifiably high or low prices and 

their imminent corrections. To achieve this, they consider upper and lower bands of a 

pair’s price in terms of standard deviations from a moving average over the previous 

prespecified days. Considering a pair’s moving average as well as its moving standard 

deviation over the n previous days we have  

𝑀𝐴𝑡(𝑛) =
1

𝑛
∑ 𝑃𝑡−1+𝑖

𝑛
𝑖=1 , 𝜎𝑡(𝑛) = √

1

𝑛
∑ (

𝑃𝑡−1+𝑖−𝑃𝑡−1

𝑃𝑡−1
)2𝑛

𝑖=1     (A.2) 

We define the upper/lower bands of a given width z as 𝑀𝐴𝑡(𝑛) ± 𝑧 ∗ 𝜎𝑡(𝑛), which are 

the specific moving average plus/minus z times the specific moving standard deviation. 

Almost always the price of a pair trades between the two bands except from cases in 

which extreme conditions occur. Thus, any breakout above or below the bands is a 

major event. Many investors believe the closer the prices move to the upper band, the 

more overbought the market and vice versa. This can lead to a pullback of prices 

captured by such an ‘reversal’ trading rule. We consider rules based on prices leaving 

the bands in order to trigger a position, and possibly then crossing of the moving 

average to neutralize the position. 

BB1: If the daily closing spot price (spread) moves above the upper band of a given 

width z and remains so for d days go short the pair until it moves back to the moving 

average, at which time neutralize the short position. If the daily pair value moves below 

the lower band of a given width z and remains so for d days, go long the spread until it 

moves back to the moving average, at which time neutralize the position.  

BB2: If the daily pair value moves above the upper band of a given width z and remains 

so for d days, go short the pair for c days and then neutralize the position. If the daily 

pair value moves below the lower band of a given width z and remains so for d days, go 

long the pair for c days and then neutralize the position.  

𝑛 = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 [10 values]. 

𝑧 = 0.5, 1, 1.5, 2, 2.5, 3 [6 values]. 

𝑑 = 0, 1, 2, 3, 4 5 [6 values]. 

𝑐 = 1, 5, 10, 20, 25 [5 values]. 
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The total number of rules is: (𝑛 ∗ 𝑧 ∗ 𝑑) + (𝑛 ∗ 𝑧 ∗ 𝑑 ∗ 𝑐) = 360 + 1800 = 2160. 

 

A.7. Commodity Channel Index rule 

Introduced by Donald Lambert in 1980, the Commodity Channel Index (CCI) also 

belongs to the family of oscillators attempting to capture cyclical trends and so to 

determine ‘overbought/oversold’ levels. The CCI was initially developed for 

discovering such levels in the commodities market, but its prominent applicability soon 

attracted technical traders to also use it in equities and currencies markets. Likewise 

Bollinger bands, the CCI not only uses extreme upper and lower bands to trigger 

long/short signals, but also takes into account the volatility of a pair. The CCI is defined 

as 

𝐶𝐶𝐼𝑡(𝑛) =
𝑃𝑡−𝑀𝐴𝑡(𝑛)

0.015∗𝜎𝑡(𝑛)
         (A.3) 

where  𝑃𝑡 is the price of a pair at a specific time t, while 𝑀𝐴𝑡(𝑛) and 𝜎𝑡(𝑛) denote the 

pair’s moving average and standard deviation over the previous n days, calculated as in 

the case of Bollinger bands. Thus, the CCI measures the current price level relative to 

an average price level over a specific period of time, while it is fairly high when prices 

are far above the moving average and vice versa. The constant 0.015 just ensures that 

the majority of CCI values will lie in between -100 and +100, which represent the upper 

and lower bounds of this trading rule.  

As a ‘reversal’ indicator, CCI searches over overbought (i.e. above +100) or oversold 

conditions (i.e. below -100) foretelling a mean reversion. Similarly, bullish and bearish 

divergences can be used to detect early momentum shifts and anticipate trend reversals. 

We employ two simple ‘reversal’ variants of CCI as well as a CCI discovering 

Bullish/Bearish divergence breakouts. 

CCI1: If the 𝐶𝐶𝐼𝑡(𝑛) remains above (+100 + 𝑘) for at least d days and the 

subsequently moves below +100, go short the pair. If 𝐶𝐶𝐼𝑡(𝑛) remains below (−100 −

𝑘) for at least d days and then subsequently moves above −100 , go long the pair.  

Assuming a holding period c we have: 

CCI2: If the 𝐶𝐶𝐼𝑡(𝑛) remains above (+100 + 𝑘) for at least d days and the 

subsequently moves below +100 , go short the pair for c days and then neutralize the 

position. If 𝐶𝐶𝐼𝑡(𝑛) remains below (−100 − 𝑘) for at least d days and then 
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subsequently moves above −100 , go long the pair for c days and then neutralize the 

position.  

We finally consider a special case of a CCI and divergence breakout. Divergences can 

foresee a potential trend reversal point as they usually reflect a change in momentum. 

We examine two types of divergence, bullish and bearish. A bullish divergence appears 

when the pair performs a lower low (i.e. support break) and the CCI shapes a higher 

low, over the previous n days, indicating a less downside momentum. A bearish 

divergence appears when the pair performs a higher high (i.e. resistance break) and the 

CCI forms a lower high over the previous n days, indicating a less upside momentum. 

In other words, looking for a breach in support and resistance levels of a pairs’ price, 

while in the meantime searching for a direction change of the CCI. In particular, we 

have: 

CC3: If the daily pair value moves below by at least x percent from the local minimum 

over the n previous pair values and CCI remains below(−100 − 𝑘), while its local 

minimum over the moves above its previous value n previous days, then go long the 

pair. If the daily pair value rises above by at least x percent from the local maximum 

over the n previous pair values, and the CCI remains above (+100 + 𝑘), while its local 

maximum moves below its previous value, over the n previous days then go short the 

pair.  

𝑛 = 5, 10, 15, 20, 25, 50, 100, 150, 200, 250 [10 values]. 

𝑘 = 0, 50, 100 [3 values]. 

𝑑 = 1, 2, 3, 4 5 [5 values]. 

𝑐 = 1, 5, 10, 20, 25 [5 values]. 

𝑥 = 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0 in% [7 values]. 

The total number of rules is: (𝑛 ∗ 𝑘 ∗ 𝑑) + (𝑛 ∗ 𝑘 ∗ 𝑑 ∗ 𝑐) + (𝑛 ∗ 𝑥 ∗ 𝑘) = 150 +

750 + 210 = 1110. 
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Appendix B. FDR implementation 

  

We employ the Sullivan et al., (1999) approach as well as the stationary bootstrap 

of Politis and Romano (1994) to obtain the individual p-values for each trading rule. 

We also follow the “point estimates” procedure of Storey et al., (2004) for controlling 

the FDR under weak dependence conditions. The algorithm for implementation of the 

𝐹𝐷𝑅+/− method then is as follows: 

 

1. Calculate the return matrix 𝑉, in which each column 𝑉𝑗𝑇represents the excess return 

daily series yielded by each of l technical trading rules for the specific time period of 

each days T examined. 

2. Compute the vector of the performance measures 𝛷 = (𝜑1, 𝜑2, … , 𝜑𝑗) of all 

trading rules, based on in each 𝑉𝑗𝑇 of the return matrix 𝑉. 

3. Use the stationary bootstrap method of Politis and Romano (1994) to resample the 

returns 𝑉 and create 𝑏 = 1, … , 𝐵 bootstrap realizations 𝑉𝑗𝑏 for each trading rules’ 

return series, while employing an average block size 1 𝑞⁄ . 

4. For each bootstrap realization 𝑏 calculate the vector of performance metrics 

 𝛷𝑏 = (𝜑1𝑏 , 𝜑2𝑏 , … , 𝜑𝑗𝑏) based on every 𝑉𝑗𝑏, where 𝑗 = 1, … , 𝑙 and 𝑏 = 1, … , 𝐵. 

5. Obtain the p-values of each trading rule, 𝑝𝑗, by comparing the absolute value of 

each performance metric 𝑇1/2|𝜑𝑗| with the absolute value of its corresponding 

quantiles of 𝑇1/2|𝜑𝑗𝑏 − 𝜑𝑗|, for 𝑏 = 1, … , 𝐵56. 

6. Plot the histogram of the total p-values in order to set the λ parameter equal to the 

level above which the p-values become fairly flat, representing the region of null p-

values. 

7. Compute the estimator of the proportion of rules with no abnormal performance as 

 𝜋0̂ =
#{𝑝𝑗>𝜆;  𝑗=1,…,𝑙}

𝑙(1−𝜆)
 

                                                           
56 The initial multiple hypothesis setup is based on absolute values since we conduct the 

hypothesis testing in a two-tailed framework in order to estimate the proportion of rules with 

no abnormal performance 𝜋0̂ based on the total p-values. 
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8. Focus on the right tail and short the p-values of trading rules showing positive 

performance in an ascending order. 

9. Compute the 𝐹𝐷𝑅+ of the rule having the smallest p-value as 𝐹𝐷𝑅+̂(𝛾) =

1/2𝜋0̂𝑙𝛾

#{𝑝𝑗≤𝛾,𝜑𝑗>0;  𝑗=1,…,𝑙}
 , then add the next rule corresponding to second smallest p-value 

and  

re-compute the 𝐹𝐷𝑅+. 

10. Repeat the above process until reaching the desired 𝐹𝐷𝑅+ target. The trading 

rules added up to this level represent the significant ones, while the cutoff, γ, is the 

corresponding p-value of the last trading rule added. 

During our empirical simulations, we set the stationary bootstrap parameters as 𝐵 =

1000 and the average block length equal to 0.1 (i.e. 𝑞 = 10). 
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List of tables 

 

Table 1. Descriptive statistics and statistical behavior on spreads’ daily spot prices and returns 

 

Spreads Mean(%) Std. dev. 1st autoc. Fract. Coint. 

Commodities     

Brent-WTI crude oil 0.0031 0.0139 0.00*** 0.023** 

Platinum-Gold -0.0005 0.0121 0.93 0.004*** 

Platinum-Palladium -0.0292 0.0172 0.07* 0.049** 

Corn-Ethanol -0.0921 0.0191 0.00*** 0.008*** 

Equities     

FTSE100-CAC 40 -0.0019 0.0076 0.28 0.000*** 

Euro Stoxx 50-DAX 0.0116 0.0058 0.00*** 0.011** 

FTSE100-FTSE250 0.0121 0.0067 0.11 0.028** 

DJIA-Russell 1000 -0.0003 0.0033 0.00*** 0.000*** 

S&P500-Russell 2000 -0.0086 0.0066 0.11 0.001*** 

Russell 1000-Russell 2000 0.0076 0.0062 0.04** 0.032** 

Exchange rates     

EUR-CHF -0.0076 0.0041 0.00*** 0.031** 

CAD-AUD 0.0002 0.0064 0.00*** 0.531 

EUR-JPY -0.0003 0.0064 0.06* 0.025** 

AUD-ZAR 0.0089 0.0089 0.18 0.938 

CAD-ZAR 0.0205 0.0089 0.14 0.088* 

We present descriptive statistics of daily returns on holding spreads based on commodities, equities and foreign currencies 

against the U.S. dollar, as well as the p-values for cointegration ranking between the spot prices of the underlying legs of 

each spread, based on the FCVAR analysis of Johansen and Nielsen (2012). * denotes a rejection of the null hypothesis at the 

10% level, ** denotes rejection at the 5% level and *** denotes rejection at 1% level of significance. 
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Table 2. The predictive ability and excess profitability of technical trading rules 

Spreads A. Mean excess 

return 

  B. Sharpe ratio   

 #  predictive rules Highest return (%) 

(p-values)  

Best rule #  predictive rules Highest ratio  

(p-values)  

Best rule 

Commodities       

Brent-WTI crude oil 442 17.6 (0.00)*** BB1 563 1.20 (0.00)*** BB2 

Platinum-Gold 1          2.03 (0.03) ** RSI2 12 0.61 (0.00)*** RSI2 

Platinum-Palladium 0          3.70 (0.20) F2 10 0.56 (0.00)*** BB2 

Corn-Ethanol 12          8.57 (0.00)*** SR2 6      0.45 (0.03)** RSI2 

Equities       

FTSE100-CAC 40 0 1.56 (0.11) BB1 21      0.31 (0.07)* CCI3 

Euro Stoxx 50-DAX 0 0.33 (0.23) BB2 9 0.45 (0.00)*** CB2 

FTSE100-FTSE250 0 0.66 (0.17) SR2 0      0.25 (0.38) CCI3 

DJIA-Russell 1000 0 0.41 (0.26) MA1 3      0.31 (0.09)* CCI3 

S&P500-Russell 2000 1       1.89 (0.00)*** BB2 9 0.54(0.00)*** BB2 

Russell 1000-Russell 2000 0 1.23 (0.21) BB2 10      0.39 (0.04)** CCI2 

Exchange rates       

EUR-CHF 0 0.84 (0.18) SR2 9      0.34 (0.06)* MA1 

CAD-AUD 0 0.65 (0.24) BB2 4 0.49 (0.00)*** SR2 

EUR-JPY 1    1.41 (0.09) * SR2 16      0.34 (0.08)* CB1 

AUD-ZAR 0  0.55 (0.28) BB2 0      0.24 (0.70) CCI1 

CAD-ZAR 0  0.56 (0.30) BB2 12 0.50 (0.00)*** F3 

We impose transaction costs in returns and examine the performance of total 18,412 technical rules over the full sample period. We implement the FDR test to 

select technical rules providing significantly positive performance. We considered mean excess return and Sharpe ratio as two performance metrics. “#predictive 

rules” denotes the number of technical rules that provide significantly positive mean excess returns and Sharpe ratios, while controlling the FDR at 10% of false 

rejections. “Highest return/ratio” denotes the best rule’s mean excess return and Sharpe ratios with p-values in parenthesis, while the specific best rules are 

reported in the “Best rule” section. All mean excess returns and Sharpe ratios are annualized, “***” denotes statistical significance at the 1% level. 
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Table 3. Portfolio decomposition into families of rules 

Spreads RSI Filter MA SR Ch.Br. BB CCI 

Commodities        

Brent-WTI crude oil 1.42 (0.90) - (-) - (-) - (-) - (-) 92.3 (97.0) 6.21 (2.03) 

Platinum-Gold 8.30 (100) - (-) - (-) 41.6 (0.00) - (-) 25.0 (0.00) 25.0 (0.00) 

Platinum-Palladium - (-) - (-) - (-) - (-) 80.0 (0.00) 10.0 (0.00) 10.0 (0.00) 

Corn-Ethanol 16.6 (8.30) - (-) - (-) 0.00 (66.6) 0.00 (16.6) 0.00 (8.33) 83.3 (0.00) 

Equities        

FTSE100-CAC 40 4.76 (0.00) - (-) - (-) - (-) 57.1 (0.00) - (-) 38.1 (0.00) 

Euro Stoxx 50-DAX - (-) - (-) 11.1 (0.00) 11.1 (0.00) 66.6 (0.00) 11.1 (100) - (-) 

FTSE100-FTSE250 - (-) - (-) - (-) - (-) - (-) - (-) 100 (0.00) 

DJIA-Russell 1000 33.3 (0.00) - (-) - (-) - (-) - (-) 33.3 (0.00) 33.3 (0.00) 

S&P500-Russell 2000 11.1 (0.00) - (-) - (-) - (-) 22.2 (0.00) 33.3 (100) 33.3 (0.00) 

Russell 1000-Russell 2000 - (-) - (-) - (-) - (-) - (-) 9.09 (0.00) 90.9 (0.00) 

Exchange rates        

EUR-CHF - (-) - (-) 11.1 (0.00) 88.8 (0.00) - (-) - (-) - (-) 

CAD-AUD 25.0 (0.00) - (-) 0.00 (0.00) 75.0 (0.00) - (-) - (-) - (-) 

EUR-JPY - (-) - (-) 6.25 (0.00) 62.5 (100) 31.25 (0.00) - (-) - (-) 

AUD-ZAR - (-) - (-) - (-) - (-) - (-) - (-) 100 (0.00) 

CAD-ZAR 8.33 (0.00) 50.0 (0.00) 8.33 (0.00) 25.0 (0.00) - (-) 8.33 (0.00) - (-) 

This table reports the average percentage of rules belonging to each family of rules examined, according to the 10%-FDR portfolio, for 

each pair and for the full sample. We consider the Sharpe ratio as performance metric, while the corresponding results using the mean 

excess return are reported in parenthesis. Our seven families of rules include: RSI: relative strength indicators, Filter: filter rules, MA: 

moving averages, SR: support and resistance rules, Ch.Br: channel breakouts, BB: Bolinger bands and CCI: commodity channel 

indices. 
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Table 4. Break-even transaction costs for predictive technical rules 

Spreads  A. Mean excess 

return 

 B. Sharpe ratio  

 Cost 

(bps) 

Break-even cost 

(bps) 

# trades Break-even cost 

(bps) 

# trades 

Commodities      

Brent-WTI crude oil 6.6 26 2432 77 434 

Platinum-Gold 6.6 25 291 25 291 

Platinum-Palladium 6.6 - - 69 75 

Corn-Ethanol 6.6 24 487 552 3 

Equities      

FTSE100-CAC 40 10 - - 121 3 

Euro Stoxx 50-DAX 10 - - 29 8 

FTSE100-FTSE250 10 - - - - 

DJIA-Russell 1000 4.0 - - 34 4 

S&P500-Russell 2000 4.0 13 526 27 50 

Russell 1000-Russell 2000 4.0 - - 42 5 

Exchange rates      

EUR-CHF 6.1 - - 69 5 

CAD-AUD 8.0 - - 28 6 

EUR-JPY 3.4 7.7 725 14 3 

AUD-ZAR 22 - - - - 

CAD-ZAR 21 - - 145 8 

We report highest one-way break-even transaction costs (in basis points) that will reduce the performance metrics 

of the most predictive rules to zero. Mean excess return and Sharpe ratio are considered as performance metrics. 

“#trades” denotes the number of trades triggered by each trading rule over the sample period. “-“ denotes that for 

given the pair and performance metric, it does not exist any significantly profitable trading rule.  



 

 

 

131 

 

Table 5. The number of technical rules with significantly positive Sharpe ratios in five subsample periods 

Subsample 1991-1996 1997-2001 2002-2007 2008-2011 2012-2016 

Commodities      

Brent-WTI crude oil 793 86 104 14 11 

Platinum-Gold 6 9 42 51 15 

Platinum-Palladium 19 11 10 16 9 

Corn-Ethanol    9 32 

Equities      

FTSE100-CAC 40 12 22 12 7 18 

Euro Stoxx 50-DAX 8 6 1 12 8 

FTSE100-FTSE250 4 4 5 14 14 

DJIA-Russell 1000 2 6 7 61 6 

S&P500-Russell 2000 12 11 13 5 21 

Russell 1000-Russell 2000 0 25 6 11 7 

Exchange rates      

EUR-CHF 22 3 2 15 1 

CAD-AUD 6 1 8 28 0 

EUR-JPY 26 3 17 7 18 

AUD-ZAR 4 2 7 8 0 

CAD-ZAR 0 2 2 11 4 

This table presents the number of technical rules (out of a total of 18,142) that provide significantly positive Sharpe ratios 

(based on the FDR test) over five subsample periods: 1991-1996, 1997-2001, 2002-2007, 2008-2011, 2012-2016. We 

design the subsample periods based on historical events including, the Maastricht Treaty in 1992, the East Asian currency 

crisis in 1997, the “dotcom” bubble in 1999-2000 and the upcoming 2002 credit crunch, the appearance of euro in 2002 and 

the 2003-2007 energy crisis, the global financial crisis of 2008 and finally the recent crude oil downturn in 2014. Historical 

transaction costs are imposed in returns for the test profitability. 
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Table 6. The predictability and profitability of technical trading rules in the in-sample subsample periods 

 1991-1995  1997-2000  2002-2006  2008-2010  2012-2015  

 #  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

Commodities           

Brent-WTI crude oil 2214 2.11 1204 1.79 2151 2.09 0 1.47 6 1.59 

Platinum-Gold 35 3.02 26 2.57 7 1.39 23 1.13 10 2.15 

Platinum-Palladium 23 3.09 19 1.98 19 2.14 14 2.23 2 0.60 

Corn-Ethanol       8 2.61 22 1.15 

Equities           

FTSE100-CAC 40 15 1.71 48 1.18 12 1.43 7 1.72 10 1.56 

Euro Stoxx 50-DAX 45 1.31 6 1.53 10 1.62 26 1.46 6 1.47 

FTSE100-FTSE250 60 1.61 1 0.74 5 1.56 47 1.44 14 1.17 

DJIA-Russell 1000 8 1.14 24 1.80 36 1.19 8 2.03 12 1.03 

S&P500-Russell 2000 39 2.47 11 2.41 19 2.56 7 2.09 31 1.08 

Russell 1000-Russell 2000 24 1.09 43 1.78 2 0.67 8 1.40 115 0.99 

Exchange rates           

EUR-CHF 32 2.10 7 1.10 4 1.14 20 1.61 11 1.07 

CAD-AUD 28 2.61 2 1.11 7 1.67 4 1.49 0 1.08 

EUR-JPY 52 3.60 19 1.74 13 1.91 11 2.17 5 1.43 

AUD-ZAR 1 1.22 3 1.15 10 0.88 7 1.21 2 0.64 

CAD-ZAR 0 1.52 2 0.71 6 1.77 8 1.24 5 1.45 

We report the in-sample performance of FDR portfolios of significant rules for each pair as those computed by using 70% of the available data for each subperiod. 

We implement the FDR test to select the technical rules with significantly positive performance and to construct equally weighted portfolios of the significant rules 

for each pair. We considered the Sharpe ratio as performance metric and 10% of false rejections. We also impose real historical transaction costs in the returns of 

total 18,412 technical rules. “#predictive rules” denote the number of technical rules generating significantly positive Sharpe ratios under the FDR test. “Sharpe 

ratio” indicates the annualized Sharpe ratio of each FDR portfolio of significant rules employed on each pair. 
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Table 7. Out-of-sample annualized Sharpe ratio of the FDR portfolio and the best significant in-sample rules 

 1996  2001  2007  2011  2016  

 FDR port. Best rule FDR port. Best rule FDR port. Best rule FDR port. Best rule FDR port. Best rule 

Commodities           

Brent-WTI crude oil 1.14 1.79 1.72 1.06 -0.01 -1.21 0.00 0.00 0.00 0.00 

Platinum-Gold -0.59 1.23 -0.69 -1.19 -0.25 -1.24 1.83 -0.81 0.63 0.56 

Platinum-Palladium 0.77 -1.08 0.65 -0.77 -0.49 1.38 0.24 0.61 -0.22 -0.26 

Corn-Ethanol       0.22 -0.01 0.48 -0.02 

Equities           

FTSE100-CAC 40 1.28 0.00 -0.91 -1.26 -0.81 0.00 -1.47 -1.18 -1.21 -1.11 

Euro Stoxx 50-DAX 0.08 -1.34 -0.94 -0.34 0.00 0.00 -0.44 0.29 -0.06 0.47 

FTSE100-FTSE250 -2.23 0.00 0.83 0.83 -0.15 0.00 0.09 0.89 -0.93 0.34 

DJIA-Russell 1000 -1.11 -1.06 -0.94 -1.16 -0.95 0.00 -0.10 -0.72 -1.01 -1.02 

S&P500-Russell 2000 -1.04 -0.41 0.22 0.86 1.48 0.00 0.28 0.78 -0.83 -0.82 

Russell 1000-Russell 2000 -1.48 0.73 -0.16 0.28 0.00 0.00 -0.20 0.00 -0.49 -0.57 

Exchange rates           

EUR-CHF 1.32 0.00 -0.07 -1.09 0.73 0.00 1.00 -0.86 0.15 -0.81 

CAD-AUD -0.64 1.46 0.82 0.82 0.81 0.52 -0.26 1.17 0.00 0.00 

EUR-JPY 1.01 1.07 0.85 1.15 0.47 0.59 -0.92 -1.85 0.70 0.00 

AUD-ZAR -1.03 -1.03 0.88 0.88 -0.43 -0.02 0.00 0.00 -0.98 -0.98 

CAD-ZAR 0.00 0.00 0.00 0.00 -1.88 -0.54 0.00 0.00 -0.43 0.00 

We report out-of-sample annualized Sharpe ratio for the last year of each subperiod based on the FDR portfolios of significant rules and the best-predictive 

rule for each pair as those computed in the in-sample testing of each subperiod covering 70% of the dataset. The best rules are defined as technical rules 

providing the highest Sharpe ratio among all trading rules in the in-sample and under the 10%-FDR test. We impose historical transaction costs in 

computation. 
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Table 8. The predictability and profitability of technical trading rules in the in-sample subsample periods under the HMR approach 

 1991-1995  1997-2000  2002-2006  2008-2010  2012-2015  

 #  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

#  predictive 

rules 

Sharpe 

ratio 

Commodities           

Brent-WTI crude oil 7 1.94 2 1.94 31 1.96 0 1.09 1 0.68 

Platinum-Gold 0 0.49 0 0.56 0 0.53 0 1.09 0 0.79 

Platinum-Palladium 0 0.52 1 0.85 0 0.79 0 1.04 0 0.68 

Corn-Ethanol       2 0.75 0 0.73 

Equities           

FTSE100-CAC 40 1 0.49 0 0.76 2 0.63 0 0.75 0 0.52 

Euro Stoxx 50-DAX 1 0.65 0 0.54 0 0.64 0 0.71 0 0.78 

FTSE100-FTSE250 0 0.55 0 0.76 0 0.51 5 0.88 0 0.83 

DJIA-Russell 1000 1 0.68 0 0.87 1 0.74 0 1.12 0 0.91 

S&P500-Russell 2000 4 0.97 0 0.81 1 0.47 0 0.69 0 0.25 

Russell 1000-Russell 2000 0 0.78 3 1.27 1 0.48 4 0.82 2 1.27 

Exchange rates           

EUR-CHF 2 0.91 0 0.52 0 0.24 0 0.77 4 0.65 

CAD-AUD 3 1.98 0 0.55 1 0.47 3 1.02 0 0.52 

EUR-JPY 0 0.76 0 0.59 1 1.19 2 1.73 0 1.33 

AUD-ZAR 3 1.14 1 0.91 0 0.72 1 1.26 0 0.45 

CAD-ZAR 1 0.94 0 0.55 0 0.64 0 0.58 0 0.60 

We report the in-sample performance of FDR portfolios of significant rules for each pair under the half-time of mean reversion approach as those computed by 

using 70% of the available data for each subperiod. We implement the FDR test to select the technical rules with significantly positive performance and to construct 

equally weighted portfolios of the significant rules for each pair. We considered the Sharpe ratio as performance metric and 10% of false rejections. We also impose 

real historical transaction costs in the returns of 400 contrarian technical rules. “#predictive rules” denote the number of technical rules generating significantly 

positive Sharpe ratios under the FDR test. “Sharpe ratio” indicates the annualized Sharpe ratio of each FDR portfolio of significant rules employed on each pair. 
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Table 9. Out-of-sample annualized Sharpe ratio of the FDR portfolio and the best significant in-sample rules under  

the half-time mean of reversion approach 

  1996  2001  2007  2011  2016  

 Median 

HMR 

FDR 

port. 

Best rule FDR 

port. 

Best rule FDR 

port. 

Best rule FDR 

port. 

Best rule FDR 

port. 

Best rule 

Commodities            

Brent-WTI crude oil 10 0.36 -0.47 1.05 1.35 0.11 0.07 0.00 0.00 0.00 0.00 

Platinum-Gold 201 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Platinum-Palladium 160 0.00 0.00 0.15 0.15 0.00 0.00 0.00 0.00 0.00 0.00 

Corn-Ethanol 49.5       -0.89 -0.89 0.00 0.00 

Equities          0.00 0.00 

FTSE100-CAC 40 275 0.28 0.28 0.00 0.00 -0.73 -0.73 0.00 0.00 0.00 0.00 

Euro Stoxx 50-DAX 167 0.51 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FTSE100-FTSE250 416 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.43 0.00 0.00 

DJIA-Russell 1000 310 0.00 0.00 0.00 0.00 -0.21 -0.21 0.00 0.00 0.00 0.00 

S&P500-Russell 2000 234 1.32 1.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Russell 1000-Russell 2000 225 0.00 0.00 0.00 0.00 -0.88 -0.88 0.89 0.89 0.00 0.00 

Exchange rates            

EUR-CHF 532 0.92 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.29 

CAD-AUD 140 -0.93 -1.21 0.00 0.00 0.73 0.73 0.00 0.00 0.00 0.00 

EUR-JPY 454 0.00 0.00 0.00 0.00 -0.36 -0.36 -1.80 -1.80 0.00 0.00 

AUD-ZAR 197 1.14 1.14 0.00 0.00 0.00 0.00 -0.65 -0.65 0.00 0.00 

CAD-ZAR 84 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

We report out-of-sample annualized Sharpe ratio for the last year of each subperiod based on the FDR portfolios of significant rules and the best-predictive rule for 

each, under the half-time of mean reversion approach as those computed in the in-sample testing of each subperiod covering 70% of the dataset. The best rules are 

defined as technical rules providing the highest Sharpe ratio among all trading rules in the in-sample and under the 10%-FDR test. We impose historical transaction 

costs in computation. 
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Table 10. Out-of-sample performance of technical trading portfolios based on the annualized Sharpe ratio 

 1996  2001  2007  2011  2016  

FDR method Sharpe 

ratio 

CAGR% Sharpe 

ratio 

CAGR% Sharpe 

ratio 

CAGR% Sharpe 

ratio 

CAGR% Sharpe 

ratio 

CAGR% 

Commodities portfolio 1.16 4.36 1.73 6.44 -0.11 -0.21 1.02 1.11 -0.19 -0.51 

Equities portfolio -1.57 -0.45 0.36 0.23 0.25 0.01 -1.23 -0.24 -1.01 -0.44 

FOREX portfolio -0.67 -0.14 0.98 0.26 -0.89 -0.16 0.83 0.66 -0.94 -0.35 

Global portfolio 0.83 1.04 1.82 2.30 -0.20 -0.11 1.13 0.81 -0.50 -0.42 

           

Best rule           

Commodities portfolio 1.56 8.37 -0.11 -0.82 -0.55 -1.33 0.25 0.60 -0.08 -0.35 

Equities portfolio -0.61 -0.63 0.54 0.72 0.00 0.00 -0.59 -0.39 -0.98 -0.45 

FOREX portfolio 1.17 0.43 0.72 0.37 0.49 0.48 -1.10 -2.40 -0.98 -1.44 

Global portfolio 1.43 2.57 0.06 0.13 -0.32 -0.42 -0.83 -1.08 -0.59 -0.73 

           

HMR FDR port.           

Commodities portfolio 0.86 4.32 1.05 7.80 0.11 0.43 -0.89 -0.34 0.00 0.00 

Equities portfolio 1.31 0.18 0.00 0.00 -1.16 -0.41 0.29 0.18 0.00 0.00 

FOREX portfolio -0.14 -0.04 0.00 0.00 -0.31 -0.45 -1.37 -1.56 0.32 0.03 

Global portfolio 0.57 1.78 1.05 7.80 -0.04 -0.09 -1.31 -0.56 0.32 0.03 

We report out-of-sample annualized Sharpe ratio for the last year of each subperiod and for portfolios composed of the corresponding FDR portfolios of 

significant rules, the best-predictive rule and the FDR portfolios constructed under the half-time of mean reversion approach for each pair as those 

computed in the in-sample testing of each subperiod covering 70% of the dataset. The best rules are defined as technical rules providing the highest Sharpe 

ratio among all trading rules in the in-sample and under the 10%-FDR test. We impose historical transaction costs in computation. 
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Fig.1.  FDR portfolios decomposition for each pair and across all subperiods. The horizonal lines split the different families of trading rules, which add up 

in 18,412 trading rules in total. We display the categories of technical trading rules in the following order: RSIs, filter rules, moving averages, support and 

resistance rules, channel breakouts, Bollinger bands and CCIs. 
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CHAPTER 5 

CONCLUSION 

 

This thesis studies the predictability and excess profitability of financial markets 

employing up-to-date quantitative techniques derived from the fields of machine 

learning and data science, towards an effort to discover new scientific theories by 

analysing big and complex data patterns and correlations. The first objective is to 

review the financial market predictability by revisiting methods and trading strategies 

commonly exercised by trading desks to define up to what level the markets are 

predictable, while we try to reconcile our findings with existing market efficiency 

theories at the same time. The second and main aim is to produce new insights in the 

empirical dynamics of asset pricing. We think that we achieve this in two ways, 

firstly by investigating new technologies, such as machine learning and artificial 

intelligence, highly appraised by major market players (J.P. Morgan, Goldman Sachs, 

CITADEL, McKinsey) for dominating the functioning of financial marketing over the 

next years. Secondly by revisiting statistical inference in big data sets consisting of 

numerous significant trading strategies. Recent studies highlight the necessity of new, 

modified statistical inference approaches when various significant variables occur 

(see Harvey, 2017; Cochrane, 2011; among others). We apply adjusted multiple 

hypothesis testing frameworks, adjusting for data snooping issues, while establishing 

a good balance between Type I and Type II errors, in order to select significantly 

predictive trading rules. We present three essays trying to meet the above aims and 

motivations in compliance with the regulations of this thesis.  

In the first essay, we investigate the existence of nonlinearities in the evolution of 

the implied volatility by providing evidence on the daily settlement of three U.S. 

market volatility indices, namely the VIX, VXN and VXD. We develop two 

semiparametric methodologies as a blend of the HAR specification of Corsi (2009) 

and one of the most promising heuristic techniques, a hybrid genetic algorithm–

support vector regression (GASVR) model. We choose the HAR process due to its 

long-range dependence and persistent nature in modelling implied and realized 

volatilities. The first semiparametric approach involves an extra optimization term in 

the HAR model, in which the GASVR algorithm tries to optimize the three volatility 

components of the HAR specification. A residual analysis is also executed in a 
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second specification, expressing potential asymmetric effects, which may be 

prevalent among the residuals. At this stage, we applied a heuristic regression 

between the residuals of HAR and its lagged values to test for further persistence.  

The empirical findings indicate that the HAR-GASVR(res) approach produces 

more accurate predictions than those of its competitors by a significant margin. The 

HAR-GASVR model achieves the second-best performance. We perform robustness 

checks on the results by applying the SPA test (Hansen, 2005), the MCS procedure 

(Hansen et al., 2011) and the Giacomini and White (2006) test. The forecasting 

superiority of hybrid models confirms that the VIX, VXN and VXD indices exhibit 

nonlinear characteristics, while the also significant predictability of the HAR 

processes is justified by their persistent nature. 

Finally, we employ the produced forecasts to exercise simple trading strategies on 

VIX and VXN futures contracts, as well as an S&P 500 VIX midterm futures index 

ETN for the economic evaluation of the methodologies proposed. The generated 

returns reveal that the HAR processes optimized using the GASVR algorithm, are 

capable to some extent of yielding statistically significant profits in normal 

conditions, not only in the case of trading the futures contracts, but also when we 

trade the ETN, in which case we achieve much higher gains due to their lower 

investor fee rates.  

In the second essay, we reassess the evidence of the historical success of technical 

analysis by exercising the universe of technical trading rules of Sullivan et al., (1999), 

in the trending crude oil market. In particular, we try to investigate whether technical 

trading indicators capturing trends and momentum could benefit from the severe 

fluctuations characterizing the crude oil market lately. We focus our study on the 

crude oil futures and the United States Oil fund (USO), developed to track the daily 

price movements of West Texas Intermediate ("WTI") light, sweet crude oil. 

Evidence of the rules’ performance on crude oil futures as well as the USO in an 

in-sample simulation demonstrates that during periods of dramatic crude oil price 

movements, more than half of the rules demonstrate a considerable predictability. 

However, the corresponding p-values of the best rules of the bootstrap reality check 

(BRC) test of White (2000) are not statistically significant most of the time, even 

though their corresponding performance metrics distinguish them as outstanding 
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trading opportunities. We also endogenously incorporate transaction costs in both the 

cases of crude oil futures contracts and the USO, since trading rules’ frequent signals, 

might neutralize superior returns when transaction costs are considered. However, the 

universe of technical trading rules still retains its profitability, although their 

performance shows a decay.  

In terms of statistical inference, we employ two of the most powerful techniques 

accounting for data snooping to identify significantly outperforming trading 

strategies. The false discovery rate (FDR) approach of Barras et al., (2010) and the k-

familywise error rate (k-FWER) methodology developed by Romano and Wolf 

(2007) both controlling for false rejections. We conclude that both specifications 

perform equally well, while they select a sufficient amount of rules to better diversify 

against model uncertainty than their predecessors. 

We construct portfolios of significant rules using the FDR and k-FWER methods, 

by utilizing only past data in an in-sample period, while we assess their performance 

out-of-sample in a persistence analysis. The results reveal no persistent nature to the 

rules’ performance, contrary to the very healthy in-sample results. However, and 

consistent with the Adaptive Market Hypothesis, tiny profits can be achieved in 

specific periods. 

Finally, in the third essay, we revisit pairs trading by utilizing technical trading 

rules to predict the prices movements of formatted spreads based on cointegration 

assumptions. We construct 18,412 technical trading rules and we examine their 

predictability and excess profitability across a large set of ‘famous’ commodity, 

equity and currency pairs, being actively traded by statistical arbitrageurs, in long 

sample periods. Our technical trading rules are separated in momentum and 

contrarian classes. We also adopt the FDR method as a multiple hypothesis testing 

tool, which allows us to perform accurate statistical inferences in large data sets 

preserving against data mining issues. 

Empirical evidence indicates significant predictability of technical analysis for 

most of the spreads considered, especially in terms of Sharpe ratio metrics, with 

commodity spreads being in general more predictable compared to the equity and 

currency ones. Furthermore, the generated returns are robust to even conservative 

one-way transaction costs in a break-even analysis. We also argue previous 

assumptions, which mention that pairs trading returns are explained by contrarian 
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principles only. A five subperiod out-of-sample analysis reports the diminish of 

technical analysis’ excess profitability over time maybe due to increased hedge fund 

activity. However, specific commodity spreads retain an encouraging performance 

even during recent periods. 

A temporarily no-fully-rational investor’s behaviour or the Adaptive Market 

Hypothesis may provide a possible explanation of abnormal returns achieved using 

technical trading rules on certain spreads and periods. The above theories assume that 

investors can benefit from arbitrage opportunities arising through time, and therefore 

make them diminish as soon as the overall market learns and milks the profitable 

trading strategies until new opportunities arise again in evolutionary cycles. 
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