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Abstract

Cloud computing provides users with computing resources on demand. Despite the recent
boom in adoption of cloud services, security remains an important issue. The aim of this
work is to study the structure of cloud systems and propose a new security architecture in
protecting cloud against attacks. This work also investigates auto-scaling and how it affects
cloud computing security. Finally, this thesis studies load balancing and scheduling in cloud
computing particularly when some of the workload is faulty or malicious.

The first original contribution proposes a hierarchical model for intrusion detection
in the cloud environment. Finite state machines (FSM) of the model were produced and
verified then analyzed using probabilistic model checker. Results indicate that given certain
conditions the proposed model will be in a state that efficiently utilize resources despite the
presence of attack. In this part of work how cloud handles failure and its relationship to
auto-scaling mechanisms within the cloud has been investigated.

The second original contribution proposes a lightweight robust scheduling algorithm for
load balancing in the cloud. Here some of the traffic is not reliable. Formal analysis of the al-
gorithm were conducted and results showed that given some arrival rates of both genuine and
malicious traffic average queues will stabilize, i.e. they will not grow to infinity. Experimental
results studied both queues and latency, and they showed that under the same conditions
naive algorithms do not stabilize. The algorithm was then extended to decentralized settings
where servers maintain separate queues. In this approach when a job arrives, a dispatching
algorithm is used to decide which server to send it to. Different dispatching algorithms were
proposed and experimental results indicate that the new algorithms perform better than some
of the existing algorithms. The results were further extended to heterogeneous (servers with
different configuration) settings and it was shown that some algorithms that were stable in
homogeneous setting are not stable under this setting. Simulations monitoring queue sizes
confirmed that some algorithms which are stable in homogeneous setting, are not stable
under this setting.

It is hoped that this study with inform and enlighten cloud service providers about new
ways to improve the security of the cloud in the presence of failure/attacks.
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Chapter 1

Introduction

1.1 Overview

The work in this thesis falls within the area of cloud computing security. More specifically, the
aim is to study the structure of cloud defense systems and how security affects performance
of workload management of cloud systems.

Cloud computing is a large scale distributed computing paradigm that is mainly driven by
economies of scale, where a pool of abstracted, virtualized, dynamically-scalable, managed
computing resources (e.g. networks, servers, storage, applications, and services) are delivered
on demand to external customers over the Internet [6]. Whereas Mell et. al. [7] defined cloud
computing as a computing paradigm that provides convenient, on-demand network access to
a shared pool of configurable computing resources, which can be rapidly provisioned and
released with minimal management effort or service provider interactions.

From the above definitions it can be observed that cloud computing inherits several prop-
erties from traditional computing paradigms such as Grid Computing [6], and it is delivered
over the Internet. Therefore the security threats that affect the internet and other computing
paradigms also affect cloud computing. Cloud computing however has its unique challenges
due to it distinctive properties, such as dynamicity, scalability, size and heterogeneity [8].

The organization of this introductory chapter is as follows: Research questions, aims
and objectives of this thesis are provided in Section 1.2. Section 1.3 provides motivation
behind the research conducted in this thesis. The main research contribution and evaluation
process are summarized in Section 1.4, then the summary of work published as a result of
this research is summarized in Section 1.5. Finally the organization of the entire thesis is
presented in Section 1.6.
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1.2 Research Questions, Aims and Objectives

This section discusses the aims and objectives of this thesis. It concludes by proposing the
research questions that this thesis will attempt to answer.

1.2.1 Aims

• Propose a hierarchical model for detecting intrusions in the cloud.

• Propose a robust scheduling algorithms for load balancing in cloud, these algorithms
should efficiently allocate cloud resources even if some requests are faulty or malicious.
Both centralized and decentralized approaches will be considered. The research
will initially consider homogeneous data centers, but because data centers can be
heterogeneous, this work will extend to heterogeneous data centers.

1.2.2 Objectives

• Study cloud computing security issues.

• Study cloud computing architecture.

• Study scheduling and load balancing techniques in the cloud.

• Study auto scaling techniques and how they are applied by cloud computing providers

• Propose a hierarchical model for intrusion detection in the cloud.

• Propose a new approach to auto-scaling in the cloud

• Compare the proposed models with existing approaches

• Propose scheduling algorithm for load balancing in the presence of failures and attacks.

• Analyze the propose algorithm.

• Conduct experiments to compare with naive algorithms

• Extend the proposed model to decentralized approaches and conduct experiments to
compare different approaches.

• Further extend to homogeneous cloud and conduct experiments to compare with
homogeneous setting.
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1.2.3 Research Questions

This thesis aims to answer the following two main research questions, they are:

• How can the structure of cloud defense systems improve security?

• How unreliable or malicious workload affects stability and reliability of cloud data
center?

1.3 Motivations

A strong motivation for this work comes from a number of papers. The work started by
reading seminal papers on cloud computing, such as Mell et. al. [7], work by Weiss [9]
and Armbrust et al. [10] that provide the foundation of cloud computing. Liu et. al [11]
introduced cloud computing reference architecture. Influential papers on security of cloud
computing that shaped the direction of this research are [12, 8, 13, 14].

Mulguri et. al [15] proposed a stochastic model for load balancing in the cloud. The
authors showed that given certain arrival rates stability of queues can be achieved, this paper
lays strong foundations and gives directions in the area of workload management in the cloud.
The paper Somani et. at [5] wrote a survey paper which suggested that there is a relationship
between workload management and security (especially availability) of cloud computing
systems.

1.4 Research Contribution and Evaluation Process

There are two main contributions of this research to the body of knowledge. The first
contribution is the design and analysis of a hierarchical model for intrusion detection in the
cloud. The evaluation process of the hierarchical model was done by creating finite state
machines and the stable state probabilities were calculated using the probabilistic model
checker Prism [16].

The second contribution is a scheduling algorithm for load balance in cloud, which is
able to efficiently schedule jobs and maintain stable queues despite the presence of failures
and attacks. Both heterogeneous and homogeneous data centers were considered. The
scheduling algorithm was analyzed theoretically and proofs where provided. Experiments
were also conducted to show stability of the algorithm compared with [15], algorithm with
naive security tool and algorithms without any security. Decentralized algorithms based on
the main scheduling algorithm were also compared where some showed trends of stability
while others did not.
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1.5 Publications

This research has resulted in publication of the following papers:

• Muhammed Abdulazeez, Pawel Garncarek, and Prudence W.H. Wong. Lightweight
framework for reliable job scheduling in heterogeneous clouds. In Proceedings of the
26th International Conference on Computer Communication and Networks (ICCCN-
IoTPST), pages 1–6, 2017. [1]

The work in this paper is presented in Chapter 7 of the thesis.

• Muhammed Abdulazeez, Dariusz R. Kowalski, Pawel Garncarek, and Prudence W.H.
Wong. Lightweight robust framework for workload scheduling in clouds. In Pro-
ceedings of the 1st International Conference on Edge Computing (EDGE), pages 1–4,
2017. [2]

The work in this paper is presented in Chapters 5 and 6 of the thesis.

• Muhammed Bello Abdulazeez, Dariusz R Kowalski, Alexei Lisista, and Sultan S
Alshamrani. Failure or denial of service? a rethink of the cloud recovery model. In
Proceedings of the 15th European Conference on Cyber Warfare and Security, page 1,
2016. [3]

The work in this paper is presented in Chapter 4 of the thesis.

• Muhammed Abdulazeez and Dariusz R Kowalski. Hierarchical model for intrusion
detection systems in the cloud environment. In Proceedings of the 14th European
Conference on Cyber Warfare and Security, page 319, 2015. [4]

The work in this paper is presented in Chapter 3 of the thesis.

1.6 Thesis Organization

The overall organization of the thesis is presented in this section. The first chapter is the
introductory chapter and presents the overview of the entire thesis.

Chapter 2 provides necessary background work to this research. It also presents a review
of the works that are related to this research. Some of the topics covered in this chapter
include: introduction to cloud computing, security issues of cloud computing, and load
balancing and scheduling in cloud computing data centers.

Chapter 3 presents a hierarchical model for intrusion detection in the cloud. This chapter
is the foundation of the thesis and proposes a novel approach in handling security issues
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of cloud computing environment. The proposed approach is presented as automata and the
steady state probabilities of the automata are computed to ensure that it will be in certain
’desired’ state given some attack scenario.

Chapter 4 analyses the relationship between load and security in cloud computing data
centers. Popular cloud computing service providers has been surveyed and analyses of
their auto-scaling features was done. A proposed approach of handling auto-scaling in the
presence of failure will be proposed and evaluated.

Chapter 5 proposes centralized approaches for scheduling jobs in cloud computing data
centers. A novel algorithm has been proposed that will consider some part of workload that is
malicious (or unreliable). Some scanning strategy (to detect malicious or unreliable packets
carrying job specification) will be proposed and it will be shown that given some input the
proposed strategy will produce stable queues while naive scanning strategy will not. Both
theoretical analyses and simulations will be conducted.

Chapter 6 extends the centralized approaches to decentralized approaches. Six differ-
ent decentralized implementations are evaluated using the proposed scanning strategies in
Chapter 5. It will be shown that some of the popular used decentralized implementations
are not stable while some of the proposed ones are. Non-preemption will be introduced,
i.e., when jobs start being processed they cannot be interrupted until they finish processing.
Comparison of the centralized and decentralized approaches will be done and comparison of
the preemptive and non-preemptive approaches will be conducted.

Chapter 7 presents decentralized algorithms for scheduling in heterogeneous cloud
computing data centers. In this chapter has been be shown that some algorithms that can
be stable for homogeneous data centers are unstable for heterogeneous data centers. Some
theoretical analyses has been provided, supported by simulations.

Chapter 8 provides the summary of the entire thesis, highlighting the main contribution
of the work in this thesis and proposing perspective areas for future.





Chapter 2

Security Issues of Cloud Computing

2.1 Overview

This chapter presents a review of the background work relevant to the results presented in this
thesis. The aim of this chapter is to critically examine current security challenges relating to
cloud computing and later to propose approaches to address some to the identified issues. The
areas that will be addressed are: the architecture of cloud defense system, auto-scaling and
how it affects cloud computing security, and finally job Virtual Machine (VM) scheduling
and how it affects security of cloud computing.

The rest of the chapter is organized as follows: Section 2.2 provides an overview of cloud
computing and, its security issues, while Section 2.3 describes some previously proposed
solutions to the security issues. Job scheduling in cloud computing is discussed in Section 2.4.
Finally, conclusion is presented in Section 2.5.

2.2 Introduction to Cloud Computing

2.2.1 Cloud Computing History

The history of Cloud Computing can be traced back to 1950s when users are able to access
central computers using dumb terminals, this technology is called Main Frame Comput-
ing [17], this makes economic sense because it provide shared access to resources. Then
came the virtualization technologies in the 1970s [18], these technologies make it possible to
execute several distinct computing environments within the same physical machine, thereby
taking mainframe computing to the next level. The next stage (in the 1990s) is the advent of
virutalized private networks where telecommunications companies provide users with shared
access to the same physical network infrastructure [19]. The notion of computing as a utility
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was envisioned by Computer Scientist John McCarthy in 1961 [20], cloud computing is seen
as realization of his dream. From the history above we can see that the cloud computing has
been in existence for a while but the word cloud computing is said to be first used by George
Favaloro and Sean O’Sullivan of Compaq [21].

2.2.2 Cloud Computing Definition

Cloud computing provides convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and services),
which can be rapidly provisioned and released with minimal management effort or service
provider interactions [7]. This enables companies to increase capacity or add capabilities
dynamically without investing in new infrastructure, training new personnel, or licensing
new software [22]. From the definition above it can be seen that the cloud has the following
characteristics:

• On-demand self-service: Resources are available when users request without the
need for human intervention.

• Broad network access: Access to computing resources through different devices such
as mobile phone, tablet, personal computers and any other devices with network access.

• Resource pooling: Resource assignment should not be fixed. There should be groups
of resources for several different users that can be used based on need (load of applica-
tions) and if users do not need the resources they should release them for others.

• Rapid elasticity: The amount of resources should be able to be scaled up or down
quickly based on the load of application.

• Measured service: The use of the service should be measured for payment and
monitoring purposes.

• Programmatic Access: Users should be able to access services using trusted Applica-
tion Programming Interfaces (API).

Cloud computing is an evolutionary outgrowth of existing computing approaches, which
build upon existing and new technologies. The three main delivery models are software as a
service (SaaS), infrastructure as a service (IaaS), and platform as a service (PaaS) [9, 23, 24].
According to [25, 26] there are three deployment models of cloud computing: Private,
Public and Hybrid Cloud, while it is being argued there are in fact four, adding Community
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Cloud [27, 11]. The four deployment models for cloud computing are briefly explained
below:

• Private. This is where the cloud infrastructure is solely within a single organization,
whether it is physically located within the organization or off premise.

• Community. Several organizations jointly construct and share the same cloud infras-
tructure as well as policies, requirements, values, and concerns.

• Public. This is the most common deployment model, where the cloud is used by the
public and solely owned by a third party organization. Several popular cloud services
are public e.g. Amazon EC2, Microsoft Azure, Google AppEngine and Rackspace.

• Hybrid. Here the cloud infrastructure is the combination of two or more of the cloud
models above.

2.2.3 Cloud Computing Security

The cloud computing architecture combines three layers of interdependent infrastructure,
platform and application [28]. Therefore, cloud computing and its services are becoming
more attractive target to potential intruders due to its distributed and open nature [8]. Several
studies have listed security as one of the key adoption issues of cloud computing [29–
33, 22]. This is proven by several attacks targeted at cloud computing services. According
to [34] cyber-criminals are moving to cloud. Top cloud computing service providers such
as Sony [35], Microsoft [36], Rackspace [37] and Amazon [38] were all targets of attacks.
Details of the features to these systems will be discussed in Chapter 4. Attacks targeted
at Internet service providers affect users’ ability to access cloud services, for example
cyber attack that targeted at an Internet traffic company Dyn in October 2016 also affected
Amazon [39]. Other criminals use cloud computing resources to lunch their attacks [40].

2.2.4 Denial of Service Attacks and Cloud Computing

The Confidentiality, Integrity and Availability (CIA) has been serving as the primary con-
ceptual model for information security [41]. Saltzer et al. [42] defined confidentiality as
unauthorized release of information, integrity as unauthorized modification of information
and availability as unauthorized denial of access to information. Notice that all the attacks
in Section 2.2.3 are aimed at unauthorized denial of access. This threatens one of the key
advantages of cloud computing by preventing legitimate access to services normally pro-
vided by victims [43]. These types of attacks are called Denial of Service attacks (DoS). A
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Distributed Denial of Service attack (DDoS) attack deploys multiple attacking entities to
prevent legitimate users from having access to system [44]. Figure 2.1 shows a scenario of
DDoS in the cloud. Application layer DDoS are derived from low layers, these attacks utilize
application layer protocols to overwhelm victim’s resources [45], for this reason they are
more undetectable [46]. With these threats to security of cloud computing there is a need for
tools to assist prevent or at least detect these attacks.

Figure 2.1 DDos attack scenario in cloud [5]

According to [5] auto-scaling, pay-as-you-go accounting and multi-tenancy are the three
major reasons for adoption of cloud computing services. The authors argued that these three
features are the reasons why attackers are successful in conducting DDoS attacks in clouds.
The feature that is of interest to this research is auto-scaling, it will be discussed in more
detail in subsequent chapters.

2.3 Intrusion Detection and Prevention Systems in Cloud

Intrusion Detection and Prevention System (IDPS) a tool that is used to improve security
in the cloud environment. Intrusion detection system is a system that aims to detect attacks
against computer systems and networks, or against systems in general, as it is difficult to
provide secure information and maintain them in such a state for the entire lifetime and for
every utilization [47, 48]. It becomes a prevention system when it not only detects attacks
but it takes some actions to stop the attacks [49] as well.
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To detect attacks two approaches can be used i.e., signature/knowledge or anomaly/behavior
based detection [50]. In signature based detection, the detection system contains information
about malicious/unreliable packets, when such packet is detected, alarm is raised or some
action is being taken. This type of detection mechanism generally have high detection rate but
tend to be slow because system needs to perform careful analyses of all possible malicious
behaviors [47, 51]. Anomaly based detection attempts to model normal behavior. Any events
which violate this model are considered to be suspicious [52].

On a quest to explore the cloud computing paradigm, there is a lot of research going
on around cloud computing security. Chonka et al. [13] proposed a cloud security defense
mechanism to protect cloud computing against HTTP-DoS and XML-DoS attacks. Placed at
the edge routers in order to be close to the cloud network, the Cloud Trace Back (CTB) tool
is used to locate the source of HTTP and XML DoS attacks and thereby reducing the risk of
that particular node attacking the same system again. It is worthy to note that the CTB does
not deal directly with the attacks, nor it prevents the attack messages from causing problems.
This is done with the assistance of the Cloud Protector. The cloud protector is a trained back
propagation Neural Network (NN), which helps to detect and filter HTTP and XML DoS
attacks. Therefore the CTB depends on the ability of the cloud protector to detect attacks
or it has to wait until an attack is successful before it can trace back the message. Because
all incoming requests were sent through the CTB, which is placed before the web server, all
packets were marked with Cloud Trace Back Mark (CTBM) tag within the CTB header. The
CTB (in [13]) performed well in identifying the source of the attack, but the drawback is that
is has to wait for an attack to occur before it can react (a reactive instead of proactive model).
This is because it relies on the cloud protector to identify an attack, the cloud protector had a
success rate of 91% with the miss rate of 9%. It took a minimum of 10 milliseconds (ms) to
discover an attack, while the worst result was around 135−140ms mark.

Vissers et al. [53] proposed DDoS Defense System for Web Services in Cloud Environ-
ment. This defense system is placed at the entrance of the network, the cloud system is
designed in such a way that it only listens to requests from the defense system. It starts by
analyzing the user application request: if the request is found to be malicious, it is simply
rejected. Otherwise, the request is passed on to the request handler and it is processed
routinely by the system. The results presented by the authors did not provide any quantitative
measure effectiveness of the system in detecting attacks, only that the system was able to
detect the attacks. However, they demonstrated clear effect of the defense system on the
attack as when malicious packets were sent to the server without the defense system, the
CPU usage spikes to over 90% in the server and remains at that level while when the defense
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system is activated the CPU usage spikes is 40% but within 10 seconds the usage stabilizes
down to under 20%.

Chonka et al. [54] also proposed another solution for Detecting and mitigating HX-DoS
attacks against cloud web services. The paper uses ENDER, which was an upgrade from
previous research converted to a cloud application It applies two decision theory methods
to detect attack traffic and mark attack message, namely CLASSIE and ADMU. CLASSIE
was built from Pre-mark decision of IDP. ADMU is making decisions about the likelihood
of message that has not been previously marked. According to the paper, ENDER was
able to achieve a 99% detection rate to 2%; false positive, this performance is, however
achieved under 50s which is a long time in the cloud environment. Another assumption is
that collected traffic is clean from cross traffic and other attack traffic other than HTTP and
XML based DoS.

Finally, Wang et al. [55] proposed exploiting Artificial Immune System to detect unknown
DoS Attacks in real time. All the three previously described approaches were tested on a
small low scale system. Therefore, this paper was studied to learn how DoS are detected in
large scale systems. Due to the fact that payload based approaches are effective in detecting
known attacks, but are less effective in detecting unknown attacks and payload analysis
is a computationally expensive task especially on high speed networks. They proposed a
detection scheme based on Artificial Immune Systems. The adopted Neighborhood Negative
Selection (NNS) as the detection algorithm to detect unknown DoS attacks, and identify
attack flows of massive traffic. To detect malignant traffic NNS extracts feature vectors
for normal traffic to build a set. Then this set is used to divide shape space. NNS divides
[0, 1] n into some fully adjacent but mutually disjoint neighborhoods. The union of these
neighborhoods is the shape space of NNS. After division, the feature vectors of the normal
flows are mapped into shape space. The authors used DARPA 1998 offline data-sets to test
the system. The data sets consist of seven weeks of training data and two weeks of testing
data. The system was able to detect about 91% of the attack traffic with some false negatives.
Because normal data were used to train the system all attacks that were detected are unknown,
which is impressive.

2.4 Job Scheduling in Cloud Computing

The aim of efficient task scheduling mechanisms in the cloud is to enhance overall perfor-
mance. This is done by meeting users’ requirements and improving resource utilization [56].
A lot of work has been done to improve scheduling in the cloud environment. Some of the
major works are discussed below.
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A class of algorithms look at an arriving job then decide which server to send the job for
processing. The most widely used is the one that serves the job that needs most amount of
resources first. This is generally called Best-Fit. Wang et al. [57] proposed a probabilistic
multi-tenant model for virtual machine mapping in cloud systems, where they used Max-
load-first algorithm, the same as Best-Fit. Using simulations the authors compared it with
Min-load-first (here job that needs least amount of resources is served first) and randomize
allocation of jobs (VMs). Results compared mean completion times of jobs and the authors
found that the Max-load-first algorithm have the least mean completion time which suggests
that it is the best algorithm. Rezvani et al. [58] proposed a similar scheme that uses Integer
linear Programming (ILP). The ILP based algorithm showed better results and improved
the utilization by 35% compared to a greedy, First-Fit and Worst-Fit algorithms. However,
almost 20% of the resources in high loads are still not used in the ILP algorithm. Although
the decision time of the ILP algorithm is 2.5 times faster than that of other algorithms, the
decision time of all of them is acceptable for small data centers but not acceptable for large
data centers.

Other authors attempt to solve the problem by looking at the servers instead of the
properties of incoming jobs, a classic example is the power-of-d-choices (where d is the
number of servers) with 2 as the most commonly used number. Here two servers are sampled
uniformly at random and arriving jobs are sent to the server with the shortest queue. For
example [59] showed that when arrivals are routed to the least utilized of (d ≥ 2) randomly
selected servers, the blocking probability decays exponentially or doubly exponentially. This
is a substantial improvement over the compared uniform random policy. In addition, they
also developed an explicit upper-bound for the stationary fluid limit. The analysis of the
upper bound revealed significant insight into the asymptotic behavior of large systems with
the power-of-d-choices (d ≥ 2) algorithm. Authors in [60] also used the power-of-two-
choices scheme but considered heterogeneous servers. The aim of the work is to reduce
the average blocking probability of jobs in the system and their results showed that in the
limiting system the servers behave independently—a property termed as propagation of
chaos. Numerical results suggest that the proposed scheme significantly reduces the average
blocking probability of jobs as compared to static schemes that probabilistically route jobs
to servers independently of their states. Authors in [61] proposed similar approach with
identical results to [60] but here a job is accepted for processing only if there is a vacancy
available at the server to which it is assigned. Otherwise, the job is discarded or blocked and
servers are heterogeneous.

Several other works also considered a class of problems that aim to minimize the number
of occupied Physical Machines (PMs) [62, 63]. The aim of these algorithms is to reduce the
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energy consumption of a data center because when servers are not used they consume less
energy [63]. In [63], Stolyar et al., showed that a version of Greedy-Random (GRAND) is
essentially asymptotically optimal, as the customer arrival rates grow to infinity. They also
studied several versions of the GRAND algorithms through simulations. The first variant
is such that there is an infinite number of servers of each type. Each arriving customer is
assigned to a server immediately upon arrival. The second variant is a system with finite size
pools of servers of each type. Each arriving customer can be either immediately assigned
to a server or immediately blocked. In [62] the same authors proved that their result has a
stronger form of asymptotic Optimality than that of [63].

Authors in [64] used genetic algorithm and fuzzy theory, the goal of the work was to
improve system performance not efficient scheduling. Their approach improves system
performance in terms of execution cost by about 45% and total execution time by about 50%.
Xu et al. [65] looked at a case where each server maintains different queues (decentralized
approach). They analyzed the collaborations of scheduling policies used in different phases
i.e. ordering how jobs are processed when they reach a server and dispatching, which server
to send a job when it arrives at the system. Shortest Expected Delay Routing Policy (SEDR)
and Shortest Queue Routing Policy (SQR) are utilization optimal dispatching policies to
collaborate with in the average case and worst case scheduling respectively; the collaboration
of Shortest Remaining Time First (SRTF) ordering and SEDR dispatching achieves optimal
throughput in the average case, while the collaboration of Myopic MaxWeight ordering and
SQR dispatching achieves optimal throughput in the worst case.

Studies in [15, 66, 67] combined both job properties and server configuration when
making scheduling decisions. They used the well known algorithm called MaxWeight where
decision on which server to send arriving jobs is done based on queue lengths of different
job types and server configurations. MaxWeight has been studied extensively in [67–71].
Maguluri et al. [15] proposed a stochastic model for load balancing in cloud environment
where they proved stability for both preemptive and non preemptive cases. They also studied
a version of the decentralized approach using join-the-shortest-queue and power-of-two-
choices with MaxWeight scheduling. They also studied pick and compare with MaxWeight,
which is suited for heterogeneous servers. In the paper they showed as well that both their
algorithms are throughput optimal. Experimental analyses of mean delays also proved
stability, given certain arrival rates of jobs. They also showed through simulations that the
non preemptive algorithm is more stable for larger frame sizes.

Another work by Maguluri et al. [66] studies jobs with unknown duration arriving in
clouds. In this work, they considered non-preemptive decentralized approaches and showed
that refresh times occur often enough. They used this to show that this algorithm is throughput
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optimal by showing that the drift of a Lyapunov function is negative. The authors studied
the Joint Shortest Queue (JSQ) routing and routing algorithms with MaxWeight scheduling
algorithm. It was known that these algorithms are throughput optimal. In this paper, authors
showed that these algorithms are queue length optimal in the heavy traffic limit. Ghaderi [72]
used randomized approach in allocating VMs to servers as opposed to MaxWeight. The
randomized approach eliminates the problem of finding all possible configurations and
simulation results show that the delay performance is better than MaxWeight. It is however
non preemptive, decentralized and some comparisons where done with MaxWeight having
global refresh times.

A study [73] related to security was done with the aim of optimizing recovery time
after failures. When the system has a failure and that increases the time for recovery, for
example, some physical machines have to restart suddenly due to the failure, it leads to
increasing processing time for the work-flow because some task nodes results are lost, their
proposal produces a work-flow schedule with the best performance compared with the others
regardless of the number of tasks. Particularly, it achieves more than 22% of speed-up against
the content aware scheduling which is a better algorithm in the absence of failure.

All the above works have made good attempts to improve efficiency of scheduling jobs
in the cloud environment. From the literature review it was observed that none of the work
considered scheduling jobs in the presence of failure. Therefore, this work will consider
failure and attacks when scheduling jobs in cloud. The scheduling approach that will be
considered is the one which considers both the job and the state of the servers because from
the literature its performance seems to be better.

2.5 Summary

This introductory chapter introduced the notion of cloud computing and it main characteristics.
It also discussed deployment and delivery models of this new technology. It then discussed
the security threats cloud computing technologies listing some attacks that were successfully
conducted on cloud data centers. After that IDPS was introduced as a tool that helps detect and
prevent such attacks and then a review of several works on intrusion detection and prevention
in the cloud environment. Finally literature review of several works on job scheduling in the
cloud environment was conducted. Three different approaches were discussed i.e. approaches
that consider jobs, approaches that consider server states and approaches that combine both
the states of servers and incoming jobs before making scheduling decisions.





Chapter 3

Hierarchical Model for Intrusion
Detection in the Cloud

3.1 Overview

This chapter introduces a lightweight, hierarchical, highly dynamic intrusion detection
system that is well suited for cloud computing environment. The system uses application
layer detection mechanisms to detect intrusions at different levels of the cloud computing
hierarchy. Some rules were identified to detect the possibility of attacks on the application
server. The checking of the rules is not fixed at certain components in the cloud, the system
decides where to check based on the current load and the attacks detected in the component
and the children nodes of the architecture. Intrusion detection load will be distributed across
the cloud, eliminating single point of failure. The solution will address the heterogeneity
challenge because servers (VMs) running different applications can have different detection
approaches. For example, if a VM is running a windows OS, only signatures related to
Windows vulnerabilities will be checked, and only Linux related rules will be checked for
VM running Linux OS.

3.2 Proposed Model

This section presents the model, it starts with the classification of the rules that will be
checked, then proposing the initial position they will be checked relative to the cloud
computing architecture. Then the description of the new system architecture is given.
Description of the rules and events is provided.
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3.2.1 Rules checked

Figure 3.1 Typical packet structure

Packet can typically be separated into three broad areas i.e. packet header information,
message header information and the message body. Figure 3.1 shows a typical packet
separated into the three main components. Below is the description of the three components:

1. Packet Header Information: Network Level information of the packet such as
sender’s and receivers IP addresses, MAC addressed protocol and Time stamps in case
of some specific protocols. Typically this information is at Network and Transport
layers of the OSI Model.

2. Message Header Information: This provides information relevant to the application
layer protocol used, in most cases it is a summary of the information in the packet.
Typically this information is Application layer of the OSI Model.

3. Message Body: This is the actual message to be processed by the relevant application
layer protocol. Typically this information is Application layer of the OSI Model.

The widely used rule (signature) based intrusion detection system Snort has several
rules that can be broadly classified as per the above classification [74].

3.2.2 Cloud Components and Rules

This section describes the rules and the location they will be checked within the cloud envi-
ronment. Figure 3.2 shows which rules are checked at what position in the cloud environment.
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Red box with solid circle indicates rules that must be checked at the corresponding position
in the cloud, while green box with hollow circle indicates rules that can be checked anywhere
across the architecture. For example, packet header information such as sender’s IP address
during predefined time t which is used to detect flooding, must be checked at the gateway of
the cloud (Cloud Controller) while Message Content can be checked anywhere based on the
security situation and current load of the cloud.

Figure 3.2 Rules and position that are checked in the cloud

3.2.3 New System Architecture

This section introduces the new cloud security architecture which has three components,
namely: the defense system, monitoring systems and the state of the cloud architecture. The
interaction among these subsystems is depicted in Figure 3.3 and described below:

Figure 3.3 High level architecture of the proposed model
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1. This is the Initial stage of the defense system where the assignment of checking the
rules is done as follows:

(a) At the gateways of the cloud the system it checks the simple rule of packet
information, here flooding and blacklisted IP addresses may be checked. The
cost of checking these rules is constant time. Several cloud defense systems have
only this feature [13, 54].

(b) At the cluster level, message header properties are checked, for example SOAP
(Simple Object Access Protocol) properties include Soap Action and Content
length and other summary information about the message, the cost of checking
these rules is constant time also.

(c) Finally, inspection of the whole message body is done at the nodes, this is because
the nodes will have to process the message anyway and the cost of pre-processing
is saved at each level of the cloud. The rules checked here usually require linear
time (relative to the length of the message)to process.

2. The second component is where the monitoring system monitors the cloud architecture
in terms of the load of each component and updates the defense system on where to
check rules.

3. In this stage the defense system reports to the monitoring system the attacks it has
discovered and their location. This is done concurrently with the second stage.

4. Finally the monitoring system updates the defense system based on the information it
has received from 2 and 3 above. The policy in which the defense system changes the
location of where to check which rules is discussed in the following section.

3.2.4 Events

This sections describes the series of events that can trigger change of state of one of the cloud
component. Most of the events are based on the notion of attack been detected in one of the
devices of the cloud. It is assumed that there are available IDS that can be configured to
detect attacks [74]. The events are listed in the table below:

Table 3.1 Description of events that trigger actions in the automata

ID Event
E1 Attack detected towards single Node and Node is in S1
E2 Attack detected towards multiple Node of the same Cluster
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Table 3.1 Description of events that trigger actions in the automata

ID Event
E3 Attack detected towards multiple Nodes of different Clusters
E4 Attack detected towards single Cluster
E5 Attack detected towards multiple Clusters of the same Gateway
E6 Attack detected towards multiple Clusters of different Gateways
E7 Attack detected towards Single Gateway
E8 Attack detected towards Multiple Gateways
E9 If cluster has more than x nodes running under it and no security event

has occurred from last v seconds.
E10 If Gateway has more than y clusters running under it and no security

event has occurred in the last w seconds.
E11 If node spends u seconds without any security event and Node is in S2
E12 If Cluster spends v seconds without any security event Cluster is in S2
E13 If Cluster spends v seconds without any security event Cluster is in S2
E14 Attack detected towards single node and node is in S2
E15 Attack detected towards single node and node is in S3
E16 If node spends u seconds without any security event and Node is in S3
E17 If node spends u seconds without any security event and Node is in S4
E18 If Cluster spends v seconds without any security event and Cluster is in

S2
E19 If Gateway spends w seconds without any security event and Gateway is

in S3
E20 If Gateway spends w seconds without any security event and Gateway is

in S2

3.2.5 States

The states depict the level of criticality, the more critical a state is the more expensive the
cost of doing security procedure is. For example when the gateway is in state S1 checks
packet header information which is done in constant time if it is in S2 the it checks the
message header information which is done also in constant time to the length of the message
(slightly more expensive than packet information checks). When it is in S4 we check the
entire message which is linear to the length of the entire message. This can be expensive
because actions like deep packet analyses are conducted here [75]. The parameters v,u,w
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Table 3.2 Different states of the cloud components

Severity Alertness State Alertness Severity

low S1
Attack
is unlikely (most efficient state)

substantial S2
Attack
is possible but not likely

severe S3
Attack
is a strong possibility

critical S4
Attack
is expected imminently (least efficient state)

can be set by administrator based on the security requirements of the application. This
is because different applications have different security requirements. Those with more
stringent security requirements will require less nodes (i.e. low value of x) to be under attack
for the application to move to more critical state.

3.2.6 Automata

This section presents the events and states presented in form of FSM. Figures 3.4, 3.5 and 3.6
present the FSM for the three components of the of the cloud computing hierarchical, which
Figures 3.3, 3.4 and 3.5 show the transition tables. The automata presents how the cloud
computing components respond to the events. Changing to higher criticality levels in case of
attacks and decreasing in criticality in the absence of attacks.

Table 3.3 Transition table for node

S1(t +1) S2(t +1) S3(t +1) S4(t +1)
S1(t) o E2 - E1
S2(t) E11 o E3 E14
S3(t) - E16 o E15
S4(t) - - E17 o

Table 3.4 Transition table for cluster

S1 (t +1) S2(t +1) S3(t +1) S4(t +1)
S1(t) o E1 - E4
S2(t) E18 o E2 -
S3(t) - E12 o E3
S4(t) - - E9 o
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Figure 3.4 Finite state automata for the node

Figure 3.5 Finite state automata for the cluster

3.3 Model Checking

To verify the safe and reliability of the models proposed, the above models where constructed
and verified using the probabilistic model checker Prism [16]. Given a probabilistic model
of a system, Prism can be used to analyze both temporal and probabilistic properties of
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Figure 3.6 Finite state automata for the gateway

Table 3.5 Transition table for gateway

S1(t +1) S2(t +1) S3(t +1) S4(t +1)
S1(t) o E2, E3 - E7,
S2(t) E20 o E4, E5 -
S3(t) - E19 o E6, E8
S4(t) - - E10, E13 o

the input model by exhaustively checking some logical requirement against all possible
behaviors. Therefore, Prism was used to compute the steady state probabilities of each of
the FSMs. The primary aim of the model checking is to verify that given a detection system
the proposed model what is the probability of the system being in S1, that is in a state that
consumes less resources. This however is dependent on how often attacks come into the
system, therefore the probability of attack detected towards the node is varied and how the
steady state probability changes is observed.

3.3.1 Experimental Setup

The description of the experiment setup is provided in this section. In the experiment for the
node automata, the probability of event E1 happening is varied between 0.1 and 0.01. E1 is
used because the other ‘bad’ events are all aimed attacking a single node. Experiments were
ran for 100000 times.



3.3 Model Checking 25

Table 3.6 Steady state probabilities of node automaton

Probability of Attack state 1 state 2 state 3 state 4
0.01 0.83848 0.11978 0.02611 0.01563
0.02 0.80974 0.12724 0.03708 0.02594
0.03 0.78290 0.13421 0.04732 0.03557
0.04 0.75778 0.14073 0.05690 0.04459
0.05 0.73422 0.14684 0.06589 0.05304
0.06 0.71209 0.15259 0.07434 0.06099
0.07 0.69124 0.15800 0.08229 0.06847
0.08 0.67159 0.16310 0.08979 0.07552
0.09 0.65302 0.16792 0.09688 0.08218
0.1 0.63545 0.17248 0.10358 0.08849

Figure 3.7 Graph showing the steady state probabilities for node automaton

Figure 3.8 Graph showing the steady state probabilities for gateway automaton
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Table 3.7 Steady state probabilities for gateway automaton

Probability of Attack state 1 state 2 state 3 state 4
0.01 0.85090 0.11656 0.02137 0.01117
0.02 0.82248 0.12394 0.03221 0.02137
0.03 0.79591 0.13083 0.04235 0.03091
0.04 0.77099 0.13730 0.05186 0.03985
0.05 0.74759 0.14337 0.06079 0.04824
0.06 0.72557 0.14909 0.06919 0.05615
0.07 0.70481 0.15448 0.07712 0.06360
0.08 0.68520 0.15957 0.08460 0.07063
0.09 0.66666 0.16438 0.09167 0.07729
0.1 0.64909 0.16894 0.09838 0.08360

3.3.2 Results

Finite state automata for the three components of the cloud and their different states were
presented in Section 3.2.6. This provides discussion of the automata and the results of the
experiments. The automata is designed in such a way that when attack is detected at a device
the reaction is to change the state of that device to the state with highest alertness. When
attack is detected in the child node of a device it is put in an increase alert state but not the
highest, if however several devices with the same parent are reporting attack the device in put
into more alert level. For example if attack is detected at the a node the cluster that that node
belongs to is put in an increase alert level, if more nodes of the same cluster are reporting
attack the cluster is put in even more alert state.

From Figure 3.7, it can be observed that as the number of malicious packets increase
the probability of the system being in undesirable state increases. The trend is similar in
Figure 3.8 for gateway, this is expected because the same high-level idea that is used for the
both automata.

3.4 Summary

In this chapter a hierarchical model for intrusion detection in the cloud was introduced. The
model leverages existing cloud architecture to implement intrusion detection by checking
different rules at different levels of the cloud hierarchy based on the current security situation
and load of applications. The model was then presented as FSM and results indicate that the
system will stay in a stable state even in the presence of attacks.



Chapter 4

Auto Scaling, Failure and Recovery in
Cloud

4.1 Overview

This chapter explores how current cloud platforms handle failure. Status monitoring or
accounting is an essential component for the smooth operation of today’s cloud data centers,
as quick responses to anomalies, failures or load have crucial business and performance
ramifications.

The rest of this chapter is organized as follows: Section 4.2 discuses related work,
application layer DoS and auto-scaling. Section 4.3 surveys auto-scaling features of major
cloud service providers. Section 4.4 compares the auto-scaling features of the major cloud
providers. Section 4.5, presents a new security architecture for cloud computing. Assessment
of the new architecture and comparison with the existing architecture is done in Section 4.6.
Finally, conclusions are discussed in Section 4.7.

4.2 Overview of Auto Scaling

The management of computing elasticity is usually an application specific task and involves
mapping an application’s requirements to the available resources. The process of adapting
resources to on-demand requirements is called scaling [76]. Under-provisioning of resources
hurts performance, which can lead to Service Level Agreement (SLA) violations while
over-provisioning results in idle resources which leads to incurring unnecessary costs. A
natural thought will be to provision for average load or peak load. Average load planning is
cost effective but when peak load occurs performance is negatively affected which can lead
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to disgruntled customers. Planning for peak load ensures performance never suffers but it is
not cost efficient. Table 4.1 summaries the benefits and the drawbacks of using average or
peak load when provisioning applications.

Table 4.1 Manual scaling techniques

Load Pros Cons
Average Low cost Poor performance during peak periods

Peak No negative impact on performance High cost

Thus, it is necessary to come up with a more sophisticated method for efficient and cost
effective way to scale an application’s resources according to demand. The act of dynamically
scaling based on demand of applications is called auto-scaling [77]. Essentially, there are
two approaches to auto-scaling.

4.2.1 Schedule Based Mechanisms

Here, the cyclic pattern of daily, weekly or monthly workload is taken into account and
provisioning is done based on the workload [78]. The drawback of this method is that it
cannot handle unexpected changes in loads. Many cloud providers offer scheduled based
auto-scaling mechanisms, this is especially useful to customers who can reliably predict the
load of their applications.

4.2.2 Rule Based Mechanisms

In this approach two rules are created to determine when to scale up or down. Each rule
is user defined and the condition is based on target variable, for example if the CPU load
is greater than 75% [76]. When this happens pre-defined action is triggered e.g., adding
a new VM. This form of auto-scaling is classified as reactive because it waits for load to
increase before it reacts. Other techniques are available that try to anticipate future needs
which are called predictive or proactive auto-scaling [79]. Major cloud providers mainly use
the reactive rule based auto-scaling techniques.
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4.3 Analyses of Auto-Scaling and Failure Recovery Fea-
tures of Cloud Providers

4.3.1 Amazon Web Services

Amazon provides its IaaS through its Elastic Compute Cloud (EC2) [80]. An important
feature of rule-based auto-scaling in AWS is CloudWatch. CloudWatch monitors the applica-
tions that run on AWS in real time and can be used to collect and track various metrics of the
applications for users [81] CloudWatch only reports the metrics, no further information is
given if there is high resource utilization.

Amazon achieves auto-scaling through different approaches:

• If users have predictable load auto-scaling can be achieved by scheduling scaling plans
based on the known load changes. This uses the schedule based techniques.

• Another way the EC2 achieves auto-scaling is by checking when average utilization
of the EC2 is high then more instances are added, similarly conditions can be set to
remove instances when the utilization is low. No mechanism to check the cause of
high utilization of resources. This is a form of reactive rule based auto-scaling.

• A more sophisticated way to achieve auto-scaling in EC2 is through the Elastic Load
Balancing, this helps to distribute instances within auto-scaling groups [82]. It uses
CloudWatch to send alarms to trigger scaling activities.

4.3.2 Microsoft Azure

Initially Azure was a PaaS provided by Microsoft, offering Webrole and WorkerRole for
hosting front-end applications and processing of backend workloads. Recently it has allowed
users to deploy a Windows image prepared offline in the cloud. In this approach called
VMRole; users can control the entire software stack and are able to remotely access the VM.
This makes the VMRole effectively an IaaS type of service. Moreover, unlike other PaaS
cloud server providers, Microsoft has added APIs and enabled remote desktop connections
to log into hosting operating systems, which functions more like a virtual machine [83]. The
Azure platform provides manual scaling through the Azure management portal. Users can
also scale application running all the types of Virtual Machines, i.e., WebRole, WorkerRole
and VMRole. To scale an application running any of the instances above users can add or
remove role instance to accommodate the work load. When applications are scaled up and
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down, there is no creation or deletion of new instances instead a set created previously are
turned off and on from an availability zone [83].

4.3.3 IBM Smart Cloud

IBM uses OpenStack to provide auto-scaling through a feature called Heat. This feature
reduces the need to manually provision instance capacities in advance. Users can use Heat
resources to detect when a Ceilometer alarm triggers and provision or de-provision a new
VM depending on the trigger. These groups of VMs must be under a load balancer which
distributes the load among the VMs on the scaling group. IBM Smart Cloud also allows
users to manually scale applications based on the work load. Users are also able to scale
applications based on predicted schedule [84].

4.3.4 Rackspace Open Cloud

Rackspace is another free and open source service. This is also done through OpenStack,
initially with collaboration with NASA. However, several other companies have joined the
OpenStack Project including IBM mentioned above. Rackspace also provides auto-scaling
based on pre-defined rules on schedule. It does not provide auto-scaling based on dynamic
load changes (i.e., it does not provide rule based auto-scaling). Another form of scaling that is
provided by Rackspace is Webhook (capability-based URL), in this case scaling occurs when
a URL is triggered [85]. This however, can only be classified as manual scaling. Rackspace
monitors metrics using the Monitoring Agent [86]. Agents can be installed in the cloud
servers that users want to monitor. The checks that are available for users include HTTP,
TCP, ping, memory, CPU, load average, file system and network [87].

4.3.5 Google Compute Engine

Google compute engine uses managed instance groups to offer auto-scaling capabilities
that allow users to automatically add or remove instances from a managed instance group
based on increases or decreases in load. To create an auto-scaler, users must specify the
auto-scaling policy the auto-scaler should use to determine when to scale. Users can choose
to auto-scale using the following policies:

• Average CPU utilization

• Cloud monitoring metrics
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• HTTP load balancing serving capacity, which can be based on either utilization or
requests per second.

Users can also scale cloud the resources up or down manually or using schedules if they
can predict future changes in load [83].

4.4 Comparison of the Auto-Scaling and Security Features

This section discusses the auto-scaling features provided by cloud providers with respect to
security.

Firstly, all the providers allow users to manually scale their applications based on needs.
The second common feature of all cloud providers is schedule based auto-scaling, where
users can predict load increases/decreases at different times and scaling is done based on
these changes. It is a form of proactive auto-scaling. In all but one (Rackspace) of the cloud
vendors users can automatically scale their applications based on some metrics, i.e., true
auto-scaling where the resources are scaled on the fly based on current application needs.
This however, is reactive and it does not predict when load changes. This, can take a while
because it takes between 44.2 to 810.2 seconds to start an instance of a virtual machine,
depending on the cloud provider and the type of VM in question [88].

Another critical feature the providers are yet to address is the cause of change in load.
Where there is an increase in CPU load utilization, HTTP requests per unit time or other
metrics, alarms are simply raised by the monitoring system e.g. CloudWatch in EC2 or
Heat in IBM and application capacity is increased. The monitoring system does not check
for the reason of the increased in load it just alerts the auto-scaler to increase resources
to accommodate the increase in load. This is a good feature if the event occurred due to
increased business activity but it is not fair especially to the cloud customer if it occurs as a
result of malicious activity. Figure 4.1 illustrates the current cloud architecture.

An interesting finding during this survey is in the documentation of EC2 Auto-scaling
developer guide [89]. Amazon provides health checks for all its VMs. Virtual Machine in
EC2 has two states, Healthy and Unhealthy. However, Amazon does not provide a formal
definition for the states in their documentation. Moreover, there is no mechanism to detect
what causes the Unhealthy state of the VM.
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Figure 4.1 Current cloud architecture

4.5 Proposed New Architecture

The cloud vendors have made a lot of effort to monitor the performance of the cloud, to
automate all processes of scaling VMs and to provide customers with uninterrupted service.
What they have not done yet is to provide reason for failure of virtual machines. This can
be unfair to cloud customers if the reason of a failure is as a result of application layer DoS
and not true increase in load of application. When this occurs and resources are scaled up,
customers can be overcharged and occurrences of similar events might not be prevented.
This chapter proposes two different approaches to tackling this problem.

4.5.1 Use of Current Metrics

All the cloud vendors surveyed in this paper provide metrics on the use of resources in the
cloud. These are important because the metrics can be analyzed in order to determine why a
virtual machine failed or why it using a lot of resources. Using two metrics in this thesis:
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Figure 4.2 Proposed new architecture

average CPU utilization and HTTP load balancing serving capacity, which can be based on
either utilization or requests per second.

Let n be the number of HTTP request in a VM time unit,
let u average CPU utilization during that time,

let UF = n/u (Utilization Factor)

The Utilization Factor will be used to make a decision on whether there is legitimate
increase in load due to more HTTP requests or the increase in load is due to other reasons.
Given equal u, higher UF means several request are being serviced by VM which is poten-
tially a good thing but low UF means few HTTP requests are occupying too many resources
which signifies potential Application layer attack. This is assuming the volumetric based
defenses have done their work, to avoid false negative in case of DDoS. Different applications
will have different UF based on the requirements of the applications. Administrator have the
role of assigning the UF based on past history and application needs. Other metrics can be
used to achieve similar results.
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4.5.2 Intrusion Detection System

Alternative way, albeit an expensive one, is the use a IDS that will analyze every packet
coming into the VM to check the possibility of application layer attacks. Features to look at
to detect include number of requests, HTTP header inspection, content-length, number of
elements, nesting depth, longest element and name space in a SOAP Message. The possible
attacks that will be looked at include flooding, Header outlier, size outlier, Feature outline
and Coercive parsing. Tradition IDS such as Snort [74] have established signatures and way
to generate alarms when intrusion is detected. Figure 4.2 shows the location of both metrics
and the IDS based approaches in the cloud architecture.

4.6 Assessment

This section provides the comparison between the current and proposed architectures based
on the type of attack that occurs and the speed of auto-scaling decision. To have a better
comparison there is a need to define a threshold for normal behavior depending on application
needs, to do that some sorts of datasets are needed. Unfortunately the dataset is not available,
therefore, comparison of proposed and existing approaches was done based on some hypo-
thetical scenarios. The summary of the comparison is that the proposed approaches are better
alternatives than the current model in all the facets analyzed.

4.6.1 Application Layer DoS

Application Layer DoS occurs when a single packet causes exhaustion of server resources.
This will normally affect a single VMs in the cloud environment.

a. Current Architecture

System will scale based on set parameters. In this case if the increase in load is as a result
of application layer DoS attack not genuine customer requests, cloud customer will pay
for resources that they do not need. This is because the auto-scaling policies module of
Figure 4.1 will be used.

b. Proposed Architecture

System scale based on set parameters from the auto-scaling policies section of Figure 4.2.
The customer will be aware of the reason why scaling occurred. Provider will also be aware
of the reason for scaling, will be able to stop future attacks, and will scale the system down
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to the appropriate resources. These will be reported by Alarms/Metrics based defense and
detected by IDS modules of Figure 4.2.

4.6.2 Volumetric DoS (Flooding)

Volumetric DDoS occurs when the resources of servers are increased due to increase in
malicious network traffic. It is sometimes distributed because the request are sent by multiple
compromised nodes across the Internet. This attack has the potential to affect multiple VMs
clusters or even cloud gateways depending on their severity.

a. Current Architecture

Scaling will occur as defined by the rules. Here also, if the increase in load is as a result
of Application Layer DoS attack not genuine customer requests, cloud customer will pay
for resources that they do not need. This is because the auto-scaling policies module of
Figure 4.1 will be used.

b. Proposed Architecture

Scaling will occur as defined by the rules but customer will be aware of the reason why
scaling occurred. Provider will also be aware of the reason for scaling, attack can be stopped,
therefore scaling system down to the appropriate load and compensate customer. reported by
Alarms/Metrics based defense and detected by IDS modules of Figure 4.2.

4.6.3 Speed of Auto-Scaling

This is a performance based case where how quickly auto-scaling decision can be made when
load increase reaches a predefined threshold is checked.

a. Current Architecture

Fast based on pre-defined rules because this can be checked in constant time relative to the
length of the packet. This is because the auto-scaling policies module of Figure 4.1 will be
used and rules can be checked in constant time.

b. Proposed Architecture

The metrics based system is equally fast based on simple arithmetic of predefined rules and
decision can be made in constant time. However, the IDS based system is slower because
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entire packets have to be check. This is generally linear to the size of the message. The
detection is usually more expensive than applying simple rules, this is done by IDS module
of Figure 4.2.

4.6.4 Resource Over-utilization

Increase in load (resource over-utilization) can be genuine increase in business activity,
application Layer DoS or Volumetric DDoS.

a. Current Architecture

Resources are simply increased without taking into account why there is an increase in the
load. Again auto-scaling policies module of Figure 4.1 will be used.

b. Proposed Architecture

Resources are added and system investigates whether the increase is due to a legitimate
increase in load or as a result of application layer attacks. Reported by Alarms/Metrics based
defense module Figure 4.2.

4.7 Summary

Cloud computing currently supports many information systems and it will continue to be
used. However, it is very important to ensure that both the customers and the vendors get
their fair share of compensation in the presence of increasing hostility from attackers. This
chapter introduced scaling techniques and the limitations of scaling techniques for current
applications with ever changing workloads. Most current cloud service providers offer auto-
scaling mechanisms that are better suited for today’s dynamic environment, but most cloud
providers support auto-scaling techniques that are reactive and they do not investigate the
reasons where applications fail or why there is increased load in their VMs. A mechanism for
checking the cause of failure was then proposed. This mechanism is based on the currently
available metrics that are already provided to customers, while another approach is to use
IDS to detect DoS at the nodes (VMs) in the cloud environment. The future work of this
research to test the proposed model and have empirical results to reiterate the advantages as
discussed in the initial assessment. Another possible direction is to look other combination
of metrics because only one was discussed in this chapter.



Chapter 5

Reliable Job Scheduling in Cloud
Computing - Centralized Approaches

5.1 Overview

While there is a growth in the use of cloud services, many potential users are still reluctant to
deploy their business in the cloud. Major concerns are its reliability, security and stability [22].
There are different reliability and security issues depending on different delivery models of
cloud services, including SaaS, PaaS and IaaS. This work focuses on the IaaS model. In
particular, the scenarios when part of the workload is unreliable, e.g., fault-prone or generated
by malicious sources, and a lightweight framework that combines load management and
detection of unreliable traffic is proposed. This work investigates how to strike a balance
between efficient workload scheduling and packet/job scanning so that stability can be
maintained (as a guarantee of bounded buffers at machines) without sacrificing too much
resources to filter out the unreliable part of the workload.

IaaS provides users with computing infrastructure in the form of VM. Following [15],
assume that the users request resources such as memory, CPU and storage, for a certain
amount of time in the form of VMs; this corresponds to a job to be done. Upon receiving the
requests (typically in a form of packets), the system has to allocate the required resources by
scheduling the VMs on the server. The model in [15] is extended by considering scenarios
where part of the workload is genuine and the other unreliable. Genuine traffic comes from
real users; completing these requests counts towards system’s work done. Unreliable traffic
is subject to failures or comes from attackers, who aim to disrupt the system by issuing
requests that occupy resources; completing these does not count as proper work done. Classic
reliability and security tool of packet scanning to detect these malicious packets [14, 74] was
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adopted. While scanning is able to distinguish genuine from unreliable requests, it consumes
resources that would normally be used for serving genuine workload. On the other hand, it is
not known whether the packets are faulty/malicious until they are scanned, time and resources
may be wasted in scanning genuine packets. Therefore, the scheduling algorithm needs to
strike a balance between the resources wasted by scanning and by performing unreliable
requests without scanning them.

Centralized scheduling algorithms are considered in this chapter, decentralized algorithms
will be discussed in the next chapter. In the centralized setting, there are central queues,
and upon arrival jobs are added to the central queues corresponding to the requested type of
VMs; recall that there is a limited number of types of VMs (as each of VMs is in fact a small
operating system [15]) and each job is allocated to a VM of the requested type. When the
resources become available, the centralized scheduling algorithm determines which set of
jobs is to be served and to which servers the VMs are mapped to.

The system is stable if the queues do not tend to increase without bound. The aim is to
characterize the maximum arrival rates of genuine and unreliable requests under which there
exists an algorithm to maintain the stability of the system and to develop such algorithm if it
exists. In addition, to guarantee quality of service, job latency is measured, which is defined
as the amount of time a job resides in the system since its arrival.

The precise model is presented in Section 5.2, the proposed algorithm is described in
Section 5.3 and theoretical analysis in 5.4 and 5.5. Simulations and conclusions are presented
in Sections 5.6 and 5.7 respectively.

5.2 Cloud Computing Model

Consider a cloud system modeled by a network of physical machines that have limited
available resources (for instance, CPU, memory, storage, . . . ) and is supposed to be able to
process an ongoing stream of jobs.

Servers. Consider a set of n networked servers (physical machines). Each server has
its own resources that it can distribute among jobs, that is, for each resource it has a fixed
capacity.

Jobs. A job is specified by its type and length. Since there are limited number of virtual
machine types, only limited number of job types are considered– there are J types of jobs.

Each type is a set of demands for resources; more specifically, for each available server
resource a job type has a number specifying how much of this resource is required in order
to process any job of this type.
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There are I different lengths of jobs possible: L1, . . . ,LI Online random arrival model is
considered, where new jobs arrive independently of each other and are identically distributed
across all time slots, and the variance of arrival length is finite. Let λi, j denote expected sum
of lengths of genuine (i.e., user-generated) type- j jobs of length Li that arrive per time slot,
for any positive integers j ≤ J and i≤ I.

Processing jobs and feasible configurations. Each server can process a set of jobs
simultaneously, as long as the cumulative amount of each resource used by these jobs

does not exceed the server capacity for this resource. Processing jobs is done in syn-
chronous time steps, also called rounds. The whole system capacity is a linear sum of
capacities of all the servers. Given job types and server capacities, one can compute the set S
of all feasible configurations, where feasible configuration denotes a vector N = (N1, . . . ,NJ)

such that the system can process simultaneously N j type- j jobs, for every j. For example,
consider a server with 30 GB memory, 30 EC2 computing units and 4000 GB storage space.
If arriving jobs are served in the cloud based on three types of virtual machines described in
Table 5.1 then, this gives three feasible (maximal) configurations available at each server:
(2,0,0), (1,0,1) and (0,1,1).

Table 5.1 Representation of Instances in Amazon EC2

Instance type Memory (GB) vCPU Storage (GB)
Standard 15 8 1,690

High-Memory 17.1 6.5 420
High-CPU 7 20 1,690

Malicious jobs and security tools. Let κi, j denote the expected sum of lengths of
malicious jobs of type- j of length Li that arrive per time slot. Similarly as genuine jobs,
malicious jobs arrive independently of each other and are identically distributed across all
time slots, and the variance is finite. Assume that there is a scanning tool that, given a job,
can detect whether it is a genuine user request (call it a good job) or a malicious request (a
malicious job). Each scanning takes 1 time slot per job and requires same resources as the
original job (scanning is done on the same virtual machine).

Central scheduler. Consider a central scheduler with a queue of all injected, but not yet
finished jobs. The scheduler decides which servers process which jobs for the next time slot.
After this time slot, all unfinished jobs return to the scheduler with saved progress and can
be processed further at a later time and by a different server. This property of a system is
called preventiveness. The centralized algorithm, called SecureMaxWork, will be introduced
in Section 5.3.
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In the decentralized approach each server runs locally a protocol SecureMaxWork with
respect to its local queues. The decentralized implementations of algorithm SecureMaxWork
will be presented in the next chapter.

Notation.

• n denotes the number of servers in the cloud;

• I denotes the number of different job lengths;

• J denotes the number of different job types;

• A(t) = (A1(t), . . . ,AJ(t)) denotes the vector of sets of type- j jobs, for j ≤ J, which
arrive to the system in the beginning of time slot t;

• Q(t) denotes the vector of queue lengths (i.e., sum of lengths of jobs in the queue) for
each type of jobs in the beginning of time slot t;

• Q j(t) denotes the total length of users’ and malicious type- j jobs, for j ≤ J, in the
beginning of time slot t;

In addition there are the following notations regarding SecureMaxWork algorithm:

• αi, j is a probability of scanning type- j job of length Li; the algorithm may implement
a specific scanning strategy, i.e., use a specific vector α .

• X j(t) is the total length of queued type- j jobs that will not be scanned, taken in the
beginning of time slot t (i.e., the algorithm scanned them already or decided not to
scan them at all);

• Yj(t) is the total length of queued type- j jobs that will be scanned, taken in the
beginning of time slot t (i.e., the algorithm has already decided to scan them, but has
not scanned them yet);

• Z j(t) = Z j(Q(t)) is the expected time required to process type- j jobs stored in queue
in the beginning of time slot t; the formula with an explanation for it will be given in
section 5.3;

• a j is the expected time required to process type- j jobs that arrive in one time slot; the
formula with an explanation for it will be given in section 5.5;

• a denotes the vector of expected time required to process all jobs that arrive in one
time slot;
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• ℓ j is a (random) length of arriving type- j jobs.

Whenever time slot t is clearly fixed or understood from the context, argument t may be
omitted from the formulas.

Scanning strategies. The following scanning strategies will be compared:

• ScanNONE — always executes a job without scanning, i.e., αi, j = 0 for all i, j;

• ScanALL — scans all jobs except those with processing time shorter or equal to the
scanning time (recall that scanning takes 1 time slot), i.e., αi, j = 0 for Li ≤ 1 and
αi, j = 1 otherwise;

• ScanOPT — will be defined in section 5.5.2.

Stability. Given arrival rates λ and κ , the algorithm is stable if the expected queue size
at any fixed time is bounded, i.e. limsup

t→∞

E[∑ j Q j(t)]< ∞.

5.3 Main Algorithm

Algorithm SecureMaxWork (Algorithm 1, with Algorithms 2, 4 and 3 as sub-procedures)
is parametrized by: scanning vector α = (αi, j)i≤I, j≤J ∈ [0,1]I×J , vector of rates of genuine
user’s requests λ = (λi, j)i≤I, j≤J , and vector of rates of unreliable requests κ = (κi, j)i≤I, j≤J .
Upon arrival of type- j job of length Li, SecureMaxWork decides to scan it with probability
αi, j (c.f., the first for all loop in Algorithm 1).

The key idea of SecureMaxWork is to measure the expected time required to process all
jobs of each type and prioritize the type which accumulates the most. The expected time
(also called expected work) required to process all jobs of type j accumulated in queue at
time t is denoted by Z j(t).

It takes X j time to process jobs that will not be scanned. Jobs contributing to Yj will need
to be scanned, requiring Y j ·E(1/ℓ j) expected time. In expectation λ j/(λ j +κ j) fraction
of scanned jobs are genuine, so after scanning, they still must be processed, taking in
total Yj ·λ j/(λ j +κ j) time. κ j/(λ j +κ j) fraction of scanned jobs are malicious and after
scanning they take no more processing time. Therefore: Z j(t) = X j(t)+Yj(t) · (λ j/(λ j +

κ j)+E(1/ℓ j)).
The algorithm then computes Z j (c.f., the second for all loop in Algorithm 1) and finds

configuration N from the set of feasible server configurations S that maximizes the sum

∑
J
j=0 Z j(t)N j, i.e., the objective in each time slot t is:

max
N∈S

J

∑
j=0

Z j(t)N j . (5.1)
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Algorithm 1 SecureMaxWork(λ ,κ,α)

X ← 0⃗ // jobs that will not be scanned
Y ← 0⃗ // jobs that will be scanned
Q← 0⃗ // all jobs
loop

new time slot begins
new jobs arrive
for all new type- j job τi, j of length Li do

r← random value from [0;1]
if r < αi, j then // τi, j to be scanned

Yj← Yj +Li
Q j← Q j +Li

else // τi, j not to be scanned
X j← X j +Li
Q j← Q j +Li

end if
end for
for all j do

Z j← X j +Y j(λ j/(λ j +κ j)+E(1/ℓ j))
end for
N′← argmaxN∈S∑ j N j ·Z j
for all j do

for k ≤ N′j do
Process_job( j)

end for
end for

end loop

This configuration is denoted by N′. The intuition is that the more jobs of a given type
accumulate, the more weight should be put to scheduling this job type to prevent further
accumulation. Z j here is the weight given to jobs of type j.

Finally, in the last for all loop, the algorithm processes N′j jobs of type j, for each
1 ≤ j ≤ J; i.e., from each job processed it executes a unit of it and the total size of Q j

decreases by N′j at the end of time slot t. It is done by calling procedure Process_job( j),
c.f., Algorithm 2. If N′j is larger than the number of different type- j jobs in the queues,
SecureMaxWork processes as many type- j jobs as possible instead, each time processing a
unit of each such job. If N′j is smaller than the number of different type- j jobs in the queues,
SecureMaxWork has to decide which type- j jobs to process. It repeats N′j times:

• with probability X j/(X j +Yj) it processes a job that will not be scanned (i.e., a job that
contributes to X j),
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Algorithm 2 Process_job( j)
if there are still jobs in X j and Yj that are not yet scheduled to be processed in this time
slot then

r← random value from [0;1]
if r < X j/(X j +Yj) then

Process_job_X( j)
else

Process_job_Y( j)
end if

else if there are no jobs in X j that are not yet processed in this time slot, but there are still
such jobs in Y j then

Process_job_Y( j)
else if there are no jobs in Y j that are not yet processed in this time slot, but there are still
such jobs in X j then

Process_job_X( j)
end if

Algorithm 3 Process_job_Y( j) // to be scanned
Scan any unscheduled job contributing to Yj
Li← length of the scheduled job
Y j← Yj−Li
if detected as unreliable then

Q j← Q j−Li
else

X j← X j +Li
end if

Algorithm 4 Process_job_X( j) // not to be scanned
Process a unit of any unscheduled job contributing to X j
X j← X j−1
Q j← Q j−1

• with probability Yj/(X j +Yj) it scans a job pending for scanning (i.e., a job that
contributes to Yj).

If there are not enough jobs contributing to X j, it processes all jobs contributing to X j and
as many jobs contributing to Yj as possible, so that altogether it processes N j type- j jobs
(vice versa for Y j). Processing and/or scanning a specific type- j job is done by calling
sub-procedures Process_job_X( j) and/or Process_job_Y( j), resp. (c.f., Algorithms 4 and 3,
resp.).
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5.4 Analysis

This section proves that algorithm SecureMaxWork is stable if there is ε > 0 and vector a
such that (1− ε) ·a ∈ co(S), where co(S) denotes convex hull of set S.

Theorem 1 The SecureMaxWork algorithm is stable for all arrival patterns λ ,κ , for which
there exists a stable algorithm.

In the remainder of the section proof of Theorem 1 will be provided. The following
results are needed (extension of Foster’s criteria for irreducible Markov chains).

Theorem 2 ([90]) Consider a Markov chain Q(t) with state space Q. Consider a random
walk on it, starting from a state x. Let τx denote the time when the random walk first
reaches some recurrent state (or infinity if it never reaches any).Let R j be a closed set of
communicating states and T be set that contains all the states no in R j. If there exists a lower
bounded real function V : Q→ R, an ε > 0 and a finite subset Q0 of Q such that

E[V (Q(t +1))−V (Q(t))|Q(t) = q]<−ε, if q /∈ Q0, (5.2)

E[V (Q(t +1))|Q(t) = q]< ∞, if q ∈ Q0, (5.3)

then
P(τq < ∞) = 1, ∀q ∈ T (5.4)

and all states q ∈ ∪∞
j=1R j are positive recurrent.

Let V (Q(t)) = ∑ j(Z j(Q(t)))2. Note that V (Q(t)) ≥ 0 for all possible queue states
Q(t) ∈ Q. It will be shown that there exist two positive numbers b,ε such that the inequality

E[V (Q(t +1))−V (Q(t))|Q(t) = q]<−ε (5.5)

holds for all q ∈ Q for which there exists q j ≥ b.
Let A(t) and Alg(t) denote the vector of arrival lengths and (respectively) the vector of

queue changes due to algorithm decisions – for each type of job, with distinction between
jobs that will be scanned and jobs that will not be scanned, in the beginning of time slot t.
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Z j will be used as a shorthand of Z j(Q(t)), A as a shorthand of A(t + 1), and Alg as a
shorthand for Alg(t +1).

E[V (Q(t +1))−V (Q(t))|Q(t) = q]
= E[∑ j[Z j(Q(t +1))2−Z2

j ]|Q(t) = q]
= E[∑ j[(Z j +Z j(A)−Z j(Alg))2−Z2

j ]|Q(t) = q]
= E[∑ j[(Z j(A)−Z j(Alg))2+

+2Z j(A−Z j(Alg))]|Q(t) = q]
≤ K +2E[∑ j[Z j ·Z j(A)]|Q(t) = q]+
−2E[∑ j[[Z j ·Z j(Alg)]|Q(t) = q] .

(5.6)

The last inequality comes from E[∑ j[(Z j(A)−Z j(Alg))2]|Q(t) = q] being upper bounded
under assumption that the variances of arrival lengths are finite; this upper bound is denoted
by K.

Lemma 1 There exists a finite set F ⊆ Q such that for all q ∈ Q−F:

K +2E[∑ j[Z j ·Z j(A)]|Q(t) = q]+
−2E[∑ j[[Z j ·Z j(Alg)]|Q(t) = q]< 0 .

To prove Lemma 1, the following result is needed:

Lemma 2 For almost all queue states q there exists a feasible configuration N ∈ S such that
N ·Z ≥ K +a ·Z (where Z = Z(q) and · is scalar product).

Proof sketch of Lemma 2: Vector (1+ε)a lies inside convex hull of set S (set S is the
set of feasible server configurations N). Therefore vector a is smaller (and not equal) than
some linear combination of vectors from S. So for any non-negative vector Z the following
inequality holds: N ·Z > a ·Z. So if any large enough vector Z is taken, then N ·Z > a ·Z+K.
There is only a finite number of queue states q that generate not large enough vectors Z.

Proof of Lemma 1: Note that in Lemma 1, E[∑ j[Z j ·Z j(A)]] is the expected value of
the scalar product Z ·Z(A) and E[∑ j[[Z j ·Z j(Alg)] is the expected value of the scalar product
Z ·Z(Alg). According to Lemma 2, inequality from lemma 1 is true for almost all queue
states, i.e., there exists a finite set of states F such that for all q ∈ Q−F the desired inequality
holds.

Proof of Theorem 1: According to Lemma 1 and Theorem 2, given arrival rates for
which there exists a stable algorithm, SecureMaxWork algorithm reaches positive recurrent
state in a finite time, therefore it is stable.
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5.5 Determining Feasible Capacity Region and Scanning
Frequency

5.5.1 Feasible Capacity Region

Lemma 3 Processing a type- j job for 1 time slot decreases Z j(Q(t)) by 1 on average.

Proof: If the processed step was not scanning (i.e., processing a job from X j) then
trivially Z j decreased by 1.

If the processed step was scanning a job of length Li (i.e., processing a job from Yj), then:

• before scanning that job contributed λ j
λ j+κ j

·Li +1 weight towards Z j;

• with probability λ j
λ j+κ j

it was a genuine job, so after scanning it contributes Li towards
Z j (increase in weight);

• with probability κ j
λ j+κ j

it was a malicious job, so after scanning it contributes 0 towards
Z j (decrease in weight).

Therefore, on average Z j decreases by

λ j
λ j+κ j

(1− κ j
λ j+κ j

Li)+
κ j

λ j+κ j
(1+ λ j

λ j+κ j
Li) =

= 1+ λ jκ j
(λ j+κ j)2 (−Li +Li) = 1 .

(5.7)

Recall that αi, j is the probability of scanning type- j job of length Li, and A(t) denotes
the vector of arrival lengths for each type of job, with distinction between jobs that will be
scanned and jobs that will not be scanned in the beginning of time slot t.

Let a j = a j(α,λ ,κ) = E[Z j(A(t))] be the expected weight of type- j jobs that arrive per
time slot (arrivals are i.i.d. across time slots, so E[A j(t)] = E[A j(t +1)] for all t). Then

a j = ∑
i

pi, j[(λ j +κ j)(1−αi, j)+α j,i(λ j +κ j)(
λ j

λ j +κ j
+

1
Li
)], (5.8)

where pi, j is the probability that type- j job has length Li. Addend (λ j + κ j)(1− αi, j)

corresponds to the weight of good and malicious jobs that will not be scanned (so it contributes
to X j). Addend α j(λ j+κ j) ·

λ j
λ j+κ j

corresponds to the weight of good jobs that will be scanned
but without scanning taken into account yet (so it contributes to Yj). Addend α j(λ j+κ j) ·1/Li

corresponds to the weight of scanning good and malicious jobs (so it also contributes to Yj).
Let a = (a1, . . . ,aJ).
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Theorem 3 If arrivals λ and κ are such that for all vectors α arrivals a /∈ co(S) then no
algorithm is stable.

Proof: Consider arrival rates λ , κ and scanning probabilities α such that a /∈ co(S).
It will be shown that for every algorithm there exists j such that E[Z j(Q(t))] is unbounded.

In every time slot t the weight of queues Z(Q(t)) is changing on average by E[Z(Q(t +
1))−Z(Q(t))] = E[Z(Q(t)+A(t+1)−Alg(t+1))−Z(Q(t))] = E[Z(A(t+1))−Z(Alg(t+
1))] = a−E[Z(Alg(t +1))].

Note that a /∈ co(S), while E[Z(Alg(t +1)] = N(t +1) ∈ co(S) (according to Lemma 3).
If multiple time slots are considered and any combination of algorithm decisions N(t) then
the vector of weights of queues Z(Q(t)) is growing in the direction of vector a. Therefore
there exists j such that Z j(Q(t)) is unbounded with regard to t. Therefore Q j(t) is unbounded
with regard to t, which is contradictory with the definition of stability.

5.5.2 Optimal Scanning Frequencies

Theorem 4 If there exists a vector of scanning frequencies α(0) such that given job arrival
rates λ and κ are inside the capacity region (i.e., (1+ ε)a(α(0),λ ,κ) ∈ co(S) as defined in
subsection 5.5.1), then there exists a vector of scanning frequencies α(1) ∈ {0,1}I×J such
that these job arrivals are inside the capacity region ((1+ ε)a(α(1),λ ,κ) ∈ co(S)).

Proof: Function a j(α,λ ,κ) (as defined in subsection 5.5.1) is independent of λk,κk,αi,k

for k ̸= j and for all i. Given fixed λ and κ , a j(α,λ ,κ) is a linear combination of scanning
frequencies αi, j ∈ [0,1], for all i.

Therefore the vector α j = (α1, j,α2, j, . . . ,αI, j) that minimizes a j is one of the extreme
points of region [0,1]I . Furthermore, α

(1)
i, j for all i that minimize a j can easily be com-

puted, since each summand pi, j[(λ j + κ j)(1−αi, j) +αi, j(λ j + κ j)(
λ j

λ j +κ j
+ 1/Li)))] is

independent of all other summands. Value α
(1)
i, j that minimizes this summand is 0, if

1≤
λ j

λ j +κ j
+1/Li, and 1 if 1 >

λ j

λ j +κ j
+1/Li, for each i, j.

This gives a(α(0),λ ,κ)≥ a(α(1),λ ,κ)), which means that (1+ε)a(α(1),λ ,κ))∈ co(S).
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5.6 Simulations

5.6.1 Experiment Setting

The setup for simulations, described in this section, is based on the one in Maguluri et
al. [15].

Servers and VMs Servers are based on the configuration described in Section 5.2 where
processing jobs and feasible configurations were described. Consider 100 identical servers in
the cloud. The VMs are the same as the ones in Table 5.1.

Job arrivals The generic arrival vector λ ∗ = 0.99× (1,1/3,2/3) for the genuine users’
workload was used, this is located at the border of the server capacity area (it is easy to
observe that it is a normalized linear combination of the three maximal configurations,
additionally re-scaled by factor 0.99). In each time step a job of type j = 1,2,3 is selected
with probability

λ ∗j
130.5 , and its length is chosen according to the length distribution described

below with the mean length 130.5.
Similarly as above, malicious workload defined by a generic arrival vector κ∗=(0.7,0.01,0.01),

and the procedure of generating a malicious traffic is analogous as above for generating the
genuine users’ one. Note that each of the arrival rates λ ∗ and κ∗ is within the capacity range
of a server, whereas the combined work-flow rate λ ∗+κ∗ is not.

Job size distribution When a new job is generated, with the probability of 0.7 it is an
integer that is uniformly distributed in the interval [1,50], with the probability of 0.15 it is an
integer uniformly distributed in the interval [251,300], and with the probability of 0.15 it is
an integer uniformly distributed in the interval [451,500]. Note that there are 150 possible
job lengths, and the mean length is 130.5, as assumed in the definition of arrival rates.

Setup of simulations. Since there are 100 homogeneous servers, the overall arrival rates
are: λ = 100×λ ∗ = (99,33,66) for genuine workload, and κ = 100×κ∗ = (70,1,1) for
malicious workload. The job size distribution is as specified above, same for each job type.
The following optimal scanning vector α∗ is computed for this setting, more precisely, the
vector minimizing expected arriving weight:

• α∗i,1 = 0 for Li ≤ 2,

• α∗i,2 = 0 for Li ≤ 34,
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• α∗i,3 = 0 for Li ≤ 50,

• α∗i, j = 1 otherwise.

Each execution includes 4,000,000 time steps. The average latency, maximum latency,
average queue size and maximum queue size were computed at at every time step and the
results were recorded at every 200,000 steps. The experiments were ran 10 times and the
averages of the results for each recorded time step was recorded.

LambdaFlow: SecureMaxWork applied for genuine flow only, (i.e., only with genuine
arrival rate λ ), and no scanning is applied (i.e., α⃗ = 0);

ScanOPT: SecureMaxWork applied for simultaneous genuine and malicious flows, with
scanning defined by vector α∗;

ScanALL: SecureMaxWork applied for simultaneous genuine and malicious flows, with
scanning all jobs of size bigger than 1 (i.e., for every j = 1,2,3, α⃗1, j = 0 and α⃗i, j = 1
for every i > 1);

ScanNONE: SecureMaxWork applied for simultaneous genuine and malicious flows,
with no scanning (i.e., α⃗ = 0).

As by theoretical part, it is expected that the first two executions should be stable while
the last one is not. It is expected that the third execution is also not stable, which would
justify the research quest for searching of suitable scanning vector. In order to visualize it,
differences and ratios between the second and the third executions are also displayed — the
stable and the potentially unstable one.

In the second part of the simulations, the arrival vector was varied by defining a parameter
ρ ∈ (0,1] called traffic intensity. Recall that the generic arrival vector λ ∗= 0.99 ·(1,1/3,2/3)
for genuine traffic and malicious workload using a generic arrival vector κ = (0.7,0.01,0.01)
Here, the arrival vector λ ∗ and κ were varied and set ρ ∈ {0.65,0.7,0.75,0.8,0.85,0.9,0.95,
0.96,0.97,0.98,0.99}. This means that the probabilities of the arrival of any of the three
types of jobs reflect the different job intensities. In the first sets of experiment κ = 1 is fixed
and λ ∗ is varied, this to observe how stability is affected by change in genuine workload. In
the second part fixed λ was used and κ was varied to observe how change in unreliable traffic
affects stability. Each execution includes 4,000,000 time steps. Average latency, maximum
latency, average queue size and maximum queue size were computed at every time step and
values are recorded at the end of 4,000,000 time steps. The experiments were ran 10 times
and the averages of the results for each traffic intensity was recorded.
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5.6.2 Performance Measure

The analysis for the queue stability of the algorithm was made. Stability relates to the
average queue size. Therefore the average queue sizes of different algorithms were compared.
Furthermore, measurement of maximal queue size, average latency and maximal latency was
taken, these are also important in estimating efficiency of the algorithms. Large maximal
queue size means that the system has to be able to find storage for these pending jobs when
they happen to accumulate. Large average latency means that there is a large delay before
jobs are finished – which is important in some applications. Large maximal latency means
that the algorithm is inappropriate for real-time systems.

Note that maximal latency and maximal queue size grow to infinity as time increases for
all algorithms. This is because the arrival rates considered are random and i.i.d. across time
slots – so an event that for any time interval arrivals in each step of this interval exceed the
arrival vector is non-zero. However the rate at which these measures grow to infinity depends
on the load balancer used – some load balancers (such as JSW) are allowing the system to
better utilize its resources and therefore remove jobs from the system faster.

5.6.3 Results of Simulations

Hypothesis 1 Based on the theory, the ScanOPT strategy should be stabilizing.

Hypothesis 2 Based on the theory, the naive ScanALL will not be stabilizing.

Hypothesis 3 Based on the theory, the ScanNONE strategy should be increasing at an
exponential rate as t increases due to increased backlog of jobs.
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Figure 5.1 Comparison of average latency of LambdaFlow, ScanOPT, ScanALL and Scan-
NONE strategies.
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Figure 5.2 Comparison of maximum latency of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies.
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Figure 5.3 Ratio of ScanALL to ScanOPT latency and difference between ScanALL and
ScanOPT latency (indicating ScanALL becomes worse over time).

In order to study throughput-optimality of the scanning strategies, the latency over
time for the different scanning strategies used was recorded, i.e., ScanALL, ScanOPT and
ScanNONE, comparing them with the execution LambdaFlow of the genuine workload only.
In Figure 5.1, the average latency of the ScanNONE and ScanALL strategies grow rapidly,
while it stabilizes for the ScanOPT strategy. The right part of the Figure is the zoomed left
part, in order to see clearly the performance of ScanOPT versus ScanALL. The performance
of ScanALL strategy is even worse for maximum latency, where it was observed that it
increases rapidly; this is shown in Figure 5.2. This indicates that some jobs will eventually
get stuck. In Figure 5.3 the ratio and the difference between ScanALL to ScanOPT latencies
was analyzed, and both are increasing. This indicates that ScanALL is becoming worse
over time, confirming the theory that ScanOPT stabilizes while ScanALL does not (c.f.,
Theorem 1 and Theorem 3, respectively, applied to the experiment setting of arrival rates
λ ,κ and scanning vectors α∗ and ScanALL, respectively). This also affirms Hypotheses 1
, 2 and 3.
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Figure 5.4 Comparison of average queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies.
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Figure 5.5 Comparison of maximum queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies.
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Figure 5.6 Ratio of ScanALL to ScanOPT Queue sizes and difference between ScanALL
and ScanOPT Queue Sizes.

The figures measuring queue sizes over time show that the trend is in fact similar to
the trend in latency with ScanALL performing considerably worse than ScanOPT while
ScanNONE grow even more rapidly over time. Figure 5.4 shows the average while queue
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sizes while Figure 5.5 shows the maximum queue sizes and Figure 5.6 shows the ratio and
differences of ScanALL and ScanNONE increasing overtime.
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Figure 5.7 Comparison of average latency of LambdaFlow, ScanOPT, ScanALL and Scan-
NONE strategies with varying Intensity of λ
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Figure 5.8 Comparison of maximum latency of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of λ

Figures 5.7 and 5.8 compare the average and maximum latency of the three centralized
approaches (ScanALL, ScanOPT and ScanNONE) and LambdaFlow. This is done while
varying the intensity of genuine traffic. The trend is as expected where ScanNONE performs
worst followed by ScanALL then the optimal ScanOPT. The queues were compared in
Figures 5.9 and 5.10 where they show similar trend.

Hypothesis 4 When κ is varied the ScanNONE should increase exponentially as κ intensity
increases.

Hypothesis 5 The performance of ScanOPT is expected to be better than ScanALL for
varying κ intensities as with the previous Hypothesis
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Figure 5.9 Comparison of average queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of λ
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Figure 5.10 Comparison of maximum queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of λ
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Figure 5.11 Comparison of average latency of LambdaFlow, ScanOPT, ScanALL and Scan-
NONE strategies with varying Intensity of κ

Figures 5.11 and 5.12 compare the average and maximum latency of the three centralized
approaches (ScanALL, ScanOPT and ScanNONE) and LambdaFlow.The experiment is
conducted while varying the intensity of unreliable traffic κ . The trend is as expected
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Figure 5.12 Comparison of maximum latency of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of κ
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Figure 5.13 Comparison of average queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of κ
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Figure 5.14 Comparison of maximum queue sizes of LambdaFlow, ScanOPT, ScanALL and
ScanNONE strategies with varying Intensity of κ

(Hypothesis 4) where both the queues and latency of ScanNONE increase rapidly. ScanALL
also performed worse than ScanOPT as in Hypothesis 5. The queues also were compared in
Figures 5.13 and 5.14 where they show similar trend.
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5.7 Summary

This chapter discussed centralized algorithms for load balancing in the cloud in the presence
of malicious or unreliable packets. The model of the problem was described using standard
models from the literature. SecureMaxWork, a centralized algorithm for load balancing in
the cloud was introduced. Rigorous theoretical analyses of the algorithms was provided and
it was shown that queues will stabilize. Extensive simulations proved that the ScanOPT
strategy stabilized while the naive ScanALL and ScanNONE did not stabilize. Decentralized
algorithms will be discussed in the next chapter.



Chapter 6

Reliable Job Scheduling in Cloud
Computing - Decentralized Approaches

6.1 Overview

This chapter introduces robust decentralized algorithms for load balancing in the cloud. It is
built from the the previous chapter which proposed centralized algorithms. The decentralized
algorithms are introduced in Section 6.2 with some some theoretical justification. Extensive
simulations and results are discussed in Section 6.3. Comparison between centralized
and decentralized approaches is presented in Section 6.4, non-preemptive algorithms are
discussed in Section 6.5 and conclusion is drawn in Section 6.6.

6.2 Decentralization

It was shown in the previous chapter that when the genuine job arrival rates λ j and malicious
jobs arrival rates κ j, then if jobs are scanned with probability α j queues will be stable and
the mean latency will be bounded. Here the challenge is to propose several decentralized
approaches to check if the queues and latency will the bounded.

Centralized approaches use the same queue for all type- j that are waiting in the system.
In decentralized approach all servers maintain separate queues for jobs of type- j, therefore
when a job arrives decision has to be made as to which server to route the job to. In this work
6 different algorithms are used.

Another distinct property of decentralized approach is the decision as to when to use
the SecureMaxWork algorithm at each server to make scheduling decision. If preemptive
algorithm is used then the problem will be trivial because SecureMaxWork will run at the
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beginning of every time-slot at each server. Here however, non-preemptive scheduling are
considered where jobs cannot be interrupted once they have started execution.

Maguluri et. al. [66] proposed the notion of refresh time A time slot t is a global refresh
time if there is no job currently in service in all the servers at the beginning of t. Local refresh
time happens when there is no job currently in service at the beginning of time slot t in a
server i.

In practice global refresh times happen rarely and intuitively the happen to be more rear
as the number of servers increase. Due to this phenomenon all the algorithms in this work
will consider only local refresh times

Algorithm A: SecureMaxWork_JSQ Joint Shortest Queue (JSQ) paradigm is used to
route a newly arrived job to the server with the queue with the smallest number of jobs of
type- j, where j denotes the type of the arrived job. This algorithm was analyzed in the
context of cloud workload in [66].

Algorithm B: SecureMaxWork_JSW. Joint Shortest Work (JSW) is used for routing a
newly arrived job to the server with the minimum workload of type- j, where the workload is
the sum of lengths of jobs in the local queue of type- j.

Algorithm C: SecureMaxWork_UR. Uniformly Random (UR) routing is used for
forwarding newly arrived job to a server chosen uniformly at random.

Algorithm D: SecureMaxWork_RR. Round Robin (RR) routine is used for allocating
newly arrived jobs to the servers, where RR is used separately for each type.

Algorithm E: SecureMaxWork_P2Q. Power-of-two-choices combined with selection
of the Shortest Queue (P2Q) is used for routing a newly arrived job of a type- j: two servers
are sampled uniformly at random, and the job is routed to the server with the shorter type- j
queue.

Algorithm F: SecureMaxWork_P2W. Power-of-two-choices combined with selection
of the Shortest Workload (P2W) is used for routing a newly arrived job of a type- j: two
servers are sampled uniformly at random, and the job is routed to the server with the smaller
workload of type- j (i.e., where the total length of type- j jobs in the local queue is shorter).

6.2.1 Stability of SecureMaxWork_JSW.

A rigorous mathematical analysis of a centralized scheduler SecureMaxWork with central
queues was provided, where jobs could be distributed to various machines at any time after
their arrival. Similar analysis applies to the decentralized SecureMaxWork with Join-Shortest-
Work (JSW) routing policy. Recall that, in this policy, upon arrival of type- j job, sends it to
machine that has minimum workload of type- j jobs, Z(m)

j , which is defined in Section 5.2 but
now computed for each machine separately. Then each machine tries to maximize work done,
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maxN∈S ∑
J
j=0 Z(m)

j (t)N j. All the steps in the analysis of the main algorithm SecureMaxWork
apply in this setting, resulting in almost identical analysis as in Section 5.4. An interesting
open problem is to analyze mathematically the other five decentralized implementations of
SecureMaxWork, and perhaps other similar decentralized algorithms.

6.3 Simulations

6.3.1 Experimental Setup

The experiment set up is the same as to that of Section 5.6, with virtual machines the same
as Table 5.1 and the same servers. Job arrivals and job size distribution are also the same.
Arrival vector of λ = c× [(1,1/3,2/3)] is used. The following optimal scanning vector α∗

is computed for this setting, more precisely, the vector minimizing expected arriving weight:

• α∗i,1 = 0 for Li ≤ 2,

• α∗i,2 = 0 for Li ≤ 34,

• α∗i,3 = 0 for Li ≤ 50,

• α∗i, j = 1 otherwise.

The only difference is that in this chapter the aim is to study how different routing protocols
influence stability, when applied to the SecureMaxWork with the optimally selected scan-
ning vector α∗ above. The six decentralized implementations of the centralized algorithm,
SecureMaxWork-OPT. They are denoted by ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_UR,
ScanOPT_RR, ScanOPT_P2Q, and ScanOPT_P2W are compared. All the the measurements
taken in Section 5.6 are also considered here and the results presented in the section below.

6.3.2 Results of Simulations

The aim of the experiments is to test the following hypotheses:

Hypothesis 6 Based on the theory algorithms with the knowledge of the whole system are
expected to be the best performing i.e. JSW and JSQ.

Hypothesis 7 The algorithms based on power-of-two-choices should have better perfor-
mance than the UR and RR because they consider some knowledge of the state of the servers
as opposed to the purely random ones.
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Hypothesis 8 The algorithms based on UR and RR are the worst performing because they
do not have any smart strategy, in fact they will not be stabilizing.
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Figure 6.1 Comparison of average latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.
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Figure 6.2 Comparison of maximum latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.

Figure 6.1 compares the latency of the six decentralized algorithms using ScanOPT strat-
egy, i.e., ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR
and ScanOPT_RR. The best performing algorithm is the one based on JSW (Hypothesis 6).
This is followed by the one based on JSQ (Hypothesis 6), and then the two algorithms based
on power-of-two-choices (Hypothesis 7). The worst performing algorithms are the ones
based on round robin and uniform random selection, which grow rapidly (Hypothesis 8).

Figure 6.2, shows the trend for maximum latency. Where as expected, the algorithm
based on JSW outperforms all the algorithms. A strange phenomenon noticed is that of JSQ.
There is no clear explanation of this phenomenon, although it is suspected that this could
be because choosing right configuration based on workload, as is done by SecureMaxWork,
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causes long windows of time without feeding the local queues using the shortest workload
policy could make these windows (and thus latency) even longer than using the shortest work
paradigm.
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(b) Zoomed version of (a)

Figure 6.3 Comparison of average queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.
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Figure 6.4 Comparison of maximum queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.

Figure 6.3 compares the average queue sizes of the 6 decentralized algorithms using
ScanOPT strategy i.e. ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W,
ScanOPT_UR and ScanOPT_RR. The best performing algorithm is the one based on JSW it
is not surprising because it considers the exact amount of work left in all the servers to decide
where to route new jobs. This is followed by JSQ and then the two algorithms based on
power-of-two-choices. The worst performing algorithms are the ones based on round robin
and uniform random selection which are not stabilizing. The performance is very similar for
maximum queue size comparison shown in Figure 6.4.

Therefore the general trend is that the algorithms based on checking all the servers (JSQ
and JSW)(Hypothesis 6) always outperform the ones based on power-of-two-choices (P2W
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and P2Q), this phenomenon is not surprising because the algorithms based on all the servers
consider the entire system state while the ones based on power-of-two-choices are random
(Hypothesis 7). It should be noted that the algorithms based on power-of-two-choices are
faster because decision can be made in constant time (which server to send an arriving job)
while the ones based on all servers decision can only be made linear to the number of servers.

Hypothesis 9 When λ is varied the result will be similar to Hypothesis 6, 7 and 8 where it is
expected that JSW and JSQ will have the best performance followed by P2Q and P2W then
the algorithms based on UR and RR.
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Figure 6.5 Comparison of average latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
λ
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(b) Zoomed version of (a)

Figure 6.6 Comparison of maximum latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
λ

Figures 6.5, 6.6, 6.7 and 6.8 compares the average and maximum latency and queue of
the six decentralized approaches varying λ intensities. The worst performing algorithms are
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Figure 6.7 Comparison of average queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
λ
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Figure 6.8 Comparison of maximum queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
λ

the ones based on RR and UR as they both explode from about intensity of λ = 0.90 for all
measurements. For the average and maximum queue sizes and average latency performance
of JSQ seems to be better initially but as the intensity increases the JSW outperforms the
algorithm based on JSQ. The maximum latency remains high for the algorithm based on JSQ,
the reason explained earlier all the figures support Hypothesis 9.

Hypothesis 10 When κ is varied the result will be similar to Hypothesis 10 where it is
expected that JSW and JSQ will have the best performance followed by P2Q and P2W then
the algorithms based on UR and RR. There will be no burst because the proportion of κ in
the traffic is rather small.

Figure 6.9 shows the average latency of the decentralized approaches while varying κ

intensity the algorithm based on JS* and P2* are almost 15 better than the one based on RR
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Figure 6.9 Comparison of average latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
κ
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Figure 6.10 Comparison of maximum latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
κ
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Figure 6.11 Comparison of average queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
κ
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Figure 6.12 Comparison of maximum queue sizes using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR with varying Intensity of
κ

and about 7 times better than the UR algorithm. This result is very similar to the one for
maximum latency in Figure 6.10 and queue sizes in Figure 6.11, 6.12.

6.4 Comparison Between Centralized and Decentralized

Given that the experiment settings are identical between the centralized and decentralized
approach, this section compares the performance of both the centralized and the decentralized
algorithm. ScanNONE, ScanOPT_UR and ScanOPT_RR are not considered due to their
poor performance.

Hypothesis 11 The centralized approaches will perform better than the decentralized be-
cause all servers are utilized in the centralized case provided there are jobs waiting.
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Figure 6.13 Comparison of average and maximum latency for decentralized and centralized
approaches
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Figure 6.14 Comparison of average and maximum queue sizes for decentralized and central-
ized approaches

Figure 6.13 and 6.14 compares the latencies and queues sizes of centralized with de-
centralized approaches. The trend is that centralized ScanOPT performs better than all the
decentralized algorithms for all the measurements. This supports Hypothesis 11.

6.5 Non-preemptive Scheduling

This is the section where experiments are conducted for non-preemptive algorithms. The
algorithms presented in the previous sections require that servers are configured and jobs
are re-allocated at the beginning of each time slot. Some jobs may not be interrupt-able or
interrupting a jobs could be costly (e.g the system needs to store a snapshot to be able to
restart the VM later). Experiments are conducted using the same setting as in Section 6.3 but
with local refresh time introduces in 6.2

Hypothesis 12 Because Non-preemption is dependent on number of jobs waiting in the
server, i.e. queue sizes, the algorithms based on shortest queue are expected to perform
better.

Figures 6.15 and 6.16 show the average and maximum latency of the 6 decentralized
algorithms. From the previous experiments the algorithms based on RR and UR are the
worst performing ones. The algorithms based on power-of-two-choices are very similar.
But if observed more closely, the one based on queue performs slightly better than the one
based on work (supporting Hypothesis 12). Finally the algorithms based on JS* are the best
performing algorithms with average latency 4 times smaller than the power-of-two-choices
counterparts. Proving Hypothesis 12 the algorithm based on JSQ slightly outperforms the
one based on work.

The result for queue sizes is very similar to the results of latency. This is shown in
Figure 7.1 and 6.18 further supporting Hypothesis 12.
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Figure 6.15 Comparison of average latency for Non-preemptive ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using
local refresh times
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Figure 6.16 Comparison of maximum latency for Non-preemptive ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using
local refresh times
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Figure 6.17 Comparison of average queue sizes for Non-preemptive ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using
local refresh times
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Figure 6.18 Comparison of maximum queue sizes for Non-preemptive ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using
local refresh times

6.5.1 Comparison Between Pre-emptive and Non Pre-emptive

Hypothesis 13 On algorithm by algorithm bases the preemptive algorithms are expected to
be better than the non-preemptive ones because some resources will be wasted while jobs
that have started are waiting to be finished.
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(b)

Figure 6.19 Comparison of latencies of ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q,
ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR

Figures 6.19 plots the ratio of latencies between non-preemptive and preemptive algo-
rithms. All the algorithms have ratios greater than one, this suggests that the performance for
non-preemptive is worse than for preemptive algorithms, this supports Hypothesis 13. The
algorithm with the least ratio is the one based on JSQ followed by the algorithms based on
RR and UR, all with ratio of average latency slightly about 1. These are closely followed by
the algorithm based on JSW with ratio of above 1.5. The algorithms based on power-of-two-
choices are the worse performing algorithms. P2Q has the ratio of about 3.5 and P2W has
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Figure 6.20 Comparison of queue sizes of ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q,
ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR

ratio of about 5. There is no clear explanation to this phenomenon. The trend is very similar
for the queue sizes in Figure 6.20.

6.6 Summary

Following the work done in Chapter 5 this chapter built on it and introduced decentralized
scheduling for load balancing in cloud data canters. It was discussed that the centralized
algorithm can be extended to the algorithm based on JSW. Experimental results proved
the assertion where it perform better than all the algorithms discussed. It was closely
followed by the algorithm based on JSQ, then the random algorithms based on power-of-two-
choices. The algorithms based on UR and RR were the worst performing algorithms and
they do not stabilize for the entire capacity region of the cloud. The chapter also compared
the centralized and decentralized algorithms where it was observed as expected that the
centralized algorithms performed better than the decentralized ones for both average queues
and latencies. Finally, the chapter concluded by simulating non-preemptive algorithms, where
it was discovered that the algorithms based on JSQ is the best performing algorithm because
non-preemption considers queues sizes. Comparison of non-preemptive vs preemptive
algorithms was also conducted where it was found that the non-preemption deteriorates
performance of algorithms. This was not a surprise because resources are wasted when
waiting for jobs to finish execution.





Chapter 7

Reliable Job Scheduling in
Heterogeneous Cloud

7.1 Overview

This chapter considers heterogeneous settings where each server has different amount of
resources available. This is because when cloud providers want to increase the capacity of
their data centers, it is natural for them to upgrade to servers with bigger capacity. Consider
the distributed setting, discussed in Chapter 6 in which each server has its own queues;
upon arrival, a job request is forwarded to some server and stored in the server’s local queue
corresponding to the requested type of VMs. When the resources become available, the
scheduling algorithm determines which set of jobs is to be served within the local queue in
the server. The system is stable if the queues do not tend to increase without bound.

In Chapter 5, it was shown that for homogeneous servers in a data center there exists a
stable algorithm given maximal arrivals rates of genuine and unreliable requests when proper
scanning procedure is selected. This chapter aims to develop similar algorithms for a data
center with heterogeneous servers. In addition to guarantee quality of service, job latency
will also be measured, which is defined as the amount of time a job resides in the system
since its arrival.

The reader is referred to Section 5.2 for the description of precise model and Section 5.3
for job scheduler SecureMaxWork. The discussion of the decentralized implementation
of SecureMaxWork in Section 6.2. The rest of the chapter is organized as follows: the
experimental setting and the evaluation results of the performance of these algorithms are
presented in Section 7.2. Section 7.3, gives mathematical proofs that some popularly used
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simple algorithms are not stable and further experiments were conducted to show their
instability. Finally Section 7.4 provides conclusion for the chapter.

7.1.1 Features of the System

The extension of the study of managing workload in clouds under unreliable workload
scenarios from homogeneous servers setting in Section 5.2 to heterogeneous servers setting.
Extending the model in [15, 68], unreliable part of the traffic are detected by scanning only
some specifically selected jobs without sacrificing too much resources.

• The theoretical model in Chapter 5 of capturing the essence of this conditional scanning
is extended to the heterogeneous server setting.

• Several decentralized versions of the algorithm SecureMaxWork were proposed on the
heterogeneous setting.

• Evaluation of the algorithms was done through extensive simulations, with respect to
the maximum and average latency over time. The experiments illustrate that under a
certain system capacity region and stochastic arrival pattern of genuine and unreliable
jobs, coupling SecureMaxWork with server dispatching (routing) policies Shortest
Queue First and Shortest Work First are stable while other routing policies power-of-
two-choices, Round Robin and Uniform Random are unstable.

• Further support the experimental results by proving mathematically that power-of-two-
choices, Round Robin and Uniform Random are unstable for a substantial amount of
workloads even within the system capacity.

7.2 Simulation

7.2.1 Experiment Setting

Servers and VMs. Consider two types of servers in the data center, the first with the
following configuration: 30 GB memory, 30 EC2 computing units and 4000 GB (4TB)
storage space. Arriving jobs are served in the cloud based on three types of Virtual Machines
described in Table 5.1. This gives three maximal configurations available at each server:
(2,0,0), (1,0,1) and (0,1,1). The second server has 68GB Memory, 80 EC2 computing
units and 7168GB (7TB) of storage, based on the virtual machine configuration in Table ??,
this gives us maximal configuration (4,0,0), (2,2,0), (0,0,4), (3,1,0), (3,0,1), (1,3,0),
(0,3,2), (1,0,3), (0,2,3), (2,1,1), (2,0,2) and (1,2,2).
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Job arrivals. Use the generic arrival vector λ ∗ = 0.99× (1,1/3,2/3) for genuine users’
workload, which is located close to the border of server one capacity area taking all three
maximal configurations and also close to the server two capacity area taking three of its
maximal configurations (4,0,0), (2,2,0), (0,0,4) (observe that λ ∗ is a normalized linear
combination of the six configurations mentioned, additionally re-scaled by factor 0.99).

In each time step, a job of type j = 1,2,3 is selected with probability
λ ∗j

130.5 , and its
length is chosen according to the length distribution described below with mean length 130.5
(calculation shown later).

Similarly as above, unreliable workload is defined using a generic arrival vector κ∗ =

(0.7,0.01,0.01), and the procedure of generating an unreliable traffic is analogous as above
for generating the genuine users’ one. Note that each of the arrival rates λ ∗ and κ∗ is within
the capacity range of a server, whereas the combined work-flow rate λ ∗+κ∗ is not.

Job size distribution.
When a new job is generated, with probability of 0.7 it is an integer uniformly distributed

in the interval [1,50], with probability of 0.15 it is an integer uniformly distributed in
[251,300], and with probability of 0.15 it is an integer uniformly distributed in [451,500].
Note that there are 150 possible job lengths, and the mean length is 130.5, as assumed in the
definition of arrival rates.

Set up of simulations. The homogeneous setting used 100 servers of type one. In the
heterogeneous setting consider 80 servers of type one and 10 of type two. Therefore the
maximal feasible arrival rates in heterogeneous setting is:

• 80 × 1
3 × (3,1,2) = (80,80/3,160/3) for type one;

• 10 × 1
3 × (6,2,4) = (20,20/3,40/3) for type two

which in total is the same arrival rate as for the homogeneous setting 100 × 1
3 ×(3,1,2) =

(100,100/3,200/3). Based on these the overall arrival rates are: λ = 100×λ ∗= (99,33,66)
for genuine workload, and κ = 100×κ∗= (70,1,1) for unreliable workload – they are inside
the capacity regions for both homogeneous and heterogeneous settings (note that the capacity
region of homogeneous setting is slightly smaller than that of heterogeneous). The job size
distribution is as specified above, same for each job type. The following optimal scanning
vector α∗ is computed for this setting, more precisely, the vector minimizing expected
arriving weight:

• α∗i,1 = 0 for Li ≤ 2,

• α∗i,2 = 0 for Li ≤ 34,
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• α∗i,3 = 0 for Li ≤ 50,

• α∗i, j = 1 otherwise.

Each execution includes 4,000,000 time steps. The average latency and maximum latency
were computed at at every time step and the results were recorded at every 200,000 steps.
The experiments were ran 10 times and the averages of the results for each recorded time
step was recorded.

In the first part, the results of the above measurements of SecureMaxWork applied on
simultaneous genuine and malicious flows, with scanning defined by vector α∗ (recall that it
is ScanOPT). The aim is to study how different routing protocols influence stability, when
applied to the SecureMaxWork with the optimally selected scanning vector α∗. The six
decentralized implementations of SecureMaxWork are compared: namely, ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_UR, ScanOPT_RR, ScanOPT_P2Q, and ScanOPT_P2W.

In the second part of the simulations, arrival vector is varied by defining a parameter ρ ∈
(0,1] called traffic intensity. Recall that the generic arrival vector λ ∗ = 0.99× (1,1/3,2/3).
Here, the arrival vector λ is varied as ρ×(1,1/3,2/3), and set ρ ∈ {0.65,0.7,0.75,0.8,0.85,
0.9,0.95,0.96,0.97,0.98,0.99}. This means that the probabilities of the arrival of any of the
three types of jobs reflect the different job intensities.

Each execution includes 4,000,000 time steps. Average and maximum and latency and
queue size is computed at every time step and values are recorded at the end of 4,000,000
time steps. The experiments were ran 10 times and the averages of the results for each traffic
intensity was recorded.

7.2.2 Results

Hypothesis 14 Algorithms based on JSQ and JSW should stabilize with JSW performance
better.

Hypothesis 15 Depending on arrival rates the algorithms based on P2Q and P2W should
not stabilize.

Hypothesis 16 Algorithms based on RR an UR should not stabilized and should be substan-
tially worse than the other four algorithms.

Figure 7.2 compares average latency of the six decentralized algorithms using ScanOPT
strategy. The best performing algorithms are the ones based on JSW and JSQ ( Hypothe-
sis14) followed by the two algorithms based on the power-of-two-choices P2W and P2Q
(Hypothesis 15), In this case the algorithms seem to be stabilizing, this is because of the
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Figure 7.1 Comparison of average queue sizes for Non-preemptive ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using
local refresh times
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Figure 7.2 Comparison of average latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.
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Figure 7.3 Comparison of maximum latency using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.

arrivals rates and the types of servers chosen. The worst performing algorithms are based on
round robin and uniform random selection, which grow rapidly (Hypothesis 16). JSW and
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JSQ (Hypothesis 14) are the best in terms of average latency performance, although the other
two reasonable policies (P2W and P2Q) also show some stability trends. It was expected that
the two algorithms based on power-of-two-choices (Hypothesis 15) will not perform as well
as the JSQ and JSW (in fact they are 3 times worse) algorithms because they are random and
majority of the selection will be from the small set of servers i.e. server one. Therefore, work
will not be evenly distributed.

The result for maximum latency is very similar to that of average latency, only that the
algorithm based on JSQ has very poor performance, this is illustrated in Figure 7.3. There is
no clear explanation of this phenomenon, although it is suspected that this could be because
choosing optimal configuration based on workload, as is done by SecureMaxWork, causes
long windows of time without changing configuration, and feeding the local queues using
the shortest workload policy could make these windows (and thus latencies) even longer than
using the shortest queue paradigm. By definition, SecureMaxWork considers workload and if
a long job is waiting in a server it might not be considered minimum based on JSQ and it will
not contribute much in SecureMaxWork to be process. Similarly, the power-of-two-choices
policy (i.e., controlled use of randomization) behaves better for shortest work than for shortest
queue.
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Figure 7.4 Comparison of average maximum queue size using ScanOPT_JSQ,
ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.

The figures for maximum and average queue sizes showed similar and expected result
with the algorithms based on JSW performing best followed by the one based on JSQ. The
algorithms based on power-of-two-choices seem to be stabilizing but this is because the
chosen arrival rates of the other server to be exactly the same as the old server. These are
arrival rates face the same face in the convex hull. In the next section it will be shown that if
different arrivals rates are chosen (i.e. different face of the structure) even for small number
of servers, these algorithms will not stabilize for the entire capacity region.
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Figure 7.5 Comparison of maximum queue size using ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR.

Hypothesis 17 The latency and queue sizes will be unstable at a lowest value of λ for UR
and RR. .

Hypothesis 18 The latency and queue sizes will be unstable at a lower value of λ for P2*
than for JS*.
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Figure 7.6 Comparison of average queue size for ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using varying traffic
intensities.

Figure 7.6 compares the average queue sizes of all algorithms using varying traffic
intensities while in Figure 7.7 compares the maximum queue sizes. As expected, the
algorithms based on uniform random and round robin allocation are not very stable because
they lost stability as about λ ∗ = 0.97 (Hypothesis 17). The algorithms based on power-of-
two-choices lose stability at around λ ∗ = 0.97 while the algorithms based on shortest queue
and work are the most stable (Hypothesis 18). The trend is very similar in Figures 7.9 and 7.8
for maximum and average latency respectively.
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Figure 7.7 Comparison of maximum queue size for ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using varying traffic
intensities.
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Figure 7.8 Comparison of average latency for ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using varying traffic
intensities.
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Figure 7.9 Comparison of maximum latency for ScanOPT_JSQ, ScanOPT_JSW,
ScanOPT_P2Q, ScanOPT_P2W, ScanOPT_UR and ScanOPT_RR using varying traffic
intensities.
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7.2.3 Comparison Between Heterogeneous and Homogeneous Data Cen-
ters

Given that we have the same arrival rates for the homogeneous simulation in Section 6.3.1
to Section 7.2.1 above two simulations where compared. Note that though the servers
have the same total capacity. There are more available valid configurations for the 10 new
bigger servers. The comparison is based on the ratio between all the parameters measure in
heterogeneous setting to the ones measure in homogeneous setting.

It can be observed that the algorithms based on JSW and JSQ are doing better in this
particular heterogeneous settings than in the homogeneous setting. This is because the bigger
servers have more valid configurations but we are using similar arrival rates. The algorithms
based on power-of-two-choices are behaving slightly worse in heterogeneous setting than the
homogeneous setting. It is expected that the performance will be worse, the reason they are
not worse is the same as the reason for good performance of JSW and JSQ approaches. The
next section will show the expected results when different arrival rates are used for different
servers.
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Figure 7.10 Comparison of ratio of average latency between heterogeneous and homo-
geneous settings using ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W,
ScanOPT_UR and ScanOPT_RR.

7.3 Instability of Power of two Choices, Round Robin and
Uniform Random policies

7.3.1 Introduction and Proofs

This section presents theoretical results that explain some of the results obtained from the
experiments.
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Figure 7.11 Comparison of ratio of maximum latency between heterogeneous and homo-
geneous settingsusing ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W,
ScanOPT_UR and ScanOPT_RR.
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Figure 7.12 Comparison of ratio of average queue size between heterogeneous and homo-
geneous settings using ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W,
ScanOPT_UR and ScanOPT_RR.
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Figure 7.13 Comparison of ratio of maximum queue size between heterogeneous and homo-
geneous settingse using ScanOPT_JSQ, ScanOPT_JSW, ScanOPT_P2Q, ScanOPT_P2W,
ScanOPT_UR and ScanOPT_RR.
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Theorem 5 No job scheduler is stable for all arrival vectors inside the capacity region when
combined with Power of two Choices routing policy.

Proof: Consider the system of 80 small servers and 10 large servers as in Section 7.2.1.
With probability (80/90)2, Power of two Choices randomly picks two small servers and
chooses one of them as destination for a considered job. This means that there are only 80
small servers that will receive at least (8/9)2 of all the jobs.

Consider arrival rate of genuine jobs of c× [80× (1,1/3,2/3)+10× (0,2,3)] for some
c < 1. This arrival rate lies inside the capacity region of the system. Let x,y,z be the average
number of small servers that chose configuration (2,0,0), (1,0,1) and (0,1,1), respectively,
per time slot. Note that for the system to be stable, the following must hold:

x+ y+ z = 80 (there are 80 small servers)

and type- j jobs must be processed at least as frequently as they arrive:

2x+ y ≥ (8/9)2c× (80×1+10×0) (type-1 jobs)
z ≥ (8/9)2c× (80×1/3+10×2) (type-2 jobs)

y+ z ≥ (8/9)2c× (80×2/3+10×3) (type-3 jobs)

If the three inequalities are summed up:

2x+2y+2z≥ (8/9)2×210c

160≥ (8/9)2×210c

81≥ 4×21c

Hence, for c = 0,97 no job scheduler can process jobs in small servers as fast as Power
of two Choices injects them, despite the arrival rates being inside the capacity region.

Note that in the scenario described in the proof of Theorem 5, Round Robin and Uniform
Random routing policies would direct 8/9 jobs to the small servers instead of (8/9)2, which
makes the overload of the small servers even bigger than in case of Power of two Choices.
Therefore, the conclusion is as follows.

Corollary 1 No job scheduler is stable for all arrival vectors inside the capacity region
when combined with Round Robin or Uniform Random routing policy.
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7.3.2 Experimental Setup

The experiment set up is very similar to that of Section 7.2. With the same VM and servers
as in Table ??. Arrival vector of λ = c× [(1,1/3,2/3)+(0,2,3)] is used. For c = 0.97 and
c = 0.96. No malicious workload was considered in this case. The job size distribution
remains the same as in Section 7.2 above. In this setting, 80 servers of type one and 10 of
type two were used. Therefore the maximal feasible arrival rates in heterogeneous setting is:

• 80 × 1
3 × (3,1,2) = (80,80/3,160/3) for type one;

• 10 × 1
3 × (0,2,3) = (0,20/3,30/3) for type two

which gives us total arrival rate of (80,100/3,190/3).

7.3.3 Results of Simulations

Instability of Power of two Choices for c = 0.97

The aim of the simulations is to confirm the conclusion that, for c = 0,97 no job scheduler
can process jobs in small servers as fast as Power of two Choices injects them, despite the
arrival rates being inside the capacity region. The following Hypotheses will be tested:

Hypothesis 19 Based on the theory, algorithms based on power-of-two-choices, Round
Robin and random routing are not stable for c=0.97.

Hypothesis 20 Based on the theory, algorithms based on joint shortest work/queue are
stable
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Figure 7.14 Comparison of average latency using JSQ, JSW, P2Q, P2W, UR and RR for c =
0.97 using second setting
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Figure 7.15 Comparison of maximum latency using JSQ, JSW, P2Q, P2W, UR and RR for c
= 0.97 using second setting

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

2

4

6

8

10

12
x 10

4

Rounds

A
v
e
ra

g
e
 Q

u
e
u
e
 s

iz
e

 

 

JSW
P2W
P2Q
JSQ
UR
RR

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

Rounds

A
v
e
ra

g
e
 Q

u
e
u
e
 S

iz
e

 

 

JSW
P2W
P2Q
JSQ

(b) Zoomed version of (a)

Figure 7.16 Comparison of average queue sizes using JSQ, JSW, P2Q, P2W, UR and RR for
c = 0.97 using second setting
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Figure 7.17 Comparison of maximum queue sizes using JSQ, JSW, P2Q, P2W, UR and RR
for c = 0.97 using second setting

Figure 7.14 shows the average latency of the dispatching algorithms it is clear that the
algorithms based on UR and RR are not stabilizing. If the figures are zoomed it can be
clearly seen that the algorithms based on power-of-two-choices are also not stabilizing. The
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algorithms based on JS* are stabilizing which supports Hypothesis 20. The figure is very
similar for maximum latency in Figure 7.15 where all the algorithms based on random routing
do not stabilize, supports Hypothesis 19.

Stability of Power-of-Two Choices for c = 0.96

If the rates of c = 0,96 are used the algorithms based on Power of two Choices stabilizes.
The following hypothesis will be tested.

Hypothesis 21 Based on the theory, algorithms based on power-of-two-choices are stable
for c=0.96.
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Figure 7.18 Comparison of average latency using JSQ, JSW, P2Q, P2W, UR and RR for c =
0.96 using second setting
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Figure 7.19 Comparison of maximum latency using JSQ, JSW, P2Q, P2W, UR and RR for c
= 0.96 using second setting

Figure 7.18 shows the results of the simulation for average latencies while Figure 7.19
shows results maximum latencies. The algorithms based on JSQ and JSW are stabilizing
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Figure 7.20 Comparison of average queue sizes using JSQ, JSW, P2Q, P2W, UR and RR for
c = 0.96 using second setting
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Figure 7.21 Comparison of maximum queue sizes using JSQ, JSW, P2Q, P2W, UR and RR
for c = 0.96 using second setting

as expected but the aim of the experiments to test if the ones based on P2W and P2Q will
stabilize. The figures indicate that both algorithms seem to be stable. This clearly supports
the theory in Section 7.3.1 and supports Hypothesis 21. Note that the algorithms based on
RR and UR are still not stable. The results for queue sizes are very similar to the ones above
(see Figures 7.20 and 7.21) further supporting Hypothesis 21.

7.4 Summary

This chapter extends the work done in Chapter 6. The distributed algorithms for load
balancing in the cloud were discussed. As data centers evolved, cloud providers upgrade
their servers with bigger servers which makes the data centers heterogeneous. Theoretical
analyses showed that the algorithms based on power-of-two-choices, uniform random and
round robin are not stable for the entire cloud capacity. Experimental results confirmed the
theoretical analysis.





Chapter 8

Conclusions and Future Work

8.1 Overview

This chapter provides summary of all the previous chapters, highlight main findings and
results and proposes some directions for future research.

This chapter is organized as follows: Section 8.2 discusses the research contributions
made in this thesis. These include: a hierarchical model for intrusion detection, auto scaling
and cloud security, centralized reliable scheduling in cloud data centers and reliable job
scheduling in heterogeneous cloud. Main findings are discussed in Section 8.3 and finally
future work is proposed in Section 8.4.

8.2 Research Contribution

The main aim of this research is to rethink on how to look at security from the cloud
perspective. With that it aims to propose a hierarchical model for intrusion detection in the
cloud. Current research’s aim is also to propose reliable scheduling algorithms for load
balancing in the cloud.

8.2.1 Hierarchical Model for Intrusion Detection in the Cloud

To begin with a new model where different rules are checked at different levels of cloud
computing hierarchy was introduced. Automata for all levels were produced and results show
that the system stays in the desired state 60% of the time even if there is 10% of the traffic as
attack.
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8.2.2 Auto Scaling and Security in Cloud

This constitute a review of auto scaling and how it affects cloud computing clusters. Major
commercial cloud computing providers were reviewed. A new model for handling auto
scaling request was proposed, this model goes a little further to investigate why there is an
auto-scaling request to protect cloud computing users. This research inspired the subsequent
aims of looking at the relationship between load balancing and security in cloud computing
data centers.

8.2.3 Centralized Reliable Scheduling in Cloud Data Centers

In this section SecureMaxWork was introduced, an algorithm that maximizes the total
workload multiplied by all possible configurations while choosing some scanning strategy.
It considers that scanning costs resources. It was shown theoretically that average queues
will be stable even if arrival rates of combined malicious and genuine traffic are outside
the cloud capacity region, provided the right scanning strategy is chosen. Implementation
of the algorithm and experiments confirmed the theory, with the optimal scanning strategy
stabilizing while the naive ScanAll strategy does not. Results showed that the latency of
ScanALL can be more than twice that of ScanOPT, the difference in latency can be as much
as 4000 and both of these parameters are growing. This trend is very similar for queue sizes.
The ScanNONE strategy is increasing exponentially.

8.2.4 Decentralized Reliable Scheduling in Cloud Data Centres

The previous section uses central queues i.e. queues that are maintained by a central scheduler.
In the decentralized approach when a job arrives, a decision is made as to which server to
send a job and queues are maintained by server. The following six dispatching algorithms
where analyzed using the same ScanOPT strategy:

Joint Shortest Work with SecureMaxWork

Considers the server with the least amount of work of a job type and sends the arriving job
there. The best performing algorithm for all the performance measure. Two and half times
better than UR and 5 times better than RR. The closest dispatching algorithm is JSQ with
average queue difference of about 50 jobs and difference of 100 with P2W. Almost half the
queue size of P2Q.
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Joint Shortest Queue with SecureMaxWork

Considers the server with the least number of jobs of that type and sends the arriving job
there. The second best performing algorithm for all the performance measure. The closest
dispatching algorithm is JSW with average queue difference of about 50 jobs.

Power of Two Choices-Work with SecureMaxWork

When a job arrives two servers are chosen uniformly at random and the job is sent to the
server with the least amount of work left of the two chosen server. This algorithm requires
small amount of time and memory to make a decision. The performance is decent because it
is just slightly worse than JSQ. For applications that require fast decisions this can be a good
algorithm as well.

Power of Two Choices-Queue with SecureMaxWork

When a job arrives, two servers are chosen uniformly at random and the job sent to the server
with the least number of jobs left of the two chosen server. Similar to the P2W this algorithm
requires small amount of time and memory to make decision. The performance is decent
because it is just slightly worse than JSQ. For applications that require fast decisions this can
also be a good algorithm.

Uniform Random with SecureMaxWork

When a job arrives, a server is chosen uniformly at random and the job is sent to the server.
It performs only better than the algorithm based on RR.

Round Robin with SecureMaxWork

When a job arrives, servers are chosen in a round robin manner. This is the worst performing
algorithm and seems to be exploding for all the performance measures. This is because the
state of a server is not considered before the jobs are sent to it.

Non-Preemptive Job Scheduling

The algorithms presented in the previous sections require that servers are reconfigured and
jobs are re-allocated at the beginning of each time slot. This section considers a scenario
where jobs are not interrupted once they start execution. Here the best performing algorithm
was JSQ, this is because non-Preemption considers the amount of jobs waiting in the server.
It is slightly better than the algorithm based on JSW. These algorithms are 4 times better than



90 Conclusions and Future Work

the ones based on P2W and P2Q which are almost identical and have average queues of up to
about 5000 jobs. As expected the algorithms based on RR and UR are the worst performing
algorithms. Comparison between the preemptive with non preemptive showed that all the
algorithms’ performance for non-preemptive are worse. This is no surprise because resources
will be wasted when waiting for jobs to finish before a new configuration is chosen.

8.2.5 Reliable Scheduling in Heterogeneous Cloud Data Centers

In the previous sections the homogeneous servers where considered but as cloud computing
providers upgrade their data centers, they tend to upgrade with servers with higher capacity.
Hence, it is inevitable that data centers become heterogeneous. Cloud computer data centers
with heterogeneous were studied. Theoretical analysis showed that given some arrival rates
the algorithms based on power-of-two-choices, RR and UR do not stabilize for the entire
cloud capacity. For example two servers were used and it was shown that no stable algorithm
exist for 97% of the capacity region (even without malicious traffic) for the four algorithms.
Experimental results confirmed the theory and the 4 algorithms did not stabilize. When 96%
was used however, the algorithms based on power-of-two-choices stabilized.

8.3 Main Results and Findings

• It was shown that the ScanOPT strategy stabilizes through formal analyses. Simulations
proved this assertion even if the naive ScanALL will not be stable. It was also shown
through simulations that the strategy ScanNONE is increasing at an exponential rate
(Hypotheses 1 , 2 and 3).

• For decentralized scheduling, algorithms with the knowledge of the whole system were
the best performing i.e. JSW and JSQ (Hypothesis 6).

• The algorithms based on power-of-two-choices have decent performance because
although they are random, they consider some knowledge of the state of the servers
(Hypothesis 7).

• The algorithms based on UR and RR are the worst performing because they do not
have any smart strategy, in fact they will not be stable (Hypothesis 8).

• The centralized approaches perform substantially better than the decentralized be-
cause all servers are utilized in the centralized case provided there are jobs waiting
(Hypothesis 11).
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• Because Non-preemption is dependent on jobs waiting in the server, i.e. queue sizes,
the algorithms based on shortest queue have substantially better performance (Hypoth-
esis 12).

• On algorithm by algorithm bases the preemptive algorithms are expected to be few
times better than the non-preemptive ones because some resources will be wasted
while jobs that have started are waiting to be finished (Hypothesis 13).

• In heterogeneous systems there likely will be some ranges of arrival rates in which
global queue knowledge algorithms will perform substantially better than those based
on ad hoc local approach, and it was confirmed in sample scenario (Hypothesis 19
and 21).

8.4 Future Work

8.4.1 Hierarchical Model

The decentralized algorithms for load balancing introduce some hierarchy and potential for
checking unreliability at different points in the cloud. For now scanning is only done at the
server but decision to scan or not to scan is done centrally and uniformly for all servers. The
model can be extended to different servers making different scanning decisions based on job
types and utilization.

8.4.2 Non-preemptiveness

It was assumed that in regular time intervals all machines can be reconfigured — all jobs
could be rescheduled and redistributed among the machines for further process. In some
systems, interrupting execution of some jobs may be very costly. It is known how to transform
such preemptive algorithms into ones with no reconfigurations, within (roughly) the same
stability region, c.f., [15]. This technique applies also to our robust algorithms. One may
consider a model, where a job, once started on a machine, can not be paused or rescheduled
for completion in a different time, nor processed on a different machine.

The main idea in adapting SecureMaxWork to this model is to divide time into windows
of length of T time slots. T should be large enough so that any job could be started at the
start of the time window without breaking the above constraint. The algorithm will schedule
jobs as previously with an additional constraint that only jobs that can be finished within a
time window may be started. The stability analysis remains the same, except that the margin
for unstable arrival rates should be made a bit larger to accommodate potential losses of
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resources at the end of the time window. Thus, the higher T the better stability, though the
latency may increase — studying this trade-off is an interesting open problem.

On the other hand, our results on non-stability presented in Theorem 5 and Corollary 1
automatically apply to the non-preemptive setting, as it is even more demanding (from per-
spective of job scheduler) than the preemptive setting analyzed in Theorem 5 and Corollary 1.

8.4.3 Algorithms without Knowledge of Arrival Rates

Finding the optimal scanning frequencies requires the knowledge of arrival rates of jobs of
each type, length and genuine/malicious status. In practice, however, these values are not
provided in advance. They can be estimated given a large enough sample.

If arrival rates are not provided, SecureMaxWork algorithm can be started using ScanALL
strategy for a fixed but sufficiently long amount of time. During this time the status of
genuine/malicious jobs can be learned (due to the ScanALL strategy) and therefore the
algorithm will be able to estimate user-generated and malicious jobs arrival rates. The
scanning frequencies that are optimal for the estimated arrival rates can be used. Note that
using a different scanning strategy at the beginning for a fixed amount of time should not
have impact on stability.

Furthermore, ScanALL strategy for a fixed amount of time can be used repeatedly, with
significantly longer pause after each time (during which the scanning probabilities used will
be computed based on the estimates), in order to enhance the quality of estimation of arrival
rates, and thus using resources more and more efficiently. If pauses get long enough, this
strategy should give better results than running ScanALL strategy only once.0

Another approach is to use ScanALL strategy once and then run the algorithm with
optimal scanning frequencies for calculated estimations, but utilize information given by
scanning jobs according to optimal scanning frequencies. Since job arrivals are i.i.d. among
time slots, scanning x jobs randomly should give as good estimations as scanning first x
jobs. Therefore, even when using optimal scanning frequencies, each time a job was scanned
estimation of arrival rates improve. Designing and analyzing a stable algorithm for more
scarce adversarial arrivals of malicious jobs is an interesting open problem.

8.4.4 Weighted Random and Round Robin in Heterogeneous Cloud

It was observed that some of the random algorithms that had decent performance for homo-
geneous cloud are not performing well in heterogeneous cloud. The reason might be because
there is uniform random selection. It will be interesting to observe stability when weighted
random algorithms are used. Weighing can be done based on arrival rates of different types
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of jobs at servers and the number of those servers in the cloud system. This is especially true
for the algorithms based on power-of-two-choices.
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Appendix A

Data Sets

This appendix include values for the graphs plotted in this thesis.
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Table A.1 Average Latency Centralized

Time Slot Lamda ScanOPT ScanAll ScanNone
200000 508.9537495 742.2210745 818.0639644 29912.00937
400000 513.5139763 780.6653145 905.8334974 59800.39053
600000 512.8637821 830.3156821 1010.084936 89800.57337
800000 517.6165387 911.6836216 1137.699229 119813.0487
1000000 517.7724021 1006.330005 1291.240047 149841.7933
1200000 520.0024258 1065.114661 1418.55936 179817.0337
1400000 519.1306663 1105.498118 1525.271178 209779.5107
1600000 521.5263258 1115.111395 1605.66698 239779.0768
1800000 521.575393 1128.203 1687.934356 269813.7497
2000000 520.0963925 1125.197607 1744.134539 299762.4867
2200000 519.8998475 1120.56208 1797.734032 329758.2874
2400000 520.646736 1122.727934 1857.787334 359748.143
2600000 519.99109 1128.888324 1922.827769 389718.155
2800000 519.3205393 1126.041902 1976.219581 419708.3173
3000000 519.4143654 1115.467046 2023.586108 449688.7146
3200000 519.7155181 1109.757721 2075.998202 479680.2757
3400000 519.0464457 1115.480342 2138.438229 509656.1005
3600000 518.0514835 1109.400254 2179.017652 539657.9764
3800000 518.1101033 1106.061253 2219.748768 569650.7176
4000000 518.0651797 1102.781768 2254.836303 599625.3496

Table A.2 Maximum Latency Centralized

Time Slot Lamda ScanOPT ScanAll ScanNone
200000 2979.2 3762.3 3989.9 140607.6
400000 3134.1 4118.8 4542.9 279711.3
600000 3170.1 4411.6 5039.5 418735.3
800000 3246.9 5036 5938.6 557225.3
1000000 3319.3 5470.6 6591.1 695508.8
1200000 3384.5 5834.2 7150.1 833855.2
1400000 3384.5 5931.7 7535.4 972667.5
1600000 3485.6 6141 7915.1 1112606.5
1800000 3529.4 6420.3 8377.3 1251215.2
2000000 3529.4 6420.3 8526.7 1390035.3
2200000 3539.9 6553.2 8843.1 1528112
2400000 3539.9 6589.4 9084.9 1666022.3
2600000 3539.9 6616.2 9251 1805216.9
2800000 3539.9 6629.8 9395.7 1942639.8
3000000 3543.3 6629.8 9618.9 2081929.4
3200000 3544.6 6629.8 9826.4 2221191.6
3400000 3544.6 6629.8 10189.3 2361424.2
3600000 3544.6 6629.8 10242.5 2500488.6
3800000 3544.6 6678.2 10521 2638843.9
4000000 3544.6 6678.2 10662.2 2777764.3
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Table A.3 Latency Differences and Ratios Centralized

Time Slot AveRatio MaxRatio AveDiff MaxDiff
200000 1.102183692 1.06049491 75.84288993 227.6
400000 1.160335269 1.102966884 125.1681829 424.1
600000 1.216507116 1.142329314 179.7692541 627.9
800000 1.247910133 1.179229547 226.0156076 902.6
1000000 1.283117904 1.20482214 284.9100418 1120.5
1200000 1.33183723 1.225549347 353.4446989 1315.9
1400000 1.379713953 1.270360942 419.7730602 1603.7
1600000 1.439916215 1.288894317 490.5555848 1774.1
1800000 1.496126457 1.304814417 559.7313567 1957
2000000 1.550069542 1.328084357 618.9369324 2106.4
2200000 1.604314534 1.349432338 677.1719512 2289.9
2400000 1.654708392 1.378714299 735.0594004 2495.5
2600000 1.703293168 1.398234636 793.9394451 2634.8
2800000 1.755014247 1.417192072 850.1776792 2765.9
3000000 1.814115544 1.450858246 908.1190613 2989.1
3200000 1.870676962 1.482156324 966.2404815 3196.6
3400000 1.917055951 1.536894024 1022.957886 3559.5
3600000 1.964140214 1.544918399 1069.617398 3612.7
3800000 2.006894972 1.575424516 1113.687515 3842.8
4000000 2.044680433 1.596567937 1152.054535 3984

Table A.4 Average Queue Sizes Centralized

Time Slot Lamda ScanOPT ScanAll ScanNone
200000 256.6152895 416.597637 464.285194 17994.11417
400000 258.9904947 440.569204 519.329507 35829.39166
600000 258.5349542 471.4936707 584.5707503 53744.22788
800000 261.0139995 522.794109 665.0624911 71681.05329
1000000 261.0697983 582.2961065 761.7189776 89610.12394
1200000 262.1905491 619.1937198 841.7752223 107526.8736
1400000 261.7253521 644.4557983 908.7396621 125427.3642
1600000 262.9483935 650.5028473 959.3717079 143339.2111
1800000 262.9470899 658.6682481 1011.055447 161264.2811
2000000 262.2086057 656.7094 1046.29864 179178.8182
2200000 262.116159 653.7799066 1080.009596 197085.4752
2400000 262.5200964 655.2048229 1117.894149 214987.6004
2600000 262.1686577 659.0767742 1158.850053 232890.4523
2800000 261.8314039 657.2879982 1192.448996 250791.4502
3000000 261.8700955 650.6110189 1222.203664 268690.2356
3200000 262.0376092 647.0398852 1255.187095 286596.6074
3400000 261.6870985 650.6357546 1294.473521 304516.4022
3600000 261.1733477 646.7894689 1319.982101 322435.0823
3800000 261.2037882 644.6701289 1345.558964 340353.3991
4000000 261.1834657 642.6208019 1367.682144 358260.2409
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Table A.5 Maximum Queue Centralized

Time Slot Lamda ScanOPT ScanAll ScanNone
200000 459.1 889.8 988.7 35878.4
400000 503.4 1063.1 1242.3 71769.6
600000 512.3 1180.2 1445.7 107684.6
800000 532.4 1392.5 1764.9 143665.5
1000000 550 1611.4 2053.8 179345.6
1200000 570.3 1781 2338.2 215179.6
1400000 570.3 1813.3 2463.6 251001.5
1600000 593.4 1908.3 2615.6 286981.3
1800000 610.4 2017.8 2830 322646.2
2000000 610.4 2017.8 2869.6 358496.7
2200000 610.7 2037.1 2938.9 394330.3
2400000 610.7 2068.9 3041.8 430302.1
2600000 610.7 2068.9 3123.5 466168.9
2800000 610.7 2109.2 3207.9 501926.9
3000000 610.7 2109.2 3288.6 537761.8
3200000 613 2109.2 3360.9 573887.8
3400000 613 2109.2 3474.2 609840.7
3600000 613 2109.2 3526.3 645436.8
3800000 613 2125.6 3628 681054.3
4000000 615.6 2125.6 3721 716771.1

Table A.6 Queue Differences and Ratios

Time Slot AveRatio MaxRatio AveDiff MaxDiff
200000 1.114469101 1.111148573 47.687557 98.9
400000 1.178769424 1.168563635 78.760303 179.2
600000 1.239827354 1.224961871 113.0770797 265.5
800000 1.272130806 1.267432675 142.2683821 372.4
1000000 1.308129952 1.274543875 179.4228711 442.4
1200000 1.359469897 1.312857945 222.5815026 557.2
1400000 1.410088426 1.358627916 264.2838639 650.3
1600000 1.47481554 1.370644029 308.8688607 707.3
1800000 1.534999523 1.402517593 352.3871987 812.2
2000000 1.593244501 1.422142928 389.5892403 851.8
2200000 1.651946756 1.442688135 426.2296896 901.8
2400000 1.706175092 1.470249891 462.6893262 972.9
2600000 1.758292962 1.509739475 499.7732791 1054.6
2800000 1.814195603 1.520908401 535.1609978 1098.7
3000000 1.878547441 1.559169353 571.5926454 1179.4
3200000 1.939891379 1.593447753 608.1472102 1251.7
3400000 1.989551776 1.647164802 643.8377667 1365
3600000 2.040821882 1.67186611 673.1926321 1417.1
3800000 2.087205383 1.706812194 700.8888348 1502.4
4000000 2.128288003 1.750564546 725.0613416 1595.4
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Table A.7 Maximum Latency Decentralized

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 24915.7 7932.8 39021.3 49130.8 7668.7 35776.9
400000 31178.4 8773.4 52604 83312.1 8517.3 50933.9
600000 38318.7 9401.1 70550.1 121819 9322.7 60500.4
800000 44405.6 10426 83393.8 154086.6 10199.3 75868
1000000 50769.7 10508.1 91588.1 196281.4 10610.9 84110.1
1200000 54445.5 10862.6 99762.8 206655.4 11020.3 96393.2
1400000 66501.1 11311.8 107913.1 233907.4 11675.7 104475.3
1600000 70114.6 12000 110042.7 270911.3 12118.4 113457.8
1800000 75558.9 12237.3 114007.1 296374.6 12126.1 128655.1
2000000 83571.8 12787.4 120899 313306.1 12363 135208.9
2200000 85431.9 12787.4 126970.2 340073.2 12669.7 141216.1
2400000 86995.9 12828.3 129434.7 363831 12669.7 150663.2
2600000 87687.2 12828.3 133355.4 383831 12692.1 154965.2
2800000 98935.8 13181.3 140550 408569.7 12875.8 161744.8
3000000 100526.6 13302.8 147784.8 450107.1 13236.3 169616.3
3200000 108846.3 13793.3 153317.3 488108.8 13407.2 177577.4
3400000 109053.2 13844.1 153959.5 506422.7 13407.2 187101.6
3600000 110701 13984.4 158809.3 543386.1 13456.6 198711.9
3800000 113501.9 14143 160376.9 589772.1 14132.3 201616.3
4000000 114465.6 14317.8 164852.8 610776.2 14132.3 208664.9

Table A.8 Average Latency Decentralized

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1325.056606 932.6141992 3225.941305 749.4007685 850.873193 3279.403379
400000 1465.980664 1006.823605 4414.867406 829.4268213 908.5613424 4774.292229
600000 1585.927951 1079.632336 5360.544497 912.8895094 967.9743923 6117.989342
800000 1685.2803 1148.348811 6166.620935 994.0642323 1027.210989 7365.895597
1000000 1783.063473 1220.771833 6880.373287 1086.893236 1092.280084 8566.980737
1200000 1831.354033 1255.658238 7504.019741 1129.507554 1123.132161 9695.093556
1400000 1874.569797 1288.463303 8075.697481 1169.452507 1152.926967 10777.80058
1600000 1934.458796 1334.721743 8623.970164 1228.66596 1196.639539 11868.93865
1800000 1992.852787 1385.321099 9152.713192 1296.910676 1247.203059 12944.16732
2000000 2045.024192 1430.160338 9640.963656 1357.830404 1291.643766 13991.02025
2200000 2072.228401 1451.520789 10086.43031 1385.714326 1311.990413 15000.75371
2400000 2090.616961 1463.678932 10510.42189 1400.363338 1322.892208 15990.78669
2600000 2093.900509 1462.749572 10897.38944 1396.28219 1320.25374 16960.06477
2800000 2115.835988 1477.142403 11284.35455 1412.520962 1332.052517 17939.90871
3000000 2147.606164 1500.325389 11670.62448 1440.38878 1352.882715 18929.89974
3200000 2188.849424 1532.486123 12056.68977 1480.842897 1383.060268 19934.0999
3400000 2215.180408 1552.039355 12412.15932 1505.565364 1401.165866 20919.11531
3600000 2240.210002 1570.958414 12758.44804 1530.373496 1418.88669 21901.4068
3800000 2253.926447 1580.512544 13093.98052 1541.904188 1427.600817 22877.01016
4000000 2260.185067 1584.365798 13413.60162 1545.952041 1430.410007 23840.57066
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Table A.9 Maximum Queue Sizes Decentralized

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1386.7 1019.5 3843.2 889.1 906.2 4099.1
400000 1693.2 1200.4 5451.9 1108.1 1086.9 6361.9
600000 1886.5 1356 6705.7 1259.1 1213.3 8304.5
800000 2130.4 1590.8 7825.9 1521.4 1438.6 10285.5
1000000 2281.3 1711.7 8661.4 1651.1 1570.1 12076.5
1200000 2371.2 1801.8 9470.3 1758.4 1653 13733.7
1400000 2573.3 2005 10167.2 2009.8 1860.6 15481.5
1600000 2717.1 2138.7 10892.8 2172.5 1993.1 17140.3
1800000 2796.6 2206.3 11671.9 2253.9 2062.9 18855.7
2000000 2868.2 2276.5 12189.7 2328.4 2129.4 20370.6
2200000 2868.2 2276.8 12632.5 2337.2 2129.4 21724
2400000 2883.2 2291.9 13138.9 2359.3 2140.8 23343.9
2600000 2924.3 2322.9 13456.4 2397.6 2174.7 24783.6
2800000 2986 2382.6 14137.2 2458.2 2232.5 26584.9
3000000 3064.9 2450.4 14763.3 2535.3 2293.9 28305.7
3200000 3148.2 2534.5 15314.2 2638.2 2374.4 29979.9
3400000 3154.7 2534.5 15706.3 2638.3 2374.4 31555
3600000 3196.2 2566.6 16154 2668.8 2399.3 33260
3800000 3312.2 2684.2 16584 2806.9 2513.5 34678.7
4000000 3327.6 2700.7 16811.4 2807 2521.9 36085.5

Table A.10 Average Queue Sizes Decentralized

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 792.6151505 545.2538555 1990.208472 428.3609745 489.095815 2022.72288
400000 880.6564125 591.7166265 2736.570506 477.7554742 525.1227098 2961.31818
600000 955.2964405 637.1896715 3331.024256 529.0694852 562.188367 3805.709321
800000 1017.445299 680.3567321 3838.29464 579.2298423 599.4177792 4590.365344
1000000 1078.537838 725.7977939 4286.881335 636.2936019 640.2449423 5345.285822
1200000 1108.786305 747.7704612 4679.125469 662.6189658 659.6781547 6054.577992
1400000 1135.897274 768.4370672 5038.898166 687.3748366 678.4637834 6736.542065
1600000 1173.263398 797.4553886 5383.525612 724.0186296 705.8977864 7422.408951
1800000 1209.865079 829.3427283 5716.105475 766.253567 737.7564017 8098.580107
2000000 1242.349375 857.4719896 6022.704516 803.9223647 765.6230491 8756.52041
2200000 1259.240355 870.8136982 6302.200763 821.1477793 778.335931 9390.685274
2400000 1270.832788 878.5230987 6568.890598 830.2737817 785.2351668 10014.07825
2600000 1272.847485 877.9124665 6812.297955 827.7574295 783.5567387 10624.03515
2800000 1286.655024 887.0314058 7056.001778 837.8654858 791.0329616 11240.71304
3000000 1306.639393 901.7032363 7299.654036 855.1903761 804.2104199 11864.45735
3200000 1332.379081 921.8969914 7542.39643 880.2844836 823.1713167 12495.97604
3400000 1348.788912 934.1379599 7765.63545 895.5330652 834.5118471 13115.08864
3600000 1364.399733 946.0265097 7983.516901 910.8118987 845.6417342 13732.81028
3800000 1372.921147 951.9959225 8194.333357 917.8695453 851.0960225 14346.31873
4000000 1376.804661 954.3865978 8395.355654 920.3174193 852.8260075 14952.50536
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Table A.11 Maximum Latency Size Non-preemptive

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 64942.8 57682.7 50282.2 139994.1 115345 48390.2
400000 80812.7 71642.3 71279 189901 120963.2 67834.1
600000 88176.8 84646.3 88165 232908.7 129053.9 85110.9
800000 105836.7 90604 100730 310165.4 143267.5 105713.3
1000000 112563.9 96623.7 106737.5 374439.1 158040.5 117345
1200000 115192.4 100736.2 115991.6 403919.2 162827.7 124969.9
1400000 117063.9 102885.9 126646.1 442179 166279.2 129974.7
1600000 121012 103615.8 132825.6 489455.7 182195.5 144857.9
1800000 122579.6 104093.8 147567.4 532528.9 182195.5 151356.1
2000000 127001.3 104637.8 152986.9 576366 183407.1 154534.4
2200000 128753.9 106972.1 159076.7 641341.8 184886.2 161556.3
2400000 130011.3 109217.9 168618.3 718573.3 190935.7 182100.3
2600000 130898.5 109593.8 168838.8 741227.2 190935.7 187473.1
2800000 134027.7 112682.4 173039.3 779297.4 196463.1 194576.5
3000000 141244.2 114003.1 174709 847889 201301.8 198908.2
3200000 147328.9 114786.6 176302.8 895231.1 203236.9 206400
3400000 149794 115332.5 183335.6 947876.3 204283.5 216397.5
3600000 154178.6 115332.5 192880 973528 204283.5 220547.9
3800000 155505.3 116452.3 194341.8 1003478 207040.9 226381.1
4000000 158485.9 117662.9 197972.6 1018727 207845.3 231696.7

Table A.12 Average Latency Size Non-preemptive

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 2680.657746 2669.133772 4318.157379 823.8276227 1157.467446 4468.164291
400000 3429.757198 3434.257414 5935.665342 939.3708458 1305.55756 6480.225775
600000 4017.873961 4044.910577 7194.901488 1055.997143 1450.808992 8199.362621
800000 4508.72903 4539.844042 8256.570346 1159.956899 1582.382841 9745.418145
1000000 4933.469027 4974.368335 9190.746411 1263.073296 1697.31952 11196.48949
1200000 5276.836765 5325.087341 9985.556182 1315.056073 1757.409998 12539.69395
1400000 5571.544985 5623.545904 10690.25121 1364.182868 1802.5878 13807.83576
1600000 5863.389836 5918.742658 11364.86903 1431.93935 1859.740911 15059.00359
1800000 6134.891048 6193.440732 11992.59423 1495.67751 1920.054712 16279.66206
2000000 6373.172039 6434.283552 12573.34482 1552.556625 1973.627344 17455.85606
2200000 6571.95434 6637.765401 13100.5957 1581.917604 2008.580058 18584.85882
2400000 6751.117242 6819.057944 13592.9126 1604.402101 2034.103762 19685.08162
2600000 6904.194848 6975.617687 14050.29544 1611.16009 2045.177005 20754.4536
2800000 7070.051142 7143.625548 14509.02887 1637.29347 2073.802569 21824.87538
3000000 7245.113941 7319.380413 14968.37445 1673.491767 2112.111906 22901.51512
3200000 7428.988344 7502.931119 15430.858 1720.024657 2158.415526 23984.84085
3400000 7592.562313 7666.338686 15864.76969 1750.807917 2189.707452 25045.96115
3600000 7751.786119 7824.986108 16285.42608 1779.435779 2220.652754 26098.67508
3800000 7897.54912 7971.543185 16685.68579 1796.369097 2243.019215 27140.1434
4000000 8029.875073 8105.372698 17065.88868 1805.530113 2255.516818 28167.18419
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Table A.13 Maximum Queue Size Non-preemptive

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 3515.2 3378.8 6184.1 1413.4 1727 6560.1
400000 4562.4 4619.1 8594.3 1673.2 2161.3 9994
600000 5661.1 5664.7 10643 1990.7 2543.8 13276.2
800000 6453.3 6422.7 12317.2 2315.8 2894.6 15706.1
1000000 6904 7007 13937.3 2462.3 2937.6 18263.4
1200000 7351.3 7574.7 14883 2626.7 3135.7 20376.3
1400000 7861.6 8138 15928.7 2861.4 3424.7 22676.8
1600000 8332.1 8520.8 16952.8 3040.2 3517.9 25145.5
1800000 8764.9 8960.7 17780.3 3121.7 3733 27663.1
2000000 9129.5 9269.5 18753.1 3244.5 3827.1 29239.7
2200000 9256.6 9340.3 19204.4 3244.5 3827.1 31610.6
2400000 9513.7 9499.8 19897.7 3274.4 3827.1 33558.2
2600000 9616.8 9518.1 20432 3335 3827.1 35089.2
2800000 10076.2 9998.6 21438.3 3383.1 3911.1 36916.2
3000000 10537.5 10692.9 22317.5 3440.5 3997.2 38650.1
3200000 10779.6 10899.3 23142.9 3546.7 4089.8 41215.2
3400000 11171.2 11255.8 23824.8 3558.5 4121.8 43081.5
3600000 11458.2 11526.9 24589.8 3639.5 4226.3 45119.5
3800000 11592 11788.7 25337.7 3789.4 4346.1 46683.1
4000000 11802.4 11865.9 25969.5 3807.8 4412.8 48669.6

Table A.14 Average Queue Size Non-preemptive

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1659.000626 1647.589319 2732.645288 506.1055465 716.8869465 2832.930043
400000 2127.700385 2125.492148 3771.402859 579.5079648 812.0733085 4128.939016
600000 2497.808959 2509.075551 4583.458726 654.3250778 906.591403 5239.673554
800000 2807.071896 2820.447311 5270.077983 720.4864011 992.1917321 6238.868532
1000000 3076.979828 3095.83567 5874.817442 786.2900617 1066.408157 7174.095482
1200000 3294.408762 3318.364068 6389.31222 819.5411862 1106.079689 8042.831782
1400000 3481.561812 3509.160609 6846.076487 850.8987068 1136.094907 8863.693882
1600000 3667.134211 3697.118492 7281.258564 893.9717427 1172.936164 9676.233279
1800000 3840.666383 3872.751815 7686.669288 934.3633339 1212.006625 10466.03871
2000000 3993.215868 4027.134896 8063.533941 970.3867282 1246.254268 11225.88719
2200000 4119.267716 4157.635228 8404.217404 988.9666833 1268.542233 11956.31631
2400000 4234.64118 4274.325062 8723.20354 1003.344109 1285.021224 12671.76244
2600000 4332.791446 4374.62089 9019.321218 1007.661781 1292.07349 13365.05921
2800000 4439.550119 4482.914229 9316.980533 1024.493104 1310.538005 14057.43516
3000000 4552.553541 4596.639719 9614.332049 1047.778417 1335.366641 14752.73976
3200000 4670.30911 4715.091572 9913.240023 1077.439627 1365.352348 15450.80796
3400000 4775.528667 4819.690756 10193.71151 1096.901836 1385.497034 16135.72292
3600000 4878.082272 4922.351218 10465.53815 1115.019135 1405.414851 16814.39685
3800000 4971.630491 5017.355321 10723.56075 1125.859038 1419.807175 17486.28267
4000000 5057.187339 5104.309936 10970.71077 1131.591334 1427.893806 18148.73327
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Table A.15 Maximum Latency Heterogeneous 1

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 44722.8 10857.7 72381 66616.5 12259.4 68587.7
400000 52784.4 11894.5 127770.6 89501.1 12883.9 126701.7
600000 60431.4 12534.7 171762.4 95127.5 13278.9 175381.2
800000 66405 12782 222749.3 102211.8 13526.4 227385.7
1000000 67119.3 12782 273842.3 102927.3 13526.4 275748.2
1200000 67119.3 12956.8 323947.5 106285.6 13556.4 327847.1
1400000 68080.2 13089.5 367542.9 107469.3 13556.4 379850.7
1600000 82474.9 13260.1 411158.1 108088.5 13556.4 427613.7
1800000 82474.9 13318.1 452417.7 108088.5 13670.7 478305.8
2000000 83757.7 13403.2 494466.6 111630.4 13798.4 520566.1
2200000 84754.3 13575.1 536804.2 111809.8 13798.4 569578.5
2400000 84985.9 13613.5 582467 111809.8 13798.4 619165.1
2600000 85127.2 13613.5 628889.5 111809.8 13802.2 674542.7
2800000 87419.9 13746.9 678765.2 112412.2 13893 718321.1
3000000 88933 13746.9 729299.1 114428.9 14093.2 772252.1
3200000 90790 13866.3 783589.2 115051.7 14093.2 828383.8
3400000 90790 13866.3 831481.8 115687.8 14093.2 874495.3
3600000 90790 13896.9 868191.6 116773.3 14167.9 915024.1
3800000 94355.8 13915 907464.4 116773.3 14167.9 960544.6
4000000 94355.8 13915 950637.5 122169.4 14227.2 1010246

Table A.16 Average Latency Heterogeneous 1

Time Slot OPT_P2Q nOPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1669.918985 1464.603315 9620.111056 778.9133299 577.5752038 10341.78447
400000 1811.369842 1596.662383 18323.54043 800.7341248 580.7410224 20021.90245
600000 1901.016739 1669.044788 27105.8226 805.9032133 582.38745 29782.67544
800000 1959.80164 1711.220789 35883.90368 814.9371473 583.3852832 39578.89393
1000000 1997.76216 1740.68724 44716.86467 817.3520459 583.8970939 49432.61812
1200000 2010.580898 1750.120631 53508.44426 820.5728656 583.9846124 59243.7457
1400000 2022.964741 1756.840779 62312.41397 825.1068878 584.455218 69057.03383
1600000 2038.279131 1770.351793 71146.50707 824.4813011 584.6056531 78889.79132
1800000 2052.994075 1784.790432 79988.41093 826.8347504 585.0309495 88730.43039
2000000 2056.849643 1788.557552 88842.8234 825.5812296 584.960737 98586.68575
2200000 2049.221501 1785.662434 97665.34402 824.4656445 584.8347998 108415.5084
2400000 2050.928223 1787.089231 106474.5361 824.4335394 584.8178782 118231.8128
2600000 2050.360736 1784.004343 115275.4273 823.5112236 584.9075654 128031.4339
2800000 2064.37461 1791.878334 124077.5106 826.1301811 585.3294365 137819.1787
3000000 2076.446309 1800.138878 132902.3859 828.4209027 585.7715165 147632.9417
3200000 2086.791655 1805.564147 141755.6455 829.4033232 585.8616847 157489.3159
3400000 2087.641202 1804.143267 150604.9313 829.2092296 585.9289236 167343.9995
3600000 2092.689422 1807.34168 159435.3194 830.1744012 586.0624836 177185.716
3800000 2092.17724 1807.468576 168269.7977 829.7416241 586.024568 187032.4426
4000000 2091.163764 1807.364756 177095.6833 829.3850731 586.0160319 196873.4768
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Table A.17 Maximum Queue Heterogeneous 1

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1711 1526.9 15183 879.9 531.9 16599.5
400000 1929.1 1751.2 29767.7 961.6 545.4 32888.9
600000 2062.2 1852.4 44582.6 986.2 552 49298.9
800000 2172.6 1943.8 59524.9 1044.7 562 65956
1000000 2212.9 1969.5 74315.3 1045.1 564.7 82512.6
1200000 2287.3 2018 88910.2 1071 567.2 98671.2
1400000 2342.3 2069.7 103615 1120.5 572.3 115061.2
1600000 2355.4 2102.5 118516.8 1134.8 572.3 131650.5
1800000 2381.6 2123.8 133208.8 1134.8 580.6 147979.2
2000000 2381.6 2137.6 147791.2 1145.3 582 164354
2200000 2381.6 2137.6 162325.1 1151.8 585.7 180493.3
2400000 2381.6 2138.6 177297.4 1168.9 590.4 197192.4
2600000 2400.3 2159.2 192032.7 1168.9 596.7 213471.3
2800000 2414.6 2159.6 206858.6 1194.3 597.2 229708.2
3000000 2421.3 2171.1 221761.1 1194.3 600.2 246581.4
3200000 2468.7 2204.4 236627.3 1238.4 613 263037.6
3400000 2468.7 2204.4 251014.3 1238.4 617.6 279343.1
3600000 2486.3 2213 266121.5 1239.1 617.6 296129.5
3800000 2492.4 2224 280953.8 1239.1 617.6 312565.7
4000000 2492.4 2224 295677.6 1239.1 623.7 329150.7

Table A.18 Average Queue Heterogeneous 1

Time Slot OPT_P2Q OPT_P2W OPT_UR OPT_JSQ OPT_JSW OPT_RR
200000 1007.942909 880.2900735 6012.298103 450.4090635 323.2451375 6466.474535
400000 1096.661398 963.1808565 11484.42807 464.1484605 325.2349105 12550.33224
600000 1152.764743 1008.597193 17005.15782 467.27298 326.1657873 18688.94442
800000 1189.602875 1035.143656 22528.16024 472.8787893 326.796818 24849.97957
1000000 1213.234989 1053.63248 28080.26484 474.3160962 327.0973999 31043.86895
1200000 1221.283582 1059.660644 33611.73804 476.3656166 327.1938018 37215.27327
1400000 1229.253393 1063.981062 39151.80581 479.2521432 327.5108096 43390.59655
1600000 1238.799086 1072.424378 44706.85799 478.8577053 327.5668029 49573.3837
1800000 1248.060696 1081.590225 50267.06869 480.3486959 327.8582133 55761.36074
2000000 1250.391503 1083.868664 55828.91535 479.5188212 327.7951746 61953.01093
2200000 1245.48667 1081.92023 61370.29513 478.7281746 327.6894664 68127.61885
2400000 1246.633949 1082.897448 66911.84288 478.7307323 327.7038871 74303.06755
2600000 1246.275425 1080.948753 72449.48217 478.1863991 327.7566195 80471.62111
2800000 1255.167576 1086.033511 77990.35872 479.9049503 328.0669403 86634.95317
3000000 1262.848735 1091.354623 83550.56985 481.4096234 328.3781782 92816.98665
3200000 1269.333042 1094.768171 89112.8492 482.0078245 328.4272463 99007.89332
3400000 1269.793587 1093.831956 94676.88017 481.866558 328.4525648 105204.0022
3600000 1272.987273 1095.866651 100230.2739 482.4724707 328.5525742 111393.151
3800000 1272.630329 1095.926023 105785.429 482.1923595 328.5087466 117582.662
4000000 1271.972068 1095.839622 111338.5831 481.9885789 328.4954137 123773.3047
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Table A.19 Maximum Latency Heterogeneous c=0.97

Time Slot P2Q P2W UR JSQ JSW RR
200000 44132.4 9184 56947.6 96911.5 10299.1 56339.1
400000 50411.5 10045.2 99075.4 109265.2 10566.4 99269.5
600000 62696.3 11374.7 135639.1 120997.6 11013.8 139297.2
800000 66243.5 11689.7 178036.1 126712.5 11027.7 176450.8
1000000 73455.8 11865.6 214382.5 130533.7 11231.3 217688
1200000 85975.7 11948.6 253861 133957.6 11401.5 256578.2
1400000 88256.7 12122.7 288555.3 143785.2 11401.5 294671.5
1600000 94054 12287.4 328990.8 160217.1 11403.9 332046
1800000 95897.2 12426.9 356338.8 163582.2 11403.9 371023.7
2000000 99979.4 12533.3 391478.8 164507.4 11470.5 414918.9
2200000 102544.4 12627.9 431934.9 164507.4 11626.9 451248.6
2400000 107529.2 12763.6 464704.7 164507.4 11626.9 485864.4
2600000 110560.4 13033.7 501017.5 172906.9 11626.9 521378.7
2800000 117049 13335.7 536064.4 172906.9 11665.4 562557.5
3000000 121580.7 13437.3 576819.9 175286.1 11709.4 603345.4
3200000 121580.7 13530.5 605730.3 175334.2 11718.5 637009
3400000 121580.7 13551 643994.3 175654.9 11718.5 681399
3600000 122688 13567.2 681849 176134.1 11794.4 717523.3
3800000 122688 13744.4 719929.9 176134.1 11794.4 757414.7
4000000 122688 13960.3 757285.2 176134.1 12020 793803.2

Table A.20 Average Latency Heterogeneous c=0.97

Time Slot P2Q P2W UR JSQ JSW RR
200000 2092.293346 1779.5471 10340.39569 943.7438469 615.3156162 11091.19014
400000 2420.533528 2057.964634 19897.14351 946.1909896 618.0370368 21659.81487
600000 2623.071389 2238.066539 29440.04712 974.1606472 620.5187633 32211.35508
800000 2760.920402 2367.635598 39000.08484 979.8183984 620.7791562 42771.11462
1000000 2850.873668 2428.325001 48536.59239 977.970503 620.8206877 53293.69892
1200000 2930.851084 2486.328405 58085.00622 987.5350533 621.2108738 63823.11804
1400000 2974.743029 2500.407771 67615.8097 981.9993833 620.4555444 74336.57369
1600000 3004.029088 2511.976945 77111.31037 986.3300778 621.1265164 84816.18586
1800000 3043.864721 2545.92505 86632.03664 992.0062266 621.8606659 95324.09797
2000000 3086.311891 2578.501391 96180.46705 991.0911614 622.0428467 105860.0539
2200000 3115.721287 2603.83082 105747.6145 990.1131495 622.2322473 116417.0761
2400000 3144.847465 2625.902959 115294.3397 994.0384479 622.8938488 126952.1363
2600000 3190.510144 2667.083414 124851.5107 1001.135901 623.1663334 137501.6251
2800000 3231.038669 2698.467417 134437.1761 1000.735428 623.19138 148080.1709
3000000 3251.893358 2711.959157 144021.136 998.5795097 622.9316167 158659.6137
3200000 3260.329612 2720.619305 153604.1494 997.4855521 622.9028917 169241.217
3400000 3275.66846 2733.868435 163178.4874 1000.702521 623.1644572 179814.341
3600000 3290.481411 2745.408489 172750.4925 998.4282523 623.0529016 190386.6424
3800000 3300.76036 2750.161612 182336.8447 997.6734921 622.9580545 200969.8902
4000000 3317.9324 2761.507502 191918.5409 999.7419975 623.1799897 211544.7629
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Table A.21 Maximum Queue Heterogeneous c=0.97

Time Slot P2Q P2W UR JSQ JSW RR
200000 1602.3 1340.9 10494.1 800.5 467.1 11360
400000 1793.3 1505.8 20219.9 836.5 475.3 22162.8
600000 2033.4 1777.1 30230.5 948.3 491.8 33159.5
800000 2111.8 1838.9 40196.2 972.3 495.6 44083.4
1000000 2128.6 1838.9 49863.5 1005.8 497.4 54910.5
1200000 2213.8 1881.6 59598.2 1023.1 499 65732.9
1400000 2250.8 1919 69326 1023.7 502.3 76345.2
1600000 2267.7 1927 79121.5 1032.6 504.2 87132.4
1800000 2326.9 1969 89250.4 1037.3 505.4 98305.2
2000000 2367.9 1969 99265.1 1037.3 507.4 109423.2
2200000 2391.5 2010.5 108927.5 1057.8 508 120111.5
2400000 2425.3 2051.6 118860.5 1057.8 509.8 130964.1
2600000 2487.2 2123.5 128802.6 1074.6 511.2 141942.6
2800000 2531 2162.7 138788.5 1083.9 511.2 153022.3
3000000 2559.3 2213.7 148666.5 1083.9 511.2 163894
3200000 2563.9 2222.4 158459.2 1083.9 511.2 174706.5
3400000 2619.9 2239 168413.2 1085.6 518 185810
3600000 2619.9 2239 178262.9 1085.6 520.7 196677.4
3800000 2619.9 2239 188384.2 1085.6 526.1 207679.5
4000000 2646.6 2273.6 198077.6 1095.1 527.8 218438.7

Table A.22 Average Queue Heterogeneous c=0.97

Time Slot P2Q P2W UR JSQ JSW RR
200000 1076.395744 915.344251 5322.559009 485.0494205 315.9323725 5709.190256
400000 1244.868552 1058.273611 10238.66906 486.0953112 317.2083253 11145.82696
600000 1349.80342 1151.587639 15157.64936 500.7781367 318.6559732 16584.62752
800000 1421.162411 1218.631835 20085.17636 503.807954 318.8689714 22027.32274
1000000 1467.610066 1250.006666 24998.46447 502.8874339 318.9123235 27448.68468
1200000 1508.742324 1279.831547 29914.67187 507.7878661 319.0944312 32870.02955
1400000 1530.835297 1286.628241 34811.98748 504.7631813 318.6009336 38272.3217
1600000 1545.815258 1292.493637 39698.76653 506.9627406 318.9294811 43665.58356
1800000 1566.574266 1310.172596 44607.49924 509.9638371 319.3582172 49083.257
2000000 1588.71316 1327.174674 49532.65564 509.5794411 319.5066876 54517.74099
2200000 1603.876935 1340.227755 54461.00983 509.0848539 319.6114515 59955.99968
2400000 1618.944078 1351.650866 59380.29903 511.1280492 319.9660016 65384.54966
2600000 1642.525321 1372.913072 64305.37408 514.8037418 320.1199888 70820.99334
2800000 1663.322401 1389.014373 69238.603 514.5718511 320.1145749 76265.21847
3000000 1674.025829 1395.934334 74172.70432 513.447485 319.9724067 81711.82895
3200000 1678.308324 1400.348037 79104.94495 512.8637625 319.9447869 87158.03331
3400000 1686.29954 1407.251551 84039.72157 514.5456427 320.0947232 92607.55761
3600000 1693.972376 1413.229459 88971.61766 513.3856912 320.0446702 98054.81484
3800000 1699.188381 1415.612423 93904.877 512.9731071 319.9818263 103501.0821
4000000 1708.087602 1421.499509 98843.30832 514.0573943 320.1083167 108951.3776
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Table A.23 Maximum Latency Heterogeneous c=0.96

Time Slot P2Q P2W UR JSQ JSW RR
200000 56195.9 11474.3 57668.7 137031.7 9865.4 57723
400000 92145.8 14297 100417.1 210666.6 10749.4 102903.5
600000 133505.8 16990.7 147547.5 274300.8 10986.6 146309.1
800000 152508.4 19197.7 191345.4 332496.1 11214.8 188841.9
1000000 180021.5 21365.5 229728.4 385973.9 11379.6 230617.2
1200000 195518.1 23703.5 265854.2 422004.2 11506 269323.5
1400000 210747.6 25653 307515.7 426216.9 11668.5 312507.3
1600000 242825.8 26814.9 344906.8 436314.9 11668.5 354552.7
1800000 260430.5 29563.8 382962.9 445603.7 11668.5 394889.4
2000000 320273.1 31192.8 425010.8 445603.7 11764.5 437047.6
2200000 348641.6 33990.3 463009 450975.4 11764.5 482511.2
2400000 368368.9 36503.4 500271.4 455129.7 11764.5 518769.4
2600000 388235.8 38597.4 538421 474875.8 11839.2 560212.6
2800000 399378.9 41430.6 575879.1 493491.2 11902.1 598785.6
3000000 440881.9 43860.7 611799.9 510589.3 11902.1 639596.3
3200000 489456.6 45779.1 648153.3 518870.7 11976.9 683812.3
3400000 536648.9 48386.6 692268.3 518870.7 11976.9 717737.4
3600000 558133.5 50063.2 734789.8 526027.4 11976.9 756177.4
3800000 563228.2 52535.1 771162.8 526027.4 11976.9 795227.7
4000000 585235.6 54781.6 807038.7 526027.4 12032.3 839173.6

Table A.24 Average Latency Heterogeneous c=0.96

Time Slot P2Q P2W UR JSQ JSW RR
200000 2713.064663 2390.304571 11188.2293 1432.220417 657.8644125 11993.1314
400000 3596.166251 3169.421925 21540.51384 1546.741786 658.2053132 23375.81015
600000 4289.641575 3801.18306 31887.88184 1609.411939 660.1460003 34731.88568
800000 4930.876904 4340.679263 42243.88902 1647.311248 661.6213682 46101.67973
1000000 5524.267782 4855.632921 52591.74907 1680.065077 663.5305962 57463.8565
1200000 6112.733151 5355.547646 62978.76663 1705.098446 663.464571 68855.94094
1400000 6676.993544 5838.838536 73350.97506 1709.255648 663.0566857 80235.49508
1600000 7221.604355 6306.354438 83707.49211 1702.498145 662.447257 91601.98156
1800000 7741.596157 6769.264087 94039.41457 1697.872558 662.6172816 102955.7245
2000000 8242.724385 7231.115649 104357.2796 1694.693522 663.2680134 114306.5953
2200000 8752.821008 7709.947177 114677.0214 1727.301698 663.7588941 125656.1799
2400000 9249.98749 8197.108264 125007.8223 1745.887482 664.1185925 137015.7267
2600000 9745.054765 8697.311092 135338.7385 1755.917421 664.5531885 148369.3765
2800000 10248.19661 9210.605606 145677.395 1766.297284 665.0749099 159723.2791
3000000 10751.39994 9725.711599 156046.6601 1774.040191 664.9437268 171103.9695
3200000 11257.53577 10245.78733 166411.8676 1784.847679 665.5338885 182478.3754
3400000 11780.34382 10770.32584 176779.8215 1792.974804 665.5814109 193850.9592
3600000 12287.06403 11276.76894 187145.8776 1784.710471 665.0612589 205215.2479
3800000 12782.36876 11773.47455 197516.7444 1783.332384 665.2350861 216584.4535
4000000 13274.88662 12267.95935 207889.4686 1776.944985 664.9313038 227960.1596
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Table A.25 Maximum Queue Heterogeneous c=0.96

P2Q P2W UR JSQ JSW RR
2197.5 1928.6 11446.5 1208.9 511.9 12373.7
2807.7 2481.1 22113.4 1313.3 517 24114.3
3508.9 3079.6 33047.5 1432.3 533.6 36112.5
4113.4 3585.9 43769.6 1542.8 537.9 47980
4734.4 4095.6 54587.9 1554.5 537.9 59859.9
5292.6 4585.5 65540.8 1605.5 543.4 71770.1
5814.9 5068 76365 1619.6 546.7 83560.9
6310.1 5447 86966.7 1654.4 552.9 95345.3
6728.9 5943.4 97590.1 1682.2 558.8 107051.6
7227 6427.7 108312.3 1761.2 571.8 118954.2
7861 7055.8 119258.5 1818.7 577.4 130804.8
8262.7 7550.3 130114.4 1821.9 577.7 142680.2
8797.8 8255.4 140728.7 1836.8 577.7 154470.2
9449.5 8840.9 151745.8 1886.8 579.8 166386
9905.5 9395 162474.8 1886.8 581.4 178168.4
10523.7 9971.1 173435.8 1889.3 581.5 190190.9
11183.7 10497.5 184284.1 1927.9 583 201894.4
11544.7 10858.1 195148.2 1927.9 591.9 213823.4
12033.3 11367.7 205929.2 1927.9 591.9 225763.8
12448 11751.5 216508.5 1927.9 591.9 237449.9

Table A.26 Average Queue Heterogeneous c=0.96

Time Slot P2Q P2W UR JSQ JSW RR
200000 1411.853344 1243.806302 5824.433589 744.9940135 341.6768615 6243.563569
400000 1870.73752 1648.663656 11209.17289 804.1994093 341.6882595 12164.24088
600000 2231.540166 1977.425698 16593.36194 836.7420393 342.6818772 18073.31277
800000 2565.434004 2258.350435 21984.34964 856.5020915 343.4766755 23992.03305
1000000 2874.840409 2526.846351 27375.15378 873.7247594 344.5384585 29911.22181
1200000 3181.083618 2787.006176 32781.0338 886.7435963 344.4939912 35840.20545
1400000 3474.905554 3038.677679 38180.7699 888.9470557 344.2887894 41764.36782
1600000 3757.75297 3281.481572 43563.80248 885.2569632 343.9093475 47672.39538
1800000 4028.300873 3522.342695 48939.42638 882.8224252 343.987262 53579.6608
2000000 4288.622518 3762.251839 54303.63627 881.0548821 344.2913232 59480.96209
2200000 4554.100203 4011.448808 59674.14141 898.0210465 344.5493726 65387.40127
2400000 4813.115377 4265.2307 65053.71941 907.7420899 344.7561848 71302.65796
2600000 5070.704588 4525.485796 70430.31334 912.9595657 344.9841914 77211.52273
2800000 5332.922302 4792.933363 75815.99294 918.4315714 345.2804899 83126.05075
3000000 5594.606594 5060.798569 81210.21016 922.4381313 345.2022333 89046.42392
3200000 5858.00096 5331.453129 86603.70133 928.064553 345.5061859 94965.04789
3400000 6129.943481 5604.31486 91996.60912 932.2727706 345.5203978 100880.5119
3600000 6393.488899 5867.730738 97389.25847 927.9358441 345.2422272 106792.4663
3800000 6651.354999 6126.315581 102788.5667 927.2329309 345.34054 112711.5423
4000000 6907.482981 6383.476255 108183.0333 923.8788909 345.1709518 118627.6164
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