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Abstract 

The rapid expansion of electronic industry calls for effective and efficient 

electromagnetic (EM) measurements, including the characterization of devices under 

test (DUT), such as antennas or wireless devices, and the electromagnetic 

compatibility (EMC) testing. 

In the real world, EM measurements can be influenced by a number of 

uncontrollable factors which will afflict the measurements. These factors make the 

measurements very difficult especially when the measurements require high 

precision and/or low power relative to the background noise. To conduct EM 

measurements accurately, many different facilities/environments have been 

developed, including anechoic chambers (ACs), transverse electromagnetic (TEM) 

Cells, and reverberation chambers (RCs). These three environments have different 

characteristics.  

Over the past several decades, RCs have been enjoying growing popularity as a 

promising facility for the characterization of wireless devices and for the EMC 

testing. The RC measurement method exhibits much competitive superiority over the 

AC method and TEM Cell method, such as low cost, enhanced test repeatability, a 

more realistic test environment, and easily achieved high-field environment. The 

application of the RC for performing EMC testing was first proposed by H. A. 

Mendes in 1968. In the recent IEC 61000-4-21 standard, the importance of EMC 

testing using RCs as an alternative measurement technique has been recognized. 

To make the RC well stirred, a large number of independent samples (stirrer 

positions) are required. Consequently, the measurement time is usually long 

(typically several hours), which has greatly restricted the engineering applications of 

the RC measurement techniques. 

The purpose of this thesis is to present our studies on improving the measurement 

efficiency of RCs in recent years, including the efficient measurement of the 

averaged absorption cross section (ACS) with only one antenna, the rapid volume 

measurement method using the averaged ACS, the simplified shielding effectiveness 
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(SE) measurement using the nested RC with two antennas, and the improved antenna 

array efficiency measurement in an RC. 

For ACS measurement, the proposed one-antenna methods in both the frequency 

domain and the time domain are presented. The measurement setup is greatly 

simplified and the measurement time is significantly shortened. The efficient 

measurement of the ACS can be used to obtain the volume of a chamber, which leads 

to the rapid volume measurement method. For the SE measurement of electrically 

large enclosures using a nested RC, four improved measurement methods are 

proposed. Both the frequency-domain and time-domain methods are studied. The 

proposed methods require only two antennas and provide efficient measurement of 

SE without losing the accuracy. Finally, the accurate array efficiency measurement 

method in an RC using a power divider is presented. A power divider is used to 

excite the feeding ports of the array elements simultaneously. Thus, the efficiency 

measurement of the entire array can be effectively treated in a manner similar to a 

single port antenna, which would simplify the measurement procedure and reduce 

the overall measurement time. By introducing proper attenuators between the array 

elements and the power divider to alleviate the effect of the reflected power from the 

array to the insertion loss of the power divider, the array efficiency can be measured 

accurately even when the elements of the array are not well-matched with the power 

divider. The proposed method is advantageous especially for wideband antenna 

arrays where good impedance matching of array elements is difficult to maintain. 

In this thesis, it is shown that our proposed methods have greatly improved the RC 

measurement efficiency and simplified the measurement setup at the same time. 

These contributions could promote the industrial application of RCs. 
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Chapter 1: Introduction 

 

1.1 Background 

With the blooming electronic industry, electromagnetic (EM) measurements are becoming 

more and more important, including the characterization of devices under test (DUT), such as 

antennas or wireless devices, and the electromagnetic compatibility (EMC) testing. Real 

world EM measurements can be easily affected by the surroundings where a number of 

uncontrollable factors exist. The surroundings will afflict the measurements. Consequently, 

field experiments can be difficult to perform, especially if the measurements require high 

precision and/or low power relative to the background noise [1]. Nevertheless, for the EM 

characterization of a DUT, to determine if the DUT can operate correctly in the environment 

it is intended for, field experiments are essential. In practice, these tests are performed after 

the DUT has been fully characterized under idealized environments which are close to 

analytic or numerical models. For EMC testing, its purpose is to keep all electronic products 

not disturbing the proper operation of the other products and inversely withstanding EM 

radiation emitted from surrounding devices [1] – [2]. An important aspect of a successful 

electronic product development is therefore the efficient and effective EMC testing [1]. 

Over the past decades, to conduct EM measurements accurately, many different facilities 

have been developed, including anechoic chambers (ACs), transverse electromagnetic (TEM) 

Cells, and reverberation chambers (RCs). Each of these three facilities creates an idealized 

environment that allows measurements to be compared with various analytic or numerical 

models. 

 

 

1.1.1    Anechoic Chamber 

An AC is a room lined with radio absorbing materials (RAMs) on the walls, floor, and ceiling 

– non-reflecting boundaries are created [3] – [4]. EM waves are allowed to propagate away 

from the source as if they were in free space. Thus, all outdoor EM measurements can be 

conducted inside an indoor environment which is not subject to any interference [4]. As such, 



 

Chapter 1: Introduction                       P a g e  | 2 

 

 

ACs are very suitable for characterizing quantities as a function of angles, such as antennas 

and wireless devices radiation patterns. In addition, measurements in ACs can be directly 

compared with models assuming no boundary reflections, as is typically done for antennas 

[5]. The 3D model of an AC is shown in Figure 1.1(a) and a typical AC measurement is 

shown in Figure 1.1(b). However, the expensive RAMs are often prohibitive for potential 

users [4]. In addition, during the measurement, the DUT needs to be mounted on a positioner 

to be reoriented which limits the size and the form factor of the test objects [5]. 

        

                                 (a)                                                                                  (b) 

Figure 1.1 Anechoic chamber (a) 3D model [6], (b) flight test in the anechoic chamber [7]. 

 

 

1.1.2    TEM Cells 

TEM Cells are essentially large transmission lines used for establishing standard EM fields in 

a shielded environment. The cell consists of a section of rectangular coaxial transmission line 

tapered at each end to adapt to standard coaxial connectors [8]. A diagram and a picture of a 

TEM Cell are shown in Figure 1.2(a) and (b), respectively. The waves traveling through the 

cell are similar to plane waves in the test area [9], thus providing a close approximation to a 

far-field plane propagating in free space. A TEM cell operates from DC (0 Hz) up to a cut-off 

frequency, determined by the dimensions of the cell. A DUT is subjected to a well-

characterized (ideally uniform) field in TEM Cells, or conversely, the radiation from the 

DUT can couple into the TEM mode of the cell. TEM Cells can be used for emission testing 

of small equipment, for calibration of radio frequency (RF) probes, and for biomedical 
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experiments. TEM Cells are far less expensive than ACs. However, the cell also has 

limitations, among which is that the upper useful frequency is bound by its physical 

dimensions which, in turn, constrain the size of a DUT that can be tested with the cell [5]. 

Additionally, larger TEM Cells have lower cut-off frequencies for the higher order modes. 

This makes large objects test be very difficult at higher frequencies in TEM Cells. 

 

 

(a) 

 

 

 

(b) 

Figure 1.2 TEM Cell: (a) TEM Cell diagram [10], (b) photograph of the prototype of the 

open TEM Cell [11]. 
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1.1.3    Reverberation Chamber 

An RC is an electrically large, highly conductive cavity or chamber, furnished with a 

mechanism for altering/stirring its modes, to perform EM measurements on electronic 

equipment [12]. A diagram of a typical RC is shown in Figure 1.3. A photograph of a 

measurement setup in the RC at the University of Liverpool is shown in Figure 1.4. The RC 

is designed to work in an “over-mode” condition. Generally, the dimensions of an RC should 

be large with respect to the wavelength at the lowest usable frequency (LUF). And also, it 

should be large enough to accommodate the DUT, the stirrers, and the antennas used in the 

measurement. The RC is normally equipped with mechanical stirrers whose dimensions are 

 

Figure 1.3 A typical RC facility [12]. 
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significant fractions of the RC dimensions and of the wavelength at the LUF [12]. The 

mechanical stirrers can be rotated stepwise by a drive motor to different positions and thus 

the multi-mode EM environment can be stirred. After averaging over a sufficient number of 

stirrer positions, the resulting field is statistically uniform, isotropic (i.e., energy coming from 

all aspect angles), and randomly polarised (i.e., waves having all possible polarisation 

directions) [12]. 

To stir the RC well, many samples that are used to perform the statistical analysis should be 

collected. An effective stirring process will produce highly independent samples (low 

correlation). If enough statistically independent samples can be obtained, then the average of 

the power measured at any location within the working volume of the RC will be constant 

(within some standard deviation) and the RC is said to be spatially uniform [13]. Therefore, 

the RC measurements can be compared to models of a DUT subjected to incident EM fields 

from all directions and all polarization angles. Conversely, the total radiating field of a source 

can be measured without moving the source itself. In the RC, the mode density increases with 

 

Figure 1.4 Photograph of a typical measurement setup in the RC at the University of 

Liverpool. 
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frequency, consequently, large-form-factor DUTs can be measured at high frequencies as 

long as they are relatively small compared with the RC. Although the DUT size is a factor 

that needs to be considered when selecting the size of the RC, generally it is the lowest 

operating frequency that determines how large the RC needs to be for a particular test [12]. 

Low-frequency measurements require big size RCs. For tens-of-MHz measurements, the 

dimensions of the RC should be at least several meters. However, above 1.0 GHz, an RC can 

be small enough to fit on a lab table [5]. RCs are generally more expensive than TEM Cells 

but they are much less expensive than ACs. And also, RCs have many advantages over ACs 

and TEM Cells, such as enhanced test repeatability, a more realistic test environment, and 

easily achieved high-field environment [1], [5], [12]. Therefore, RCs have been enjoying 

growing popularity as a promising facility for EM measurements in the past decades. 

 

 

1.2 Motivation and Objective 

The selection of a measurement environment is an important consideration when performing 

EM measurements. While ACs, TEM Cells, and RCs are often used to conduct the same 

types of measurements, they have different properties from one another. Because of the 

aforementioned competitive superiorities of RCs over ACs and TEM Cells, RCs are 

becoming more prevalent for EM measurements. However, a large number of stirring 

positions are required to well stir an RC. Therefore, the measurement in an RC is normally 

time-consuming (typically several hours), which has greatly restricted the industrial 

applications of the RC measurement techniques. 

Although much research has been performed on RCs over the past decades, the research on 

improving the measurement efficiency is relatively lacking. The aim of this thesis is to 

improve the measurement efficiency of RCs, including the efficient measurement of the 

averaged absorption cross section with only one antenna [14], the rapid volume measurement 

method using the averaged absorption cross section [15], the simplified shielding 

effectiveness measurement using the nested RC with two antennas [16], and the improved 

antenna array efficiency measurement in an RC [17]. 



 

Chapter 1: Introduction                       P a g e  | 7 

 

 

In this thesis, it is shown that our proposed methods have greatly improved the RC 

measurement efficiency and simplified the measurement setup at the same time. These 

contributions could promote the industrial application of RCs. 

 

 

1.3 Organisation of the Thesis 

The contents of this thesis are organized in the following manner. 

Chapter 2 is to review and discuss the theories of the RC. Relevant concepts and the 

theoretical foundations are established in this chapter. 

In Chapter 3, one-antenna methods are presented for determining the averaged absorption 

cross section of a lossy object in both the frequency domain and the time domain. The 

commonly used RC technique for determining the averaged absorption cross section of a 

lossy object requires two antennas and the radiation efficiency of the two antennas should be 

known. In this chapter, the one-antenna method in the frequency domain is first presented 

which requires only one antenna (with known efficiency) by making use of enhanced 

backscatter effect. Thus, the measurement setup is simplified. Then, the one-antenna method 

in the time domain is presented which needs no knowledge of the efficiency of the antenna. 

The experimental setup is illustrated and measurement results are presented. It seems that the 

measured averaged absorption cross sections by the three methods (the conventional two-

antenna method, the proposed frequency-domain one-antenna method, and the proposed 

time-domain one-antenna method) are in good agreement. Furthermore, the robustness of the 

chamber decay time and the convergence speed of the three methods are investigated. It is 

found that the time-domain method converges much faster than the frequency-domain 

methods. A rapid and accurate measurement can be achieved in the time domain based on 

this finding by using source stirring technique. Moreover, in the time-domain approach, the 

RC can be replaced by a suitable electrically large conducting cavity, which will greatly 

reduce the hardware requirement. It is demonstrated that the time-domain method is much 

more efficient and its hardware requirement is much lower than the frequency-domain 

method. 
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Chapter 4 concerns a rapid and accurate measurement method for estimating the volume of a 

large cavity using the averaged absorption cross section. A piece of RAM with a known 

averaged absorption cross section is selected to aid the measurement. Using this method the 

cavity volume can be obtained by measuring its decay time constants with and without the 

RAM. The proposed method has been validated with both theory and measurement studies. It 

is found that the measurement can be completed rapidly with a simple measurement setup 

using this method, which makes it an attractive way for the cavity volume measurement. 

Furthermore, by using acoustic waves, the proposed method can be generalized and the 

cavity under test does not have to be of conducting material. 

In Chapter 5, the nested RC measurement is considered. The two-antenna methods for the 

shielding effectiveness measurement using the nested RC in both the frequency domain and 

the time domain have been presented. These two-antenna methods have simplified the 

measurement setup and improved the measurement efficiency. It is demonstrated that the 

measured shielding effectiveness using the proposed two-antenna methods and the 

conventional three-antenna method agrees well. The time-domain method goes to 

convergence much faster than the frequency-domain methods. Consequently, in the time 

domain, fast and accurate measurement can be realized by using the source stirring technique, 

which will result in fast shielding effectiveness measurement in reality. Furthermore, in the 

time-domain approach, by replacing the RC with a suitable conducting cavity (electrically 

large) and using the source stirring technique, the hardware requirement will be greatly 

reduced. It is found that the time-domain method outperforms the frequency-domain method 

with much higher measurement efficiency and much lower hardware requirement. 

Chapter 6 concerns the characterization of antenna arrays using an RC. An improved 

measurement-based method to obtain the efficiency of an all-excited antenna array in an RC 

is proposed. When measuring the efficiency of an antenna array in an RC, to make the array 

work in an “all-excited” manner, a power divider is normally employed to excite the feeding 

ports of the array elements simultaneously, that is, all the array elements are excited through 

a series of power dividers by merely a single excitation source. Thus, the efficiency 

measurement of the entire array can be effectively treated in a manner similar to a single port 

antenna, which would simplify the measurement procedure and reduce the overall 

measurement time. However, the introduction of the power divider will inevitably bring in 
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insertion loss which needs to be quantified and calibrated out. The previous method is correct 

if each element of the antenna array is well matched. However, if some elements of the array 

antenna are not well matched, a considerable error may occur. In this chapter, the power 

dissipated on the isolation resistance of the power divider has been minimized by introducing 

10-dB attenuators between array elements and power divider ports. The attenuators would 

alleviate the reflection from the array antenna to the power divider and thus reduce the 

dissipated power on the power divider. Moreover, because the attenuation of the attenuator is 

known, thus we can calibrate it out accurately. It is shown that this method is effective to 

measure the efficiency of an antenna array especially for an antenna array that some elements 

of it are not well matched. It is advantageous especially for wideband antenna arrays where 

good impedance matching of array elements is difficult to maintain. 

In Chapter 7, all the work in this thesis is summarized, the key contributions and potential 

problems are identified, and the future work is discussed. 
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Chapter 2: Theories of Reverberation Chamber 

 

2.1 Introduction 

This chapter is intended to review the concepts and introduce the theories that will later be 

referred to and relied upon in the following chapters, including the deterministic theory and 

the statistical theory. 

First of all, the deterministic theory is presented in Section 2.2. The cavity discussed in 

Section 2.2 consists of a rectangular region (because most of the RCs are of rectangular shape) 

bounded by conducting walls and filled with a uniform dielectric (usually free space). After a 

brief discussion of fundamentals of EM theory, the general properties of cavity modes will be 

given. Subsequently, the detailed expressions for the modal resonant frequencies, modes 

number/density, and Dyadic Green’s Function are given. 

The deterministic theory is convenient for regularly designed cavities. The cavity details, 

such as shape, dimensions, and fill contents are well known. The cavity is generally of a 

simple/separable geometry. However, for electrically large, complex cavities those are not 

regularly designed, the details of the cavity geometry and loading objects are not expected to 

be precisely known [1]. In such cases, the deterministic mode theory is not appropriate for 

predicting the field properties while the statistical theory is [2] – [6]. An RC is a complex 

cavity and many stirrer positions are employed in RC measurements [7], therefore a statistical 

model is required to determine the statistics of the fields and DUT response. In this thesis, the 

well-known plane-wave integral representation for the electric and magnetic fields is selected 

[1], [8] – [9]. This model is consistent with Maxwell’s equations and also includes the 

statistical properties expected for a well-stirred field. The statistical nature of the fields is 

introduced through the plane-wave coefficients that are taken to be random variables with 

fairly simple statistical properties [1], [9]. Because the theory uses only propagating plane 

waves, it is fairly easy to use to calculate the responses of DUTs. 

The International System of Units (SI) is used throughout the thesis. 
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2.2 Deterministic Theory 

An RC is a metallic room with stirrers installed inside. To better understand its basic 

operating principles, the RC is first abstracted to an empty, rectangular cavity resonator with 

walls made of perfect electrical conductor (PEC). 

 

 

2.2.1    Resonant Modes 

As it is well known, a cavity resonator can be formed by closing the separated ends of a 

rectangular waveguide [10] – [11]. If the geometrical dimensions of this resonator reach 

certain lengths, at a given frequency an EM field within this resonator forms a standing wave 

pattern – resonant modes [12]. The geometry of a typical rectangular cavity is shown in 

Figure 2.1. 

Generally, in order to construct the resonant modes in a rectangular cavity, the modes that are 

transverse electric (TE) or transverse magnetic (TM) to one of the three axes need to be 

derived [10]. In our thesis, the z axis is chosen to keep with standard waveguide notation. The 

TE modes are normally called magnetic modes because the Ez component is zero. Similarly, 

the TM modes are normally called electric modes because the Hz component is zero [1], [10]. 

This standing wave pattern can be mathematically described by solving Maxwell’s equations. 

The general form of time-varying Maxwell’s equations can be written in the differential form 

as [10] 

   ⃗   
  ⃗ 

  
                                                                   

   ⃗⃗  
  ⃗⃗ 

  
                                                                    

   ⃗⃗                                                                           

   ⃗                                                                           

The quantities in these equations represent time-varying vector fields and are real functions 
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of spatial coordinates x, y, z, and the time variable t. These quantities are defined as follows 

[10] 

 ⃗  is the electric field, in volts per meter (V/m). 

 ⃗⃗  is the magnetic field, in amperes per meter (A/m). 

 ⃗⃗  is the electric flux density, in coulombs per meter squared (C/m
2
). 

 ⃗  is the magnetic flux density, in webers per meter squared (Wb/m
2
). 

   is the electric current density, in amperes per meter squared (A/m
2
). 

  is the electric charge density, in coulombs per meter cubed (C/m
3
).  

The sources of the EM fields are the electric current    and the electric charge density ρ. In 

order to derive the numerical formulation valid inside an ideal cavity, it is assumed that there 

are no sources inside the computational volume V, i.e. ρ = 0 and     ⃗ . Furthermore the 

properties of the materials in which EM fields exist are taken to be linear, homogeneous, and 

 

Figure 2.1 Geometry of a rectangular cavity. 
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isotropic so that the constitutive equations will be [10] – [12], 

 ⃗⃗    ⃗                                                                           

 ⃗    ⃗⃗                                                                           

Herein ε denotes the dielectric permittivity and μ the magnetic permeability. In free space, the 

corresponding permittivity ɛ0 = 8.854×10
-12

 farad/m, and the corresponding permeability µ0 = 

4π×10
-7

 henry/m [10]. In a dielectric, ε = ɛrɛ0 and μ = µrµ0, where ɛr and µr are the relative 

permittivity and permeability of the material inside the cavity, respectively. For time-

harmonic fields with an e
jωt

-dependence, utilizing the material equations (2.5) – (2.6), (2.1) – 

(2.4) can be simplified to 

   ⃗       ⃗⃗                                                                   

   ⃗⃗      ⃗                                                                     

   ⃗                                                                            

   ⃗⃗                                                                          

Applying the vector identity in Appendix A 

  (    )   (    )                                                         

to (2.7) and (2.8), the electrical and magnetic wave equations can be derived as 

  ⃗  
 

  

   ⃗ 

   
                                                                    

  ⃗⃗  
 

  

   ⃗⃗ 

   
                                                                   

which can be used to describe the fields within a cavity. c denotes the propagation speed of 

the EM wave in the medium and is given by 

  
  

√    
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with c0 = 3×10
8
 m/s being the speed of an EM wave in vacuum. The partial differential 

equations (2.12) and (2.13) can be solved by the method of separation of variables [10] using 

boundary conditions. The boundary conditions can be derived for both the tangential 

components and normal components. For the tangential components of the electric and the 

magnetic field, respectively, it can be derived 

  ⃗⃗⃗⃗  (  
⃗⃗⃗⃗    

⃗⃗⃗⃗ )   ⃗                                                              

  ⃗⃗⃗⃗  (  
⃗⃗ ⃗⃗     

⃗⃗ ⃗⃗  )    ⃗⃗⃗                                                             

wherein   ⃗⃗⃗   is the electric surface current density that may exist on the interface. The vector   ⃗⃗⃗⃗  

represents a normal vector pointing from dielectric 1 into dielectric 2.  

For the normal components of the electric and magnetic field, the boundary conditions are 

enforced by 

  ⃗⃗⃗⃗  (  
⃗⃗ ⃗⃗    

⃗⃗⃗⃗ )                                                                

  ⃗⃗⃗⃗  (  
⃗⃗⃗⃗    

⃗⃗⃗⃗ )                                                                 

where ρs is the surface charge density on the interface. For an interface between two 

dielectric materials (normally no charge or surface current densities will exist), equations 

(2.15) – (2.18) state that the normal components of  ⃗  and  ⃗⃗  are continuous across the 

interface, and the tangential components of  ⃗  and  ⃗⃗  are continuous across the interface [10]. 

For an ideal cavity, from (2.15) and (2.18), it can obtained 

 ⃗    ⃗                                                                           

                                                                             

which is valid on the PEC wall surface of the cavity for the tangential components of the 

electrical field  ⃗   and the normal component of the magnetic field   . Applying (2.19) and 

(2.20) to the rectangular cavity shown in Figure 2.1 yields 

    and                                                             
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    and                                                               

    and                                                               

Using the boundary conditions (2.21) – (2.23), the wave equations (2.12) and (2.13) can be 

solved and the certain EM field standing wave patterns (cavity modes) can be obtained. 

These cavity modes can be classified into two main categories: the TE modes with Ez = 0 and 

the TM modes with Hz = 0. As a result, for the field components of TMmnp modes in an ideal 

rectangular cavity, it can be derived 

           
 

   
 

(
  

 
) (

  

 
)     (

  

 
 )    (

  

 
 )    (

  

 
 )                    

           
 

   
 

(
  

 
) (

  

 
)     (

  

 
 )    (

  

 
 )    (

  

 
 )                     

               (
  

 
 )    (

  

 
 )    (

  

 
 )                                                       

          
   

   
 

(
  

 
)     (

  

 
 )    (

  

 
 )    (

  

 
 )                                  

           
   

   
 

(
  

 
)     (

  

 
 )    (

  

 
 )    (

  

 
 )                            

                                                                                                                                  

with the integer numbers m, n = 1, 2, 3, ∙∙∙ and p = 0, 1, 2, ∙∙∙. The indices m, n, and p denote 

the number of half wavelengths in x-, y-, and z-direction, respectively. E0 is a constant with a 

unit of V/m. Similarly, for TEmnp modes, the following equations can be derived 

          
   

   
 

(
  

 
)     (

  

 
 )    (

  

 
 )    (

  

 
 )                                 
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 )    (

  

 
 )                                                    

with m, n = 0, 1, 2, 3, ∙∙∙  and p = 1, 2, 3, ∙∙∙, with the only exception that m = n = 0 is not 

allowed. H0 is a constant with a unit of A/m. The wave number      ⁄ , λ is the 

wavelength. The constant kmn utilized as an abbreviation in (2.24) – (2.29) and (2.30) – (2.35) 

is given as 

    √(
  

 
)
 

 (
  

 
)
 

                                                        

The angular frequency ω as employed in (2.24) – (2.35) can be calculated from 

 

 
 

   

 
      √(

  

 
)
 

 (
  

 
)
 

 (
  

 
)
 

                                

with c as given by (2.14) and f as the frequency. In an ideal cavity, i.e., a lossless cavity, the 

cut-off frequencies of the individual modes are described by 

     
 

  
√(

  

 
)
 

 (
  

 
)
 

 (
  

 
)
 

                                           

The modes with the lowest cut-off frequencies can be TM110, TE011, or TE101 mode depending 

on the actual dimensions of a cavity, i.e. the relation between w, h, and l. Assuming w ˂ h ˂ l, 

the lowest resonant frequency occurs for TE011 mode. It is important to note that there can be 

several modes having the same cut-off frequency. If several modes exhibit the same cut-off 

frequency they are called “degenerate modes”. For the RC at the University of Liverpool, its 

dimension is l = 5.8 m, w = 3.6 m, and h = 4.0 m. The first five resonant modes that can exist 

are shown in Table 2.1. The theoretical mode distribution as a function of frequency for our 

RC in 40 – 200 MHz is shown in Figure 2.2. Each mode represents a unique spatial field 
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variation or modal structure. It can be seen that at the lower frequencies, the modal 

population of the RC is sparse and it is with frequency gaps of different size. With the 

increase of the frequency, the mode structure becomes finer. The lowest resonant frequency 

(the first resonance) of our RC occurs at 45.55 MHz corresponding to the TE011 mode in 

Table 2.1. 

 

Table 2.1: The first five resonant modes in the RC at the University of Liverpool 

 

 

 

 

Figure 2.2  Theoretical modal structures for the RC at the University of Liverpool. 

 

Mode number m n p Resonant frequency (MHz) 

1 0 1 1 45.55 

2 1 0 1 49.04 

3 1 1 0 56.06 

4 1 1 1 61.73 

5 0 1 2 63.89 
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2.2.2    Modes inside a Lossy Cavity 

For an ideal, lossless cavity the mode spectrum is discrete. Theoretically, a resonance only 

occurs at the frequency f0 corresponding to the exact frequency of the resonant mode [13] – 

[14]. However, in a finitely conducting cavity, modes over a certain “modal bandwidth” Δf 

exist. The modal bandwidth can be defined as “The bandwidth over which the excited power 

in a particular cavity mode with resonance frequency f0 is larger than half the excited power 

at f0” [15]. For simplicity it is assumed that the modes can only be excited within the range: 

      ⁄             ⁄                                                  

wherein fres is the resonant frequency, therefore the mode spectrum is not fully discrete 

anymore. Outside of its modal bandwidth, the contribution of a mode to the overall field 

distribution can be neglected [12]. From a certain frequency on, the modal bandwidths for 

different resonant frequencies start to overlap and consequently, multiple modes can be 

excited at a single frequency. The number of modes that can be excited simultaneously at a 

given frequency varies depending on the quality factor Q of the lossy cavity. At this point, the 

cavity turns into multi-mode operation regime. The field distribution obtained within the 

cavity for multi-mode operation is the superposition of the individual modes [7]. In practice, 

the modal bandwidth can be formulated by 

     ⁄                                                                     

The modal bandwidth is measured in our RC. Both the “unloaded” scenario and the “loaded” 

scenario are studied. In both scenarios, the transmitting antenna (antenna 1) is a log periodic 

antenna (LPDA), and the receiving antenna (antenna 2) is a folded diploe antenna. The 

efficiency of the two antennas is with known efficiency values. In the “loaded” configuration, 

the RC has been loaded with two pieces of RAMs placed in the two corners of the chamber to 

illustrate the loading effect on the average mode bandwidth. The measurement setup can be 

seen from Figure 2.3(a) and (b). The measurement results are depicted in Figure 2.4. It can be 

seen that the modal bandwidth is slightly decreasing for increasing frequency, which means 

the window in which subsequent modes can be excited grows smaller at higher frequencies. 

However, at higher frequencies the mode density is higher, meaning that many modes can 

still be excited. 
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                                     (a)                                                                            (b) 

Figure 2.3  The measured setup for modal bandwidth measurement under (a) unloaded and 

(b) loaded scenarios. 

 

 

 

Figure 2.4  Measured modal bandwidth in the RC at the University of Liverpool. 
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Figure 2.5  Modal Structure with small and high Q superimposed at 602 MHz in the RC at 

the University of Liverpool. 

 

 

The effect of decreasing the Q of the RC is shown in Figure 2.5. In this case, additional 

modes can be excited when the cavity is driven at the frequency of about 602 MHz because 

of the broader modal overlap due to lower Q. The effective modal structure is the vector sum 

of the excited modes with different weighting factors of amplitudes. The spatial field 

variation will now be different from that obtained with the higher Q RC. Thus, varying the Q 

of the RC can change the “effective” modal structure. It should be noted that if the frequency 

were increased, more modes would be available within a given modal bandwidth, giving rise 

to a finer structure of the field. Again, the effective modal structure would be the vector sum 

of the modes. 

 

 

2.2.3    Lowest Usable Frequency 

The lowest usable frequency (LUF) fLUF is commonly defined as the frequency from which 
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the RC meets the operational requirements [7], [16]. There are several definitions for the LUF: 

• The LUF is three times the cut-off frequency fc of the fundamental mode of a cavity 

with the same dimensions as the RC, i.e., fLUF = 3fc [7]. 

• The LUF is defined as the frequency at which 60 ∙∙∙ 100 modes within an ideal cavity 

of the same dimensions as the RC are above cut-off frequency and at least 1.5 

modes/MHz are present [7], [17]. 

• The LUF is defined as the lowest frequency at which specified field uniformity can be 

achieved over a volume constrained by eight corner locations [7]. 

It is worth mentioning that the first two definitions are relatively qualitative criteria which 

offer only a rough overview on whether an RC begins to meet the operational requirements 

from a certain frequency. The third definition is much more stringent because it involves 

measurements within the RC and also considers the desired measurement uncertainties and 

confidence intervals to be obtained for a given number of stirrer positions. The LUF can be 

determined by the RC size, shape, quality factor, and the effectiveness of the stirrers [7]. 

 

 

2.2.4    Number of Cavity Modes 

In order to evaluate from which frequency fLUF on an RC begins to satisfy the operational 

requirements, the cumulated number of modes and the mode density must be known. Again, 

computation of these parameters assumes an empty RC without any stirrers, i.e., a rectangular 

cavity resonator. 

There are three common methods to assess the number of modes that are present in a given 

cavity. The first method is termed as “mode counting” which can be performed by the 

repeated solution of (2.38) for both TE and TM modes [13]. And then the total number of 

modes present with eigenvalues less than or equal to kmnp will be counted. Theoretically, N as 

a function of kmnp is discrete, but people have derived a smooth approximation referred to as 

“Weyl’s formula” [1], which is valid for cavities of general shape and can be written as 
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where N(f) is the cumulated number of modes. The third method is a modified version of 

Weyl’s formula specific to rectangular cavities [1] and is stated in (2.42). 

     
  

 
       

  

  
        

 

 
 

 

 
                                   

It can be seen that the RC volume has the major impact on the cumulated number of modes, 

as shown by the first part of (2.42). The second part of (2.42) represents the contribution of 

the combined edge length of an RC. A comparison of the modal numbers presented in the RC 

at the University of Liverpool by mode counting, Weyl’s formula, and modified Weyl’s 

formula is shown in Figure 2.6. It can be seen that the extra terms in (2.42) improve the 

agreement obtained with the mode counting method as opposed to using the original Weyl’s 

formula in (2.41). With the increase of frequency, it can be seen that the number of modes 

increases with respect to the cavity volume and the third power of frequency. As noted above, 

for a proper operation of an RC usually at least 60 modes above the cut-off frequency are 

required. As noted from Figure 2.6, the LUF for our RC is about 140 MHz. 

The mode density ∂N/∂f (number of modes per frequency interval) can be calculated from 

(2.43) to be 

  

  
        

  

  
        

 

 
                                           

The  
  

 dependence in (2.43) indicates that the mode density also increases rapidly for high 

frequencies [1]. To achieve sufficient statistical field uniformity and isotropy, a common RC 

specification is to have at least ∂N/∂f = 1.5 modes/MHz above cut-off frequencies [18]. A 

plot of the mode density can be seen in Figure 2.7. It can be seen that the chamber has a mode 

density of at least 1.5 modes per megahertz from about 140 MHz upwards, i.e., the 

corresponding LUF is about 140 MHz, which agrees well with the prediction from Figure 2.6. 

A low mode density in any given chamber means that chamber would not have adequate 

performance, as the mode density is too small to obtain spatial field uniformity [7]. 
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Figure 2.6 Number of modes versus frequency for the RC at the University of Liverpool. 

 

 

 

Figure 2.7 Modes density versus frequency for the RC at the University of Liverpool. 
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2.2.5    Green’s Function 

The Dyadic Green’s function is a bridge to link the excitation source and its generated 

electric and magnetic fields [19] – [20]. Different from the prior field equations in (2.24) to 

(2.35), it is advantageous to visualise these fields in a “non-empty” cavity, i.e., with a 

realistic excitation involved [13]. The EM fields inside a rectangular cavity outside of the 

source area are purely the superposition of all TE and TM modes generated within it. In the 

source area, special treatment is required [1], [13], [19] – [20], but the Dyadic Green’s 

functions are still useful there. Modes inside the cavity can be controlled by choosing the 

polarisation and location of the excitation source [19] – [20]. 

 

Figure 2.8 A volume current density              confined to a volume    in a rectangular 

cavity. 

 

 

In [20], a computationally efficient series of equations based on Dyadic Green’s functions 

was derived in order to study the resultant electric field inside shielded enclosures (the 

magnetic field can also be derived similarly). Consider a volume current density              

confined to a volume    in a rectangular cavity, as shown in Figure 2.8. The resulting electric 

field was deduced using (2.44), (2.45) and (2.46). 
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where  ⃡  is the Dyadic Green’s function. The double arrow above the Green’s functions 

indicates a three by three dyadic. It can be expressed as 
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Assuming the current source used to generate the field inside the RC is a y polarised unit 

element, the resultant electric field on an xz plane can be obtained using (2.46) [13] [19] – [20] 
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The Ey electric field distribution at 200 MHz, 600 MHz, and 1200 MHz on the xz plane in the 

RC at the University of Liverpool is plotted in Figure 2.9(a), (b), and (c), respectively. The 

observation plane in all the depicted plots is y = l/2 (the mid-point in length of the RC). The 

current source is located at x1 = 0.4 m, x2 = 0.5 m, y1 = 1.35 m, y2 = 1.4 m and z0 = 0.5 m, 

which is corresponding to the corner of the RC [13]. It can be seen from Figures 2.9, the 

electric fields inside the RC are formed as a result of standing waves that have a sine and 

cosine dependence. With the increase of frequency, the fields begin to vary in a more 

complex manner. The magnitudes of the fields have significantly different values from point 

to point. 

 

 

(a) 
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(b) 

 

(c) 

Figure 2.9 Normalised Ey field distribution in the RC at the University of Liverpool at (a) 

200 MHz, (b) 600 MHz, and (c) 1200 MHz. 

 

 

2.3 Stirring Techniques 

The statistical nature of the fields in the RC is realized by employing stirring techniques.  The 

purpose of these techniques is to make the fields statistically uniform and isotropic on 

average. In practice, the analysis of the measured data in RCs is always based on some 

limited number of stirring samples (stirring positions). In this section, these frequently used 

stirring techniques will be introduced and how they are implemented is explained. 
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2.3.1    Mechanical Stirring 

The mechanical stirring technique, also called mode stirring technique, is the most common 

technique employed to stir the fields inside an RC. This stirring technique is realized by 

rotating the electrically large stirrers. By “electrically large”, it means the size of the stirrer is 

at least comparable with respect to the wavelength of operation. When this is not the case, the 

stirrers’ performance in significantly changing the field distribution will diminish. The 

stirrers are designed to be non-symmetric and arbitrarily shaped to generate more 

independent samples. An example of mechanical stirrer design in the University of Liverpool 

RC can be viewed in Figure. 1.4. 

 

Figure 2.10 The effect of using the mechanical stirring technique to obtain statistical values 

of S11. 

 

 

The stirrers can be rotated in a stepwise or continuous manner and thus the boundary 

conditions for the EM field inside the RC vary [7]. The effect of changing the boundary 

conditions for the field means that the high and low field magnitudes, called hot and cold 

spots, throughout the RC will change as a function of location. This means that the field 

distribution can be rendered statistically homogeneous and isotropic on average from many 

stirrer positions. Wu and Chang [21] pointed out that the rotating stirrers continuously change 
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the resonant frequencies of the RC modes and that mechanical stirring has some equivalence 

to the frequency modulation of the source. The mechanical stirring technique can be quite 

effective [22], but it is fairly slow. Figure 2.10 shows the effect of using the mechanical 

stirring technique to obtain statistical values of S-parameters (S11 here). As can be seen with 

the increase of the number of samples, S11 becomes smoother because the effect caused by 

stochastic factors is averaged. 

 

 

2.3.2    Frequency Stirring 

Frequency stirring technique or electronic stirring technique is used to achieve the spatially 

uniform field by sweeping the source frequency over some narrow bandwidth of frequencies 

[23]. As the centre frequency is changed the hot spots and cold spots spatially move around 

the chamber. The power measured at the various discrete frequency points within a window 

of frequencies is averaged. The average computed from the window of frequencies is then 

attributed to the centre frequency in the window [24]. By sliding the same bandwidth window, 

measurements over the full frequency span are accomplished. It should be careful about the 

window bandwidth when performing frequency stirring. If too large smoothing bandwidth is 

taken, the loss of frequency resolution in any measured data will occur. Frequency stirring is 

similar to smoothing the data over frequency, but frequency stirring must be applied to the 

raw measured data (typically complex data), while smoothing is generally applied to the final 

computation of the desired quantity [13], [24]. For example, S-parameters measurements 

collected with a vector network analyzer (VNA) can be frequency stirred in order to obtain 

the average reflection coefficient, as shown in Figure 2.11. Frequency stirring with different 

certain bandwidth is adopted. As can be seen, S11 is averaged just as mechanical stirred data 

is averaged over all measured stirrer positions. Theoretically, if the RC is spatially uniform, 

the frequency stirring and mechanical stirring techniques should give the same average result. 

In addition, when smoothing the raw data a rectangular window must be used because the 

frequency stirring technique is meant to be an un-weighted average just as other stirring 

techniques are [24].  
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Figure 2.11 The effect of using the frequency stirring technique to obtain statistical values of 

S11. 

 

 

2.3.3    Source Stirring 

The source stirring technique was first proposed by Y. Huang and D. J. Edwards in 1992 

using Dyadic Green’s functions [19] – [20]. It advocates the displacement or reorientation of 

an excitation source and an overall average is taken from measured samples at each 

individual location or orientation [13]. This technique eliminates mechanical stirrers inside 

the chamber and enlarges the available testing area. Unlike the mechanical stirring technique, 

there is no change of the eigenfrequency or eigenmode in source stirring technique. The only 

thing changed is the weighting factor of eigenmode. Hence the chamber which is 

reverberated by controlling the excitation can be named as the source-stirred chamber [20]. 

This technique has been proved in [25] to be an effective way of improving the field 

uniformity of an RC at lower frequencies. Thus it is valid for immunity test at lower 

frequencies in RCs. The field perturbation effect of using source stirring technique is 

visualized in Figure 2.9. 

It should be noted that no stirring technique is perfect and using a combination of stirring 

techniques is useful in acquiring a sufficient number of statistically independent samples. It is 

up to the test engineer to determine a stirring technique, or a combination of stirring 
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techniques, in order to minimise the statistical error and reinforce the confidence attributed to 

the statistically determined field values [24]. 

 

 

 

2.4 Statistical Theory 

For carefully designed cavities, the cavity details such as shape, dimensions, and materials 

are precisely known, and the cavity is generally of a simple/separable geometry. In such cases, 

deterministic theories are appropriate. However, in practice, the details of the cavity 

geometry and loading objects, such as cable bundles, scatterers, and absorbers are not 

expected to be well known [1]. Consequently, for many applications in EMC and wireless 

communications, people have to deal with problems where only a partial knowledge of the 

cavity geometry and its interior loading are known. Over the past two decades, techniques in 

statistical electromagnetics have been developed to deal with such a kind of problems [2], [3], 

[26] – [27]. The RC is a good example of a cavity with a complex interior. Clearly, all the 

information (scatters, loading object characteristics, and apertures, etc.) will not be known in 

detail. Statistical models for angle of arrival have been found useful for characterizing EM 

propagation in RCs [28]. 

 

 

2.4.1    Plane-wave Integration Model 

As discussed above, it is not convenient to predict the field properties in electrically large, 

complex cavities using deterministic theories. Since many samples (stirrer positions) are 

employed in RC measurements, a statistical method [26] – [28] is required to determine the 

statistics of the fields and test object response. Moreover, the associated EM theory must be 

consistent with Maxwell’s equations. The well-known plane-wave integration model for the 

EM fields has been found to be successful [1], [8]. This model satisfies Maxwell’s equations 

and at the same time includes the statistical properties expected for a well-stirred field [8]. 

The plane-wave coefficients in the model are random variables with fairly simple statistical 

properties, thus, the fields are of statistical nature. Because the theory uses only propagating 

plane waves, it is fairly easy to calculate the responses of test objects or reference antennas 

using this model [1]. 
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In a source-free, finite volume, the electric field  ⃗  at location    can be represented by 

integrating plane waves from all directions 

 ⃗      ∬        (  ⃗    )   

 

  

                                                 

where Ω is the solid angle and dΩ = sinθdθdφ. θ and φ the elevation and azimuth angles, 

respectively. The geometry of a plane-wave component is shown in Figure 2.12. The vector 

wavenumber  ⃗  is 

 ⃗      ̂          ̂          ̂                                       

 

Figure 2.12 Plane-wave integration model. 

 

 

So (2.47) can be re-written as 

 ⃗      ∫ ∫              ⃗             
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The angular spectrum       can be written more explicitly in two polarisations 

       ̂        ̂                                                             

where  ̂ and  ̂ are unit vectors that are orthogonal to each other and to  ⃗ . Both Fθ and Fφ are 

complex and can be written in terms of their real and imaginary parts (to represent the phase) 

                        and                                            

The angular spectrum       is taken to be a random variable in RCs. It depends on stirrer 

positions, i.e.,       is different for each stirrer position. The statistical properties of the 

angular spectrum       are defined as follows 

〈     〉  〈     〉                                                                

 

〈              〉  〈              〉   

〈              〉  〈              〉   

〈              〉  〈              〉                                         

 

〈              〉  〈              〉   

〈              〉  〈              〉                          

where 〈 〉 represents an ensemble average over all samples, δ is the Dirac delta function [29]. 

CE is a constant with units of (V/m)
2
 and it is proportional to the square of the electric field 

strength, as shown in the following section. It is useful to interpret the physical meaning of 

(2.52) – (2.54). (2.52) indicates the mean value of the angular spectrum is zero because the 

rays from all directions are with random phases. (2.53) means angular spectrum components 

with orthogonal polarizations or quadrature phase is uncorrelated. (2.54) indicates angular 

spectrum components arriving from different directions are uncorrelated because they have 

taken very different multiple scattering paths. 

From (2.53) and (2.54), the following useful relationships can also be obtained 
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〈        
     〉                                                              

〈        
     〉  〈        

     〉                                       

where * denotes complex conjugate. 

 

 

2.4.2    Statistical Properties of Fields 

In this section, some useful field properties will be derived using (2.47) and (2.52) – (2.56). 

First of all, the mean value of the electric field 〈 ⃗     〉 can be derived as 

〈 ⃗     〉  ∬〈     〉   (  ⃗    )    

 

  

                                            

This result is expected in a well-stirred RC where the field is the sum of many multipath rays 

with random phases. 

From (2.47), the square of the absolute value of the electric field can be written as 

| ⃗     |
 
 ∬∬      

 

  

 

  

          ( ( ⃗    ⃗  )    )                            

By applying (2.55) and (2.56), the mean-square value of the electric field can be obtained [1] 

〈| ⃗     |
 
〉     ∬   

 

  

         
                                        

From (2.59), it can be seen that 〈| ⃗     |
 
〉 is independent of position. This is the spatial 

uniformity property of an ideal RC. 

Similarly, the mean-square values of the rectangular components of the electric field can be 

derived as 

〈|  |
 〉  〈|  |

 
〉  〈|  |

 〉  
  

 

 
                                                

This indicates the isotropy property of an ideal RC.  
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The magnetic field  ⃗⃗  has the similar statistical properties and the results are listed as follows 

〈 ⃗⃗     〉                                                                        

〈| ⃗⃗     |
 
〉  

  
 

  
                                                                

〈|  |
 〉  〈|  |

 
〉  〈|  |

 〉  
  

 

 
                                                 

where η is the characteristic impedance of the free space. 

The energy density W can be written as [10] – [11] 

     
 

 
[ | ⃗     |

 
  | ⃗⃗      |

 
]                                                 

〈    〉  
 

 
[ 〈| ⃗     |

 
〉   〈| ⃗⃗      |

 
〉]     

                                     

It can be seen that the average value of the energy density is also independent of position. 

The power density or Poynting vector    can be written as 

        ⃗       ⃗⃗                                                                   

The mean value of    is 

〈      〉                                                                          

A physical interpretation of (2.67) is that each plane wave carries equal power in any 

direction so that the vector sum over the whole space is zero [1]. The result shows that    is 

not the proper quantity to characterize the field strength in an RC while 〈    〉  is an 

appropriate quantity. 

Similar to the plane wave in free space, a scalar power density can be defined as 

   〈 〉  
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2.4.3    Probability Density Functions for the Fields 

The knowledge of the probability density functions (PDF) of the filed quantities can be very 

useful for analysis of measured data in an RC because the measured data in an RC is always 

based on a limited number of samples. The rectangular components can be written in terms of 

their real and imaginary parts as 

           ,                 ,                                            

where Exr / Eyr / Ezr and Exi / Eyi / Ezi are the real and imaginary part of  Ex / Ey / Ez. From 

(2.52) – (2.54), it can be derived that the mean values of all the real and imaginary parts in 

(2.69) are zero 

〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉                                   

and the variances of the real and imaginary parts are half the result for the complex 

components in (2.60) 

〈   
 〉  〈   

 〉  〈   
 〉  〈   

 〉  〈   
 〉  〈   

 〉  
  

 

 
                           

If the mean and variance are specified for a PDF over the range from - ∞ to ∞, then the 

maximum entropy theorem [30] or central limit theorem [31] predicts a Gaussian PDF. So the 

PDF of Exr is 

       
 

√   
   [ 

   
 

   
]                                                       

where σ is defined in (2.71). The other real and imaginary parts of the electric components 

have the same PDF. 

It has also been proved that the real and imaginary parts of the electric field components are 

uncorrelated, i.e., 

〈              〉                                                                 
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For now, it has been known that the real and imaginary parts of the rectangular components 

of the electric field are independent, normally distributed with zero mean and equal variances. 

Therefore, the following conclusions can be deduced 

  |  |  
|  |

  
   [ 

|  |
 

   
]                                                  

That is the magnitude of Ex has a Rayleigh distribution [31]. The comparison of (2.74) with 

measured data at 2.0 GHz in the University of Liverpool RC is shown in Figure 2.13. The 

two stirrers are stepwise rotated simultaneously. The total number of samples is 120. As can 

be seen, good agreement between measured data and theoretical prediction is obtained. 

 

Figure 2.13 Comparison of the measured PDF of |Ex| with theoretical Rayleigh distribution. 

 

 

The squared magnitude of Ex is chi-square distributed with two degrees of freedom 

(exponential distribution) [31] 

  |  |
   

 

   
   [ 

|  |
 

   
]                                                   
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The comparison of (2.75) with measured data at 2.0 GHz in the University of Liverpool RC is 

shown in Figure 2.14. (2.74) and (2.75) also hold for Ey and Ez. 

The total electric field magnitude is chi distributed with six degrees of freedom [31] 

 (| ⃗ |)  
| ⃗ |

 

   
   [ 

| ⃗ |
 

   
]                                                    

The squared magnitude of the total electric field is chi-square distributed with six degrees of 

freedom [31] 

 (| ⃗ |
 
)  

| ⃗ |
 

    
   [ 

| ⃗ |
 

   
]                                                

The dual PDFs for the magnetic field can be obtained by the aforementioned procedure. And 

the dual of the results in (2.74) – (2.77) can be obtained by replacing E by H and σ by σH [1]. 

 

Figure 2.14 Comparison of the measured PDF of |Ex|
2
 with theoretical exponential 

distribution. 
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2.4.4    Loss Mechanism and Q Factor 

The Q factor describes the rate at which an RC loses energy due to the overall losses inside [3] 

[32]. Generally, there are four loss terms in an RC: the RC wall loss (Q1), the loss due to 

aperture leakage (Q2), the loss of lossy objects (Q3), and the antenna loss (Q4). 

The total Q factor can be defined as [1], [3] [33]. 

       ⁄                                                                   

where ω is the angular frequency, Us is the steady state energy and Pd is the power dissipated. 

                                                                            

where V is the volume of the RC and W is the energy density as defined before. 

     
                                                                       

where ε0 is the permittivity of the medium in the RC (free space) and E is the RMS (root-

mean-square) electric field. The power density Sc in the RC can be expressed as 

   
  

  
                                                                     

where    √    ⁄  is the intrinsic impedance of the medium in the RC. 

To calculate the Q factor of the RC, all losses should be accounted for. Thus, it can be 

derived 

                                                                    

where Pd1 is the power dissipated in the cavity walls, Pd2 is the power absorbed by lossy 

objects within the cavity, Pd3 is the power leaked through apertures, and Pd4 is the power 

dissipated on receiving antennas [3]. By substituting (2.82) into (2.78) the following 

expression can be written for the inverse of Q 

      
     

     
     

                                                

where 
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         ⁄ ,             ⁄              ⁄              ⁄             

The separate loss terms Q1 to Q4 can analysed as follows 

   
  

       
                                                                

where   √       ⁄ ,         ⁄ . µw and σw are the permeability and conductivity of 

the wall material, respectively. µwr is the relative permeability of the wall material. δ is the 

skin depth and Sa is the RC surface area. 

   
   

 〈  〉
                                                                   

where 〈  〉 is the averaged absorption cross section of the lossy objects loading the chamber 

and λ is the wavelength. A measurement procedure to deduce this term can be found in [33] – 

[37]. 

   
   

 〈  〉
                                                                     

where 〈  〉 is the average transmission cross section of any apertures. 

   
     

   
                                                                   

where m is the impedance mismatch factor (m = 1 for a matched load). 

Under steady-state conditions, the power transmitted into the chamber (Pt) is equal to the 

power dissipated by the overall loss, i.e., 

                                                                             

By substituting (2.78), (2.79), (2.81) into (2.89), the power density in the RC can be rewritten 

as 
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If an impedance matched antenna is used, then the received power (Pr) is a product of the 

effective area     ⁄  [38] – [39] and the received power can be expressed as 

   
   

     
                                                                    

Solving (2.91) in terms of Q yields the chamber Q factor in terms of the measured power 

ratio (Pr/Pt). Thus (2.92) represents a commonly used frequency-domain approach to measure 

the chamber Q factor [40] – [41]. The equation assumes well matched and lossless antennas. 

  
     

  
 

  
  

                                                                 

where 

  
  

 
〈|   |

 〉

   |〈   〉|     |〈   〉|  
                                             

where S11 and S22 are the reflection coefficients of antenna 1 and antenna 2, respectively and 

S21 is the transmission coefficient of the two antennas. It should be noted that if the antennas 

are not ideal, the antenna loss (including ohmic loss and mismatch loss) should be calibrated 

out when using (2.92) and (2.93). 

 

 

2.4.5    Chamber Decay Time 

Up to this point, only the frequency-domain response of the RC has been considered. In the 

following part, the time-domain response will be considered which is of interest for transient 

applications. The case of field decay where the excitation source is instantaneously turned off 

is first considered. The following differential equation can be obtained 

                                                                           

where dU is the energy change in the RC over a time increment dt. Use (2.78) to replace Pd in 

(2.94) 

        ⁄      
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where the chamber decay time (or chamber time constant)     ⁄ . Using the initial 

condition U = Us at t = 0, (2.95) can be solved as 

           ⁄                                                               

The chamber decay time τ has been measured by fitting the decay curve in (2.96) to 

experimental data [40] – [44]. Once τ has been determined, the frequency-dependent Q is 

determined from 

   〈 〉                                                                      

where 〈 〉 signifies the ensemble average. Equation (2.97) offers a time-domain method to 

measure Q. The comparison of the measured Q with the frequency-domain method and time-

domain method is shown in Figures 2.15. A good agreement between the time-domain Q and 

the frequency-domain Q is shown when the antenna loss is removed. When the antenna loss 

is included, the frequency-domain Q is lower than the time-domain Q. Actually, for this case, 

the ratio of the frequency-domain Q and the time-domain Q contains the information of the 

antenna efficiency. Three antenna efficiency measurement techniques based on this fact is 

discussed in detail in [40]. 

 

Figure 2.15 Comparison of the frequency-domain Q and the time-domain Q. 
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2.4.6    Stirred and Unstirred Power 

As stated above, the magnitude of any of the electric field components is statistically 

Rayleigh distributed in theory. However, if any line-of-sight (LoS) path exists in an RC, the 

stirred power and the unstirred power together will manifest itself as being Rician distributed 

[13]. The unstirred power is the power that is coupled directly from the transmitting antenna 

to the receiving antenna without interaction with any mode stirrers. The stirred power results 

from the power radiating from a transmitting antenna that fully interacts with the mode 

stirrers before being captured by the receiving antenna [13], [45] – [46]. In practice, the RC 

could be used to emulate a Rician environment if desired [45]. However, for most of the 

measurements in an RC, any unstirred power is supposed to be minimised and a Rayleigh 

environment is desired. 

The unstirred multipath propagation in the RC can be characterized by the Rician K-factor. A 

brief derivation of this quantity is summarised as follows. 

Any transmission measurement in an RC essentially comprises of the chamber’s physical and 

statistical properties [13]. This measured complex transmission coefficient S21 consists of two 

parts: the unstirred part (S21,u) and the stirred part (S21,s). 

                                                                                

           
        

                                                               

           
        

                                                              

The unstirred components      
  and      

  are constants with zero variance for a given 

measurement configuration, and the stirred components      
  and      

  are supposed to be 

independent Gaussian random variables with zero mean and identical variance σ
2
 under ideal 

RC conditions, i.e., pure non-line-of-sight (NLoS) environment. That is 

〈     〉                                                                           

     
            and        

                                                       

where 〈 〉 signifies the ensemble average. Then it can be derived 
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   (     

    )   and      
   (     

    )                                         

From the above distribution analysis, the stirred and unstirred power can be express as 

stirred power  〈|    〈   〉|
 〉                                              

unstirred power  |〈   〉|
                                                     

This is seen visually by referring to the scattering plots in Figure 2.16(a) and (b). d is the 

distance of the centroid (green dot) of the clutter from the origin (red dot). As can be seen 

from Figure 2.16(b), the bias of the cluster of data from the origin is very small, which 

represents the case where very weak direct antenna coupling is present. This is desired for a 

well-stirred RC. 

 

 

(a) 
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(b) 

Figure 2.16 Scatter plot of measured S21 at 4.0 GHz: (a) normal view, and (b) zoom in. 

 

 

The Rician K-factor defined as the ratio of the unstirred power to the stirred power can be 

expressed as [46] – [48] 

  
  

   
 

|〈   〉|
 

〈|    〈   〉| 〉
                                                       

It is an important characteristic parameter for a wireless fading channel since it is a measure 

of the distribution of the components of the received signal resulting from various 

interactions with the surrounding environment. Here, the K-factor for an RC setup exhibiting 

good field uniformity is estimated, i.e., for a chamber with lower values of K-factor. [49]. A 
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well-stirred RC should typically have a Rician K-factor value below 0.1 [49]. RC setups with 

such low K-factors enable low measurement uncertainty for over-the-air tests [50]. 

Figure 2.17(a) and (b) depict the measurement setup and the measured Rician K-factor as a 

function of frequency in the RC at the University of Liverpool, respectively. During the 

measurement, antenna 1 directed to one corner of the RC and antenna 2 directed to the 

vertical stirrer to avoid LoS illumination. It can be seen that the stirred power in the RC is 

dominant as the measured K-factor value is below 0.1. That means any LoS path is very small 

and as a result, the statistical form of the magnitudes will tend towards a Rayleigh 

distribution as opposed to a Rician distribution (ideal Rayleigh distribution: K → 0). 

 

 

(a) 
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(b) 

Figure 2.17 Rician K-factor from 2.0 to 3.0 GHz: (a) measurement setup, (b) measured 

results. 

 

 

Similar to the transmission coefficient, the reflection coefficient measured in the RC also 

comprises of the stirred part (S11,s) and the unstirred part (S11,u) 

                                                                              

The unstirred part S11,u includes the contribution of the antenna mismatch (free space 

response) and the unstirred energy in the RC. If the RC is ideally stirred [44], i.e., the RC 

environment in a pure Rayleigh environment, the stirred part S11,s is of Gaussian distribution 

with zero mean. Thus, the following relationship can be derived 

〈   〉  〈     〉                                                                

where S11,fs is the free-space antenna reflection coefficient. The S11,fs is measured in the RC 

and in the AC, respectively, as shown in Figure 2.18(a) and (b). An LPDA was selected as 

the antenna under test (AUT). The complex S-parameters measured in the RC were averaged 

over 360 stirrer positions. 10,001 points were sampled in the frequency range of 0 to 10 GHz. 

A comparison of measured results in both amplitude and phase is depicted in Figure 2.19(a) 
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and (b), respectively. In Figure 2.19(b), only 0 – 2 GHz is selected for the clearer show. It can 

be seen that the measured results in the RC and the AC agree very well. At the lower 

frequency band (from 200 – 600 MHz), the RC is not very well stirred, and therefore some 

small difference shows. From 0 – 200 MHz, the two curves also agree well, but it is because 

of the antenna mismatch (radiation is low) while not the well-stirred field. 

              

                                          (a)                                                         (b) 

Figure 2.18 Free-space antenna reflection coefficient measurement setups: (a) in the RC, and 

(b) in the AC, respectively. 

 

(a) 
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(b) 

Figure 2.19 Comparison of measured free-space antenna reflection coefficient in RC and AC 

in both (a) amplitude and (b) phase. 

 

 

2.4.7    Enhanced Backscatter Effect 

The enhanced backscatter effect was first observed by John M. Ladbury and David A. Hill in 

the year of 2007 [51] and subsequently used to characterize the performance of RCs [52] and 

measure the radiation efficiency of antennas [40], [53] – [54]. It states that the power 

received by the source antenna is higher than that at any other random location in the RC [52]. 

Using the infinite plane wave integration model it is found that 

〈   〉    〈   〉                                                                

where Prx is the power incident at the receiving antenna, Prf is the power reflected back to the 

transmitting antenna,    is defined as the enhanced backscatter coefficient, and 〈 〉, as before, 

indicates the ensemble average. For idealized antennas (well-matched, lossless) 

                                                                            

That is, in an ideally stirred RC the average power received by the transmitter is twice as the 
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power received by the receiver [1], [52]. This phenomenon is observed in other disciplines as 

well, such as scattering from the rough surface in optics [55], and reverberant acoustical 

fields [56] – [57].  

Under the assumption that the field can be described as an infinite sum of plane waves and 

the antennas used are perfectly matched and lossless,    can be related to the S-parameters by 

〈|   |
 〉    〈|   |

 〉                                                          

However, for real antennas of non-ideal characteristics, (2.111) needs to be modified. The 

final result is obtained by 

   
〈|     |

 
〉

〈|     |
 
〉
                                                                 

where 

          〈   〉, and           〈   〉                                       

An experimental verification of (2.111) in the University of Liverpool RC is shown in Figure 

2.20. As can be seen, the agreement with the factor of 2 is good above 200 MHz where the 

mode density of the RC is sufficiently high. The number of samples at each frequency is 120. 

For now, it is known that the enhanced backscatter factor is 2 for an ideally stirred RC, but 

what is the size of the region over which the enhanced backscatter occurs? It has been proved 

that the enhanced backscatter constant varies as a function of distance r [1] 

     
        

   
                                                            

where r is the distance between the source and the random location in the RC. Considering 

two extreme cases r = 0 and r → ∞. It is easy to conclude that when r = 0,     , which is 

consistent with the uniform-field result in (2.110). And when r → ∞,     , i.e., no 

enhanced backscatter effect occurs. (2.114) is plotted in Figure 2.21. It can be seen that when 

r > λ/4,    is close to 1. The region of enhanced backscatter can be defined as the distance 

from which     . Hence, the region of enhanced backscatter is a fairly small (especially for 

high frequency) sphere of radius λ/4 [1]. 
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Figure 2.20  Enhanced backscatter coefficient from 100 MHz to 500 MHz. 

 

 

 

Figure 2.21  Enhanced backscatter coefficient as a function of distance r. 
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2.5 Summary 

In this chapter, the fundamental concepts, parameters, and theories of an RC were introduced. 

In the beginning, the deterministic theory was introduced. The RC was abstracted to an empty 

rectangular cavity. The TE and TM modes, the number of modes, the modal density, and the 

Green’s function were presented. The cavity modes could be used to derive the guidelines for 

the LUF of an RC but not sufficient to analyse the actual EM field distribution within an RC. 

With the help of Green’s function, the EM field distribution could be stringently analysed and 

vividly visualized. In a next step, the statistical theory was introduced. The RC was described 

as a statistical test environment and the EM fields were analysed using plane-wave 

integration model. The statistical properties of fields, the loss mechanism, the stirred and 

unstirred power, and the enhanced backscatter effect were presented. These concepts and 

theories are used extensively throughout the following chapters and establish the foundation 

on which the RC measurement is built. 
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Chapter 3: Efficient Averaged Absorption Cross 

Section Measurement 

 

3.1 Introduction 

RCs have been widely used for radiated power measurement [1] – [9]. Recently, it has been 

shown that the RC can also be used to measure the averaged absorption cross section (ACS) 

of a lossy object, which is averaged over all angles of incidence and polarization [10] – [11]. 

The measurement of the ACS of a lossy object is required for many applications including 

the characterization of the effect of lossy objects in multipath environments such as interiors 

of mass transit vehicles or aircraft loaded with cargoes or passengers [12], biometrics EM 

exposure studies such as human’s specific absorption rate (SAR) [13]. 

The ACS of a lossy object is defined as the ratio of the power dissipated in the object to the 

power density of the incident plane wave. The averaged statistic power transfer function of an 

RC is proportional to its quality factor. The ACS contribution to the quality factor was 

derived mathematically in [14], which offers an opportunity to measure the averaged ACS of 

an object from the quality factor of the RC. 

For ACS measurement, the common approach is to place a transmitting antenna inside a 

chamber along with a generic receiving antenna and extract the power transfer function by 

measuring the transmission coefficient S21, and reflection coefficients S11 and S22. The 

problem with this approach is that it requires two antennas with known efficiency – this could 

be a problem in reality. An alternative technique given in [15] is to use the coherence 

bandwidth which is estimated from the complex correlation function of the loaded and 

unloaded chambers, but it has its own approximations and limitations because of the 

ambiguity introduced by selecting the threshold for determining the bandwidth of the modes. 

In this chapter, both the frequency-domain and the time-domain information is proposed to be 

used to obtain ACS. Our method requires only one antenna and provides an accurate 

measurement of ACS without the above-mentioned limitations and approximations. 
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3.2 Theory 

The quality factor Q of an RC is a key quantity in calculating the ACS of a lossy object. 

Generally, as mentioned in Section 2.4.4, in an electrically large cavity, Q is defined as 

       ⁄                                                                      

When the cavity is unloaded, i.e., there are no lossy objects within the chamber, the 

dissipated power can be written as the summation of three items [14] 

                                                                          

where Pdu is the total power dissipated under the unloaded scenario, Pd1, Pd3, and Pd4 are as 

defined in (2.82). 

By substituting (3.2) to (3.1), the following equation can be written for the inverse of Q 

  
     

     
     

                                                           

where Qu is the chamber quality factor under the unloaded scenario. Q1, Q3, and Q4 are as 

defined in (2.83). 

When the cavity is loaded with lossy objects, the total dissipated power can be rewritten as 

                                                                       

where Pdl is the total power dissipated under the loaded scenario, Pd2 is the power absorbed 

by lossy objects as mentioned in Section 2.4.4. 

The corresponding inverse of Q becomes 

  
     

     
     

     
                                                  

Q2 is the contribution of the ACS to the cavity Q and can be expressed as 

       〈  〉⁄                                                               
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where V is the RC volume and λ is the wavelength. 

The averaged ACS 〈  〉 of a lossy object can determine it from its contribution to chamber Q 

from (3.6) 

〈  〉  
   

 
  

                                                               

where 〈 〉 indicates average with respect to the incidence angle and polarization.  

From (3.3), (3.5) and (3.7), the averaged ACS can be rewritten in terms of the measured 

loaded and unloaded chamber Q factors Ql and Qu 

〈  〉  
   

 
   

     
                                                       

Thus two pieces of information are still needed, Ql and Qu, in order to determine 〈  〉. 

Basically, the chamber Q factor can be measured either in the frequency domain or in the 

time domain. In the frequency domain, the chamber Q can be evaluated from the averaged 

net power transfer function T by using Hill’s formulas in [14]. In the time domain, the 

chamber Q can be obtained from the chamber decay time τ [2], [16] – [18]. Both the averaged 

net power transfer function and the chamber decay time can be extracted using only one 

antenna [2]. In the following part of this section, the formulas required for the one-antenna 

method to determine the ACS of lossy objects within an RC will be derived in both the 

frequency domain and the time domain. 

 

 

3.2.1    Frequency Domain 

In the frequency domain, the averaged statistic power transfer function of an RC is 

proportional to its quality factor QFD [14]. The subscript “FD” is used to emphasize that it is 

measured in the frequency domain. 

    
     

  

〈  〉
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where 〈  〉 is the average received power, Pt is the power transmitted into the chamber, and 

〈 〉 means average over all stirrer positions. The second item on the right-hand side of (3.9) is 

related to the S-parameters measured using a VNA as 

〈  〉

  
 〈|   |

 〉                                                                   

A simple measurement of this S-parameter would account for contributions from dissipative 

and mismatch loss of antennas. The contributions from the stirred (energy that interacts with 

the stirrers) and unstirred energy (energy that does not interact with the stirrers) in the 

chamber are included as well. Thus, 〈|   |
 〉 can be regarded as the uncalibrated chamber 

transfer function. By calibrating out the dissipative and mismatch loss of antennas the 

unstirred contributions of S-parameters can be removed. The net power transfer function T 

can be extracted as [19] 

  
〈|     |

 
〉

   |〈   〉|     |〈   〉|    
     

                                           

where S21,s is the stirred part of S21 which can be obtained by the vector average subtraction 

[20] 

        〈  〉                                                                   

〈 〉 means the averaged value of the S-parameters, as defined earlier, but here it is linked to 

the stirring method (mode stirring, frequency stirring, source stirring, etc.),   
    and   

    are 

the radiation efficiency of antenna 1 and antenna 2 that are used in the measurement, 

respectively. 

Substituting (3.9) – (3.12) into (3.8), the averaged ACS 〈  〉 can be determined from the net 

power transfer function with and without the lossy objects (Tl, Tu) 

〈  〉  
  

  
   

     
                                                            

Typically, the net power transfer function is measured with two low-loss antennas using 

(3.11). The radiation efficiency of the two antennas (  
   ,   

   ) should be known in advance, 
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or,  for a rough measurement, the efficiency could be assumed to be unity, which will 

actually introduce systematic errors. 

For a well performed RC, the enhanced backscatter coefficient [2] – [21] 

   √〈|     |
 
〉 〈|     |

 
〉 〈|     |

 
〉⁄                                             

Assuming two identical antennas are used in the measurement, it can be derived 〈|     |
 
〉  

〈|     |
 
〉   〈|     |

 
〉. Now, equation (3.11) can be expressed as 

  
〈|     |

 
〉

    |〈   〉|      
     

                                                    

Thus, only one antenna is needed to complete this measurement, and the radiation efficiency 

of only one antenna needs to be known, which will greatly simplify the measurement. 

 

 

3.2.2    Time Domain 

The time-domain method is realized by performing the measurement in the frequency domain 

and then transforming the results to the time domain. In the time domain, the loaded and 

unloaded chamber Q can be determined from the chamber decay time. [2], [22] have shown 

      . Similarly, the subscript “TD” is used to emphasize that the measurement is 

conducted in the time domain. ω is the angular frequency and τ is the chamber decay time. 

The loaded and unloaded Q can be written as 

    〈  〉 and     〈  〉                                                       

where 〈  〉  is the average loaded chamber decay time and 〈  〉  is the average unloaded 

chamber decay time. Substituting (3.16) into (3.8), the ACS can also be obtained in the 

following form [22] 

〈  〉  
 

 
 〈  〉

   〈  〉
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where c is the speed of light in the chamber (equal to c0). This technique requires the 

knowledge of the chamber decay time τ. It is worth mentioning that τ can be measured in the 

time domain directly or in the frequency domain. In this thesis, the frequency-domain 

measurement is adopted because it normally gives a larger dynamic range than the time-

domain measurement. The time-domain response is obtained from the inverse Fourier 

transform (IFT) of the measured frequency-domain response. Here, to obtain τ, the power 

delay profile (PDP) of the RC is first needs to be obtained from the IFT of S11. Because the 

time-domain power in the RC decays exponentially, thus τ can be obtained from the slope of 

ln(power) in the time domain. The details for extracting τ from the S-parameters can be found 

in [16]. Compared with the frequency-domain method, the time-domain method is simpler 

and more accurate because the knowledge of the antenna efficiency is not required and the 

systematic error caused by antenna efficiency estimation can be avoided. 

 

 

3.3 Measurement 

To validate the proposed methods, measurements were performed from 4.0 – 5.0 GHz in the 

University of Liverpool RC which has a size of 3.6 m × 4 m × 5.8 m. It has two mode-stir 

paddles: the vertical one is mounted in a corner while the horizontal one is set close to the 

ceiling. Two double-ridged waveguide horn antennas were used as antenna 1 (SATIMO® SH 

2000) and antenna 2 (Rohde & Schwarz® HF 906). Antenna 1 was mounted on a turn-table 

platform to introduce source stirring positions and connected to port 1 of a VNA via a cable 

running through the bulkhead of the chamber, and antenna 2 was connected to port 2 of the 

VNA via another cable through the bulkhead of the chamber. During the measurement, the 

turn-table platform was moved stepwise to 3 source stirring positions (20 degrees for each 

step). At each source stirring position the two paddles were moved simultaneously and 

stepwise to 100 positions (3.6 degrees for each step). At each mode stirring position and for 

each source stirring position, a full frequency sweep was performed by the VNA and the S-

parameters were collected. Thus, for each frequency, 300 stirring positions are obtained (3 

source stirring positions, and 100 mode stirring positions for each source stirring position). A 

piece of RAM was selected as an object under test (OUT). The measurement setups without 
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and with the OUT are shown in Figure 3.1(a) and (b), respectively. The whole measurement 

system is shown in Figure 3.1(c). 

 

 
 

(a) 

 

 
 

(b) 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 68 

 

 

 
 

(c) 

Figure 3.1 ACS measurement setup in the RC: (a) unloaded scenario, (b) loaded scenario, 

(c) measurement system. 

 

 

The measurement procedure is given as follows. 

Step 1: Calibrate the VNA including the cables according to the standard calibration 

procedure. 

Step 2: Place the two antennas, the turn-table platform and the support (excluding the 

OUT) inside the RC. 

Step 3: Connect antenna 1 to port 1 of the VNA and antenna 2 to port 2 of the VNA, 

and collect the full S-parameters for each stirring position. 

Step 4: Keep the previous measurement setup unchanged and place the OUT on the 

support, and repeat Step 3. 

In this measurement, 10,001 points were sampled in the frequency range from 3.8 to 5.2 GHz. 

The ACS of the OUT was calculated using the conventional two-antenna method (ACSFD, 2), 
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the one-antenna method in the frequency domain (ACSFD, 1) and the one-antenna method in 

the time domain (ACSTD, 2), respectively. The first subscript “FD” or “TD” is used to indicate 

that the measurement is conducted in the frequency domain or in the time domain, 

respectively, and the second subscript “1” or “ ” is used to indicate that one antenna or two 

antennas were used in the measurement. In the frequency domain, the enhanced backscatter 

coefficients (  ) under the loaded and unloaded scenarios are obtained and shown in Figure 

3.2. It can be seen that they are very close to 2, which means the RC is well stirred and 

measurement setup is reasonable [23]. 

 

Figure 3.2    under the loaded and unloaded scenarios. 

 

 
The chamber transfer functions using one antenna method (TFD,1) and two-antenna method 

(TFD,2) under loaded and unloaded scenarios are shown in Figure 3.3. As can be seen, the 

chamber transfer function is reduced when the chamber is loaded because of the increase of 

the power loss. TFD,1 is very close to TFD,2 for both loaded and unloaded scenarios, which 

manifests the effectiveness of the one-antenna method in the frequency domain. 
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Figure 3.3 The measured chamber transfer function using one-antenna and two-antenna 

methods under loaded and unloaded scenarios. 

 

 

In the time domain, a band-pass elliptic filter of order 10 is used to filter S11 with 200 MHz 

bandwidth, as shown in Figure 3.4(a), and then the inverse fast Fourier transform (IFFT) is 

applied to the filtered S11. Since the time-domain power decays exponentially (     ) in the 

RC, the least-square fit is applied to ln(power) to obtain the slope, and τ can be extracted by 

getting the negative inverse of the slope. To avoid the fit error caused by the noise level, only 

part of the signal is used for least-square fit, as shown in Figure 3.4(b). 
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(a) 

 

(b) 

Figure 3.4 Extracting τ from S11: (a) measured S11 and filtered S11, (b) time-domain 

response: ln([IFFT(S11)]
2
) and least-square fit. 
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By sweeping the centre frequency of the filter, τ at different centre frequencies is obtained. 

The measured chamber decay time using one-antenna method under loaded and unloaded 

scenarios are depicted in Figure 3.5. 

 

Figure 3.5 The measured chamber decay time using one-antenna method under loaded and 

unloaded scenarios. 

 

 

The thin cyan curves are the measured τ for different stirring samples and the thick dash 

curves are the averaged τ for all samples. As expected, the chamber decay time is reduced 

when the chamber is loaded. Another thing to be noted is that τ is very robust in the full 

frequency span, i.e., τ does not vary much for different stirring samples. The reason can be 

explained as follows: the chamber decay time τ is determined by the chamber loss. For a 

given frequency, the chamber loss will vary due to the change of the paddle positions and the 

change of the chamber modes. When the number of resonant modes is massive (1,657,518 

modes in 4.0 GHz in our RC according to Weyl’s formula [22]), the positions of the peaks 

and troughs of the resonant mode will not change much for different boundary conditions, 
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and the loss variation is relatively small for different paddle positions. Hence, the chamber 

decay time is very robust. As shown in Figure 3.5, under the unloaded scenario, the variation 

between the τ for one sample and the averaged τ is within about ±10%. And under the loaded 

scenario, the variation is within about ±5%. It is easy to understand when the RC is loaded, 

the majority of the power is consumed by the lossy objects, the power loss is not sensitive to 

the boundary condition of the RC, and hence the loaded τ is more robust than the unloaded τ. 

The robustness of the chamber decay time actually offers an opportunity to extract τ by 

merely a few stirring samples, thus the ACS can be measured rapidly and accurately, which 

will be detailed later. 

The ACS measurement results are shown in Figure 3.6. In the frequency domain, 200 MHz 

frequency stirring is adopted. The efficiency of antenna 1 and antenna 2 in 4.0 – 5.0 GHz are 

78% and 95%, respectively. It can be seen clearly that the measured ACSs using the three 

methods are all around 0.1 m
2
 and the maximum variation is within 10%. 

 

Figure 3.6 The measured ACS of the OUT. 
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3.4 Convergence Property 

The convergence properties of the three methods are also studied. The root-mean-square-

error (RMSE) of the measured ACS from 4.0 – 5.0 GHz with different numbers of stirring 

positions to the ACS measured with 300 stirring positions is adopted to evaluate the 

convergence, and the algorithm is expressed as 

      
√
∑ (             )

  
   

 
                                              

where i is the number of stirring positions, M is the maximum number of stirring positions, j 

is the frequency sampling point number, N is the number of frequency sampling points in 4.0 

– 5.0 GHz. In our case, M = 300 and N = 7143. The calculated results are shown in Figure 3.7. 

 

Figure 3.7 The RMSE with the increase of the number of stirring positions for different 

methods. 
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As can be seen, the convergence speeds of the one-antenna method and the two-antenna 

method in the frequency domain are close but the time-domain method converges faster than 

the frequency-domain methods. This is because the chamber decay time τ is not sensitive to 

the boundary conditions and only depends on the overall loss of the RC. While the chamber 

transfer function and    depend on how well the RC is stirred. Thus, ACSTD, 1 converges 

faster than ACSFD, 1 and ACSFD, 2. It is worth mentioning that, in the time domain, the RMSE 

is always below 10% (compared with the averaged ACS in the full frequency span, about 0.1 

m
2
 from Figure 3.6) and drops below 3% after 15 stirring positions. However, in the 

frequency domain, the one-antenna method and the two-antenna method have similar 

convergence behaviour, the RMSEs are always above 10% before the first 10 stirring 

positions and drop down slowly afterwards. They are below 3% after 100 stirring positions.  

As implied in (3.14) and (3.15), the one-antenna method in the frequency domain requires 

    . Inaccurate results may be obtained if    deviates from 2. To show the influence of 

the deviation of    from 2 to the validity of the measurement in the frequency domain based 

on one-antenna approach, the convergence behaviour of the measured    (under both loaded 

and unloaded scenarios) and ACSFD, 1 at 4.5 GHz has been checked, as shown in Figure 3.8. 

The      level and ACSFD, 1  0.1 m
  level are marked out with dash lines. As can be seen, 

at the first dozens of stirs, the deviation of    from 2 fluctuates drastically, the measured ACS 

is unreliable. However, with the increase of the number of stir,    converges to 2 gradually. 

The convergence behaviour of ACSFD, 1 is very similar to   . After about 150 stirs, the 

variation of    from 2 becomes small (within 10% variation) and the measured ACSFD, 1 

becomes stable (it converges to 0.1 m
2
). That means the accuracy of the frequency-domain 

one-antenna approach depends on     , i.e., how well the chamber is stirred. 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 76 

 

 

 

Figure 3.8 The convergence behavior of the measured    and ACSFD, 1 @ 4.5 GHz. 

 

 

Considering the robustness of the chamber decay time and the fast convergence property of 

the time-domain method, the measurement setup can be further simplified by using an 

electrically large conducting cavity, i.e., an RC is not necessary. To verify this idea, the 

paddles of the RC were set stationary, therefore, no mode stirring was introduced during the 

measurement, and thus the RC would merely act as an electrically large cavity. To extract the 

correct τ of the electrically large cavity, a simple source stirring was introduced by rotating 

the turn-table platform. Based on the convergence speed of the one-antenna method in the 

time domain, 20 source stirring positions was adopted in our measurement. The turn-table 

platform was moved stepwise to 20 source stirring positions (18 degrees for each step). A 

double-ridged waveguide horn antenna (SATIMO® SH 2000) was mounted on the turn-table 

platform and connected to port 1 of a VNA via a cable running through the bulkhead of the 

cavity. The measurement procedure was similar to that in the RC. The cavity decay time with 

and without OUT was extracted from S11. The measurement results are shown in Figure 3.9. 

As can be seen, the results from the mode stirring and source stirring are in good agreement. 

The difference is within 4% and the whole measurement time for the source stirring was 

about 7 minutes while the measurement time for the mode stirring was more than 8 hours, 
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which means that the ACS can be measured in the time domain rapidly and accurately. The 

major contribution to the measurement time is the damping time of the turn-table platform 

between the steps and the time of transferring data from the VNA to the computer. The 

measurement time of this method is comparable with that of the rapid method proposed in 

[24] and therefore, it is quite suitable for applications requiring discriminations between 

subjects due to its high accuracy and short measurement time. It should be pointed out that 

the cavity should be large enough to support sufficient cavity modes to ensure enough 

independent samples to be obtained at the lowest frequency of the measurement, or the OUT 

could not fully “submerge” into the field-uniform area and the measurement result could be 

wrong. This is the main consideration for the selection of the size of the conducting cavity in 

the measurement. 

 

 

Figure 3.9 The comparison of the measured ACS in the time domain with 20 source stirring 

positions and 360 mode stirring positions. 
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3.5 ACS Measurement without Calibration 

In this section, it is shown that the ACS can be measured accurately without calibration. This 

is realized by making use of the fact that the chamber decay time is independent of the 

insertion loss of cables in the measurement. Measurements have been done to verify the 

proposed procedure. It has been shown that the measurement process is simplified and the 

measurement time is shortened at the same time. 

As mentioned in Section 3.3, in order to extract the chamber decay time, a full two-port (for 

two-antenna methods) or one-port (for one-antenna method) calibration must be carried out 

before collecting the S-parameters of the antennas. In such measurements, the reference 

planes are calibrated at the end of the cables, as shown in Figure 3.10(a) with dot lines. 

However, the calibration process is tedious and time-consuming. Nowadays, some VNAs are 

pre-calibrated with the reference planes at the output connectors of the VNAs, when the VNA 

is pre-set the reference planes are restored [25]. This offers an opportunity to perform the 

measurement without the need for calibration. The antennas and the cables after the reference 

planes can be regarded as integrated antennas. Since the chamber decay time does not depend 

on the insertion loss of cables used in the measurement and it is only determined by the 

diffused loss in the RC. The ACS can be measured accurately without calibration, which will 

simplify the measurement process and shorten the measurement time. 

To validate the proposed method, measurements were performed from 4.0 – 5.0 GHz in our 

RC. The two-antenna method was adopted. Antenna 1 (SATIMO® SH 2000) was connected 

to port 1 of a VNA and antenna 2 (Rohde & Schwarz® HF 906) was connected to port 2 of 

the VNA as in Section 3.3. During the measurement, the two stirrers were moved 

simultaneously and stepwise to 120 positions (3 degrees for each step). At each mode stirring 

position, a full frequency sweep was performed by the VNA and the full S-parameters were 

collected. A piece of RAM was selected as an OUT. The measurement setup is shown in 

Figure 3.10(a). The measurement setups without and with the OUT are shown in Figure 

3.10(b) and (c), respectively. 
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(a) 

 

 
 

(b) 
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(c) 

 

Figure 3.10 ACS measurement setup in the RC: (a) measurement system, (b) unloaded 

scenario, (c) loaded scenario. 

 

 

The measurement procedure is given as follows. 

Step 1: Calibrate the VNA including the cables according to the standard calibration 

procedure. 

Step 2:  Place the two antennas and the support (excluding the OUT) inside the RC. 

Step 3:  Connect antenna 1 to port 1 of the VNA and antenna 2 to port 2 of the VNA, 

and collect the full S-parameters for each stirring position. 

Step 4:  Keep the previous measurement setup unchanged and place the OUT on the 

support, and repeat Step 3. 

Step 5:  Preset the VNA to shift the reference planes, and repeat Step 3 without 

calibration. Move the OUT out of the RC, and repeat Step 3 without 

calibration. 
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Figure 3.11 Time-domain response with calibration: ln([IFFT(S21)]
2
) and least-square fit 

under loaded and unloaded scenarios. 

 

 

Figure 3.12 Time-domain response with no calibration and the close-up of the early-time 

behavior. 
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In this measurement, 10,001 points were sampled in the frequency range from 3.8 to 5.2 GHz. 

The ACS of the OUT was calculated using (3.17). A band-pass elliptic filter of order 10 is 

used to filter S21 with 200 MHz bandwidth, and then the IFFT is applied to the filtered S21. 

The chamber decay time τ can be extracted by the same procedure as described in Section 3.3, 

as shown in Figure 3.11. The average chamber decay time 〈 〉 is then obtained from the 

ensemble average of the τ for different stirring positions. The early time behaviour is depicted 

in detail in Figure 3.12. As can be seen, in the first 83.65 ns, the chamber is not charged, this 

is the time that the wave travels in the cables. In our case, the total length of the two cables is 

about 16 m and the travelling speed of the wave inside the cables is about 2 × 10
8
 m/s [26]. 

Thus, the 83.65 ns corresponds to 16.73 m which agrees well with the total length of our 

cables used in the measurement (our VNA is pre-calibrated with the reference planes at the 

output connectors of the VNA, when the VNA is pre-set the reference planes are restored). 

By sweeping the centre frequency of the filter, τ at different centre frequencies is obtained. 

The measured chamber decay time with and without calibration under loaded and unloaded 

scenarios is shown in Figure 3.13. 

 

Figure 3.13 The comparison of the average chamber decay time with and without calibration 

under loaded and unloaded scenarios. 
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As expected, the chamber decay time is reduced when the chamber is loaded. The chamber 

decay time with calibration and that without calibration agree well, i.e., the chamber decay 

time can be measured accurately without calibration. The measured ACSs with and without 

calibration are depicted in Figure 3.14. As can be seen, they agree well and the maximum 

difference is within 2%, which manifests the effectiveness of the proposed method. 

 

 

Figure 3.14 The comparison of the measured ACS with and without calibration. 

 

 

 

3.6 Discussions and Conclusion 

In this chapter, one-antenna methods for determining the ACS of the OUT in the frequency 

domain and in the time domain were presented at the beginning. The commonly used RC 

technique for determining the ACS of the OUT requires two antennas and the radiation 

efficiency of the two antennas should be known. In this chapter, the one-antenna method in 

the frequency domain was first presented which requires only one antenna (with known 

efficiency) by making use of enhanced backscatter effect. Thus, the measurement setup was 
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simplified. Then, the one-antenna method in the time domain was presented which needs no 

knowledge of the efficiency of the antenna. The experimental setup was illustrated and 

measurement results were presented. It seems that the measured ACSs by the three methods 

are in good agreement. The robustness of the chamber decay time and the convergence speed 

of the three methods were investigated. It is found that the time domain method converges 

much faster than the frequency domain methods. A rapid and accurate measurement can be 

achieved in the time domain based on this finding by using source stirring technique, which 

makes it quite suitable for human absorption and exposure measurement. Furthermore, in the 

time domain approach, the RC can be replaced by a suitable electrically large conducting 

cavity, which will greatly reduce the hardware requirement.  The method was validated in the 

RC by setting the paddles stationary and the results agree well with that measured in the RC 

using mode stirring. The comparison of the measurement methods mentioned above is shown 

in Table 3.1. It is demonstrated that the time domain method is much more efficient and its 

hardware requirement is much lower than the frequency domain method. 

 
Table 3.1: Comparison of Different Measurement Methods 

 

 

Following the previous work, a reliable and simple no-calibration method was proposed for 

the measurement of the averaged ACS of a lossy object based on the time-domain 

measurement in an RC. By making use of the fact that the chamber decay time is independent 

of the insertion loss in the system, the ACS can be measured accurately without calibration, 

which will simplify the measurement process and shorten the measurement time at the same 

time. Measurement has been done to validate the proposed method. The results show that the 

Measurement methods Number of antennas Time Facility 

FD two-antenna method 2 approx. 8 hrs RC 

FD one-antenna method 1 approx. 8 hrs RC 

TD one-antenna method 

(mode stirring) 
1 approx. 7 mins RC 

TD one-antenna method 

(source stirring) 
1 approx. 7 mins electrically large cavity 
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averaged ACS of the OUT can be accurately measured using the proposed method with no 

calibration process. 

There are some points that need to be emphasized. Firstly, the proposed methods presented in 

this chapter assume that the RC was well stirred. When the RC is not well stirred, the OUT 

could not fully “submerge” in the field-uniform area. The measured chamber transfer 

function and chamber decay time will be inaccurate, hence the measured ACS will be of 

considerable errors. Secondly, the antennas used in the measurement should be of high 

efficiency in the time domain method, i.e., the losses in the RC are dominated by the chamber 

wall loss and OUT loss rather than by the losses of the antennas used in the measurement. 

Otherwise, the power will not decay exponentially and chamber decay time cannot be 

extracted correctly. However, in the frequency domain, the antennas used do not have to be 

of high efficiency because the antenna efficiency has been calibrated out in the net power 

transfer function. Thirdly, during the measurement, the OUT should be set far away (more 

than 10λ is recommended) from the antennas to avoid the proximity effect [27]. Last but not 

least, the calculation of the ACS requires the difference in the net power transfer function (in 

the frequency domain) or the chamber decay time (in the time domain) with and without the 

OUT, as seen in (3.13) and (3.17). If the loss of the OUT is too small compared with that of 

the chamber itself, it will be very difficult for the chamber to distinguish the difference of the 

loss (i.e., the difference of the Q factors between loaded and unloaded scenarios), which will 

result in the inaccuracy of the measurement. However, for most of the applications, like the 

measurement of the human body absorption cross section, the loss of the OUT is normally 

large enough for the chamber to see and thus the ACS can be accurately calculated. 

 

 

3.7 References 

 
[1] Electromagnetic Compatibility (EMC) part 4-21: Testing and measurement 

techniques-Reverberation chamber test methods, IEC 61000-4-21, 2003. 

[2] C. L. Holloway, H. A. Shah, R. J. Pirkl, W. F. Young, D. A. Hill, and J.  Ladbury, 

“Reverberation chamber techniques for determining the radiation and total efficiency 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 86 

 

 

of antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1758-1770, Apr. 

2012. 

[3] C. L. Holloway, R. Smith, C. Dunlap, R. Pirkl, J. Ladbury, W. Young, B. Hansell, M. 

Shadish, and K. Sullivan, “Validation of a one-antenna reverberation-chamber 

technique for estimating the total and radiation efficiency of an antenna,” in Proc. 

IEEE Int. Symp. on Electromagn. Compat., Aug. 2012, pp. 205-209. 

[4] H. G. Krauthauser, and M. Herbrig, “Yet another antenna efficiency measurement 

method in reverberation chambers,” in Proc. IEEE Int. Symp. on Electromagn. 

Compat., Jul. 2010, pp. 536-540. 

[5] IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding 

Enclosures, IEEE Standard 299, 2006. 

[6] C. L. Holloway,  D. A. Hill, M. Sandroni, J. M. Ladbury, J. Coder, G. Koepke, A. C. 

Marvin, and Yuhui He, “Use of Reverberation Chambers to Determine the Shielding 

Effectiveness of Physically Small, Electrically Large Enclosures and Cavities,” IEEE 

Trans. Electromagn. Compat., vol.50, no.4, pp. 770-782, Nov. 2008. 

[7] D. Fedeli, G. Gradoni, V. M. Primiani, and F. Moglie, “Accurate analysis of 

reverberation field penetration into an equipment-level enclosure,” IEEE Trans. 

Electromagn. Compat., vol. 51, no. 2, pp. 170-180, May 2009. 

[8] G. B. Tait, C. Hager, M. B. Slocum, and M. O. Hatfield, “On Measuring Shielding 

Effectiveness of Sparsely-Moded Enclosures in a Reverberation Chamber,” IEEE 

Trans. Electromagn. Compat., vol. 55, no. 2, pp. 231-240, Apr. 2013. 

[9] H. G. Krauthäuser, “On the measurement of total radiated power in uncalibrated 

reverberation chambers,” IEEE Trans. Electromagn. Compat., vol. 49, no. 2, pp. 270-

279, 2007. 

[10] U. Carlberg, P.-S. Kildal, A. Wolfgang, O. Sotoudeh, and C. Orlenius, “Calculated 

and measured absorption cross sections of lossy objects in reverberation chamber,” 

IEEE Trans. Electromagn. Compat., vol. 46, no. 2, pp. 146-154, May 2004. 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 87 

 

 

[11] E. Amador, M. Andries, C. Lemoine, and P. Besnier, “Absorbing material 

characterization in a reverberation chamber,” in Proc. IEEE Int. Symp. on 

Electromagn. Compat., Sept. 2011, pp. 117-122. 

[12] G. C. R. Melia, M. P. Robinson, I. D. Flintoft, A. C. Marvin, and J. F. Dawson, 

“Broadband Measurement of Absorption Cross Section of the Human Body in a 

Reverberation Chamber,” IEEE Trans. Electromagn. Compat., vol. 55, no. 6, pp. 

1043-1050, Dec. 2013. 

[13] A. Bamba, D. P. Gaillot, E. Tanghe, G. Vermeeren, W. Joseph, M. Lienard, and L. 

Martens, “Assessing Whole-Body Absorption Cross Section For Diffuse Exposure 

From Reverberation Chamber Measurements,” IEEE Trans. Electromagn. Compat., 

vol. 57, no. 1, pp. 27-34, Feb. 2015. 

[14] D. A. Hill, M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, 

“Aperture excitation of electrically large, lossy cavities,” IEEE Trans. Electromagn. 

Compat., vol. 36, no. 3, pp. 169-178, Aug. 1994. 

[15] M. I. Andries, P. Besnier, and C. Lemoine, “On the prediction of the average 

absorbing cross section of materials from coherence bandwidth measurements in 

reverberation chamber,” in Proc. IEEE Int. Symp. on Electromagn. Compat., Sept. 

2012, pp. 1-6. 

[16] C. L. Holloway, H. A. Shah, R. J. Pirkl, K. A. Remley, D. A. Hill, and J. Ladbury, 

“Early Time Behavior in Reverberation Chambers and Its Effect on the Relationships 

Between Coherence Bandwidth, Chamber Decay Time, RMS Delay Spread, and the 

Chamber Buildup Time,” IEEE Trans. Electromagn. Compat., vol. 54, no. 4, pp. 714-

725, Aug.  2012. 

[17] D. L. Green, V. Rajamani, C. F. Bunting, B. Archambeault, and S. Connor, “One-port 

time domain measurement technique for quality factor of loaded and unloaded 

cavities,” in Proc. IEEE Int. Symp. on Electromagn. Compat., Aug. 2013,  pp. 747-

750. 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 88 

 

 

[18] C. Vyhlidal, V. Rajamani, C. F. Bunting, P. Damacharla, and V. Devabhaktuni, 

“Estimation of absorber performance using reverberation techniques and artificial 

neural network models,” in Proc. IEEE Int. Symp. on Electromagn. Compat., Aug. 

2015, pp. 897-901. 

[19] S. J. Boyes, P. J. Soh, Y. Huang, G. A. E. Vandenbosch, and N. Khiabani, 

“Measurement and Performance of Textile Antenna Efficiency on a Human Body in a 

Reverberation Chamber,” IEEE Trans. Antennas Propag., vol.61, no.2, pp. 871-881, 

Feb. 2013. 

[20] C. L. Holloway, D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and  J. Coder, 

“On the Use of Reverberation Chambers to Simulate a Rician Radio Environment for 

the Testing of Wireless Devices,” IEEE Trans. Antennas Propag., vol.54, no.11, pp. 

3167-3177, Nov. 2006. 

[21] J. M. Ladbury, and D. A. Hill, “Enhanced Backscatter in a Reverberation Chamber: 

Inside Every Complex Problem is a Simple Solution Struggling to Get Out,” in Proc. 

IEEE Int. Symp. on Electromagn. Compat., Jul. 2007, pp. 1-5. 

[22] D. A. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories. 

New York, NY, USA: Wiley-IEEE Press, 2009. 

[23] C. R. Dunlap, “Reverberation chamber characterization using enhanced backscatter 

coefficient measurements,” Ph.D. dissertation, Dept. of Elect., Comput. and Eng., 

Univ. of Colorado, Boulder, USA, 2013. 

[24] I. D. Flintoft, G. C. R. Melia, M. P. Robinson, J. F. Dawson, and A. C. Marvin. 

“Rapid and accurate broadband absorption cross-section measurement of human 

bodies in a reverberation chamber,” Meas. Sci. Technol., vol. 26, no. 6, pp. 65701-

65709, Jun. 2015. 

[25] Q. Xu, Y. Huang, X. Zhu, L. Xing, and Z. Tian, “Measure the radiation efficiency of 

antennas in a reverberation chamber without calibration,” in Proc. IEEE int. Symp. on 

Antennas Propag., Vancouver, BC, 2015, pp. 1178-1179. 



 

Chapter 3: Efficient Averaged Absorption Cross Section Measurement   P a g e  | 89 

 

 

[26] [Online] Available: 

http://web.physics.ucsb.edu/~lecturedemonstrations/Composer/Pages/76.18.html. 

[Accessed: 18-Apr-2017] 

[27] W. T. C. Burger, K. A. Remley, C. L. Holloway, and J. M. Ladbury, “Proximity and 

antenna orientation effects for large-form-factor devices in a reverberation chamber,” 

in Proc. IEEE Int. Symp. on Electromagn. Compat., Aug. 5-9, 2013, pp. 671-676. 

 



 

Chapter 4: Volume Measurement Using Averaged Absorption Cross Section   P a g e  | 90 

 

 

Chapter 4: Volume Measurement Using Averaged 

Absorption Cross Section 

 

4.1 Introduction 

In last chapter, the ACS measurement methods in an RC have been discussed. In this chapter, 

an interesting practical application of the ACS measurement methods will be introduced – 

cavity volume measurement. 

The measurement of the volume of a large cavity is required especially in shipping and 

aircraft industry. In practice, to optimize the capacity of the cargo compartment of a ship or 

an aircraft, it is necessary to get the knowledge of its volume. An example is shown in Figure. 

4.1. However, the volume of such a cavity is not easy to obtain because of its irregular shape 

and the complex inner environment. Normally, a 3D laser scanner can be employed [2]. The 

laser scanner first scans the whole profile of the cavity under test and builds its 3D model. 

Subsequently, the volume of the cavity can be calculated from the 3D model. However, this 

method is time-consuming and costly. It may not be available for some companies or 

institutes. And also, before scanning the profile of the cavity, the contents that may block the 

laser beam in the cavity should be removed, which could be tedious or sometimes impossible 

in reality. Since such a cavity is normally made of metal, an alternative method based on the 

statistical theory of EM waves was proposed in [3]. In this method, the volume of a cavity is 

extracted by comparing the cavity quality factors in the frequency domain and in the time 

domain [4] – [7]. This method is economical, but it is not efficient enough because many 

stirring positions are required during the measurement. A more efficient method is in demand 

for practical purpose. 

In this chapter, a new rapid method to measure the volume of a large cavity is presented. This 

method is based on the measurement of the cavity decay time constants with and without a 

lossy object. A lossy object with a known averaged ACS [8] – [14] is required for the 

measurement. It is found that only one antenna is required in this method. Hence, the 

hardware requirement is very simple, which makes the method very economical. Also, this 
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method is very efficient because only a few stirring positions are needed to complete the 

measurement. Consequently, the measurement time can be greatly shortened. Furthermore, 

by using acoustic waves instead of EM waves, this method can be generalized and the cavity 

under test does not have to be metallic. 

 

Figure 4.1 The cargo compartment of an aircraft and the demand of measuring its volume 

[1]. 

 

 

4.2 Theory 

Before studying how to measure the cavity volume using the ACS, it is useful to first 

introduce how the ACS is measured in an electrically large cavity using an electromagnetic 

method. It has been detailed in Chapter 3 that the averaged ACS 〈  〉 can be measured in the 

time domain [9], [15] as 

〈  〉  
 

 
 〈  〉

   〈  〉
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The definitions of V, c, 〈  〉, and 〈  〉 can be found in Section 3.2.  

It can be clearly seen from (4.1), the cavity volume V is required to calculate the ACS. (4.1) 

can be transformed to the form 

    
〈  〉

〈  〉   〈  〉  
                                                          

It can be seen that if the averaged ACS of an OUT is known or pre-calibrated, (4.2) provides 

a method to obtain the cavity volume. The quantities that needs to be measured is τl and τu. In 

this method, only one antenna is required since τ can be obtained from S11. Furthermore, 

because τ is very robust [9], only a very few stirring positions are needed to extract it 

accurately. Thus, this method can be very efficient. 

 

 

4.3 Measurement 

To verify the proposed method, measurements were conducted in the frequency range of 2.8 

to 4.2 GHz in the RC at the University of Liverpool. The volume of the RC is 3.6 m × 4.0 m 

× 5.8 m = 83.52 m
3
. A double-ridged waveguide horn antenna (SATIMO® SH 2000) was 

used in the measurement. The antenna was mounted on a turn-table platform to introduce 

source stirring positions [16] – [17]. It was connected to port 1 of the VNA via a cable 

running through the bulkhead of the RC. A piece of RAM was selected as the OUT which 

was placed on the support (a carton box). In the measurement, the turn-table platform was 

rotated stepwise to 18 different positions (10 degrees for each step). At each source stirring 

position, the VNA swept the S-parameters over the full frequency span. It should be noted 

that the antenna should direct away from the OUT to avoid LoS illumination (to provide a 

random environment). Therefore, a directional antenna was used and the turn-table platform 

was rotated 180° instead of 360°. During the measurement, the two stirrers of the RC were 

not used because in practice it may not have a stirring system in a cavity. A general 

measurement setup is shown in Figure 4.2(a). The measurement setups without and with the 

OUT are shown in Figure 4.2(b) and (c), respectively. 
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(a) 

 

 
 

(b) 
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(c) 

 

Figure 4.2 Measurement setup in the RC: (a) global measurement system, (b) without ACS, 

(c) with ACS. 

 

 

The measurement was conducted with the following five steps. 

Step 1:  Calibrate the VNA including the cables. 

Step 2:  Place the antenna, the turn-table platform and the support inside the RC, 

excluding the OUT. 

Step 3:  Connect the antenna to the cable connected to VNA port 1 and record the S-

parameters S11 at each source stirring position. 

Step 4:  Keep the measurement setup unchanged, place the OUT on the support and 

repeat Step 3. 

Step 5:  Extract the cavity decay time constants with and without the OUT and 

calculate the volume of the RC using (4.2). 
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In our measurement, 10,001 points were sampled in the frequency range of 2.8 – 4.2 GHz. S11 

in this frequency span at each source stirring position was collected. The cavity decay time 

constant was extracted with the same procedure detailed in Section 3.3. The results are shown 

in Figure 4.3. 

 

Figure 4.3 Measured cavity decay time constants τ under loaded and unloaded scenarios. 

 

 

The thin curves are the measured τ for each source stirring position and the thick curves are 

the averaged τ for all the 18 source stirring positions. The averaged τ was used to calculate 

the cavity volume. The robustness of τ can be observed in Figure 4.3. As can be seen, under 

the unloaded scenario (without OUT), the variation between the τ for one stirring position and 

the averaged τ is within about ± 10% and under the loaded scenario (with OUT), it is within 

about ± 5%. This is because τ is determined by the diffuse loss of the RC which is not 

sensitive to the source stirring positions [9]. 

To measure the volume of the RC, the ACS of the OUT was first calibrated in the frequency 

range of interest, as shown in Figure 4.4. It can be seen that the ACS of the OUT is 0.1078 m
2
 

in the frequency band of 3.0 – 4.0 GHz. And also, the ACS seems frequency independent. 
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The reason is, when the OUT is electrically large, the ACS only determined by its surface 

area which does not depend on the frequency [8]. Actually, this provides a faster method to 

obtain the ACS of a RAM and consequently, a faster and simpler method to measure the 

cavity volume with ACS. This point will be discussed later. 

 
 

Figure 4.4 The averaged ACS of the OUT in 3.0 – 4.0 GHz. 

 

 

In practice, a cavity is hardly vacant or well shielded. It may be loaded with cargoes or have 

apertures (such as windows or ventilation openings). To verify the validity of the proposed 

method in a practical environment, the volume of the RC in three different scenarios were 

measured: the well-shielded scenario, the open-door scenario, and the cargo-loaded scenario, 

as shown in Figure 4.5(a), (b) and (c), respectively. In the following part, the measurement 

results under these three different scenarios using the proposed method are detailed. 
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(a) 

 

 

 
 

(b) 
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(c) 

 

Figure 4.5 Three different test scenarios: (a) well-shielded scenario, (b) open-door scenario, 

and (c) cargo-loaded scenario. 

 

 

In the well-shielded scenario, the door of the RC was closed. This scenario is corresponding 

to a cavity with a high Q factor. The measurement result is shown in Figure 4.6(a). The 

reference value (the real value of the RC volume, 83.52 m
3
 here) and the average value (the 

averaged value of the RC volume in the frequency span of interest) are also plotted. It can be 

seen that the measured value is close to the reference value. The maximum difference is 

about 6.8% at 3.403 GHz. The difference between the average value and the reference value 

is only about 1.2%, which is very small. In practice, there may be some apertures on a cavity, 

such as windows, ventilation openings or open doors. This scenario is corresponding to a 

cavity with a relatively low Q factor. To emulate a cavity with apertures, the front door of the 

RC was opened and the whole measurement using the proposed method was repeated. The 

results are shown Figure 4.6(b). As can be seen, the maximum difference between the 

measured value and the reference value is approximately 5.8% at 3.423 GHz. The difference 

between the average value and the reference value is only approximately 0.26%, which is 

negligible. Sometimes a cavity is loaded with cargoes, such as the compartment of an aircraft 
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or the refrigerated warehouse of a supermarket. When a cavity is loaded with cargoes, its Q 

factor will decrease. To emulate a cavity loaded with cargoes, two pieces of RAM were 

placed at the corners of the RC to decrease its Q factor. The measurement result is depicted in 

Figure 4.6(c). As can be seen, the maximum difference between the measured value and the 

reference value is around 5% at 3.182 GHz. The difference between the average value and 

the reference value is around 0.5%, which can be neglected. 

 
 

(a) 

 

 
 

(b) 
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(c) 

 

Figure 4.6 The measured RC volume under three different scenarios: (a) well-shielded 

scenario, (b) open-door scenario, and (c) cargo-loaded scenario. 

 

 

It should be noted that in practice it may not have a chance to calibrate the ACS of the OUT. 

Fortunately, it has been proved that, for an electrically large RAM of convex shape, its ACS 

and surface area S satisfy ACS = S/4 [8]. That is, the ACS of a RAM is a quarter of its 

surface area. By utilizing this theory, the proposed method can be further simplified and the 

calibration of the ACS of the OUT is not needed. To validate this idea, another piece of RAM 

was selected as the OUT. The size of the base of the RAM was 0.5 m × 0.5 m × 0.06 m. The 

pyramids of the RAM were fully covered with aluminum foil (because the surface area of the 

pyramids was not easy to measure) and only the base was subject to absorption, as can be 

seen from Figure 4.7. Thus, the surface area absorbing the EM waves is 0.37 m
2
 and its 

theoretical ACS is 0.0925 m
2
. The measured and the theoretical ACS are compared in Figure 

4.8. As can be seen, the average value of the measured ACS is about 0.0825 m
2
 in the 

frequency range of 3.0 – 4.0 GHz which is 0.01 m
2
 smaller (10.8% smaller) than the 

theoretical value. The reason is, in reality, the RAM is not an ideal “black body”, i.e., it 

cannot absorb all the EM waves that hit on its surface because of the scattering, the 

diffraction, and the reflection. Consequently, the measured ACS is smaller than the 

theoretical value. 
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Figure 4.7 The RAM with its pyramids covered by aluminum foil. The size of its base is 

marked. 

 

 

 

Figure 4.8 The measured ACS of the OUT. Its theoretical value and average value are 

marked out as well. 
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It is worth mentioning that for ease of surface area calculation, a RAM of regular shape (such 

as rectangular parallelepiped or spherical shape) is preferred. Again, the measurement was 

conducted by following the aforementioned procedure and three different scenarios (well-

shielded scenario, open-door scenario, and cargo-loaded scenario) were studied. The 

theoretical ACS value is used to calculate the volume of the RC. The results are shown in 

Figure 4.9. 

 

Figure 4.9 The measured RC volume under three different scenarios (the average lines of 

the three different scenarios are the corresponding horizontal lines). 

 

 

It can be seen that the measured RC volume under the three different scenarios is close to the 

reference value. The maximum differences under the well-shielded scenario, the open-door 

scenario, and the cargo-loaded scenario are about 20.8%, 19.4%, and 19.5%, respectively. 

From (4.2), it can be obtained 

  

 
 

 〈  〉

〈  〉
                                                                      

That is, the measurement error margin of the cavity volume is determined by that of the ACS. 

From Figure 4.8, it is known that 
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 〈  〉

〈  〉
 

             

      
                                                

Therefore, the difference of cavity volume between the measured average value and the 

reference value should be around 12%. As shown in Figure 4.9, the differences between the 

average value and the reference value under the well-shielded scenario, the open-door 

scenario, and the cargo-loaded scenario are about 11.5%, 11.6%, and 9.7%, respectively, 

which agree well with the theoretical prediction in (4.4).  

The measurement results are summarized in Table 4.1. A comparison between this proposed 

method and the method proposed in [3] is made. It can be seen that the proposed one-antenna 

method using source stirring and calibrated ACS can finish the measurement with minimum 

errors in the shortest time. The proposed one-antenna method using source stirring and 

theoretical ACS has the merit of short measurement time as well, but its measurement errors 

are relatively bigger. 

It should be pointed out that the method of using EM waves is only valid for conducting 

cavities and the OUT should absorb radio waves. If the cavity is made of non-conducting 

materials such as concrete or bricks, acoustic waves should be used to detect the volume of 

the cavity. In acoustics, it can be derived [18] 

〈  〉  
         

  
      

        
                                                        

where 〈 〉 represents the average over different microphone positions. 〈  〉 is the averaged 

ACS of the OUT (acoustic wave absorbers), V is the volume of the cavity and    is the sound 

speed in the air.       and       are the reverberation time (the decay time for a 60 dB sound 

pressure level decrease) of the cavity with and without the OUT inside, respectively. (4.5) 

can be converted to 

  
  

        
 

〈  〉

     
        

                                                           

      and       can be extracted from the PDPs of the cavity with and without the OUT inside. 

Thus, the feasibility of the proposed method is generalized. It is not only limited to 

conducting cavities. 
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4.4 Discussions and Conclusion 

In this chapter, a rapid and accurate measurement method has been developed to measure the 

volume of a large cavity. A RAM with a known averaged ACS is selected as an OUT to aid 

the measurement. Using this method, the cavity volume can be obtained by measuring its 

decay time constants with and without the OUT. The proposed method has been validated 

with both theory and measurement studies. It is found that the measurement can be completed 

rapidly with a simple measurement setup using this method, which makes it an ideal way of 

measuring the cavity volume. Furthermore, by using acoustic waves, the proposed method 

can be generalized and the cavity under test does not have to be conducting. 

The preconditions of the proposed method should be pointed out. First, the environment 

inside the cavity under test should be reverberant, i.e., the Q factor of the cavity should not be 

too low. If its Q is very low, i.e., the cavity is very lossy, it will be very difficult to realize a 

statistically uniform field inside the cavity. Second, the loss of the OUT should not be too 

small. As can be seen from (4.2), the calculation of the cavity volume requires the difference 

of the cavity decay time constants with and without the OUT. If the OUT loss is too small 

compared with the cavity loss, it may not be possible for the cavity to perceive the difference 

of the loss (i.e., the difference of the Q factors with and without OUT), which will result in an 

inaccurate measurement. Third, during the measurement, the LoS illumination of the antenna 

to the OUT should be avoided. Or the inaccurate measurement of τl could occur because most 

of the power from the antenna will be captured and absorbed by the OUT before being 

reverberated by the cavity. Last but not least, the proposed method is valid for a single cavity 

while not for coupled cavities because for coupled cavities, the loss mechanism is different 

[19] – [21] and (4.1) is no longer hold. 
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Chapter 5: Simplified Shielding Effectiveness 

Measurement of Small Cavity 

 

5.1 Introduction 

Chapter 3 and Chapter 4 have considered measurements in a single cavity (i.e., RC only). 

However, in practice, the nested-cavity or cascade-connected-cavity method is required for 

some measurements, e.g., the EM shielding of enclosures or materials. In this chapter, the 

measurement of the EM shielding of physically small but electrically large enclosures using 

nested RC will be considered. 

EM shielding has become a significant issue due to the proliferation of electronic devices in 

the world. Shielding enclosures are used to either protect or control immunity and/or 

emission of electronic devices for many applications. The shielding effectiveness (SE) is an 

important figure of merit to characterize the EM isolation performance of enclosures. 

Generally, an IEEE standard can be followed for measuring the SE of EM shielding 

enclosures [1] in an AC. The idea is to illuminate the equipment under test (EUT) with a 

plane wave, and consequently, the results are only valid for specific incidence directions and 

polarizations tested in practice. However, in real-life, equipment is seldom exposed to a 

single plane wave; a more realistic scenario would be waves coming from different 

directions. Recently, the RC technique is becoming prevalent for the SE measurement [2] – 

[9]. The use of RCs for determining the SE has the advantage over other techniques in that 

the RC offers a more realistic environment. That is, in an RC, the fields are incident on the 

EUT with various polarizations and angles of incidence [10]. 

Conventionally, to measure the SE of an electrically large enclosure in an RC, it is required to 

set a transmitting antenna (Tx) along with a receiving antenna in the large RC (Rxo) and a 

receiving antenna inside the nested small enclosure (Rxi). By comparing the power transfer 

functions between Tx – Rxo and between Tx – Rxi in the frequency domain, the SE of the small 

enclosure can be extracted. However, this approach requires three antennas with known 
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efficiency of the two receiving antennas, which could be problematic sometimes in practice. 

An optional time-domain method proposed in [5] is to use the decay time of the enclosure to 

extract SE. But it needs to cover and uncover the aperture of the enclosure which may not be 

applicable for some equipment with complex structures. And also, when the EUT is well 

shielded, the measurement uncertainty increases very quickly. 

 

 

5.2 Theory 

It has been shown that for a well-stirred electrically large enclosure, the SE of the enclosure 

is defined as follows 

           

〈   〉

〈    〉
                                                           

or 

           

〈   〉

〈    〉
                                                           

where Pin and Pout are the power levels inside and outside the enclosure, Sin and Sout are the 

power density levels inside and outside the enclosure, respectively. 〈 〉 denotes an ensemble 

average for all stirring sequences. 

 

 

5.2.1    Frequency Domain 

In the frequency domain, the existing measurement method of determining the SE is to 

compare the power transfer functions between Tx – Rxo and between Tx – Rxi. As stated in 

Section 3.2.1, the power transfer function can be obtained from the S-parameter as [11] 

〈  〉

  
 〈|   |

 〉                                                                  

〈|   |
 〉 is an uncalibrated power transfer function including the ohmic loss of antennas, the 

antennas mismatch, and also, both the stirred and unstirred power. The net power transfer 
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function T can be obtained by removing the ohmic loss and mismatch of antennas and the 

unstirred power as [3], [11] – [13] 

  
〈|     |

 
〉

   |〈   〉|     |〈   〉|    
     

                                           

where S21,s represents the stirred power contribution of S21.   
    and   

    are the efficiency 

of the transmitting and the receiving antennas, respectively. 

In the following analysis, the transmitting antenna in the RC is denoted by antenna 1, the 

receiving antenna in the RC is denoted by antenna 2 and the receiving antenna in the EUT is 

denoted by antenna 3, as can be seen from Figure 5.1(a). Then, the net power transfer 

function in the RC (To) can be extracted as 

   
〈|     |

 
〉

   |〈   〉|     |〈   〉|    
     

                                           

The net power transfer function between the RC and the EUT (Ti) can be given as 

   
〈|     |

 
〉

   |〈   〉|     |〈   〉|    
     

                                          

where   
    are the efficiency of antenna 3. 

Substituting (5.3), (5.5) and (5.6) into (5.1), the SE can be determined from ratio of the net 

power transfer functions Ti and To 

           (
  

  
)          (

〈|     |
 
〉

〈|     |
 
〉
 
  |〈   〉|

 

  |〈   〉| 
 
  
   

  
   )                  

As can be seen from (5.7), three antennas are needed in the measurement. Typically, the net 

power transfer functions are measured with two high-efficiency antennas using (5.5) and 

(5.6) with the knowledge of their efficiency (  
   ,   

   ). And also, for the measurement 

using a two-port VNA, two measurements are required (connecting receiving port to antenna 

2 and antenna 3, respectively), which is really time consuming. 

If an RC is ideally performing, the enhanced backscatter constant [11], [16], [17] 
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Assuming antenna 1 and antenna 2 are identical, it can be obtained 〈|     |
 
〉  〈|     |

 
〉  

 〈|     |
 
〉. Now, equation (5.5) can be converted to the form [11] 

   
〈|     |

 
〉

    |〈   〉|      
     

                                                 

Substituting (5.9) into (5.7), the SE can be rewritten as 

           (  
〈|     |

 
〉

〈|     |
 
〉
 
  |〈   〉|

 

  |〈   〉| 
 
  
   

  
   )                             

Thus, only two antennas are needed (one transmitting antenna in the RC and one receiving 

antenna in the EUT) and the measurement can be completed once, which will greatly 

simplify the measurement. The precondition for this method is     . The impact of    to 

the validity of this method will be discussed in Section 5.4. If the transmitting antenna in the 

RC and the receiving antenna in the EUT are identical, (5.10) can be further simplified as 

           (  
〈|     |

 
〉

〈|     |
 
〉
)                                                

It is interesting to note that the efficiency is eliminated in (5.11) and the knowledge of the 

efficiency of any antenna used in the measurement is not needed – the condition is both 

antennas are identical. 

 

 

5.2.2    Time Domain 

In the time domain, the reverberant diffuse fields in each cavity, denoted by subscript i = 1, 2, 

are analysed based on the time-dependent full exchange of radiated EM power between 

coupled spaces [8], [18] – [20]. The spatially averaged power density is modeled from 

conservation of energy consideration when the excitation source is in cavity 1 

  〈     〉̇          〈     〉    〈     〉                                       
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  〈     〉̇    〈     〉         〈     〉                                         

where 〈  〉 is the averaged power density in cavity i, 〈     〉̇  signifies the time rate of change 

of the averaged power density of cavity i. Vi is the volume of cavity i and δ(t) is an impulse of 

EM power fed to the cavity at time t = 0. Λi and Λt are the energy loss rate coefficients for 

cavity i and for coupling between the two cavities, respectively [20]. 

The analytical solutions to (5.12) and (5.13) are provided in [21] and [22] as 

〈     〉  
  

   
[
         

  
 

       ( 
      )

    
]                             

〈     〉  
    

    
 
       

   
                                                    

where the coefficients α and β are defined according to the relationships shown in (5.16) and 

(5.17) 

  
     

  
 

     

  
      

              

    
                                     

  
   √     

 
      

   √     

 
                                          

and U0 is the total power injected into cavity 1 by the impulse excitation at time t = 0. 

(5.14) and (5.15) can be rewritten as 

〈     〉  
  

   
[   

     

  
        

     

  
    ]                            

〈     〉  
    

  
 
       

   
                                                      

where 〈     〉 and 〈     〉 are the averaged total power in cavity 1 and cavity 2, respectively. 

(5.18) and (5.19) describe the dynamics of power level inside the RC (cavity 1) and the EUT 

(cavity 2) when a short pulse is injected into the RC. As can be seen, the time-domain 

response of the RC and the EUT is of double-exponential behaviour [23]. The transient 

response of 〈     〉 and 〈     〉 can be obtained by fitting the PDPs of the RC and the EUT, 
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respectively. This fitting process can be realized through a least-square-fit optimization 

routine that minimizes the sum of the squares of the error between overlaid modelled and 

measured curves. The SE of the EUT can then be obtained by the difference of the fitted PDP 

(in dB format) of the RC (PDPRC) and that of the EUT (PDPEUT) [20] 

                                                                     

The PDPRC and PDPEUT are obtained from S21 data and S31 data, respectively. For an ideally 

stirred RC, it has been proved that in the time domain [16] 

   
√     

         
   

     
                                                         

where      
    ,      

    and      
    (in linear format) are the PDPs (excluding the early-

time part) of the RC from the S11, S22 and S21 data, respectively. Likewise, assuming antenna 

1 and antenna 2 are identical, (5.21) then becomes 

     
    

 

 
      

                                                             

Or in dB format, 

     
             

                                                         

And (5.20) can be rewritten as 

            
                                                            

Thus, antenna 2 is eliminated in (5.24) and the formula for the two-antenna method in the 

time domain is mathematically derived. 

 

 

5.3 Measurement 

Measurements were conducted from 2.8 to 4.2 GHz in our RC to verify the proposed 

methods. Three antennas were used: two double-ridged waveguide horn antennas were used 

as antenna 1 (Rohde & Schwarz® HF 906) and antenna 3 (SATIMO® SH 2000), 
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respectively, one planar monopole antenna was used as antenna 2. Antenna 1 was connected 

to VNA port 1 and antenna 2 (or antenna 3) was connected to VNA port 2. The step-by-step 

rotation of the two stirrers was synchronized. 360 positions were obtained (1 degree per step). 

For each mode stirring position, the VNA swept over the full frequency span and recorded 

the S-parameters. A metallic enclosure with an open-air aperture is employed as the EUT. 

The EUT has a size of 1.0 m × 1.0 m × 1.1 m (about 10 λ × 10 λ × 11 λ at 3.0 GHz). The size 

of the aperture is about 1.0 m × 0.1 m. According to Weyl’s formula [3], [24], the mode 

number is around 9,185 inside the EUT at 3.0 GHz, which is large enough for the RC to 

perform well. The whole measurement system is depicted in Figure 5.1(a). Figure 5.1(b) and 

(c) illustrate the measurement setup and the detail of the aperture is shown in Figure5.1 (d). 

 

 
 

(a) 
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(b) 

 

 
 

(c) 
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(d) 

 

Figure 5.1 SE measurement setup in the RC: (a) measurement system, (b) measurement 

setup in the experiment, (c) antenna 3 (SATIMO® horn antenna) in the EUT, (d) the aperture 

of the EUT. 

 

 

The measurement was performed according to the following procedure. 

Step 1:  Do standard calibration process of the VNA including the cables. 

Step 2:  Place antenna 1 and antenna 2 inside the RC and place antenna 3 inside the 

EUT. Place all the antenna supports along with the antennas inside the RC to 

keep the chamber loss constant. 

Step 3:  Connect antenna 1 to port 1 of the VNA and antenna 2 to port 2 of the VNA, 

load antenna 3 with a 50 Ω termination and collect the full S-parameters for 

each stirring position. 

Step 4:  Repeat Step 3 with antenna 3 connected to port 2 of the VNA and antenna 2 

loaded with a 50 Ω termination. 

In practice, it may not have a chance to introduce mode stirring or source stirring in the EUT, 

thus only frequency stirring is used here. In the measurement, 10,001 points were sampled in 

the frequency span of 2.8 to 4.2 GHz. The conventional three-antenna method (SEFD, 3), the 

two-antenna method in the frequency domain (SEFD, 2) and the two-antenna method in the 

time domain (SETD, 2) were adopted respectively to calculate the SE of the EUT. To make the 

abbreviation clear, the first subscript “FD” or “TD” is used to indicate that the measurement 
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is conducted in the frequency domain or in the time domain, respectively. “ ” or “3” is 

assigned to the second subscript to signify that two or three antennas were used in the 

measurement. In the frequency domain, the enhanced backscatter constant (  ) is calculated 

and plotted in Figure 5.2. As can be seen, it is close to 2. This means the RC was well 

performing and the experiment equipment was reasonably set up [11], [16].  

 

Figure 5.2 The measured    in the RC. 

 

 

The power transfer functions of the RC measured using antenna 1 (    ) and using antenna 1 

and antenna 2 (    ) are shown in Figure 5.3. The power transfer function from the RC to the 

EUT (    ) measured using antenna 1 and antenna 3 is plotted in Figure 5.3 as well. Again, to 

make the abbreviation clear, “o” or “i” is assigned to the first subscript to signify that the 

measurement was done when the receiving antenna was outside or inside the EUT. “1” or “2” 

in the second subscript means one or two antennas were required in the measurement. As can 

be seen,      is smaller than      and      because of the shielding of the EUT.      agrees well 

with     , which manifests that the two-antenna method for SE measurement in the frequency 

domain is effective.  
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Figure 5.3 The measured power transfer functions in the RC and between the RC and the 

EUT. 

 

 

Figure 5.4 Measured S31 and filtered S31. 
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Since the data was measured in the frequency domain, the time-domain method was attained 

by applying the IFT on the measured data. In the time domain, a 10-order band-pass elliptic 

filter was used to filter S11 and S31 with a 200 MHz bandwidth [11], as can be seen from 

Figure 5.4. Since the transient responses of the power in the RC and in the EUT are of double 

exponential behaviour, the least-square-fit optimization is applied to the PDPs and the 

modeled decay behaviour can be obtained, as shown in Figure 5.5(a). The dynamics of power 

transfer between the RC and the EUT are of particular interest. As can be seen from Figure 

5.5(b), the early-time behaviour is observed because of the unstirred reflections from the 

antenna itself and from the walls of the RC [20]. For P2(t), at the first 200 ns, it rises slowly 

and the energy in the RC must leak into the EUT gradually through the leakage aperture 

described by Λt. After the EUT is fully filled, P2(t) ultimately decreases along with P1(t). It 

can be noticed, at the first 20 ns, no rise appears for P2(t) because the power emitting from 

the Tx antenna takes certain time to reach the Rx antenna. The 20 ns correspond to about 6 

meters for EM wave travelling in free space, which agrees well with the distance between 

antenna 1 and antenna 3 in the experiment. The difference between P1(t) and P2(t) at the late 

time gives us the information of SE of the EUT. It is worth noting that, to avoid the influence 

of the early-time behaviour, only part of the PDPs (the late-time part) should be used to 

evaluate the SE. 

The results are illustrated in Figure 5.6. 200 MHz frequency stirring is used in the frequency 

domain. The average efficiency of antenna 1, antenna 2 and antenna 3 in 3.0 – 4.0 GHz is 

95%, 80%, and 82%, respectively. When conducting the measurement using the two-

identical-antenna method, antenna 1 was replaced with another SATIMO® SH 2000 horn 

antenna. It can be seen clearly from Figure 5.6 that the measured SEs using the four methods 

agree well and the maximum difference is within 0.5 dB. 
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(a) 

 

 
 

(b) 

 
Figure 5.5 Transient responses of the PDPs in the RC and in the EUT for the impulse 

excitation injected into the RC: (a) PDPs from S11 and from S31, respectively, (b) early-time 

responses of PDPs. 
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Figure 5.6 The SEs of the EUT measured with different methods. 

 

 

5.4 Convergence Behaviour 

The convergence behaviour of the proposed two-antenna methods in the frequency domain 

and in the time domain is studied. 

As indicated in (5.8) and (5.9), the two-antenna method in the frequency domain requires 

    . A basic question is “what is the impact of    to the validity of the frequency domain 

measurement method?” That is, if    deviates from 2, what kind of results should be 

expected? In fact, intuition and experience say that if    deviates from 2 a lot, the measured 

SE should be unreliable because the field in the RC is not well stirred, i.e., the field is not 

statistically uniform. To investigate this issue, the variation of the measured SEFD,   along 

with    at 3.5 GHz was checked where the SE is 8 dB, as shown in Figure 5.7. It can be seen 

clearly that the deviation of    from 2 fluctuates intensely at about the first 50 stirring 

positions. Consequently, the measured SE is inaccurate as expected. The maximum 

difference can reach about 90%. However,    begins to converge to 2 gradually with the 

stirring positions number increasing. For SEFD, 2, its convergence behaviour is coincident with 
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  . The measured SEFD, 2 becomes stable (it converges to 8 dB) after about 250 stirring 

positions when the variation of    from 2 becomes very small (within 10% variation). From 

the above analysis, it is known that the accuracy of the frequency domain two-antenna 

method relies on     . That is to say, the frequency-domain measurement is sensitive to 

the deviation of the chamber field from the ideally over-moded case. 

 

Figure 5.7 The convergence properties of    and SEFD, 2 at 3.5 GHz. 

 

The convergence behaviour of the proposed two-antenna methods in the time domain is 

studied by comparing it with the convergence behaviour in the frequency domain. The root-

mean-square-error (RMSE) of the measured SE from 3.0 – 4.0 GHz with different numbers 

of stirring positions was evaluated [11]. The reference used is the SE measured with 360 

stirring positions. The algorithm is expressed as 

      
√
∑ (           )

  
   

 
                                                   

In (5.25), i represents the number of stirring positions and M is the maxima of i. j signifies the 

frequency sampling point number and N is the maximal value of j. In our measurement, M = 
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360 and N = 7144. The comparison of RMSEs of different methods is depicted in Figure 5.8. 

As can be seen, the convergence speeds of the two-antenna method and the three-antenna 

method in the frequency domain are close but the time-domain method converges faster than 

the frequency domain methods. This is because the power transfer function and    are very 

sensitive to deviations of the chamber field from the ideally over-mode case (i.e., how well 

the RC is stirred). But, the modelled PDP is not susceptible to the boundary conditions. It is 

mainly determined by the diffuse loss of the RC. That means the PDP is very robust. In other 

words, the time-domain measurement is far less sensitive to the non-ideal chamber field and 

appears to yield an average of the PDP. As a result, SETD, 2 converges faster than SEFD, 2 and 

SEFD, 3. To be more specific, in the time domain, the RMSE remains less than 10% (in 

comparison with the averaged SE in the frequency span of interest, about 8 dB from Figure 

5.6) and drops below 5% after about 10 stirring positions. However, in the frequency domain, 

the RMSEs of the two-antenna method and the three-antenna method drop below 5% after 

about 100 stirring positions. And also, the RMSEs keep exceeding 10% for the first 40 

stirring positions and then decline gradually afterwards. 

 

Figure 5.8 The comparison of RMSEs of different methods. 
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From above analysis, it is known that the PDP is robust and the time-domain method 

converges fast. Actually, these properties offer us a way to obtain SE with a small number of 

stirring positions and subsequently result in an efficient measurement method of SE. 

Basically, for a small number of stirring positions case, source stirring technique can be 

adopted, which will avoid rotating the stirrers. In practice, the measurement can be completed 

in an electrically large conducting cavity, i.e., no mode-stirred RC is required. By doing this, 

the measurement simplification can go a step further. To validate this idea, another set of 

measurement was performed. In this measurement, the RC stirrers were kept fixed (no mode 

stirring introduced). Consequently, the RC would just serve as an electrically large enclosure. 

In order to recover the true PDP, a turn-table platform was rotated on which the transmitting 

antenna was mounted (thus the source was rotated). Considering the convergence speed of 

SETD, 2, 10 source stirring positions were chosen. The turn-table platform was rotated 

stepwise to 10 positions (36 degrees for each step). Antenna 1 (Rohde & Schwarz® HF 906) 

was mounted on the turn-table platform and connected to VNA port 1. Antenna 2 

(SATIMO® SH 2000) was placed inside the EUT and connected to VNA port 2. The PDPs 

of the outer cavity (i.e., the RC with stirrers being fixed) and between the outer cavity and the 

EUT were extracted from S11 and S21, respectively. The measured SEs are plotted in Figure 

5.9.  

It can be seen that the SEs measured using 360 mode stirring positions and 10 source stirring 

positions agree well and the maximal variation is less than 10%. Also, the entire time 

consumed by the source-stir measurement was only approximately 10 minutes. It signifies 

that the SE can be measured in the time domain instantly and precisely. The consumed time 

of this method is comparable with the one proposed in [5]. But it is more advisable for EUTs 

with complex structures because it is no need to cover and uncover the apertures. And 

therefore, it is quite general and efficient for SE measurement of electrically large enclosures. 

The aforementioned measurement methods are compared and summarized in Table 5.1. 

Because the measurement accuracy relies on the number of independent samples in 

measurement sequences, a sufficient number of independent samples should be obtained at 

the lowest frequency of the measurement. This makes a request for the size of the outer 

cavity – it should be suitably large to accommodate sufficient cavity modes. When selecting 

the outer cavity for the measurement, its size should be carefully considered. 
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Figure 5.9 The comparison of SETD, 2 (10 source stirring positions) and SETD, 2 (360 mode 

stirring positions). 
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5.5 Discussions and Conclusion 

In this chapter, the two-antenna methods for the SE measurement using the nested RC in both 

the frequency domain and the time domain have been presented. These two-antenna methods 

have simplified the measurement setup and improved the measurement efficiency. It is 

demonstrated that the measured SEs using the proposed two-antenna methods and the 

conventional three-antenna method agree well. The time-domain method goes to convergence 

much faster than the frequency-domain methods. Consequently, in the time domain, fast and 

accurate measurement can be realized by using the source stirring technique, which will 

result in fast SE measurement in reality. Furthermore, in the time-domain approach, by 

replacing the RC with a suitable conducting cavity (electrically large) and using the source 

stirring technique, the hardware requirement will be greatly reduced. The aforementioned 

measurement methods are compared. It is found that the time-domain method outperforms 

the frequency-domain method with much higher measurement efficiency and much lower 

hardware requirement. 

Note that the proposed methods are based on the assumption that both the RC and the EUT 

are well stirred, if not, the measured power transfer function and PDP will be of considerable 

errors. Hence, the measured SE will be inaccurate. Another point that should be noted is that 

high-efficiency antennas should be used for the time-domain method, i.e., the loss of the 

antennas used in the measurement should be negligible. Otherwise, the measured PDP will be 

influenced by the loss of the antennas and (5.20) is no longer valid. However, in the 

frequency domain, as can be seen from (5.4), (5.5) and (5.6), the antenna efficiency has been 

calibrated out in the net power transfer function. Thus, it is not necessary for the antennas to 

be of high efficiency. Moreover, the proposed methods are general for SE measurement no 

matter the SE is low or high. The measurement uncertainty is only determined by the 

dynamic range of the VNA. When the EUT is well shielded, the power coupled from the RC 

into the EUT will be very small. Consequently, S31 will be very small. Under this 

circumstance, The VNA used in the measurement should have a large dynamic range to 

measure the small S31 accurately. Or, the measured SE could be of big error. Finally, during 

the measurement, the antennas (especially the one in the EUT) should be placed away from 
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the conducting walls of the cavities (at least quarter-wavelength distance from the nearest 

walls for the lowest frequency) to avoid the boundary effect [25], [26]. 
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Chapter 6: Antenna Array Efficiency Measurement 

 

6.1 Introduction 

As mentioned in Chapter 1, RCs can be used for the characterization of DUTs, such as 

antennas or wireless devices, and for the EMC testing. Chapter 3 to Chapter 5 have 

considered the EMC testing/measurement in RCs. In this chapter, the characterization of 

DUTs using RCs will be considered – antenna array efficiency measurement. 

The efficiency of an antenna array is an important indicative measure of the merits of a given 

design. Conventionally, the efficiency measurement of an antenna array is conducted in an 

AC with the pattern integration method [1]. However, the measurement setup of this method 

is complicated and the measurement uncertainty is usually high (>10%) [1]. Over the past 

few years, the RC is becoming a prevalent alternative facility for performing radiated power 

measurements of either an antenna or a DUT [2] – [7]. It is very applicable to determine the 

efficiency of antennas. 

In [8], the efficiency of an antenna array was measured with the reference antenna method in 

an RC. In this approach, to make the array work in an “all-excited” manner, a power divider 

is used to excite the feeding ports of the array elements simultaneously, that is, all the array 

elements are excited through a power divider by merely a single excitation source.  Thus, the 

efficiency measurement of the entire array can be effectively treated in a manner similar to a 

single port antenna, which would simplify the measurement procedure and reduce the overall 

measurement time. Because of the introduction of the power divider that is external to the 

array under test, the consequent insertion loss has to be calibrated out. In [8], to measure the 

insertion loss of the power divider, all outputs except the one were terminated in impedance-

matched loads and the transmission coefficient between the input and the one output was 

measured. Then the measurement proceeded in turn for each output (the insertion loss was 

measured in the condition of 50 Ohm loads). It is correct for the antenna array that each 

element is well-matched but it could be a problem when some elements are not well-matched 

because the reflection from the array elements could contribute to the insertion loss of the 

power divider, which will result in an inaccurate evaluation of the array efficiency. 
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In this chapter, it is shown that the array efficiency can be obtained accurately using a power 

divider even when the elements of the array are not well-matched with the power divider. 

This is realized by introducing proper attenuators between the array elements and the power 

divider to alleviate the effect of the reflected power from the array to the insertion loss of the 

power divider. The theoretical investigation is detailed. Simulations and measurements are 

conducted to validate the effectiveness of the proposed method. 

 

 

6.2 The Problem 

As mentioned above, there is a problem with the existing method [8] for the efficiency 

measurement of an antenna array which is hard to reveal it directly and clearly. However, it 

can be much easier and clearer to start the analysis from a single antenna and then extend it to 

an antenna array. Thus, the progressive steps in the problem-solving process will be made 

explicit. 

 

 

6.2.1    Single Antenna Case 

In the single antenna case, a sleeve dipole antenna was selected as an AUT. A 5-dB RF 

attenuator was connected to the AUT to introduce specific insertion loss, as shown in Figure 

6.1(a). Measurements were performed from 2.6 to 2.8 GHz in the RC at the University of 

Liverpool. In this measurement, the reference antenna method was adopted to obtain the 

radiation efficiency and the total efficiency of the AUT. Two double-ridged waveguide horn 

antennas were used as the transmitting antenna (SATIMO® SH 2000) and the reference 

antenna (Rohde & Schwarz® HF 906), respectively. The antennas were connected to a VNA 

via cables running through the bulkheads of the chamber. During the measurement, the two 

stirrers were moved simultaneously and stepwise to 360 positions (1 degree for each step). At 

each mode stirring position, a full frequency sweep was performed using the VNA and the S-

parameters were collected. In this measurement, 10,001 points were sampled in the measured 

frequency range. The measurement setup is shown in Figure 6.1(b).  
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(a) 

 

(b) 

Figure 6.1 Measurement setup of the efficiency of a dipole antenna: (a) AUT with a 5-dB 

attenuator, (b) measurement setup in RC. 

 

 

The measurement procedure is given as follows. 

Step1:  Calibrate the VNA including the cables according to the standard calibration 

procedure. 
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Step2:  Place the AUT, the reference antenna, the transmitting antenna and the 

supports inside the RC to keep the chamber loss constant. 

Step3:  Connect the AUT to port 1 of the VNA and the transmitting antenna to port 2 

of the VNA, terminate the reference antenna with a 50 Ω load and record the 

full S-parameters for each stirring position. 

Step4:  Disconnect the AUT from port 1 of the VNA and terminate it with a 50 Ω load. 

Connect the reference antenna to port 1 of the VNA and the transmitting 

antenna is kept connecting to port 2 of the VNA. Record the full S-parameters 

for each stirring position. 

The radiation efficiency of the AUT (    
   ) is then calculated using the reference antenna 

method [9] – [11] 
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where     
    is the radiation efficiency of the reference antenna. The quantities 〈|     
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〉 and 

〈|     
   

|
 
〉 represent the stirred energy contributions of    

    and    
   

, respectively [4].    
    

and    
   

  are the transmission coefficients when the VNA port 1 is connecting to the AUT 

and the reference antenna, respectively.    
    and    

   
 are the reflection coefficients of the 

AUT and the reference antenna, respectively. IL is the insertion loss introduced by the 

attenuator (5 dB here). The measurement results are shown in Figure 6.2. As can be seen, 

when the AUT is matched very well (S11 is approximately below -15 dB in this case), the 

measured radiation efficiency agrees well with the real radiation efficiency (the real 

radiation/total efficiency was measured with the conventional reference antenna method 

without the attenuator which should be accurate), shown as the shaded band. However, when 

the AUT is not well matched, considerable errors may occur (the maximum error is 

approximately 25% in this case). The reason can be explained as follows: when the AUT is 

very well matched,    
      and    |〈   

   〉|    , which means     
    is not easily 

influenced by    
   . The contribution of    

    to     
    is negligible. However, when the AUT 

is not well matched, the contribution of    
    to     

    cannot be neglected. Actually, the 
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measured    
    is not the real reflection coefficient of the AUT because of the influence of the 

introduced insertion loss. Therefore, the radiation efficiency is not measured correctly. This is 

because the precondition of (6.1) is that the antenna is well matched with the attenuator. 

 

Figure 6.2 Comparison of the measured radiation efficiency and real radiation efficiency of 

the sleeve dipole antenna with a 5-dB attenuator, along with the antenna S11. 

 

 

To show this problem quantitatively, an equivalent model in Figure 6.3 is considered, where 

Ps is the power supplied to the antenna, Pb is the power reflected back at the reference plane 

and Pr is the power radiated. The relationship between Pb and Ps can be expressed as 

         |     
   |

 
                                                             

where IL is the insertion loss (in linear form) of the attenuator and      
    is the real reflection 

coefficient of the AUT in free space. (6.2) can be rewritten as 

|   
   |  |     

   |
 
                                                                

where 
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|   
   |      ⁄                                                                    

is the measured reflection coefficient at the reference plane. 

 

 

Figure 6.3 The equivalent model. 

 

 

The radiated power Pr is linked to the supplied power Ps by 

            |     
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where     
    is the real radiation efficiency of the antenna. The corresponding transformation 

of (6.5) is 
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where 

    
        ⁄                                                                       

is the measured total efficiency at the reference plane. 

For the reference antenna method, it can be derived 
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where 
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)      

                                                     

Substituting (6.3), (6.6), (6.8) and (6.9) into (6.1) gives 
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Thus, the modified equation is mathematically derived. As can be seen from (6.10), when 

there is no insertion loss (IL = 1) or the insertion loss is negligible (IL → 1). (6.10) is 

equivalent to (6.1). However, when the insertion loss is large, there is a big difference 

between (6.1) and (6.10). That is, when the insertion loss is large, if (6.1) is used to calculate 

the efficiency of the AUT, considerable errors will occur. The comparison of the calculated 

radiation efficiency using (6.1) and (6.10) and the real radiation efficiency is shown in Figure 

6.4. 

 

Figure 6.4 The comparison of the measured radiation efficiency using (6.1) and (6.10) and 

the real radiation efficiency. 
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Figure 6.5 Comparison of the real total efficiency and the measured total efficiency. 

 

 

It can be seen that the radiation efficiency calculated using (6.10) seems closer to the real 

radiation efficiency in most of the frequency span than that calculated using (6.1). But it does 

not agree well with the real radiation efficiency as expected. At some frequency bands, say, 

2.60 – 2.64 GHz, there is still significant error between the measured radiation efficiency and 

the real radiation efficiency. This error is caused by the imperfection of the transition section 

between the antenna and the attenuator or the attenuator and the cable. To be more specific, 

when the AUT is connected with the attenuator, the reflection coefficient measured at the 

reference plane is very small. Thus, it is easily affected by the mismatch caused by the 

imperfection of the transition section. A small mismatch of the transition section may cause a 

big variation of the reflection coefficient measured at the reference plane. Therefore, it would 

be very difficult to calibrate the influence of the insertion loss to S11 of the AUT in practice. 

Thus, in reality, the radiation efficiency is hard to be measured accurately when there is 

insertion loss between the AUT and the feeding port. However, S12 is not easily affected by 

the small mismatch of the transition section because this mismatch is negligible compared 

with the insertion loss caused by the attenuator. Therefore, the total efficiency can be 

measured correctly because the total efficiency     
    depends only on    

    while not on    
   , 
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as indicated in (6.11). The comparison of the real total efficiency and the measured total 

efficiency are shown in Figure 6.5. It can be seen that the results are in reasonable agreement. 

    
    [

〈|     
   |

 
〉

〈|     
   

|
 
〉
    |〈   

   〉|
 
  

 

  
]      

                                  

 

 

6.2.2    Antenna Array Case 

When measuring the efficiency of an antenna array, to make the array work in an “all-

excited” manner, a power divider is normally adopted to excite the feeding ports of the array 

elements simultaneously [8], [12], i.e., all the array elements are excited through a series of 

power dividers by merely a single excitation source. Thus, the efficiency measurement of the 

entire array can be effectively treated in a manner similar to a single port antenna. The power 

divider is such a network with the property of appearing lossless when the output ports are 

matched and only the reflected power from the output ports is dissipated [13]. The reflected 

power will be consumed by the isolation resistance (Riso) in the power divider, as can be seen 

in Figure 6.6. 

 

Figure 6.6 A typical 2-way Wilkinson power divider in microstrip line format. 
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Therefore, the insertion loss of the power divider depends on the impedance of the external 

device. When the elements of the antenna array are well matched, very small amount of 

power will be reflected from each element and the insertion loss of the power divider can be 

neglected. However, when the elements are not well matched, a large amount of power will 

be reflected from each element and then dissipated on the Riso, thus the insertion loss can be 

very large. Even worse, unlike the single antenna case, the insertion loss of the power divider 

caused by the reflection from the antenna array cannot be quantified because it is not possible 

to know how much power has been dissipated on Riso. Therefore, the measurement problem 

caused by the insertion loss will become more complicated. Neither the radiation efficiency 

nor the total efficiency can be measured accurately when the elements of the antenna array 

are not well matched. 

 

 

6.3 Improved Method 

From the above analysis, it is known that it is difficult to quantify the insertion loss of the 

power divider when the external device is not well matched. In this case, it is useful to try to 

minimise the dissipated power on Riso of the power divider, i.e., minimise the reflected power 

from the antenna array. In this section, we propose to introduce an attenuator of a proper 

value between each array element and each power divider port. Actually, by introducing an 

attenuator, the effects of mismatch between the array elements and the power divider ports 

could be minimized. Thus, the use of the attenuator allows transferring the power that should 

have been dissipated on Riso to the attenuator. To validate this idea, field-circuit co-simulation 

is employed in CST (Computer Simulation Technology) Microwave Studio in the frequency 

range of 2.0 – 3.5 GHz. A two-dipole array is adopted as an antenna under simulation, as can 

be seen in Figure 6.7. In the two-dipole array, one element is 53.4 mm long and the other is 

46.5 mm long. The spacing between these two elements is set to be 25.4 mm. The material 

for making the array is PEC. The reflection coefficients, the phase of the reflection 

coefficients and the transmission coefficients of the array are shown in Figure 6.8. As can be 

seen, S11 and S22 are interlaced (both in amplitude and phase), which ensures that there will be 

power loss on the Riso. Another thing that should be noted is that S21 and S12 are very small 
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(below -15 dB), which means the mutual coupling between the two dipole elements is 

negligible. 

 

Figure 6.7 The two-dipole array used for simulation in CST. 

 

 

Figure 6.8 The simulated S-parameters of the two-dipole array. 
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In practice, the mutual coupling between elements is an importance issue that needs to be 

carefully considered in an antenna array. In this section, the impact of the mutual coupling to 

the validity of the proposed method is studied as well and will be discussed later. The 

schematic of the field-circuit co-simulation model is given in Figure 6.9. To obtain the power 

loss on the Riso, a current probe P1 is introduced to monitor the current on the Riso. The 

feeding power from port 1 is 1 W. The attenuation of the attenuators is tuned stepwise from 0 

dB to 10 dB (2 dB per step). The power consumed on the Riso is shown in Figure 6.10. Two 

things can be identified from this figure. First, because of the mismatch of the array elements, 

there exists power loss on Riso (when the attenuation is zero, the power consumed is not zero). 

Second, with the increase of the attenuation, the power consumed on Riso will decrease as 

expected. When the attenuation is 10 dB, the power consumed on the Riso will be always 

below 0.002 W, that is, only less than 0.2% power will be consumed by Riso. 

 

 

Figure 6.9 Schematic of the circuit. 
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Figure 6.10 Simulated power consumed on the isolation resistance of the power divider for 1 

W input power with different attenuators. 

 

 

From the above simulation analysis, it can be seen that the attenuator can help to reduce the 

power loss on the Riso. Because the attenuation value is exactly known, the insertion loss 

caused by the attenuator can be calibrated out for the total efficiency measurement. However, 

the radiation efficiency measurement is still a problem because the effect of the imperfection 

of the transition section between the antenna and the attenuator or the attenuator and the cable 

is hard to remove, as discussed in Section 6.2. In the following part, it will demonstrate that 

the radiation efficiency can be measured accurately using the proposed method. 

To demonstrate the effectiveness of the proposed method, a measurement was performed in 

our RC. A 2-way 0° power divider (Mini-Circuits® ZAPD-4-S+) with a voltage standing 

wave ratio (VSWR) < 1.33:1 from 2.0 – 4.2 GHz was employed in this study. The spacing of 

the two output ports is 25.4 mm. The AUT in this study is a two-dipole array consisting of 

two parallel dipole elements with the spacing of 25.4 mm. The S-parameters of the two dipole 

elements are shown in Figure 6.11. The power divider is connected to the AUT to feed the 

two dipole elements with equal weights, as can be seen from Figure 6.12. 
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Figure 6.11 Comparison of the measured total efficiency of the two-dipole array with the 

conventional method and with the proposed method. 

 

 

Figure 6.12 The two-dipole array connected with the 2-way power divider. 
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The measurement was conducted in the frequency range of 2.0 – 3.5 GHz. The reference 

antenna method is adopted in this measurement. The measurement setup and measurement 

procedure are the same as detailed in Section 6.2.1. The comparison of the measured total 

efficiency of the two-dipole array with the conventional method and with the proposed 

method is shown in Figure 6.11.  It can be seen that, in the frequency range of 2.0 – 2.6 GHz 

and 3.1 – 3.5 GHz, there is not much difference of the amplitude and phase between S11 and 

S22. Therefore, very little power will be consumed on the Riso. Thus, the total efficiency 

measured with the conventional method and with the proposed method agrees well. However, 

in the frequency range of 2.6 – 3.1 GHz, there is a significant difference of the amplitude or 

phase between S11 and S22, i.e., a considerable amount of power will be consumed by Riso. In 

this case, the IL in (6.11) cannot be accurately obtained. The IL of the power divider 

measured (using the method in [8]) is not correct because it is accurate only when the power 

divider ports are terminated with impedance-matched loads, i.e., no reflection occurs. Thus, 

considerable errors could occur if the conventional method is adopted for the not-well-

matched case. Conversely, for the proposed method, the IL is dominated by the attenuators 

and the contribution of the power divider to the IL can be neglected. Besides, the reflected 

power from the array elements will be attenuated by the attenuators as well. Hence, the IL of 

the power divider including the reflection effect will have little influence on IL in (6.11). As 

can be seen in Figure 6.11, the total efficiency measured using the conventional method has 

obvious errors compared with that measured using the proposed method in the frequency 

range of 2.6 – 3.1 GHz where the amount of the power consumed on Riso is big. The 

maximum error can reach 15% at about 2.76 GHz, which cannot be neglected in practice. 

One thing to be noted is that there is always some uncertainty on the attenuation value of the 

attenuator. That is, the actual attenuation value is not always exactly the same as the nominal 

value. The attenuator used in the experiment has about ± 0.5 dB deviation in the frequency 

range of DC to 3.0 GHz [14]. To show the impact of the deviation of the attenuation value on 

the efficiency of the antenna array, the field-circuit co-simulation was conducted in the 

above-mentioned two-dipole array model in CST. The total efficiency of the two-dipole array 

was calculated with the attenuation value of 9.5 dB, 10 dB, and 10.5 dB, respectively. The 

results are shown in Figure 6.13.  
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Figure 6.13 The total efficiency of the two-dipole array in CST with different attenuation 

values. 

 

 

As can be seen, only a very small difference can be observed for the total efficiency of the 

array calculated with different attenuation values in the full frequency span. The maximum 

difference is only about 4% which is small. Thus, the impact of the uncertainty from the 

attenuation value of the attenuator can be neglected. Another point that may be concerned is 

the impact of the mutual coupling between antenna elements on the validity of the proposed 

method. To investigate this issue, a simulation is done using CST. In this simulation, the 

spacing between the two elements of the dipole array (as shown in Figure 6.7) is set to be 5.0 

mm, which results in significant increase in the mutual coupling of the two dipole elements.  

Thus, a new dipole array with higher mutual coupling is created. As can be seen from Figure 

6.14, the mutual coupling of the new dipole array exceeds -10 dB from 2.5 GHz to 3.45 GHz 

and can reach about -3 dB at 2.9 GHz. The array total efficiency predicted by CST (used as a 

benchmark here) and that obtained from the field-circuit model using our proposed method 

are plotted and compared in Figure 6.14. The total efficiency of the array with a low mutual 
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coupling (the array shown in Figure 6.7 and Figure 6.8) is also plotted for reference here. It 

can be seen that no matter the mutual coupling is high or low, the efficiency obtained from 

our proposed method does not have a big difference from the benchmark. The maximum 

difference is only about 3% for both high coupling and low coupling scenarios, which is very 

small. That is, the mutual coupling does not influence the validity of the proposed method. 

The proposed method is general for the efficiency measurement of antenna arrays regardless 

of the mutual coupling. 

 

Figure 6.14 The two-dipole array total efficiency predicted by CST and that obtained from 

the field-circuit model using our proposed method with low and high mutual coupling. 

 

 

Once the total efficiency has been known, the radiation efficiency can be calculated by 

excluding the impedance mismatch effect of the antenna elements. The radiation efficiency 

can then be expressed as 
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The array radiation efficiency, the array total efficiency and the mutual coupling S21 of the 

two dipole elements are shown in Figure 6.15. As can be seen, the radiation efficiency is 

reasonable and the mutual coupling between array elements is negligible.  

Generally, for an antenna array with N elements, the total efficiency can be obtained using 

(6.11) and the radiation efficiency will become 

     
    

  
 
 

∑ |   | 
 
   

                                                           

where i is the element number. 

 

Figure 6.15 The comparison of the radiation efficiency and the total efficiency of the two-

dipole array and the mutual coupling S21 of the two dipole elements. 

 

 

6.4 Measurement Uncertainty 

To quantify the measurement uncertainty, the method proposed in [15] has been adopted. As 

demonstrated in [15], the direct coupling can be a major source of uncertainty inherent during 

over-the-air measurements in an RC. Therefore, the direct coupling (normally expressed as 
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the Rician K-factor) should be as small as possible. Furthermore, the uncertainty model 

presented in [15] combines the random NLoS process and the random LoS process, and the 

combined standard deviation can be written as 

  
√     

        
 

√    
                                                             

where        √         ⁄ ,       √        ⁄  and K = average Rician K-factor, 

comprising the samples obtained from mechanical stirring, source stirring and polarization 

stirring.           and         are the NLoS independent samples and LoS independent 

samples, respectively. The Rician K-factor is calculated as follows 
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The standard σ is presented in dB scale by averaging the dB values of (   ) and (   ), 

i.e., 
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          is computed by applying the standardized circular autocorrelation to a 1D (one 

dimensional) array written using the received power samples during one rotation cycle [16]. 

The critical value r suggested by the standard [7] is applied. 

  
 

 
(  

    

     
)                                                                

where n is the number of the checked samples (120 in our case). The autocorrelation 

coefficient of the received power samples at the lowest frequency 2.0 GHz is shown in Figure 

6.16. As can be seen, it is always below the critical value for the lag number from 1 to 199, 

which means the 120 samples are independent.          can be calculated via 

                                                                               

where     is the number of antenna positions, and          is the number of independent 

antennas used in the chamber. In our case,               . The measured Rician K-
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factor and standard deviation in decibel format are shown in Figure 6.17. It can be seen that 

any contribution toward the uncertainty from LoS coupling is small and the overall 

uncertainty inherent in the measurements is acceptably low. 

 
 
Figure 6.16 The autocorrelation coefficient of the received power samples and the lag at 

which the correlation is lost (@ 2.0 GHz). 

 

 
 
Figure 6.17 Rician K-factor and standard deviation. 
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6.5 Discussions and Conclusion  

In this chapter, an improved measurement-based method to obtain the efficiency of an all-

excited antenna array in an RC has been presented. When measuring the efficiency of an 

antenna array in an RC, to make the array work in an “all-excited” manner, a power divider is 

normally employed to excite the feeding ports of the array elements simultaneously, that is, 

all the array elements are excited through a series of power dividers by merely a single 

excitation source. Thus, the efficiency measurement of the entire array can be effectively 

treated in a manner similar to a single port antenna, which would simplify the measurement 

procedure and reduce the overall measurement time. However, the introduction of the power 

divider will inevitably bring in insertion loss which needs to be quantified and calibrated out. 

In our previous work, the calibration of the insertion loss of the power divider was 

implemented by terminating all outputs in impedance-matched loads and measured the 

transmission coefficient between the input and the output port. By repeating this procedure 

for each output port, the S-parameters from the input to all output ports can be obtained. The 

total insertion loss is calculated by summating the measured transmission coefficient of each 

port. It is correct if each element of the antenna array is well matched. However, if some 

elements of the array antenna are not well matched, a considerable error may occur. The 

reason is, when the element is not well matched, a non-ignorable amount of the power fed to 

the element will be reflected back to the power divider and then dissipated on the Riso. The 

power dissipated on the Riso is very difficult to quantify. Therefore, the insertion loss of the 

power divider cannot be exactly known. 

In this study, the power dissipated on the Riso of the power divider has been minimized by 

introducing 10-dB attenuators between array elements and power divider ports. The 

attenuators would alleviate the reflection from the array antenna to the power divider and thus 

reduce the dissipated power on the attenuator. Moreover, because the attenuation of the 

attenuator is known, thus it can be calibrated out accurately. Simulations and measurements 

have been done to validate the proposed method. The results show that this method is 

effective to measure the efficiency of an antenna array especially for an antenna array that 

some elements of it are not well matched. It is advantageous especially for wideband antenna 

arrays where good impedance matching of array elements is difficult to maintain. 
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There are some points that need to be emphasized. Firstly, the attenuation of the attenuators 

used in the measurement should be large enough. Otherwise, when the attenuator is loaded 

with the mismatched antenna, the attenuation value will be changed [13]. In our case, a 10-dB 

attenuator is suitable. Theoretically, the bigger the attenuation, the less sensitive the 

attenuation to the impedance of the mismatched antenna, and consequently, the more accurate 

the measured results will be. However, considering the dynamic range of the VNA, the 

attenuation cannot be too large to ensure the accurate measurement of the S-parameters. 

Therefore, the attenuation value should be carefully selected before the measurement. 

Secondly, the proposed method is time-saving as the whole array is treated in a manner 

similar to a single port antenna, and also it is no need to calibrate the insertion loss of power 

divider. This is advantageous especially for arrays of a large number of elements. However, 

no verification of this method has been performed for such arrays, and it is left as a topic for 

future work. 

 

 

6.6 References 

 
[1] Y. Huang, “Radiation efficiency measurements of small antennas,” in Handbook of 

Antenna Technologies, ed by Z. Chen, Singapore: Springer, 2015. 

[2] D. A. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories. 

New York, NY, USA: Wiley-IEEE Press, 2009. 

[3] C. L. Holloway, H. A. Shah, R. J. Pirkl, W. F. Young, D. A. Hill, and J.  Ladbury, 

“Reverberation chamber techniques for determining the radiation and total efficiency 

of antennas,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1758-1770, Apr. 

2012. 

[4] C. L. Holloway, D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and J. Coder, 

“On the Use of Reverberation Chambers to Simulate a Rician Radio Environment for 

the Testing of Wireless Devices,” IEEE Trans.  Antennas Propag., Special Issue on 

Wireless Communications, vol. 54, no. 11, pp. 3167-3177, Nov. 2006. 



 

Chapter 6: Antenna Array Efficiency Measurement             P a g e  | 155 

 

 

[5] H. G. Krauthäuser, and M. Herbrig, “Yet another antenna efficiency measurement 

method in reverberation chambers,” in Proc. IEEE Int. Symp. Electromagn. 

Compat.,Jul. 25-30, 2010, pp. 536-540. 

[6] P.-S. Kildal, and K. Rosengren, “Correlation and capacity of MIMO systems and 

mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations 

and measurements in a reverberation chamber,” IEEE Commun. Mag., vol. 42, no. 12, 

pp. 104-112, Dec. 2004. 

[7] Electromagnetic Compatibility (EMC) part 4-21: Testing and measurement 

techniques-Reverberation chamber test methods, IEC 61000-4-21, 2003. 

[8] S. J. Boyes, Y. Zhang, A. K. Brown, and Y. Huang, “A Method to De-Embed 

External Power Dividers in Efficiency Measurements of All-Excited Antenna Arrays 

in Reverberation Chamber,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 1418-

1421, 2012. 

[9] K. Rosengren, and P.-S. Kildal, “Radiation efficiency, correlation, diversity gain and 

capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and 

measurement in reverberation chamber,” IEE Proc. Microw. Antennas Propag., vol. 

152, pp. 7-16, 2005. 

[10] G. le Fur, C. Lemoine, P. Besnier, and A. Sharaiha, “Performances of UWB wheeler 

cap and reverberation chamber to carry out efficiency measurements of narrowband 

antennas,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 332-335, 2009. 

[11] S. J. Boyes, P. J. Soh, Y. Huang, G. A. E. Vandenbosch, and N. Khiabani, 

“Measurement and Performance of Textile Antenna Efficiency on a Human Body in a 

Reverberation Chamber,” IEEE Trans. Antennas Propag., vol.61, no.2, pp. 871-881, 

Feb. 2013. 

[12] M. V. Ivashina, M. N. M. Kehn, P.-S. Kildal, and R. Maaskant, “Decoupling 

efficiency of a wideband Vivaldi focal plane array feeding a reflector antenna,” IEEE 

Trans. Antennas Propag., vol. 57, no. 2, pp. 373-382, 2009. 



 

Chapter 6: Antenna Array Efficiency Measurement             P a g e  | 156 

 

 

[13] David M. Pozar, “Power dividers and directional couplers,” in Microwave 

Engineering, 4th ed., 2011, Singapore: Wiley, pp. 317-379. 

[14] [Online]. Available: http://uk.rs-online.com/web/p/products/2859551/?tpr=3. 

[Accessed: 04-Nov-2016]. 

[15] P. S. Kildal, X. Chen, C. Orlenius, M. Franzen, and C. S. L. Patane, “Characterization 

of Reverberation Chambers for OTA Measurements of Wireless Devices: Physical 

Formulations of Channel Matrix and New Uncertainty Formula,” IEEE Trans. 

Antennas Propag., vol. 60, no. 8, pp. 3875-3891, Aug. 2012. 

[16] F. Moglie, and V. M. Primiani, “Analysis of the Independent Positions of 

Reverberation Chamber Stirrers as a Function of Their Operating Conditions,” IEEE 

Trans. Electromagn. Compat., vol. 53, no. 2, pp. 288-295, May 2011. 

 



 

Chapter 7: Conclusions and Future Work                       P a g e  | 157 

 

 

Chapter 7: Conclusions and Future Work 

 

In this thesis, efficient measurement techniques in an RC have been discussed, including the 

efficient measurement of the averaged ACS with only one antenna, the rapid volume 

measurement method using the averaged ACS, the simplified SE measurement using the 

nested RC with two antennas, and the improved antenna array efficiency measurement in an 

RC. The efficient measurement is realized by using the enhanced backscatter effect or the 

robustness of the chamber decay time for averaged ACS, cavity volume, and SE 

measurement. And for the antenna array efficiency measurement, it has been pointed out the 

RC method is much more efficient than the conventional AC method. Our contribution is to 

make the measurement more accurate. 

To be more specific, the key contributions in each chapter are summarized as follows: 

Chapter 3: Averaged ACS measurement 

The commonly used RC technique for determining the averaged ACS of a lossy object 

requires two antennas and the radiation efficiency of the two antennas should be known. In 

this chapter, the one-antenna method in both the frequency domain and the time domain was 

presented [1]. The measurement setup is greatly simplified and moreover, in the time domain, 

the knowledge of the antenna efficiency is not required. From the experimental results, it is 

found that the measured averaged ACSs by the three methods the conventional two-antenna 

method, the proposed frequency-domain one-antenna method, and the proposed time-domain 

one-antenna method are in good agreement. It is found that the time-domain method 

converges much faster than the frequency-domain methods because of the robustness of the 

chamber decay time (which is only determined by the diffuse loss of the chamber). A rapid 

and accurate measurement can be achieved in the time domain based on this finding by using 

source stirring technique. Furthermore, in the time-domain approach, the RC can be replaced 

by a suitable electrically large conducting cavity, which will further reduce the hardware 

requirement. The method was validated in the RC by setting the paddles stationary and the 

results agree well with that measured in the RC using mechanical stirring. It is demonstrated 



 

Chapter 7: Conclusions and Future Work                       P a g e  | 158 

 

 

that the time-domain method is much more efficient and its hardware requirement is much 

lower than the frequency-domain method. 

Chapter 4: Cavity volume measurement using statistical EM theory 

In this chapter, an efficient and effective method for measuring the volume of a large cavity 

is proposed [2]. A piece of RAM with a known averaged ACS is selected to aid the 

measurement. The cavity volume can be obtained by measuring its decay time constants with 

and without the RAM. Both the theory and measurement studies are conducted. It is found 

that the measurement can be completed rapidly with a simple measurement setup using the 

proposed method, which makes it an attractive method for the cavity volume measurement. 

Moreover, by using acoustic waves, the proposed method can be generalized and the cavity 

under test does not have to be metallic. 

Chapter 5: SE measurement using nested RC 

The conventional method for SE measurement of a physically small but electrically large 

cavity in an RC requires three antennas. And the efficiency of the two receiving antennas 

should be known. In this chapter, two-antenna methods for the SE measurement using the 

nested RC were proposed in both the frequency domain and the time domain [3]. The 

measurement setup is simplified and the measurement efficiency is improved. It is 

demonstrated that the measured SE using the proposed two-antenna methods and the 

conventional three-antenna method agrees well. The time-domain method converges much 

faster than the frequency-domain methods. Consequently, in the time domain, fast and 

accurate measurement can be realized by using the source stirring technique, which will 

result in fast SE measurement in reality. Furthermore, in the time-domain approach, by 

replacing the RC with a suitable conducting cavity (electrically large) and using the source-

stir technique, the hardware requirement will be greatly reduced. The aforementioned 

measurement methods are compared. It is found that the time-domain method outperforms 

the frequency-domain method with much higher measurement efficiency and much lower 

hardware requirement. 

Chapter 6: All-excited antenna array efficiency measurement 
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Chapter 6 proposes an improved measurement-based method to obtain the efficiency of an 

all-excited antenna array in an RC [4]. When measuring the efficiency of an antenna array in 

an RC, to make the array work in an “all-excited” manner, a power divider is normally 

employed to excite the feeding ports of the array elements simultaneously, that is, all the 

array elements are excited through a series of power dividers by merely a single excitation 

source. Thus, the efficiency measurement of the entire array can be effectively treated in a 

manner similar to a single port antenna, which would simplify the measurement procedure 

and reduce the overall measurement time. However, the introduction of the power divider 

will inevitably bring in insertion loss which needs to be quantified and calibrated out. The 

previous calibration method is correct when each element of the antenna array is well 

matched but not if some elements of the array antenna are mismatched. In this chapter, a new 

method to remove the insertion loss effect of the power divider by introducing attenuators 

between array elements and power divider ports was proposed. The attenuators would 

alleviate the reflection from the array antenna to the power divider and thus reduce the 

dissipated power on the power divider. Simulations and measurements have been done to 

validate the proposed method. The results show that this method is effective to measure the 

efficiency of an antenna array especially for an antenna array that some elements of it are not 

well matched. It is advantageous especially for wideband antenna arrays where good 

impedance matching of array elements is difficult to maintain. 

There are also some possible future works related to this thesis: 

Based on the conclusions drawn from above and taking into account the limitations of the 

work present in each chapter, future work can be carried out in the following area. 

From Chapter 3, the calculation of the ACS requires the difference in the net power transfer 

function (in the frequency domain) or the chamber decay time (in the time domain) with and 

without the OUT. If the loss of the OUT is too small compared with that of the chamber itself, 

it will be very difficult for the chamber to distinguish the difference of the loss, which will 

result in the inaccuracy of the measurement. How to measure the ACS of a small OUT in a 

big RC is still a problem. Is there any method to improve the “sensitivity” of the RC? This 

work is still under investigation. Another possible future work may include the real 
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application of the proposed one-antenna method for, e.g., the measurement of the ACS of 

human bodies in the RC [5]. 

In Chapter 4, the condition of the proposed method is that the environment inside the cavity 

under test should be reverberant, i.e., the cavity should not be too lossy. How to realize a 

statistically uniform field inside a relatively lossy cavity is still a problem. Another issue is if 

the cavity is partially filled with liquid or dielectric materials either absorb or reflect waves 

completely (inhomogeneous cavity), the wave velocity is changed which could increase the 

measurement error [6]. How the inhomogeneous materials affect the results is still unknown. 

Finally, another possible extension of this work would be on-site measurement practice. 

From Chapter 5, the assumption of the proposed method is that the EM field inside both the 

RC and the EUT is statistically uniform. What if the EUT is very lossy? When the EUT is 

very lossy, it is very difficult to stir the field inside the EUT well. Hence, the measured SE 

will be inaccurate. Another problem is when the EUT is shielded very well the power coupled 

from the RC into the EUT will be very small, even out of the VNA dynamic range sometimes. 

Under this circumstance, a power amplifier is probably required to measure the SE accurately. 

In this chapter, only a two-coupled-cavities scenario was considered. What will the results be 

for a multiple-couple-cavities scenario (i.e., three or more cavities coupled)? The relevant 

theory has been established in [7], but more practical investigations or applications are 

needed. The industrial applications of the proposed simplified methods for real reverberant 

environments such as the below-deck compartments in ships and aircraft cabins and bays are 

also possible future work [8]. 

In Chapter 6, the time-saving merit of the proposed method is advantageous especially for 

arrays of a large number of elements. For now, no verification of this method has been 

performed for such arrays, and it is left as a topic for future work. 
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Appendix A. Vector and Dyadic Analysis 

In a rectangular coordinate, a general vector    can be written as 

    ̂    ̂    ̂                                                            

where ( ̂  ̂  ̂) denotes the unit vector for the rectangular coordinate system. 

Vector addition is defined as 

    ⃗   ̂         ̂         ̂                                    

Scalar multiplication or dot product is defined as 

    ⃗                                                                   

Vector multiplication or cross product is defined as 
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The frequently used differential operators are the gradient (  ), divergence (    ), curl 

(    ), and Laplacian (   ). In a rectangular coordinate, the vector operator del ( ) is 
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and the differential operations are written as [1] 
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Vector identities exist for the following dot products, cross products, and differentiation [1] – 

[3] 

   ( ⃗    )   ⃗  (     )     (    ⃗ )                                         

   ( ⃗    )  (     ) ⃗  (    ⃗ )                                                
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  (   )                                                                      

  (    )                                                              

                                                                        

  (    )                                                                 

Dyadic identities also exist for the following dot products, cross products, and differentiation 

[2] 
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Appendix B. Probability Density Function 

For a random variable g, the probability that g lies within a small range between g and g + dg 

can be written as f(g)dg. The function f(g) is called the probability density function (PDF). 

Since probabilities cannot be negative, all PDFs must be positive or zero 

f(g) ≥ 0,      for all g                                                   (B.1) 

PDFs do not have to be continuous or even finite. However, since the random variable g must 

lie between -∞ and +∞, the following integral relationship must hold [4] 

∫         

 

  

                                                                  

The mean value or ensemble average (normally designated µ) of g is 〈 〉  which can be 

determined from the following integral using the PDF 

  〈 〉  ∫        

 

  

                                                          

The variance (frequently designated as σ
2
) of g is defined as 〈      〉. It can also be 

determined from the PDF as 

〈      〉     ∫            

 

  

                                         

The standard deviation σ is the square root of the variance. 
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