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Abstract 

The last two decades have seen the rise of cognitive-training research. Strong claims have 

been made. Roaring refutations have been published. Then again counter-evidence supporting 

the effectiveness of cognitive training has been produced. Definite conclusions are far from 

being drawn. 

Undoubtedly, due to the potential theoretical and practical implications, the idea of 

enhancing cognitive function and, hence, a broad range of other real-life skills by training is 

appealing. However, this idea is at variance with substantial research into the psychology of 

expertise showing that performance in specific tasks relies massively on perceptual 

information. In fact, such information is hardly transferable across different domains. 

To solve these discrepancies, I ran a series of meta-analytic models to examine the 

effects of several types of cognitive training (i.e., chess, music, working memory, video-

game, and exergame training) on cognitive and academic skills in different types of 

populations. None of the five types of cognitive training exerted any meaningful effect on 

any non-trained skill. 

While confirming the previous findings of the research on expertise, these results 

convincingly reject the cognitive-training hypothesis. The lack of generalization across 

different domains of skills acquired by training appears to be a constant in human cognition. 

The program of research of cognitive training has failed. Transfer of skills across loosely 

related domains remains a chimera. 

 

Keywords: cognitive training; expertise; meta-analysis; transfer. 
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Chapter 1: Introduction 

Transfer of learning is something all of us experience in our daily life. Knowledge of 

Samsung smartphones transfers to iPhones. Driving one’s car generalizes to other models of 

cars. Knowing how to cook spaghetti Bolognese is useful for cooking chicken pasta. All these 

are examples of near transfer, that is, the generalization of a set of skills across two (or more) 

domains tightly related to each other. However, another type of transfer has attracted the 

attention of researchers for over a century: far transfer. Far transfer occurs when a set of 

skills generalizes across two (or more) domains that are only loosely related to each other 

(e.g., mathematics and Latin). 

In a seminal article, Thorndike and Woodworth (1901) proposed their common 

elements theory according to which transfer is a function of the extent to which two domains 

share common features. The theory predicts that, while near transfer takes place often, far 

transfer is much less common. This point has been echoed by extensive research into the 

psychology of expertise and skill acquisition. For example, research on chess players has 

established that expert performance relies, to a large extent, on perceptual information such 

as the knowledge of tens of thousands of chunks (i.e., meaningful configurations of chess 

pieces; Chase & Simon, 1973; Sala & Gobet, 2017a). Due to its high specificity, such 

information is hardly transferable to other fields, as predicted by chunking theory (Chase & 

Simon, 1973) and template theory (i.e., an extension of chunking theory; Gobet, 2016; Gobet 

& Simon, 1996). However, research on expertise has also provided convincing evidence that 

experts – such as chess masters and professional musicians – possess, on average, superior 

overall cognitive ability. Importantly, domain-general cognitive abilities (e.g., intelligence, 

processing speed, and working memory) are reliable predictors of success for outcomes such 

as academic achievement (Deary, Strand, Smith, & Fernandes, 2007) and job proficiency 

(Hunter & Hunter, 1984). 
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At this point, I can see the reader waving their hands: this evidence establishes 

correlation, but can we conclude that there is a causal relationship? Does training in 

cognitively demanding activities make people smarter? Is it possible to train domain-general 

cognitive abilities in one domain and hence obtain benefits in a vast number of areas? In 

other words; does far transfer occur? 

The answers to these questions have profound theoretical and practical implications. 

In fact, establishing whether and under what conditions far transfer occurs would represent a 

major contribution to our comprehension of how humans acquire and use knowledge. Also, 

understanding whether and to what extent cognitive ability is malleable to training would 

have huge societal implications. Consider the academic advantages of fostering cognitive 

ability in youth or the benefits of slowing down cognitive decline in adulthood for the global 

economy and public health. Increasing human cognition is thus one of the most influential 

and potentially impacting scientific enterprises in cognitive science. 

Due to the above potential implications, hundreds (if not thousands) of studies have 

investigated the possible far-transfer effects of several types of cognitive training in the last 

two decades. Examples include working memory training, executive function training, spatial 

training, chess instruction, music training, video-game training, exergaming, and brain 

training. The research into the effects of cognitive training has provided mixed results, and no 

agreement among researchers has been reached. A perspicuous example of this divergence of 

opinions is provided by two open letters about the benefits of commercial brain-training 

programs. The first letter, issued by the Stanford Center on Longevity and the Max Planck 

Institute for Human Development, has expressed serious doubts about the ability of brain 

games to enhance overall cognitive ability (“A Consensus on the Brain Training Industry 

from the Scientific Community,” 2014). The impact of such games seems to be task-specific, 

and the effects transfer to similar tasks at best. In other words, people certainly improve their 
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performance in the games they practice (and in similar games), but these benefits may not 

transfer to real-life tasks. The second one, posted on the Cognitive Training Data website 

(www.cognitivetrainingdata.org) and signed by a group of 133 researchers, has claimed that 

specific cognitive-training regimens can benefit overall cognitive function. 

1. Preview of The Dissertation 

Due to the substantial disagreement between studies and researchers, this dissertation 

is aimed at solving the discrepancies in the field by performing several statistical reviews of 

the literature. I will run meta-analyses on some of the key domains in the field of cognitive 

training, namely working memory training, chess instruction, music training, video-game 

training, and exergames. To achieve this goal, I will use a broad range of meta-analytic 

techniques. Meta-analysis comprises a set of statistical procedures for merging, correcting, 

and modelling the results from all the studies concerning a specific topic. Meta-analysis can 

thus estimate the actual size of the effect of a treatment far more reliably than the single 

experiment. Moreover, meta-analysis allows one to calculate the degree of between-study 

variability and test whether such variability is explained by some moderating variables, 

missing studies, and outliers. Put simply, meta-analysis provides the necessary statistical 

tools to account for the contradicting findings in the field of cognitive training. 

Chapter 2 presents the theories of cognitive training and the accounts of the research 

into the psychology of expertise about transferability of skills. Expert performance appears to 

rely, to a large extent, on perceptual information (e.g., chunks). Crucially, such information is 

believed to be hardly transferable across different domains. For instance, there is no evident 

reason why memorizing the configuration of pieces in a particular chess opening helps one to 

learn how to play music or solve a math problem. According to theories of expertise (e.g., 

template theory), the benefits of training do not go beyond the trained tasks. In other words, 

substantial research into the psychology of expertise suggests that far transfer does not occur. 
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To get around the problem of domain-specificity of the training, several researchers have 

proposed that training domain-general cognitive skills is the most direct way to improve in a 

broad range of skills (Strobach & Karbach, 2016; Taatgen, 2016). The idea is simple. 

Cognitive skills such as working memory, focused attention, and fluid intelligence are 

necessary to carry out a wide set of different tasks in many domains. Enhancing these skills 

would necessarily lead to improving individuals’ academic and professional general 

performance. This general hypothesis and its particular variants will be discussed with regard 

to the most common cognitive-training programs. 

Chapter 3 introduces the basic concepts of meta-analysis (e.g., effect sizes, 

publication bias, and detection of outliers) and all the meta-analytic techniques used in the 

following meta-analyses. Understanding the rationale behind these techniques is essential. In 

fact, the meta-analyses included in the present dissertation often provide significantly 

different results compared to previous meta-analytic investigations in the field of cognitive 

training. These discrepancies are mainly due to the use of more precise methods for the 

calculation of the effect sizes and more advanced sensitivity analyses. 

Chapters 4 to 8 present the results of a series of meta-analyses evaluating the effects 

of five types of cognitive-training programs on cognitive ability. All the relevant 

experimental (i.e., treatment) studies will be inserted into a series of meta-analytic models. A 

systematic search strategy and a set of statistical analyses will be adopted to estimate the 

effect sizes and test the robustness of the results (for details, see Chapter 3). 

Chapter 4 reports the findings of a meta-analysis about the effects of working memory 

training on academic achievement, cognitive skills, and performance on working memory 

tasks in typically developing children (Sala & Gobet, 2017b). Chapter 5 is a meta-analysis 

regarding the impact of chess instruction on academic disciplines – such as mathematics and 
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literacy – and several cognitive abilities (e.g., focused attention) in children (Sala & Gobet, 

2016). Chapter 6 studies the effects of music training on children and young adolescents’ 

cognitive and academic skills (Sala & Gobet, 2017c). Chapter 7 presents a broad 

meta-analytical investigation about the impact of the practice of action and non-action video 

game on children, adults, and older adults’ cognitive skills (Sala, Tatlidil, & Gobet, 

submitted-a). In Chapter 8, the effects of exergames – i.e., video games requiring both 

cognitive and physical engagement – on participants’ cognitive skills will be assessed by a 

meta-analysis including all the relevant randomized control trials (Sala, Tatlidil, & Gobet, 

submitted-b). 

Finally, Chapter 9 discusses the theoretical and practical implications of the findings. 

As previously mentioned, establishing whether domain-general cognitive skills can be 

enhanced and, hence, transferred to a broad range of domain-specific skills would have 

profound consequences. A positive result would pave the way for a plethora of practical 

applications in fields such as education, the professions, and cognitive rehabilitation. On the 

other hand, a negative result would provide further corroboration for classical theories of 

expertise and skill acquisition. Most importantly, a negative result would suggest that the lack 

of generalization of skills acquired by training is a constant in human cognition. 
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Chapter 2: Transfer, Expertise, and Cognitive Training 

The question of the alleged benefits of cognitive training is strictly linked to the issue 

of transfer of learning. Transfer of learning occurs when a set of skills acquired in one 

domain generalizes to other domains (e.g., Barnett & Ceci, 2002). It is customary to 

distinguish between near transfer – i.e., the transfer taking place across two domains tightly 

related to each other – and far transfer, where the source domain and the target domain are 

only loosely related to each other. In a seminal article, Thorndike and Woodworth (1901) 

proposed that transfer of learning is a function of the extent to which two domains share 

common features. Thorndike and Woodworth’s (1901) common elements theory thus predicts 

that, while near transfer is fairly common, far transfer is infrequent at best. As a direct 

consequence, the effects of cognitive training are expected to be limited to the trained task 

and other similar tasks. 

1. The Curse of Specificity: The Difficulty of Far Transfer 

Thorndike and Woodworth’s (1901) common elements theory has received robust 

corroboration from research on the psychology of expertise. For example, the research on 

expert chess players has shown that expert performance relies, to a large extent, on domain-

specific perceptual information – such as chunks, that is, perceptual and meaningful 

configurations of elements – acquired in years of training, as proposed by the chunking 

theory and template theory (Chase & Simon, 1973; Gobet & Simon, 1996; Sala & Gobet, 

2017a). 

As proposed by Chase and Simon (1973), expertise in chess is acquired by learning, 

through practice and study, a large number of chunks, which are units of both perception and 

meaning; in chess, chunks consist of constellations of pieces occurring often together in 

masters’ games. Experts’ superiority with meaningful material (game positions in chess) is 
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explained by their ability to rapidly identify patterns present on the board, and retrieve 

chunks from their long-term memory (LTM). 

Template theory (Gobet & Simon, 1996) is an extension of chunking theory. 

According to the theory, chunks that are frequently used in a specific domain can evolve into 

more complex data structures called templates. Templates comprise two parts. The core 

consists of stable information and is comparable to a chunk. The slots consist of variable 

information, and their role is to encode information that occurs regularly but with some 

difference. For example, let a castle-like configuration in a chess position be the template. 

The core of such a template would be the position of the King and the Rook (stable 

information), while the slots would encode the positions of the f, g, and h Pawns (variable 

information). Crucially, due to its computational formulation, the template theory has been 

implemented in a cognitive architecture (CHREST; Gobet, 2016), and its predictions have 

been tested in both computer simulations and human participants (Gobet & Simon, 2000; 

Gobet & Waters, 2003). 

Beyond chess, the chunking mechanism and, hence, perceptual information have been 

found to play an essential role in the acquisition of expertise in a wide range of fields, such as 

music (Knecht, 2003; Sloboda, 1976), programming (Adelson, 1981; Guerin & Matthews, 

1990), and sports (Allard, Graham, & Paarsalu, 1980; Allard & Starkes, 1980; Abernethy, 

Neal, & Konig, 1994; Williams, Davids, Burwitz, & Williams, 1993). As predicted by 

chunking theory (Chase & Simon, 1973) and template theory (Gobet & Simon, 1996), 

perceptual information is scarcely transferable to other fields, or even across subspecialties in 

the same fields (e.g., Bilalić, McLeod, & Gobet, 2009; Rikers, Schmidt, & Boshuizen, 2002), 

because of its high specificity (Ericsson & Charness, 1994; Gobet, 2016). 
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2. Training Domain-General Cognitive Abilities: A Way to Get Around Far Transfer? 

While domain-specific training rarely transfers across domains, some researchers 

have argued that training domain-general cognitive abilities – rather than domain-specific 

skills – can positively affect performance in a wide variety of fields that rely on those 

cognitive abilities. This idea can be considered a modern and more sophisticated version of 

formal discipline theory (James, 1890). According to formal discipline theory, cognition 

consists of a set of domain-general abilities (e.g., reasoning, memory, and concentration) that 

are thought to be malleable to training. 

One theoretical foundation of the cognitive-training hypothesis is neural plasticity, 

that is, the ability of the neural system to adapt and modify under the pressure of the 

environment (Strobach & Karbach, 2016). Cognitive training is thought to lead to changes in 

the neural system, which, in turn, are supposed to account for the improvements on cognitive 

tests (Johnson, Munakata, & Gilmore, 2002; Karbach & Schubert, 2013). Another element in 

favour of the putative broad effects of cognitive training is that domain-general cognitive 

abilities correlate with performance in a wide variety of domain-specific skills. For example, 

fluid intelligence predicts academic achievement (Deary et al., 2007; Rohde & Thompson, 

2007) and general intelligence is positively associated with job proficiency (Hunter & 

Hunter, 1984; Hunter, Schmidt, & Le, 2006). Thus, it is plausible to suggest that fostering 

overall cognitive ability by training affects people’s academic and professional lives 

positively. 

According to Taatgen (2016), there are two ways to train domain-general cognitive 

abilities: (a) deliberately training the particular skill(s) by practicing cognitive tasks (e.g., n-

back in working memory training); or (b) engaging in cognitively demanding activities (e.g., 

playing chess in order to train spatial working memory and planning). While in the former 

case the improvement of general cognitive abilities is a direct consequence of training these 
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abilities, in the latter case it is the by-product of learning domain-specific skills. Either way, 

the enhancement of domain-general cognitive abilities is supposed to improve one’s 

performance in activities requiring these cognitive abilities. Like the theories of expertise, 

cognitive-training theories acknowledge the fundamental role of domain-specific information 

in skill acquisition and expert performance. However, enhancing overall cognitive function is 

thought to facilitate and accelerate the acquisition of domain-specific skills in a broad range 

of areas. In other words, cognitive-training may make people smarter, and smarter people 

learn faster and more easily. 

2.1 Mixed Effects and The Problem of Design Quality 

Both methods have been extensively investigated. Research into working memory 

(WM) is a perfect example of the direct training of a particular cognitive ability. A classical 

result in cognitive psychology is that WM capacity strongly correlates with fluid intelligence 

(Kane, Hambrick, & Conway, 2005). Searching for a possible causal relationship, Jaeggi, 

Buschkuehl, Jonides, and Perrig (2008) tested the effects of WM training on a test of fluid 

intelligence (Raven’s Progressive Matrices) in a sample of healthy adults. The treated 

participants showed a significant improvement compared to the control group. Following this 

experiment, the research has been extended to the effects of WM training on other cognitive 

abilities (e.g., cognitive control and spatial cognition) and academic achievement (e.g., 

mathematics, literacy). Despite the initial promising results, other studies have challenged the 

idea that WM training fosters a broad range of cognitive abilities (for a review, see Shipstead, 

Redick, & Engle, 2012). The topic is still lively debated, and no definitive conclusion has 

been reached. 

When the focus shifts to the potential far-transfer effects of engaging in cognitively 

demanding activities, the story remains essentially unaltered. For example, the research on 

chess training has reported mixed results. While some authors express optimism about the 
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capability of chess to enhance cognitive abilities and academic achievement (e.g., Aciego, 

García, & Betancort, 2012; Taatgen, 2016), others seem more sceptical (e.g., Gobet & 

Campitelli, 2006; Sala, Foley, & Gobet, 2017). The same applies to the field of music 

training (for a review, see Miendlarzewska & Trost, 2013), video game training (e.g., Green 

et al., 2017; Redick, Unsworth, Kane, & Hambrick, 2017), brain-training (e.g., Anguera et 

al., 2013; Simons et al., 2016), and exergames (e.g., Mirelman et al., 2016; Stanmore, Stubbs, 

Vancampfort, de Bruin, & Firth, 2017). 

The quality of the design may be a major source of such between-study variability. In 

the present dissertation, I examine two design-related features: (a) random (or non-random) 

allocation of the participants to the study groups and (b) type of control group (active or 

passive). 

Randomization is essential to control for every potential difference at baseline. For 

example, non-random allocation may lead to differences between experimental and control 

groups in pre-test scores. In turn, such differences often produce statistical artefacts such as 

positive effects due to regression to the mean at post-test. In other words, the lack of 

randomization can inflate the effect size. 

The type of control used to assess the effect of a particular treatment is important too. 

Researchers agree that passive control groups (i.e., no-contact or business-as-usual control 

groups) are not sufficient to establish the true impact of treatments (e.g., Moreau, Kirk, & 

Waldie, 2016). In fact, passive control groups do not control for non-specific factors such as 

placebo effects because simply belonging to a treatment group often affects behaviour. 

Conversely, the use of control groups receiving an alternative treatment (i.e., active control 

groups) contributes to rule out potential placebo effects. It is thus reasonable to expect that 
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comparing experimental groups to active control groups provides, on average, smaller effect 

sizes than passive control groups. 

The quality of the study design has a crucial role in determining the size of the 

observed effect of an experimental intervention. Thus, the meta-analyses presented in this 

dissertation examine (when possible) whether type allocation and type of control group are 

moderating variables in the meta-analytical models. 

3. Different Types of Cognitive Training 

I now introduce the most common and studied types of cognitive training. The current 

state of the art and most relevant theories will be briefly discussed. For the detailed reviews, 

see Chapters 4 to 8. 

As already mentioned, there are two possible ways to enhance cognition. The first 

method is to practice cognitive tasks such as n-back tasks in working memory training, 

mental rotation tasks in spatial training, and brain training games. The second method is to 

engage in intellectually demanding activities such chess, music, and video-games to train 

domain-general cognitive abilities. 

3.1 Practicing Cognitive Tasks 

3.1.1 Working Memory Training 

Working memory is the cognitive system used to store and manipulate the 

information necessary to carry out cognitive tasks (Baddeley, 1992). A classical result in 

cognitive psychology is that fluid intelligence correlates with measures of working memory 

capacity (Engle, Tuholski, Laughlin, & Conway, 1999). Moreover, working memory capacity 

is also associated with measures of cognitive control such as the Stroop task (Kane & Engle, 

2003), the go/no-go task (Redick, Calvo, Gay, & Engle, 2011), and the dichotic-listening task 

(Conway, Cowan, & Bunting, 2001). 
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WM capacity is also related to academic skills (e.g., Conway & Engle, 1996; Peng, 

Namkung, Barnes, & Sun, 2016), and plays a fundamental role in cognitive development. 

Children with reading difficulties (Swanson, 2006), mathematical disorders (Passolunghi, 

2006), attention deficit/hyperactivity disorder (ADHD; Klingberg et al., 2005), and language 

impairment (Archibald & Gathercole, 2006) often suffer from deficits in working memory 

capacity. 

Several researchers have thus proposed that increasing working memory capacity by 

training can enhance fluid intelligence (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008) and 

boost cognitive control (Chein & Morrison 2010; for details, see 1. Introduction in Chapter 

4). In turn, such an improvement is thought to transfer to other subject areas such as academic 

achievement and professional performance. 

These hypotheses have been tested extensively. A vast body of research has been 

produced to determine whether working memory training can enhance fluid intelligence and, 

more generally, overall cognitive ability. Despite such impressive amount of experimental 

evidence, no definite conclusion has been reached. Also, the many meta-analyses and 

systematic reviews that have dealt with the topic have provided opposite results. While some 

of these reviews support the idea that WM training is a valuable tool for increasing fluid and 

enhancing overall cognitive function (Au et al., 2015; Au, Buschkuehl, Duncan, & Jaeggi, 

2016; Klingberg, 2010; Morrison & Chein, 2011), others seem far more pessimistic 

(Dougherty, Hamovits, & Tidwell, 2016; Melby-Lervåg & Hulme, 2013, 2016; Melby-

Lervåg, Redick, & Hulme, 2016; Schwaighofer, Fischer, & Buhner, 2015; Soveri, Antfolk, 

Karlsson, Salo, & Laine, 2017). 
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3.1.2 Brain Training 

Brain training usually refers to those programs that convert cognitive tasks into 

computerized games (e.g., Lumosity®). The aim of brain-training programs is to enhance 

overall cognitive ability by practicing cognitive tasks. The basic assumption is that the 

improvements in the trained tasks generalize to real-life skills such as academic and 

professional attainment. In addition, this transfer is thought to be facilitated by the 

gamification of cognitive tasks that may encourage one’s engagement in training such tasks 

(Anguera et al., 2013). 

The research into the effects of brain training has mainly focused on adults and older 

adults in both clinical (e.g., schizophrenia, Alzheimer’s disease, and brain trauma) and 

non-clinical populations (healthy participants). Despite the claims of the companies involved 

in the business, research has provided only modest evidence for the alleged cognitive benefits 

of brain-training programs. For example, in an influential study by Anguera et al. (2013), a 

small group of older adults played NeuroRacer, a multitasking brain-training program, and 

were compared to an active control group (single-task condition of the program) and a 

passive control group (no-contact). The multitasking group significantly outperformed the 

active control group in only three out of 11 cognitive tests. This outcome suggests that the 

treatment exerted little or no effect on the participants’ overall cognitive function. 

 A recent systematic review of the literature (Simons et al., 2016) has provided further 

support to the hypothesis according to which brain-training programs do not provide any real 

benefit. The review points out that many brain-training studies lack proper controls, include 

very small samples (e.g., N < 20 per group), and do not report all the results of the outcome 

measures. Therefore, no definite conclusion can be drawn about this type of cognitive 

training until more powerful and better-designed studies are carried out. 
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3.2.2 Spatial Training 

Another, relatively understudied, type of intervention to enhance cognitive ability is 

spatial training. Spatial training includes activities such as 2D and 3D mental rotation, spatial 

reasoning and visualizations (Sorby, 2011). Unlike working memory training and brain 

training, this type of cognitive-training intervention is often intended to enhance 

mathematical ability rather than overall cognitive function. However, given the difficulty of 

far transfer to take place, why should spatial training increase mathematical ability? 

Problem solving in mathematics and STEM disciplines largely relies on spatial ability 

(Stieff & Uttal, 2015). Mechanical physics and engineering deal with movement and 

interaction between elements in a geometrical space. Mathematicians work with functions 

represented in 2D and 3D space. More generally, several branches of mathematics – 

necessary to master disciplines such as physics and engineering – require the manipulation of 

spatial relationships (e.g. geometry, calculus, topology). 

The tight relation between spatial ability and mathematical ability has been 

established empirically. These two separate constructs are highly correlated to each other 

(Mix et al., 2016). Spatial abilities – such as mental rotation ability (Mix et al., 2016; Wai, 

Lubinski, & Benbow, 2009) – are thus strong predictors of achievement in mathematics, in 

children (Lauer & Lourenco, 2016), undergraduate and doctorate students (Wai et al., 2009). 

Thus, several researchers have suggested that training spatial ability causes improvement in 

mathematics achievement. 

Before asking whether spatial training leads to improving mathematical skills such as 

arithmetic or geometry, one has to verify whether spatial ability can be trained. A meta-

analysis carried out by Uttal et al. (2013) suggests that this is the case. Spatial training 

appears to transfer both to the trained tasks and other spatial tasks not directly trained. 
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Crucially, from a practical point of view, spatial ability seems to be malleable enough to be 

significantly boosted by a short-term training (Uttal et al., 2013). 

The evidence supporting the effectiveness of spatial training at improving 

performance on spatial tasks appears to be quite solid. Regrettably, it is not possible to reach 

the same conclusion for non-spatial tasks. The research on spatial training to improve STEM 

achievement has provided promising results, but the number of studies is still relatively 

limited. 

In Hsi, Linn, and Bell (1997), a group of undergraduates improved their attainment in 

an engineering course after attending a voluntary spatial training (3D orthographic 

projections). However, the fact that the sample was self-selected casts serious doubts upon 

the reliability of the outcome. More recently, Sorby (2009) reported that a group of 

undergraduates in engineering with low spatial ability improved their course grades after 

spatial training (Sorby, 2011), whereas a control group with no training did not show any 

amelioration. These positive findings were replicated two years later (Sorby, Casey, Veurink, 

& Dulaney, 2013). Less clear were the results in Miller and Halpern’s (2013) study. They did 

find a moderate positive effect after delivering spatial training, but only in items related to 

Newtonian mechanics. No benefits occurred in other courses. 

The studies mentioned above dealt with university students. Cheng and Mix (2014) 

focused on the effects of short-term (40 minutes) spatial training on children’s basic 

arithmetical ability. The training consisted of 40 minutes of mental rotation and mental 

translation exercises suitable for children (Ehrlich, Levine, & Goldin-Meadow, 2006). The 

treatment group showed a small improvement (approximatively d = 0.20) in the test of 

arithmetic, limited to one particular type of items (missing-term problems). A study by 

Hawes, Moss, Caswell, and Poliszczuk (2015) found no significant effects of mental rotation 
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training on a group of primary school children’s arithmetical ability. Xu and LeFevre (2016) 

reported no transfer from spatial training to a number line task in a sample of kindergarten 

children. Finally, Sala, Bolognese, & Gobet (2017) tested the effects of one-hour mental 

rotation training on a sample of first-, second-, and third-grade children’s arithmetical 

abilities. No significant effect was found overall.   

In sum, the number of studies in this field is still too small to draw definite 

conclusions (or to do a meta-analysis). To date, the evidence suggests that spatial training can 

provide benefits for some specific spatial-related disciplines (e.g., mechanics) rather than 

overall cognitive function. 

3.2 Engaging in Cognitively Demanding Activities 

3.2.1 Chess Training 

Students’ poor achievement in mathematics has been the subject of debate both in the 

United States (Hanushek, Peterson & Woessmann, 2012; Richland, Stigler, & Holyoak, 

2012) and in Europe (Grek, 2009). Researchers and policy makers have investigated 

alternative methods and activities with the purpose of improving the effectiveness of 

mathematics teaching. One such activity is play. The rationale is that, because children are 

highly motivated to play, they could learn important concepts in mathematics (and other 

curricular domains) without realizing it, through implicit learning (Brousseau, 1997); they 

could also acquire general cognitive skills such as concentration and intelligence, which 

would positively affect their school results generally. 

Several authors have argued that chess is an ideal game for educational purposes 

(Bart, 2014; Jerrim, Macmillan, Micklewright, Sawtell, & Wiggins, 2016; Kazemi, Yektayar, 

& Abad, 2012). Chess offers an optimal trade-off between complexity and simplicity, and the 

balance between tactics and strategy is ideal. It combines numerical, spatial, temporal and 

combinatorial aspects. In addition, unlike games such as awalé and Go, the diversity of pieces 
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helps maintain attention – an important consideration with younger children. Altogether, 

these characteristics of chess may foster attention, problem solving, and self-monitoring of 

thinking (i.e., meta-cognition). Finally, there is some overlap between chess and mathematics 

(e.g., basic arithmetic with the value of the pieces, geometry of the board, and piece 

movements), which is an obvious advantage when using chess to foster mathematical skills. 

Thus, like working memory training and brain training, playing chess is meant to enhance 

domain-general cognitive abilities. In turn, these improvements (when any) are thought to 

foster children’s academic achievement in general and mathematical ability in particular. 

In recent years, considerable efforts have been made to validate these ideas 

empirically. Not only has chess instruction been included in the school curriculum in several 

countries, but several educational projects and studies involving chess are currently ongoing 

or have recently ended in Germany, Italy, Spain, Turkey, the United Kingdom, and the 

United States. Even the European Parliament has expressed its interest and positive opinion 

on teaching chess in schools as an educational tool (Binev, Attard-Montalto, Deva, Mauro, & 

Takkula, 2011). If successful, using chess in school for fostering academic achievement 

would shed considerable light on the question of skill acquisition and transfer. 

One psychological mechanism has been regularly proposed for explaining the putative 

effects of chess instruction: being a cognitively demanding activity, chess improves pupils’ 

domain-general cognitive abilities (e.g., intelligence, attention, and reasoning), abilities that 

then transfer to other domains, and therefore benefits a wide set of non-chess-related skills 

(e.g., Bart, 2014). The idea is intuitive and attractive. This view of chess as a cognitive 

enhancer has been mentioned in popular newspapers in the United Kingdom (e.g., Garner, 

2012) and was the key theoretical assumption of a recent large experimental study that took 

place in the United Kingdom (Jerrim et al., 2016). 
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These explanations, albeit lacking detail, are plausible and provide the basis for the 

hypothesis that chess instruction strengthens cognitive abilities that are positively correlated 

to achievements in mathematics. Unfortunately, only a few studies have investigated the 

effects of chess on both cognitive abilities and academic outcomes. The results so far have 

been disappointing (Sala & Gobet, 2017d; Sala, Gobet, Trinchero, & Ventura, 2016; Scholz 

et al., 2008). In brief, the causal mechanisms remain substantially untested. 

With regard to correlational evidence, a recent meta-analysis (Sala et al., 2017) 

reported that chess players outperformed non-chess players in several cognitive skills (e.g., 

planning, numerical ability, and reasoning). The difference between the two groups was 

approximatively half a standard deviation. Another meta-analysis (Burgoyne et al., 2016) 

found positive correlations between chess skill and cognitive abilities such as fluid 

intelligence, processing speed, short-term and working memory (WM) memory, and 

comprehension knowledge. 

However, the positive relationship between chess skill and cognitive ability does not 

necessarily imply that chess instruction enhances cognitive ability. An alternative explanation 

is that individuals with better cognitive ability are more likely to excel and engage in the 

game of chess. To establish causality, one needs to turn attention to studies where instruction 

is under experimental control. This will be the aim of Chapter 5. 

3.2.2 Music Training 

The idea that learning how to play an instrument improves one’s cognitive abilities 

and academic achievement is extremely popular. Music ability is often associated with talent 

and superior cognitive skills. Blogs and newspapers often report enthusiastically on the 

benefits of music for the intellect (e.g., Costandi, 2016; Jaušovec & Pahor, 2017). Even the 

popular TV series The Simpsons has echoed this common belief by defining musical 

instruments as “the way to encourage a gifted child.” 
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However, how is music training supposed to provide such diverse benefits? Learning 

how to play a musical instrument engages executive functions such as cognitive control and 

working memory (Bialystok & Depape, 2009). Also, music training requires focused 

attention and learning complex visual patterns. Schellenberg (2004, 2006) has thus proposed 

that the most likely explanation for the presumed broad set of benefits provided by music 

training is that it enhances individuals’ overall cognitive function and general intelligence. 

These cognitive skills are major predictors of academic achievement (e.g., Deary et al., 

2007), and it might be the case that some domain-specific abilities acquired by music training 

generalize to other non-music skills. 

One further theoretical foundation of the hypothesis according to which music 

training exerts a positive influence on overall cognitive ability is neural plasticity. In fact, 

musicians do exhibit specific anatomical and functional neural patterns. An increased density 

of grey matter in musicians has been observed in areas involved in cognitive skills such as 

auditory localization (right Heschl’s gyrus; Bermudez, Lerch, Evans, & Zatorre, 2009) and 

language production (Broca’s area; Sluming et al., 2002). With regard to functional 

differences, expert musicians seem to show, for example, an enhanced bilateral activation of 

the Rolandic operculum (for a review, see Neumann, Lotze, & Eickhoff, 2016). Probably, 

this activation reflects superior ability in the processing of auditory information (Koelsch, 

Fritz, von Cramon, Müller, & Friederici, 2006). 

The hypothesis that music training induces significant anatomical and functional 

changes in the brain which, in turn, lead to increased cognitive function, seems plausible. 

Also, the improvements in cognitive ability are claimed to be both domain-specific – such as 

superior memory for music-related material (Sala & Gobet, 2017a) – and domain-general 

(e.g., fluid intelligence; Schellenberg, 2004, 2006). 
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Like in chess, a link between superior cognitive ability and music skill does exist. In a 

study by Ruthsatz, Detterman, Griscom, and Cirullo (2008), a group of professional 

musicians outperformed a group of novices in a standardized measure of fluid intelligence 

(Raven’s Progressive Matrices). Also, Lee, Lu, and Ko (2007) found a correlation between 

music skill and working memory. Finally, Schellenberg (2006) reported positive, yet 

moderate, correlations between engagement in musical activities and IQ in a group of 

children and undergraduates. Critically, this positive relationship remained even after 

controlling for parental income and education. This finding was replicated in a more recent 

study concerning 7- and 8-year-old children (Schellenberg & Mankarious, 2012). 

Other correlational studies have shown that music ability is associated with academic 

skills as well. Anvari, Trainor, Woodside, and Levy (2002) found that music perception skills 

correlated with reading abilities in preschool children. Similarly, Forgeard et al. (2008) 

reported that music discrimination skill correlated with phonological processing ability in a 

group of dyslexic and typically-developing children. With regard to mathematical ability, 

Cheek and Smith (1999) found that students who had received private music lessons achieved 

better results in the mathematics portion of the Iowa Test of Basic Skills. In line with the 

latter three studies, Wetter, Koerner, and Schwaninger (2009) reported a positive relationship 

between engagement in musical activities and overall academic attainment. 

3.2.3 Video-Game Training and Exergames 

Along with working memory training, video-game training is the most studied, 

influential, and debated type of cognitive training. It is customary to distinguish between two 

categories of video games: action video games and non-action video games. Since the 

publication of Green and Bavelier’s (2003) seminal article, action video games have attracted 

the attention of many researchers in the field. The practice of action video games such as 

Unreal Tournament 2004 and Call of Duty 2 has been claimed to improve a variety of 
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perceptual and attentional tasks. This improvement seems to occur in both quasi-experimental 

studies – when regular video-game players are compared to non-players –  and experimental 

studies, when non-players are trained with action video games and compared to control 

groups of non-action video game players (e.g., Bejjanki et al., 2014). 

The “learning to learn” theory (Green, Gorman, & Pouget, & Bavelier, 2016) is the 

most influential attempt to explain such results. According to this theory, the practice with 

action video games leads to an improvement in probabilistic inference. It is proposed that 

playing action video games makes people better at using and processing information. Then, 

this ability can be transferred to other tasks (e.g., go/no-go and enumeration tasks). This 

theory thus postulates the existence of a general learning system that can be trained by the 

practice of action video games. Training this system allows one to extract and elaborate 

relevant information from the environment more efficiently and, hence, learn to perform a 

task more quickly. Put simply, action video games are claimed to improve the computational 

ability of the brain in general. 

Non-action video game training, albeit relatively understudied, has been claimed to 

provide some cognitive benefits as well. For example, Okagaki and Frensch (1994) reported 

that playing Tetris improved the spatial abilities in a group of older adolescents. Also, Basak, 

Boot, Voss, and Kramer (2008) found positive effects of the practice of a real-time strategy 

video game (Rise of Nations) on measures of short-term memory and spatial ability in a 

group of older adults. 

However, several studies have challenged the idea that video-game training can 

positively impact on domain-general cognitive ability with regard to both action and 

non-action video games. For example, Terlecki, Newcombe, and Little (2008) found no effect 

of playing Tetris on mental rotation. Similarly, Minear et al.’s (2016) study failed to show 
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any significant improvement in several measures of memory, spatial ability, and fluid 

intelligence in individuals practicing a real-time strategy video game (Starcraft: Brood War). 

The lack of replication of the initial positive results applies to action video-game training as 

well. No significant effect of action video game training was found in cognitive tests such as 

span and n-back tasks, enumeration, and perceptual tasks (e.g., Boot, Kramer, Simons, 

Fabiani, Gratton, & 2008; van Ravenzwaaij, Boekel, Forstmann, Ratcliff, & Wagenmakers, 

2014). Given the inconsistent results in the literature, Oei and Patterson (2013, 2014, 2015) 

have offered an explanation alternative to the “learning to learn” theory. Action video game 

training may foster only those skills necessary to engage in particular video games. This 

hypothesis is consistent with Thorndike and Woodworth’s (1901) common elements theory. 

Several meta-analyses have addressed the question of the effects of video-game 

training on cognitive abilities (Powers & Brooks, 2014; Powers, Brooks, Aldrich, Palladino, 

& Alfieri, 2013; Toril, Reales, & Ballesteros, 2014; Wang et al., 2016). All these 

meta-analyses report positive overall effect sizes suggesting that video-game training (both 

action and non-action) has some impact on cognitive function. However, these meta-analyses 

suffer from several major methodological weaknesses that do not allow us to draw any 

reliable conclusion (for details, see 2. The Meta-Analytical Evidence in Chapter 7).  

A further source of scepticism comes from several recent cross-sectional and 

correlational studies. For example, Gobet et al. (2014) found no differences between a group 

of action video game players and a group of non-players in a flanker task and a change 

detection task. Similar results were obtained in other investigations (e.g., Castel, Pratt, & 

Drummond, 2005; Irons, Remington, & McLean, 2011; Murphy & Spencer, 2009). Finally, 

Unsworth et al. (2015) found near-zero correlations between video game experience and 

several measures of processing speed, WM capacity, and fluid reasoning in a large sample of 

adults. Green et al. (2017) have questioned Unsworth and colleagues’ findings (see also 
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Redick, et al., 2017). The debate is still ongoing, and the question of the alleged cognitive 

benefits of video-game training is yet to be solved. 

3.2.3.1 Exergames 

Exergames are probably the most recent type of cognitive-training programs that has 

been undergone experimental research. Exergames are video games combining cognitive and 

physical training. The rationale behind such games is to exploit the benefits of physical 

exercise (Fabel et al., 2009; Firth et al., 2016; Kempermann et al., 2010), cognitive exercise, 

and trainees’ engagement stemming from the gamification of the tasks (Stine-Morrow et al., 

2014). Examples of such training regimens are interactive dancing, “cyber-cycling,” and 

walking on a treadmill in a virtual environment.  

A recent meta-analysis (Stanmore et al., 2017) has examined the impact of exergames 

on cognitive function and found positive effects. However, this meta-analysis suffers from 

severe flaws that have probably biased the results. This topic is covered in detail in Chapter 8. 
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Chapter 3: Meta-Analytic Techniques 

This chapter summarizes all the techniques used in the meta-analyses (Chapters 4 to 

8). These techniques include formulas to calculate effect sizes, types of meta-analytical, 

moderator and publication bias analyses, and other methods to correct effect sizes. As 

mentioned in Chapter 1, it is necessary to know how these techniques work to understand the 

findings presented in this dissertation. For an extensive discussion of these formulas and 

meta-analytical techniques and models, see Schmidt and Hunter (2015). 

1. Effect Sizes 

The extraction of effect sizes is necessary to compare data from different studies and 

tests. Thus, the correct calculation of effect sizes is fundamental to avoid biased results. For 

the correct calculation of effect sizes in studies with an only-post-test design, the standardized 

means difference (Cohen’s d) was calculated with the following formula: 

𝑑 = (𝑀௘ − 𝑀௖) 𝑆𝐷௣௢௢௟௘ௗ⁄     (1) 

where SDpooled is the pooled standard deviation and Me and Mc are the means of the 

experimental group and the control group, respectively. 

For the studies with a repeated-measure design, the standardized means difference 

was calculated with the following formula: 

𝑑 = (𝑀௚ି௘ − 𝑀௚ି௖) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄    (2) 

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and 

Mg-e and Mg-c are the gain of the experimental group and the control group, respectively. 

For the studies with an ANCOVA design, the standardized means difference was 

calculated with the following formula: 
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𝑑 = (𝑀௔ௗ௝ି௘ − 𝑀௔ௗ௝ି ) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄   (3) 

where SDpooled is the pooled standard deviation of the two standard deviations of the 

unadjusted means, and Madj-e – Madj-c are the adjusted means of the experimental group and 

the control group, respectively. 

When means and standard deviations were not available, t-statistics referring to pre-

post improvements within groups were converted to ds and then subtracted to calculate the 

standardized mean difference between the experimental and control groups. Alternatively, the 

statistics referring to between-group differences at pre- and post-tests were converted to ds 

and then subtracted. The conversion formula was: 

𝑑 = 𝑡×ඥ(𝑁௘ + 𝑁௖) (𝑁௘ × 𝑁௖)⁄    (4) 

where Ne and Nc are the total sample size of the experimental group and control group, 

respectively. 

 The standard error of Cohen’s ds was calculated with the following formula: 

𝑠𝑡. 𝑒𝑟𝑟. = ට
ே

ே೐×ே೎
+

ௗమ

ே×ଶ
    (5) 

where N, Ne, and Nc are the total sample size of the study, experimental group, and control 

group, respectively. 

When correcting for the upward bias, Cohen’s ds were converted into Hedges’s g by 

using the following formula:  

𝑔 = 𝑑 ∗ (1 − ቀ
ଷ

ସ×ேିଽ
ቁ)    (6) 

where N is the sample size of the study. The same correction was applied to standard errors. 
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2. Fixed and Random Effect Models 

Fixed-effect meta-analytic models assume that all the included studies share a 

common effect size. In other words, the true effect is believed to be the same in all the 

studies. Consequently, the difference between the observed effects is due to random error in 

fixed-effect meta-analyses. 

This assumption is not always met. The included studies share a set of common 

features (the inclusion criteria). However, there is generally no reason to assume that the true 

effect is the same across all the studies. More realistically, some factors (e.g., populations’ 

age, duration of interventions, different settings, etc.) may exert an influence on the effect 

sizes. In this case, the overall effect size does not represent a single true effect. Rather, the 

overall effect size is the product of several true effects. 

Given that assuming only one true effect is a severe constraint, random-effect models 

allow the potential occurrence of a distribution of true effect sizes (Borenstein, Hedges, 

Higgins, & Rothstein, 2009). More specifically, every effect size is the combination of its 

true effect and within-study error. The true effect is, in turn, determined by the overall effect 

size and between-study error. Due to their superior flexibility, random-effect models were 

used in all the meta-analyses of the present dissertation. 

2.1 Assessing Heterogeneity 

 As just mentioned, the observed overall effect size is sometimes the mean of a series 

of true effects rather than the true effect. It is thus imperative to evaluate whether between-

study variability is due only to random error or some moderating factor. Moreover, it is 

necessary to estimate the ratio of between-study variability explained by random error and 

moderating factors. 
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To address this issue, meta-analysts use the test of heterogeneity and report the values 

of the I2 statistic (for details, see Schmidt & Hunter, 2015). The I2 statistic refers to the 

percentage of between-study variance due to true heterogeneity and not to random error 

(Higgins, Thompson, Deeks, & Altman, 2003). The higher the value of the I2 statistic, the 

higher the percentage of between-study variance due to true heterogeneity. When I2 is zero, 

between-study error is zero. Consequently, in this case, random-effect models and fixed-

effect models produce the same results. 

2.2 Moderator Analysis 

In the presence of true heterogeneity, moderator analysis (or meta-regression) is run 

to investigate the potential role of several study-related factors, that is, the moderators, in 

determining the size of the effects. This technique is the meta-analytic homologous of linear 

multiple-regression analysis. In fact, while in primary studies the unit of analysis is usually 

the subject, in moderator analysis the unit is the effect size. 

Like independent variables in a regression model, moderators are chosen by the 

researcher to test specific hypotheses and control for potential confounding effects. Put 

simply, the choice of what moderators should be included in the meta-regression model 

should always be theory-driven. 

3. Publication Bias 

Publication bias occurs when studies with small samples and small effect sizes are 

systematically suppressed from the literature. Thus, in the presence of publication bias, 

overall effect sizes tend to be greater than the true effects. There are numerous techniques to 

detect publication bias and estimate a corrected overall effect size. 
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3.1 Trim-and-Fill 

Trim-and-fill analysis (Duval & Tweedie, 2000) estimates the symmetry of a funnel 

plot representing the relation between effect size and standard error. In the presence of 

publication bias, effect sizes are missing from the bottom left part of the funnel plot (small 

effect sizes with high standard error; e.g. Figure 16). That is, when standard error is high, 

larger-than-average effects sizes (those on the bottom right) are more likely to be published 

than smaller-than-average effect sizes (those on the bottom left). The trim-and-fill analysis 

estimates the number of missing studies from the funnel plot and imputes the missing effect 

sizes based on the observed data’s asymmetry to create a more symmetrical funnel plot and 

calculate a corrected overall effect size. 

3.2 PET-PEESE 

PET estimator is the intercept of a weighted linear regression where the dependent 

variable is the effect size, the independent variable is the standard error, and the weight is the 

inverse of the standard error squared. PEESE estimator is obtained by replacing the standard 

error with the standard error squared as the independent variable. If PET suggests the 

presence of a real effect (i.e., intercept different from zero), PEESE estimator must be 

considered as the corrected overall effect size (Stanley & Doucouliagos, 2014). 

3.3 Begg and Mazumdar’s (1994) Rank Correlation Test 

If publication bias occurs, this test assumes that there will be an inverse correlation 

between standard error (which is driven primarily by sample size) and effect size. The rank 

order correlation (Kendall's tau) between the treatment effect and the standard error tells us 

whether publication bias occurs. However, this test does not provide a corrected overall effect 

size. 
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3.4 P-Curve 

P-curve tests the presence of publication bias by analysing the distribution of only 

statistically significant p-values (i.e., ps < .05) associated with the effect sizes (Simonsohn, 

Nelson, & Simmons, 2014). The key assumption of this method is that real effects tend to be 

highly significant (p < .01). Thus, if the p-values distribution is flat or left-skewed (i.e., no 

difference or greater number of large p-values than small p-values), then publication bias is 

likely. By contrast, if the distribution is right-skewed (i.e., more small p-values than large p-

values), then publication bias is unlikely. 

3.5 Egger’s Regression Test 

In this method (Egger, Smith, Schneider, & Minder, 1997), the inverse of the standard 

error of the effect size (i.e., precision) is used as an independent variable in a regression to 

predict the “standardized effect” – i.e., the effect size divided by its standard error. If the 

intercept of this regression is zero, then there is no publication bias. By contrast, a positive 

value for the intercept indicates the presence of publication bias because small-N studies are 

associated with larger effect sizes. 

3.6 Selection Models 

Vevea and Woods’s (2005) selection model analysis estimates four adjusted values by 

pre-weighted functions of p-values’ distributions. These distributions represent different 

patterns of possible publication bias. If all (or most of) the four adjusted values are shown not 

to differ significantly from the overall effect size, then it can be reliably concluded that the 

results are not affected by publication bias (Schmidt & Hunter, 2015). Notably, this analysis 

stays reliable even when the number of effect sizes is modest. 
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4. Statistical Dependence of Effect Sizes 

In the meta-analyses presented in this dissertation, the effect sizes were calculated for 

each dependent variable reported in the studies. For each independent sample, those effect 

sizes referring to the same type of measure (e.g., reaction times) and extracted from the same 

test (e.g., different subscales) were meta-analytically merged into one effect size. This 

procedure was used to calculate more reliable estimates and reduce the number of statistically 

dependent effect sizes in the model (Schmidt & Hunter, 2015). 

For those effect sizes that were statistically dependent and referred to different 

constructs or were extracted from different tests, Cheung and Chan’s (2004) correction for 

statistically dependent samples was applied. This method decreases the weight of dependent 

samples in the analysis by calculating an adjusted (i.e., smaller) N in each meta-analytic 

model. 

The violation of the assumption of statistical independence does not necessarily cause 

a systematic bias in the estimation of overall meta-analytic means. However, the violation of 

the assumption of statistical independence is associated with an underestimation of sampling 

error inflating the variability between studies (Schmidt & Hunter, 2015), with possible 

consequent biases in moderator analysis. 

Therefore, Cheung and Chan’s (2004) method allows one to build more powerful 

models without losing any information from the primary studies, biasing the meta-analytic 

mean, or artificially inflating the degree of heterogeneity. 

5. Techniques for Detecting Outliers 

5.1 Winsorizing 

Winsorizing (Lipsey & Wilson, 2001; Tukey, 1962) is the reduction of extreme values 

to reduce the effect of potential outliers on overall results. The definition of extreme values 
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is, to some extent, subjective and depends on the distribution of the effect sizes. Therefore, 

the major limitation of this procedure is its arbitrariness. 

5.2 Influential Case Analysis 

Viechtbauer and Cheung’s (2010) analysis of influential cases estimates whether 

some effect sizes have a significantly greater impact on the overall effect size compared to 

the other effect sizes in a model. Such impact can be due to the size of the effect or its weight 

(i.e., large sample size). The main advantage of this technique is that influential cases are 

detected via a series of estimated parameters rather than the meta-analyst’s subjective 

judgment.  
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Chapter 4: Meta-Analysis of Working Memory Training 

Rationale for the Meta-Analysis in Chapter 4 

Chapter 4 reports a meta-analysis on the effect of working memory training on 

typically developing children’s cognitive abilities and academic achievement. As mentioned 

in Chapter 2, there is substantial disagreement among researchers about the actual benefits of 

working memory training. Typically developing children are the ideal population to test the 

potential of working memory training as a cognitive enhancer. In fact, a child’s brain tends to 

be more malleable to training than an adult’s one. Assuming that the benefits of cognitive 

training are mediated by neural plasticity, the occurrence of far-transfer effects should be 

more likely in children than adults. Therefore, a null result would represent robust evidence 

against the alleged cognitive benefits of working memory training. 

The studies included in this meta-analysis are listed in Appendix A. 
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1. Introduction 

Transfer of learning occurs when a set of skills acquired in a particular domain 

generalizes to other domains. The occurrence of transfer is either a tacit assumption or a 

deliberate objective of most educational interventions: any learned skills are meant to be 

applied beyond the learning context (Perkins & Salomon, 1994). For example, one’s ability in 

analytic geometry is supposed to generalize to calculus. 

According to Thorndike and Woodworth’s (1901) common element theory, transfer is 

a function of the extent to which two tasks share common features and cognitive elements. In 

accordance with this hypothesis, while near-transfer – i.e., the transfer of skills between 

strictly related domains (e.g., analytic geometry and calculus) – takes place frequently, far-

transfer – i.e., the transfer occurring between source and target domains weakly related to 

each other (e.g., Latin and mathematics) – has rarely been observed (Donovan, Bransford, & 

Pellegrino, 1999). Examples of failed far-transfer include teaching the computer language 

LOGO to improve children’s reasoning skills (De Corte & Verschaffel, 1986; Gurtner, Gex, 

Gobet, Nunez, & Restchitzki, 1990) and, as reported in a recent meta-analysis (Sala & Gobet, 

2016), teaching chess to improve children’s cognitive and academic skills. 

The training investigated in those studies was highly specific (learning a 

programming language and chess, respectively). However, it is possible that boosting a 

domain-general cognitive mechanism is an effective way to improve other cognitive and real-

life skills, such as academic achievement. This assumption is the key principle underlying the 

research on WM training. 

1.1 Working Memory Training 

WM is the cognitive system used to store and manipulate the information necessary to 

carry out cognitive tasks (Baddeley, 1992). Measures of WM capacity, such as the number of 
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items WM can store and the ability to keep information in active memory during interfering 

tasks, correlate positively with fluid intelligence (Engle, Tuholski, Laughlin, & Conway, 

1999) and measures of cognitive control such as the Stroop task (Kane & Engle, 2003), the 

go/no-go task (Redick, Calvo, Gay, & Engle, 2011), and the dichotic-listening task (Conway, 

Cowan, & Bunting, 2001). In addition, WM capacity is related to academic skills such as 

reading comprehension (Conway & Engle, 1996) and mathematical ability (Peng, Namkung, 

Barnes, & Sun, 2016). WM also seems to play a fundamental role in cognitive development. 

Deficits in WM capacity in children are associated with reading difficulties (Swanson, 2006), 

mathematical disorders (Passolunghi, 2006), attention deficit/hyperactivity disorder (ADHD; 

Klingberg et al., 2005), and language impairment (Archibald & Gathercole, 2006). 

Several hypotheses have linked WM to intelligence and academic achievement. It has 

been proposed that WM and fluid intelligence share a common capacity constraint (Halford, 

Cowan, & Andrews, 2007). The amount of information (e.g., the number of items) that can 

be handled in WM is limited. Consequently, the number of interrelationships among elements 

that can be held and manipulated by WM in a reasoning task (e.g., Raven’s progressive 

matrices) is bounded. If such limits are alleviated by training, then an improvement in fluid 

intelligence might occur (Au et al., 2015; Jaeggi, Buschkuehl, Jonides, & Perrig, 2008). 

Crucially, such an improvement is supposed to generalize to subject areas such as 

mathematics or literacy, because fluid intelligence is a key predictor of academic 

achievement (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007). Another 

related hypothesis concerns the role of attentional control processes in both working memory 

and fluid intelligence (Gray, Chabris, & Braver, 2003). Chein and Morrison (2010), for 

example, have suggested that WM training induces positive effects on measures of cognitive 

control (e.g., Go/no-go, Stroop task), which, in turn, boosts performance in other tasks 

outside the domain of WM. Finally, it has been hypothesized that WM training is especially 
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beneficial for individuals with low WM capacity (e.g., children with ADHD or other learning 

disabilities). The idea is simple. If one’s learning difficulties stem from reduced WM 

capacity, then training that specific skill might help to improve academic performance. The 

common assumption underlying these three hypotheses is that WM training boosts domain-

general mechanisms (WM capacity, cognitive control, and attention), and hence enhances 

many other cognitive and academic skills. 

However, in spite of a vast amount of research, no definite conclusion on the putative 

effectiveness of WM training at boosting cognitive skills and academic achievement has been 

reached yet. There is substantial agreement about the existence of near-transfer effects due to 

WM training – such as improvements in measures of verbal and non-verbal WM and short-

term memory. However, while several reviews of the available experimental evidence have 

upheld the idea that WM training is a valuable cognitive enhancement tool (Au et al., 2015; 

Au, Buschkuehl, Duncan, & Jaeggi, 2016; Klingberg, 2010; Morrison & Chein, 2011), others 

have challenged the hypothesis according to which WM training effects substantially transfer 

to other cognitive skills outside the domain of WM (Dougherty, Hamovits, & Tidwell, 2016; 

Melby-Lervåg & Hulme, 2013, 2016; Melby-Lervåg, Redick, & Hulme, 2016; Redick, 

Shipstead, Wiemers, Melby-Lervåg, & Hulme, 2015; Schwaighofer, Fischer, & Buhner, 

2015; Shipstead, Redick, & Engle, 2010, 2012). 

1.2 Working Memory Training in Children 

 Children represent an important population on which to test the ability of WM 

training to boost cognitive and academic skills. During childhood, cognitive ability and 

academic skills are still at the beginning of their development, and, thus, cognitive training is 

likely to be more efficient than in adulthood. In agreement with this idea, research into 

expertise has clearly established that the likelihood of far-transfer is inversely related to the 

level of expertise in a discipline, which needs several years to acquire (Ericsson & Charness, 
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1994; Gobet, 2016). That is, WM training is more likely to improve, for example, a child’s 

basic arithmetic abilities than an undergraduate student’s skill in solving differential 

equations. In fact, while the skill to develop is quite general and based to some extent on 

cognitive ability in the former case, it depends to a large extent on domain-specific 

knowledge in the latter case. Thus, from a theoretical point of view, children are an ideal 

population to test the occurrence of transfer.  

Several recent reviews have addressed the issue of the putative benefits of WM 

training in children, without reaching any agreement. According to Klingberg (2010), WM 

training can be used as an effective remediating intervention. By contrast, Rapport, Orban, 

Kofler, and Friedman’s (2013) meta-analysis reported little or no evidence of amelioration in 

academic achievement in children with ADHD after WM training. In line with Rapport et 

al.’s (2013) results, Redick et al.’s (2015) review showed that WM training did not provide 

any benefit to academic performance in children with ADHD (e.g., Chacko et al., 2014) and 

poor WM (e.g., Ang, Lee, Cheam, Poon, & Koh, 2015), or in typical developing children 

(e.g., Rode, Robson, Purviance, Geary, & Mayr, 2014). 

Evaluating the effects of WM training on children with no learning disability has 

substantial practical and theoretical implications. If a brief training can improve overall 

cognitive ability and academic achievement, the impact of such an intervention on 

educational practices and policies would be profound. Any positive effect of WM training 

would provide an advantage for a vast cohort of individuals, not just for a relatively small 

sub-sample (children with ADHD or children with poor WM). However, it is yet to be 

established whether increasing WM capacity in typically developing (TD) children with no 

WM impairment can enhance academic achievement and cognitive abilities outside the 

domain of WM. The aim of the present study is to quantitatively evaluate the available 

evidence via meta-analysis. 
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1.3 The Present Meta-Analysis 

The present meta-analysis focuses on the putative effectiveness of WM training at 

enhancing cognitive and academic skills in TD children. While several previous meta-

analyses (e.g., Melby-Lervåg & Hulme, 2013; Melby-Lervåg et al., 2016; Schwaighofer et 

al., 2015) included studies dealing with the putative benefits of WM training in TD children, 

no meta-analysis has yet been specifically devoted to this issue.1 

The main purpose of this meta-analysis is to estimate the overall effect sizes obtained 

with WM training with respect to near-transfer (i.e., WM-related outcomes) and far-transfer 

(i.e., outcomes outside the domain of WM). Also, we aimed to test the possible effects of 

several moderators, with particular attention to far-transfer measures (e.g., fluid intelligence, 

cognitive control, and academic achievement measures). Therefore, the meta-analysis 

followed five steps. First, to estimate the presence or absence of near-transfer and far-transfer 

at the end of the intervention, we calculated the overall standardized difference between WM 

training groups and control groups on (a) near-transfer measures (e.g., visuospatial working 

memory, short-term memory) and (b) measures related to abilities outside the domain of WM 

(e.g., fluid intelligence, cognitive control, mathematics).  

Second, we carried out a moderator analysis. As noted in previous meta-analyses 

(e.g., Melby-Lervåg & Hulme, 2013; Schwaighofer et al., 2015), two methodological features 

may be a major source of variability between intervention studies—random assignment to 

groups and the presence of an active control group to control for potential confounding 

                                                           
 

1 Weicker, Villringer, and Thöne-Otto’s (2016) meta-analysis reported several overall effect 

sizes regarding the effect of WM training on TD children’s cognitive abilities such as fluid 

intelligence and processing speed. However, the total sample included only nine studies. 
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effects (e.g., differences at baseline level between experimental and control groups, 

Hawthorne effect). The absence of these features may result in an inflation of the positive 

effects of the training due to confounds such as differences at baseline level, self-selection of 

the treated sample, and placebos. Therefore, we evaluated the potential moderating effects of 

the type of control group (active or passive control group) and the presence of randomization 

for the assignment to the groups. We also investigated the potential moderating effects of the 

age of the participants and the total duration of the training. Third, we focused on the far-

transfer effects and investigated whether WM training is more (or less) successful in boosting 

particular academic/cognitive skills. Fourth, we performed publication bias analyses. Finally, 

we calculated the follow-up overall effect sizes for near- and far-transfer measures. 

2. Method 

2.1 Literature Search 

In accordance with the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 

2009), a systematic search strategy was used to find the pertinent studies. Using several 

combinations of the terms “working memory,” “training,” “cognitive,” “intervention,” and 

“children”, we searched Scopus, ERIC, Psyc-Info, ProQuest Dissertation & Theses, and 

Google Scholar databases to identify all the potentially relevant studies. Also, earlier 

narrative reviews were examined, reference lists were scanned, and we e-mailed scholars in 

the field (n = 13) requesting unpublished studies and inaccessible data. 

2.2 Inclusion/Exclusion Criteria 

The studies were included according to the following six criteria: 

1. The design of the study included an intervention aimed to train working memory 

skills (e.g., verbal working memory, visuospatial working memory); correlational 

and ex-post facto studies were excluded; 
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2. The study presented a comparison between a treated group and at least one control 

group; 

3. During the study, a measure of academic or cognitive skill other than working 

memory was collected; importantly, to assess a genuine near-transfer effect, all 

the measures of performance in the trained WM intervention task were excluded; 

4. The participants in the study were aged three to sixteen; 

5. The participants in the study were TD children without any specific learning 

disability (e.g., ADHD) or borderline cognitive ability (e.g., low IQ, poor working 

memory capacity);2 

6. The data presented in the study (or provided by the author) were sufficient to 

calculate an effect size. 

To identify studies meeting these criteria, we searched for relevant published and 

unpublished articles through April 1, 2016. We found 25 studies, conducted from 2007 to 

2016, that met all the inclusion criteria. These studies included 26 independent samples and 

104 effect sizes (30 for WM-related measures, see Table 1; 74 for non-WM-related measures, 

see Table 2), with a total of 1,601 participants. Finally, a subsample of the included studies (n 

= 6) reported follow-up effects. A total of 30 follow-up effect sizes were computed (6 for 

WM-related measures, see Table 3; 24 for non-WM-related measures, see Table 4), with a 

total of 249 participants.3 The entire procedure is summarized in Figure 1. 

                                                           
 

2 In Shavelson, Yuan, Alonzo, Klingberg, and Andersson (2008), eight participants (out of 37) 

had ADHD or learning difficulties. Since separate results were not available, we calculated 

the effect sizes considering the whole sample of 37 participants. 

3 In Soderqvist and Bergman-Nutley (2015), no post-test assessment was administered 

immediately after the training, but only 24 months later. Thus, we included the effect sizes 
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Figure 1. Flow diagram of the studies included in the meta-analytic review. 

                                                                                                                                                                                     
 

extracted from this study in both the main models and the follow-up models. 
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2.3 Moderators 

We selected five potential moderators: 

1. Random allocation (dichotomous variable): Whether the participants were randomly 

allocated to the groups; 

2. Type of control group (active or passive; dichotomous variable): Whether the WM 

training-treated group was compared to another activity; 

3. Duration of training (continuous variable): The total time of training in hours; 

4. Age (continuous variable): The mean age (in years) of the participants; when the 

mean age was not provided (n = 3) we used either the median age (n = 1) or an age 

estimation based on the school grade (n = 2; e.g., third graders = 9-year-olds); 

5. Domain (categorical variable): This variable, which was inserted only in the far-

transfer model, includes literacy/word decoding, mathematics, science, fluid 

intelligence, crystallized intelligence, and cognitive control.4 

The two authors coded each effect size for moderator variables independently. There was 

no disagreement with respect to Random allocation, Type of control group, and Age. 

Regarding the moderator Duration of training, 87% agreement was obtained. For the 

moderator Domain, the Cohen’s kappa was κ = .95. The authors resolved every discrepancy. 

 

 

                                                           
 

4 These broad categories were built by aggregating different outcomes related to a particular 

domain (e.g., go/no-go task and Stroop task under the category of cognitive control). For all 

the details about the reviewed studies, see Tables S1.1 to S1.4 in the Supplemental material 

available online. 
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Table 1 

Studies and moderators of the 30 near-transfer effect sizes included in the meta-analysis
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Study Age 

Duration of 

training 

Random 

allocation 

Type of 

control group 

Bergman-Nutley 

et al. (2011) - M1 4.27 6.25 Yes Active 

Bergman-Nutley 

et al. (2011) - M2 4.27 6.25 Yes Active 

Henry, Messer, & 

Nash (2014) 7.00 3.00 Yes Active 

Karbach, 

Strobach, & 

Schubert (2015) 8.30 9.33 Yes Active 

Kroesbergen, 

Noordende, & 

Kolkman (2014) 

- M1 5.87 4.00 Yes Passive 

Kroesbergen, 

Noordende, & 

Kolkman (2014) 

- M2 5.87 4.00 Yes Passive 

Kuhn & Holling 

(2014) - S1 9.00 5.00 Yes Passive 

Kuhn & Holling 

(2014) - S2 9.00 5.00 Yes Active 

Kun (2007) - S1 - 

M1 12.84 8.00 Yes Active 

Kun (2007) - S1 - 

M2 12.84 8.00 Yes Active 

Kun (2007) - S2 - 

M1 13.52 14.58 Yes Active 

Kun (2007) - S2 - 

M2 13.52 14.58 Yes Active 

Kun (2007) - S2 - 

M3 13.52 14.58 Yes Active 
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Lee (2014) 9.00 3.00 Yes Active 

Lindsay (2012) 5.49 3.00 Yes Active 

Passolunghi & 

Costa (2016) - S1 

- M1 5.44 10.00 Yes Active 

Passolunghi & 

Costa (2016) - S1 

- M2 5.44 10.00 Yes Active 

Passolunghi & 

Costa (2016) - S2 

- M1 5.42 10.00 Yes Passive 

Passolunghi & 

Costa (2016) - S2 

- M2 5.42 10.00 Yes Passive 

Pugin et al. 

(2015) - M1 13.00 8.05 No Passive 

Pugin et al. 

(2015) - M2 13.00 8.05 No Passive 

Rode, Robson, 

Purviance, Geary, 

& Mayr (2014) 9.00 7.14 Yes Passive 

Shavelson et al. 

(2008) - M1 13.50 14.58 Yes Active 

Shavelson et al. 

(2008) - M2 13.50 14.58 Yes Active 

St Clair-

Thompson, 

Stevens, Huth, & 

Bolder (2010) 6.83 6.00 No Passive 

Studer-Luethi, 

Bauer, & Perrig 

(2016) - S1 8.25 4.50 Yes Active 

Studer-Luethi, 8.25 4.50 Yes Passive 
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Bauer, & Perrig 

(2016) - S2 

Thorell, 

Lindqvist, 

Bergman, Bohlin, 

& Klingberg 

(2008) - S1 4.67 6.25 No Active 

Thorell, 

Lindqvist, 

Bergman, Bohlin, 

& Klingberg 

(2008) - S2 4.67 6.25 No Passive 

Witt (2011) 9.68 7.50 No Passive 
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Table 2 

Studies and moderators of the 74 far-transfer effect sizes included in the meta-analysis
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Study Age 

Duration of 

training Random allocation 

Type of control 

group Domain 

Bergman-Nutley et al. 

(2011) 4.27 6.25 Yes Active Fluid intelligence 

Henry, Messer, & 

Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD 

Henry, Messer, & 

Nash (2014) - M2 7.00 3.00 Yes Active Mathematics 

Horvat (2014) not given not given No Passive Fluid intelligence 

Jaeggi, Buschkuehl, 

Jonides, & Shah 

(2011) - M1 8.98 5.00 No Active Fluid intelligence 

Jaeggi, Buschkuehl, 

Jonides, & Shah 

(2011) - M2 8.98 5.00 No Active Fluid intelligence 

Karbach, Strobach, & 

Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD 

Karbach, Strobach, & 

Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics 

Karbach, Strobach, & 8.30 9.33 Yes Active Cognitive control 
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Schubert (2015) - M3 

Karbach, Strobach, & 

Schubert (2015) - M4 8.30 9.33 Yes Active Cognitive control 

Kroensbergen, 

Noordende, & 

Kolkman (2014) - M1 5.87 4.00 Yes Passive Cognitive control 

Kroensbergen, 

Noordende, & 

Kolkman (2014) - M2 5.87 4.00 Yes Passive Mathematics 

Kuhn & Holling 

(2014) - S1 9.00 5.00 Yes Passive Mathematics 

Kuhn & Holling 

(2014) - S2 9.00 5.00 Yes Active Mathematics 

Kun (2007) - S1 - M1 12.84 8.00 Yes Active Fluid intelligence 

Kun (2007) - S1 - M2 12.84 8.00 Yes Active Science 

Kun (2007) - S2 - M2 13.52 14.58 Yes Active Science 

Lee (2014) - M1 9.00 3.00 Yes Active Literacy/WD 

Lee (2014) - M2 9.00 3.00 Yes Active Literacy/WD 

Lindsay (2012) - M1 5.49 3.00 Yes Active Literacy/WD 

Lindsay (2012) - M2 5.49 3.00 Yes Active Literacy/WD 

Loosli, Buschkuehl, 9.50 2.00 No Passive Fluid intelligence 
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Perrig, & Jaeggi 

(2012) - M1 

Loosli, Buschkuehl, 

Perrig, & Jaeggi 

(2012) - M2 9.50 2.00 No Passive Literacy/WD 

Mansur-Alves & 

Flores-Mendoza 

(2015) - M1 11.17 13.33 Yes Passive Fluid intelligence 

Mansur-Alves & 

Flores-Mendoza 

(2015) - M2 11.17 13.33 Yes Passive Fluid intelligence 

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M1 9.19 10.00 Yes Active Fluid intelligence 

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M2 9.19 10.00 Yes Active Fluid intelligence 

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M3 9.19 10.00 Yes Active 

Crystallized 

intelligence 

Mansur-Alves, Flores- 9.19 10.00 Yes Active Literacy/WD 
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Mendoza, & Tierra-

Criollo (2013) - M4 

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M5 9.19 10.00 Yes Active Mathematics 

Mansur-Alves, Flores-

Mendoza, & Tierra-

Criollo (2013) - M6 9.19 10.00 Yes Active Literacy/WD 

Nevo & Breznitz 

(2014) - M1 8.50 4.80 Yes Active Literacy/WD 

Nevo & Breznitz 

(2014) - M2 8.50 4.80 Yes Active Literacy/WD 

Passolunghi & Costa 

(2016) - S1 5.44 10.00 Yes Active Mathematics 

Passolunghi & Costa 

(2016) - S2 5.42 10.00 Yes Passive Mathematics 

Pugin et al. (2015) - 

M1 13.00 8.05 No Passive Fluid intelligence 

Pugin et al. (2015) - 

M2 13.00 8.05 No Passive Cognitive control 

Pugin et al. (2015) - 13.00 8.05 No Passive Cognitive control 
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M3 

Pugin et al. (2015) - 

M4 13.00 8.05 No Passive Cognitive control 

Rode, Robson, 

Purviance, Geary, & 

Mayr (2014) - M1 9.00 7.14 Yes Passive Mathematics 

Rode, Robson, 

Purviance, Geary, & 

Mayr (2014) - M2 9.00 7.14 Yes Passive Mathematics 

Rode, Robson, 

Purviance, Geary, & 

Mayr (2014) - M3 9.00 7.14 Yes Passive Literacy/WD 

Rode, Robson, 

Purviance, Geary, & 

Mayr (2014) - M4 9.00 7.14 Yes Passive Literacy/WD 

Shavelson et al. 

(2008) 13.50 14.58 Yes Active Fluid intelligence 

Söderqvist & 

Bergman-Nutley 

(2015) - M1 9.85 not given No Passive Literacy/WD 

Söderqvist & 9.85 not given No Passive Mathematics 
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Bergman-Nutley 

(2015) - M2 

St Clair-Thompson, 

Stevens, Huth, & 

Bolder (2010) - M1 6.83 6.00 No Passive Literacy/WD 

St Clair-Thompson, 

Stevens, Huth, & 

Bolder (2010) - M2 6.83 6.00 No Passive Mathematics 

St Clair-Thompson, 

Stevens, Huth, & 

Bolder (2010) - M3 6.83 6.00 No Passive Mathematics 

St Clair-Thompson, 

Stevens, Huth, & 

Bolder (2010) - M4 6.83 6.00 No Passive Mathematics 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M1 8.25 4.50 Yes Active Literacy/WD 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M2 8.25 4.50 Yes Active Mathematics 

Studer-Luethi, Bauer, 8.25 4.50 Yes Active Crystallized 



 

72 
 

& Perrig (2016) - S1- 

M3 

intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M4 8.25 4.50 Yes Active Fluid intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M5 8.25 4.50 Yes Active Cognitive control 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M1 8.25 4.50 Yes Passive Literacy/WD 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M2 8.25 4.50 Yes Passive Mathematics 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M3 8.25 4.50 Yes Passive 

Crystallized 

intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M4 8.25 4.50 Yes Passive Fluid intelligence 

Studer-Luethi, Bauer, 8.25 4.50 Yes Passive Cognitive control 
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& Perrig (2016) - S2- 

M5 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S1 

- M1 4.67 6.25 No Active Cognitive control 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S1 

- M2 4.67 6.25 No Active Cognitive control 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S1 

- M3 4.67 6.25 No Active Fluid intelligence 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S1 

- M4 4.67 6.25 No Active Cognitive control 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S2 4.67 6.25 No Passive Cognitive control 
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- M1 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S2 

- M2 4.67 6.25 No Passive Cognitive control 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S2 

- M3 4.67 6.25 No Passive Fluid intelligence 

Thorell, Lindqvist, 

Bergman, Bohlin, & 

Klingberg (2008) - S2 

- M4 4.67 6.25 No Passive Cognitive control 

Wang, Zhou, & Shah 

(2014) - S1 10.50 6.67 Yes Active Fluid intelligence 

Wang, Zhou, & Shah 

(2014) - S2 10.50 6.67 Yes Active Fluid intelligence 

Wang, Zhou, & Shah 

(2014) - S3 10.50 6.67 Yes Active Fluid intelligence 

Wang, Zhou, & Shah 

(2014) - S4 10.50 6.67 Yes Active Fluid intelligence 



 

75 
 

Witt (2011) 9.68 7.50 No Passive Mathematics 

Zhao, Wang, Liu, & 

Zhou (2011) 9.76 not given Yes Passive Fluid intelligence 

 

 

Table 3 

Studies and moderators of the 6 near-transfer follow-up effect sizes included in the meta-analysis 

Study Age Duration of training Random allocation Type of control group 

Henry, Messer, & Nash 

(2014) 7.00 3.00 Yes Active 

Karbach, Strobach, & 

Schubert (2015) 8.30 9.33 Yes Active 

Pugin et al. (2015) - M1 13.00 8.05 No Passive 

Pugin et al. (2015) - M2 13.00 8.05 No Passive 

Studer-Luethi, Bauer, & 

Perrig (2016) - S1 8.25 4.50 Yes Active 

Studer-Luethi, Bauer, & 

Perrig (2016) - S2 8.25 4.50 Yes Passive 
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Table 4 

Studies and moderators of the 24 near-transfer follow-up effect sizes included in the meta-analysis 

Study Age Duration of training Random allocation 

Type of control 

group Domain 

Henry, Messer, & 

Nash (2014) - M1 7.00 3.00 Yes Active Literacy/WD 

Henry, Messer, & 

Nash (2014) - M2 7.00 3.00 Yes Active Mathematics 

Jaeggi, Buschkuehl, 

Jonides, & Shah 

(2011) - M1 8.98 5.00 No Active Fluid intelligence 

Jaeggi, Buschkuehl, 

Jonides, & Shah 

(2011) - M2 8.98 5.00 No Active Fluid intelligence 

Karbach, Strobach, & 

Schubert (2015) - M1 8.30 9.33 Yes Active Literacy/WD 

Karbach, Strobach, & 

Schubert (2015) - M2 8.30 9.33 Yes Active Mathematics 

Karbach, Strobach, & 

Schubert (2015) - M3 8.30 9.33 Yes Active Cognitive control 

Karbach, Strobach, & 8.30 9.33 Yes Active Cognitive control 
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Schubert (2015) - M4 

Pugin et al. (2015) - 

M1 13.00 10.00 No Passive Fluid intelligence 

Pugin et al. (2015) - 

M2 13.00 10.00 No Passive Cognitive control 

Pugin et al. (2015) - 

M3 13.00 8.05 No Passive Cognitive control 

Pugin et al. (2015) - 

M4 13.00 8.05 No Passive Cognitive control 

Söderqvist & 

Bergman-Nutley 

(2015) - M1 9.85 not given No Passive Literacy/WD 

Söderqvist & 

Bergman-Nutley 

(2015) - M2 9.85 not given No Passive Mathematics 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M1 8.25 4.50 Yes Active Literacy/WD 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M2 8.25 4.50 Yes Active Mathematics 
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Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M3 8.25 4.50 Yes Active 

Crystallized 

intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M4 8.25 4.50 Yes Active Fluid intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S1- 

M5 8.25 4.50 Yes Active Cognitive control 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M1 8.25 4.50 Yes Passive Literacy/WD 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M2 8.25 4.50 Yes Passive Mathematics 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M3 8.25 4.50 Yes Passive 

Crystallized 

intelligence 

Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M4 8.25 4.50 Yes Passive Fluid intelligence 
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Studer-Luethi, Bauer, 

& Perrig (2016) - S2- 

M5 8.25 4.50 Yes Passive Cognitive control 
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2.4 Effect Size 

The standardized means difference (Cohen’s d) was calculated with the following 

formula: 

𝑑 = (𝑀௚ି௘ − 𝑀௚ି௖) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄    (1) 

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and 

Mg-e and Mg-c are the gain of the experimental group and the control group, respectively 

(Schmidt & Hunter, 2015).5 The follow-up effect sizes were calculated by using the 

standardized difference between the follow-up and the pre-test measures. 

Finally, the Comprehensive Meta-Analysis (Version 3.0; Biostat, Englewood, NJ) software 

package was used for correcting the effect sizes for upward bias (Hedges’s g; Hedges & 

Olkin, 1985), computing the overall effect sizes (𝑔̅s), and conducting statistical analyses. 

2.5 Statistical Dependence of the Samples 

The effect sizes were calculated for each relevant measure reported in the studies 

(Schmidt & Hunter, 2015). When several subscales of a test were used to measure the same 

construct (e.g. block recall and digit recall as measures of working memory), the measures 

were averaged, following Schmidt and Hunter’s (2015) recommendation. Also, when the 

study presented a comparison between the treatment group and two control groups (passive 

and active), two effect sizes – one for each comparison with experimental and control groups 

– were calculated. As this procedure violates the principle of statistical independence of the 

samples, Cheung and Chan’s (2004) method was applied to all the meta-analytic models. 

This method reduces the weight of dependent samples in the analysis by estimating an 

                                                           
 

5 When only the t-statistics were available, the t-values were converted into Cohen’s ds (Lee, 

2014; Witt, 2011). 
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adjusted (i.e., smaller) N (for a list of the adjusted Ns, see Tables 2.1 to 2.13 in the 

Supplemental material available online; http://psycnet.apa.org/record/2017-05288-001). 

Since the method of Cheung and Chan (2004) cannot be used for partially dependent 

samples,6 we ran our analyses as if the comparisons between experimental samples and two 

different control groups were statistically independent. As shown by Bijmolt and Pieters 

(2001) and Tracz, Elmore, and Pohlmann (1992), the violation of statistical independence has 

little or no effect on means, standard deviations, and confidence intervals. Thus, the entire 

procedure is a reliable way to deal with the statistical dependence of part of the samples. 

3. Results 

3.1 Near-Transfer Effects 

The random-effects meta-analytic overall effect size was 𝑔̅ = 0.46, 95% CI [0.35; 

0.57], k = 30, p < .001. The forest plot is shown in Figure 2. The degree of heterogeneity 

between effect sizes was close to zero, I2 = 7.94.7 

                                                           
 

6 In addition, in three studies, a few participants did not take part in all the tests (i.e., 

attrition). In these cases, we used the mean number of participants as the number to be 

adjusted. 

7 The I2 statistic refers to the percentage of between-study variance due to true heterogeneity 

and not to random error (Higgins, Thompson, Deeks, & Altman, 2003). 
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Figure 2. Forest plot of the near-transfer model. Hedges’s gs (circles) and 95% CIs (lines) are 
shown for all the effects entered into the meta-analysis. The diamond at the bottom indicates 
the meta-analytically weighted mean 𝑔̅. When studies had multiple samples, the table reports 
the result of each sample (S1, S2, etc.) separately. Similarly, when studies used multiple 
outcome measures, the table reports the result of each measure (M1, M2, etc.) separately. 
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3.1.1 Moderator analyses 

 Age was marginally significant, Z(1) = –1.80, b = –0.03, p = .072. None of the other 

three moderators were significant: Random allocation, Z(1) = –0.58, b = –0.08, p = .562; 

Type of control group, Z(1) = –0.31, b = –0.04, p = .760; and Duration of training, Z(1) = 

0.42, b = 0.01, p = .678. 

3.1.2 Publication bias analysis 

To test whether our analysis was affected by publication bias, we examined a funnel 

plot representing the relation between effect sizes and standard errors. The contour-enhanced 

funnel plot (Peters, Sutton, Jones, Abrams, & Rushton, 2008) is shown in Figure 3. 

 

Figure 3. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’s gs) in 
the near-transfer meta-analysis. The black circles represent the effect sizes included in the 
meta-analysis. Contour lines are at 1%, 5%, and 10% levels of statistical significance. 
 
The symmetry of the funnel plot around the meta-analytic mean was tested by Egger’s 

regression test (Egger, Smith, Schneider, & Minder, 1997). The test showed no evidence of 

publication bias (p = .217). In addition, the trim-and-fill analysis (Duval & Tweedie, 2000) 

estimated no weaker-than-average missing study (left of the mean). Finally, a p-curve 

analysis was run with all the p-values < .05 related to positive effect sizes (Simonsohn, 

Nelson, & Simmons, 2014). The results showed evidential values (i.e., no evidence of 
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publication bias), Z(9) = –3.39, p = .003 (Figure 4). 

 

Figure 4. p-curve analysis. The blue (continuous) line shows that most of the significant p-
values are smaller than .025, suggesting evidential value. 
 

3.2 Far-Transfer Effects 

The random-effects meta-analytic overall effect size was 𝑔̅ = 0.12, 95% CI [0.06; 

0.18], k = 74, p < .001. The forest plot is shown in Figure 5. The degree of heterogeneity 

between effect sizes was I2 = 0.00. 
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Figure 5. Forest plot of the far-transfer model. Hedges’s gs (circles) and 95% CIs (lines) are 
shown for all the effects entered into the meta-analysis. The diamond at the bottom indicates 
the meta-analytically weighted mean 𝑔̅. When studies had multiple samples, the table reports 
the result of each sample (S1, S2, etc.) separately. Similarly, when studies used multiple 
outcome measures, the table reports the result of each measure (M1, M2, etc.) separately. 

 

3.2.1 Moderators analysis 

Random Allocation was a significant moderator, Z(1) = –2.76, b = –0.20, p = .006. 

The overall effect sizes in randomized and non-randomized samples were 𝑔̅ = 0.07, 95% CI 

[0.00; 0.14], k = 50, p = .046, and 𝑔̅ = 0.27, 95% CI [0.15; 0.39], k = 24, p < .001, 

respectively. Type of control group was marginally significant, Z(1) = –1.83, b = –0.12, p = 

.067. The overall effect sizes when WM training was compared to active and passive control 

groups were 𝑔̅ = 0.05, 95% CI [–0.05; 0.15], k = 40, p = .311, and 𝑔̅ = 0.18, 95% CI [0.09; 

0.26], k = 34, p < .001, respectively. Also, the overall effect size in randomized samples with 

active control groups was 𝑔̅ = 0.03, CI [–0.07; 0.14], k = 34, p = .521. Finally, Duration of 

training was marginally significant, Z(1) = –1.81, b = –0.02, p = .070. No other moderator 

was significant: Age, Z(1) = –1.60, b = –0.03, p = .110; and Domain, p = .703. 

3.2.2 Additional meta-analytic models 

We calculated the random-effects meta-analytic overall effect sizes of each of the six 

domains. The only significant overall effect size was 𝑔̅ = 0.20, 95% CI [0.03; 0.36], k = 17, p 

= .018, for mathematics. To test the robustness of the result, we ran two moderator analyses 

for this domain. Random Allocation was a significant moderator, Z(1) = –2.01, b = –0.35, p = 

.045. The overall effect sizes in randomized and non-randomized samples were 𝑔̅ = 0.10, 

95% CI [–0.05; 0.25], k = 12, p = .193, and 𝑔̅ = 0.49, 95% CI [0.11; 0.88], k = 5, p = .012, 

respectively. Type of control group was significant, Z(1) = –2.41, b = –0.43, p = .016. The 

overall effect sizes when WM training was compared to active and passive control groups 
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were 𝑔̅ = –0.11, 95% CI [–0.38; 0.16], k = 6, p = .426, and 𝑔̅ = 0.31, 95% CI [0.13; 0.49], k = 

11, p = .001, respectively.  

Literacy/WD overall effect size was marginally significant, 𝑔̅ = 0.11, 95% CI [–0.00; 

0.22], k = 17, p = .055. None of the other overall effect sizes was significant: 𝑔̅ = 0.11, 95% 

CI [–0.02; 0.24], k = 21, p = .101 for fluid intelligence; 𝑔̅ = 0.09, 95% CI [–0.08; 0.26], k = 

14, p = .302 for cognitive control; 𝑔̅ = – 0.02, 95% CI [–0.75; 0.71], k = 3, p = .956 for 

crystallized intelligence; and 𝑔̅ = –0.20, 95% CI [–0.65; 0.25], k = 2, p = .386 for science. 

3.2.3 Publication bias analysis 

The contour-enhanced funnel plot of the main model (k = 74) is shown in Figure 6. 

 

Figure 6. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the far-
transfer meta-analysis. Contour lines are at 1%, 5%, and 10% levels of statistical 
significance. 
 
Egger’s regression test showed no evidence of publication bias (p = .511). In addition, the 

trim-and-fill analysis estimated no weaker-than-average missing studies (left of the mean). 

Finally, we performed a p-curve analysis. Both the full and half p-curve tests were right 
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skewed with p < .100 (Z(3) = –1.40, p = .081 and Z(3) = –1.38, p = .084, respectively) 

suggesting evidential value (Simonsohn, Simmons, & Nelson, 2015; Figure 7).8 

 

 

Figure 7. p-curve analysis. The blue (continuous) line shows that most of the significant p-
values are smaller than .025, suggesting evidential value. 
 
                                                           
 

8 Since only three values were inputted, the results of this p-curve analysis might be 

unreliable. However, it must be kept in mind that the occurrence of publication bias is quite 

unlikely when the overall effect size is close to zero. 
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A trim-and-fill analysis was performed for four additional meta-analytic models, 

(fluid intelligence, cognitive control, mathematics, and literacy/WD models). In the fluid 

intelligence model, five studies were filled in, and the point estimate was 𝑔̅ = 0.03, 95% CI [–

0.09; 0.15]. In the literacy/word decoding model, two studies were filled in, and the point 

estimate was 𝑔̅ = 0.08, 95% CI [–0.03; 0.19]. No missing study was found in the other two 

models. Due to the scarcity of effect sizes, no publication bias analysis was run for the 

science and crystallized intelligence models. 

3.3 Follow-Up Effects 

 For near-transfer follow-up effects, the random-effects meta-analytic overall effect 

size was 𝑔̅ = 0.33, 95% CI [0.00; 0.65], k = 6, p = .049. The degree of heterogeneity between 

effect sizes was I2 = 40.50. 

For far-transfer follow-up effects, the random-effects meta-analytic overall effect size 

was 𝑔̅ = 0.09, 95% CI [–0.02; 0.20], k = 24, p = .122. The degree of heterogeneity between 

effect sizes was I2 = 0.00. 

3.3.1 Moderator analyses 

Due to the small number of effect sizes, no moderator analysis was run for the near-

transfer effects model. (For the same reason, no publication bias analysis was carried out for 

this model.) Regarding the far-transfer effects model, no moderator was significant. 

3.3.2 Publication bias analysis 

In the far-transfer effect model, Egger’s regression test showed no evidence of 

publication bias (p = .345). In addition, the trim-and-fill analysis estimated no weaker-than-

average missing studies (left of the mean). No p-curve analysis was carried out because none 

of the effect sizes in the model reached statistical significance. 
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4. Discussion 

The purpose of this meta-analysis was to evaluate the impact of WM training on TD 

children’s cognitive and academic skills. The results showed a clear pattern. Similar to 

previous meta-analyses (e.g., Melby-Lervåg & Hulme, 2013; Schwaighofer et al., 2015), WM 

training significantly affected WM-related skills (post-test overall effect size, 𝑔̅ = 0.46, p < 

.001) and remained several months after the end of training (follow-up overall effect size, 𝑔̅ = 

0.33, p = .049). However, we found little or no evidence that WM training enhances fluid 

intelligence or domain-general processes such as cognitive control. The same applied to 

academic abilities such as literacy or science. Only the mathematics-related overall effect size 

was significant, albeit quite modest (𝑔̅ = 0.20, p = .018). However, methodological issues 

cast some doubts on the authenticity of the effect (we will take up this point below). Thus, the 

results of the meta-analysis do not support the hypothesis according to which WM training 

benefits cognitive or academic abilities in TD children. 

Interestingly, WM training seems to produce approximately the same negligible 

effects on measures outside the domain of WM regardless of the age of participants and 

domain. The significant (or marginally significant) moderators in the far-transfer main model 

(k = 74) were the random allocation of the participants to the samples, the type of control 

group, and duration of training. The overall effect size was much smaller in randomized 

samples (𝑔̅ = 0.07, p = .046) than in non-randomized samples (𝑔̅ = 0.27, p < .001). This 

outcome suggests that episodes of self-selection in the experimental groups or differences at 

baseline level between experimental and control groups may have inflated the effect sizes in 

samples with no random allocation.9 Analogously, the overall effect size was smaller when 
                                                           
 

9 In the present case, the difference between groups at baseline level in some of the dependent 

variables seems to be the most likely explanation. In several studies (e.g., Thorell, 



 

91 
 

the experimental group was compared to an active control group (𝑔̅ = 0.05, p = .311) than a 

passive control group (𝑔̅ = 0.18, p < .001). This finding corroborates the idea that the positive 

effect sizes reported in some primary studies are due to placebos as well. Moreover, when 

only the effect sizes in randomized samples with active control groups were considered, the 

overall effect size was almost null (𝑔̅ = 0.03, p = .521). Finally, the duration of training seems 

to be slightly inversely related to the size of the effects (b = –0.02). This result is difficult to 

interpret. However, the null degree of heterogeneity suggests caution in interpreting these 

outcomes. In fact, the moderator analyses may have detected effects due to random error 

rather than true heterogeneity between-effect sizes (see footnote 7). In any case, far transfer 

effects of WM training appear to be negligible or, at best, modest. 

4.1 Theoretical and Practical Implications 

The present meta-analysis reviewed the studies in which participants were TD 

children. For this reason, the results we reported do not apply to other populations – such as 

children with learning disabilities or adults. Nonetheless, the fact that, in the general 

population of children, WM training induces improvements in WM-related outcomes but not 

in other types of cognitive and academic measures suggests some theoretical and practical 

implications. 

To begin with, if far-transfer is more likely to occur in children than adults when 

cognitive and academic skills are developing, then our findings cast serious doubts on the 

                                                                                                                                                                                     
 

Lindqvist, Bergman, Bohlin, & Klingberg, 2009), the control groups performed better than 

the experimental groups at the pre-test. The difference between the groups decreased at the 

post-test, suggesting that the positive effect size is probably due to some statistical artefact 

(e.g., regression to the mean, ceiling effect). 
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idea that training a domain-general mechanism such as WM improves fluid intelligence, 

cognitive control, or academic achievement.10 Second, and linked to the first point, the lack 

of an effect of WM training on fluid intelligence supports the idea that WM and fluid 

intelligence are two different constructs (Ackerman, Beier, & Boyle, 2005; Hornung, 

Brunner, Reuter, & Martin, 2011; Kane, Hambrick, & Conway, 2005). 

However, it must be noted that the positive effects in near-transfer measures might 

reflect an improvement in WM tasks performance, rather than a genuine enhancement in WM 

capacity (Shipstead et al., 2012). In other words, participants learn how to do the task without 

improving their WM capacity. If this is the case, nothing can be inferred about the 

relationship between fluid intelligence (or any other far-transfer measure) and WM capacity. 

Moreover, following this line of reasoning, the absence of fluid intelligence enhancement 

could be interpreted as a failed improvement in WM capacity after the training (see also the 

discussion in Melby-Lervåg & Hulme, 2013). Regrettably, the information provided in the 

primary studies is not sufficient to solve the issue. 

The fact that the participants showed improvements in a large variety of tasks 

different from the WM trained tasks (see Table S1.1 in the Supplemental Material available 

online; http://psycnet.apa.org/record/2017-05288-001) might suggest that WM capacity was 

actually boosted. However, pervasive improvement in WM-related measures may stem from 

amelioration in some general skill at performing WM tasks rather than an increased WM 

capacity. Thus, testing whether WM training enhances WM capacity requires not only a set 

                                                           
 

10 It must be noted that this argument does not apply to the population of older adults. In fact, 

the aim of WM training in the elderly is to slow down cognitive decline, not to extend 

developing cognitive abilities. For a review, see Karbach and Verhaeghen (2014). 
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of multivariate measures of WM capacity, but also that task-related improvements occur 

through a common factor that is measurement invariant across treatment and control groups 

(i.e., training effects that are proportional to the factor loadings in a structural equation 

model). If such conditions can be met in a well-powered single study, then it can be 

convincingly claimed that WM capacity has been enhanced.   

Beyond these theoretical aspects, the most obvious practical implication of our results 

is that WM training, at the moment, cannot be recommended as an educational tool. WM 

training seems to have little or no effect on far-transfer measures of cognitive abilities and 

academic achievement. More generally, this meta-analysis provides further evidence that the 

occurrence of far-transfer is too infrequent to offer solid educational advantages. For this 

reason, cognitive and academic enhancement interventions should be as close as possible to 

the skills that are meant to be trained.  

4.2 Limitations of the Present Meta-Analysis 

Near-transfer effects seem to remain even a few months after the end of the training. 

However, the limited number of studies (n = 4) and effect sizes (k = 6) does not allow us to 

draw any reliable conclusion about this. The same limitation applies, to a lesser degree, to the 

far-transfer follow-up effects (n = 6, k = 24). In this case, however, the findings are consistent 

with the immediate post-test outcomes: modest or null effects in both the measures. In fact, it 

is hard to see why negligible effects immediately after training, such as those reported in this 

meta-analysis, should become significantly larger several months after the end of training. 

Finally, other potential moderators – such as the type of training program – were not 

considered in the meta-analytic models because of the limited number of the effect sizes. 

However, the small degree of heterogeneity in both the near- and far-transfer models 

discourages us from thinking that other moderators could have affected the overall results. 
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4.3 Conclusions 

 The findings of the present meta-analysis do not invite optimism about the 

effectiveness of WM training at improving cognitive skills and academic achievement in TD 

children. WM training seems to enhance children’s performance in WM- and STM-related 

measures. However, with regard to skills outside the domain of WM such as fluid 

intelligence, cognitive control, mathematics, and literacy, this training seems to have little or 

no effect. Consistent with Thorndike and Woodworth’s (1901) common element theory, our 

findings show that the occurrence of far-transfer is, at best, sporadic. 

  



 

95 
 

Chapter 5: Meta-Analysis of Chess Training 

Rationale for the Meta-Analysis in Chapter 5 

Chapter 5 reports a meta-analysis on the effect of chess instruction on children’s 

cognitive abilities and academic achievement. Chess is unanimously considered a “brain 

game,” and chess skill is often associated with superior intellectual ability. Also, playing 

chess requires a considerable amount of cognitive effort. In fact, the game requires 

memorising thousands of positions, calculating hundreds of variants, and precise planning. 

Thus, chess is a perfect domain to test the hypothesis according to which engaging in 

intellectually demanding activities enhances domain-general cognitive function. 

The studies included in this meta-analysis are listed in Appendix B.  
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1. Introduction 

Recently, many concerns have been expressed about pupils’ poor mathematics 

achievement both in the United States (Hanushek, Peterson, & Woessmann, 2012; Richland, 

Stigler, & Holyoak, 2012) and in Europe (Grek, 2009). Pupils’ low mathematical skills have 

serious consequences well beyond the classroom, as the possibility of successfully majoring 

in Science, Technology, Engineering, and Mathematics (STEM) subjects, and hence 

obtaining STEM jobs, is limited by one’s mathematical skills. The job market demands more 

graduates in STEM subjects than graduates in the humanities and has also become more 

competitive worldwide in recent years, with increasingly high mathematical competences 

being required (Halpern et al., 2007).  

To address the issue of how to improve mathematics instruction, policy makers and 

researchers have explored a number of avenues. One such avenue is to teach chess in schools. 

Chess has recently started to become part of the school curriculum (as an optional subject) in 

several countries. Chess-related research and educational projects are currently ongoing in the 

United Kingdom, Spain, Turkey, Germany, and Italy, among other countries. Commenting on 

a large project having introduced chess in the curriculum of 175 schools in the UK, chess 

master Jerry Myers stated that chess “directly contributes to academic performance. Chess 

makes children smarter” (Garner, 2012). The European Parliament has expressed its 

favourable opinion on using chess courses in schools as educational tool (Binev, Attard-

Montalto, Deva, Mauro, & Takkula, 2011) and, similarly, the Spanish Parliament has 

approved the implementation of chess courses during school hours. These initiatives have 

been conducted because chess is considered an effective educational tool able to improve not 

only mathematical skills, but also other academic skills such as reading and general cognitive 

abilities such as concentration and intelligence, and even children’s heuristics and habits of 
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mind (Costa & Kallick, 2009). Critically, efforts to promote chess in schools take for granted 

that chess skill transfers to other domains. 

1.1 Difficulty of Transfer  

Transfer of learning occurs when a set of skills acquired in one domain generalizes to 

other domains or improves general cognitive abilities. Transfer is an important question both 

theoretically and practically. Mestre (2005) distinguishes between near-transfer, where 

transfer occurs between closely related domains (e.g., transfer from geometry to calculus) and 

far-transfer, where the source and target domains are only loosely related (e.g., transfer from 

Latin to geography). It has been proposed that transfer is a function of the extent to which 

two domains share common features (Thorndike & Woodworth, 1901) and cognitive 

elements (Anderson, 1990). In line with this hypothesis, near-transfer is often observed, 

although exceptions also exist. For example, research into expertise shows that transfer is 

only partial between subspecialties of expertise such as cardiology and neurology (Rikers, 

Schmidt, & Boshuizen, 2002). By contrast, substantial research in education and psychology 

suggests that far-transfer is difficult (Donovan, Bransford, & Pellegrino, 1999). This includes 

the research on teaching the computer language LOGO in order to improve children’s 

thinking skills, which has obtained disappointing results (De Corte & Verschaffel, 1986; 

Gurtner, Gex, Gobet, Nunez, & Restchitzki, 1990). In addition, the higher the level of a skill, 

the more specific the features of a domain will be, and the lower the likelihood that there will 

be transfer (Ericsson & Charness, 1994), in particular because a large number of domain-

specific perceptual chunks will be acquired (Gobet, 2016). Again, there are exceptions, and 

some individuals have excelled in several different domains (Gobet, 2011; 2016). 

The difficulty of transferring knowledge and skills raises a number of significant 

practical issues, especially in education. Most educational interventions try to transmit 

knowledge which, to some extent, is meant to be transferable from one domain of learning to 
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another. In fact, transferability of skills is either a tacit assumption or a specific aim of nearly 

every educational program (Donovan et al., 1999; Perkins & Salomon, 1994). Therefore, 

educational institutions are interested in methodologies implementing school activities that 

teach and boost transferable skills. One approach is to teach general strategies, such as 

learning, problem-solving, and reasoning heuristics (Perkins & Grotzer, 2000), so that these 

skills can be easily transferred to other domains. Another approach is to teach a specific 

activity, with the hope that this activity will help individuals to develop skills that might be 

useable in other domains. The game of chess is one such activity that has been used in that 

way. 

1.2 The issue of Transfer in Chess Research 

A substantial amount of research has been devoted to understanding the cognitive 

processes underpinning chess skill, and much is known about chess players’ perception, 

learning, memory, and problem solving (for reviews, see Gobet, 2016, and Gobet, de Voogt, 

& Retschitzki, 2004). Much less is known about the extent to which chess skill transfers to 

other domains of learning. 

Several studies (Bilalić, McLeod, & Gobet, 2007; Doll & Mayr, 1987; Frydman & 

Lynn, 1992; Grabner, Stern, & Neubauer, 2007) have shown that chess players tend to be 

more intelligent than the general population. However, these studies were correlational in 

nature and cannot establish that chess skill is the actual cause of better intellectual abilities. In 

fact, the exact opposite causal explanation could be true: some individuals could excel at 

chess due to their superior intellectual abilities (Gobet & Campitelli, 2002). 

Assuming that skills acquired in chess will lead to benefits in domains such as 

mathematics and reading clearly implies the presence of far transfer. In line with Thorndike 

and Woodworth’s (1901) hypothesis, several studies have shown that chess players’ skill 
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tends to be context-bound, suggesting that it is difficult to achieve far-transfer from chess to 

other domains. For example, memory for chess positions fails to transfer from chess to digits 

both in adults and children (Chi, 1978; Schneider, Gruber, Gold, & Opwis, 1993); chess 

players’ perceptual skills do not transfer to visual memory of shapes (Waters, Gobet, & 

Leyden, 2002); chess skill does not predict performance in the economic game known as 

beauty contest (Bühren & Frank, 2010); and finally, chess planning  skills do not help chess 

players to solve the Tower of London task (Unterrainer, Kaller, Leonhart, & Rahm, 2011). 

1.3 Chess in School 

In spite of these negative results, several researchers have pursued the hypothesis that 

skills acquired with chess can transfer to other domains. Two main explanations have been 

adduced to support this hypothesis. First, chess requires decision-making skills and high-level 

processes (such as acquiring and selecting relevant information from a problem) similar to 

those used in mathematics and reading (Margulies, 1992). Second, since chess is a 

cognitively demanding task involving focused attention and problem solving, playing chess 

should strengthen these cognitive abilities and thus be beneficial for children’s school 

performance (Bart, 2014). However, convincing experimental evidence of the effectiveness 

of chess instruction is lacking. In a literature review, Gobet and Campitelli (2006) argued that 

there was no strong evidence for the cognitive and academic benefits of chess. They found 

only few studies, which included unpublished reports or master and doctoral theses. Most 

importantly, many of these studies had a quasi-experimental design (no random assignment 

to the experimental and control groups) and, in some cases, the experimental samples were 

self-selected. 

The difficulty of transferring chess skill is consistent with the literature on the transfer 

of specific skills. At first blush, it is hard to see why knowing the strategic value of the bishop 

pair or the correct way to handle a minority attack should offer any advantage in 
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mathematics, understanding a text, or developing focused attention. Nevertheless, it is 

possible that chess practice enhances some abilities shared with other domains, such as those 

mentioned above, provided that chess is taught early on with children, when academic and 

cognitive abilities are at the beginning of their development. This is the reason why chess 

intervention studies have focused on the academic and cognitive skills of children rather than 

adults: Children’s skills are less context-specific than adults’, and thus transfer of learning is 

more likely in the former than in the latter. 

Some recent studies (Sala, Gorini, & Pravettoni, 2015; Scholz et al., 2008; Trinchero, 

2012; Trinchero & Sala, 2016) have provided more refined explanations as to why chess may 

effectively enhance cognitive and mathematical skills. According to these researchers, chess 

improves children’s mathematical skills because the game has some elements in common 

with the mathematical domain and because it promotes suitable habits of mind (Costa & 

Kallick, 2009). Through chess, children train several context-independent skills (such as the 

ability to understand the existence of a problem or the need for correct reasoning), which may 

transfer to the mathematical domain. This is possible because (primary school) mathematics 

and chess share some common features (e.g., numerical and spatial relationships as well as 

quantity-based problems), strategies to solve problems (e.g., focusing and interpreting 

game/problem situations, selecting relevant information, or looking for correct arguments), 

cognitive skills (e.g., attention) and meta-cognitive skills (e.g., planning). The aim of our 

study is thus to test, comprehensively and quantitatively, these previous claims on the 

putative benefits of chess instruction in school. 

2. Scope, Aims, and Hypotheses of the present Meta-Analysis 

Given the considerable attention that research on chess in school is attracting and the 

potentially important implications for our understanding of transfer, it is important to provide 

a scientific evaluation of the effects of chess instruction on academic and cognitive skills. A 



 

101 
 

similar interest has been devoted to studies on the possibility that video-games improve 

cognitive skills and that the benefits transfer to other domains (Green, Li, & Bavelier, 2010; 

Green, Pouget, & Bavelier, 2010). Just like with the video-game literature, a possibility that 

will have to be kept in mind in our meta-analysis is that the observed transfer from the source 

domains to the target domains might be due to confounds such as the placebo effect (Boot, 

Blakely, & Simons, 2011; Gobet et al., 2014). 

 Our meta-analysis11 is an investigation of studies regarding the potential benefits of 

chess for children with respect to (a) mathematics skills, (b) reading skills, and (c) several 

cognitive categories (general intelligence, meta-cognition, attention/concentration, and spatial 

abilities). We chose these three categories of skills because they were the three categories 

chess-related research has been focusing on. 

 Our study had two main aims. The first aim was to estimate the overall effect size of 

the benefits of chess instruction by comparing experimental groups to control groups. The 

second aim was to evaluate the potential role of several factors in moderating the effect of 

chess instruction in children. The first four moderators addressed substantive aspects of the 

studies, and the last two covered methodological aspects: 

1. Outcome: Mathematics, reading, or cognitive skills; 

                                                           
 

11 Two previous meta-analyses were carried out on the effect of chess instruction: Benson 

(2006) and Nicotera and Stuit (2014). Neither calculated an overall effect size nor ran a 

moderator analysis. Rather, they divided the meta-analytic means into sub-categories (such 

as mathematics with chess instruction). The results they obtained were optimistic compared 

to ours, as they included several studies that were not included in the present meta-analysis 

because they did not satisfy the selection criteria. 



 

102 
 

2. Duration of training (in hours); 

3. Grade of the participants: Primary or secondary school; 

4. Participants’ category: Children with special educational needs or not; 

5. Publication: Published or unpublished studies, where “published” is defined as having 

appeared in a peer-reviewed journal; 

6. Design quality: Integer index (range 0 – 3, from poor to good) expressing the quality 

of the study design. The index measures three methodological characteristics: random 

allocation, administered pre-test, and avoidance of self-selection of the sample. 

 

Along with the evaluation of the potential role of the above moderators, two specific 

sets of hypotheses were tested. The first pair of hypotheses dealt with the general question as 

to whether the skills acquired with chess instruction transfer to other domains. Two opposing 

hypotheses were tested. Hypothesis 1a predicted that, consistent with the literature on 

expertise and most of the literature on transfer, chess skill does not transfer to other domains, 

or at best the transfer is small and mostly due to unspecific factors (such as placebo effects). 

Hypothesis 1b, which reflects the view held by most researchers and practitioners in the field 

of chess instruction, predicted that there is substantial transfer. The second hypothesis dealt 

with the benefits of chess instruction on mathematics and reading. In line with Thorndike and 

Woodworth (1901), it was predicted that transfer is stronger with mathematics than with 

reading, as chess shares more elements with the former topic than with the latter. 

3. Method 

3.1 Literature Search 

A systematic search strategy was used to find the relevant studies. The procedure is 

summarized in Figure 8. Google Scholar, ProQuest (Dissertations & Theses), ERIC and 

Psyc-Info databases were searched to identify all the potential relevant studies. In addition, 
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previous narrative reviews were examined, and we e-mailed researchers in the field asking 

for unpublished studies and data. 

 

 

Figure 8. Flow diagram of the studies considered and ultimately included in the meta-
analysis. 

 

3.2 Inclusion/Exclusion Criteria 

The studies were included according to the following seven criteria: 

 

1. The design of the study was experimental or quasi-experimental; correlational and 

ex post facto studies were excluded. 

2. The independent variable (chess instruction) was successfully isolated; the studies 

using chess instruction as one of several independent variables (such as other 
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activities) in the experimental group were excluded.   

3. The study presented a comparison between a chess intervention group and at least 

one control group. 

4. The treatment and the control groups did not differ in terms of grade (e.g. third 

graders compared to fourth or fifth graders). 

5. During the study, a measure of mathematical, reading, or cognitive skill was 

collected. 

6. The participants of the study were pupils from kindergarten to the 12th grade. 

7. The data presented in the published study were sufficient to calculate an effect 

size or the author(s) of the study, after having been contacted, provided the 

necessary data. 

 

We found 24 studies, conducted from July 1976 to July 2015, that met all the 

inclusion criteria (see Table 5). These studies included 25 independent samples and 40 effect 

sizes, and a total of 5,221 participants (2,788 in the experimental groups and 2,433 in the 

control groups). 
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Table 5 

Summary of the 24 studies included in the meta-analysis 

 

STUDY OUTCOME PUBLISHED HOURS DESIGN 

QUALITY 

SPECIAL 

EDUCATIONAL 

NEEDS 

GRADE OUTCOME MEASURE 

Aciego, Garcia, 

& Betancort 

(2012) 

Cognitive Yes 96 1 No Both WISC-R 

Aydin (2015) Maths & Cognitive Yes 48 1 Yes Secondar

y 

Unknown 

Barrett & Fish 

(2011) 

Maths & Cognitive Yes 25 2 Yes Secondar

y 

TAKS 

Christiaen & 

Verhofstadt-

Denève (1981) 

Maths & Reading Yes 42 2 No Primary DGB 

DuCette (2009) Maths & Reading No Not 0 No Both PSSA 
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Given 

Eberhard (2003) Cognitive No 60 1 Yes Secondar

y 

CogAT; NNAT 

Forrest, 

Davidson, 

Stucksmith, & 

Glendinning 

(2005) 

Maths & Reading No 37 2 No Primary WISC-R (arithmetic subtest); 

Neale test 

Fried & 

Ginsburg (n.d.) 

Cognitive No Not 

Given 

2 Yes Primary WISC-R 

Garcia (2008) Maths & Reading No 90 1 No Primary TAKS 

Gliga & Flesner 

(2014) 

Cognitive Yes 10 3 No Primary Krapelin test; Rey test 

Hong & Bart 

(2007) 

Cognitive Yes 20 3 Yes Both RPM 

Kazemi, 

Yektayar, & 

Abad (2012) 

Maths & Cognitive Yes 96 2 No Both TIMSS (mathematical literacy); 

Panaoura, Philippou & Christou 

test 
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Kramer & 

Filipp (n.d.) 

Cognitive No 32 2 No Primary Unknown 

Margulies 

(1992) 

Reading No Not 

Given 

1 No Primary DRP 

Rifner (1992) Maths & Reading No 30 2 No Secondar

y 

CTBS/4 

Romano (2011) Maths No 25 3 No Primary INVALSI 

Sala & 

Trinchero (in 

preparation) 

Maths & Cognitive No 10 3 No Primary OCDE-Pisa (mathematical 

literacy) 

Sala, Gorini, & 

Pravettoni 

(2015) 

Maths Yes 18 3 No Primary OCDE-Pisa (mathematical 

literacy) 

Sala, Gobet, 

Trinchero, & 

Ventura (2016) 

Maths & Cognitive No 15 3 No Primary TIMSS (mathematical literacy); 

Panaoura & Philippou test 

Scholz et al. 

(2008) 

Maths & Cognitive Yes 24 3 Yes Primary Arithmetic test designed by the 

authors; DL-KG 
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Sigirtmac 

(2012) 

Cognitive Yes 50 0 No Primary Unknown 

Trinchero & 

Piscopo (2007) 

Maths No 30 2 No Primary Unknown 

Trinchero & 

Sala (2016) 

Maths No 19 3 No Primary OCDE-Pisa (mathematical 

literacy) 

Yap (2006) Maths & Reading No 50 0 No Primary Oregon State Assessment 
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3.3 Effect Size12 

For the studies with an only-post-test design, the standardized means difference 

(Cohen’s d) was calculated with the following formula: 

d = (Me – Mc) / SDpooled   (1) 

where SDpooled  is the pooled standard deviation and Me and Mc are the means of the 

experimental group and the control group, respectively.13 For the studies with a repeated-

measure design, the standardized means difference was calculated with the following 

formula: 

d = (Mg-e – Mg-c) / SDpooled-pre   (2) 

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and 

Mg-e  and Mg-c are the gain of the experimental group and of the control group, respectively. 

For the studies with an ANCOVA design, the standardized means difference was calculated 

with the following formula: 

d = (Madj-e – Madj-c) / SDpooled   (3) 

where SD pooled is the pooled standard deviation of the two standard deviations of the 

unadjusted means, and Madj-e – Madj-c are the adjusted means of the experimental group and 

the control group, respectively. To correct for the upward bias, every Cohen’s d was 

converted into Hedges’s g by using the following formula:  

                                                           
 

12 All the formulas we used were taken from Schmidt and Hunter (2015). 

13 If the t or F statistics were provided, we used the regular formulas 𝑑 = 𝑡×

ඥ(𝑁௘ + 𝑁௖) (𝑁௘ × 𝑁௖)⁄  and 𝑑 = ඥ𝐹 × (𝑁௘ + 𝑁௖) (𝑁௘ × 𝑁௖)⁄ . 
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g = d / (1 + 0.75 / (N - 3))   (4)14 

where N is the sample size of the study. 

Where reliability coefficients were available, the effect sizes were corrected for 

measurement error by using the following formula: 

g' = g / a     (5) 

where a is the square root of the reliability coefficient. It was possible to apply this correction 

to 31 effect sizes. Finally, there were three outliers whose residual errors had z scores greater 

than 4. These were Winsorized to z scores equal to 3.99. 

Since we believed that the effect sizes had to reflect the actual improvement of the 

experimental groups and should not be the product of statistical artefacts, we adopted the 

following criterion: when the control group performance decreased in the post test, the effect 

size was calculated by considering Mg-c (control group gain) equal to 0. Finally, the 

Comprehensive Meta Analysis (Version 3.0; Biostat, Englewood, NJ) software package was 

used for computing the effect sizes and conducting the statistical analyses.  

4. Results 

A random model (k = 40) was built to calculate an overall effect size15. The overall 

effect size was 𝑔̅ = 0.338, 95% CI [0.242; 0.435], p < .001. The degree of heterogeneity 

                                                           
 

14 This formula is an acceptable approximation of the one converting Cohen’s ds into 

Hedges’s gs presented in Chapter 3.  

15 Twelve studies had more than one effect size. However, according to Tracz, Elmore, and 

Pohlmann (1992), violations of statistical independence have little or no effect on means, 

standard deviations, and confidence intervals. 
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between effect sizes was between moderate and high (I2 = 57.227), suggesting the potential 

effect of some moderators. A trim-and-fill analysis showed that there was no publication bias. 

Consistent with this, a funnel plot analysis, depicting the relationship between standard error 

and effect size, was approximately symmetrical (see Figure 9). 

 

Figure 9. Funnel plot of standard errors and effect sizes (g). The diamond at bottom 
represents the meta-analytically weighted mean Hedges’s 𝑔̅. 

 

4.1 Moderator Analyses 

The only two statistically significant moderators were Duration of Training, which 

positively affected the effect sizes (Q(1) = 3.89, b = 0.0038, p < .05, two tailed, k = 35), and 

Publication, which also positively affected the effect size (Q(1) = 10.17, b = 0.2941, p < .01, 

two tailed, k = 40). 

Following Trinchero’s (2012) suggestion (see Discussion), we considered 25 hours as 

a threshold for the moderator Duration of Training. The overall effect size in studies with 25 

or more hours of treatment was 𝑔̅ = 0.427, 95% CI [0.271; 0.583], p < .001, k = 23, while the 

overall effect size in studies with less than 25 hours of training was 𝑔̅ = 0.303, 95% CI 
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[0.189; 0.417], p < .001, k = 12. Regarding the moderator Publication, the overall effect size 

of the published studies was 𝑔̅ = 0.540, 95% CI [0.346; 0.735], p < .001, k = 17, while the 

overall effect size of the unpublished studies was 𝑔̅ = 0.230, 95% CI [0.149; 0.311], p < .001, 

k = 23. 

4.2 Additional Meta-Analytic Models 

Although outcome was not a significant moderator, we ran three additional random 

models – one for each outcome – in order to investigate whether any outcome shows an 

overall effect size appreciably superior (or inferior, see discussion) to the others, as stated in 

Hypothesis 2.  

The first model included the 17 mathematics-related effect sizes. The overall effect 

size was 𝑔̅ = 0.382, 95% CI [0.229; 0.535], p < .001. A trim-and-fill analysis showed that 

there was no publication bias. The second model included the 16 cognitive-related effect 

sizes. The overall effect size was 𝑔̅ = 0.330, 95% CI [0.130; 0.529], p = .001. A trim-and-fill 

analysis indicated that there was no publication bias. Finally, the third model included the 

seven reading-related effect sizes. The overall effect size was 𝑔̅ = 0.248, 95% CI [0.128; 

0.368], p < .001. A trim-and-fill analysis showed a possible publication bias (one study 

trimmed, left to the mean). The analysis showed that the point estimate was 𝑔̅ = 0.241, 95% 

CI [0.122; 0.359]. 

5. Discussion 

 There is currently much research and excitement about the benefits of teaching chess 

in schools. The issue is theoretically important, since chess researchers’ and practitioners’ 

claims about the presence of far transfer are at variance with main theories of learning and 

expertise, which consider far transfer as difficult. In order to evaluate these diverging 
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predictions, the current meta-analysis examined the effect exerted by chess instruction on 

academic (mathematics and reading) and cognitive abilities in children.  

5.1 Substantive Results 

 The first hypothesis predicted overall transfer beyond placebo effects. The results of 

the current meta-analysis suggest that chess instruction improves children’s mathematical, 

reading, and cognitive skills moderately. Although this outcome seems promising, two 

considerations should be borne in mind. First, the overall effect size is not large enough to 

convincingly establish the effectiveness of chess instruction in enhancing the skills in 

consideration. By using Hattie’s (2009) categorization, an overall effect size of 𝑔̅ = 0.338 is 

not in the so-called “zone of desired effects,” that is d ≥ 0.4, which is the median value of the 

effectiveness of educational interventions estimated by Hattie’s second-order meta-analysis. 

This suggests that chess instruction is no more effective in enhancing children’s cognitive 

and academic skills than many (at least more than 50%) other possible educational 

interventions. Moreover, the observed difference between treatment and control groups might 

be due to chess instructors’ passion rather than chess itself, because the potential role of 

placebo effects was rarely, if ever, controlled for in the studies under consideration (we will 

take up this methodological point below). Thus, consistent with Thorndike and Woodworth’s 

(1901) common-element theory, the results tend to lend more support to Hypothesis 1a (chess 

skill does not transfer to other domains) than Hypothesis 1b (transfer will be substantial), 

which is largely held by the field of chess-in-school research. These considerations – along 

with the overall results of the meta-analysis – lead us to think that learning activities should 

be as close as possible to the skills to train; for example, mathematics instruction should be 

used to teach mathematical skills. 

However, the positive influence of the hours of treatment on the results seems to 

support the idea that chess skill does transfer to other domains. Trinchero (2012) has 
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suggested that appreciable positive effects occur only after 25 – 30 hours of chess instruction. 

For studies with a minimum of 25 hours of instruction, the overall 𝑔̅ effect size was 0.427, 

which is a value in the “zone of desired effects” (see above). It is thus unlikely that this 

positive outcome is only the consequence of placebo effects, although this possibility cannot 

be ruled out completely. This suggests that 25 – 30 hours of chess instruction is the minimum 

amount of instruction in order to obtain a significant transfer of learning from chess to other 

domains. 

The second hypothesis, which was a more direct test of Thorndike and Woodworth’s 

(1901) theory, predicted that transfer from chess should be stronger to mathematics than to 

reading, as chess shares more common elements with the former than the latter. Consistent 

with the hypothesis, the overall effect size was larger with mathematics than with reading (𝑔̅ 

= 0.382 vs. 𝑔̅ = 0.248). Although outcome was not a significant moderator, reading seemed to 

benefit less from chess instruction than mathematics, as the effect size was substantially 

lower; this was despite the fact that five of the seven studies on reading used a long duration 

(30 hours or more; no information about duration was available in the other two studies). 

In the introduction, we presented Thorndike and Woodworth’s (1901) view that 

transfer of skills occurs only between two domains that share components. It is plausible to 

argue that chess and mathematics have some components in common, such as their problem-

solving nature and the importance of quantitative relationships. Therefore, the hypothesis that 

chess is a medium (in the sense of Feuerstein, Feuerstein, Falik, & Rand, 2006) through 

which cognitive skills are trained with some benefit for mathematics is plausible, even though 

it has not yet been convincingly supported by empirical research. However, with respect to 

reading, it is difficult to identify what components are shared with chess, unless we focus on 

very general commonalities (e.g., chess playing and reading are both decision-making 

activities). In their study of the effects of chess instruction on reading, Forrest, Davidson, 
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Stucksmith, and Glendinning (2005) suggested that chess interventions enabled participants 

with low self-esteem to gain more confidence, which improved their literacy skills. If true, 

this suggestion – along with the small effect size (𝑔̅ = 0.248) – upholds the idea that the 

effects of chess interventions on reading are non-specific.  

5.2 Methodological Moderators 

 The index of design quality was not a significant moderator. This fact suggests that 

the results have not been significantly biased by the design used in the studies included in the 

meta-analysis. Nevertheless, as previously mentioned, the absence of an active control group 

in almost all the studies was a potential design-related confound we could not control for. The 

moderator Publication indicated that studies published in peer-reviewed journals have greater 

effect sizes. That studies with good results are more likely to be published is a common 

pattern in the literature (Schmidt & Hunter, 2015). 

5.3 Limitations of this Study 

Regrettably, like the vast majority of studies carried out to assess the effect of 

educational methods, none of the studies considered in this review employed what Gobet and 

Campitelli (2006) called the “ideal design.” This design includes the following requirements 

in addition to a treatment group: pre-test and post-test; two control groups (a do-nothing 

group and an active control group, necessary for removing the possibility of a placebo effect); 

random allocation to group; different personnel for conducting the pre-test, the treatment, and 

the post-test; and ideally – but nearly impossible to do in practice – experimenters’ and 

testers’ unawareness of the nature of the assignment into groups, and participants’ 

unawareness of the goal of the experiment and the fact that they take part in an experiment. 

The presence of an active control group is crucial for controlling the possibility of placebo 

effects, and thus establishing the causal role of chess instruction in far transfer. Mechanisms 

that could produce “placebo effects” include instructors’ motivation, the state of motivation 
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induced by a novel activity, and educators’ expectations (e.g., Boot, Simons, Stothart, & 

Stutts, 2013; Gobet & Campitelli, 2006). Without any active control group, it is not possible 

to exclude the possibility that positive results are due to such confounds, rather than to chess 

itself. It remains unknown whether a study with a more rigorous design would yield the same 

results as the studies previously conducted. Since nearly no study in the current meta-analysis 

had an active control group, which is necessary for ruling out possible placebo effects, the 

effects of chess instruction could have been systematically overestimated. 

Another limitation of this field of research is that too few studies reliably controlled 

for moderator effects. In addition, the dependent variables were often very different between 

the studies: for example, basic arithmetic skills and mathematical problem-solving skills are 

not the same thing, and the same applies to meta-cognition, general intelligence, attention, 

and spatial abilities. We classified the studies using three broad kinds of outcomes 

(mathematical, reading, and cognitive skills) because, unfortunately, the small number of 

studies did not allow us to reliably evaluate the specific skills assessed as potential 

moderators. 

5.4 Conclusions and Recommendations for Future Research 

Even if chess, under specific circumstances, seems to positively affect children’s 

skills, there still are serious doubts about the real effectiveness of its practice. There is a need 

to clarify whether this positive influence is due to placebo effects or to chess instruction 

itself. In the latter case, research should identify the mechanisms underpinning the link 

between chess, the specific cognitive abilities involved and enhanced by the practice of the 

game, and their potential influence on mathematics and reading skills. In addition, the field 

should develop a detailed causal model explaining the cognitive processes that mediate 

learning and transfer. Finally, the data suggest that chess enhances children’s mathematical 

skills and cognitive abilities more than reading skills, although the moderator analysis was 
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not statistically significant. With reading skills, both the data and the explanations provided 

by researchers suggest that the positive effects of chess on children’s reading skills are due to 

placebo effects. Further research should establish the reliability of these results. 

Regarding future studies, we recommend to use an experimental design (random 

allocation, pre-tests and post-tests) with two control groups (a do-nothing group and an active 

control group). While logistically more complex, such a design is necessary in order to 

establish whether the benefits putatively provided by chess instruction are genuine and not 

caused by non-specific factors (e.g., placebo effect). Another important goal is to identify the 

specific characteristics of chess that might improve children’s abilities, and which abilities 

they foster (e.g., attention, spatial abilities, quantitative reasoning, or meta-cognition). For 

example, is it the diversity of pieces on the board that help maintain attention? Does the 

movement of the pieces help to boost visuo-spatial abilities? Does chess ideally combine 

numerical, spatial, temporal, and combinatorial aspects? Does chess promote a better and 

more conscious way of thinking? In particular, it is important to demonstrate whether these 

features are common or not to other activities and games. Specifically, one should understand 

whether some features (e.g., quantitative relationships between pieces and problem-solving 

situations) are shared by other board games. 

Thus, researchers should include (at least) two dependent variables – one academic 

and one cognitive – in their experimental designs, in order to shed some light on the causal 

relationships between chess instruction, and cognitive and academic skills. Many researchers, 

for instance, have claimed that chess enhances mathematical skills because chess practice 

relies on cognitive skills and mechanisms that, in turn, underlie mathematical skills. While 

this hypothesis is plausible, too few studies have directly addressed the question by assessing 

both a cognitive and an academic outcome, and the results have been contradictory. For 

example, Scholz et al. (2008) and Sala and Trinchero (in preparation) found no effect of 



                                
 

118 
 

chess on focused attention and meta-cognition respectively, whereas Kazemi, Yektayar, and 

Abad (2012) found a positive effect of chess practice on meta-cognitive abilities both in 

primary and in secondary school participants. 

 Finally, since the effectiveness of chess in enhancing children’s intellectual skills 

seems to be dependent on the duration of the training, it would be useful to directly 

manipulate this variable in future studies, by systematically varying the duration of 

treatments between groups. This would ascertain the minimal and optimal amounts of chess 

instruction for far transfer: too short a duration might not provide enough time for progress, 

while too long a duration might lead to diminishing returns. Other worthwhile topics of 

investigation include a comparative study of different teaching methods with respect to their 

efficiency (e.g., is instruction better with computers or without computers? Are group 

activities preferable to individual activities, or is it the opposite? Are there more efficient 

orders of covering the material?). Finally, there has been little research that has explicitly 

mapped between chess and aspects of mathematics. Possible examples include bridging the 

chess board with the Cartesian graph and bridging the way the king moves in chess with 

block distance (as opposed to Euclidean distance). As it is known that awareness makes 

transfer more likely (Gick & Holyoak, 1980; Salomon & Perkins, 1989), it is plausible that 

making explicit the links between chess and mathematics could facilitate transfer.  

In conclusion, the game of chess seems to exert a slight positive influence on both 

academic and cognitive abilities. Further research is needed to shed light on the relationship 

between cognitive and academic improvements, to evaluate the role of potential moderators 

and confounds, and to understand the role, if any, of placebo effects and game elements non-

specific to chess.  



                                
 

119 
 

Chapter 6: Meta-Analysis of Music Training 

Rationale for the Meta-Analysis in Chapter 6 

Chapter 6 reports a meta-analysis on the effect of music training on children and 

young adolescents’ cognitive abilities and academic achievement. Like chess, music is 

considered a cognitively demanding activity, and correlational evidence links music skill with 

superior cognitive ability. Music training is thus another relevant domain in which to test the 

cognitive-training theory. 

The studies included in this meta-analysis are listed in Appendix C.  
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1. Introduction 

Recently, the question of whether music-related activities in school improve young 

people’s cognitive and academic skills has raised much interest among researchers, 

educators, and policy makers. Several studies have tried to establish the effectiveness of 

music training in enhancing children’s and young adolescents’ general intelligence (Rickard, 

Bambrick, & Gill, 2012), memory (Roden, Kreutz, & Bongard, 2012), spatial ability and 

mathematics (Mehr, Schachner, Katz, & Spelke, 2013), and literacy skills (Slater et al., 

2014), among others (for a review, see Miendlarzewska & Trost, 2013). Music training 

comprises activities such as singing songs, playing instruments, clapping, and rhythm games 

beyond many others. Notably, several specific curricula have been designed to develop those 

cognitive skills involved in playing music (e.g., Kodály method; Houlahan & Tacka, 2015). 

The educational implications of this research are evident. If music training enhances 

children’s and young adolescents’ cognitive skills and school grades, then schools might 

consider implementing additional musical activities. 

1.1 The Question of Transfer of Skills 

Crucially, the importance of establishing whether music training provides any 

educational advantage is not limited to the field of education. In fact, this topic addresses the 

broader psychological question of transfer of skills. Transfer of learning takes place when 

skills learned in one particular area either generalize to new areas or increase general 

cognitive abilities. It is customary to distinguish between near- and far-transfer (Barnett & 

Ceci, 2002; Mestre, 2005). Whilst near-transfer takes place between areas that are tightly 

related (e.g., driving two different car models), far-transfer occurs where the relationship 

between source and target areas is weak (e.g., transfer from music to mathematics). Thus, 

postulating that music skill generalizes to other non-music-related cognitive and academic 

abilities means assuming the occurrence of a far-transfer. 
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According to Thorndike and Woodworth’s (1901) common-element theory, transfer 

depends on the number of features that are shared between two areas; these features are 

hypothesized to engage common cognitive elements (Anderson, 1990). A direct consequence 

of this theory, well supported by empirical data in psychology and education, is that, while 

near-transfer should be frequent, far-transfer should be rare (Donovan, Bransford, & 

Pellegrino, 1999; Sala & Gobet, 2016). 

1.2 Why Should Music Skill Transfer to non-Music Skills? 

Music training has been claimed to enhance various cognitive and academic skills. 

Given the well-known difficulty of far-transfer to occur, it is possible that music training 

boosts context-independent cognitive mechanisms, which may, in turn, improve other non-

music cognitive and academic skills. According to Schellenberg (2004, 2006), the most likely 

explanation for the alleged diverse benefits of music interventions is that such training 

enhances individuals’ general intelligence, which correlates with many cognitive and 

academic skills (Deary, Strand, Smith, & Fernandes, 2007; Rohde & Thompson, 2007). 

Music training requires focused attention, learning complex visual patterns, memory, and fine 

motor skills. Thus, such a demanding activity may enhance children’s and young adolescents’ 

overall cognitive skill, which, in turn, would increase their academic performance. This 

hypothesis is corroborated by the fact that formal exposure to music in childhood appears to 

correlate with IQ scores and academic attainment (Schellenberg, 2006). 

Another possible explanation relies on executive functions. Cognitive skills such as 

working memory, cognitive control, and cognitive flexibility are important predictors of 

academic achievement (e.g., Conway & Engle, 1996; Peng, Namkung, Barnes, & Sun, 2016). 

Learning to play an instrument engages executive functions (Bialystok & Depape, 2009; 

George & Coch, 2011) and it is not impossible that such improvements generalize to non-

music skills. 
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1.3 Does Music Skill Transfer to non-Music Skills? A Look at the Empirical Evidence 

Several correlational studies have shown that music skill is associated with non-

music-specific skills such as literacy (Anvari, Trainor, Woodside, & Levy, 2002; Forgeard et 

al., 2008), mathematics (Cheek & Smith, 1999), short-term and working memory (Lee, Lu, & 

Ko, 2007), and general intelligence (Lynn, Wilson, & Gault, 1989; Schellenberg, 2006; 

Schellenberg & Mankarious, 2012). Anvari et al. (2002) found that music perception skills 

predicted reading abilities in preschool children. Similarly, Forgeard et al. (2008) reported 

that music discrimination ability correlated with phonological processing skill in a sample of 

typically developing and dyslexic children. Concerning mathematical ability, Cheek and 

Smith (1999) showed that students who had received private lessons of music performed 

better in the mathematics portion of the Iowa Test of Basic Skills. Consistent with the latter 

two studies, Wetter, Koerner, and Schwaninger (2009) found a positive relationship between 

being engaged in music activities and overall academic achievement. 

Music skill seems to be positively associated to cognitive ability too. In Lee et al.’s 

(2007) study, music-trained children and adults were compared to age-matched control 

groups in a series of digit span and spatial span tasks. The music-trained groups outperformed 

the controls in all the measures. Regarding overall cognitive ability, a convincing amount of 

evidence suggests that music skill and general intelligence are significantly related. Lynn et 

al. (1989) found a correlation between the scores on Raven’s Standard Progressive Matrices 

(Raven, 1960) and a series of music tests in a group of 9-11-year-old children. Moreover, 

Schellenberg (2006) reported a positive correlation between duration of the music training 

and IQ in children and undergraduate students. Crucially, this result remained even after 

controlling for potentially confounding variables, such as parental income and education. 

Finally, this finding was confirmed in a more recent study involving 7- and 8-year-old 

children (Schellenberg & Mankarious, 2012). 
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However, such correlational studies cannot ascertain any far-transfer of skill from 

music training to other areas, because no direction of causality can be inferred. For example, 

both music and non-music skills could stem from innate intellectual abilities. Stronger 

conclusions can be drawn from studies using an experimental design, where an experimental 

group without previous formal musical instruction receives musical training. However, the 

experimental studies on the benefits of music training have provided mixed results. For 

example, while some studies have reported positive results (Kaviani, Mirbaha, Pournaseh, & 

Sagan, 2014; Portowitz, Lichtenstein, Egorova, & Brand, 2009), others have showed modest 

evidence of music training on children’s performance on intelligence tests (Rickard, et al., 

2012; Schellenberg, 2004). Analogously, studies investigating the effect of music training on 

cognitive ability such as spatial- and memory-related skills have provided no clear pattern of 

results. For example, in Bowels (2003), music training exerted a strong effect on children’s 

visuospatial ability. Analogously, in Degé, Wehrum, Stark, and Schwarzer (2011) music 

training significantly enhanced the participants’ visual and auditory memory. However, 

Rickard et al. (2012) failed to find any effect in either of the above measure. With regard to 

academic achievement, previous meta-analyses suggest that music training slightly enhances 

students’ mathematical (Hetland & Winner, 2001; Vaughn, 2000) and literacy skills (Gordon, 

Fehd, & McCandliss, 2015). However, the overall effect sizes reported in these meta-analyses 

are modest, and the variability between studies is quite pronounced. Put simply, the effects of 

music training on skills such as spatial ability, memory, academic performance, and general 

intelligence are still controversial, and positive results have not always been replicated 

(Miendlarzewska & Trost, 2013). 

Such variability in the results may be due to the design features of the studies, 

including (a) the age of the participants, (b) the random (or non-random) assignment to the 

treatment and control groups, and (c) the presence (or absence) of a group engaged in an 
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alternative activity to control for non-music-specific effects, such as placebos. Age may affect 

the occurrence of transfer of skills in two ways. First, transfer effects may be a function of 

neural plasticity (Buschkuehl, Jaeggi, & Jonides, 2012), which, in turn, is a function of age. 

Second, as students grow up, the level of specificity of the activities they are engaged in 

increases (e.g., mathematics, literacy, etc.). Crucially, research on expertise has shown that 

the higher the level of a particular ability, the more specific the features of that ability will be, 

and consequently, the lower the likelihood that transfer will occur (Ericsson & Charness, 

1994; Gobet, 2016). 

Quality design-related features may be important moderators too. Without random 

allocation of the participants, it is not always possible to ensure the baseline equivalence 

between experimental and control groups, especially if the experimental group is self-

selected. Controlling for placebo effects could be even more important. In fact, the 

experience of a new activity such as music training may cause, ipso facto, an enhancement in 

children’s and young adolescents’ cognitive and academic skills. Music-related activities are 

usually a novelty for young students and may induce a state of motivation and excitement, 

which, in turn, may be the real cause of the observed (and temporary) improvements. 

Comparing music training with other enrichment activities is thus essential to understand 

whether the observed benefits are specifically due to music, or just the consequence of non-

specific placebo effects. 

1.4 Aims of the Present Meta-Analysis 

Because of the theoretical implications for theories of transfer, the possible 

educational applications, and the current general interest in this topic, it is imperative to 

rigorously evaluate the putative benefits of music training for academic and cognitive skills. 

Similar claims have been made about the possibility of obtaining transferable benefits, both 

cognitive and academic, from playing video-games (Green, Li, & Bavelier, 2010; Green, 
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Pouget, & Bavelier, 2010), working memory training (Melby-Lervåg & Hulme, 2013, 2016), 

and playing chess in schools (Gobet & Campitelli, 2006; Sala & Gobet, 2016). However, 

research in these fields suggests that optimism about the positive effects of music training 

must be tempered by the possibility that the observed effects are due to confounding factors 

such as placebo effects (Boot, Blakely, & Simons, 2011; Gobet et al., 2014; Sala & Gobet, 

2016) and lack of random assignment of the participants to the groups. 

Our meta-analysis, then, examines the potential cognitive and academic benefits of 

music training for the general population of children and young adolescents (see 2.2. 

Inclusion/Exclusion Criteria). In a first stage, we estimated the overall size of the effects of 

music training on non-music cognitive and academic skills by comparing experimental 

groups to control groups. In a second phase, we assessed the potential role of several possible 

moderators on the effectiveness of music training. The analysis of these factors – along with 

the estimation of an overall effect size – aimed to test: (a) whether music training enhances 

students’ cognitive and academic skills, or whether far-transfer from music to other areas is 

null or negligible; (b) whether music training improves some specific skills more than others; 

(c) whether students’ age affects the benefits of music training; and (d) whether the 

methodological quality of the studies reviewed – i.e., random allocation of participants and 

comparisons with active (i.e., do-other) control groups to rule out placebo effects – influence 

the results. 

Points a) and b) were tested by calculating a general overall effect size (see Section 3. 

Results) and the measure-specific overall effect sizes (see Sections 3.1 and 3.2), respectively. 

Points c) and d) were addressed by performing a meta-regression analyses (see Section 3.1). 
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2. Method 

2.1 Literature Search 

In line with the PRISMA statement (Moher, Liberati, Tetzlaff, & Altman, 2009), a 

systematic search strategy was used to find the relevant studies. Using the following 

combination of the keywords “music” AND (“training” OR “instruction” OR “education” OR 

“intervention”), Google Scholar, ERIC, Psyc-Info, ProQuest Dissertation & Theses, and 

Scopus databases were searched to identify all the potentially relevant studies. Also, previous 

narrative reviews were examined, and we e-mailed researchers in the field (n = 11) asking for 

unpublished studies and inaccessible data.16 

2.2 Inclusion/Exclusion Criteria 

The studies were included according to the following nine criteria: 

 

1. The design of the study included music training; correlational and ex-post facto 

studies were excluded; 

2. The independent variable (music training) was successfully isolated; the studies 

using integrated curricula (e.g., lessons of music and reading in the same 

intervention) were excluded; 

3. The study presented a comparison between a music-treated group and, at least, 

one control group; 

4. Music training was not merely environmental (e.g., background music, music 

videos); 

5. During the study, a measure of academic and/or cognitive skill non-related to 

                                                           
 

16 Unfortunately, no author replied to our e-mails. 
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music was collected; 

6. The participants of the study were pupils aged three to 16; 

7. The participants of the study were pupils without any previous formal musical 

training (as stated by the authors of the included studies); 

8. The participants of the study were pupils without any specific learning disability 

(e.g., developmental dyslexia) or clinical condition (e.g., autism); 

9. The data presented in the study were sufficient to calculate an effect size. 

 

To identify studies meeting these criteria, we searched for relevant published and 

unpublished articles in the last 30 years (from January 1, 1986, through March 1, 2016), and 

scanned reference lists. 

Among the studies screened (n = 166), we found 38 studies, conducted from 1986 to 

2016, that met all the inclusion criteria. These studies included 40 independent samples and 

118 effect sizes, and a total of 3,085 participants. 

2.3 Moderators 

We selected four potential moderators. The first two, which we termed theoretical 

moderators, referred to features of the dependent variables and the participants of the studies, 

while the last two, which we termed methodological moderators, addressed more general 

methodological aspects: 

1. Outcome measure (categorical variable): This variable includes literacy, mathematics, 

memory, intelligence, phonological processing, and spatial skills.17 Effect sizes that 

                                                           
 

17 These broad categories were built by aggregating different outcomes related to a particular 

cognitive or academic ability (e.g., reading and writing both under the category of literacy). 
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were not related to these categories (e.g., visual-auditory learning and visual attention) 

were labelled as others; 

2. Age: The age of the participants in years (continuous variable); 

3. Random allocation (dichotomous variable): Whether participants were fully randomly 

allocated to the groups;18 

4. Presence of active control group (dichotomous variable): Whether the music training 

group was compared to another activity. 

 

 

 

Table 6 

Studies, dependent variables, and moderators of the 118 effect sizes included in the meta-

analysis 

                                                                                                                                                                                     
 

For all the details about the dependent variables of the reviewed studies, see Table 1. See the 

Table S1 in the Supplemental material for more details about the descriptive statistics of the 

studies. 

18 The category of “non-random” encompasses both pre-post-test studies and only-post-test 

studies. Two studies reported only post-test results: Cardarelli (2003) and Geoghegan and 

Mitchelmore (1996). 
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Study Dependent variable 

Outcome 

measure 

Age 

(years)a Randomization 

Active 

control 

group 

Bhide, Power, and Goswami (2013) - M1 

Working Memory 

(digit span) Memory 6.8 No Yes 

Bhide, Power, and Goswami (2013) - M2 

Phonological 

awareness 

Phonological 

processing 6.8 No Yes 

Bhide, Power, and Goswami (2013) - M3 Spelling Literacy 6.8 No Yes 

Bhide, Power, and Goswami (2013) - M4 Reading Literacy 6.8 No Yes 

Bilhartz, Bruhn, and Olson (2000) 

Intelligence 

(vocabulary) Intelligence 4.5 No No 

Bowels (2003) - M1 

Spatial temporal 

ability Spatial 6.5 Yes No 

Bowels (2003) - M2 Reading Reading 6.5 Yes No 

Bowels (2003) - M3 

Phonological 

awareness 

Phonological 

processing 6.5 Yes No 
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Cardarelli (2003) - M1 Reading Reading 9.0 No No 

Cardarelli (2003) - M2 Mathematics Mathematics 9.0 No No 

Cogo-Moreira, de Avila, Ploubidis, and Mari (2013) - 

M1 

Phonological 

awareness 

Phonological 

processing 9.2 Yes No 

Cogo-Moreira, de Avila, Ploubidis, and Mari (2013) - 

M2 Reading Literacy 9.2 Yes No 

Costa-Giomi (2004) - M1 Mathematics Mathematics 9.0 Yes No 

Costa-Giomi (2004) - M2 Language Literacy 9.0 Yes No 

Costa-Giomi (2004) - M3 Mathematics Mathematics 9.0 Yes No 

Degé and Schwarzer (2011) - S1 

Phonological 

awareness 

Phonological 

processing 5.8 Yes Yes 

Degé and Schwarzer (2011) - S2 

Phonological 

awareness 

Phonological 

processing 5.8 Yes No 

Degé, Wehrum, Stark, and Schwarzer (2011) - M1 Visual memory Memory 10.8 No No 

Degé, Wehrum, Stark, and Schwarzer (2011) - M2 Memory (auditory) Memory 10.8 No No 

Geoghegan and Mitchelmore (1996) Mathematics Mathematics 4.5 No No 
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Gromko (2005) Phonemic awareness 

Phonological 

processing 5.5 No No 

Gromko and Poorman (1998) Intelligence Intelligence 3.5 No No 

Hanson (2001) - M1 - S1 Intelligence Intelligence 5.5 Yes No 

Hanson (2001) - M1 - S2 Intelligence Intelligence 5.5 No Yes 

Hanson (2001) - M2 - S1 

Spatial-temporal 

ability Spatial 5.5 Yes No 

Hanson (2001) - M2 - S2 

Spatial-temporal 

ability Spatial 5.5 No Yes 

Hanson (2001) - M3 - S1 Spatial recognition Spatial 5.5 Yes No 

Hanson (2001) - M3 - S2 Spatial recognition Spatial 5.5 No Yes 

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-

Giomi (2011) - M1 - S1 

Phonological 

awareness 

Phonological 

processing 4.6 Yes Yes 

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-

Giomi (2011) - M2 - S1 Naming speed 

Phonological 

processing 4.6 Yes Yes 

Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-

Giomi (2011) - M1 - S2 

Phonological 

awareness 

Phonological 

processing 4.6 Yes Yes 
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Herrera, Lorenzo, Defior, Fernandez-Smith, and Costa-

Giomi (2011) - M2 - S2 Naming speed 

 Phonological 

processing 4.6 Yes Yes 

Hole (2013) Reading Reading 8.9 No Yes 

Hunt (2012) 

Phonological 

discrimination 

Phonological 

processing 3.5 Yes No 

Janus, Lee, Moreno, and Bialystok (2016) - M1 

Working Memory 

(verbal) Memory 5.0 No Yes 

Janus, Lee, Moreno, and Bialystok (2016) - M2 

Working Memory 

(spatial) Memory 5.0 No Yes 

Janus, Lee, Moreno, and Bialystok (2016) - M3 

Executive Control 

(verbal fluency) Other 5.0 No Yes 

Janus, Lee, Moreno, and Bialystok (2016) - M4 

Attention (sentence 

judgement) Other 5.0 No Yes 

Janus, Lee, Moreno, and Bialystok (2016) - M5 

Attention (visual 

search) Other 5.0 No Yes 

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M1 Intelligence (IQ) Intelligence 5.5 Yes No 

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M2 Abstract reasoning Intelligence 5.5 Yes No 
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Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M3 Verbal reasoning Intelligence 5.5 Yes No 

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M4 

Quantitative 

reasoning Intelligence 5.5 Yes No 

Kaviani, Mirbaha, Pournaseh, and Sagan (2014) - M5 Short-term memory Memory 5.5 Yes No 

Legette (1993) - M1 Mathematics Mathematics 6.0 No No 

Legette (1993) - M2 Reading Reading 6.0 No No 

Lu (1986) Reading Reading 6.0 No Yes 

Mehr, Schachner, Katz, and Spelke (2013) - M1 - S1 

Spatial navigation 

reasoning Spatial 4.0 Yes Yes 

Mehr, Schachner, Katz, and Spelke (2013) - M1 - S2 

Spatial navigation 

reasoning Spatial 4.0 Yes No 

Mehr, Schachner, Katz, and Spelke (2013) - M2 - S1 Visual form analysis Spatial 4.0 Yes Yes 

Mehr, Schachner, Katz, and Spelke (2013) - M2 - S2 Visual form analysis Spatial 4.0 Yes No 

Mehr, Schachner, Katz, and Spelke (2013) - M3 - S1 

Numerical 

discrimination Mathematics 4.0 Yes Yes 

Mehr, Schachner, Katz, and Spelke (2013) - M3 - S2 
Numerical 

Mathematics 4.0 Yes No 
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discrimination 

Mehr, Schachner, Katz, and Spelke (2013) - M4 - S1 Receptive vocabulary Literacy 4.0 Yes Yes 

Mehr, Schachner, Katz, and Spelke (2013) - M4 - S2 Receptive vocabulary Literacy 4.0 Yes No 

Moreno et al. (2009) Reading Literacy 8.3 No Yes 

Moreno, Friesen, and Bialystok (2011) - M1 Rhyming 

Phonological 

processing 5.3 Yes Yes 

Moreno, Friesen, and Bialystok (2011) - M2 

Visual-auditory 

learning Other 5.3 Yes Yes 

Moritz, Yampolsky, Papadelis, Thomson, and Wolf 

(2013) - M1 Rhyming 

Phonological 

processing 5.6 No No 

Moritz, Yampolsky, Papadelis, Thomson, and Wolf 

(2013) - M2 

Isolation of 

phonemes 

Phonological 

processing 5.6 No No 

Myant, Armstrong, and Healy (2008) - M1 Alliteration 

Phonological 

processing 4.3 No No 

Myant, Armstrong, and Healy (2008) - M2 Rhyming 

Phonological 

processing 4.3 No No 

Portowitz, Lichtenstein, Egorova, and Brand (2009) - 
Intelligence Intelligence 8.0 No No 
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M1 

Portowitz, Lichtenstein, Egorova, and Brand (2009) - 

M2 Memory Memory 8.0 No No 

Portowitz, Peppler, and Downton (2014) 

Working Memory 

(spatial) Memory 9.5 No No 

Rauscher and Zupan (2000) - M1 Working memory Memory 5.5 No No 

Rauscher and Zupan (2000) - M2 

Spatial-temporal 

ability Spatial 5.5 No No 

Register (2004) - M1 - S1 Letter naming 

Phonological 

processing 6.0 No Yes 

Register (2004) - M1 - S2 Letter naming 

Phonological 

processing 6.0 No No 

Register (2004) - M2 - S1 Sounds fluency 

Phonological 

processing 6.0 No Yes 

Register (2004) - M2 - S2 Sounds fluency 

Phonological 

processing 6.0 No No 

Register (2004) - M3 - S1 Reading Literacy 6.0 No Yes 
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Register (2004) - M3 - S2 Reading Literacy 6.0 No No 

Rickard, Bambrick, and Gill (2012) - M1 - S1 Memory Memory 12.7 No Yes 

Rickard, Bambrick, and Gill (2012) - M1 - S2 Memory Memory 12.7 No Yes 

Rickard, Bambrick, and Gill (2012) - M2 - S1 Intelligence (IQ) Intelligence 12.7 No Yes 

Rickard, Bambrick, and Gill (2012) - M2 - S2 Intelligence (IQ) Intelligence 12.7 No Yes 

Rickard, Bambrick, and Gill (2012) - M3 - S3 Reading Literacy 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M3 - S4 Reading Literacy 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M4 - S3 Writing Literacy 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M4 - S4 Writing Literacy 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M5 - S3 Speaking Literacy 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M5 - S4 Speaking Literacy 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M6 - S3 Space Spatial 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M6 - S4 Space Spatial 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M7 - S3 Number Mathematics 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M7 - S4 Number Mathematics 10.9 Yes No 
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Rickard, Bambrick, and Gill (2012) - M8 - S3 Structure Mathematics 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M8 - S4 Structure Mathematics 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M9 - S3 Measurement Mathematics 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M9 - S4 Measurement Mathematics 10.9 Yes No 

Rickard, Bambrick, and Gill (2012) - M10 - S3 Mathematics Mathematics 10.9 Yes Yes 

Rickard, Bambrick, and Gill (2012) - M10 - S4 Mathematics Mathematics 10.9 Yes No 

Roden et al. (2014) - M1 Visual attention Other 7.9 No Yes 

Roden et al. (2014) - M2 Speed processing Other 7.9 No Yes 

Roden, Grube, Bongard, and Kreutz (2014) - M1 

Working memory 

(visuospatial) Memory 7.5 No Yes 

Roden, Grube, Bongard, and Kreutz (2014) - M2 

Working memory 

(phonological) Memory 7.5 No Yes 

Roden, Grube, Bongard, and Kreutz (2014) - M3 

Working memory 

(CE) Memory 7.5 No Yes 

Roden, Kreutz, and Bongard (2012) - M1 - S1 Verbal memory Memory 7.7 No Yes 

Roden, Kreutz, and Bongard (2012) - M1 - S2 Verbal memory Memory 7.7 No No 
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Roden, Kreutz, and Bongard (2012) - M2 - S1 Visual memory Memory 7.7 No Yes 

Roden, Kreutz, and Bongard (2012) - M2 - S2 Visual memory Memory 7.7 No No 

Schellenberg (2004) - S1 Intelligence (IQ) Intelligence 6.0 Yes Yes 

Schellenberg (2004) - S2 Intelligence (IQ) Intelligence 6.0 Yes No 

Schellenberg, Corrigal, Dys, and Malti (2015) Vocabulary Literacy 8.7 No No 

Slater et al. (2014) - M1 Reading Reading 8.3 No No 

Slater et al. (2014) - M2 

Phonological 

awareness 

Phonological 

processing 8.3 No No 

Slater et al. (2014) - M3 

Phonological 

memory 

Phonological 

processing 8.3 No No 

Slater et al. (2014) - M4 Rapid naming 

Phonological 

processing 8.3 No No 

Thompson, Schellenberg, and Husain (2004) - M1 - S1 

Speech Prosody 

(spoken utterance) 

Phonological 

processing 7.0 Yes Yes 

Thompson, Schellenberg, and Husain (2004) - M1 - S2 

Speech Prosody 

(spoken utterance) 

Phonological 

processing 7.0 Yes No 
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Thompson, Schellenberg, and Husain (2004) - M2 - S1 

Speech Prosody (tone 

sequence) 

Phonological 

processing 7.0 Yes Yes 

Thompson, Schellenberg, and Husain (2004) - M2 - S2 

Speech Prosody (tone 

sequence) 

Phonological 

processing 7.0 Yes No 

Tierney, Krizman, and Kraus (2015) - M1 

Phonological 

awareness 

Phonological 

processing 14.7 No Yes 

Tierney, Krizman, and Kraus (2015) - M2 

Phonological 

memory 

Phonological 

processing 14.7 No Yes 

Tierney, Krizman, and Kraus (2015) - M3 

Phonological 

awareness 

Phonological 

processing 14.7 No Yes 

Yazejian and Peisner-Feinberg (2009) - M1 Phoneme deletion 

Phonological 

processing 4.4 Yes No 

Yazejian and Peisner-Feinberg (2009) - M2 Rhyming 

Phonological 

processing 4.4 Yes No 
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Note. For studies with multiple samples, the result of each sample (S1, S2, etc.) is reported separately, and for studies with multiple outcome 

measures, the result of each measure (M1, M2, etc.) is reported separately. 

a When the mean age was not provided, the mid-point of the range was inserted in the model. Similarly, when the grade of the students was 

provided the mid-point of the range was considered (e.g., first graders, six-year-olds).
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2.4 Effect Size19 

For the studies with an only-post-test design, the standardized means difference (Cohen’s d) 

was calculated with the following formula: 

𝑑 = (𝑀௘ − 𝑀௖) 𝑆𝐷௣௢௢௟௘ௗ⁄     (1) 

where SDpooled is the pooled standard deviation, and Me and Mc are the means of the experimental 

group and the control group, respectively.20 For the studies with a repeated-measure design, the 

standardized means difference was calculated with the following formula: 

𝑑 = (𝑀௚ି௘ − 𝑀௚ି௖) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄    (2) 

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and Mg-e 

and Mg-c are the gain of the experimental group and the control group, respectively (Schmidt & 

Hunter, 2015, p. 353). 

Analogously to other recent meta-analyses (e.g., Macnamara, Hambrick, & Oswald, 2014), 

the effect sizes with z-scores greater than 3 (n = 9) or smaller than –3 (n = 2) were Winsorized to z-

scores equal to 2.99 and –2.99, respectively.21 This procedure was adopted to reduce the weight of 

potential outliers in the analysis (Lipsey & Wilson, 2001; Schmidt & Hunter, 2015, pp. 235-236; 

Tukey, 1962). Finally, the Comprehensive Meta-Analysis (Version 3.0; Biostat, Englewood, NJ) 

software package was used for computing the effect sizes and conducting statistical analyses. 

                                                           
 

19 All the formulas we used were taken from Schmidt and Hunter (2015). 

20 If the t statistic was provided, we used the regular formula 𝑑 = 𝑡×ඥ(𝑛ଵ + 𝑛ଶ) (𝑛ଵ×𝑛ଶ)⁄ . 

21 We also performed additional analyses without Winsorizing the 11 effect sizes. No significant 

difference was found in the overall results (for details, see Section S1 and Table S3 in the 

Supplemental material available online). 
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2.5 Statistical Dependence of the Samples 

The effect sizes were calculated for each dependent variable reported in the studies (Schmidt 

& Hunter, 2015). Moreover, when the study presented a comparison between one experimental 

group and two control groups (do-nothing and active), two effect sizes were calculated (one for 

each comparison with experimental and control groups; see Table 6). As this procedure violates the 

principle of statistical independence, the method designed by Cheung and Chan (2004) was applied 

to both the main and the additional models (see Sections 3.1 and 3.2). This method reduces the 

weight in the analysis of dependent samples by calculating an adjusted (i.e., smaller) N. Since 

Cheung and Chan’s (2004) method cannot be used for partially dependent samples, we ran our 

analyses as if the comparisons between experimental samples and two different control groups were 

statistically independent. However, it must be noted that the violation of statistical independence 

has little or no effect on means, standard deviations, and confidence intervals (Bijmolt & Pieters, 

2001; Tracz, Elmore, & Pohlmann, 1992). Thus, the entire procedure is a reliable way to deal with 

the statistical dependence of part of the samples. For the list of the studies and the adjusted Ns, see 

Table S2 in the Supplemental material available online 

(http://www.sciencedirect.com/science/article/pii/S1747938X16300641). 

3. Results 

The random-effects meta-analytic overall effect size was 𝑑̅ = 0.16, CI [0.09; 0.22], k = 118, 

p < .001. The degree of heterogeneity (Borenstein, Hedges, Higgins, & Rothstein, 2009) between 

effect sizes was I2 = 46.94, suggesting that some moderators had a potential effect.22 

                                                           
 

22 A degree of heterogeneity (I2) around 50.00 is considered moderate, around 25.00 low, and 

around 75.00 high. 
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3.1 Meta-Regression Analysis 

A meta-regression model including all the four moderators was run. The model fitted the 

data significantly, Q(9) = 49.06, R2 = .65, p < .001. Age was not a significant moderator, p = .944. 

The statistically significant moderators were Outcome measure, Q(6) = 21.78, p = .001, Random 

allocation, b = –0.16, p = .010, and Presence of active control group, b = –0.25, p < .001. The last 

two moderators show that studies with random allocation of participants and studies comparing 

music treatment to another activity (active control group) tended to have weaker effect sizes. The 

overall effect sizes in randomized and non-randomized samples were 𝑑̅ = 0.09, CI [–0.01; 0.18], k = 

57, p = .084, and 𝑑̅ = 0.23, CI [0.14; 0.31], k = 61, p < .001, respectively. The overall effect sizes 

when music training was compared to active control and do-nothing control groups were 𝑑̅ = 0.03, 

CI [–0.07; 0.12], k = 54, p = .562, and 𝑑̅ = 0.25, CI [0.17; 0.34], k = 64, p < .001, respectively. 

Finally, the overall effect size in randomized samples with active control groups was 𝑑̅ = –0.12, CI 

[–0.27; 0.03], k = 22, p = .113, while the overall effect size in the non-randomized samples without 

active control group was 𝑑̅ = 0.33, CI [0.23; 0.44], k = 29, p < .001. 

3.2 Additional Meta-Analytic Models 

Since Outcome measure was a significant moderator, we calculated the random-effects 

meta-analytic overall effect size of each of the seven measures, in order to investigate whether any 

measure showed an overall effect size appreciably larger (or smaller) than the others. The overall 

effect sizes are summarized in Table 7. 

The meta-regression analysis showed that only memory- and intelligence-related overall 

effect sizes were significantly different compared to the other measures (b = 0.26, p = .041, and b = 

0.30, p = .029, respectively). 
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Table 7 

Overall effect sizes, confidence intervals, ks, and p-values in each outcome measure 

Outcome 

measure 

Effect size (𝒅ഥ) 95% CI k p-value 

Literacy –0.07 [–0.23; 0.09] 22 .386 

Mathematics 0.17 [–0.02; 0.36] 15 .085 

Memory 0.34 [0.20; 0.48] 18 <.001 

Intelligence 0.35 [0.21; 0.49] 13 <.001 

Phonological 

Processing 

0.17 [0.04; 0.29] 32 .008 

Spatial 0.14 [–0.06; 0.34] 12 .168 

Others –0.01 [–0.25; 0.23] 6 .919 

 

3.3 Publication Bias Analysis 

 Begg and Mazumdar’s (1994) rank correlation test showed no evidence of publication bias 

(p = .433, one-tailed). In addition, to test the robustness of results (Kepes & McDaniel, 2015), we 

ran a p-curve analysis for the detection of publication bias (Simonsohn, Nelson, & Simmons, 2014). 

We selected the ps according the following two rules: (a) only positive results (i.e., z > 0) were 

considered; and (b) to avoid redundancy, only one p < .01 per study was inserted into the analysis. 

The results had evidential value (i.e., no evidence of publication bias) because we found more low 

p-values (p < .01) than high p-values (.01 < p < .05), z(14) = –4.24, p < .001 (Figure 10). 
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Figure 10. p-curve analysis of the studies reporting significantly positive results. The blue 
(continuous) line shows that most of the significant p-values are smaller than .01. 

 

Finally, Duval and Tweedie’s (2000) method found no publication bias in any of the seven 

models (i.e., no studies trimmed left of the mean). 

3.4 Sensitivity Analysis 

Since Rickard et al.’s (2012) study reported a large number of effect sizes (k = 20), we 

conducted a sensitivity analysis by excluding those effect sizes from all the models. The random-

effects meta-analytic overall effect size was still modest, 𝑑̅ = 0.20, CI [0.14; 0.27], k = 98, p < .001. 

The degree of heterogeneity between effect sizes was I2 = 39.31, suggesting that some moderators 

had a potential effect. For the list of the studies and the adjusted Ns, see Table S4 in the 

Supplemental material available online. 
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A meta-regression model including all the four moderators was run. The model fitted the 

data significantly, Q(9) = 36.94, R2 = .74, p < .001. The only two statistically significant moderators 

were Outcome measure, Q(6) = 20.16, p = .003 and Presence of active control group, b = 0.17, p = 

.0014. The overall effect sizes when music training was compared to do-nothing control and active 

control groups were 𝑑̅ = 0.28, CI [0.19; 0.36], k = 56, p < .001, and 𝑑̅ = 0.08, CI [–0.03; 0.19], k = 

42, p = .139, respectively. Compared to Table 7, no significant difference was found in six of the 

seven Outcome measure-related overall effect sizes. The only exception was Mathematics (𝑑̅ = 0.35 

vs 𝑑̅ = 0.17; Table 8). 

Table 8 

Overall effect sizes, confidence intervals, ks, and p-values in each outcome measure 

Outcome 

measure 

Effect size (𝒅ഥ) 95% CI k p-value 

Literacy 0.07 [–0.07; 0.21] 16 .307 

Mathematics 0.35 [0.16; 0.54] 7 <.001 

Memory 0.39 [0.25; 0.54] 16 <.001 

Intelligence 0.37 [0.21; 0.53] 11 <.001 

Phonological 

Processing 

0.17 [0.04; 0.29] 32 .008 

Spatial 0.15 [–0.10; 0.40] 10 .248 

Others –0.01 [–0.25; 0.23] 6 .919 

Note. The 20 effect sizes calculated from Rickard et al. (2012) were excluded. 

4. Discussion 

The present meta-analysis aimed to test the hypothesis that music training improves 

children’s and young adolescents’ cognitive and academic skills, and to evaluate the potential role 

of moderating variables. Along with a small overall effect size (𝑑̅ = 0.16, CI [0.09; 0.22]), which 
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indicates that far-transfer from music to non-music skills was limited, the results showed a slightly 

greater positive effect of music training on some of the cognitive skills (i.e., intelligence and 

memory) and a non-significant effect on all the academic skills. Moreover, the design quality of the 

studies significantly affected the magnitude of the effects. A similar pattern of results was obtained 

in the sensitivity analysis model. 

We did not correct for attenuation due to measurement error because only about half of the 

studies provided reliability coefficients. However, correcting for measurement error would not 

significantly affect the effect sizes. For example, if we assume that the reliability coefficients are 

between .80 and .90, then the corrected estimate of the overall effect size of the main model (i.e., 𝑑̅ 

= 0.16) would be between 0.17 and 0.18, a difference of only 0.01 or 0.02 standard deviations. 

4.1 Substantive Results 

The outcomes of the present meta-analysis allow us to draw some important conclusions. 

First, the small overall effect size upholds Thorndike and Woodworth’s (1901) common-element 

theory. In line with previous research (Donovan et al., 1999; Sala & Gobet, 2016), far-transfer from 

music to other cognitive or academic abilities seems to be small or null. Second, music training 

appears to moderately foster intelligence- and memory-related outcomes. However, no significant 

effect on academic skills was found (literacy, 𝑑̅ = –0.07, CI [–0.23; 0.09], p = .386; mathematics, 𝑑̅ 

= 0.17, CI [–0.02; 0.36], p = .085). This outcome suggests that improvements in memory and 

intelligence do not generalize to academic skills. Alternatively, and more likely, the observed 

positive effects of music training in intelligence- and memory-related outcomes are due to 

confounding variables (we will take up this point below). Either way, the hypothesis according to 

which the multiple benefits of music training, including academic benefits, stem from an 

improvement in general intelligence (or overall cognitive skill) is not corroborated. Third, the age of 

the participants is not a statistically significant moderator. Fourth, the meta-regression model 

accounts for a large proportion of the variance (R2 = .65) between the effect sizes. The latter result 
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implies that the statistically significant moderators explain, to a large extent, why the research on 

the effects of music training on children’s and young adolescents’ skills has produced mixed results 

up to now. 

4.2 Methodological Results 

The meta-regression analysis shows that both methodological moderators (i.e., random 

allocation of participants to the treatment groups and comparison to an active control group) 

affected the effect sizes. In other words, the better the design quality, the smaller the effect sizes. 

This outcome lends further support to the idea that the observed positive effects, when any, of music 

training on non-music-related outcomes, are probably due to confounding variables, such as placebo 

effects and lack of random allocation of participants. 

Unfortunately, this conclusion seems to apply to memory- and intelligence-related effect 

sizes too. In fact, despite the greater overall effect sizes in these two outcome measures (𝑑̅ = 0.34, 

CI [0.20; 0.48] and 𝑑̅ = 0.35, CI [0.21; 0.49], respectively), the reliability of these positive results 

seems questionable. Only one study (Schellenberg, 2004) tested the effect of music training on 

children’s intelligence using a rigorous experimental design (i.e., random allocation of participants 

and active control group), and the effect was found to be modest (d = 0.16). Concerning the 

memory-related outcomes, none of the reviewed studies adopted such a design. Furthermore, as 

pointed out above, a genuine – i.e., not due to confounding variables – improvement in such critical 

cognitive skills should leave a trace in students’ academic skills, at least to some degree. 

The sensitivity analysis (Section 3.4) showed that when Rickard et al.’s (2012) study and all 

its effect sizes were excluded, the overall effect size in mathematics became significantly positive. 

However, the only study comparing a music training group to an active control group and with 

random allocation of the participants to the groups – i.e., Mehr et al. (2013) – found a negative 

effect size (d = –0.25). These considerations uphold the conclusion that music training does not 

substantially enhance any non-music-related cognitive skill. 
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4.3 Conclusions and Recommendations for Future Research 

The results of this meta-analysis fail to support the hypothesis that music skill transfers to 

cognitive or academic skills in the general population of children and young adolescents. Together 

with previous findings in psychology and education, these results suggest a sobering conclusion: 

when the potential occurrence of far-transfer is tested rigorously, the results are often, if not always, 

disappointing. Thus, this study lends further support to the hypothesis according to which far-

transfer rarely occurs. Even when music training appears to foster some of the participants’ 

cognitive skills (intelligence and memory), the reliability of the results is doubtful. In fact, only one 

study investigated, with a proper design, the effects exerted by music training on the participants’ 

intelligence- and memory-related skills. 

 Due to the lack of well-designed studies, the question of whether music training enhances 

children’s and young adolescents’ intelligence- and memory-related skills is still unanswered. For 

this reason, future studies should strive for proper designs that include both random allocation of the 

participants and an active control group. Furthermore, future investigations should evaluate the 

effects of music training on both cognitive (especially intelligence and memory) and academic 

skills. Such a design makes it possible to empirically assess whether the potential benefits of music 

training on youngsters’ cognitive skills generalize to academic performance. Nonetheless, 

considering the previous unsatisfactory outcomes and the scarcity of far-transfer in the literature, it 

is our opinion that future experiments will show results in line with those presented in this meta-

analysis. 
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Chapter 7: Meta-Analysis of Video-Game Training 

Rationale for the Meta-Analysis in Chapter 7 

Chapter 7 explores the relationship between the practice of video-games and cognitive 

function. Meta-analysis 1 assesses the correlation between video-game skill and several cognitive 

abilities. Meta-analysis 2 compares the performance of video-game players and non-players in a 

variety of cognitive tasks. Meta-analysis 3 examines the effects of video-game training 

experimentally (i.e., studies with an intervention design). 

Considering the relevance of the field of video-game playing, the large number of studies 

carried out, and the substantial disagreement among researchers, such broader meta-analytic 

investigation is necessary. My aim is to investigate the correlational and cross-sectional evidence – 

along with the experimental studies – regarding video-game practice and cognitive abilities to test 

the claims about the benefits of video-game training. 

Please note that the original paper included a broad introduction to the general questions of 

transfer and cognitive training. The introduction has been moved to Chapter 2 to avoid redundancy.  

The studies included in Meta-analysis 1, Meta-analysis 2, and Meta-analysis 3 are listed in 

Appendix D, Appendix E, and Appendix F, respectively. 
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1. Introduction 

As just seen, recent experimental evidence and meta-analytic reviews have highlighted the 

limitations, rather than the benefits, of many different types of cognitive training. Cognitive-training 

regimens seem to affect only the trained skills, while no effect is exerted on non-trained tasks. This 

applies to both those activities that specifically train cognitive abilities (e.g., n-back tasks in WM 

training, spatial training, and brain-training programs) and cognitively demanding activities such as 

chess and music. The converging evidence provided by the research into expertise acquisition and 

cognitive training strongly suggests that the occurrence of far transfer is rare at best. 

Video game training offers another potential avenue for cognitive enhancement. Unlike 

chess and music training, where the number of studies is limited, video game training has been 

extensively studied for the last 20 years. The deep interest of scientists and policy makers for this 

activity has made the research on video games one of the most important domains in which to test 

the occurrence of far transfer. Action video-game players have been found to outperform non-

players in a variety of attentional and perceptual tasks (Green, Li, & Bavelier, 2010). Crucially, 

several experimental studies (e.g., Bejjanki et al., 2014; Green & Bavelier 2003) have provided 

some evidence of a causal relationship between action video game training and improvement in 

cognitive ability. Notably, even the US Navy has been attracted by these promising results (Hsu, 

2010). 

The most influential explanation proposed to account for those positive results is the 

“learning to learn” theory (Bavelier, Green, Pouget, & Schrater, 2012). According to this theory, 

experience with action video games leads to an improvement in probabilistic inference. It is argued 

that the tasks that are used to compare the performance of video game players and non-video game 

players all require computing the probability of a choice being true given the available information. 

In other words, video game players are better at using such information, and this improved 

computational ability leads to better performance across tasks. 
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Finally, non-action video game training seems to offer some benefits as well. For example, 

Okagaki and Frensch (1994) reported that a 6-hour training of the game Tetris improved the spatial 

abilities in a group of older adolescents. 

Playing video games also seems associated with neural changes (functional and anatomical). 

For example, enhanced attentional control due to video gaming is consistent with several fMRI 

studies revealing that video game players have superior functional integration between working 

memory and attention networks involving frontoparietal areas (Gong et al., 2016), as well as 

enhanced white matter connectivity from the visual area to frontal cortex (Kim et al., 2015). Wu et 

al. (2012) trained non-video game players with an action video game (Medal of Honor) for 10 hours 

and measured event-related potentials. After video game training, high-performing players showed 

larger amplitudes of P3 waves, which have been implicated in top-down control of attention. 

The research into video game training has, however, failed to consistently replicate the 

abovementioned positive results. Terlecki, Newcombe, and Little (2008) found no difference in 

mental rotation ability between the training group (playing Tetris) and the control group. Similarly, 

Minear et al.’s (2016) study of real-time strategy video game provided no evidence of training 

effects on several measures of WM, short-term memory, spatial ability, and fluid intelligence. Boot, 

Kramer, Simons, Fabiani, and Gratton (2008) questioned the effectiveness of action video game 

training at enhancing a broad set of cognitive abilities (e.g., enumeration, span, and n-back tasks). 

Finally, Oei and Patterson (2013, 2014, 2015) have challenged the “learning to learn” hypothesis 

and claimed that action video game training fosters, at best, those cognitive abilities necessary to 

play a particular video game. To test this hypothesis, Oei and Patterson (2015) used, as training 

tasks, four different action video games, differing from each other with regard to their cognitive 

demands (e.g., different speed and levels of selective attention). In line with Thorndike and 

Woodworth’s (1901) common elements theory, participants’ improvements were restricted to the 

cognitive abilities targeted by the video game they played. 
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Other researchers have also raised doubts about the alleged superior cognitive ability of 

video game players over non-players. For example, in Gobet et al. (2014), the group of action video 

game players failed to outperform the non-video game players in a flanker task and a change 

detection task. Similarly, Murphy and Spencer (2009) found no difference between a group of 

action video game players and a group of non-players in a set of visual-attention tasks. Comparable 

outcomes were obtained by Castel, Pratt, and Drummond (2005) and Irons, Remington, and 

McLean (2011). 

A further source of scepticism about the relationship between video game playing and 

superior cognitive ability comes from several correlational studies. If video game training is 

effective, more skilled and experienced video game players should show superior cognitive ability 

compared to novice video game players. However, Hambrick, Oswald, Darowski, Rench, and Brou 

(2010) reported near-zero correlations between the participants’ video game experience and several 

measures of processing speed, WM capacity, and fluid reasoning. Hambrick et al.’s (2010) results 

were replicated by Unsworth et al. (2015). 

2. The Meta-Analytic Evidence 

The research about video game and cognitive ability has provided mixed results in both 

experimental, quasi-experimental (i.e., comparison between players and non-players), and 

correlational studies. To disentangle these discrepancies, Powers, Brooks, Aldrich, Palladino, and 

Alfieri (2013) ran two meta-analyses collecting the available evidence about the effects of playing 

video games on cognitive ability.23 The first meta-analysis, comparing players to non-players, 

                                                           
 

23 More recently, two other smaller meta-analyses were carried out. Toril, Reales, and Ballesteros 

(2014) reviewed 20 studies regarding the effects of video game training on older adults’ cognitive 

ability, while Wang et al. (2016) meta-analysed 19 studies regarding action video game training in 

healthy adults. Both meta-analyses reported moderate effects of training on participants’ cognitive 
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reported medium to large effect sizes showing that video-game players were superior to non-players 

in measures of visual processing, executive functioning, and spatial imagery, among others. The 

second meta-analysis, focusing on true experiments, found positive, yet slightly smaller, effects of 

video game training on the same measures. Overall, the results suggested optimism about the ability 

of video game training to enhance a broad range of cognitive abilities. 

However, several serious methodological flaws make Powers et al.’s (2013) findings 

unreliable. The inclusion criteria appear too loose, especially because of the inclusion of training 

studies without a control group controlling for testing effects, studies mixing video game experience 

with general computer use (e.g., Li & Atkins, 2004), and studies dealing with the effects of 

exergaming (i.e., games for physical training; e.g., Staiano, Abraham, & Calvert, 2012). Another 

problem was that Powers et al.’s (2013) meta-analysis included, when assessing the differences 

between video game players and non-video game players, studies reporting correlations between 

video game players’ experience/skill and cognitive ability (e.g., Hambrick et al., 2010). 

Most importantly, in the two meta-analytic models (and hence in the sub-models), too many 

of the effect sizes (up to 28) were extracted from the same samples and were often referring to the 

same cognitive construct, without any correction for statistical dependence. Even if the violation of 

the assumption of statistical independence does not necessarily cause a systematic bias in the 

estimation of overall meta-analytic means (i.e., 𝑟̅ and 𝑑̅; Schmidt & Hunter, 2015), the features of a 

particular meta-analytic model may lead to an accidental inflation (or reduction) of the overall 

means. Moreover, the violation of the assumption of statistical independence is associated with an 

underestimation of sampling error inflating the variability between studies (Schmidt & Hunter, 

2015), with possible consequent biases in moderator analysis. 

                                                                                                                                                                                                 
 

ability. 
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3. The Present Meta-Analytic Investigation 

The field of video game training might be a significant exception to Thorndike and 

Woodworth’s (1901) common elements hypothesis. The potential theoretical and practical 

implications of such an anomaly would be huge. It is thus imperative to test – comprehensively and 

with rigorous statistical methods – the claim that video game training produces far-transfer effects. 

We thus ran three meta-analytic models. The first meta-analysis assessed the correlation 

between video-game skill and cognitive ability. To the best of our knowledge, no such meta-

analysis has ever been carried out before. The second meta-analysis tested whether the population 

of video game players significantly differed from the population of non-video game players in terms 

of cognitive ability. The third meta-analysis dealt with the effects of video game training on 

cognitive ability. The first two meta-analyses represent an important (if not necessary) test for the 

hypothesis according to which video game training exerts a positive influence on cognitive ability. 

If video game experience/skill is not correlated with cognitive ability, or video game players are not 

better than non-video game players, then it is difficult to claim that video game training enhances 

cognitive ability. 

4. General Method 

4.1 Literature Search 

A systematic search strategy was used to find the relevant studies (PRISMA statement; 

Moher, Liberati, Tetzlaff, & Altman, 2009). ERIC, PsycINFO, MEDLINE, JSTOR, Science Direct, 

and ProQuest Dissertation&Theses databases were searched to identify all the potentially relevant 

studies, using the following combination of keywords: ("video gam*" OR videogame) AND 

(intelligen* OR IQ OR “executive function*” OR percept* OR cognit* OR attention* OR visual* 

OR vision OR inhibition OR memory OR motor OR “dual task” OR “switching task” OR flanker 

OR “object tracking” OR “spatial”). Also, previous reviews were examined, and we e-mailed 

researchers in the field (n = 135) asking for inaccessible data. 



   
 

157 
 

4.2 Inclusion Criteria 

The studies were included in accordance with the following four general criteria: 

1. The variable of interest (e.g., video game experience, skill, and training) was 

successfully isolated. For example, studies reporting correlations and comparisons 

between treated and non-treated groups regarding the general use of digital media were 

excluded. Similarly, studies regarding the effects of video games involving physical 

training (i.e., exergames) on the participants’ cognitive abilities were excluded; 

2. During the study, at least one measure of domain-general cognitive ability non-related to 

video gaming was collected; 

3. The participants of the study suffered from no specific learning disability (e.g., 

developmental dyslexia), behavioural disorder (e.g., aggressive behaviour), or clinical 

condition (e.g., video game addiction, amblyopia); 

4. The data presented in the study, or provided by the authors, were sufficient to calculate 

an effect size. 

 

The additional criteria for each of the three meta-analyses are reported in the three relevant Method 

sections. 

To identify studies meeting these criteria, we searched for relevant published and 

unpublished articles until December 31st, 2016, and scanned reference lists. Forty-two authors 

replied to our e-mails. Twenty-five provided unpublished data. 

We found 66 studies (Appendix D) reporting correlations between cognitive ability and 

video game skill, including 8,141 participants and 310 effect sizes. We found 98 studies (Appendix 

E) reporting comparisons (i.e., quasi-experimental design) between players and non-players, 

including 6,166 participants and 315 effect sizes. Finally, we found 63 studies (Appendix F) 
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regarding the effects of video game training on cognitive ability, including 3,286 participants and 

359 effect sizes. The procedure is summarized in Figure 11. 

 

Figure 11. Flow diagram of the studies included in the meta-analyses. 

4.3 Outcome Measures 

The effect sizes were categorized into five broad measures: (a) Visual attention/processing, 

including all those tests measuring visual-perception skills (e.g., visual search tasks, flanker task, 

useful field of view [UFOV] tasks, and change detection tasks); (b) Spatial ability, including tests 
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such as mental rotation and folding tasks; (c) Cognitive control, including tests such as task 

switching, go/no-go, Simon, and Stroop tasks; (d) Memory, including tests such as span, n-back, 

and recall tasks; and (e) Intelligence/reasoning, including tests of fluid intelligence/reasoning (e.g., 

Raven’s matrices) and comprehension knowledge (e.g., verbal fluency). 

This categorization was used as the main moderator and named Outcome measure in all the 

three meta-analyses. When analysing the other categorical moderators, the effect sizes were sorted 

by Outcome measure, and the relative overall meta-analytic means were calculated. 

The first author and the second author coded each effect size independently. The Cohen’s 

kappa was κ = .85, 95% CI [.82; .88]. The authors resolved every discrepancy. 

4.4 Statistical Dependence of the Samples 

The effect sizes were calculated for each dependent variable reported in the studies. For 

each independent sample, those effect sizes referring to the same type of measure (e.g., reaction 

times) and extracted from the same test (e.g., different stimulus onset asynchronies in the UFOV 

task) were merged into one effect size. This procedure was used to calculate more reliable estimates 

and reduce the number of statistically dependent effect sizes in the model (Schmidt & Hunter, 

2015). For those effect sizes that were statistically dependent and referred to different constructs or 

were extracted from different tests, Cheung and Chan’s (2004) correction for statistically dependent 

samples was applied. This method decreased the weight of dependent samples in the analysis by 

calculating an adjusted (i.e., smaller) N in each meta-analytic model.  

When the study presented multiple-group comparisons – for example, between one group 

(e.g., action video game players) and several comparison groups (e.g., non-video game players, 

non-action video game players) – we calculated as many effect sizes as the number of comparisons. 

Since Cheung and Chan’s (2004) method cannot be used for partially dependent samples, we ran 

our analyses as if these effect sizes were statistically independent. This relatively minor limitation 



   
 

160 
 

was nearly absent when the effect sizes were sorted by type of video game. Thus, the entire 

procedure was a reliable way to deal with statistical dependent effect sizes and the related potential 

biases (e.g., overestimation of between-study variability).  

4.5 Calculations of the Overall Meta-Analytic Means 

Random-effect models were used to estimate the overall meta-analytic means. First, a model 

including all the effect sizes (main model) was run for each of the three meta-analyses. The overall 

meta-analytic means of the three main models represented a measure of the relationship between 

video game playing and overall cognitive ability. A series of meta-analytical sub-models were built 

to assess the effects of categorical moderators in all the three meta-analyses. To run the models, we 

used the Comprehensive Meta-Analysis (CMA; Version 3.3; Biostat, Englewood, NJ) software 

package. 

4.6 Publication Bias Analysis 

Publication bias occurs when non-significant results are systematically suppressed from the 

literature. This problem has been documented in the field of video gaming (e.g., Boot, Blakely, & 

Simons, 2011). Moreover, since the response’s rate to our e-mails requesting for unpublished data 

was modest (25 positive responses out of 135 requests), a rigorous analysis of the effects of 

publication bias was imperative. 

To investigate whether the results were affected by publication bias, we used Duval and 

Tweedie’s (2000) trim-and-fill analysis and Vevea and Woods’s (2005) selection model analysis. 

Trim-and-fill analysis estimates the symmetry of a funnel plot representing the relation between 

effect size and standard error. In the presence of publication bias, the trim-and-fill analysis 

estimates the number of missing studies from the funnel plot – either left or right of the meta-

analytic mean – and imputes missing effect sizes based on the data’s asymmetry to generate a more 

symmetrical funnel plot. CMA was used to perform trim-and-fill analyses. 
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Vevea and Woods’s (2005) selection model analysis estimates four adjusted values by 

pre-weighted functions of p-values’ distributions. If all (or most of) the four adjusted values are 

shown not to differ significantly from the meta-analytic mean, then it can be reliably concluded that 

the results are not affected by publication bias (Schmidt & Hunter, 2015). Also, this analysis stays 

reliable even when the number of effect sizes is modest. For this reason, only this publication bias 

analysis was run in those models that had fewer than 30 effect sizes. Finally, the trim-and-fill and 

selection model analyses can estimate adjusted values both smaller and greater than the meta-

analytic mean. The Metafor software package (Viechtbauer, 2010) was used for conducting 

selection model analyses. 

4.7 Influential Cases Analysis 

Finally, to evaluate whether some effect sizes had an unusually large influence on the meta-

analytic means, Viechtbauer and Cheung’s (2010) influential cases analysis was performed in every 

meta-analytic model. Together with publication bias analysis, influential cases analysis was adopted 

to test the robustness of the overall results. The Metafor software package was used for conducting 

these analyses. 

5. Meta-Analysis 1: Meta-Analysis of Correlational Data Among Video Game Players 

Here, we report the first ever meta-analysis examining the relationship between video game 

skill and cognitive ability in video game players. As stated in the introduction, a positive correlation 

between video game skill and cognitive ability is a necessary, yet not sufficient, condition for the 

hypothesis according to which video game training exerts positive effects on cognitive ability. Also, 

the results of the present meta-analysis are a significant contribution to the study of the cognitive 

correlates of video game expertise.  
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5.1 Method 

5.1.1 Additional inclusion criteria 

The studies were included in the present meta-analysis when meeting the following two 

additional criteria: 

1. The study provided information about how video game skill was assessed; 

2. The participants had some experience of video games. For example, participants reporting 

zero hours of video game play per week were excluded. 

5.1.2 Additional moderators 

Along with Outcome measure, the effects of two additional moderators were analysed: 

1. Skill measure (categorical moderator). This variable has two levels: (a) video game skill 

measured by the frequency of video game play (hours per week), and (b) video game skill 

measured by video game score obtained; 

2. Type of video game (categorical moderator). This variable has three levels: (a) Action video 

games, (b) Non-action video games, and (c) Mixed video games. The category of Action 

video games refers to those video games classified as shooter (e.g., Unreal Tournament) and 

racing (e.g., Mario Kart) video games. The category of Non-action video games includes 

those video games that are not classifiable as action video games. Finally, the category of 

Mixed video games refers to general video game experience rather than the practice of a 

specific genre of video game. The first and the second authors coded each effect size 

independently. The Cohen’s kappa was κ = .96, 95% CI [.94; .99]. The authors resolved 

every discrepancy. 

5.1.3 Effect sizes 

The correlations between video game skill and cognitive outcomes were taken from the data 

reported in the primary studies or calculated with the data provided by the authors. When group-
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level comparisons (e.g., intermediates vs. experts) were reported (k = 16), we calculated point-

biserial correlations. When the data were extrapolated from experimental studies with both pre- and 

post-test assessments, we used the correlations between performance on the cognitive test at the 

post-test assessment and either difference between post-test and pre-test video-game performance 

or, when provided, video-game post-test scores.24 Finally, when possible, the samples were sorted 

by type of video game and gender. 

5.2 Results 

As described in the General Method section, we adopted a systematic approach to examine 

the correlation between video game skill and cognitive ability. First, we calculated the overall 

correlation with all the effect sizes. Then, we investigated the potential effects of the moderators 

and ran the relative sub-models. The robustness of the results of each model was tested with the 

abovementioned publication bias and influential case analyses. 

5.2.1 Main model 

A model comprising all the correlations was run. The random-effects meta-analytic overall 

correlation was 𝑟̅ = .07, 95% CI [.05; .09], k = 310, p < .001. The degree of heterogeneity between 

effect sizes was I2 = 52.19,25 suggesting that some moderators had a potential effect. The contour-

                                                           
 

24 The experimental studies included participants with no previous experience of the training video 

games. Thus, post-test scores and score gains between post- and pre-test scores were expected to 

be highly correlated and, therefore, equally valid measures of video game skills.    

25 The I2 statistic refers to the percentage of between-study variance due to true heterogeneity and 

not to random error (Higgins, Thompson, Deeks, & Altman, 2003). The higher the value of the I2 

statistic, the higher the percentage of between-study variance due to true heterogeneity. A degree 

of heterogeneity (I2) around 25.00 is considered low, around 50.00 moderate, and around 75.00 

high (Higgins et al., 2003). 
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enhanced funnel plot (Peters, Sutton, Jones, Abrams, & Rushton, 2008) depicting the relation 

between effect size and standard error is shown in Figure 12. 

 Figure 12. Contour-enhanced funnel plot of standard errors and effect sizes (Fisher’s Zs) in the 
meta-analysis of the correlational data. Contour lines are at 1%, 5%, and 10% levels of statistical 
significance. 

 

The trim-and-fill analysis filled 16 studies left of the mean. The estimated correlation was 𝑟̅ = .05, 

95% CI [.03; .08]. The estimates of the selection model analysis were 𝑟̅ = .03, 𝑟̅ = .01, 𝑟̅ = .04, and 

𝑟̅ = .04 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, 

and severe two-tailed selection, respectively. The two publication bias analyses thus suggested that 

the overall correlation (𝑟̅ = .07) was a slight overestimation. 

Finally, Viechtbauer and Cheung’s (2010) analysis detected four influential effect sizes. The 

overall correlation without these effect sizes was 𝑟̅ = .06, 95% CI [.04; .08], k = 306, p < .001, I2 = 

41.08. Therefore, the exclusion of the influential cases did not substantially alter the results. 
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5.2.2 Moderator analysis 

Given the presence of some true heterogeneity in the main model, a meta-regression model 

including all the three moderators was run, Q(7) = 58.68, k = 310, p < .001.26 Outcome measure and 

Skill measure were significant moderators (p = .005 and p < .001, respectively). Type of video 

game was marginally significant (p = .059). 

We calculated the overall correlations of the five outcome measures. The results provided 

near-zero correlations in four measures and a small correlation (𝑟̅ = .18) in spatial ability. The 

publication bias and influential case analyses did not evidence any substantial difference with the 

unadjusted correlations. The results are summarized in Table 9.

                                                           
 

26 Running separate analyses for each moderator does not control for potential interactions between 

moderators. Thus, when the power of the model is sufficient, including all the moderators in a 

single analysis should be preferred. 
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Table 9 

Meta-Analytic and Publication Bias Results of the Main Model Sorted by Outcome Measure (Meta-Analysis 1) 

 Model  Model without influential casesa 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

122 .06 

[.03; .10] 

.001 24.23 .07 

[.03; .11] 

.04; .00; 

.06; .05; 

 106 .07 

[.02; .11] 

.003 11.52 

Spatial ability 50 .18 

[.13; .23] 

< .001 60.03 .14 

[.09; .19] 

.14; .12; 

.14; .13; 

 50 .18 

[.13; .23] 

< .001 60.03 

Cognitive control 38 -.02 

[-.09; .06] 

.693 32.33 -.11 

[-.20; -.02] 

-.06; -.10; 

-.03; -.02; 

 33 -.04 

[-.14; .05] 

.335 .00 

Memory 43 .01 

[-.03; .04] 

.623 .00 .01 

[-.03; .05] 

-.01; -.04; 

.01; .01; 

 39 .02 

[-.02; .07] 

.317 .00 

Intelligence/reasoning 57 .05 

[.00; .10] 

.033 75.43 .00 

[-.05; .06] 

.00; -.02; 

.01; .01; 

 54 .01 

[-.02; .04] 

.536 29.12 

Note. k = number of the effect sizes; 𝑟̅ = random effects meta-analytic overall correlation with 95% confidence intervals (in brackets); p-value of the 

meta-analytic overall correlation; I2 = ratio of true heterogeneity; T&F = trim-and-fill estimates with 95% confidence intervals (in brackets); SM = 

moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, and severe two-tailed selection models estimates.  

a When no influential cases are found, the statistics are the same as in the uncorrected model.
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5.2.2.1 Skill measure 

To examine the effect of Skill measure further, two sub-models were run. The first sub-

model comprised all the correlations between the outcome measures and video game skill measured 

by frequency of video game playing. The random-effects meta-analytic overall effect size was 𝑟̅ = 

.03, 95% CI [.00; .05], k = 156, p = .024. The degree of heterogeneity between effect sizes was I2 = 

40.05. 

Trim-and-fill analysis filled four studies left of the mean. The estimated correlation was 𝑟̅ = 

.02, 95% CI [.00; .04]. The estimates of the selection model analysis were 𝑟̅ = .01, 𝑟̅ = -.02, 𝑟̅ = .02, 

and 𝑟̅ = .01 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. The estimates of the publication bias 

analyses thus did not significantly differ from the overall correlation in this model. 

Three influential effect sizes were detected. The overall correlation without these effect 

sizes was 𝑟̅ = .02, 95% CI [.00; .04], k = 153, p = .048, I2 = 21.56. Therefore, the exclusion of the 

influential cases did not substantially alter the results. 

We finally calculated the overall correlations sorted by Outcome measure. All the five 

overall correlations were close to zero. The publication bias and influential case analyses did not 

evidence any substantial difference with the unadjusted correlations. The results are summarized in 

Table 10. 
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Table 10 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, with Video Game Skill measured by Frequency of Video Game Playing 

(Meta-Analysis 1) 

 Model  Model without influential cases 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

65 .05 

[.01; .09] 

.006 .00 .05 

[.01; .09] 

.03; -.01; 

.04; .03; 

 60 .07 

[.03; .11] 

.001 .00 

Spatial ability 15 .09 

[.01; .17] 

.028 72.55 - .10; .09; 

.11; .10; 

 15 .09 

[.01; .17] 

.028 72.55 

Cognitive control 19 -.06 

[-.15; .03] 

.212 38.94 - -.08; -.12; 

-.05; -.04; 

 18 -.09 

[-.17; -.02] 

.016 10.79 

Memory 23 .00 

[-.04; .04] 

.936 .00 - -.02; -.04; 

.00; .00; 

 23 .00 

[-.04; .04] 

.936 .00 

Intelligence/reasoning 34 .01 

[-.02; .05] 

.498 36.25 .01 

[-.03; .04] 

-.01; -.03; 

.00; .00; 

 32 -.01 

[-.04; .02] 

.417 .00 

Note. See Note to Table 9 for abbreviations.
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The same analysis was carried out for the correlation between cognitive ability and video 

game scores as measure of skill. A model comprising all the correlations between the outcome 

measures and video game skill measured with video game scores was run. The random-effects 

meta-analytic overall effect size was 𝑟̅ = .16, 95% CI [.12; .20], k = 154, p < .001. The degree of 

heterogeneity between effect sizes was I2 = 48.06. 

Trim-and-fill analysis filled 19 studies right of the mean. The estimated correlation was 𝑟̅ = 

.21, 95% CI [.16; .26]. The estimates of the selection model analysis were 𝑟̅ = .12, 𝑟̅ = .09, 𝑟̅ = .13, 

and 𝑟̅ = .12 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. The two publication bias analyses thus 

provided a different pattern of results. All the estimated overall correlations were small but greater 

than zero.  

Three influential effect sizes were detected. The overall correlation without these effect 

sizes was 𝑟̅ = .17, 95% CI [.13; .21], k = 151, p < .001, I2 = 34.88. Therefore, the exclusion of the 

influential cases did not substantially alter the results. 

We finally calculated the overall correlations sorted by Outcome measure. Three overall 

correlations (i.e., spatial ability, cognitive control, and intelligence/reasoning) appeared to be 

greater than the others. The influential case analysis showed that removing the influential case 

detected in the cognitive control model significantly lowered the estimated overall correlation (from 

𝑟̅ = .16 to 𝑟̅ = .07; p = .044 and p = .445, respectively). Regarding the spatial ability overall 

correlation (𝑟̅ = .24), the publication bias analyses calculated slightly smaller estimates (ranging 

between .15 and .18). Finally, the overall correlation between intelligence/reasoning (𝑟̅ = .14) was 

found to be moderately underestimated (between .17 and .22, according to publication bias 

analysis). The results are summarized in Table 11. 
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Table 11 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, with Video Game Skill Measured by Video Game Scores (Meta-Analysis 

1) 

 Model  Model without influential cases 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

57 .07 

[-.01; .16] 

.098 33.33 .15 

[.05; .24] 

.08; .04; 

.10; .09; 

 53 .06 

[-.03; .16] 

.204 12.39 

Spatial ability 35 .24 

[.18; .30] 

< .001 43.40 .18 

[.12; .25] 

.17; .15; 

.18; .16; 

 35 .24 

[.18; .30] 

< .001 43.40 

Cognitive control 19 .16 

[.00; .30] 

.044 4.51 - .10; .01; 

.14; .11; 

 18 .07 

[-.11; .24] 

.445 .00 

Memory 20 .05 

[-.04; .14] 

.302 .00 - .02; -.02; 

.04; .03; 

 18 .09 

[-.10; .27] 

.358 .00 

Intelligence/reasoning 23 .14 

[-.06; .33] 

.162 63.75 - .21; .17; 

.22; .19; 

 23 .14 

[-.06; .33] 

.162 63.75 

Note. See Note to Table 9 for abbreviations.
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5.2.2.2 Type of video game 

We carried out a set of analyses to examine the potential moderating role of type of video 

game. First, a model comprising all the correlations referring to action video games was run. The 

random-effects meta-analytic overall effect size was 𝑟̅ = .11, 95% CI [.06; .16], k = 69, p < .001. 

The degree of heterogeneity between effect sizes was I2 = 38.32. 

Trim-and-fill analysis filled seven studies right of the mean. The estimated correlation was 𝑟̅ 

= .13, 95% CI [.08; .18]. The estimates of the selection model analysis were 𝑟̅ = .06, 𝑟̅ = .03, 𝑟̅ = 

.07, and 𝑟̅ = .06 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. All the estimates of the publication bias 

analyses were small (between 𝑟̅ = .03 and 𝑟̅ = .13) and thus did not substantially differ from the 

overall correlation in this model (𝑟̅ = .11). 

Four influential effect sizes were detected. The overall correlation without these effect sizes 

was 𝑟̅ = .15, 95% CI [.11; .19], k = 65, p < .001, I2 = 31.99. Therefore, the exclusion of the 

influential cases showed that the overall correlation calculated for this model (𝑟̅ = .11) might have 

been a moderate underestimation. 

We finally calculated the overall correlations sorted by Outcome measure. The only overall 

correlation significantly different from zero was the one concerned with spatial ability (𝑟̅ = .30). 

According to the publication bias analyses, this value was probably an overestimation (between 𝑟̅ = 

.18 and 𝑟̅ = .26). The results are summarized in Table 12. 
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Table 12 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Correlations Referring to Action Video Games (Meta-Analysis 1) 

 Model  Model without influential cases 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

39 .05 

[-.01; .11] 

.087 .00 .04 

[-.02; .10] 

.02; -.02; 

.04; .04; 

 36 .09 

[.00; .18] 

.058 .00 

Spatial ability 11 .30 

[.20; .39] 

< .001 19.87 - .26; .24; 

.26; .24; 

 10 .32 

[.23; .41] 

< .001 .00 

Cognitive control 6 -.17 

[-.28; -.05] 

.005 .00 - -  5 -.07 

[-.26; .13] 

.505 .00 

Memory 7 -.01 

[-.08; .06] 

.810 .00 - -  6 .05 

[-.08; .17] 

.444 .00 

Intelligence/reasoning 6 .12 

[-.04; .26] 

.142 50.85 - -  5 .21 

[.08; .33] 

.002 .00 

Note. See Note to Table 9 for abbreviations.
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The same set of analyses was carried out for the non-action video games. We first ran model 

comprising all the correlations referring to non-action video games. The random-effects meta-

analytic overall effect size was 𝑟̅ = .07, 95% CI [.04; .10], k = 144, p < .001. The degree of 

heterogeneity between effect sizes was I2 = 30.69. 

Trim-and-fill analysis filled nine studies left of the mean. The estimated correlation was 𝑟̅ = 

.06, 95% CI [.03; .10]. The estimates of the selection model analysis were 𝑟̅ = .04, 𝑟̅ = .01, 𝑟̅ = .05, 

and 𝑟̅ = .04 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. All the estimates of the publication bias 

analyses were close to zero and did not substantially differ from the unadjusted overall correlation 

(𝑟̅ = .07). 

Twenty-five influential effect sizes were detected. The overall correlation without these 

effect sizes was 𝑟̅ = .11, 95% CI [.05; .16], k = 119, p < .001, I2 = 25.48. Therefore, the exclusion of 

the influential cases moderately increased the overall correlation (from 𝑟̅ = .07 to 𝑟̅ = .11). In 

summary, all the estimated overall correlations ranged from 𝑟̅ = .01 to 𝑟̅ = .11. 

We finally calculated the overall correlations sorted by Outcome measure. The overall 

correlation referring to spatial ability (𝑟̅ = .19) was greater than the other ones (all smaller than 𝑟̅ = 

.10). The publication bias analyses provided significantly smaller estimates (between 𝑟̅ = .06 and 𝑟̅ 

= .10). The results are summarized in Table 13. 
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Table 13 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Correlations Referring to Non-Action Video Games (Meta-

Analysis 1) 

 Model  Model without influential cases 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

53 .08 

[.01; .14] 

.019 33.14 .09 

[.02; .16] 

.06; .03; 

.07; .06; 

 43 .09 

[-.02; .20] 

.096 11.70 

Spatial ability 25 .19 

[.10; .27] 

< .001 55.30 - .09; .06; 

.10; .08; 

 25 .19 

[.10; .27] 

< .001 55.30 

Cognitive control 17 .09 

[-.09; .27] 

.310 .00 - .02; -.08; 

.08; .06; 

 17 .09 

[-.09; .27] 

.310 .00 

Memory 24 .02 

[-.03; .07] 

.427 .00 - .00; -.03; 

.02; .01; 

 22 .03 

[-.03; .09] 

.342 .00 

Intelligence/reasoning 25 .02 

[-.04; .08] 

.500 17.30 - .00; -.03; 

.02; .01; 

 22 .07 

[.00; .14] 

.064 .00 

Note. See Note to Table 9 for abbreviations. 
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Finally, a model comprising all the correlations referring to mixed video games was run. 

The random-effects meta-analytic overall effect size was 𝑟̅ = .04, 95% CI [.01;0.08], k = 97, p = 

.024. The degree of heterogeneity between effect sizes was I2 = 69.22. 

Trim-and-fill analysis filled four studies right of the mean. The estimated correlation was 𝑟̅ 

= .05, 95% CI [.01; .09]. The estimates of the selection model analysis were 𝑟̅ = .01, 𝑟̅ = -.01, 𝑟̅ = 

.02, and 𝑟̅ = .02 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. The estimates of the publication bias 

analyses thus did not significantly differ from the overall correlation in this model. 

Four influential effect sizes were detected. The overall correlation without these effect sizes 

was 𝑟̅ = .01, 95% CI [-.01; .04], k = 93, p = .332, I2 = 37.38. Therefore, the exclusion of the 

influential cases did not substantially alter the results. 

We finally calculated the overall correlations sorted by Outcome measure. Four overall 

correlations were not significantly different from zero. The only exception was the small overall 

correlation referring to spatial ability (𝑟̅ = .11). The publication bias and influential case analyses 

did not evidence any substantial difference with the unadjusted correlations. The results are 

summarized in Table 14. 
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Table 14 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Correlations Referring to Mixed Video Games (Meta-Analysis 1) 

 Model  Model without influential cases 

Outcome Measure k 𝒓ത p-value I2 T&F SM  k 𝒓ത p-value I2 

Visual 

attention/processing 

30 .04 

[-.02; .11] 

.208 40.83 .05 

[-.02; .12] 

.02; -.01; 

.04; .03; 

 29 .06 

[.00; .13] 

.067 .00 

Spatial ability 14 .11 

[.04; .18] 

.004 66.21 - .12; .11; 

.13; .12; 

 14 .11 

[.04; .18] 

.004 66.21 

Cognitive control 15 .00 

[-.12; .12] 

.987 56.16 - -.02; -.06; 

.00; .00; 

 15 .00 

[-.12; .12] 

.987 56.16 

Memory 12 -.02 

[-.10; .06] 

.610 .00 - -.10; -.21; 

-.03; -.02; 

 11 -.02 

[-.13; .09] 

.742 .00 

Intelligence/reasoning 26 .06 

[-.01; .13] 

.082 90.01 - -.01; -.03; 

.00; .00; 

 23 -.02 

[-.05; .01] 

.147 .00 

Note. See Note to Table 9 for abbreviations.
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5.3 Discussion 

The main model and most of the sub-models showed weak correlations between video 

game skill and cognitive ability. For example, the overall correlations between video game 

skill and visual attention/processing measures are all smaller than .10. Similarly, none of the 

correlations regarding the measures cognitive control, memory, or intelligence/reasoning 

were greater than .16. 

The only exception to this pattern of results was spatial ability. The overall 

correlations between video game skill and spatial ability were all significant with a range of 

values between .09 and .30. Given that 𝑟̅ = .30 is probably an overestimation (see publication 

bias estimates, Table 12), video game skill explains approximatively between 1% and 6% of 

the variance in the participants’ spatial ability. The correlation between video game skill and 

spatial ability, although limited in size, may represent a characteristic trait of video game 

expertise. In support of this hypothesis, the correlation between spatial ability and video 

game skill was stronger when one specific genre of video games was considered (i.e., action 

video games; Table 12). 

As expected, the overall correlation was higher when video game skill was measured 

with scores rather than hours (𝑟̅ = .16 and 𝑟̅ = .03, respectively). Score tends to be a more 

reliable measure of video game skill than the weekly frequency of play reported in a 

questionnaire. Thus, it is possible that the correlation between cognitive ability and hours of 

play per week was more affected by measurement error than the correlation between 

cognitive ability and video game scores. 

Importantly, the influential cases analysis showed no substantial differences in the 

overall correlations between the models with and without influential effect sizes. Regarding 

the publication bias analysis, most of the corrected estimates were only slightly smaller (or, in 
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a few cases, greater) than the random-effects overall correlations. Thus, the results were 

robust. Overall, the results suggest that video game skill is not related or only weakly related 

to cognitive ability in general. 

6. Meta-Analysis 2: Meta-Analysis of Quasi-Experimental Data 

The meta-analysis of the correlational data showed little evidence of the cognitive 

benefits of playing video games. However, it is possible that such benefits occur regardless of 

skill, as long as individuals engage in video game playing. It is thus necessary to examine 

whether video game players outperform non-video game players in the cognitive measures 

examined above. Like in the previous meta-analysis, this condition is necessary, yet not 

sufficient, for the hypothesis that video game training positively impacts cognitive ability. 

Finally, like in the meta-analysis of the correlational data, the results of this meta-analysis 

will contribute to the research into the cognitive correlates of video game expertise. 

6.1 Method 

6.1.1 Additional inclusion criteria 

The studies were included in the present meta-analysis when meeting the following two 

additional criteria: 

1. The study provided clear information about how video game status was assessed (e.g., 

hours of play per week);27 

                                                           
 

27 Some studies did not explicitly report the precise cut-off point that was used (e.g., 

minimum 5 hours of video game playing per week in order to be included as a video game 

player) but rather referred to the criterion used in a previous study such as Green and 

Bavelier (2003).  
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2. The study compared participants with experience of video game playing (in general or 

in a specific genre of video game) with participants with negligible or null experience 

in video game playing (in general, or in that specific genre of video game). 

6.1.2 Additional moderators 

Along with the Outcome measure, the effects of one additional moderator were analysed: 

1. Type of video game (categorical moderator). This variable has three levels: (a) Action 

video game, (b) Non-action video game, and (c) Mixed video game. Action video 

game refers to the comparisons between action video game (shooter and racing) 

players vs. non-action video game players and non-video game players.28 The 

category of Non-action video game includes the comparisons between non-action 

video game players and non-players. Finally, the category of Mixed video game refers 

to the comparisons between video game players (with no specific genre 

specialization) and non-video game players. The first and the second authors coded 

each effect size independently. The Cohen’s kappa was κ = .95, 95% CI [.92; .99]. 

The authors resolved every discrepancy. 

6.1.3 Effect sizes 

We calculated the standardized mean difference (i.e., Cohen’s d) between the two 

groups with the following formula: 

𝑑 = (𝑀௘ − 𝑀௖) 𝑆𝐷௣௢௢௟௘ௗ⁄     (1) 

                                                           
 

28 Most of the studies involving action video game players adopted Green and Bavelier’s 

(2003) criterion (see Footnote 27). Thus, action video game players were compared to non-

action video game players without distinguishing between non-players and players of non-

action video games. 
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where SDpooled is the pooled standard deviation, and Me and Mc are the means of the 

experimental group (i.e., video game players) and the control group (i.e., non-video game 

players), respectively. When t- or F-values were provided, we used CMA to convert them 

into Cohen’s ds. Finally, to correct the effect sizes for upward bias, CMA was used to convert 

Cohen’s ds into Hedges’s gs (Hedges & Olkin, 1985). 

6.2 Results 

The systematic approach described in the General Method section was adopted to 

examine the difference between video game players and non-video game players in terms of 

cognitive ability. First, we calculated the overall effect sizes including all the effects. Then, 

we investigated the potential effects of the moderators and ran the relative sub-models. The 

robustness of the results of each model was tested with the two publication bias analyses and 

Viechtbauer and Cheung’s (2010) influential case analysis. 

6.2.1 Main model 

In the model comprising all the effect sizes, the random-effects meta-analytic overall 

effect size was 𝑔̅ = 0.33, 95% CI [0.28; 0.39], k = 315, p < .001. The degree of heterogeneity 

between effect sizes was low, I2 = 33.79. The contour-enhanced funnel plot is shown in 

Figure 13. 
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 Figure 13. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the meta-
analysis of the quasi-experimental data. Contour lines are at 1%, 5%, and 10% levels of 
statistical significance. 

 

The trim-and-fill analysis filled 73 studies left of the mean. The estimated effect size was 𝑔̅ = 

0.18, 95% CI [0.12; 0.24]. The estimates of the selection model analysis were 𝑔̅ = 0.24, 𝑔̅ = 

0.17, 𝑔̅ = 0.27, and 𝑔̅ = 0.23 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. The two 

publication bias analyses thus suggested that the unadjusted overall effect size (𝑔̅ = 0.33) was 

significantly inflated by the suppression from the literature of several smaller-than-average 

effect sizes.  

Finally, Viechtbauer and Cheung’s (2010) analysis detected two influential effect 

sizes. The overall effect size without these effect sizes was 𝑔̅ = 0.32, 95% CI [0.27; 0.38], k = 

313, p < .001, I2 = 30.59. Therefore, the exclusion of the influential cases did not 

substantially alter the results. 
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6.2.2 Moderator analysis 

A meta-regression model including the two moderators was run, Q(6) = 13.72, k = 

315, p = .033. Neither Outcome measure, nor Type of game was significant (p = .174 and p = 

.101, respectively).  

The overall effect sizes were calculated for the five outcome measures. The results 

showed small to medium29 effect sizes in all the measures. The influential case analyses did 

not highlight any substantial difference with the unadjusted overall effect sizes. By contrast, 

the estimates provided by the publication bias analyses were systematically smaller than the 

unadjusted values. This pattern of results was particularly evident in the visual 

attention/processing- and memory-related measures. The results are summarized in Table 15. 

                                                           
 

29 According to Cohen’s (1988) categorization, effect sizes of 0.20, 0.50, and 0.80 are 

considered small, medium, and large, respectively. 
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Table 15 

Meta-Analytic and Publication Bias Results of the Main Model Sorted by Outcome Measure (Meta-Analysis 2) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

186 0.41 

[0.33; 0.49] 

< .001 32.89 0.27 

[0.19; 0.35] 

0.34; 0.26; 

0.36; 0.31; 

 184 0.39 

[0.32; 0.47] 

< .001 28.15 

Spatial ability 28 0.24 

[0.13; 0.34] 

< .001 25.33 - 0.18; 0.13; 

0.20; 0.18; 

 28 0.24 

[0.13; 0.34] 

< .001 25.33 

Cognitive control 53 0.24 

[0.12; 0.36] 

< .001 25.68 0.17 

[0.04; 0.30] 

0.18; 0.12; 

0.21; 0.18; 

 53 0.24 

[0.12; 0.36] 

< .001 25.68 

Memory 32 0.20 

[0.03; 0.37] 

.019 45.14 -0.04 

[-0.23; 0.15] 

0.09; 0.01; 

0.13; 0.10; 

 32 .20 

[0.03; 0.37] 

.019 45.14 

Intelligence/reasoning 16 0.19 

[0.00; 0.38] 

.055 7.37 - 0.13; 0.05; 

0.16; 0.13; 

 16 0.19 

[0.00; 0.38] 

.055 7.37 
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Note. k = number of the effect sizes; 𝑔̅ = random effects meta-analytic mean with 95% confidence intervals (in brackets); p-value of the meta-

analytic overall effect size; I2 = ratio of true heterogeneity; T&F = trim-and-fill estimates with 95% confidence intervals (in brackets); SM = 

moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, and severe two-tailed selection models estimates. 
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6.2.2.1 Type of video game 

Like in the meta-analysis regarding the correlational data, we ran a series of analyses to 

examine the potential moderating role of type of video game. First, a sub-model comprising all the 

effect sizes referring to action video games was run. The random-effects meta-analytic overall 

effect size was 𝑔̅ = 0.40, 95% CI [0.33; 0.47], k = 199, p < .001. The degree of heterogeneity 

between effect sizes was I2 = 33.10. 

Trim-and-fill analysis filled 38 studies left of the mean. The estimated overall effect size 

was 𝑔̅ = 0.26, 95% CI [0.18; 0.34]. The estimates of the selection model analysis were 𝑔̅ = 0.34, 𝑔̅ 

= 0.26, 𝑔̅ = 0.37, and  𝑔̅ = 0.31 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. Thus, the publication 

bias analyses suggested that the unadjusted overall effect size (𝑔̅ = 0.40) was an overestimation. 

Two influential effect sizes were detected. The overall effect size without these effect sizes 

was 𝑔̅ = 0.38, 95% CI [0.31; 0.45], k = 197, p < .001, I2 = 28.37. Therefore, the exclusion of the 

influential cases did not substantially alter the results. 

We finally calculated the overall effect sizes sorted by Outcome measure. Four measures 

provided statistically significant and small-to-medium overall effect sizes (the only exception was 

intelligence/reasoning). Viechtbauer and Cheung’s (2010) influential case analysis evidenced no 

significant differences between adjusted and unadjusted values. The publication bias analyses 

estimated smaller overall effect sizes in all the measures. The results are summarized in Table 16. 
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Table 16 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Action Video Games (Meta-Analysis 2) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

132 0.45 

[0.36; 0.54] 

< .001 33.10 0.27 

[0.17; 0.38] 

0.38; 0.30; 

0.41; 0.34; 

 131 0.43 

[0.34; 0.52] 

< .001 29.52 

Spatial ability 8 0.47 

[0.21; 0.74] 

.001 .00 - 0.43; 0.36; 

0.44; 0.38; 

 8 0.47 

[0.21; 0.74] 

.001 .00 

Cognitive control 33 0.27 

[0.09; 0.46] 

.004 28.07 0.18 

[-0.01; 0.38] 

0.19; 0.10; 

0.23; 0.19; 

 33 0.27 

[0.09; 0.46] 

.004 28.07 

Memory 17 0.31 

[0.06; 0.57] 

.017 50.93 - 0.22; 0.14; 

0.25; 0.21; 

 17 0.31 

[0.06; 0.57] 

.017 50.93 

Intelligence/reasoning 9 0.17 

[-0.21; 0.54] 

.377 51.92 - 0.09; -0.01; 

0.14; 0.11; 

 9 0.17 

[-0.21; 0.54] 

.377 51.92 

Note. See Note to Table 15 for abbreviations. 
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Second, a model comprising all the effect sizes concerned with non-action video games was 

run. The random-effects meta-analytic overall effect size was 𝑔̅ = 0.33, 95% CI [0.11; 0.55], k = 14, 

p = .003. The degree of heterogeneity between effect sizes was I2 = .00. 

The estimates of the selection model analysis were 𝑔̅ = 0.27, 𝑔̅ = 0.19, 𝑔̅ = 0.30, and 𝑔̅ = 

0.25 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, 

and severe two-tailed selection, respectively. No outlier was detected. Due to the scarcity of the 

effect sizes, no sub-models of outcome measures were run. 

Finally, a systematic set of analyses was carried out for mixed video games. For the model 

comprising all the effect sizes referring to mixed video games, the random-effects meta-analytic 

overall effect size was 𝑔̅ = 0.23, 95% CI [0.15; 0.31], k = 102, p < .001. The degree of 

heterogeneity between effect sizes was I2 = 33.15. 

Trim-and-fill analysis filled 25 studies left of the mean. The estimated overall effect size 

was 𝑔̅ = 0.12, 95% CI [0.04; 0.20]. The estimates of the selection model analysis were 𝑔̅ = 0.15, 𝑔̅ 

= 0.07, 𝑔̅ = 0.17, and 𝑔̅ = 0.14 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. Thus, the publication 

bias analyses once again suggested that the unadjusted overall effect size (𝑔̅ = 0.23) was an 

overestimation. Only one influential effect size was detected. The overall effect size without this 

effect size was 𝑔̅ = 0.22, 95% CI [0.14; 0.30], k = 101, p < .001, I2 = 29.87.  

We finally calculated the overall effect sizes sorted by Outcome measure. All the overall 

effect sizes were small (see Table 17). The influential case analysis evidenced no significant 

differences between adjusted and unadjusted values. The publication bias analyses estimated 

smaller overall effect sizes in all the measures. 
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Table 17 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Mixed Video Games (Meta-Analysis 2) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

44 .33 

[.18; .47] 

< .001 35.35 .21 

[.05; .36] 

.25; .18; 

.28; .23; 

 44 .33 

[.18; .47] 

< .001 35.35 

Spatial ability 16 .21 

[.06; .36] 

.005 37.63 - .13; .08; 

.15; .12; 

 16 .21 

[.06; .36] 

.005 37.63 

Cognitive control 20 .21 

[.06; .36] 

.006 30.14 - .18; .13; 

.20; .17; 

 18 .20 

[.07; .34] 

.002 .00 

Memory 15 .06 

[-.13; .26] 

.523 36.25 - -.02; -.10; 

.03; .02; 

 14 -.05 

[-.21; .12] 

.578 1.50 

Intelligence/reasoning 7 .20 

[.00; .40] 

.052 .00 - .15; .09; 

.18; .15; 

 7 .20 

[.00; .40] 

.052 .00 

Note. See Note to Table 15 for abbreviations. 
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6.3 Discussion 

The overall effect sizes of the main model and sub-models showed small to medium effect 

sizes, indicating that video game players outperformed non-players in all the five broad measures of 

cognitive ability. This superiority occurred regardless of the type of game considered. However, the 

publication bias analysis calculated a reduced estimate for many of the greatest overall effect sizes. 

Most of these corrected overall effect sizes remained significant or marginally significant. The 

influential cases analysis did not meaningfully modify the overall effect sizes. 

Overall, the results suggest that video game players do differ from non-video game players 

in terms of cognitive ability. Nonetheless, the size of the effects is substantially smaller than the 

ones reported in Powers et al. (2013). Although quasi-experiments do not allow any strong 

inference with respect to causality, the outcomes of this meta-analysis suggest that engagement in 

video games exerts some modest effects on overall cognitive ability. However, the results do not 

exclude the possibility that individuals with higher cognitive abilities are more likely to play 

videogames. If so, no causal relationship between playing video games and superior cognitive 

abilities needs to be postulated to account for these results. 

7. Meta-Analysis 3: Meta-Analysis of Experimental Training Data 

Overall, the two previous meta-analyses provided weak evidence in favour of the hypothesis 

according to which playing video games enhances cognitive ability. This hypothesis, however, 

cannot be properly evaluated without testing it directly. This meta-analysis thus examines the 

effects of video game interventions on participants’ cognitive ability. 

7.1 Method 

7.1.1 Additional inclusion criteria 

Studies were included in the present meta-analysis when meeting the following additional 

criteria: 
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1. The study included at least one control group; 

2. The study included participants with no (or negligible) experience, at the beginning of the 

experiment, in the video game(s) used during training;  

3. The training video game was not purposely designed to improve cognitive ability (e.g., 

Lumosity® brain-training video games).30 

7.1.2 Additional moderators 

Along with Outcome measure, the effects of four additional moderators were analysed: 

1. Random allocation (dichotomous moderator): whether participants were allocated or not to 

the groups by randomization. This moderator was included to control for potential 

confounding effects due to differences at baseline level.  

2. Hours of training (continuous moderator): the duration of training in hours; 

3. Type of video game (categorical moderator). This variable has three levels: (a) Action vs. 

non-action video game players, where the action video game training (e.g., Unreal 

Tournament) was compared with an active control group training in a non-action video 

game (e.g., The Sims); (b) Action video game training, where the action video game training 

was compared with a control group not engaged in video game playing; and (c) Non-action 

video game training, where the non-action video game training (e.g., Tetris) was compared 

with a control group not engaged in video game playing. A small group of effect sizes (k = 

16) from four studies did not fit any of the above categories and were excluded from the 

analyses regarding Type of video game. The first and the second authors coded each effect 

size independently. No discrepancies were found;31 

                                                           
 

30 For a systematic review of the effects of brain-training programs, see Simons et al. (2016). 

31 No moderator distinguishing between active and passive control groups was included. In most of 

the cases, active control groups consisted of people playing another type of video game. Thus, 
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4. Age (categorical moderator). This variable has three levels: (a) Adult, where the participants 

were aged 18 to 55; (b) Old, where the participants were older than 55; and (c) Young, 

where the participants were younger than 18.   

7.1.3 Effect sizes 

We calculated the standardized mean difference (i.e., Cohen’s d) between the two groups 

with the following formula: 

𝑑 = (𝑀௚ି௘ − 𝑀௚ି௖) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄     (2) 

where SDpooled-pre is the pooled standard deviation of the two pre-test standard deviations, and Mg-e 

and Mg-c are the gain of the experimental group and the control group, respectively (Schmidt & 

Hunter, 2015, p. 353). When means and standard deviations were not available, t- or F-values32 

were converted into Cohen’s ds with CMA. Finally, to correct the effect sizes for upward bias, 

CMA was used to convert Cohen’s ds into Hedges’s gs (Hedges & Olkin, 1985). 

7.2 Results 

A set of analyses was run to investigate whether video game training provided any benefit 

for the participants’ cognitive ability. Like in the two previous meta-analyses, we first calculated the 

overall effect sizes including all the effects. Then, we examined the potential effects of the 

                                                                                                                                                                                                 
 

running models sorted by the type of control group (i.e., active or passive) would substantially 

duplicate the results of the moderator Type of video game.  

32 The t- and F-statistics referring to pre-post improvements within groups were converted to ds and 

then subtracted to calculate the standardized mean difference between the experimental and 

control groups. Alternatively, the statistics referring to between-group differences at pre- and 

post-tests were converted to ds and then subtracted. The statistics referring to interactions 

between group and others conditions were excluded. 
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moderators and ran the relative sub-models. The robustness of the results of each model was tested 

with the two publication bias analyses and Viechtbauer and Cheung’s (2010) influential case 

analysis. 

7.2.1 Main model 

The random-effects meta-analytic overall effect size was 𝑔̅ = 0.07, 95% CI [0.02; 0.12], k = 

359, p = .004. The degree of heterogeneity between effect sizes was I2 = 17.90. The contour-

enhanced funnel plot is shown in Figure 14. 

 Figure 14. Contour-enhanced funnel plot of standard errors and effect sizes (gs) in the meta-
analysis of the experimental data. Contour lines are at 1%, 5%, and 10% levels of statistical 
significance. 

 

The two publication bias analyses lowered the already small effect size further. The trim-

and-fill analysis filled 35 studies left of the mean. The estimated effect size was 𝑔̅ = 0.00, 95% CI 

[-0.05; 0.05]. The estimates of the selection model analysis were 𝑔̅ = 0.00, 𝑔̅ = -0.11, 𝑔̅ = 0.06, and 

𝑔̅ = 0.05 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. 
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Viechtbauer and Cheung’s (2010) analysis detected three influential effect sizes. The overall 

effect size without these effect sizes was unaltered, 𝑔̅ = 0.07, 95% CI [0.03; 0.12], k = 356, p = 

.002, I2 = 10.64. 

7.2.2 Moderator analysis 

A meta-regression model including all the five moderators was run, Q(10) = 34.13, k = 

341,33 p < .001. In line with the small degree of heterogeneity, the effect of the moderators was 

modest. Random allocation and hours of training were not significant moderators, p = .273 and p = 

.927, respectively. Outcome measure and Age were marginally significant, p = .058 and p = .068, 

respectively. Type of video game was the only significant moderator, p = .006. 

Similar to the other two meta-analyses, we calculated overall effect sizes for the five 

outcome measures. The results showed null or small effect sizes in all the measures. No substantial 

difference emerged from the influential case and publication bias analyses. The results are 

summarized in Table 18. 

                                                           
 

33 Most of the missing values (k = 16) in the model were due to the moderator Type of video game. 

The remaining three missing values came from other moderators. Given the small percentage of 

missing values (about 5%), the results of this moderator analysis can be considered highly reliable. 
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Table 18 

Meta-Analytic and Publication Bias Results of the Main Model Sorted by Outcome Measure (Meta-Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

131 0.09 

[0.01; 0.18] 

.033 3.23 -0.03 

[-0.13; 0.06] 

0.01; -0.11; 

0.08; 0.06; 

 131 0.09 

[0.01; 0.18] 

.033 3.23 

Spatial ability 75 0.14 

[0.05; 0.22] 

.002 .00 0.14 

[0.05; 0.22] 

0.07; -0.02; 

0.13; 0.10; 

 73 0.13 

[0.04; 0.23] 

.004 .00 

Cognitive control 55 0.02 

[-0.12; 0.17] 

.738 27.04 0.14 

[-0.02; 0.30] 

-0.04; -0.16; 

0.03; 0.02; 

 55 0.02 

[-0.12; 0.17] 

.738 27.04 

Memory 67 0.13 

[0.03; 0.22] 

.010 .00 0.22 

[0.11; 0.33] 

0.05; -0.06; 

0.11; 0.09; 

 67 0.13 

[0.03; 0.22] 

.010 .00 

Intelligence/reasoning 31 -0.14 

[-0.36; 0.08] 

.206 55.62 -0.18 

[-0.40; 0.04] 

-0.15; -0.27; 

-0.07; -0.06; 

 29 -0.02 

[-0.21; 0.16] 

.799 31.87 
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Note. k = number of the effect sizes; 𝑔̅ = random effects meta-analytic mean with 95% confidence intervals (in brackets); p-value of the meta-

analytic overall effect size; I2 = ratio of true heterogeneity; T&F = trim-and-fill estimates with 95% confidence intervals (in brackets); SM = 

moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, and severe two-tailed selection models estimates. 
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7.2.2.1 Type of video game 

We analysed this moderator to test the potential differences between types of video game 

training. A sub-model comprising all the effect sizes referring to action vs. non-action video game 

players was run. The random-effects meta-analytic overall effect size was 𝑔̅ = 0.10, 95% CI [0.00; 

0.21], k = 94, p = .056. The degree of heterogeneity between effect sizes was I2 = 18.47. 

The publication bias analyses once again showed that the effect size was inflated. Trim-and-

fill analysis filled 17 studies left of the mean. The estimated overall effect size was 𝑔̅ = -0.01, 95% 

CI [-0.13; 0.10]. The estimates of the selection model analysis were 𝑔̅ = 0.00, 𝑔̅ = -0.11, 𝑔̅ = 0.06, 

and 𝑔̅ = 0.05 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed 

selection, and severe two-tailed selection, respectively. No influential effect sizes were detected. 

We finally calculated the overall effect sizes sorted by Outcome measure. All the overall 

effect sizes were small or null. While the influential case analysis detected no outliers, the 

publication bias analyses estimated moderately smaller overall effect sizes in all the measures. The 

results are summarized in Table 19. 
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Table 19 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Action Video Game Players vs. Non-

Action Video Game Players (Meta-Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

50 0.23 

[0.05; 0.40] 

.011 36.71 0.14 

[-0.04; 0.32] 

0.08; -0.03; 

0.14; 0.12; 

 50 0.23 

[0.05; 0.40] 

.011 36.71 

Spatial ability 16 0.02 

[-0.20; 0.25] 

.833 19.19 - -0.06; -0.18; 

0.01; 0.01; 

 16 0.02 

[-0.20; 0.25] 

.833 19.19 

Cognitive control 17 -0.03 

[-0.29; 0.23] 

.820 14.32 - -0.13; -0.29; 

-0.03; -0.03; 

 17 -0.03 

[0.05; 0.40] 

.820 14.32 

Memory 11 0.11 

[-0.12; 0.34] 

.346 .00 - 0.04; -0.07; 

0.10; 0.08; 

 11 0.11 

[-0.12; 0.34] 

.346 .00 

Intelligence/reasoning 0 - - - - -  0 - - - 

Note. See Note to Table 18 for abbreviations. 
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The previous sub-model examined the effects of action video game training compared to 

non-action video game training. We now consider the comparison action video game players vs. 

non-video game players. In the sub-model comprising all effect sizes, the random-effects meta-

analytic overall effect size was 𝑔̅ = -0.12, 95% CI [-0.24; 0.01], k = 90, p = .062. The degree of 

heterogeneity between effect sizes was I2 = 46.35. 

Trim-and-fill analysis filled 11 studies left of the mean. The estimated overall effect size 

was 𝑔̅ = -0.26, 95% CI [-0.38; -0.13]. The estimates of the selection model analysis were 𝑔̅ = -0.22, 

𝑔̅ = -0.38, 𝑔̅ = -0.13, and 𝑔̅ = -0.11 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. These small negative 

estimated values were probably statistical artefacts. 

Only one influential effect size was detected. The overall effect size without these effect 

sizes was 𝑔̅ = -0.10, 95% CI [-0.22; 0.02], k = 89, p = .107, I2 = 40.84. 

Finally, the overall effect sizes sorted by Outcome measure were calculated. Four overall 

effect sizes were small or null. The only exception was the large negative overall effect size 

referring to intelligence/reasoning measures. However, due to the small number of effect sizes (k = 

8), this overall effect size is not a reliable estimate. The influential case analysis detected one outlier 

in the cognitive control and memory models. The adjusted values were significantly closer to zero 

compared to the negative unadjusted values. The results are summarized in Table 20. 



   
 

199 
 

Table 20 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Action Video Game Players vs. Non-

Video Game Players (Meta-Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

39 0.00 

[-0.13; 0.14] 

.973 3.09 -.12 

[-.27; .22] 

-0.08; -0.22; 

-0.01; 0.00; 

 39 0.00 

[-0.13; 0.14] 

.973 3.09 

Spatial ability 20 0.07 

[-0.14; 0.28] 

.521 .00 - -0.02; -0.16; 

0.07; 0.05; 

 20 0.07 

[-0.14; 0.28] 

.521 .00 

Cognitive control 11 -0.27 

[-0.72; 0.17] 

.230 62.77 - -0.33; -0.50; 

-0.23; -0.19; 

 10 -0.10 

[-0.46; 0.25] 

.568 35.87 

Memory 12 -0.10 

[-0.43; 0.22] 

.541 38.56 - 0.07; 0.07; 

0.07; 0.07; 

 11 0.02 

[-0.24; 0.27] 

.902 .00 

Intelligence/reasoning 8 -1.17 

[-1.83; -0.51] 

.001 69.33 - -1.05; -1.17; 

-1.01; -0.96; 

 8 -1.17 

[-1.83; -0.51] 

.001 69.33 

Note. See Note to Table 18 for abbreviations. 
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The third sub-model of this moderator analysis comprised all the effect sizes referring to 

non-action video game players vs. non-video game players. The random-effects meta-analytic 

overall effect size was 𝑔̅ = 0.13, 95% CI [0.07; 0.18], k = 159, p < .001. The degree of 

heterogeneity between effect sizes was I2 = .00. 

Trim-and-fill analysis filled 11 studies right of the mean. The estimated overall effect size 

was 𝑔̅ = 0.17, 95% CI [0.11; 0.23]. The estimates of the selection model analysis were 𝑔̅ = 0.08, 𝑔̅ 

= -0.01, 𝑔̅ = 0.12, and 𝑔̅ = 0.10 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. The estimates of the 

publication bias analyses thus did not substantially differ from the unadjusted overall effect size. 

Two influential effect sizes were detected. The overall effect size without these effect sizes 

was 𝑔̅ = 0.12, 95% CI [0.07; 0.17], k = 157, p < .001, I2 = .00. 

Finally, the overall effect sizes sorted by Outcome measure were calculated. All the overall 

effect sizes were small. The influential case and publication bias analyses had no substantial impact 

on the estimated values. The results are summarized in Table 21. 



   
 

201 
 

Table 21 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Non-Action Video Game Players vs. Non-

Video Game Payers (Meta-Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

38 0.06 

[-0.07; 0.18] 

.379 .00 0.12 

[0.00; 0.24] 

0.02; -0.09; 

0.08; 0.06; 

 38 0.06 

[-0.07; 0.18] 

.379 .00 

Spatial ability 39 0.20 

[0.09; 0.31] 

< .001 .00 0.20 

[0.09; 0.31] 

0.14; 0.06; 

0.18; 0.15; 

 37 0.21 

[0.09; 0.33] 

.001 .00 

Cognitive control 22 0.14 

[-0.04; 0.32] 

.130 27.34 - 0.09; 0.00; 

0.14; 0.11; 

 22 0.14 

[-0.04; 0.32] 

.130 27.34 

Memory 40 0.17 

[0.05; 0.29] 

.006 .00 0.22 

[0.10; 0.34] 

0.16; 0.16; 

0.16; 0.16; 

 40 0.17 

[0.05; 0.29] 

.006 .00 

Intelligence/reasoning 20 0.08 

[-0.09; 0.25] 

.362 .89 - 0.01; -0.10; 

0.07; 0.05; 

 20 0.08 

[-0.09; 0.25] 

.362 .89 

Note. See Note to Table 18 for abbreviations. 
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7.2.2.2 Age 

This section investigates the potential moderating role of Age. First, we examined adult 

video game players. In the sub-model comprising all the effect sizes, the random-effects meta-

analytic overall effect size was 𝑔̅ = 0.10, 95% CI [0.05; 0.15], k = 239, p < .001. The degree of 

heterogeneity between effect sizes was I2 = .00. 

The two publication bias analyses provided slightly smaller estimates. Trim-and-fill analysis 

filled 21 studies left of the mean. The estimated overall effect size was 𝑔̅ = 0.04, 95% CI [-0.01; 

0.10]. The estimates of the selection model analysis were 𝑔̅ = 0.03, 𝑔̅ = -0.07, 𝑔̅ = 0.09, and 𝑔̅ = 

0.07 for moderate one-tailed selection, severe one-tailed selection, moderate two-tailed selection, 

and severe two-tailed selection, respectively. Five influential effect sizes were detected. The overall 

effect size without these effect sizes was not different from the unadjusted effect size, 𝑔̅ = 0.10, 

95% CI [0.05; 0.15], k = 234, p < .001, I2 = .00.  

Finally, the overall effect sizes sorted by Outcome measure were calculated. All the overall 

effect sizes were small. The influential case and publication bias analyses had no substantial impact 

on the estimated values. The results are summarized in Table 22. 
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Table 22 

Meta-Analytic and Publication Bias Results Sorted by Outcome Measure, for the Effect Sizes Referring to Adult Video Game Players (Meta-

Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

96 0.12 

[0.03; 0.22] 

.013 .00 0.01 

[-0.10; 0.12] 

0.04; -0.08; 

0.10; 0.08; 

 94 0.14 

[0.05; 0.23] 

.002 .00 

Spatial ability 60 0.11 

[0.02; 0.21] 

.021 .00 0.06 

[-0.03; 0.16] 

0.05; -0.05; 

0.10; 0.08; 

 59 0.11 

[0.01; 0.21] 

.029 .00 

Cognitive control 36   0.02 

[-0.16; 0.20] 

.842 38.19 0.12 

[-0.07; 0.32] 

-0.03; -0.15; 

0.03; 0.03; 

 36 0.02 

[-0.16; 0.20] 

.842 38.19 

Memory 32 0.10 

[-0.03; 0.23] 

.134 .00 0.15 

[0.03; 0.28] 

0.03; -0.07; 

0.09; 0.07; 

 32 0.10 

[-0.03; 0.23] 

.134 .00 

Intelligence/reasoning 15 0.16 

[-0.01; 0.33] 

.073 14.49 - 0.10; 0.02; 

0.14; 0.11; 

 15 0.16 

[-0.01; 0.33] 

.073 14.49 

Note. See Note to Table 18 for abbreviations.
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Second, we analysed the results for the old video game players. In the sub-model comprising 

all effect sizes, the random-effects meta-analytic overall effect size was 𝑔̅ = -0.08, 95% CI [-0.21; 

0.04], k = 92, p = .184. The degree of heterogeneity between effect sizes was I2 = 48.90. 

Trim-and-fill analysis filled 21 studies left of the mean. The estimated overall effect size 

was 𝑔̅ = -0.28, 95% CI [-0.41; -0.16]. The estimates of the selection model analysis were 𝑔̅ = -0.18, 

𝑔̅ = -0.32, 𝑔̅ = -0.09, and 𝑔̅ = -0.07 for moderate one-tailed selection, severe one-tailed selection, 

moderate two-tailed selection, and severe two-tailed selection, respectively. One influential effect 

size was detected. The overall effect size without these effect sizes was 𝑔̅ = -0.06, 95% CI [-0.18; 

0.05], k = 91, p < .001, I2 = 43.88.  

Finally, the overall effect sizes sorted by Outcome measure were calculated. Four overall 

effect sizes were small or null. The overall effect size referring to intelligence/reasoning-related 

measures was significantly negative (𝑔̅ = -0.63). No influential case was detected. The publication 

bias analyses estimated values similar to the unadjusted effect sizes. The results are summarized in 

Table 23. 
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Table 23 

Meta-Analytic and Publication Bias Results of the Effect Sizes Referring to the Old Video Game Players Sorted by Outcome Measure (Meta-

Analysis 3) 

 Model  Model without influential cases 

Outcome Measure k 𝒈ഥ p-value I2 T&F SM  k 𝒈ഥ p-value I2 

Visual 

attention/processing 

26 0.00 

[-0.21; 0.22] 

.965 31.74 - -0.06; -0.20; 

0.02; 0.01; 

 26 0.00 

[-0.21; 0.22] 

.965 31.74 

Spatial ability 12 0.06 

[-0.20; 0.33] 

.646 .00 - -0.03; -0.17; 

0.05; 0.04; 

 12 0.06 

[-0.20; 0.33] 

.646 .00 

Cognitive control 17 0.07 

[-0.15; 0.29] 

.539 9.32 - -0.03; -0.16; 

0.05; 0.04; 

 17 0.07 

[-0.15; 0.29] 

.539 9.32 

Memory 22 -0.01 

[-0.24; 0.22] 

.922 18.87 - -0.12; -0.28; 

-0.03; -0.02; 

 22 -0.01 

[-0.24; 0.22] 

.922 18.87 

Intelligence/reasoning 15 -0.63 

[-1.06; -0.20] 

.004 63.45 - -0.66; -0.85; 

-0.57; -0.49; 

 15 -0.63 

[-1.06; -0.20] 

.004 63.45 

Note. See Note to Table 18 for abbreviations. 
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Finally, a sub-model comprising all the effect sizes referring to the young video game 

players was run. The random-effects meta-analytic overall effect size was 𝑔̅ = 0.21, 95% CI 

[0.06; 0.36], k = 28, p = .007. The degree of heterogeneity between effect sizes was I2 = 

26.99. 

The estimates of the selection model analysis were moderately smaller than the 

unadjusted effect size, 𝑔̅ = 0.15, 𝑔̅ = 0.07, 𝑔̅ = 0.19, and 𝑔̅ = 0.15 for moderate one-tailed 

selection, severe one-tailed selection, moderate two-tailed selection, and severe two-tailed 

selection, respectively. No influential effect size was detected. Due to the scarcity of the 

effect sizes, no sub-models of the outcome measures were run. 

7.3 Discussion 

The main model showed a near-zero effect of video-game training on overall 

cognitive ability (𝑔̅ = 0.07). Moreover, this effect was found to be a slight overestimation by 

the publication bias analyses. The same pattern of results occurred in nearly every sub-model, 

regardless of the type of game – neither action nor non-action video game training exerted 

any substantial effect on the participants’ cognitive ability – and the age of the participants. A 

significant exception was the negative effect of video game training on 

intelligence/reasoning-related measures in the sample of old people (𝑔̅ = -0.63). Given the 

small number of the effect sizes in that model (k = 15) and the high degree of heterogeneity 

(I2 = 63.45), the overall effect size was probably biased. Finally, duration of training was not 

a significant moderator. This latter outcome is further evidence against the hypothesis 

according to which video game training affects cognitive ability: if training were effective, 

one should expect a positive relationship between duration of training and size of the effects. 
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8. General Discussion 

This paper has addressed the question of the impact of video games on cognitive 

ability. The three meta-analyses offer a consistent picture: weak correlations between skill 

and cognitive ability, small differences between video game players and non-players, and no 

differences between the participants who underwent video game training and the participants 

in the control groups. In those few cases reporting medium effect sizes, the estimates of 

publication bias analysis were significantly smaller (e.g., Visual attention/processing overall 

effect sizes in Table 15). Crucially, most of the models showed a small (or zero) degree of 

heterogeneity, indicating that most of the variability between studies was due to sampling 

error (or a few influential cases) rather than some moderating variable. This was particularly 

evident in the meta-analysis of experimental data (I2 = 17.90 and I2 = 10.64 including and 

excluding influential cases, respectively). The small degree of heterogeneity often observed 

in the sub-models also suggests that the categorization of the effect sizes into the five 

outcome measures is highly reliable. 

The findings of the present meta-analytic investigation differed significantly from the 

more positive results of previous meta-analyses (e.g., Powers et al., 2013). This difference is 

probably due to our more restrictive inclusion criteria of the meta-analysis of training studies 

and our more accurate procedure of calculation of the effect sizes and correction of statistical 

dependence. That said, it is worth mentioning that the present meta-analytic investigation also 

shows that playing certain types of video games may be related to specific cognitive abilities. 

For example, there seem to be a reliable, yet small, correlation between video game skill and 

spatial ability. Also, action video game players appear to outperform non-players in tasks 

related to visual attention/processing. Thus, the field of video game playing may present 

characteristics analogous to other domains of expertise, such as chess and music. Playing 
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video games in general, or some genre in particular, may be associated with specific 

cognitive abilities predicting, to some extent, a player’s skill. However, just like the fields of 

music and chess, video game training does not generally enhance cognitive ability. 

8.1 Theoretical and Practical Implications 

Along with substantial research into expertise acquisition and other types of cognitive 

training, the results of the present meta-analytic investigation point towards a clear direction: 

while it is evident that training one skill improves that skill, far transfer is extremely unlikely 

to occur. Video game training is no exception. 

The most significant implication of these results is that the lack of generalization 

across different domains of skills acquired by training appears to be a constant in human 

cognition. Domain-general cognitive abilities are malleable to training, but the benefits, when 

there are any, are domain-specific (Chase & Ericsson, 1982; Gobet, 2016). Moreover, as 

highlighted by Shipstead, Redick, and Engle (2012), such limited benefits, observed after 

training, probably represent only trainees’ improved ability to perform a task. In other words, 

people may get better at solving cognitive tasks similar to the training task, and yet not show 

any genuine improvement in cognitive ability. This account also explains why video game 

training has been sometimes associated with improvements in particular tasks (e.g., UFOV; 

Feng, Spence, & Pratt, 2007), whereas no effect has been found in broader cognitive 

constructs (e.g., visual attention/processing; Table 18). 

Second, far transfer must be considered a fundamental litmus test for theories of 

human cognition. The failure of generalization of skills in the field of video gaming 

represents a further corroboration of those theories of cognition that predict no (or limited) far 

transfer, such as chunking theory (Chase & Simon, 1973) and template theory (Gobet & 
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Simon, 1996). More generally, our results support the hypothesis according to which 

expertise acquisition relies to a large extent on domain-specific, and hence non-transferable, 

information. By contrast, those theories predicting the occurrence of far transfer after video 

game training (e.g., “learning to learn;” Bavelier et al., 2012) and cognitive training in 

general (for a review, see Strobach & Karbach, 2016) are not supported. 

Third, given the small or null effects exerted by video gaming on cognitive tests, the 

neural changes and patterns observed in video game players in several studies (e.g., Colom et 

al., 2012) probably reflect modifications in domain-specific abilities (e.g., video game skills) 

rather than domain-general improvements of cognitive ability. Interestingly, the presence of 

specific neural patterns (functional and anatomical) and absence of significant effects on 

cognitive tests have also been observed in other domains such as music (e.g., Tierney, 

Krizman, & Kraus, 2015) and chess (e.g., Hänggi, Brütsch, Siegel, & Jäncke, 2014). Whether 

this pattern of results occurs regardless of the domain considered will be a requirement for 

future research. 

Beyond theoretical aspects, the absence of far transfer has important practical 

implications. If trained skills rarely generalize across different domains, then deliberately 

training one skill remains the most effective way to acquire that skill. This consideration may 

appear trivial. However, this conclusion is in contrast with common belief and practice in 

education and the professions. For instance, considerable emphasis has been given to 

teaching students transferable skills in recent years (Pellegrino & Hilton, 2012). However, in 

light of the findings provided by the research on expertise acquisition and cognitive training, 

the common view that training and possessing transferable skills is one effective way to 

progress in a particular field appears incorrect. Our conviction is that educational and 
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professional training should focus on subject-related contents rather than general skills or 

principles without any explicit reference to any specific discipline. 

8.2 Recommendations for Future Research 

Given the current evidence, insisting on searching for improbable generalized effects 

of video game training on cognitive function appears pointless. Rather, the field should focus 

on investigating the exact cognitive correlates of video game expertise. Specifically, further 

research is needed to understand whether video game players exhibit general superior 

cognitive ability or excel only at tasks related to video game expertise. For example, chess 

masters can recall entire chess positions, even when the material is presented only for a few 

seconds (e.g., Gobet & Simon, 2000). However, the correlation between chess skill and 

performance on tests of short-term memory is modest (r = .22; Burgoyne et al., 2016). Like 

chess players, video game players may possess exceptional cognitive abilities only with 

domain-specific material. A series of experiments testing video game players’ performance 

with both domain-general and domain-specific tasks (e.g., recalling of video game scenarios) 

would clarify whether and in what contexts video game players show superior cognitive 

ability. 

With regard to the effects of video game training, research in the field should 

investigate the relationship between the degree of transfer and trainees’ baseline cognitive 

ability. It may be possible that people with below-average and compromised cognitive ability 

benefit from video game training more than do people with normal (or superior) cognitive 

function. Moreover, video game training could slow down cognitive decline in older adults 

and possibly restore impaired cognitive ability. While the meta-analysis of experimental 

studies reported null effects for video game training on the older adults’ cognitive ability, and 
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thus does not support this hypothesis, the topic probably deserves further investigation, given 

that no clinical population was included. 

8.3 Conclusion 

Our comprehensive meta-analytic investigation showed that the relationship between 

cognitive ability and playing video games is weak. Small or null correlations were obtained 

in the first meta-analysis. The second meta-analysis reported that video game players’ 

advantage over non-players was modest. Finally, the third meta-analysis found no meaningful 

effect of video game training on any of the reviewed outcome measures. These findings are in 

line with substantial research into expertise and cognitive training in domains such as music, 

chess, WM, and brain training. To date, far transfer remains a chimera. 

The generalized absence of far transfer has profound implications. Theories of human 

cognition predicting (or assuming) the occurrence of far-transfer effects find no support. 

Conversely, theories predicting no far-transfer effects are corroborated. As for academic and 

professional education, the lack of far transfer should encourage educators, trainers, and 

policymakers to implement curricula extensively focused on subject-related material. 
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Chapter 8: Meta-Analysis of Exergame Training 

Rationale for the Meta-Analysis in Chapter 8 

Chapter 8 examines a particular variant of video-games: exergames. This field is 

relatively new compared to the ones discussed in the previous Chapters (the first study 

included in the meta-analysis was carried out in 2010.) Nonetheless, this meta-analysis – 

which is a re-analysis of a previous study by Stanmore et al. (2017) – is a worthwhile 

contribution to the field of cognitive training. In fact, the findings presented in this Chapter 

represent valuable evidence on which to judge the effects of cognitive-training regimens 

associated with physical exercises.  

The studies included in this meta-analysis are listed in Appendix G. 
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1. Introduction 

Cognitive training has been one of the most influential topics in cognitive science in 

the last 20 years. The possibility to train global cognitive function would have profound 

consequences for our understanding of how humans acquire and use knowledge. Moreover, 

whether and to what degree cognitive ability is malleable has huge practical implications. 

Consider the educational advantages of enhancing cognitive ability in youth and the benefits, 

for the public health and global economy, of slowing down cognitive decline in old age. 

Due to the potential practical and theoretical implications, the effects of cognitive 

training have been subject to a lively debate. Whilst some researchers have endorsed 

cognitive-training activities as tools to enhance general cognition, other scholars in the field 

have expressed their scepticism about such practices. The controversy is well described by 

two open letters regarding the presumed benefits of brain-training programs. The first letter, 

issued by the Stanford Center on Longevity and the Max Planck Institute for Human 

Development, signed by 75 scholars in the fields of psychology and neuroscience, has 

expressed serious doubts about the capability of brain games of enhancing cognitive function 

(“A Consensus on the Brain Training Industry from the Scientific Community,” 2014). The 

second one, posted on the Cognitive Training Data website (www.cognitivetrainingdata.org) 

and signed by 133 researchers, has claimed that certain cognitive-training programs can 

benefit cognitive function. 

Crucially, substantial experimental evidence has highlighted the limitations, rather 

than the benefits, of many different cognitive-training programs. Cognitive-training regimens 

seem to affect only the trained skills, while no effect is exerted on non-trained tasks. This 

seems to apply to both those tasks that specifically train cognitive abilities – such as n-back 

tasks in WM training and brain-training programs (Melby-Lervåg, Redick, & Hulme, 2016; 
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Sala & Gobet, 2017b; Simons et al., 2016) – and intellectually demanding activities such as 

chess (Sala & Gobet, 2016), video games (Oei & Patterson, 2015), and music (Mosing, 

Madison, Pedersen, & Ullén, 2016; Sala & Gobet, 2017c). 

Given the disappointing results of cognitive-training programs, other pathways to 

cognitive enhancement have been explored. One of the most appealing is certainly 

exergaming. Exergames are video games combining cognitive and physical training. Due to 

this peculiarity, exergaming is thus believed to positively affect overall cognition more than 

aerobic exercise or cognitive tasks alone. In fact, while aerobic exercise is thought to support 

oxygenation of the brain and induce neurogenesis (Fabel et al., 2009; Firth et al., 2016; 

Kempermann et al., 2010), the gamification of cognitive tasks promotes participants’ 

engagement in training programs (Anguera et al., 2013; Stine-Morrow et al., 2014). The 

presumed benefits of exergaming are thus thought to stem from the combination of the 

positive effects of engagement, cognitive training, and physical exercise.   

A recent meta-analysis (Stanmore, Stubbs, Vancampfort, de Bruin, & Firth, 2017) has 

thus investigated the effects of exergames on overall cognitive ability. This meta-analysis 

includes 17 Randomized Control Trials (RCTs) and a total of 926 participants. In most of the 

studies (n = 15), the participants were older people (mean age > 55) with either no or some 

clinical condition (e.g., Parkinson’s disease). The cognitive performance of the exergames-

treated participants is compared to the performance of participants involved in a number of 

different activities (e.g., stretching, reading, and cycling) or no activity at all (passive control 

groups). The meta-analysis reports a medium overall effect size (𝑔̅ = 0.436), indicating that 

exergames can represent an effective tool to improve global cognition and to slow down 

cognitive decline. 
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However, due to methodological issues, we think that the results of this meta-analysis 

are substantially unreliable. First, due to mistakes in the calculations and statistical artefacts, 

some effect sizes are inflated (for details, see Sections 3. and 4.). Thus, the reported overall 

effect size is probably an overestimation. Second, the degree of heterogeneity is around 66%. 

Such degree of heterogeneity indicates, according to a standard categorization (Higgins, 

Thompson, Deeks, & Altman, 2003), a medium to high between-study variability that, if not 

explained, does not allow to draw any clear conclusion about the actual effect of the 

treatment. Third, even though there is some evidence of publication bias (e.g., asymmetrical 

distribution of the effect sizes in the funnel plot), no proper publication-bias analysis is 

carried out. Even though Stanmore et al. (2017) run two publication-bias analyses – Begg and 

Mazumdar’s (1994) rank correlation test and Orwin’s (1983) fail-safe N – neither of these 

methods provides an adjusted estimate of the overall effect size. In addition, the fail-safe N 

has been found to provide misleading results (for details, see Becker, 2005; see also Schmidt 

& Hunter, 2015; pp. 531-534). 

Based on these issues, and considering the important theoretical and practical 

implications, we present a re-analysis of Stanmore et al.’s data (2017). We carry out two 

models. Model 1 is run by merging all the effect sizes extracted from the same sample into 

statistically independent effect sizes. Model 2 includes all the effect sizes representing the 

difference between treatments and controls in every measure of cognitive ability reported in 

the primary studies. Our analyses focus on the way to calculate effect sizes and multiple 

publication-bias analyses. Also, we run a sensitivity analysis to control for possible statistical 

artefacts in the effect sizes. 
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2. Method 

2.1 Included Studies 

We used all the studies (RCTs) included in Stanmore et al.’s (2017) meta-analysis 

except one (i.e., Ackerman, Kanfer, & Calderwood, 2010). This study investigated the effects 

of the Wii Big Brain Academy program that consists of a set of brain-training – rather than 

exergaming – activities. It is worth noting that Ackerman et al. (2010) reported negative 

effects of the treatment on the participant cognitive ability. Thus, the exclusion of this study 

increased – rather than diminished – the overall effect sizes in our models. The number of 

included studies and independent samples was 16, while the total number of participants was 

883. 

2.2 Effect Sizes 

The effect sizes were calculated for each measure of cognitive ability reported in the 

studies. When both pre- and post-test data were provided, the standardized means difference 

(Cohen’s d) was calculated with the following formula: 

𝑑 = (𝑀௚ି௘ − 𝑀௚ି௖) 𝑆𝐷௣௢௢௟௘ௗି௣௥௘⁄    (1) 

where Mg-e and Mg-c are the gain of the experimental group and the control group immediately 

after the end of the training, respectively, and SDpooled-pre is the pooled standard deviation of 

the two pre-test standard deviations. This formula represents the most appropriate way to 

calculate the effect size in intervention studies with a repeated-measure design (for details, 

see Schmidt & Hunter, 2015; pp. 352-353). Also, when the pre-post-test between-group 

performance was expressed by p-values (Barcelos et al., 2015; Mirelman et al., 2016), the 

values were converted into Cohen’s ds by the Comprehensive Meta-Analysis (CMA; Version 
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3.0; Biostat, Englewood, NJ) software package. When these data were not reported in the 

primary studies, we contacted the authors. Three authors positively replied to our e-mails. 

When only pre-post-test differences were available (Maillot, Perrot, & Hartley, 2012; 

Zimmermann et al., 2014), we used the difference between the mean changes and the 

standard deviations of the changes. This procedure may have inflated the effect sizes 

extracted from these two studies because standard deviations of pre-post changes are usually 

significantly smaller than pre-test ones. The influence of these effect sizes on the results was 

assessed in a sensitivity analysis (see Section 3.3.). 

Finally, CMA was used for converting the Cohen’s ds into Hedges’s g (Hedges & 

Olkin, 1985), computing the overall effect sizes (𝑔̅s), and conducting statistical analyses. 

2.3 Meta-Analytic Models 

In the first model (Model 1), the measures from the same sample were meta-

analytically averaged into 16 statistically independent effect sizes. In one study (Chan, Ngai, 

Leung, & Wong, 2010), we used the global score (Cognistat) reported in the text. The whole 

procedure was analogous to the one used by Stanmore et al. (2017). 

In the second model (Model 2), all the effect sizes (k = 75) were inserted. As this 

procedure violates the principle of statistical independence of the samples, Cheung and 

Chan’s (2004) correction was applied. This correction reduces the weight of dependent 

samples in the analysis by estimating an adjusted (i.e., smaller) N. This method also allows 

one to build more powerful models without losing any information from the primary studies, 

biasing the meta-analytic mean, or artificially inflating the degree of heterogeneity.  
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2.4 Publication Bias Analyses 

Publication bias is unanimously acknowledged as a serious problem in meta-analysis 

and scientific research in general (Begg & Berlin, 1988; Schmidt & Hunter, 2015). For this 

reason, it has been proposed to use multiple analyses not only to detect the possible 

publication bias but also to triangulate the true (i.e., unbiased) effect size (e.g., Kepes & 

McDaniel, 2015). 

We thus chose three publication-bias analyses. First, Egger’s (Egger, Smith, 

Schneider, & Minder, 1997) regression test was used to test whether the effect sizes were 

distributed symmetrically around the meta-analytic mean in the funnel plot. The trim-and-fill 

analysis (Duval & Tweedie, 2000) was then applied to estimate the number of below-average 

missing studies and calculate the unbiased effect size. Finally, the PET-PEESE estimators 

were calculated (Stanley & Doucouliagos, 2014). PET estimator is the intercept of a weighted 

linear regression where the dependent variable is the effect size, the independent variable is 

the standard error, and the weight is the inverse of the standard error squared. PEESE 

estimator is obtained by replacing the standard error with the standard error squared as the 

independent variable. If PET suggests the presence of a real effect (i.e., intercept different 

from zero), PEESE estimator must be considered as the corrected overall effect size (Stanley 

& Doucouliagos, 2014).  

3. Results 

3.1 Model 1 (K = 16) 

The random-effects meta-analytic overall effect size was 𝑔̅ = 0.286, 95% CI [0.102; 

0.470], k = 16, p = .002. The test of heterogeneity was marginally significant, Q(15) = 

24.034, I2 = 37.589, p = .065. 
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The contour-enhanced funnel plot (Peters, Sutton, Jones, Abrams, & Rushton, 2008; 

Figure 15) representing the relation between effect sizes and standard errors looked 

asymmetrical, suggesting the presence of publication bias. 

Figure 15. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’s gs) in 
Model 1. The black circles represent the effect sizes included in the model. Contour lines are 
at 1%, 5%, and 10% levels of statistical significance. 

 

Egger’s regression test confirmed that the effect sizes were asymmetrically distributed (p = 

.003, one-tailed). The trim-and-fill analysis estimated six weaker-than-average missing effect 

sizes (left of the mean). The adjusted overall effect size was 𝑔̅ = 0.079, 95% CI [-0.125; 

0.283]. Finally, the PET and PEESE estimators were 𝑔̅ = -0.302 (p = .006) and 𝑔̅ = -0.082 (p 

= .006), respectively. Since PET is different from zero, PEESE estimator must be taken as the 

adjusted overall effect size. 

3.2 Model 2 (K = 75) 

The random-effects meta-analytic overall effect size was 𝑔̅ = 0.240, 95% CI [0.141; 

0.340], k = 75, p < .001. The test of heterogeneity was significant, Q(74) = 107.316, I2 = 

31.045, p = .007. 
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The contour-enhanced funnel plot (Figure 16) representing the relation between effect 

sizes and standard errors looked asymmetrical, suggesting the presence of publication bias. 

Figure 16. Contour-enhanced funnel plot of standard errors and effect sizes (Hedges’s gs) in 
Model 2. The black circles represent the effect sizes included in the model. Contour lines are 
at 1%, 5%, and 10% levels of statistical significance. 

 

Egger’s regression test confirmed that the effect sizes were asymmetrically distributed (p < 

.001). The trim-and-fill analysis estimated 21 weaker-than-average missing effect sizes (left 

of the mean). The adjusted overall effect size was 𝑔̅ = 0.076, 95% CI [-0.039; 0.190]. Finally, 

the PET and PEESE estimators were 𝑔̅ = -0.325 (p < .001) and 𝑔̅ = -0.040 (p < .001), 

respectively. 

3.3 Sensitivity Analysis 

As observed above, the effect sizes extracted from Maillot et al. (2012) and 

Zimmermann et al. (2014) may be biased. For this reason, two additional models were run by 

excluding these effect sizes from Models 1 and 2. 
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In the first model, the random-effects meta-analytic overall effect size was 𝑔̅ = 0.245, 

95% CI [0.058; 0.432], k = 14, p = .010. The test of heterogeneity was non-significant, Q(13) 

= 19.637, I2 = 33.799, p = .105. Egger’s regression test suggested the presence of publication 

bias that the effect sizes were asymmetrically distributed (p = .008, one-tailed). The trim-and-

fill analysis estimated five weaker-than-average missing effect sizes (left of the mean). The 

adjusted overall effect size was 𝑔̅ = 0.063, 95% CI [-0.145; 0.271]. Finally, the PET and 

PEESE estimators were 𝑔̅ = -0.271 (p = .016) and 𝑔̅ = -0.071 (p = .016), respectively. 

In the second model, the random-effects meta-analytic overall effect size was 𝑔̅ = 

0.113, 95% CI [0.029; 0.197], k = 58, p = .008. The test of heterogeneity was non-significant, 

Q(57) = 44.013, I2 = 0.000, p = .896. Egger’s regression test suggested the presence of 

publication bias that the effect sizes were asymmetrically distributed (p = .001, one-tailed). 

The trim-and-fill analysis estimated 18 weaker-than-average missing effect sizes (left of the 

mean). The adjusted overall effect size was 𝑔̅ = 0.003, 95% CI [-0.086; 0.092]. Finally, the 

PET and PEESE estimators were 𝑔̅ = -0.162 (p = .002) and 𝑔̅ = -0.010 (p = .001), 

respectively. 

4. Discussion 

The aim of the present paper was to test the reliability of the findings of a recent 

meta-analysis about the effects of exergame intervention on overall cognitive ability 

(Stanmore et al., 2017). Contrary to the claims of that meta-analysis, our re-analyses of the 

data have shown that the overall effect (if any) of such practices on one’s cognitive ability is 

small. 
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4.1 Inflation of the Effect Sizes 

A simple comparison between Model 1 and Stanmore et al.’s (2017) meta-analytical 

model of the effects of exergames on global cognition (Fig. 2, p. 39) shows that there are no 

large differences in most of the effect sizes. However, a few effect sizes are meaningfully 

greater in Stanmore et al.’s (2017) models than in ours (e.g., Anderson-Hanley et al., 2012). 

We do not know exactly how Stanmore and colleagues calculated these effect sizes. 

The inflation of some effect sizes also depends on some statistical artefacts. In fact, 

our sensitivity analysis shows that excluding those effect sizes at high risk of upward bias 

(Maillot et al., 2012; Zimmermann et al., 2014) sensibly reduces the overall effect size, 

especially in Model 2. Moreover, other studies such as Barcelos et al. (2015), Schättin, Arner, 

Gennaro, and de Bruin (2016), and Staiano, Abraham, and Calvert (2012) report differences 

at baseline between groups, while in Hughes et al. (2014) and Schoene et al. (2013) a 

decrement in the control group’s performance is observed in some tests. It is thus likely that 

the effect sizes from these studies are inflated as well. 

These considerations strongly suggest that the overall effect size reported in Stanmore 

et al. (2017; 𝑔̅ = 0.436) is an overestimation. The same applies, to a lesser extent, to the 

overall effect sizes calculated in our Models 1 and 2 (𝑔̅ = 0.286 and 𝑔̅ = 0.240, respectively).  

4.2 Heterogeneity 

Like the overall effect sizes, the degree of heterogeneity in our models is much 

smaller than the one reported in Stanmore et al. (2017). This difference is the logical 

consequence of the corrections in the calculations of the effect sizes. In Model 1, the 

observed heterogeneity is marginally significant (I2 = 37.589, p = .065). In Model 2, the 

degree of heterogeneity is between small and medium (I2 = 31.045, p = .007). As highlighted 
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by the sensitivity analysis, the presence of some inflated effect sizes – rather than some 

potential moderator (e.g., cognitive ability assessed, age, clinical condition, and type of 

control group) – accounts for most of the heterogeneity in Model 1 (I2 = 33.799, p = .105) 

and, more clearly, in Model 2 (I2 = 0.000, p = .896; see Section 3.3). 

4.3 Publication Bias 

In both models, the analyses show a textbook case of publication bias. The largest 

effect sizes are associated with the largest standard errors (i.e., smallest Ns) producing an 

asymmetrical distribution in the funnel plot. Consequently, the three publication bias analyses 

provide consistent outcomes and estimate that the true effect of exergaming activities on 

overall cognitive ability is zero. 

Like heterogeneity, the presence of publication bias seems to depend on the inflation 

of some effect sizes. Consistent with this argument, the exclusion of Maillot et al. (2012) and 

Zimmermann et al.’s (2014) effect sizes from the models reduces the difference between the 

overall effect sizes and the adjusted estimates. 

4.4 Conclusions and Recommendations for Future Research 

Our re-analyses show that the correct calculation of the effect sizes from the primary 

studies diminishes both the overall effect sizes and heterogeneity. Also, the publication-bias 

analyses suggest that the actual effect on overall cognitive ability of exergaming is around 

zero. This pattern of results occurs in both Models 1 (statistically independent effect sizes) 

and 2 (statistically dependent effect sizes). Taken together, these outcomes cast serious 

doubts about the presumed cognitive benefits of exergames. 

Due to the small number of RTCs carried out so far and the between-study variability 

in the participants’ characteristics, further research is recommendable. The current meta-
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analysis cannot exclude that exergames may improve (or preserve) some cognitive abilities in 

specific clinical and non-clinical populations. Moreover, as already mentioned, most of the 

reviewed studies tested the effects of the treatment on older participants. Thus, the results of 

the current meta-analysis, while representing robust evidence against the effectiveness of 

exergames at improving cognitive function in the elderly, are hardly generalizable to 

individuals of different age. 

That said, in line with substantial research into cognitive and educational psychology, 

our re-analyses corroborate the idea that cognitive-training activities do not benefit overall 

cognitive function or promote transfer of skills to non-trained tasks (Melby-Lervåg et al., 

2016; Sala & Gobet, in press; Shipstead, Redick, & Engle, 2012; Simons et al., 2016). 

Following these considerations, future studies should investigate the effects of specific 

training regimens on particular cognitive skills in populations with certain features (e.g., age 

range and clinical condition) rather than searching for generalized benefits. 
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Chapter 9: Overall Discussion 

This chapter summarizes the results from the five meta-analyses and discusses their 

theoretical and practical implications. 

1. Summary of the Results 

The first meta-analysis (Chapter 4) investigated the effects of working memory 

training on typically developing children’s cognitive skills and academic achievement. While 

the treatment exerted a medium-size effect on measures of near transfer (i.e., working 

memory and short-term memory tests), no genuine improvement was observed in any 

measure of far transfer. The same pattern of results remained several months after the end of 

training. Moreover, the moderator analyses showed that the size of the effect of the treatment 

was inversely related to the quality of the design in far-transfer measures. Some positive, yet 

small, effects were observed in non-randomized samples and experimental groups compared 

to passive control groups. When the samples were randomized, and the treated participants 

were compared with active control groups, the effect of the treatment was null. Regarding 

near-transfer measures, no moderator was significant. Finally, publication bias analysis found 

no evidence of missing studies. 

The second meta-analysis (Chapter 5) analysed the impact of chess instruction on 

children and young adolescents’ overall cognitive ability and academic achievement 

(mathematics and literacy). The results showed small to medium effects on all these three 

measures. No or little publication bias was found. The moderator analyses highlighted a 

positive relationship between the duration of training and size of the effects. This outcome 

suggests that the effects of chess instruction do transfer to other domains as long as the 

treatment is long enough (25 hours is the proposed threshold). However, it must be noted that 
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almost no study included in this meta-analytic review included active control groups. Thus, 

the observed positive effects could have been due to placebos. In line with this hypothesis, a 

recent study found no significant difference between a chess-treated group, an active control 

group (playing checkers), and a passive control group in mathematical or meta-cognitive 

skills (Sala & Gobet, 2017d). 

Finally, due to the scarceness of the effects related to performance in cognitive tests, it 

is not possible to analyse the effect of chess on specific cognitive abilities (e.g., cognitive 

control and working memory). Therefore, the mechanisms (if any) linking chess training to 

enhanced cognitive ability and improvement in school disciplines are yet to be tested 

properly. 

The third meta-analysis (Chapter 6) dealt with the effects of music training on 

cognitive skills and academic achievement in children and young adolescents with no 

learning disabilities. While the overall effect size was modest, slightly larger effects were 

observed in measures of memory and intelligence. However, the type of control group used in 

the experiment and the presence (or absence) of random allocation were found to be 

significant moderators. The pattern of results was similar to the one observed in the meta-

analysis about working memory training. While some positive effects were obtained when 

the treated groups were compared with passive control groups, the comparisons with active 

control groups provided near-zero effects. Analogously, the overall effect size in randomized 

samples was significantly smaller than the one in non-randomized samples. Finally, no 

evidence of publication bias was found. 

The fourth meta-analysis (Chapter 7) was a more extended investigation on the 

relationship between video-game practice and cognitive skills in the general population. 
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Three meta-analytical models were presented. The first meta-analytic model included all the 

studies reporting correlations between video-game skill and cognitive ability. The overall 

correlation was tiny, and nearly all the sub-models reported small or null correlations. 

Regarding the different types of video-game, no significant difference was found. The 

moderator analyses also showed that correlations were slightly larger when video-game skill 

was measured by the video-game scores than the frequency of play. The same applies to the 

correlations between video-game skill and spatial ability. Near-zero correlations were found 

in all the other outcome measures. Finally, trim-and-fill and selection models analyses 

reported some evidence of publication bias. 

The second meta-analytic model included all the studies assessing cognitive 

performance in video-game players and non-players. Video-game players proved to be better 

in all the five outcome measures. However, the publication bias analyses calculated reduced 

estimates of the effect sizes. Thus, the difference between video-game players and 

non-players is probably significantly smaller than the one usually reported in the primary 

studies. Finally, the moderator analyses found no effect of the type of video game. 

The third meta-analytic model examined the effects of video-game training on 

non-players’ cognitive skills. Negligible effects were found in both the main model and all 

sub-models. Notably, this pattern of results occurred regardless the type of video game 

(action or non-action). 

The fifth meta-analysis (Chapter 8) was a re-analysis of Stanmore et al.’s (2017) 

meta-analysis about the impact of exergames on overall cognitive function. Contrary to what 

Stanmore and colleagues claimed, the effects of exergames were found to be small if not null. 

In the re-analysis included in this dissertation, the effect sizes were correctly extracted from 
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the primary studies, and more powerful publication bias analyses were run. The present 

re-analysis is thus a perspicuous example of how errors in the calculation of the effect sizes 

and the lack of a proper sensitivity analysis may lead to biased results. 

In sum, all the five meta-analyses have provided weak or no support for the 

hypothesis that practicing cognitive tasks or engaging in cognitively demanding activities 

enhance overall cognition. Rather, the benefits do not transfer to other domains and thus 

appear to be task-specific (e.g., working memory training). Furthermore, it is worth noting 

that most of the meta-analytic models report low or no degree of heterogeneity. This outcome 

confirms the reliability of the results.  

2. Theoretical and Practical Implications 

2.1 Main Implications 

The five meta-analyses point to an inescapable conclusion: there is no far transfer 

regardless of the type of training. This state of affairs occurs not only in the cognitive-training 

programs reviewed in this dissertation (i.e., working memory training, chess, music, 

video-game training, and exergames) but also in domains studied by other researchers such as 

brain-training (Simons et al., 2016). Therefore, the most relevant implication of these 

findings is that the lack of generalization across different domains of skills acquired by 

training seems to be a constant in human cognition. 

This broad meta-analytic investigation and its clear-cut conclusions provide strong 

support for Thorndike and Woodworth’s common elements theory and, more generally, to all 

those theories of expertise and skill acquisition predicting no (or little) far transfer, such as 

chunking (Chase & Simon, 1973) and template theories (Gobet & Simon, 1996). Conversely, 

those theories postulating the possibility of enhancing domain-general cognitive ability are 
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not supported. Examples of such theories include Halford et al.’s (2007) theory of common 

capacity constraint, Schellenberg’s (2004, 2006) theory of IQ enhancement through music 

activities, and Bavelier et al.’s (2012) learning to learn theory. 

Finally, it must be noted that the lack of far transfer does not imply that human 

cognition is not malleable to training. In fact, cognitive-training often exerts visible effects. 

For example, working memory training improves performance in memory-related tests (see 

Chapter 5). Analogously, spatial training positively affects one’s ability to solve spatial tasks. 

However, these effects are task-specific (e.g., Chase & Ericsson, 1982) and do not necessarily 

represent improvements in broad cognitive constructs (I will take up this point below). 

2.2 Training and Neural Plasticity 

Another theoretical implication of these results concerns neural plasticity. The 

substantial absence of far transfer suggests that the neural patterns observed in people 

engaged in cognitively demanding activities reflect modifications in domain-specific abilities 

(e.g., chess skill) rather than enhanced domain-general cognitive ability. The occurrence of 

specific neural patterns (anatomical and functional) and absence of far-transfer effects on 

cognitive tests have been reported in domains such as music (e.g., Tierney, Krizman, & 

Kraus, 2015), chess (e.g., Hänggi, Brütsch, Siegel, & Jäncke, 2014), video game training 

(e.g., Colom et al., 2012), and working memory training (Clark, Lawlor-Savage, & Goghari, 

2017). 

Understanding the actual significance of the observed neural patterns is essential to 

avoid misinterpretations. The domain of music offers a perspicuous example of this problem. 

Given the findings reported in Chapter 6, it is implausible that functional changes occurring 

after a music-training intervention represent domain-general improvements in cognitive 
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function. Rather, it is likely that such neural patterns underlie the enhancement of music-

related skills such as pitch discrimination (e.g., Moreno et al., 2009). It is thus imperative not 

to erroneously interpret – as sometimes has happened (e.g., Habibi, Cahn, Damasio, & 

Damasio, 2016; Tierney et al., 2015) – functional neural changes in brain areas involved in 

domain-general cognitive abilities as evidence of cognitive enhancement. The same applies to 

anatomical neural changes (e.g., increased density of grey or white matter). Such patterns 

frequently observed in professional musicians and chess players are most likely neural 

correlates of their domain-specific expertise rather than superior overall cognitive ability. 

2.3 Education and Skill Acquisition 

In addition to theoretical aspects, the most obvious practical implications of these 

findings concern education. If skills rarely generalize across different domains, then the most 

effective way to acquire a skill is to train that particular skill. There are no shortcuts. 

Considering the insights provided by the research on expert performance and a variety of 

cognitive-training programs, educational and professional curricula should focus on 

discipline-related material rather than general principles without any specific reference to a 

particular subject (e.g., domain-general problem-solving skills). Moreover, the benefits of 

such domain-specific training should not be expected to generalize to other domains (e.g., 

learning Latin to improve logical thinking in mathematics). 

Also, in line with the idea that training domain-general cognitive skills leads to 

benefits in a wide range of real-life skills, the last decade has seen the rise of a multibillion-

dollar industry of commercial brain-training programs. Companies such as Posit Science® 

and Cogmed® claim that their training programs can help people in their daily, professional, 

and academic lives. However, in light of the results reported in this dissertation, the 

effectiveness of these programs remains doubtful (see also the discussion in Simons et al., 
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2016). In brief, to date, no cognitive-training program has proved to be of any use in 

educational settings. 

3. Methodological Considerations 

The present broad meta-analytic investigation highlights the importance of an 

appropriate experimental design to test the alleged benefits of cognitive-training regimens. In 

fact, the type of allocation (random or non-random) and the type of control group (active or 

passive) have been found to be significant moderators in working memory training (Chapter 

4) and music training (Chapter 6). In these two meta-analyses, the effect sizes tend to be 

smaller in the randomized samples than non-randomized samples. Furthermore, when the 

experimental groups are matched with active control groups, the overall effect sizes are 

smaller than the ones provided by the comparisons with the passive control groups. Thus, 

researchers must be extremely cautious when interpreting the results of treatment studies 

lacking random allocation to the groups or active control groups. Both the conditions are 

necessary to rule out possible between-group differences at baseline level and placebo 

effects. 

Another important consideration concerns the conceptual difference between 

cognitive enhancement and performance in cognitive tasks. Cognitive-training programs have 

often been claimed to foster cognitive function because treated individuals usually show 

improvements in a few cognitive tests (e.g., Anguera et al., 2013; Diamond, Barnett, Thomas, 

& Munro, 2007). This inference is simply incorrect. The practice of cognitive tasks usually 

leads to a better performance in the trained task and similar tasks. However, such progress 

does not necessarily represent an enhancement in overall cognitive function. Shipstead et al. 

(2012) have explained this difference in the case of working memory training. The fact that 

individuals improve in a broad set of working memory and short-term memory tasks may be 
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due to amelioration in some general ability to perform working memory tasks rather than an 

enhanced working memory capacity. Thus, multivariate measures of a particular cognitive 

construct are not enough to test the capacity of a cognitive-training program to foster overall 

cognitive function. Rather, structural equation modelling is necessary to verify whether the 

improvements in the single cognitive tasks occur through a common factor that is 

measurement invariant across treatment and control groups (for details, see 4. Discussion in 

Chapter 4). Regrettably, such experimental design is nearly absent in cognitive-training 

studies. 

Finally, this dissertation highlights the necessity of powerful and sophisticated 

meta-analytic models for a proper assessment of the effectiveness of experimental treatments 

in psychology. In an influential article about false-positive findings in psychology, Simmons, 

Nelson, and Simonsohn (2011) have shown that researchers are more likely to incur in Type I 

error than Type II error. This is because the flexibility in data collection and statistical 

analysis often allows one to falsely obtain significant results (p < .05). If primary studies 

usually report significant effects, basic meta-analytic models are bound to provide positive, 

yet probably biased, results as well. Also, the systematic suppression of non-significant 

findings (i.e., publication bias) is a further source of bias. It is thus imperative to include a 

proper sensitivity analysis to test the reliability of the overall results (Kepes & McDaniel, 

2015). Moreover, specific formulas must be used to calculate the effect size (Chapter 3). The 

use of some alternative formulas risks to artificially inflate effect sizes and increase the 

overall effect (e.g., Chapter 8). Notably, due to design-related flaws, several previous 

meta-analyses have failed to find the true effect of particular cognitive-training programs. 

Examples include Au et al.’s (2015) meta-analysis about working memory training, Powers et 
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al.’s (2013) meta-analysis about video-game training, and the meta-analysis examining the 

effects of exergames on cognitive function by Stanmore et al. (2017). 

4. Generalizability of the Results 

 This dissertation has documented the failure of several types of cognitive training to 

obtain any far-transfer effect. Although a large portion of the field has been covered, a 

comprehensive review of all the activities aimed to increase cognitive ability (or slow 

cognitive decline) is beyond the scope of this dissertation. Thus, the findings (and relevant 

implications) do not extend necessarily to several other training programs or particular 

sub-populations. 

 First, almost no clinical sample has been included. The only exception is the 

meta-analysis about exergames (Chapter 8) and two studies in the meta-analysis about chess 

instruction (Chapter 5). Thus, the results presented in this dissertation do not generalize 

necessarily to clinical populations. In fact, cognitive-training regimens that fail to enhance 

overall cognitive ability in individuals with normal cognitive function may provide some 

benefits in populations with impaired cognitive ability or learning disabilities. 

 Second, this dissertation does not deal with interventions aimed to optimise cognitive 

function. Examples include lifestyle modifications (e.g., Stine-Morrow & Basak, 2011), 

health and fitness activities (e.g., Voss, Vivar, Kramer, & van Praag, 2013), and nutrition and 

drugs (e.g., Burkhalter & Hillman, 2011). Thus, the results reported in the meta-analyses do 

not apply to these types of interventions. 

 Third, all those educational programs that aim to teach thinking skills have not been 

reviewed either. However, given the substantial absence of far-transfer effects documented in 

the present dissertation, it is extremely improbable that such programs may exert any 

meaningful impact on cognitive abilities or academic achievement. In line with this 
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conclusion, a recent meta-analysis (Abrami et al., 2015) showed modest effects of 

critical-thinking programs on a variety of school subjects. 

 Finally, the only variables examined in the meta-analyses are cognitive skills and 

academic-achievement measures. It is probably a trivial point. However, it must be 

understood that even if cognitive-training programs do not enhance cognition or academic 

attainment, it is still possible that such activities provide other types of benefits (e.g., 

enhanced prosocial skills, well-being, etc.). Whether cognitive-training programs offer such 

advantages will be a requirement for future research. 

5. Conclusions and Future Research Directions 

The meta-analytic reviews presented in this dissertation strongly suggest that the 

optimism about the far-transfer effects of cognitive training is not justified. Rather, 

converging evidence supporting Thorndike and Woodworth’s (1901) common elements 

theory comes from the research on a broad range of types of cognitive training (e.g., WM 

training, chess, music, video games, exergames, spatial training, and brain training). 

Future interventions trying to obtain far-transfer effects should strive for an 

experimental design including pre-tests and at least two control groups (a do-nothing group 

and an active control group). Such a design is the minimum standard in order to evaluate 

whether the putative benefits of cognitive training are genuine and not produced by statistical 

artefacts (e.g., differences at baseline level) and non-specific factors (e.g., placebo effects, 

expectations). Also, the use of multivariate measures of the same construct is recommended 

to test whether a particular training is enhancing a cognitive construct or just the ability to 

perform a class of cognitive tasks. Another central aim is to identify the specific 

characteristics of the training that might improve one’s cognitive ability, which abilities they 

boost, and why these abilities should foster other non-trained abilities (i.e., far transfer). 
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Nonetheless, given the scarceness of far transfer in the literature, my hypothesis is 

that future experiments will show findings in line with those presented in this dissertation, at 

least with regard to non-clinical populations. For this reason, researchers and policymakers 

should seriously consider stopping spending resources for this type of research. Rather than 

searching for a way to improve overall domain-general cognitive ability, the field should 

focus on clarifying the domain-specific cognitive correlates underpinning expert 

performance.  
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