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Abstract 
 

Dr E Smith. Developing a Lupus Nephritis urinary biomarker panel in children for 
use in a clinical trial 

 
 

Background: Juvenile-onset systemic lupus erythematosus (JSLE) is a rare, severe 
multisystem autoimmune disease affecting the kidney (Lupus Nephritis, LN) in up to 80% of 
children. Numerous individual urinary biomarkers have previously been investigated. No 
individual biomarker has achieved ‘excellence’ in differentiating active from inactive LN.  

 

Aims: (1) To assess performance of traditional clinical biomarkers for LN monitoring 
and prediction of LN outcomes. (2) To select biomarkers warranting assessment in a ‘LN 
biomarker panel’; to cross-sectionally assess if combining novel/traditional biomarkers 
improves active LN identification. (3) To validate the optimal UK LN biomarkers within 
independent, ethnically distinct JSLE cohorts. (4) To longitudinally assess if urine biomarkers 
predict LN flare/remission. (5) To streamline methods for LN urine biomarker panel 
quantification.  

 

Methods: Clinical data and urine samples from UK, United States (US) and South 
African (SA) JSLE patients were utilised within cross-sectional and longitudinal studies 
assessing combinations of novel urine/traditional clinical biomarkers. A custom LN biomarker 
panel multiplex assay was developed/validated in collaboration with Merck Millipore.  

 

Results: 37% of UK patients displayed active LN as an initial presenting feature, with 
a further 17% developing LN after a median of 2.04 years [IQR 0.8-3.7]. ACR score (>5) and 
C3 levels (<0.9g/L) at baseline were significant predictors of subsequent LN development. 
39% of patients recovered from proteinuria following an LN flare during the study period, 
within a median of 17 months (IQR 4-49) with the remaining 61% continuing to have 
proteinuria after a median of 22 months (IQR 12-41). Younger patients (<14 yrs), those with 
a lower eGFR (<80mls/min) and haematological involvement at LN onset, displayed a longer 
time to proteinuria recovery. ESR, C3, WCC, neutrophils, lymphocytes and IgG contributed 
significantly to an optimal non-renal traditional biomarker model for active LN identification 
(AUC 0.72).  

 

Novel urine biomarkers were selected for assessment by detailed literature review. 
Cross-sectional fitting a binary logistic regression models with data from 61 UK patients, the 
optimal biomarker combination included AGP+CP+LPGDS+TF (AUC 0.920). Inclusion of 
traditional biomarkers within the model did not improve the AUC further. The novel 
biomarker panel displayed equivalent ability for identifying active LN in 30 US and 23 SA 
patients (AUC of 0.991 and 1.00 respectively). Within the longitudinal study, including 244 
observations from 80 UK/US/SA patients, a Markov Multi-State model identified AGP to be 
predictive flare, and CP of remission (model AIC =135). By entering individual AGP/CP 
patient values into the model, 3, 6, 9 and 12 month probabilities of disease state transition are 
provided.  

 

The multiplex assay demonstrated acceptable cross reactivity between multiplexed 
antibodies, satisfactory spike recovery, intra/inter-assay precision. Linearity of dilution was 
unacceptable, therefore rigorous range finding in 106 UK/US/SA samples identified the 
optimal dilutions required for each biomarker. Combining multiplex biomarker values for 
AGP+CP+LPGDS+TF within a binary logistic regression model, equivalent ability for 
identification of active LN was seen (multiplex AUC = 0.998, ELISA AUC = 0.952).  

 

Conclusions: This thesis has demonstrated and validated an ‘excellent’ urinary 
biomarker panel for active LN identification in three ethnically distinct JSLE cohorts. 
Different constituents of the biomarker panel are best at predicting LN flare/remission. A 
custom urine biomarker panel multiplex assay has been developed, demonstrating improved 
ability for active LN identification over existing ELISAs. Future clinical studies prospectively 
measuring the urine biomarker panel by multiplex are warranted, facilitating refinement of the 
Markov Multi-State Model and assessing if biomarker-led monitoring can actually improve 
renal outcomes for children with LN.  
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1! General Introduction  
 

1.1! Juvenile-onset Systemic Lupus Erythematosus  
Juvenile-onset systemic lupus erythematosus (JSLE), also known as childhood-onset 

SLE, is a rare, severe multisystem autoimmune disease, occurring before the age of 17 

years. It is often referred to as the archetypal systemic autoimmune disorder as it is 

characterised by widespread inflammation and damage, which can affect any organ. It 

is a very complex disease with marked heterogeneity between individual patients, 

causing anything from mild to life-threatening disease, following a relapsing and 

remitting course, and with an unpredictable natural history. JSLE is characterised by 

the production of autoantibodies directed against endogenous nuclear autoantigens, 

including anti-nuclear antibodies (ANA) and anti-double stranded DNA (anti-

dsDNA).  

 

1.1.1! Epidemiology of JSLE  
Systemic Lupus Erythematosus (SLE) is rare in children, accounting for 15-20% of all 

SLE cases [1-6]. Onset is uncommon before the age of 5 years, but rises steadily during 

childhood, puberty, until mid-adulthood [3]. Very rare infantile forms of JSLE can be 

associated with a monogenic predisposition. Hyper-production of interferon-α (IFN-

α) has been demonstrated in many types of monogenic lupus syndromes [7,8], 

following the identification of specific genes, responsible for Aicardi-Goutiers 

Syndrome, an autosomal recessive disease associated with high IFN-α production and 

early-onset of JSLE [9]. Defects in early components of the classical complement 

pathway have also been shown to predispose to early onset of JSLE [10]. Such forms 

of JSLE often have broader clinical phenotypic characteristics than other SLE patients, 

highlighting important differences between JSLE and adult onset SLE (see section 

1.1.3).  

 

The annual incidence of JSLE ranges between 0.36–2.5 per 100,000 children and 

young people [11-17]. This may be an underestimate as many cases go unrecognised 

over long periods, have mild disease, or do not initially fulfil criteria to enable a 

diagnosis to be made [18]. A recent UK epidemiological study using the General 
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Practice-based Clinical Practice Research Datalink has indicated that the incidence of 

SLE is 0.19 per 100,000 person-years in children aged 0-9 years, and 1.92 per 100,000 

person-years in young people aged 10-19 years [17]. In other countries the incidence 

per 100,000 person-years has been shown to be 0.36 in Canada [19], 0.37 in Finland 

[15], 0.47 in Japan [16], 0.9 in Wisconsin USA [20] and 2.5 in Atlanta USA [21]. The 

female-to-male ratio differs between childhood and adult onset disease, from 

approximately 4:1 for pre-pubertal onset JSLE, increasing as puberty is approached 

(due to hormonal influences), and becoming approximately 9:1 during adulthood 

[17,19,22-25].  

 

Similar to adult onset SLE, JSLE is more common amongst individuals of non-

Caucasian ethnicity, especially African American, African, Hispanic, and Asian 

children [26-29].  Within the UK JSLE Cohort Study, the standardised incidence rate 

has been shown to be significantly higher in non-Caucasian patients as compared to 

Caucasian patients (incidence of 0.7-2.5 per 100,000 persons per UK ethnic population 

in non-Caucasians, as compared to 0.1 in Caucasians) [28]. In a study by Hiraki et al 

using International Classification of Disease-9 codes and the US Medicaid Analytic 

eXtract database (from 2000 to 2004), to identify JSLE patients from 47 US states and 

the District of Columbia, the incidence of JSLE was higher in all non-Caucasian ethnic 

groups (2.73, 2.45 and 4.16 per 100,000 in African Americans, Hispanics and Asians 

respectively, and 1.33 per 100,000 in Caucasians). Incidence of Lupus Nephritis (LN) 

was highest amongst Asian JSLE patients (2.08 per 100,000), followed by African 

American, Hispanic and Caucasians respectively (0.87, 0.85 and 0.3 per 100,000) [29]. 

Within an inception cohort of 265 patients followed at the Sick Kids Hospital in 

Toronto, non-Caucasian ethnicity was also significantly associated with increased 

JSLE prevalence, with non-Caucasian patients exhibiting a younger age at diagnosis 

with respect to Caucasian patients (12.6 vs. 14.6 yrs; p=0.007) and more LN (62% vs. 

45%; p=0.01) than Caucasian patients [26]. 

 

Ethnicity is also known to influence disease severity in children. In a US study looking 

at outcomes of hospitalised JSLE patients, several differences were demonstrated 

according to ethnicity. Hispanic patients were shown to have longer hospital stays and 

higher in-hospital mortality. African Americans had more hospital admissions, and 

higher mortality. Increased end stage renal failure rates were also seen in African 
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American and Hispanic patients [30]. In a US adult SLE study, the standardised 

incidence ratio of end stage LN requiring renal replacement therapy was 11.1 for 

African American patients, 4.9 for ‘other ethnicity’ patients and 1.7 for Caucasian 

patients. In addition, amongst patients with end stage renal disease, African Americans 

displayed a higher mortality rate [31]. African American young adult SLE patients 

(18-30 years old) with end stage renal disease have also been shown to be at increased 

risk of death (hazard ratio (HR) 1.43) compared with non-African Americans [32]. 

Further details on ethnic differences in JSLE are detailed in section 5.1.1.  

 

1.1.2! Clinical features and diagnosing JSLE  
There is no single diagnostic test or validated diagnostic criteria for JSLE. Therefore, 

arriving at the diagnosis of JSLE relies upon an awareness that JSLE can occur in 

children and young people and considering it as part of a differential diagnosis. 

Comprehensive clinical assessment by a team experienced in the care of children with 

lupus and other connective tissue disorders is essential. This needs to be supported by 

a multi-disciplinary team, with judicious interpretation of investigations and careful 

stepwise exclusion of the broad and significant differential diagnoses. Diagnostic 

features can appear intermittently and cumulatively over many months (or even years) 

rather than in parallel, leading to potentially significant delays in making a diagnosis 

of JSLE [18]. The condition can present with non-specific symptoms, such as fatigue, 

arthralgia, mouth ulcers and headaches, incorrectly leading to the symptoms being 

attributed to ‘being a teenager’, exam stress, anorexia nervosa, or chronic fatigue 

syndrome. Conversely, the presentation can be acute with potentially life-threatening 

manifestations e.g. renal failure or seizures.  

 

The American College of Rheumatology (ACR) revised criteria for SLE classification 

[33] were introduced to classify patients as having JSLE for the purpose of clinical 

trials, but are frequently used for diagnosing JSLE (see Table 1-1, and  Appendix 1). 

A person is classified as having JSLE if they fulfil any 4 or more of the 11 criteria, 

serially or simultaneously, during any time interval (before the age of 17 years). The 

criteria alone are not a pre-requisite for commencing treatment as many individuals 

with two or three features will go on to fulfil further criteria. Patients may therefore be 
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treated pre-emptively where there is a high clinical index of suspicion for JSLE by a 

team experienced in the care of JSLE patients.   



  
5 

Criterion Definition 
Malar rash Fixed erythema, flat or raised, over malar eminences, tending to 

spare nasolabial folds 
Discoid lupus Erythematous raised patches of adherent keratotic scaling and 

follicular plugging. Atrophic scarring in older lesions 
Photosensitivity Skin rash as a result of unusual reaction to sunlight 
Oral or nasal 
ulceration 

Oral or nasopharyngeal ulcers, usually painless, observed by a 
physician 

Non-erosive 
arthritis 

Non-erosive arthritis involving two or more peripheral joints, 
characterised by tenderness, swelling, or effusion 

Serositis Pleuritis—pleuritic pain, rub or pleural effusion. 
Pericarditis—documented by ECG or rub or pericardial effusion 

Nephritis Persistent proteinuria >0.5g/day or >3+, or 
Cellular casts: red cell, haemoglobin, granular, tubular or mixed 

Neurological Seizures or psychosis in the absence of offending drugs or 
metabolic derangement (e.g. uraemia, ketoacidosis, electrolyte 
imbalance) 

Haematological Haemolytic anaemia with reticulocytes, or 
Leucopenia <4000 per mm3 on 2 or more occasions, or 
Lymphopenia <1500 per mm3 on 2 or more occasions, or 
Thrombocytopenia <100,000 per mm3 in absence of offending 
drugs 

Immunological Anti-DNA antibody, or 
Anti-Sm antibody, or 
Anti-phospholipid antibodies: 
Abnormal anticardiolipin antibody IgG or IgM 
Positive lupus anticoagulant 
False positive for syphilis for >6 months 

Anti-nuclear 
antibody 

Abnormal titre of ANA at any point in absence of drugs known 
to be associated with drug-induced lupus 

Table 1-1: The revised ACR criteria for classification of SLE  
ECG = electrocardiogram. Ig = immunoglobulin. 
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In 2012, the Systemic Lupus International Collaborating Clinics (SLICC) group 

proposed revised new SLICC classification criteria in order to improve clinical 

relevance [6]. Here, the criteria are divided into clinical and immunological. The 

patient must satisfy at least 4 new SLICC criteria, including at least one clinical 

criterion and one immunologic criterion, or the patient must have biopsy proven LN 

in the presence of ANA or anti–dsDNA antibodies (see Table 1-2 and Appendix 1). 

The SLICC criteria are again cumulative and have been validated in JSLE, performing 

better than the ACR criteria in terms of sensitivity and accuracy at the first visit, and 

within the first year of follow-up [34,35]. 
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1.1.3! Differences in the clinical features of JSLE and adult-onset 
SLE  

Significant differences typically exist between JSLE and adult-onset SLE patients in 

relation to their disease severity and clinical phenotype. It has been demonstrated that 

JSLE patients have higher mean SLE disease activity index (SLEDAI) scores at the 

time of their initial presentation and when followed over time [1,2,36,37]. In JSLE 

there is a greater corticosteroid and immunosuppressive treatment burden than in 

adults [1,27,36-38], with more rapid accrual of disease related damage [1,36,39]. 

Previous studies have provided somewhat conflicting results regarding the differences 

in clinical phenotype across SLE patient age groups. The most consistent observation 

is that more LN and haematological disease is seen in children than adults [1,27,36-

38,40-44]. Some studies have reported the frequency of neuropsychiatric involvement 

to be higher in JSLE [1,2,40] with others demonstrating no difference between JSLE 

and adult SLE [27,37,38]. Such differences may be attributed to differences in the case 

definitions used to define neuropsychiatric involvement, small patient numbers and 

retrospective data collection within most studies. 

 

A recent study involving the UK JSLE Cohort Study and University College London 

Hospital (UCLH) SLE Cohort has described the effect of age at disease onset on SLE 

phenotype in 924 UK patients (413 JSLE and 511 adult-onset SLE). They found JSLE 

patients to have significantly more renal involvement, alopecia, apthous ulceration, 

ACR defined haematological involvement, thrombocytopenia, haemolytic anaemia, 

high anti-dsDNA, anti-Smith (anti-Sm) and anti-ribonucleoprotein (anti-RNP) 

positivity than adult SLE patients. Adult-onset SLE patients had significantly more 

arthritis, serositis and leucopenia. Standardised mortality rates (SMR) by age of onset 

declined over the decades, with an SMR of 18.3 in JSLE and 3.1 in adult onset SLE. 

The SMR was particularly elevated in the 0-9 age group at 87 [42]. A large meta-

analysis, including 905 JSLE and 5993 adult SLE patients from 16 separate studies 

identified malar rash, ulcers, renal involvement, proteinuria, urinary cellular casts, 

seizures, thrombocytopenia, haemolytic anaemia, fever and lymphadenopathy to be 

more common in JSLE. Raynaud’s, pleuritic pain and sicca syndrome were more 

common in adult SLE [43]. 
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1.1.3.1! Differential diagnosis of JSLE  
There is a wide differential diagnosis of JSLE, which needs to be systematically 

excluded. The main differential diagnoses to consider depend on the predominant 

organ affected at presentation, and include: other systemic autoimmune conditions, 

infections, immunodeficiency syndromes or malignancies. Many pharmacological 

agents have also been associated with ‘lupus-like’ syndromes, characterised by a 

transient increase in autoantibodies and cutaneous manifestations. Table 1-3 provides 

a summary of the differential diagnoses grouped according to the predominant organ 

affected at presentation. 
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Manifestations Differential diagnoses 
Renal Acute post-streptococcal 

glomerulonephritis 
Nephrotic syndrome 

Henoch-Schonlein purpura 
Haemolytic uraemic syndrome 
Anti-GBM antibody disease 

Haematological Acute/chronic anaemia 
APL syndrome 
Evan’s syndrome 

Autoimmune & chronic benign 
neutropenia 
Recurrent fever syndromes 
Macrophage activation 
syndrome 

Musculoskeletal JIA 
Behçets syndrome 
Systemic sclerosis 
Vasculitis (Polyarteritis nodosa, 
Microscopic polyangitis, 
Wegners Granulomatosus) 

Juvenile Dermatomyositis 
Mixed connective tissue 
disease  
Undifferentiated connective 
tissue disease 
Fibromyalgia 
Kawasaki’s disease 

Gastrointestinal Autoimmune hepatitis Autoimmune biliary disease 
Neuropsychiatric Epilepsy 

Generalised anxiety 
Anorexia 

Cardio-
respiratory 

Dilated cardiomyopathy 
Bacterial endocarditis 

Rheumatic heart disease 
Myocarditis or pericarditis 

Immunological  Chronic Granulomatous Disease 
Complement deficiency 

Angioedema 

Endocrine Hypothyroidism Hyperthyroidism 
Malignancy Lymphoma Solid tumours 
Toxic/ 
therapeutic 

Definitely associated with 
chlorpromazine, hydralazine, 
isoniazid, methyldopa, 
procainamide, quinadine 

Possibly associated a range of 
anti-hypertensives, anti-
psychotics, anti-epileptics and 
antibiotics  

Infectious CMV, EBV  
Parvovirus B19  

HIV, Hepatitis B & C 
Lyme disease 

Table 1-3: Differential diagnosis of JSLE dependent upon the predominant 
organ/system involved at initial presentation. 
GBM = glomerular basement membrane. JIA = Juvenile Idiopathic Arthritis. CMV = Cytomegalovirus. 
EBV = Epstein-Barr virus. HIV = Human Immunodeficiency Virus.  
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1.1.3.2! Holistic assessment of the child with JSLE  
Optimisation of JSLE disease control relies upon careful multisystem assessment of 

the patient at baseline and at each clinical visit including history, examination and 

investigations. There is no single ‘gold standard’ biological marker that accurately 

reflects disease activity in JSLE. However, there are several JSLE disease assessment 

tools which can be used within the clinic, clinical studies and clinical trials to assess 

disease activity, response to treatment, disease-related damage, function and health 

related quality of life (HRQOL) (see sections 1.1.3.4 and 1.1.4).  

 

At each clinical encounter, there needs to be a thorough search for symptoms and signs 

of JSLE activity within each organ system (mucocutaneous, musculoskeletal, renal, 

neuropsychiatric, cardiovascular, respiratory, gastrointestinal, renal and ophthalmic). 

Laboratory investigations are used to assess aspects of disease activity and organ 

damage, which may not be appreciable through history and examination alone. 

Routine investigations performed at each review may vary slightly between patients 

based on clinical presentation, but a standard, comprehensive approach is needed. As 

an example of this, the possible results of these investigations and their subsequent 

implications are summarised in Table 1-4.  
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Investigation  Possible results and implications 
Hb Decreased with anaemia of chronic disease or autoimmune 

anaemia 
WCC Decreased WCC due to lymphopaenia +/- neutropenia, 

lymphocytes may be decreased due to disease activity or 
immunosuppression 
Increased WCC suggests infection or response to 
corticosteroids decreased 

Platelets Decreased due to autoimmune or peripheral destruction, or as a 
complication of drug therapy. Note – need to consider MAS if 
pancytopenia 

ESR Increased in active disease 
 Note - if sudden drop in ESR patients, consider MAS 

U&Es Increased creatinine is often a late sign of renal involvement 
suggesting chronic kidney disease. Use creatinine to calculate 
eGFR. Increased urea in dehydration and gastrointestinal 
bleeding. Monitoring for immunosuppressive drug toxicity. 

LFTs 
 

Increase in autoimmune hepatitis and with immunosuppressive 
drug toxicity 

Bone profile 
 

Increased alkaline phosphatase with chronic kidney disease, 
liver/bone disorders or vitamin D deficiency 

Glucose/HBA1c Increased in drug induced or disease related diabetes 
Amylase/lipase  Consider in presence of abdominal pain to assess for 

pancreatitis 
CRP If increased consider infection. Other causes of raised CRP in 

SLE include serositis and polyarthritis 
C3/C4 Levels correlate with disease activity, with decreased C3 and 

C4 seen in active disease 
Anti-dsDNA  Serial titres are used as a measure of disease activity 
Immunoglobulins Increased in acute inflammation 
Urinalysis, MCS, 
spot UACR or 
UPCR  

Protein or blood on urinalysis in renal involvement. If protein 
present need quantitative measure such as spot UACR or 
UPCR. MC to exclude urine infection as the underlying cause 
 

Table 1-4: Routine investigations for each clinical review  
Investigation frequency approximately 3-monthly or more frequently if unwell. FBC = full blood count. 
Hb = haemoglobin. WCC = white cell count. MAS = macrophage activation syndrome. ESR = 
erythrocyte sedimentation rate. U&Es = urea & electrolytes. eGFR = estimated glomerular filtration 
rate. LFTs = Liver function tests. HBA1c = glycosylated haemoglobin. CRP = C-reactive protein. C3/C4 
= complement ¾ fragments. MCS = microscopy/culture/sensitivities. UACR = urinary albumin 
creatinine ratio. UPCR = urinary protein creatinine ratio. 
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Table 1-5 shows additional investigations if clinically warranted which should be 

carried out at the time of the initial assessment and then annually. 

 

Investigation  Possible results and implications 
Clotting screen Prolonged in APLS and MAS 
Fibrinogen Increased in acute inflammation, decreased in MAS 
DAT Positive in autoimmune haemolytic anaemia 
Lupus anticoagulant 
and anti-cardiolipin 
antibodies 

Increased in APLS. Associated with increased risk of 
pulmonary embolism, neuropsychiatric involvement, 
cardiovascular disease 

TFTs and thyroid 
antibodies 

JSLE associated with autoimmune thyroid disease. Can 
cause apparent worsening of JSLE symptoms (e.g. fatigue) 

Fasting lipid profile Dyslipidaemia increases risk of cardiovascular events; 
increased triglycerides in MAS 

Vitamin D levels Vitamin D deficiency common due to sun 
avoidance/sunscreen use, lack of exercise, treatments and 
can cause  worsening of JSLE related symptoms (e.g. 
fatigue and muscle pain) 

ANA Positive in 95% of JSLE patients, may become positive 
after initially being negative at presentation 

Anti-Ro, anti-La Most common ENAs seen. Ro - associated with 
photosensitivity. Both associated with Sjogren’s 
syndrome, congenital heart block and neonatal lupus 

Anti-Sm  Associated with renal involvement 
Anti-C1q Marker of disease activity particularly renal disease but 

test not widely available 
Immunity status Measles and varicella IgG, prior to starting 

immunosuppressive treatment 
Table 1-5: Investigations at time of the initial assessment and then annually (or 
as clinically indicated). 
APLS = anti-phospholipid syndrome. MAS = macrophage activation syndrome. DAT = direct antibody 
test. TFTs = Thyroid function tests. ENAs = Extractable Nuclear Antigens. 
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Unexpected results from the above tests may relate to the time of sampling, treatment 

and patient related factors. The value of commonly available traditional biomarkers of 

JSLE activity for identifying active LN remains uncertain and is explored further in 

sections 1.2.3 and 3.1.3. Further investigations should be considered on an individual 

basis depending on the features observed or on previous organ involvement, balancing 

the risks of the procedure and the need for sedation and/or general anaesthesia in 

children.  

 

Renal biopsy, renal ultrasound (USS), renal biopsy and measurement of GFR may be 

used to assess for LN. ECG, echocardiogram, visceral angiogram, and magnetic 

resonance angiogram (MRA) are useful for the assessment of potential cardiovascular 

involvement. When respiratory symptoms are present a chest x-ray, pulmonary 

function tests including transfer factor and CT chest should be considered. Magnetic 

resonance imaging or angiogram (MRI/MRA) of the brain, electroencephalogram, 

psychometric testing are appropriate when neuropsychiatric disease is suspected. 

Abdominal USS, upper and lower GI endoscopy is useful where persistent 

gastrointestinal symptoms seen. Bone mineral density scan (DEXA) is indicated 

annually for those at risk from osteoporosis.  

 

A European initiative called SHARE (Single Hub and Access point for paediatric 

Rheumatology in Europe, launched in 2013) has derived evidence-based 

recommendations for diagnosis/monitoring and treatment of JSLE, providing 

consensus based guidance using the European League Against Rheumatism (EULAR) 

standard operating procedure, which are consistent with the approach to diagnosis 

detailed above [45].  

 

1.1.3.3! The multi-disciplinary team and management of JSLE  
In light of the complexity of JSLE, patient management often involves multiple 

specialists, including dermatologists, nephrologists, haematologists, immunologists, 

neurologists, cardiologists, gynaecologists, endocrinologists and gastroenterologists. 

Such specialists may assist with the initial diagnosis, and subsequent management of 

organ specific disease flares and long term complications. This process should be 

coordinated by a paediatric rheumatologist with experience of JSLE, who will have an 

overview of the patient, identify when additional expertise is required and ensure 
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continuity of care [46]. Nurse specialists play an essential role in providing education 

to the patient/family about the disease and its medications. They also assist in liaising 

with other specialists, allied healthcare professionals, school and wider social activity 

groups. It is important to ask the patient/family about the effect of their disease on 

social, educational and psychological functioning (see section 1.1.3.4). Psychologists 

are increasingly becoming integral to paediatric rheumatology teams, specifically 

assisting with management of debilitating neuropsychiatric manifestations, cognitive 

and behavioural difficulties, management of fatigue and development of self-

management strategies for the patient/family. Physiotherapists, occupational therapists 

and play specialists are also extremely important, assessing function in the home and 

school, providing rehabilitation following disease flares, and helping patients to cope 

with procedures and limitations related to their diseases and its management. The 

general practitioner must also be kept fully up to date about medication regimens and 

monitoring, disease flares and vaccinations where applicable [46].  

 

1.1.3.4! Assessment of psychosocial wellbeing in JSLE  
JSLE most commonly develops during adolescence, which is a time of huge physical, 

psychological and social change for the young person. Effective multi-disciplinary 

care must therefore, not only consider medical concerns, but also HRQOL, the 

underlying priorities of adolescence, and the impact of JSLE on daily life/school. 

During adolescence, young people establish relationships with peers and partners, 

acquire independence and make career choices, which can be impacted upon by a 

multisystem illness which is unpredictable, relapsing and remitting. Therefore, 

measuring HRQOL and the psychosocial impact of disease is as important as 

measuring disease activity/damage. Validated scores include the Childhood Health 

Questionnaire (CHQ) and Short Form 36 (SF36) for assessing general health and well-

being [47,48]. The CHAQ (Childhood Health Assessment Questionnaire) for 

measuring function, pain and providing a general evaluation of the disease using a 

visual analogue scale (VAS) [49]. These scoring systems are used as part of the UK 

JSLE Cohort Study and can be seen in Appendices 2-4. Specific adult SLE-related 

QOL tools have also been developed (e.g. LupusQoL [50]) but have not been validated 

in children. Since the establishment of the UK JSLE Cohort Study, the Simple Measure 

of Impact of Lupus Erythematosus in Youngsters (SMILEY) health related QOL tool 

has also been developed for children aged 5-18 years, with responses taking the form 
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of different facial expressions. The tool consists of four domains: effect on self, 

limitations, social, and burden of SLE. The US-English version of SMILEY has been 

shown to be valid, reliable and responsive to changes in disease activity [51]. SMILEY 

has been translated into over 30 languages, including a UK-English adaptation [52].  

Future validation of this measure within the UK JSLE Cohort Study would be of 

interest. 

 

1.1.4! Monitoring of JSLE disease activity  
Disease activity, damage or HRQOL assessment measures in JSLE help to standardise 

serial disease monitoring, and are mainly used in clinical studies/trials to allow 

comparison of therapies and assess treatment response. They can be used in clinical 

practice where there are systems or expertise in place to accurately score the 

assessments. Within JSLE studies and clinical care, the British Isles Lupus Assessment 

Group (BILAG) [53,54] and SLEDAI [55] scores are most commonly used (see 

Appendices 5-8). Alternative measures, include the Systemic Lupus Activity Measure 

(SLAM) [56] and the European Community Lupus Activity Measure (ECLAM) [57-

59]. The monitoring of JSLE related damage is detailed in section 1.1.9.1 below.  

 

1.1.4.1! British Isles Lupus Assessment Group (BILAG) assessment tool  
The BILAG score is used as an integral part of this thesis for quantifying disease 

activity and is therefore described in detail. In the 1980s, the newly formed UK BILAG 

group sought to develop a disease activity score which would be more comprehensive 

than contemporary global indices, facilitating accurate assessment of new activity, 

flare, remission in individual organs/systems. Using previous global scores, difficulties 

had been observed, for example with very sick patients with life threatening LN 

scoring the same as relatively well outpatients with low disease activity in a variety of 

organs [60]. The original/classic BILAG score was derived using a nominal consensus 

approach in 1993 [53], focusing on eight organs/systems (constitutional, 

mucocutaneous, neurological, musculoskeletal, cardiovascular/respiratory, vasculitis, 

renal and haematological). The score captured disease transitions, with the clinician 

being asked to grade clinical features as new, the same, worse or improving over the 

last 4 weeks and as compared to the preceding 4 weeks. The recorded items were 

converted into a corresponding alphabetical score (A-E) for each organ/system, based 
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on the principle of physician’s intention to treat. A was for ‘action’, implying that the 

patient required treatment with at least 20mg of prednisolone daily or 

immunosuppressive therapy. B was for ‘beware’, with the patient requiring a lower 

level of immunosuppression. C implied ‘contentment’, meaning low disease activity 

requiring little treatment but still not fully recovered. D was for ‘discount’ inferring 

that the patient had been active in the past but is no longer active. An E grade suggested 

that a patient had ‘never ever’ been active [53].  

 

The original Classical BILAG was shown to be a comprehensive, reliable and valid 

tool which was sensitive to changes in SLE disease activity [61], and useful in 

observational adult and paediatric studies [62,63] and a drug trial [64]. There were, 

however, concerns that some of the items were capturing damage (e.g. avascular 

necrosis), that the renal domain required modification as it only captured worsening 

but not stable proteinuria, and did not include UPCR or UACR ratio measurements. It 

did not capture gastrointestinal or ophthalmic manifestations and the neuropsychiatric 

terminology was outdated. A new BILAG-2004 index was produced, including nine 

organ domains/systems; ophthalmic and gastrointestinal systems were added, the stand 

alone vasculitis section removed and the individual items placed alongside other more 

appropriate systems. A better BILAG glossary was also produced to improve 

standardisation of scoring, and the mucocutaneous and neurological system questions 

were re-arranged. The renal disease domain was improved and damage features 

removed from the score [54]. A numerical scoring system, A = 12, B = 8, C = 1, D/E 

= 0 was derived in order to convert the alphabetical score into a numerical total 

BILAG-2004 score [65]. Items on fatigue, migraine, cluster/tension headache, 

mood/anxiety disorders were also removed from the BILAG-2004 score due to poor 

inter-rater agreement [66]. The total BILAG score was shown to significantly associate 

with increasing or decreasing therapy, increasing ESR, anti-dsDNA levels and 

decreasing C3/C4 levels [67]. 

 

1.1.4.2! Organ (or system) specific BILAG scores, with a focus on the renal 
BILAG score  

Yee et al, subsequently undertook a study examining whether the BILAG-2004 index 

was sensitive to change focusing on the principle of intention to treat, i.e. assessing 

whether an increase in therapy was associated with an increase in scores for all 
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systems, or if a decrease in score was associated with a decrease in treatment. This 

showed that system-specific scores were independently associated with treatment 

increases in all systems apart from the renal system. The score was sensitive to 

detection of new-onset LN and significant improvement of renal disease activity, but 

apparent fluctuation of the renal BILAG score between adjacent categories of Grades 

A and B or Grades B and C were noted, without changes in treatment. This was seen 

to be the case when assessments were close together or where intermittently active 

urine sediment (e.g. isolated sterile pyuria) or a brief rise in proteinuria were 

temporarily seen [68]. In clinical practice, treatment is not commonly increased on the 

basis of a single rise in proteinuria or a single failure of proteinuria to improve, 

accounting for such difficulties [68].  

 

Use of the renal domain of the BILAG score is however of great importance within 

LN clinical studies, where the score is used to define LN activity rather than response 

to treatment alone. This approach is in keeping with the findings of Yee et al, 

specifically that the renal BILAG score is sensitive to detection of new-onset of LN 

activity and significant improvement of renal disease activity, despite not reflecting 

intention to treat [68]. It is not possible to undertake serial renal biopsies in order to 

define LN activity longitudinally, particularly in children, therefore, the renal BILAG 

score definition of active LN has been utilised within a very large number of studies 

looking at the ability of urine and serum biomarkers to identify and predict changes in 

LN disease activity in JSLE and adult SLE [69-78].  

 

In a paediatric setting, total BILAG, SLEDAI and SLAM scores have been assessed 

in 35 JSLE patients on up to four occasions during the disease course: at the time of 

diagnosis, 6 months post diagnosis, at the time of disease flare, and 6 months post-

flare. All three tools were found to be very sensitive to changes in disease activity, 

with no individual score showing overall superiority [79]. Two further studies have 

looked at the ability of the BILAG score for assessing LN disease activity in JSLE in 

particular. Zhou et al assessed the clinical data of 159 JSLE patients and showed the 

renal BILAG-2004 score to correlate better with the renal pathology activity index (see 

section 1.2.2) and 24-hour urinary protein levels than the SLEDAI-2000 score; area 

under the curve (AUC) of 0.93 for BILAG vs. 0.88 for SLEDAI [80]. Marks et al have 

also undertaken a prospective observational comparison study of the validity of the 



  
19 

BILAG score in 10 JSLE patients with biopsy proven LN and 11 JSLE patients without 

clinical, laboratory or biopsy proven evidence of LN. Renal biopsies were undertaken 

within 0.1-0.8 years of the BILAG assessment, and the numerical renal BILAG score 

(rather than alphabetical score) compared between groups. A significantly higher renal 

BILAG score was demonstrated in the LN group as compared to the non-nephritis 

group, demonstrating the ability of the renal BILAG score to identify active LN [63].  

 

One of the main strengths of the BILAG score is that it has been designed from the 

outset to provide individual organ domain specific scores (including renal). Other 

measures use questions of relevance to assessing LN activity, but were not originally 

established in order to provide a renal specific score. The renal BILAG score is derived 

from more comprehensive composite renal data (including urine dipstick, 24-hour or 

spot proteinuria measurements, blood pressure, serum creatinine, GFR, urine 

sediment, histological evidence of LN and presence of nephrotic syndrome, see 

Appendices 5 and 6) than other scores such as the SLEDAI score (see Appendix 7), 

which is the most commonly used in the US, but only collects information on urinary 

casts, haematuria, proteinuria and pyuria [81]. The renal BILAG score has also been 

shown to associate better with the renal pathology activity index (see section 1.2.2) 

than the SLEDAI score within a paediatric study [80].  

 

The main weaknesses of the renal BILAG score is that it has not undergone validation 

against treatment response in children, as described above by Yee et al for adult SLE 

[68]. As with other composite disease activity scores, by utilising traditional LN 

laboratory markers (e.g. proteinuria, GFR) to calculate the BILAG score, and then 

assessing urine biomarkers against the BILAG score, it becomes impossible to 

compare such traditional laboratory markers and novel biomarkers head to head.  Some 

of the traditional biomarkers contributing to the renal BILAG score have been 

criticised individually as poor markers of active LN (see sections 1.2.3 and 3.1.3). 

However, the comprehensive nature of the BILAG ensures that a range of other factors 

are also considered alongside such markers. 

 

The approach to use of the renal BILAG score in the present thesis has therefore been 

to draw on the strengths of the renal BILAG score for detection of new-onset LN, 

severe LN and significant improvement of disease activity [68], by defining active LN 
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as having a renal BILAG score of A or B in patients with current or previous 

histological confirmation of active LN, and inactive LN as a renal BILAG score D or 

E (without clinical, laboratory or biopsy proven evidence of LN). This approach is in 

keeping with the study of Marks et al assessing the validity of the renal BILAG score 

in children [63]. By grouping the alphabetical renal BILAG score categories together 

to differentiate active versus inactive LN, inaccuracies demonstrated with subtle 

fluctuations in the renal BILAG score during the study of Yee al al [68] are mitigated. 

Where renal BILAG C scoring episodes are included in a study (e.g. longitudinal 

studies), it has been considered best to group A, B and C grades together in view of 

the fluctuation between adjacent categories of B and C without changes in treatment 

as previously described [68].  

 

1.1.4.3! Systemic Lupus Erythematosus Disease Activity Measure 
 

The SLEDAI score is a global index which was initially derived in 1986 [55] and most 

recently updated by Gladman et al in 2002 (SLEDAI-2K [81]). Within the original 

SLEDAI score, rash, alopecia, mucous membrane lesions, and proteinuria were only 

scored only on their first occurrence or a recurrence, whereas in the SLEDAI-2K 

version these items are simply scored when present (regardless of whether new or 

recurrent). In contrast to the BILAG score, the SLEDAI score evaluates disease 

activity over the previous 10 days vs. the past month, with the BILAG score also 

recording partial improvement in features vs. present/absent. In view of this, Touma 

et al developed a response rate of 50% (SRI-50) to document a 50% improvement in 

SLEDAI, providing a measure of partial rather than complete improvement [82]. The 

SLEDAI-2K consists of 24 weighted items across 9 organ systems (central nervous 

system, vascular, renal, musculoskeletal, serosal, dermal, immunologic, constitutional, 

and hematologic), providing a maximum total score of 105, with all questions 

contained within a single page form, making it the shortest of the SLE disease activity 

tools.  

 

The SLEDAI score has been shown to be sensitive to changes in disease activity within 

an international adult SLE validation study [83]. The majority of paediatric studies 

have utilised the original SLEDAI score. Brunner et al have assessed and compared 

whether the original SLEDAI, BILAG and SLAM scores are sensitive to clinical 
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change in disease activity in children. Assessing these scores at the time of diagnosis, 

six months post-diagnosis, at the time of a flare, and 6 months post-flare, all three 

measures were found to be highly sensitive to clinical change in children, with no 

measure displaying overall superiority [79]. The SLEDAI-2K score was used in a 

further study by Brunner at al looking at the minimal clinically important differences 

(MCID) of disease activity indices in JSLE. They found the MCID to be small 

(difference of 2 points) and similar to those reported for adults with SLE, but did not 

discriminate well between disease courses (detection rates for improvement or 

worsening were all <55%). Using a higher MCID (defined by a 70% predicted 

probability of improvement or worsening) a better ability to discriminate between 

changes in disease activity was seen, but the proportion of patients with disease activity 

change was underestimated. The authors therefore concluded that small changes in 

SLEDAI-2K disease activity scores can be clinically relevant, however, overall 

worsening, improvement and response to therapy, cannot be accurately captured by 

such measures of disease activity alone [84]. 

 

1.1.4.4! Systemic Lupus Activity Measure 
 

The latest version of the SLAM is known as the SLAM-R [56]. Both versions feature 

more systemic features than the SLEDAI and record more subjective symptoms such 

as fatigue, arthralgia and myalgia. All SLAM items are weighted according to the 

severity of the item. In a paediatric study including 35 JSLE patients and comparing 

the SLAM score with the BILAG and SLEDAI scores, the SLAM was shown to be 

user friendly, although longer than the SLEDAI. The SLAM was also shown to 

demonstrate equivalent responsiveness to change in disease activity as compared to 

the BILAG and SLEDAI scores [79]. Similarly, in an international study that including 

557 JSLE patients, the SLAM was found to be strongly associated with changes in 

disease activity [85]. 

 

1.1.5! Aetiological factors  
The underlying cause of JSLE remains unknown, with JSLE pathogenesis continuing 

to be a very active area of translational research. Onset of SLE in the childhood years 

is associated with an increased number of susceptibility alleles, involving a range of 
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different genes which have provided important insights into JSLE pathogenesis [44]. 

The concordance rate for JSLE is 25% amongst monozygotic twins and 2% in 

dizygotic twins, highlighting that genetic contribution is important but not the sole 

cause of JSLE [86]. Variants in the genes associated with type 1 interferon (IFN) 

production and or signalling have been shown to play a major role in JSLE 

susceptibility [87], with higher serum IFN-# levels demonstrated in younger 

individuals with JSLE within family cohorts [88]. IFN-α hyper-production has been 

associated with a number of rare infantile forms of JSLE in addition to Aicardi-

Goutiers Syndrome (see section 1.1.1), phenotypically differing from other JSLE 

patients. For example, TREX1 mutations have been connected with chilblain lupus 

and intracerebral calcifications [89], DNAse-IL3 mutations are related to early-onset 

SLE, ANAs, anti-dsDNA, ANCA [90], the AGS5 mutations are linked to chilblain 

lupus, intracerebral calcifications and mental retardation [91] and ACP5 mutations are 

associated with growth retardation, spondyloenchondrodysplasia, SLE, Sjögren, 

vitiligo, myositis, Raynaud, ANA and anti-dsDNA [92]. Defects in early components 

of the classical complement pathway have also been shown to cause apoptotic cell and 

immune complex clearance defects, predisposing to JSLE. For example, C1q 

deficiency is particularly associated with rash and LN [10], and C2, or C4 deficiency 

are strong risk factors for JSLE [93]. Several micro-RNAs have also been implicated 

in JSLE pathogenesis [94], associating with high disease activity [95]. 

 

Exposure to multiple environmental factors in the context of this genetic predisposition 

is thought to also trigger autoimmunity, leading to JSLE manifestations. Predisposing 

environmental factors associated with the onset of JSLE include certain medications, 

infections (see Table 1-3 above), and exposure to ultraviolet light [96]. Hormonal 

influences (especially oestrogens) are also thought to play a key contributory role in 

the development of JSLE as evidenced by the strong female predisposition seen in 

JSLE, occurrence of disease flares in pregnancy and increase in female to male ratio 

as puberty is approached [24,25]. 

 

1.1.6! JSLE pathogenesis  
The complex pathogenesis of JSLE can be summarised and considered as four distinct 

yet interacting processes, where there is increased nuclear debris production and 
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exposure, loss of tolerance to self-antigen and generation of auto-antibodies, which in 

turn exert pathogenic effects due to the formation of immune complexes, resulting in 

inflammation and clinical disease manifestations [97]. It is increasingly being 

demonstrated that both the innate and adaptive immune systems play a role in JSLE 

pathogenesis, in contrast to previous beliefs that JSLE was a disease of the adaptive 

immune system. An overview of JSLE pathogenesis is presented, followed by a 

specific description of LN pathogenesis. 

 

1.1.6.1! Increased nuclear debris exposure  

JSLE serum contains increased IFN-#, which plays a prominent role in development 

of JSLE, as discussed in section 1.1.5. IFN-# is pro-apoptotic, leading to increased 

endogenous nuclear debris exposure [98]. Neutrophils are also known to play a key 

part in JSLE pathogenesis, with a neutrophil specific genes signature being the second 

most commonly expressed gene signature within JSLE peripheral blood mononuclear 

cells (PBMCs) [99]. This has been attributed to the presence of early neutrophil 

precursors within the blood, known as low density granulocytes [100]. JSLE 

neutrophils promptly undergo spontaneous apoptosis in vitro, which is accelerated in 

the presence of JSLE serum [98] and dysregulated [101]. Neutrophils are also known 

to release neutrophil extracellular traps (NETs), containing chromatin, neutrophil 

deoxyribonucleic acid (DNA) and histones into their local environment. These NETs 

usually bind pathogens and assist with their clearance under normal conditions [102]. 

Increased NET production (also known as NETosis) coupled with ineffective NET 

clearance can lead to prolonged exposure of nuclear debris to the immune system 

[103]. Cytokines such as IFN-# also promote NET formation by neutrophils [104]. 

Monocytes and macrophages are responsible for clearance of apoptotic cells and 

environmental debris.  However, these cells exhibit impaired phagocytic abilities in 

the presence of JSLE serum [105-107]. A combination of these processes is thought to 

contribute to the increase in nuclear debris visible to the immune system in JSLE, 

stimulating production of nuclear autoantibodies [108]. 

 

1.1.6.2! Loss of tolerance to self-antigens and generation of autoantibodies  
Dendritic cells (DCs) are the main antigen-presenting cells connecting the innate and 

adaptive immune systems. They are able to both induce activation of naïve T-cells and 
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stimulate B-cell growth and differentiation. DCs are normally responsible for 

generating T-cell tolerance to apoptotic cells through inactivation of autoreactive T-

cells. JSLE serum and IFN-# can induce maturation of monocytes into myeloid 

dendritic cells which are able to function as antigen presenting cells [109]. In JSLE the 

magnitude of apoptotic material complexed with autoantibodies, and the activation of 

myeloid dendritic cells by IFN-# is thought to result in auto-antigens being presented 

to auto-reactive T-cells, which in turn stimulate auto-reactive B-cells. JSLE serum-

induced monocyte-derived DCs have also been shown to promote B-cell responses 

directly, inducing differentiation of naive and memory B-cells into IgG and IgA 

secreting plasmablasts, producing auto-antibodies against self-derived nucleic acids 

[110]. An imbalance of T-cell subsets has also been demonstrated in SLE, with a 

reduction in regulatory T-cells (CD4 CD25+), correlating with an increase in JSLE 

disease activity [111]. In JSLE patients with active LN, a more pro-inflammatory T-

cell profile has been demonstrated with high serum IL-17 and IL-23 levels, and 

reduced regulatory T-cells and transforming growth factor-$ concentrations [112]. 

 

1.1.6.3! Generation of autoantibodies  
Loss of B-cell tolerance has been the main focus of recent therapeutic agents in SLE 

(e.g. Rituximab, Belimumab, Blisimumab, Blisibimod, Atacicept, Epratuzumab, 

Ocrelizumab) [113]. B-cell derived antibodies stimulate DCs to produce IFN-#, 

amplifying the inflammatory cascade involving both the innate and adaptive immune 

systems. Loss of B-cell tolerance is thought to occur at an early stage of JSLE 

development, with ANAs demonstrable up to 9.4 years before clinical features of SLE 

become apparent [114]. There is often absolute B-cell lymphopenia, but an expansion 

of auto-reactive memory B-cell clones and increased levels of immature peripheral 

blood plasmablasts which are felt to be pathogenic, correlating with increased 

autoantibody production and SLE disease activity [115]. Serum B-cell-activating 

factor (BAFF, also known as B-lymphocyte stimulator, BlyS) levels are increased in 

SLE and have been linked to expansion of autoreactive B-cell clones, prolonging their 

survival. Defective DCs have been shown to stimulate BAFF production, contributing 

to the processes described above [116].  
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1.1.6.4! Immune complexes and tissue damage  
Auto-antibodies (mainly against nuclear antigens e.g. anti-dsDNA and ENAs) 

associate with autoantigens and complement factors which are present within the 

bloodstream, forming circulating immune complexes (CICs). CICs can be deposited 

within target organs, activating complement, initiating an inflammatory response and 

tissue damage [117]. CICs play a key role in the pathogenesis of LN, and are associated 

with different LN histological sub-classes dependant on where they are deposited 

within the kidney (described in section 1.1.7 and Figure 1-3). There is murine evidence 

that anti-dsDNA and ANA antibodies cross-react with proteins within the kidney (e.g. 

#-actin), exerting direct pathogenic effects on renal cells [118]. Post mortem 

examinations have revealed auto-antibodies to the collagenous region of C1q to be 

deposited and concentrated in the renal glomeruli of SLE patients [119]. Within 

murine models, anti-C1q antibodies have been shown to be pathogenic in the glomeruli 

when in combination with other complement fixing autoantibodies and immune 

complexes [120]. A summary and overview of the processes involved in JSLE 

pathogenesis is shown in Figure 1-1.  
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Figure 1-1: Overview of the processes involved in JSLE pathogenesis  
Figure adapted from reference [113]. 
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1.1.7! Pathogenesis of lupus nephritis  
The kidney is made up of millions of nephrons, each containing a glomerular and a 

tubular region. The tubules are divided into separate components (proximal, distal, 

convoluted) and are largely responsible for water and electrolyte 

reabsorption/excretion. Each glomerulus consists of a ball of blood capillaries which 

enter the kidney from the afferent arteriole and leave as the efferent arteriole. Blood 

passing through the glomerulus is under high pressure, forcing waste substances to 

move through the glomerular filtration barrier and into the Bowman’s capsule to form 

urinary ultra-filtrate. Under physiological conditions, proteins are held within the 

blood capillaries due to the highly efficient glomerular filtration barrier which consists 

of fenestrated endothelium, the collagenous glomerular basement membrane (GBM), 

and podocytes, with their interdigitating foot processes and slit diaphragms (see Figure 

1-2). These three layers restrict movement of proteins into the urine on the basis of 

their molecular weight, size and electrical charge [121].   Molecules must be positively 

charged so they are not repelled by the negatively charged GBM. Specialised slit 

diaphragm proteins (e.g. nephrin, podocin, neph-1 [122]), are involved in intracellular 

signalling networks to maintain cellular polarity [123]. Mesangial cells sit amongst 

and support the glomerular capillaries, regulating blood flow by contracting. In 

glomerular diseases such as LN, this barrier is disrupted leading to proteinuria due to 

leakage of plasma/serum proteins (e.g. albumin, which is large and negatively charged) 

alongside secretion of specific proteins reflective of the inflammatory state and kidney 

damage [124].  

 

 
Figure 1-2: Architecture of the glomerular filtration barrier, displaying the three 
layers: endothelial, glomerular basement membrane, and podocytes. 
Diagram adapted from [125]. 

BLOOD
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The pathogenesis of LN is known to involve initiation of inflammation by CICs and 

subsequent development of immune mediated mechanisms of kidney tissue injury 

involving soluble inflammatory mediators, cellular infiltrates and non-immune 

mechanisms of tissue injury. These processes are summarised in Figure 1-3. As 

described above in section 1.1.6.4, immune complexes can be composed of ANA, anti-

C1q and anti-glomerular antibodies, combined with opsonised apoptotic particles and 

NETs [126,127]. Sub-endothelial immune complexes (between the endothelial cells 

and GBM) are seen in class III and IV proliferative LN, causing injury to endothelial 

cells. They have access to the vascular space, allowing them to interact with and 

activate myeloid cells, promoting their recruitment into the kidney [128]. Sub-

epithelial immune complexes (between the GBM and podocyte layers) lead to 

podocyte injury but less inflammation as the CICs only come into contact with the 

urinary space. The glomerular basement membrane can rupture, exposing sub-

epithelial CICs to the whole glomerulus, and leading to a pro-inflammatory response 

with inflammatory cytokine/chemokine release (e.g. monocyte chemoattractant 

protein-1 (MCP-1), tumour necrosis factor-# (TNF-#), IFN-") [129], complement 

activation, and activation of resident renal cells (e.g. podocytes) by CICs containing 

nucleic acids (through toll like receptors 7/9, TLRs) [130]. 

 

Inflammatory cells infiltrate the kidney through glomerular and interstitial blood 

vessels. Both the B and T-cells found within LN kidneys are clonally expanded, with 

evidence of a local adaptive immune response which could potentiate the effects of the 

systemic response. A proportion of B-cells derived from renal biopsies have been 

shown to be specific for vimentin, an intracellular protein which is extruded from 

apoptotic cells, with increasing vimentin levels correlating with reduced GFR [131].  

Auto-antibodies to kidney proteins annexin 1 and #-enolase have also been detected 

in nephritic kidneys [132]. Macrophages recruited from the blood are initially pro-

inflammatory but can switch to a reparative phenotype, assisting with tissue 

remodelling and resolution of inflammation [133,134]. DCs also infiltrate the kidneys 

during LN and may contribute to development of a local adaptive immune response 

[135]. 
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Non-immune mechanisms of tissue injury also occur in parallel to those described 

above, potentiating renal damage. Maintenance of glomerular function relies on 

preservation of the nephrons complex structure including close mesangial to 

endothelial interaction, and podocyte to endothelial interaction, allowing diffusion of 

cytokines and growth factors through the GBM [136]. When nephrons are damaged 

and lost, compensatory mechanisms lead to an increase in intra-glomerular 

pressure/stress for the residual nephrons, with abnormalities of vascular function also 

leading to tissue hypoxia [137] (see Figure 1-3). 
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Figure 1-3: Summary of processes involved in LN pathogenesis.  
*Diagram displaying position of sub-endothelial/sub-epithelial deposits adapted from reference [138].  
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1.1.8! Disease management of JSLE  
The management of JSLE must be undertaken by a multi-disciplinary team with 

experience of looking after children and young people with JSLE and similar complex 

connective tissue disorders. This is emphasised in the SHARE consensus evidence-

based recommendations for management of JSLE [45]. Referral to an experienced 

specialist team is essential as soon as the diagnosis is suspected, as the longer the 

period of active disease, the higher the risk of long-term complications [139,140]. 

JSLE patients frequently require input from several specialist teams along with 

complex immunosuppressive treatment, co-ordinated by a paediatric rheumatologist. 

As survival rates from JSLE improve, there is increasing emphasis on preventing long-

term complications and co-morbidities, such as premature atherosclerosis, 

osteoporosis, neurocognitive impairment, and (potentially) increased risk of 

malignancy, through optimal disease control and empowering patients to take 

responsibility for their own healthcare [141]. Immunosuppression is tailored to the 

individual patient, taking into account disease presentation and severity, patient 

preference, tolerance of drugs and the burden of the disease/treatment on QOL. Issues 

often arise in young people with complex chronic diseases such as JSLE in relation to 

treatment adherence, risk-taking behaviours, and poor clinic attendance; worsening 

clinical outcomes [142-148].  

 

The sections to follow consider pharmacological management of mild-to-moderate 

JSLE manifestations, contrasted with severe disease. Mild to moderate disease is 

characterised by features affecting the following domains; constitutional, 

mucocutaneous and musculoskeletal, whereas severe disease is characterised by major 

organ involvement (e.g. LN, neurological). Management of LN is briefly discussed 

under management of severe disease (section 1.1.8.2) with a more detailed explanation 

of how LN treatment relates to LN histological sub-classes. The key clinical trials 

concerning LN induction and maintenance treatment, and published treatment 

recommendations relating to the management of LN in children are shown in section 

1.2.4 below. 

 

1.1.8.1! Management of mild to moderate disease  
Glucocorticoids remain the established mainstay of JSLE management in the form of 

topical and/or low dose oral treatment for mild-to-moderate disease, or high dose oral 
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or intravenous treatment for severe disease. This is despite their well-recognised array 

of significant adverse effects. Within clinical care there is a strong emphasis on 

tapering to the smallest possible dose and use of corticosteroid sparing treatments to 

reduce side effects [113]. Corticosteroid free induction regimes are starting to emerge, 

showing promising results [149]. Clinical trials for example of Rituximab and 

mycophenolate mofetil (MMF) without oral corticosteroids for LN treatment 

compared to standard therapy have been attempted [150]. Defining the appropriate use 

of corticosteroids in the management of JSLE remains an important research question. 

 

Hydroxychloroquine is recommended from diagnosis for all JSLE severities, either as 

monotherapy or in combination with other treatments. It is well recognised that 

hydroxychloroquine can improve symptoms [151], reduce the rate of flares and 

improve renal response to treatment in adult LN [152,153]. It has also been shown to 

reduce lipid abnormalities and vascular events in adult SLE [154].  

 

Azathioprine is generally used for new mild to moderate disease and as maintenance 

treatment following severe manifestations [155,156], however, its efficacy has not 

been examined in JSLE clinical trials. MMF can be used as an alternative to 

azathioprine, depending on the type of manifestation, but is usually reserved for 

moderate to severe disease manifestations. Methotrexate is mainly used where 

prominent mucocutaneous or musculoskeletal symptoms are present [157], however 

the evidence for use as a monotherapy in JSLE is poor [158]. The mode of action, 

indications and side effects of the above medications are summarised in Table 1-6. 
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1.1.8.2! Management of severe disease in JSLE 
Severe disease at JSLE onset or during a flare must be promptly recognised and treated 

to improve outcomes [139]. Along with use of high dose, systemic corticosteroids, 

cyclophosphamide is often used to treat major organ involvement or life threatening 

flares, when rapid disease control is required (e.g. neurological, systemic vasculitis, 

renal involvement) [159-163]. Recommendations vary between guidelines in relation 

to cyclophosphamide dosage and treatment duration [162,163]. Risks of 

cyclophosphamide side effects, including infertility, cancer and infections have 

increasingly led to MMF being used where possible as an alternative to 

cyclophosphamide, with MMF tending to be the commonest LN induction and 

maintenance treatment in recent years [164]. MMF has been shown to be equally 

effective, but less toxic than cyclophosphamide in the induction phase of LN 

management [165]. As a maintenance treatment, MMF has been shown to be 

significantly superior to azathioprine, regardless of whether MMF or 

cyclophosphamide was used as induction therapy (ALMS trial [166]). In the 

MAINTAIN trial, where all patients received Euro Lupus induction treatment [167] 

with low dose IV cyclophosphamide (6 doses) followed by either MMF or 

azathioprine, no difference was seen in relation to the time to renal flare between the 

two study arms [168]. Further details relating to cyclophosphamide, MMF and 

azathioprine use in LN management are provided in section 1.2.4, Table 1-9, Table 

1-10 and Table 1-11. 

 

Plasma exchange has been seen to be clinically useful in rapidly progressive life 

threatening disease, with a recent review summarising case series which highlight the 

utility of plasma exchange for severe therapy-resistant manifestations, refractory LN, 

diffuse alveolar haemorrhage, neuropsychiatric SLE, thrombotic thrombocytopenic 

purpura, catastrophicAPLS, hyperviscosity syndrome and cryoglobulinemia [169]. 

The mechanism of action is thought to be through removal of putative pathogenic auto-

antibodies and CICs from the blood. Intravenous immunoglobulin (IVIG) may also be 

useful, and has been shown to be significantly associated with a reduction in SLE 

disease activity scores (e.g. SLEDAI, SLAM) and improvements in C3 levels [170].  

 

Rituximab is currently the most commonly used biologic in JSLE, playing a role in 

treatment of disease which is refractory to first line induction treatment, or for those 
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patients experiencing unwanted adverse effects from alternative treatments (see Table 

1-6). Three retrospective JSLE studies (including one from the UK JSLE Cohort 

Study) have demonstrated a reduction in steroid burden and disease activity following 

rituximab treatment [171-174]. Adult randomised control trials (RCTs) evaluating 

rituximab in non-renal SLE (as induction and maintenance treatment, EXPLORER 

trial [175]) and LN (as an adjuvant to MMF and steroids, LUNAR trial [176]) both 

failed to meet their primary or secondary outcome measures, however, suboptimal trial 

design was felt to contribute to these results. Two recent studies seek to examine the 

efficacy of rituximab in LN, including paediatric patients. The Rituximab and 

Mycophenolate Mofetil Without Oral Steroids for Lupus Nephritis (RITUXILUP) trial 

is an open-label, multicentre RCT assessing rituximab with MMF versus MMF and 

glucocorticoids only [150]. The Rituximab for Lupus Nephritis With Remission as a 

Goal (RING) trial is another phase III trial that will examine rituximab in refractory 

LN [177]. 

 
1.1.8.3! Emerging biologic agents  
Belimumab is the only biologic agent which has been proven to be effective in adult-

SLE RCTs alongside standard SLE therapy [178,179], demonstrating a favourable 

side-effect profile [180]. It is a fully humanised monoclonal antibody, which binds to 

human soluble BAFF/BLyS protein (see section 1.1.6.3), preventing it from binding 

to its receptors. Higher therapeutic benefit of belimumab was found in patients with 

autoantibody positive disease, greater disease activity, low complement and 

corticosteroid use at baseline. In early 2016, belimumab was approved by the National 

Institute of Clinical Excellence (NICE) for use in adult SLE patients with active auto-

antibody positive disease [181]. Of note, patients with severe active LN or central 

nervous system involvement were excluded from the belimumab trials mentioned 

above [178,179]. However, numerous case reports have described successful use of 

belimumab in the context of proliferative LN [182], membranous LN [183], rituximab 

refractory LN [184] and sequential use of rituximab followed by belimumab 

[185,186], highlighting that further trials of belimumab in LN are required. A 

randomised, double-blind Pediatric Lupus Trial of belimumab Plus Background 

Standard Therapy (PLUTO) is currently assessing the pharmacokinetics, safety and 

efficacy of belimumab in 5-17 year olds with active, auto-antibody positive JSLE. 

Patients with severe active LN are again excluded from this trial [187].  
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Biologic agents that remain within the early phases of investigation in adult SLE have 

been summarised in a recent review [113] and include: blisibimod (an anti-BAFF 

peptibody), tabalumab (anti-BAFF humanised monoclonal antibody), atacicept (anti-

BAFF and APRIL fusion protein), epratuzumab (an anti-CD22 human monoclonal 

antibody), ocrelizumab (a humanised anti-CD20 monoclonal antibody), abatacept (a 

CTLA-4 and immunoglobulin fusion protein), forigerimod (a 21-mer peptide targeting 

T-cells), sifalimumab (a humanised anti-IFN-# monoclonal antibody), rontalizumab 

(a humanised anti-IFN-# monoclonal antibody) and tocilizumab (a humanised anti-

IL-6 monoclonal antibody) [113].  

 

1.1.9! Prognosis in JSLE  
1.1.9.1! Disease-associated damage  
Patients developing JSLE during childhood now live longer and consequently have an 

increased risk of developing disease and treatment related damage. The SLICC 

Damage Index (SDI, see Appendix 1) has been developed to measure cumulative 

irreversible SLE related damage [188], and has been validated in a paediatric setting 

[189,190]. A questionnaire administered to paediatric rheumatologists scoring the SDI 

in the paediatric validation study [189]  highlighted concerns that some of the SDI 

items would be more common amongst older populations, and that the score would 

benefit from the introduction of weightings, and some of the items being redefined. 

Within the UK JSLE Cohort Study, 28% of patients have been shown to have an SDI 

score of %1 within a relatively short follow-up period (median 4.5 years [IQR 2.7-6.9 

years]), with neurological, renal, musculoskeletal damage and scarring alopecia 

displaying the highest prevalence. The SDI renal damage features include; 

eGFR<50%, persistent 24 hour proteinuria >=3.59g OR UACR of > 1000mg/mm OR 

> 10mg/mg, and end stage renal disease [28].  

 

Seven JSLE studies counted within a meta-analysis including 1,559 JSLE patients 

have shown 39-65% of patients to demonstrate damage with mean SDI scores of 0.6-

2.3 (after 4-10.8 years). Damage of the renal, musculoskeletal, neuropsychiatric and 

ocular systems were most commonly seen [26,39,190-192]. Cumulative disease 

activity over time and disease duration have been consistently reported as predictors 
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of damage [189,190,193,194], with JSLE patients accruing damage at a faster rate than 

adult onset patients [39,189,192-196]. Other predictors of damage in JSLE have been 

shown to include presence of major organ involvement at baseline and later in the 

disease course, use of immunosuppression, cumulative corticosteroid dose, male 

gender, and non-Caucasian ethnicity [1,12,26,39,190,191,194,197-200]. The largest of 

these seven studies included in the meta-analysis [39] devised a paediatric version of 

the SDI (Ped-SDI), which did not change any of the existing items to ensure 

harmonisation between the paediatric and adult scores, but included growth failure and 

delayed puberty as new damage domains. Further details on LN associated damage are 

provided in section 1.2.5. 

 

1.1.9.2! Co-morbidities 
Important co-morbid conditions may be linked to the JSLE disease process or 

treatment. Atherosclerosis is itself a chronic inflammatory condition influenced by 

JSLE related factors such as CICs, complement activation, anti-phospholipid 

antibodies, corticosteroid use, lipid abnormalities and endothelial dysfunction 

[201,202]. Irreversible renal failure is one of the most common long-term 

consequences of JSLE [203], affecting approximately 10% of children with 

proliferative LN within 5 years [199]. Renal failure relates to cardiovascular risk, with 

shared risk factors which can worsen both renal and cardiovascular outcomes (e.g. 

hypertension, atherosclerosis, glucose intolerance, lipid disorders and anaemia). 

Further information on renal co-morbidity is provided in section 1.2.5 below. Multiple 

factors may contribute to osteopenia and osteoporosis in JSLE, including 

inflammation, corticosteroid use, diseases activity, nutrition, physical inactivity, 

limited exposure to sunlight and delays in pubertal development, leading to significant 

risk of fracture [204,205]. JSLE patients show a significant reduction in parent-

adjusted height z-scores, with males being most affected. Delays in pubertal onset has 

also been shown to occur in 15% of female and 24% of male JSLE patients [206]. 

Certain immunosuppressive treatments may be associated with longer-term co-

morbidities, which must be mitigated where possible (e.g. long term side effects of 

cyclophosphamide including infertility, increased risk of malignancy, see Table 1-6). 

Prospective, long-term, collaborative follow-up studies are required to direct care of 

these co-morbid conditions and determine guidelines for their prevention. 
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1.1.9.3! Mortality  
Life expectancy of SLE patients in developed countries has increased significantly 

over the last 20 years, with the 5-year survival rate reported to be 94-100%, 

disappointingly falling to 81-92% by 10 years [207,208], and 79% by 15 years 

[209,210]. Studies from developing countries have reported poorer survival rates, for 

example in Thailand the 5-year survival rate has been reported to be 77% [211], and 

in India, after a mean of 6.5 years follow-up the survival rate has been shown to be 

63% [212]. Higher disease activity is associated with higher mortality in both JSLE 

and adult SLE [189,213]. Comparing JSLE and adult SLE, the overall survival rates 

are similar, however the baseline mortality rate of children is far lower, therefore the 

age adjusted mortality rate is far higher for children [1,2,43,214]. Studies in adult SLE 

have consistently shown low socioeconomic status, high disease activity and damage 

to be important predictors of poor survival [215-221]. In a study of 1,827 SLE patients 

within the multi-ethnic SLICC inception cohort, patients with LN had a significantly 

higher risk of death (HR = 2.98) than those without LN [222]. LN patients of African 

American origin [223] and with nephrotic range proteinuria at baseline [224] have 

been shown to have increased mortality rates. In JSLE, results are more conflicting 

between studies, but overall male gender, severe infections, LN, early damage and 

haematological involvement have all been associated with poor survival [207,221]. 

Within a Northern Indian JSLE study looking at LN outcomes over 24 years, end stage 

renal failure and infections were shown to be the two most common causes of death 

[225]. Large studies with prospective follow-up into adult care are required to 

determine accurate long-term survival rates and factors associated with reduced 

survival, in patients with JSLE, and LN in particular. 

 

1.2! Lupus Nephritis  

1.2.1! Clinical presentation of LN and its natural history  
Up to 80% of JSLE patients develop LN [28], compared with 40-50% or adults [36,37]. 

LN may be part of the patients’ initial presentation or occur later in the disease course 

[226]. The clinical presentation of LN is very heterogeneous, ranging from it being 

entirely asymptomatic to having overt features of nephrotic syndrome. Therefore, 

clinicians should proactively screen for symptoms and signs of LN at each clinical 

encounter, and undertake urinalysis routinely. Patients should be questioned about the 
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presence of foamy urine (suggesting proteinuria) or nocturia (an early sign of 

glomerular or tubular dysfunction). Microscopic haematuria may be identified by 

urinalysis, with macroscopic haematuria being a rare feature, which should prompt 

rapid review of the patient. Proteinuria mainly reflects the degree of glomerular 

involvement, with proteinuria of >3.5g per day leading to nephrotic syndrome, 

characterised by hypoalbuminaemia, hyperlipidaemia and peripheral oedema [227]. 

Timed (24-hour) urine collections represent the gold standard for proteinuria 

quantification but are seldom undertaken due to difficulties arising from collection 

accuracy, especially in children. Therefore, spot UPCR or UACR measurements are 

favoured, estimating the degree of proteinuria. Urinary abnormalities related to 

menstruation, infection, cross-contamination, orthostatic proteinuria and the timing of 

the urine sample should be considered and repeat urinalysis undertaken as necessary  

[228]. 

 

It is important to also assess for presence of active urine sediment in JSLE patients, 

with >10 red blood cells +/-  >10 white cells per high powered field (hpf) being 

clinically significant. Misshapen or fragmented red cells suggest inflammatory 

glomerular or tubulointerstitial disease, whereas normal erythrocytes indicate bleeding 

in the lower urinary tract [227]. Glomerular abnormalities are more common than 

tubular dysfunction in LN, therefore it is appropriate to screen serum creatinine as a 

marker of glomerular function and to calculate the eGFR from serum creatinine and 

height [229]. True GFR is not measured very often as the test is labour intensive and 

involves radio-nucleotides. In severe LN, patients may present with rapidly 

progressive glomerulonephritis leading to acute renal failure and doubling of serum 

creatinine due to a loss of glomerular filtration function, usually in the context of 

proliferative glomerulonephritis, fibrinoid necrosis and cellular crescents in the renal 

biopsy. More frequently, renal function fluctuates with exacerbations/remission, with 

the concerning prospect of end-stage renal disease requiring dialysis or transplant, 

following progressive damage during LN flares.  

 

1.2.2! Diagnosis and monitoring of LN  
The ACR criteria for diagnosis of LN include a) persistent proteinuria of >0.5g per day 

or >3+ urine dipstick for albumin, or b) cellular casts, including red blood cell, 
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haemoglobin, granular, renal tubular cell, or mixed [230]. These laboratory criteria 

define the minimum measures for diagnosing kidney disease, and are commonly used 

as inclusion criteria when considering patients for clinical research studies. Renal 

biopsy is however the gold standard for diagnosing LN, characterising disease activity 

and providing insight into the degree of scarring and irreversible damage to the kidney 

[198,231]. At present, there is no international consensus as to the optimal timing of 

the initial renal biopsy in children. The invasive nature of renal biopsies, risk of 

complications such as bleeding or infection and need for anaesthetic in children, lead 

to a tendency for the procedure to be avoided until deemed absolutely necessary, with 

clinical concern that irreversible renal damage may occur during this period [232].  

 

Renal biopsies were initially classified according to the 1974 World Health 

Organisation (WHO) LN classification criteria [233], but since 2003, following a 

consensus conference of nephrologists, pathologists, and rheumatologists, the 

International Society of Nephrology/Renal Pathology Society (ISN/RPS) LN criteria 

have been adopted, classifying specimens according to morphological patterns of 

glomerular injury and prognostic relevance [231,234]. LN is divided into five classes 

according to the ISN/RPS criteria, class II mesangial LN, class III focal proliferative 

LN, class IV diffuse proliferative LN, class V membranous LN and class VI advanced 

sclerosing LN. Active lesions are characterised by cellular crescent and fibrinoid 

necrosis, whereas chronic lesions consist of glomerular sclerosis, fibrous crescents, 

tubular atrophy, and interstitial fibrosis  (see Table 1-7 for further details) [234]. 

Inadequate treatment may lead to the conversion of active lesions to chronic 

irreversibly damaged lesions.  
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ISN/RPS LN class Histological characteristics 
Class II mesangial 
LN 

Purely mesangial hypercellularity of any degree or 
mesangial matrix expansion by light microscopy, with 
mesangial immune deposits. May be a few isolated 
subepithelial or subendothelial deposits visible by 
immunofluorescence or electron microscopy, but not by light 
microscopy. 

Class III focal 
proliferative LN 

Active or inactive focal, segmental, or global endo- or 
extracapillary glomerulonephritis involving <50% of all 
glomeruli, typically with focal subendothelial immune 
deposits, with or without mesangial alterations. 

Class IV diffuse 
proliferative LN 

Active or inactive diffuse, segmental, or global endo- or 
extracapillary glomerulonephritis involving ≥50% of all 
glomeruli, typically with diffuse subendothelial immune 
deposits, with or without mesangial alterations. This class is 
divided into diffuse segmental (IV-S) lupus nephritis when 
≥50% of the involved glomeruli have segmental lesions, and 
diffuse global (IV-G) lupus nephritis when ≥50% of the 
involved glomeruli have global lesions. Segmental is defined 
as a glomerular lesion that involves less than half of the 
glomerular tuft. This class includes cases with diffuse wire 
loop deposits but with little or no glomerular proliferation. 

Class V 
membranous LN 

Global or segmental subepithelial immune deposits or their 
morphologic sequelae by light microscopy and by 
immunofluorescence or electron microscopy, with or 
without mesangial alterations. Class V lupus nephritis may 
occur in combination with class III or IV in which case both 
will be diagnosed. 

Class VI LN 
advanced sclerosis 

≥90% of glomeruli globally sclerosed without residual 
activity. 

Table 1-7: ISN/RPS 2003 classification of LN. 
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A number of studies have assessed inter-observer reproducibility of LN class scoring, 

comparing the WHO and ISN/RPS 2004 classification systems. Furness et al looked 

at 20 LN cases and demonstrated kappa values of 0.44 and 0.53 for inter-observer 

agreement  between WHO and ISN/RPS scores respectively (0 = no agreement, 1 = 

perfect) [235]. Wilhelmus et al carried out a similar study where 360 members of the 

Renal Pathology Society were shown microphotographs of 30 cases and asked whether 

glomerular lesions were present and compatible with either class III or IV LN vs. other 

LN classes. The kappa value for presence of class III/IV LN was disappointingly low, 

at 0.39 [236]. Grootscholten et al assessed the intra-class correlation coefficient (ICC, 

>0.8 excellent; 0.6-0.8 good; 0.4-0.6 moderate; <0.4 poor) in 126 LN cases, 

demonstrating ICC scores of 0.182 and 0.414 for WHO and ISN/RPS criteria 

respectively [237]. The studies demonstrate higher consensus with the ISN/RPS 2004 

classification system, but worryingly, even the ISN/RPS system does not perform 

perfectly.  

 

In order to facilitate the application of the renal biopsy as a predictive tool, the National 

Institute of Health (NIH), developed composite activity and chronicity indices (AI and 

CI) for LN, focusing on the glomerular compartment of the kidney [238]. This was 

subsequently followed by the development of a tubulointerstitial activity index (TIAI) 

[239], recognising that changes in the tubulointerstitial (TI) compartment may be 

important for prognosis [240,241]. Table 1-8 shows a description of the histological 

characteristics of the AI, CI, TIAI.  

 

Table 1-8: Components of the NIH LN AI, CI, TIAI scores  
Each feature is graded on a scale of 0, 1, 2, or 3 (absent, mild, moderate, and severe, respectively). 
Fibrinoid necrosis and cellular crescents are weighted by a factor of 2. Maximum score of activity index 
is 24, and of chronicity index is 12 [238]. 
 

 Activity Index Chronicity Index 

Glomerular 
abnormalities 

1. Cellular proliferation  
2. Fibrinoid necrosis 
karyorrhexis 
3. Cellular crescents 
4. Hyaline thrombi, wire loops 
5. Leukocyte infiltration 

1. Glomerular sclerosis  
2. Fibrous crescents 

Tubulo-interstitial 
abnormalities 

1. Mononuclear-cell 
infiltration 

1. Interstitial fibrosis  
2. Tubular atrophy 
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Specific histological features associated with poor renal prognosis include large 

subendothelial deposits, necrotising glomerular lesions, and %50% of glomeruli being 

affected by cellular crescents [242-244]. Patients with purely mesangial proliferative 

lesions/immune deposits restricted to the mesangial regions are less likely to develop 

progressive renal failure. However, the co-existence of %1 sub-endothelial deposit may 

suggest the presence of more advanced disease predictive of progressive renal failure 

[238,243,245-248].  

 

LN sub-class, therefore, plays an important role in predicting outcome and guiding 

treatment pathways [249], with more aggressive treatment reserved for severe 

proliferative glomerular pathology (see section 1.2.4). Patients presenting with low-

moderate levels of proteinuria without acute renal failure present a clinical dilemma, 

as they could have underlying mesangial lupus (class II), mild isolated membranous 

lupus (class V), or a proliferative lesion with either mild activity or be in the early 

stages of a more active lesion (class III, IV); therefore, significantly different treatment 

strategies would be indicated depending on which histological sub-class is present (see 

section 1.2.4).  

 

The NIH AI and CI, has generated much controversy, with some investigators 

concluding that these indices are better predictors than WHO LN class, with high AI 

scores in the initial or repeat renal biopsy predicting the development of progressive 

renal disease and mortality [238,243]. However, others have questioned the 

reproducibility and validity of these scores, following inter-observer evaluation studies 

[250,251]. A further point of note is that LN is frequently focal, therefore, larger tissue 

samples provide more accurate assessment of glomerular involvement. This can be 

problematic in children as it has been suggested that in order to adequately rule out a 

focal lesion, a biopsy should contain a minimum of 10 glomeruli for light microscopic 

analysis [252]. 

 

1.2.3! Limitations of the current tests used in LN diagnosis and 
monitoring  

In view of the risks and difficulties in undertaking repeated renal biopsies in children, 

clinicians rely heavily upon the less invasive, routine clinical biomarkers, when 

monitoring patients and making a decision as to whether to undertake a renal biopsy. 
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Such routine biomarkers include: proteinuria, urine microscopy, serum creatinine, 

eGFR, and also immunological, haematological and inflammatory biomarkers (see 

section 1.1.3.2). These investigations present limitations both diagnostically and 

prognostically during ongoing monitoring and follow up, deserving recognition. 

Following an LN flare, proteinuria has been shown to take a significant period of time 

to normalise in adult SLE patients, making it difficult to differentiate whether ongoing 

proteinuria reflects the recovery phase after a flare, is due to irreversible renal damage, 

or continued LN activity [253]. Changes in serum creatinine tend to lag behind changes 

in GFR and are also influenced by the child’s age, gender and height [254]. Of concern, 

there have been reports of ‘clinically silent LN' in patients with biopsy-defined LN but 

no proteinuria, normal urinalysis and normal renal function [255]. Repeat biopsy of 

patients who are in clinical remission has shown approximately one third to have 

ongoing evidence of LN activity, and approximately 60% to display CI features 

[256,257], suggesting that improved monitoring of sub-clinical disease is required to 

prevent under-treatment. Normal complement and anti-dsDNA antibodies may 

provide reassurance that active LN is improbable, however, studies looking at the 

accuracy of these tests for differentiating between patients with active and inactive LN 

have shown conflicting results [258-260].  

 

1.2.4! Treatment of LN  
The aim of LN treatment is to achieve remission as soon as possible in order to prevent 

irreversible kidney damage. In the initial induction phase, potent immunosuppressants 

are given with the aim of inducing LN remission. Subsequent long-term maintenance 

therapy involves lower doses of immunosuppressant medication, with the aim of 

preventing further renal flares whilst minimising treatment related adverse events. 

Long-term renal prognosis is better if a satisfactory response to initial induction 

therapy has been achieved [261,262]. As discussed in section 1.2.2 above, proliferative 

(class III/IV) LN carries the highest risk of progression to end stage renal disease, 

therefore intensive immunosuppressive treatment is warranted. The main studies 

influencing current clinical practice in relation to induction and maintenance treatment 

for class III/IV LN are shown in Table 1-9 and Table 1-10, and also discussed in 

section 1.1.8.2 above.  
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Study Participants Treatment 
groups 

Follow-
up 

Key 
findings 

Houssiau 
et al 
[167]  
 
Euro 
Lupus 
trial 

90 pts 
(76 White, 6 
Asian, 8 
Afro-
Caribbean 
or Black) 
with class III-
V LN  

Comparing 
high or low 
dose CYC 
 
6 x monthly 
doses of CYC 
(high or low) + 
2 x quarterly 
CYC doses 
 
IVMP for 3 
days followed 
by oral pred 

41 
months 

No difference between high-
dose and low-dose CYC 
groups:  
 

•! Treatment failure, 20% 
versus 16% 

•! renal remission 54% versus 
71% 

Long term follow-up study 
found no difference in death, 
doubling of serum creatinine 
and renal failure after 10 yrs 
[263]  

Ginzler 
et al 
[264] 

140 pts 
(79 Black, 28 
Hispanic, 24 
White and 8 
Asian) with 
class III–V 
LN 

Pred + MMF 
vs. 
Pred + CYC 

24 
weeks 

Pred + MMF had a better safety 
profile and was more effective 
than pred + CYC:  
 

•! Complete remission 22.5% 
vs. 5.8%  

•! Partial remission 29.6% vs. 
24.6% 

Appel 
et al 
[165] 
 
ALMS 
phase I 

370 pts 
(147 White, 
123 Asian 
and 100 other 
race) with 
class III–V 
LN 

Pred + MMF 
vs. 
Pred + CYC 

24 
weeks 

Largest trial to date 
•! Similar response rates: 

56.2% versus 53% 
•! 40.6% more adverse events 

in the CYC group 

N.B. response rate significantly 
higher in MMF group in Black, 
Hispanic, ‘other race’ patients 

Table 1-9: Key trials of induction treatment in class III-V LN 
Pts = patients. CYC = cyclophosphamide. MMF = mycoplenolate mofetil. Pred = prednisolone.  
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Study Participants Maintenance 
treatment 

Follow 
up 

Key 
findings 

Contreras 
et al [265] 
  

59 pts 
(29 Hispanic, 27 
Black and 3 
White) with LN 
class III or IV who 
had received 6 
months of CYC 
induction therapy 

•! Pred + 
MMF vs. 

•! Pred + 
AZA vs. 

•! Pred + 
quarterly 
CYC  

29, 30 and 
25 months 
respectively 

•! Mortality and 
renal-failure-free 
survival inferior 
with pred + CYC 

•! Relapse-free 
survival better 
with pred + MMF 
than with pred + 
CYC 

Houssiau 
et al [168] 
 
MAINTAIN 
trial 

105 pts (83 White, 
13 Black and 9 
Asian) with class 
III-V LN (WHO) 
who had received 
IVMP then pred 
plus low-dose 
CYC induction 
treatment  

•! Pred + 
MMF vs.  

•! Pred + 
AZA  

48 months •! Time to renal or 
systemic flare did 
not differ between 
groups 

•! Similar 
proportions of 
renal flares: 19% 
with MMF vs. 
25% with AZA 

Dooley 
et al [166] 
 
ALMS 
phase II 
trial 

227 pts (99 white, 
76 Asian, 23 black 
and 29 ‘other’ 
ethnicity) with 
class III–V LN 
who had received 
any induction 
therapy  

•! Pred + 
MMF vs.  

•! Pred + 
AZA 

36 months •! MMF was 
superior to AZA 
with regard to 
time to treatment 
failure, time to 
renal flare and 
time to rescue 
therapy 

•! Treatment failure 
rates 16.4% vs. 
32.4%  

•! Renal flare rates 
12.9% vs. 23.4% 

Table 1-10: Key trials of maintenance treatment in class III-V LN 
CYC = cyclophosphamide. MMF = mycoplenolate mofetil. Pred = prednisolone. IVMP = intravenous 
methylprednisolone. AZA = azathioprine. 
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Membranous, type V LN features often co-inside with proliferative class III/IV 

features, in which case their treatment is as per class the III/IV LN treatment described 

above. Pure class V LN is uncommon, displaying proteinuria as the principle 

manifestation and a better renal prognosis than class III/IV LN [244,266]. In class V 

LN cases where normal kidney function is present and proteinuria is within the sub-

nephrotic range, treatment includes use of an angiotensin converting enzyme inhibitor 

(ACEi), with immunosuppressive therapy indicated as per the extra-renal 

manifestations. When proteinuria is within the nephrotic range, it is associated with 

increased risk or renal deterioration [267], therefore, immunosuppressive induction 

and maintenance treatment are indicated as per class III/IV LN treatment protocols 

[156,268,269] or alternatively including prednisolone and a calcineurin inhibitor 

(cyclosporin or tacrolimus). Class I or II LN (with proteinuria of <3g/day) should be 

treated as per extra-renal clinical manifestations. In Class II LN with >3g proteinuria 

per day, glucocorticoids ± a calcineurin inhibitor are utilised. In Class VI LN chronic 

lesions are present, therefore the risks of aggressive immunosuppression may 

outweigh the benefits, and treatment is as per the extra-renal manifestations 

[162,163,268,270].  

 

Three different published recommendations for treatment of LN in JSLE exist, from 

the Childhood Arthritis and Rheumatology Research Alliance (CARRA) [163], 

European League Against Rheumatism and European Renal Association–European 

Dialysis and Transplant Association (EULAR/ERA-EDTA) [162] and Kidney Disease 

Improving Global Outcomes (KDIGO) CARRA SLE committee [268]. These 

recommendations are summarised in Table 1-11. The role of biologics in LN treatment 

remains largely inconclusive as discussed in section 1.1.8.3 above, with such 

treatments mainly being used in patients who do not respond adequately to 

conventional treatment or as an adjunct to conventional treatment. 
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1.2.5! Renal survival in JSLE  
LN is one of the major causes of morbidity in JSLE, and has also been reported to be 

the most important predictor of mortality [271]. In the 1950s, the reported mortality 

rate was > 50% at 5-years for patients with LN [272]. Since the introduction of high-

dose corticosteroids and immunosuppressive agents for LN in the late 1980s/early 

1990s, the 5-year renal survival rate is now 84%–94% [198-200,211,212,273-276]. 

Longer term renal outcomes have been reported by some of these studies, reporting 

10-15 year renal survival rates of 75–91%  [198,199,211,275]. Renal survival has been 

shown to vary according to renal biopsy class, with poorer renal survival in 

proliferative (class III/IV) LN versus mesangial (class II) or membranous LN (class 

V) [198-200,273-275,277,278]. Adult SLE studies have demonstrated that Black and 

Hispanic patients have poorer renal survival than Caucasian patients [13], with marked 

variation in renal survival between developed and developing countries [13,222,279] 

(see section 5.1.1). In the United States (US), 1.9% of all adult and 3% of paediatric 

renal transplants are attributed to LN, emphasising the higher burden and severity of 

the disease in childhood [280]. In children commencing renal replacement therapy for 

LN, the 5-year mortality rate is 22% [281]. 

 

1.3! Urine biomarkers of LN  

1.3.1! Pursuit of novel biomarkers  
It is evident from the summary of data presented above that the performance of 

conventional blood, urine, biopsy tests for the diagnosis and monitoring of LN remain 

inadequate (sections 1.2.2 and 1.2.3). LN therapy could be more effective, treatment 

toxicity limited, and renal outcomes improved if LN onset, severity, and treatment 

responsiveness could be predicted. To this end, novel, non-invasive biomarkers of 

disease activity and prognosis are increasingly being investigated. To translate an 

experimental biomarker into clinical practice, Mischak et al [282] describe a six step 

process to be considered when developing and evaluating novel biomarkers studies. 

This process includes: (1) initial biomarker identification/verification, (2) evaluation 

of the results by independent experts, (3) evaluation in a suitable bio-bank of existing 

samples or newly collected samples, (4) evaluation in a clinical trial, (5) 

implementation in clinical practice, and (6) proving the cost-effectiveness of the 
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validated biomarker. The majority of LN urine biomarker studies to date have focused 

upon step one of this process.   

 

1.3.2! Why urine?  
Urine is increasingly becoming recognised as the most useful and desirable medium 

for biomarker discovery due to the non-invasive nature of sample collection and its 

ability to reflect kidney damage, given its close proximity to native renal cells. Plasma 

and serum are more complex sample types, which are in contact with multiple organs 

and therefore less likely to yield kidney specific biomarkers. The smaller number of 

core proteins in urine compared to plasma/serum (approximately 2000 vs. 10,000), 

also make urine a better medium for harvesting biomarkers [283,284]. Efforts to 

identify urinary biomarkers to date have related to specific candidate biomarkers 

implicated in the pathogenesis of LN or hypothesis free biomarker screens (e.g. using 

proteomic techniques).  

 

1.3.3! Why assess novel biomarkers in children as well as adults?   
JSLE and adult-onset SLE differ in many ways (see section 1.1.3), with more renal 

involvement [1,28,40,42,285,286], greater risk of renal failure and irreversible renal 

damage being seen in JSLE [203,287]. Such differences in LN severity may therefore 

bear influence on the level of biomarkers reflecting the degree of renal injury. Urine 

biomarkers derived from plasma proteins may also show age dependent differences in 

their levels. Childhood specific biomarker discovery and validation studies are 

therefore important to explore such issues. Children generally have fewer co-

morbidities (e.g. diabetes, cardiovascular disease or hypertension), which could have 

confounding effects on biomarker discovery. Consequently, it may be that a biomarker 

is useful in a paediatric but not an adult-onset SLE population, or vice versa. This may 

account for some of the differences in proteins identified from paediatric and adult 

SLE urine proteomic studies [288-290].  

 

In the next section, developments in identifying robust urinary biomarkers for LN will 

be reviewed. Biomarkers that are of particular relevance to children or have gone 

through validation in independent patient cohorts will be highlighted, as such markers 
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will be of key importance to this thesis, defining individual or combinations of 

biomarkers meriting advancement towards clinical practice. 

 

1.3.4! Urine biomarkers relating to LN pathophysiology  
1.3.4.1! Inflammatory cells as urine biomarkers  
In a recent study of 19 adult SLE patients, urinary T-cells (CD8+ and CD4+), B-cells 

and CD14+ macrophages were shown to significantly distinguish between patients 

with active LN and non-LN SLE patients [291]. The same group has previously shown 

that high urinary CD4+ T-cells numbers are observed in proliferative LN, and that over 

time, normalisation of urinary CD4+ T-cell count is associated with lower disease 

activity and better renal function. Persistence or an increase in urinary T-cell numbers 

is associated with higher total SLEDAI scores, and poorer renal outcomes in terms of 

serum creatinine and proteinuria [292]. These results have been confirmed by a further 

group who demonstrated urinary CD4+ and CD8+ T-cell counts to significantly 

discriminate between active and inactive LN [293], decreasing in response to treatment 

[291]. The relatively large volume of urine required limits the use of urinary immune 

cells as biomarkers in children (approximately 100mls as opposed to 20-200!l in 

immune-assays), where it can be difficult to obtain such urine volumes. The urine also 

needs to be fresh and analysed within six hours of voiding [291]. 

 

1.3.4.2! Cytokines, chemokines and their receptors as urine biomarkers  
Cytokines, chemokines and their receptors play an important role in the pathogenesis 

of LN. This has led to a variety of studies testing whether they may be used as urine 

biomarkers for LN.  

 

1.3.4.2.1! Monocyte chemoattractant protein-1 (MCP-1)  

MCP-1 is one of the most extensively investigated urine biomarkers in LN. It is a 

leucocyte chemotactic factor, which acts to recruit inflammatory cells to the kidney 

[294]. Increased expression of MCP-1 has been demonstrated by 

immunohistochemistry and in situ hybridisation in renal endothelial cells, epithelial 

cells and infiltrating mononuclear cells in LN [295].  There is also a correlation 

between glomerular expression of MCP-1 and severe histological classes of LN (class 

III/IV), correlating with poor renal prognosis [296]. A large number of cross-sectional 
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studies have consistently demonstrated that urinary MCP-1 levels are elevated in 

patients with active LN, as compared to inactive LN and/or healthy controls (HCs) 

[70,72,297-302]. MCP-1 is also elevated in other types of glomerulonephritis [303]. 

 

Watson et al [74], examined urinary MCP-1 levels longitudinally in 64 patients from 

the UK JSLE Cohort Study, demonstrating MCP-1 to be an independent predictor for 

active renal disease at the time of the current review, and over time low urinary MCP-

1 levels were a good predictor of LN improvement (AUC: 0.81; p=0.013). In an adult 

longitudinal study, urinary MCP-1 levels were demonstrated to be significantly higher 

during renal as opposed to non-renal flares, increasing 2-4 months pre-LN flare. 

Patients who responded to treatment showed a decrease in urinary MCP-1 levels over 

several months, whereas non-responders displayed persistently elevated levels. MCP-

1 levels were also demonstrated to be higher in patients with proliferative LN versus 

membranous LN [299]. A further longitudinal study of 40 adult patients supports these 

results, with urinary MCP-1 levels falling in responders, remaining elevated in non-

responders and correlating with histological severity [277]. Of note, an adult SLE 

study has shown urinary MCP-1 levels to be no better than anti-dsDNA antibody or 

C3 at differentiating renal versus non-renal SLE flares [304] with a further study 

finding that MCP-1 was unable to predict LN flare [305]. MCP-1 antagonists have 

been shown to ameliorate LN in MRL-(Fas)lpr autoimmune prone mice [306], and to 

permit a 75% reduction in the dose of cyclophosphamide required to control 

proliferative LN [307], but are not currently under investigation in humans.  

 

In summary, the ten urinary MCP-1 studies described above across adult and paediatric 

cross-sectional and longitudinal studies [70,74,277,296,298,299,301,302,308,309] 

provide evidence to support the role of MCP-1 as an important biomarker involved in 

LN pathogenesis and monitoring. Further investigation of MCP-1 is indicated, either 

alone or in combination with other biomarkers, as part of this current thesis.  

 

1.3.4.2.2! Neutrophil gelatinase associated lipoclain (NGAL)  

Urinary NGAL has also been widely investigated in LN. It is a member of the lipocalin 

family of carrier proteins that is expressed by many cell types including neutrophils 

and renal tubular epithelial cells. It is responsible for cellular iron transport, apoptosis, 

bacteriostasis and tissue differentiation, and is implicated in the growth and 
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differentiation of epithelial cells [310]. NGAL is constitutively expressed at low levels 

in the kidneys [311], and is up-regulated in response to acute renal injury in response 

to inflammation, ischemia and infection [312-316]. Brunner at al carried out the first 

paediatric urinary NGAL study in a cohort of 35 JSLE patients, reporting higher 

urinary NGAL levels in JSLE compared to Juvenile Idiopathic Arthritis (JIA) patients. 

NGAL levels were strongly correlated with renal SLEDAI defined disease activity, 

but not with extra-renal disease activity. Subgroup analysis showed NGAL levels to 

be highly sensitive and specific for identifying JSLE patients with biopsy-proven 

nephritis [317]. In a subsequent study, they found the combination of NGAL, MCP-1 

and creatinine clearance to be good at identifying LN chronicity (AUC 0.83) [318]. 

An independent Egyptian cohort including 35 JSLE patients, has demonstrated urinary 

NGAL to correlate with the renal SLEDAI score and be predictive of class III and IV 

LN, with 91% sensitivity and 70% specificity respectively [319]. Pitashny et al 

demonstrated urinary NGAL levels to be significantly higher in adult LN than non-LN 

patients, with NGAL levels correlating with renal but not with extra-renal SLEDAI 

scores [320]. 24-hour urinary NGAL excretion has been shown to be a biomarker of 

renal damage in adult SLE, correlating with serum creatinine and creatinine clearance 

[321]. 

 

In longitudinal studies, urinary NGAL has been demonstrated to be predictive of LN 

flare [74,315,322]. Suzuki et al studied 85 JSLE, 30 JIA patients, and 50 HCs, showing 

plasma and urinary NGAL levels to be increased in patients compared to controls 

[322]. A subsequent paper reporting ongoing longitudinal follow-up (≥ 3 visits) of this 

cohort demonstrated a 104% increase in urinary NGAL up to 3 months before 

worsening of LN [69]. Watson et al [74], demonstrated urinary NGAL to be a good 

predictor of worsening LN activity (AUC 0.76; p=0.04) in 64 UK JSLE Cohort Study 

patients. Similarly, in a study including an exploratory adult SLE cohort (Einstein 

Lupus Cohort) and a validation cohort (University College London), elevated urinary 

NGAL levels were found to rise 3-6 months before an LN flare in both cohorts, 

performing better than anti-dsDNA antibody for prediction of LN flare [71]. In contrast 

to the above, a longitudinal study involving 107 adult SLE patients was unable to 

identify an association between urinary NGAL and any measure of LN disease activity 

[308].  
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The overall evidence for urinary NGAL in LN monitoring, both in paediatric and adult 

and cross-sectional studies [69,71,74,315,317-322] suggests that further investigation, 

both alone or in combination with other biomarkers, is required as part of this current 

thesis with the aim of potentially moving urinary NGAL from being measured in the 

laboratory towards it being useful in clinical translation. 

 

1.3.4.2.3! Vascular cell adhesion molecule-1 (VCAM-1)  

Urinary VCAM-1 has not been investigated in JSLE patients to date. It is an adhesion 

molecule and member of the immunoglobulin superfamily, which is expressed and 

released by endothelial cells and glomerular parietal epithelial cells within the renal 

tubular system, and has been observed within the kidneys in murine and human lupus 

[323-325]. VCAM-1 interacts with integrins, supporting tethering and adhesion of 

leukocytes to endothelial cells, and therefore promoting their migration into organs 

such as the kidney [324]. Wu et al initially demonstrated urinary VCAM-1 to correlate 

with urinary protein levels and disease activity scores in three murine lupus nephritis 

models. They extended this work to 38 SLE patients, 15 HCs and 6 rheumatoid arthritis 

(RA) patients. SLE patients displayed significantly higher urinary VCAM-1 levels 

than HCs, with LN patients exhibiting the highest VCAM-1 levels. Urinary VCAM-1 

levels also correlated with UPCR and renal SLEDAI score. Serum levels of VCAM-1 

were also found to be increased in both murine and human LN, however, urine levels 

were higher, suggesting additional local VCAM-1 production within the kidney in 

active LN [326].  

 

Molad et al subsequently looked at 24 SLE patients and HCs, showing urinary VCAM-

1 to be significantly increased in SLE, correlating with SLEDAI, low C3, creatinine 

clearance and albuminuria [327]. Abd-Elkareem et al studied 50 SLE patients (30 

active LN, 20 non-LN) and found elevated urinary VCAM-1 in class III, IV and V LN 

but not in class I/II, or non LN SLE patients [328]. In a larger adult study (121 SLE 

patients, 33 with active LN), urinary VCAM-1 was demonstrated to be significantly 

increased in active LN [329]. More recently, Singh et al showed VCAM-1 to 

discriminate between active and inactive LN (AUC 0.92), correlating with the 

presence of class IV LN [297]. In a longitudinal study of 107 SLE patients followed 

for up to eight clinic visits, urinary VCAM-1 levels were shown to correlate with renal 

SLICC score, UPCR and physicians’ global assessment, but not renal histology [308].  
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The above indications for VCAM-1s potential role in LN immunopathogenesis, 

combined with the significant evidence for VCAM-1s role as a urine biomarker in 

adults [297,308,326-329], collectively supports the need for assessment of VCAM-1 

in a paediatric setting as part of the current thesis, along with other promising urine 

biomarkers with strong evidence supporting their potential use in clinical translation. 

 

1.3.4.2.4! Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)  

Urinary TWEAK is a soluble cytokine that is mainly produced by leukocytes, but also 

by resident renal cells, leading to elevated TWEAK expression within the kidney and 

urine of adults with LN [330,331]. Expression of Fibroblast Growth Factor-inducible 

14 (Fn14), the TWEAK signalling receptor, is rapidly unregulated in context of tissue 

injury, autoimmune/inflammatory diseases, and has been shown to be present on 

podocytes, endothelial, mesangial and tubular cells [331]. Blocking TWEAK/Fn14 

interactions in LN mouse models leads to improvement in disease [332], with Fn14 

deficiency ameliorating diseases phenotype [333].  

 

In a cross-sectional study of 83 adult SLE patients, urinary TWEAK levels were shown 

to be significantly higher in patients with active LN than non-LN SLE patients, with 

higher TWEAK levels during renal flares, correlating with the renal SLEDAI score 

[334]. Longitudinal follow-up of a subgroup of these patients within a larger 

multicenter cohort, identified urinary TWEAK levels to be significantly higher during 

a renal flare than 4-6 months before/after. There was no association between TWEAK 

and LN histological classes [330]. Two subsequent adult cross-sectional studies 

looking at urinary TWEAK have demonstrated significantly higher TWEAK levels in 

LN compared to non-LN patients [298,335]. All urinary TWEAK studies to date have 

utilised an ELISA assay which is produced by a pharmaceutical company, Biogen 

Indec, limiting the ability of independent investigators to directly validate their 

findings in distinct cohorts. A collaboration with Biogen or alternative assay would be 

required for TWEAK to be assessed as part of the current study. This was explored as 

part of the development work for this thesis, but was not possible within the timeframe 

of this thesis.  
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1.3.4.2.5! Interleukin-6 (IL-6)  

Two small adult SLE studies have suggested a role for IL-6 as a urinary biomarker for 

LN. The first included 29 patients with active LN and showed IL-6 levels to be higher 

in those with WHO class IV LN on biopsy than other classes [336]. A second study of 

27 SLE patient and 17 HCs found urinary IL-6 to be higher in active LN, compared to 

inactive LN and HCs [337]. However, in a study of 143 SLE patients and 73 HCs, IL-

6 was higher in SLE patients, but no difference seen in those with/without LN [338]. 

On balance, the strength of the evidence for IL-6 is not sufficient to support 

investigation in JSLE, over other urine biomarkers.  

 

1.3.4.2.6! Other chemokines and their receptors  

Interferon-"-inducible protein 10 (IP-10) is a chemokine produced by monocytes, 

endothelial cells and fibroblasts in response to IFN-". IP-10 promotes migration of T-

cells expressing the IP-10 receptor (Chemokine receptor 3, CXCR3) into the kidney 

[339]. Tubulo-interstitial IP-10 expression has been shown to decrease in serial 

biopsies where an LN patient changes from having proliferative nephritis to 

membranous nephropathy [340]. Avihingsanon et al [341], evaluated urinary mRNA 

levels of IP-10 and CXCR3, demonstrating significantly higher levels in class IV LN 

compared with classes II, III and V. A significant reduction in IP-10 and CXCR3 

mRNA levels was seen in patients responding to treatment, whereas levels remained 

elevated in treatment resistant patients. Abujam et al [304], assessed urinary IP-10 and 

MCP-1 levels in the urine of 138 adult SLE patients, demonstrating a significant 

difference in the levels of both biomarkers between active LN, active non-renal SLE 

patients and HCs.  In ROC analysis, MCP-1 out performed IP-10 in its ability to 

identify active LN (AUC 0.78 vs. 0.68 respectively). No difference in urinary 

supernatant IP-10 levels could be detected between active LN, inactive LN patients or 

HCs within the UK JSLE Cohort Study [72]. RANTES (regulated on activation, 

normal T cell expressed and secreted) is a chemokine which is involved in T cell 

recruitment to inflamed sites. In adult patients with diffuse proliferative LN, urinary 

RANTES has been shown to be significantly higher during episodes of flare [305].  

 

No evidence relating to urinary CXCR3, or RANTES is available in JSLE. These 

markers could therefore be considered for further investigation but the strength of 

evidence supporting them is far less than for MCP-1, NGAL and VCAM-1.  



  
57 

 

1.3.5! Proteomic based urine biomarker analysis  
The normal urinary proteome contains a small but discrete number of proteins. In 

pathological situations the urinary proteome can provide information regarding 

damage to all segments of the nephron, underscoring the physiological and biological 

processes taking place. Advancements in proteomics have provided considerable 

insight into LN urine biomarkers, and the section to follow will review the implications 

from paediatric and adult urine proteomic studies to date.  

 

1.3.5.1! Adult proteomic studies  
One of the earliest LN urinary proteomic studies by Mosley et al used surface-

enhanced laser desorption/ionization time of flight (SELDI-TOF), identifying two 

proteins with masses of 3340 and 3980 which distinguished active from inactive LN, 

each with 92% sensitivity and specificity. This study featured a limited prospective 

longitudinal cohort of six patients, showing these proteins to predict relapse and 

response to treatment earlier than traditional clinical markers [342]. Using 2D-

electrophoresis in 16 patients with LN, focal segmental glomerulosclerosis (FSGS), 

diabetic and membranous nephropathy, Varghese et al used patterns of protein 

abundance to train an artificial neural network to create a prediction algorithm for 

identification of each disease. In an external validation set of 16 patients, the artificial 

neural network was found to be best for LN identification with a sensitivity of 86%, 

specificity of 89% and AUC of 0.84. Mass spectrometry identified the proteins to 

include α1-acid-glycoprotein (AGP), transferrin (TF), zinc α-2-glycoprotein (ZA2G), 

α-1-macroglobulin (A1mG), α-1-antitrypsin, retinol binding protein (RBP), 

haptoglobin, complement factor B, transthyretin, hemopexin and albumin [288]. The 

same group undertook a complementary study using the same methodology as 

described above to examine 20 urine samples from different ISN/RPS LN classes. 

With different combinations of proteins, the sensitivity and specificity for ISN/RPS 

class identification was class II 100%, 100% respectively; III 86%, 100%; IV 100%, 

92%; and V 92%, 50%. The 50% class V LN specificity was due to inclusion of 

patients with mixed class III, IV, V disease. These patients were correctly identified 

as having class III or IV disease which is more clinically appropriate. The two proteins 

contributing most to the tests sensitivity were AGP and A1mG [343]. 
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Zhang et al subsequently screened the low molecular weight proteome (<20kDa) in 

samples taken at baseline, pre-flare, flare, and post-flare by fractionating the urine to 

remove proteins larger than 30 kDa, and then spotting them onto weak cation 

exchanger protein chips for analysis by SELDI-TOF MS. 19 patients were investigated 

with class III (n=5), class IV (n=11), or class V LN (n=3). 27 proteins were found to 

be differentially expressed between flare intervals. A 20 amino acid isoform of 

Hepcidin and an albumin fragment (N-terminal region) were found to be increased 4 

months pre-flare, returning to baseline at the time of renal flare, whereas a 25 amino 

acid isoform of Hepcidin decreased during a renal flare and returned to baseline 4 

months post-flare (marker of treatment response). They also found α-1-antitrypsin to 

be increased at the time of flare [344].  

 

Somparn et al undertook 2D electrophoresis on samples from 5 active and 5 inactive 

LN patients, revealing 16 protein spots whose levels differed significantly between the 

groups (serotransferrin, AGP, alpha-2-HS glycoprotein, haptoglobin, alpha-1-

antitrypsin, albumin, ZA2G, immunoglobulin kappa chain (3 forms), RBP-4, beta-2-

microglobulin (β2MG), transthyretin and prostaglandin-H2-D isomerase (PGDS)). 

They chose to validate ZA2G (due to the magnitude of change) and PGDS (only 

present in active LN) by ELISA, in 30 active LN, 26 inactive LN, 14 non-LN 

glomerular diseases and 8 HCs. Urinary ZA2G levels significantly differentiated 

patients with active and inactive LN but were also elevated in patients with non-LN 

glomerular diseases. Urinary PGDS was only significantly elevated in active LN [289].  

 

1.3.5.2! Paediatric proteomic studies  
Only two paediatric urinary proteomic studies have been carried out to date, both by 

Suzuki et al in US JSLE patients [290,345]. In the first, SELDI-TOF-MS was used in 

32 JSLE and 11 JIA patients. A urinary proteomic signature was identified, consisting 

of eight proteins which displayed significantly higher peak intensities in patients with 

LN as compared to JIA/inactive LN patients. These peaks had mass-to-charge ratios 

of 2.76, 22, 23, 44, 56, 79, 100, and 133. There was no significant difference in 

biomarker peak intensities between distinct WHO LN classes. The 22, 23, 44, 79, and 

100 kDa peaks were strongly correlated with SLEDAI-2K defined renal disease 

activity [345]. In the second study, surface-enhanced matrix-assisted laser 
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desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) identified 

TF, ceruloplasmin (CP), AGP, lipocalin-type prostaglandin-D synthetase (LPGDS), 

albumin and albumin-related fragments as the proteins contained within the above 

urinary proteomic signature. Immunonephelometry and ELISA were then used to 

assess the ability of this protein signature to monitor LN disease activity over time (98 

JSLE, 30 JIA patients). All proteins were significantly higher in JSLE than JIA. 

Individual biomarkers displayed fair to good ability to identify SLEDAI or BILAG 

defined active LN (AUC values between 0.68-0.81), with the AUC improving to 0.85 

when all biomarkers were considered together. Urinary TF, AGP and LPGDS were 

significantly increased 3 months before a SLEDAI based diagnosis of LN. However, 

significant increases in AGP and LPGDS over time were also demonstrated in patients 

with stable active LN, improved LN (AGP) and inactive LN (LPGDS) [290], 

highlighting the need for further prospective studies to improve understanding of the 

relationship of these biomarkers to disease activity over time. There is clearly overlap 

between some but not all biomarkers identified in adult/paediatric studies, highlighting 

the importance of undertaking biomarker studies in both patient groups rather than 

extrapolating between them.  

 

1.3.5.3! Validation of proteomic results  
The validity of biomarkers identified through proteomics must be re-assessed in 

separate patient groups to provide independent verification of the findings and evaluate 

biomarker sensitivity, specificity and predictive capabilities. This may either take the 

form of an independent proteomic study or through use of other protein binding 

techniques (e.g. ELISA or multiplex), to quantify the biomarkers in a larger group of 

patients. Such techniques are quicker, highly sensitive, specific for the marker of 

interest and readily available within many laboratories. Table 1-12 lists the proteins 

identified in LN proteomic studies that have undergone internal or external validation 

using additional methods for protein quantification ± further proteomic techniques.  
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Protein Original 
proteomic 

study 

Validation Studies 

Proteomic Other methods/techniques 

Biomarkers identified in ≥2  proteomic studies and validated using other methods 
 AGP Oates  

[343] 
Varghese 

[288] 
 

Suzuki  
[345] 

Suzuki [290], 98 JSLE, ELISAs, serially assessed AGP, 
TF, CP, LPGDS. AUC of 0.85 for active LN 
(SLEDAI/BILAG defined) identification when all 
biomarkers combined. 
Brunner [318], 76 SLE pts, ELISAs. 
AGP+MCP1+CP+UPCR = good for detecting LN 
histological activity (AUC 0.85). AGP+MCP-
1+TF+CrCl+C4 = fair for membranous LN (AUC 0.75). 
Watson [72], 60 JSLE pts, ELISA. Urinary AGP 
significantly &  in active LN. 

TF Varghese 
[288] 

Suzuki  
[345] 

Suzuki [290] – as described above 
Brunner [318] – as described above 

PGDS 
or 
LPGDS 

Suzuki 
[345] 

 
 

Somparn 
[289] 

Suzuki [290] – as described above 
Somparn [289], ELISA, 30 active LN, 26 inactive LN, 
14 non-LN kidney disease, 8 HCs, PDGS significantly 
& in active LN. 
Gupta [346] 28 SLE with active LN, 6 inactive SLE, 12 
active non-renal SLE, 19 HCs. ELISA. Significantly & 
PGDS in active LN. Levels ' in those responding to 
treatment, remained & in chronic kidney disease.  

ZA2G Varghese 
[288] 

Somparn 
[289] 

Somparn [289], ELISA, 30 active LN, 26 inactive, 14 
non-LN kidney disease. ZA2G levels & in active LN. 

RBP-4 Varghese 
[288] 

Somparn 
[289] 

Sesso [77], 70 SLE pts, immunoenzymometric assay. 
RBP-4 significantly higher in active LN. 
Marks [347], 21 JSLE pts, 10 active LN, 11 inactive, 
ELISA. RBP significantly & in active LN.   

Biomarkers identified in a single proteomic study and validated using another technique 
Hemo-
pexin 

Varghese 
[288] 

NA Brunner [348], 47 active LN JSLE pts, ELISA. NIH AI 
predicted by NGAL, MCP-1, CP, adiponectin and KIM-
1, Hemopexin in combination. 

Hep-
cidin  

Zhang 
[344] 

NA Mohammed [349], 30 active LN, 30 non-LN SLE pts, 
30 HCs, ELISA. Hepcidin & in active LN.  

Κ-FLC  Somparn 
[289] 

NA Hanaoka [350], 43 SLE pts, Nephrometric assay. Both 
κ/λ FLCs & in class III/IV LN vs. I/II/IV. 

β2MG Somparn 
[289] 

NA Tsai [337], 15 active LN, 12 inactive LN, ELISA. 
Levels did not differ between groups. 
Choe [351], 64 SLE, ELISA, significant & in active LN. 

CP  Suzuki 
[290]  

NA Suzuki [290] - as described above. Brunner  [318] - as 
described above. Brunner [348] - as described above 

Table 1-12: Proteins identified in LN proteomic studies that have undergone 
validation using additional methods for protein quantification ± further 
proteomic techniques.  
Pts = patient. AGP = α-1 acid glycoprotein. TF = transferrin. CP = ceruloplasmin, MCP-1 = monocyte 
chemoattractant protein. CrCl = Creatinine Clearance. ZA2G = Zinc α-2-glycoprotein. HCs = healthy 
controls. RBP= plasma retinol binding protein. NIH AI = National Institute for Health Activity Index. 
PGDS = Prostaglandin-H2-D isomerase, alternative name LPGDS = Lipocalin-type prostaglandin-D 
synthetase. Hepcidin = 20 & 25 amino acid isoforms. Κ-FLC= κ free light chain. β2MG = Beta-2-
microglobulin 
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Figure 1-4 provides an overview of the evidence relating to protein urine biomarkers 

to date. It demonstrates how both urine biomarkers relating to LN pathophysiology 

(described in section 1.3.4) and those identified in proteomic studies (section 1.3.5) 

integrate and relate to the different clinical scenarios faced during the LN disease 

course.  

 

Novel urinary biomarkers with the strongest evidence in a JSLE setting are emphasised 

within Figure 1-4 and include NGAL + TF as potential early predictors of flare and 

NGAL + AGP + TF + CP + LPGDS for identification of active LN. In the evaluation 

of flare severity (association with ISN/RPS class or NIH activity index), there is 

evidence for NGAL + AGP + MCP-1 + TF + CP + Adiponectin + KIM-1 and 

Hematopexin. MCP-1 use has been demonstrated for identification of non-responders 

and NGAL, MCP-1, NGAL for detection of chronicity.  

 

This evidence synthesis highlights that by serially measuring a panel of the most 

promising biomarkers (AGP, TF, CP, LPGDS, MCP-1 and NGAL), it may be possible 

to identify distinct stages of the LN disease course depending on biomarker 

levels/combinations.  

 

As mentioned in section 1.3.4.2.3 there is also strong evidence for urinary VCAM-1 

in adult SLE, in relation to identification of an active LN flare, evaluation of flare 

severity and identification of chronicity, suggesting that this also warrants further 

evaluation.  
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1.4! Summary and key next steps for developing a panel of 

LN urine biomarkers for use in a future clinical trial 
 

This extensive review of JSLE, LN and urine biomarkers for LN has demonstrated that 

JSLE is very complex, with an unpredictable disease course and potential for 

significant morbidity and mortality related to the disease itself and its treatment. JSLE 

is more severe than adult SLE with a greater burden relating to renal disease, which 

worryingly may translate into end stage renal disease requiring dialysis or transplant 

within childhood or early adult life. Much of the literature presented in this chapter 

relates to adult onset SLE. With 10 years of clinical data and an existing biobank of 

urine samples collected as part of the national UK JSLE Cohort Study, a unique 

opportunity is presented to explore clinical, demographic, and urinary biomarker 

related factors which either have not been explored in JSLE to date or require 

additional validation to elucidate or substantiate their role in the stratification of 

paediatric LN patients.  

 

Previous work, both at the University of Liverpool (UoL) and within the literature has 

highlighted many promising urine biomarkers for LN in JSLE, providing insights into 

the pathophysiology and monitoring of LN. To date, no individual urine biomarker has 

achieved an ‘excellent’ predictive ability for identifying active LN on its own, but the 

most promising urine biomarkers in children have been shown to include MCP-1, 

NGAL, AGP, CP, LPGDS, TF, with strong adult SLE evidence for VCAM-1 (see 

section 1.3.4.2.3 and Figure 1-4). The more limited evidence for other cytokines, 

chemokines and their receptors (e.g. TWEAK, IL-6, IP-10, CXCL3) is presented 

above, but these markers do not stand out as having sufficient evidence for being 

advanced towards clinical translation.  

 

Going forward, it is therefore important that the most promising urinary biomarkers 

are further validated to test the hypothesis that a combined urine biomarker panel will 

improve LN diagnostic accuracy and monitoring during the disease course. To enable 

any discoveries resulting from this work to move towards clinical translation, it is 

crucially important that adequate numbers of patients are available. Given the rarity of 

JSLE and the significant differences seen in disease phenotype and clinical outcomes 
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according to ethnic origin, it would appear prudent to seek international collaboration 

to ensure that adequate patient numbers are available, and to validate any promising 

results across different patient cohorts, in order to obtain robust conclusions deserving 

clinical translation.  

 

Measurement of a biomarker panel in contrast to a single biomarker, does however 

introduce complexity into the methods required for biomarker quantification, also 

increasing the cost, sample volume, and time required for biomarker quantification per 

patient. Most existing point of care devices (e.g. pregnancy tests) are only able to 

quantify a single marker. It is therefore of key importance to balance accuracy with 

practicality and consider how such a test could be undertaken within a clinical trial 

setting, where a short turnaround time would be required for urine biomarker results.  

Such a trial is out with the scope of this thesis, but would represent the next step in 

determining whether urine biomarker-led monitoring actually improves renal 

outcome. 

 

Having determined a range of key biomarkers which are found within the urine of 

patients with active LN, key questions present themselves regarding whether such 

biomarkers originate from the kidneys themselves, are passively filtered through the 

glomerulus, or are implicated in the pathogenesis of LN themselves. Working 

alongside cell biologists based within the UoL UK’s Experimental Arthritis Treatment 

Centre (EATC) for Children (https://www.liverpool.ac.uk/translational-

medicine/research/eatc/), this study also presents notable opportunities for back 

translation and investigation of the role of such biomarkers in vitro, as part of the 

current thesis, and in collaboration with other members of the EATC team.  
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1.5! Overarching hypothesis 
As a result of the detailed review of evidence presented and summarised above, the 

overarching hypothesis of this thesis is that: 

 

A combination of traditional clinical and promising non-invasive novel urinary 

biomarkers, as part of a ‘LN biomarker panel’, are better than traditional 

biomarkers alone at differentiating JSLE patients with active LN from those 

without, and in predicting fluctuations in LN disease activity over time, within 

ethnically distinct JSLE cohorts. 

 

1.6! Overarching aims  
1.! To select biomarkers warranting further assessment as part of a potential ‘LN 

biomarker panel’ from both: 
a.! A detailed review of the existing literature in the field (see above).   
b.! Assessment of potential additional candidate biomarkers using 

commercially available kidney toxicity urine biomarker multiplex assays.  

 

2.! To use urine samples from UK JSLE Cohort Study patients to cross-sectionally 
assess if combining novel biomarkers can improve identification of active LN; and 
to assess whether addition of traditional JSLE disease activity data to a urine 
biomarker panel could help to improve active LN identification still further.  

 

3.! To assess if the developed UK ‘optimal LN urinary biomarker panel’ performs 
comparably within ethnically distinct JSLE patient cohorts from other countries. 

 

4.! To determine longitudinally, if the ‘optimal LN urinary biomarker panel’ as a 
whole, or individual constituent members of it, are able to predict LN flare and 
remission in advance. 

 

5.! To develop an appropriate assay platform for quantification of the validated ‘LN 
urinary biomarker panel’ in order to help streamline the process of urine biomarker 
panel quantification.  
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6.! To investigate whether constituents of the ‘LN urinary biomarker panel’ are 
implicated in the pathogenesis on LN through investigation of an immortalised 
human podocytes cell line in vitro.  
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2! Methodology  
 

2.1! Patient cohorts  

2.1.1! The UK JSLE Cohort Study  
In 2006, a multidisciplinary group of leading paediatric rheumatologists, 

nephrologists, adult rheumatologists, dermatologists and scientists from across the UK 

formed the ‘UK JSLE Study Group’. Its members represented all major paediatric 

rheumatology centres across the UK, aiming to develop a comprehensive research 

programme to investigate the ‘clinical characteristics and immunopathology of JSLE’. 

The Study Group set up the national UK JSLE Cohort Study and Repository, running 

from the national coordinating centre within the Institute in the Park, UoL at Alder 

Hey Children’s NHS Foundation Trust Hospital, with invited participation of all major 

paediatric rheumatology centres across the UK (see 

https://www.liverpool.ac.uk/translational-medicine/research/ukjsle/about/). The 

Study, which is ongoing, collects real world clinical data during clinic appointments 

and hospital admissions, as well as biological samples such as blood, urine and genetic 

material. The Study has national and local ethical approval and is supported by the 

National Institute for Health Research (NIHR) Clinical Research Network – Children 

(see https://www.crn.nihr.ac.uk/children/). The Study collects data from patients with 

definite or evolving/probable JSLE from 25 centres across the UK. The clinical data 

and bio-banked specimens collected as part of this study facilitate a wide range of 

research studies within Liverpool, nationally and internationally.  

 

2.1.1.1! Inclusion and exclusion criteria  
All children seen in UK paediatric rheumatology and nephrology centres across the 

UK are eligible for inclusion in the UK JSLE Cohort Study if they satisfy the following 

two criteria:  

•! They meet at least four of the twelve revised ACR diagnostic criteria for SLE [33] 

(see Appendix 1) 

•! Are aged <17 years at the time of presentation 

Children with “probable” or “evolving” JSLE, defined as fulfilling two or three ACR 

criteria, and yet who in the opinion of the consultant paediatric rheumatologist may 



  
68 

well develop clinical features fulfilling ACR criteria of JSLE in time, may also be 

invited to participate in the study. Patients who have transferred to adult rheumatology 

care can continue to be followed in centres where the required study support is 

available. Patients are excluded from the study if they/their carer withhold consent or 

if they withdraw from the cohort study. 

 

2.1.1.2! Patient recruitment  
Parents, children and adolescents are provided with appropriate information sheets and 

the study is explained by their consultant or an appropriately trained professional such 

as research nurse. The family is given as much time as they need to decide whether or 

not they wish to participate, and reassured that they are free to withdraw at any time 

without giving an explanation, and that withdrawal will not in any way affect future 

management. Once the signed consent has been obtained, a study number is assigned. 

Written assent/consent is obtained from all parents, carers, patients as appropriate. An 

example of a participant information sheet and consent form is shown in Appendices 

9 and 10. The study has full ethical approvals in place from the National Research 

Ethics Service North West, Liverpool East (REC reference 06/Q1502/77).  

 

2.1.1.3! Clinical data and disease activity scores  
The data collected for the purposes of the UK JSLE Cohort Study and Repository is 

the same as that which is collected routinely as part of routine good clinical practice. 

Standardised data collection forms have been developed to facilitate collection of these 

data across all units. Different data collection forms are collected at the time of initial 

presentation (baseline), at each clinic/hospital visit (approximately 3-4 monthly and 

during disease flares) and annually, as detailed below: 

•! Baseline data collection  

o! Comprehensive demographic data (see Appendix 11)  

o! ACR and new SLICC diagnostic criteria (see Appendix 1)  

o! Paediatric British Isles Lupus Assessment Group (pBILAG2004) disease 

activity score form (see Appendix 5) – including additional information on 

medications, standard laboratory markers of JSLE disease activity and 

parental/physician’s global assessment of disease activity. pBILAG2004 

referred to as the BILAG throughout this thesis. 
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o! Annual review form including a comprehensive review of blood results, 

potential ophthalmology reviews, DEXA scans, renal biopsies, 

documentation of significant infections, pubertal status and SLICC/ACR 

damage index review (see Appendix 12). 

o! CHAQ and CHQ/SF36 patient reported measures of disease status (see 

Appendices 2-4).  

•! Clinic/hospital visits  

o! BILAG form 

o! CHAQ and CHQ/SF36 

•! Annual visit 

o! Update to ACR/SLICC diagnostic criteria 

o! Annual review form including the SLICC/ACR damage index  

o! CHAQ and CHQ/SF36 

The pBILAG2004 disease activity score has been adapted from the original adult 

BILAG score [54] to include parameters of relevance to paediatric patients (e.g. 

normal blood pressure definitions), and has undergone preliminary validation in a UK 

paediatric cohort [63]. All BILAG data are collated anonymously at the study 

coordinating centre and stored in an electronic database, programmed to calculate 

BILAG disease activity scores [28]. For each patient visit organ specific BILAG scores 

are calculated (A–E) for eight organ domains (renal, constitutional, mucocutaneous, 

musculoskeletal, cardiorespiratory, gastrointestinal, neurological, haematological). 

Alphabetical scores correspond to the following degrees of JSLE disease activity; A - 

severe disease activity; B - moderate disease activity; C - stable mild disease activity; 

D - inactive disease, but previous organ involvement; E - no organ involvement ever 

(see section 1.1.4.1 and Appendix 6).  

 

2.1.1.4! Urine sample collection and definition of active LN  
A subset of the children participating in the UK JSLE Cohort Study [28] were recruited 

to the ‘renal biomarkers in JSLE’ sub-section of the UK JSLE Cohort Study, including 

all patients from Alder Hey Children’s NHS Foundation Trust, Liverpool, and Great 

Ormond Street NHS Hospital for Children, London, UK. The urine samples included 

in the studies undertaken and presented in this thesis were collected during routine 

clinical care together with the clinical data and disease activity scores detailed above. 
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The UK JSLE Cohort Study has a material transfer agreement (MTA) to allow the 

collection and transfer of patient samples to the UoL (see Appendix 13). 

 

The composite renal domain of the BILAG score is calculated from six specific items. 

These are: renal function (deterioration, based on serum creatinine and GFR); 

proteinuria (defined by urine dipstick, UPCR/UACR, or 24-hour protein levels); 

presence of nephrotic syndrome; active urinary sediment; severe hypertension; and 

histological evidence of active LN in the previous three months [54,63]. Different cut-

offs for these clinical investigations correspond to the different renal BILAG disease 

activity scores (see Appendix 6) [54].  

 

In light of the literature presented in section 1.1.4.2, LN activity was defined as follows 

for the purpose of the cross-sectional urine biomarker studies (in sections 3.5.5, 4.5 

and 5.5.1): 

•! Active LN – if patients had a renal BILAG of A or B and previous histological 

confirmation of LN. 

•! Inactive LN - if they had a renal BILAG score of D or E.  

Patient episodes where a renal BILAG of C was scored were not included in cross-

sectional analyses. This was because these studies sought to identify biomarkers 

differentiating between the binary outcome of active versus inactive LN. Renal BILAG 

C patient episodes with mild or improving renal disease were therefore excluded. 

 

2.1.2! US Einstein Lupus Cohort  
The Einstein Lupus Cohort (referred to as the ‘US Cohort’ throughout this thesis) was 

established in 2002 by Professor Chaim Putterman at Montefiori Medical Centre, 

Bronx, New York, USA in association with the Albert Einstein College of Medicine 

(AECOM), initially collecting clinical data and urine samples from adult SLE patients 

only. Each sample was linked to an electronic database containing clinical information, 

disease activity measures (BILAG, SLICC, SLEDAI), laboratory parameters, 

demographic and medication information. In 2009, a paediatric sub-cohort was added 

collecting urine samples and clinical data from JSLE patients attending the Children’s 

Hospital at Montefiore Medical Centre [334]. Samples were collected using 

comparable standard operating procedures (SOPs) to the UK JSLE Cohort Study, and 
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anonymised coded samples were stored at -80oC without the addition of any additives 

(see section 2.2.5). Eligible patients were diagnosed with JSLE prior to 16 years of age 

and met ≥4 of the revised ACR SLE classification criteria [230]. Full ethical approvals 

were in place (Institutional Review Board at Einstein-Montefiore, IRB 2000-154).  

 

A collaboration was established with Professor Chaim Putterman and Associate 

Professor Beatrice Goilav on behalf of the US Cohort as part of the current study. The 

development of this collaboration was led by Dr Eve Smith with support from 

Professor Michael Beresford. MTAs were negotiated with the support of the legal 

departments at AECOM and the UoL over a number of months in view of differences 

in US, UK and international laws/regulations and expectations regarding attribution of 

intellectual property. The agreed MTAs are shown in Appendix 14. A representative 

urine sample was selected from each patient recruited to the US Cohort. Where 

possible a sample was chosen during an active LN episode with a subsequent follow-

up sample where possible for inclusion within the longitudinal study. For some 

patients only one urine sample was available. Urine microscopy and culture was not 

routinely carried out on US Cohort samples. However, samples showing urine dipstick 

signs of urinary tract infection (UTI) were excluded from the current study (presence 

of nitrate and leucocytes). Multiple aliquots of each urine sample were transferred on 

dry ice using the World Courier transfer service and arrived at the UoL frozen and in 

good condition. Anonymised, coded clinical data were also transferred.  

 

2.1.3! University of Cape Town Lupus Cohort  
The Paediatric Lupus Erythematosus in SA Cohort Study (referred to as the SA Cohort 

throughout this thesis) was established in 2013 by Professor Chris Scott (Department 

of Paediatric Rheumatology, University of Cape Town) and Dr Laura Lewandowski 

(Paediatric Rheumatology and International Child Health Fellow, Duke University, 

North Carolina, USA). It collects retrospective and prospective clinical data from 

JSLE patients attending the Red Cross Memorial and Groote Schuur Hospitals, Cape 

Town, South Africa. In 2015 Dr Smith and Professor Chris Scott submitted an ethics 

amendment, facilitating prospective collection of urine samples from JSLE patients 

during routine clinical care together with detailed demographic data, self-reported 

ethnicity data, clinical laboratory results and medication information (approval granted 
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HREC No 424-2013, see Appendix 15). Eligible patients were diagnosed with JSLE 

prior to 19 years of age and met ≥4 of the revised ACR SLE classification criteria. 

Patients were excluded if they had other diseases which might explain their ACR 

criteria (e.g. active tuberculosis, or HIV) or if their urine samples displayed urine 

dipstick signs of UTI (as above). Approval was also obtained to recruit HCs in the 

urine biomarker arm of the study. They were identified from elective theatre lists/out-

patient clinics. These patients were also <19 years of age. A HC case report form (see 

Appendix 16) was developed to screen for the presence of inflammatory/connective 

tissue/kidney diseases.  

 

A research nurse was employed for two days per week (between Feb 2015-16) to 

supplement the existing research support for the SA Cohort (funded through a MRC 

Confidence in Concept (CiC) grant awarded to Professor Michael Beresford and Dr 

Eve Smith, see section 6.1.3). The research nurse was responsible for consenting 

patients to the urine biomarker arm of the study, collecting the necessary clinical data 

to calculate the renal BILAG score, recruitment of HC patients, and transfer of samples 

from the clinic to the laboratory for processing and storage. Urine samples were 

processed using the same SOP as the UK samples, and stored at -80oC without the 

addition of any additives (see section 2.2.5). Face to face meetings in Cape Town at 

the time of study set-up, and subsequent regular videoconferences between Dr Eve 

Smith, Professor Chris Scott and Research Sister Angel Putti were invaluable for 

troubleshooting, agreeing and monitoring study timelines.  

 

The consent process differed for the SA Cohort as a large percentage of patients 

presented to clinic with a family member other than their parent or guardian. The 

parents of these patients were contacted by phone for consent, using a standardised 

script.  A witness unrelated to the study team was present during the phone consent 

process and signed the consent form in the “witness” signature line. A copy of the 

consent forms “signed” via phone consent were either given to the caregiver to take 

home or a copy was provided at the next patient visit.  

 

A MTA was negotiated with the support of the legal departments at the University of 

Cape Town and the UoL to facilitate transfer of the urine samples and anonymised 

coded clinical data. The agreed MTA is shown in Appendix 17. Multiple aliquots of 
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each urine sample were transferred using the same procedures as for the US samples. 

The number of samples per patient varied depending on when they were recruited to 

the study. Similar to the US Cohort, an active LN episode sample was chosen for 

inclusion in the cross-sectional analysis where possible, with the remaining samples 

being included in the longitudinal analysis. 

 

2.2! Laboratory methods  
A series of standard laboratory methods were used throughout this thesis, including 

the use of ELISA and multiplex bead assays, therefore the approach to these techniques 

and their optimisation is described here, with further details in relevant chapters. 

Techniques associated with urine/blood processing and storage, and podocyte culture 

are also detailed here, with individual experimental conditions discussed in the 

associated chapters. 

 

2.2.1! Enzyme linked immunosorbent assay (ELISA) overview  
ELISA is a common laboratory technique for quantifying the amount of analyte in a 

solution/sample. ELISA assays result in a coloured end product which correlates with 

the amount of analyte present in the original sample. The ELISA procedure begins 

with a coating step where the capture antibody is adsorbed onto a polystyrene 96 well 

plate. The liquid is removed and the plate washed. Several washes are performed 

(between 2-5 depending on the assay) to remove unbound materials and prevent them 

from interfering with the next step of the assay. During the wash process, it is important 

that excess wash buffer is removed to prevent dilution of the reagents included in the 

subsequent step. The plate should be blotted against clean paper towels to ensure 

complete removal of the liquid. Plate washers can be used to improve consistency 

across the plate. This is followed by a blocking step where an unrelated protein based 

solution is used to cover all unbound sites on the plate to prevent non-specific binding. 

The block is often left in place for 1 hour, and then removed and washed as above. 

When an ‘ELISA kit’ is used (e.g. for AGP, MCP-1, LPGDS, TF and CP in this thesis), 

these two steps are performed by the assay manufacturers. 

 

The next step is the addition of the standards, samples and controls which are incubated 

at room temperature for 1-2 hours and then washed. The detection antibody is then 
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added (incubated from 30 minutes to 2 hours at room temperature depending on the 

assay), binding specifically to the target analyte. The detection antibody can either be 

enzyme conjugated (direct ELISA) or biotinylated, requiring the addition of an enzyme 

linked secondary antibody (e.g. with streptavidin horseradish peroxidase, strep-HRP) 

for 20-30 minutes (in-direct ELISA). The plate is washed after each of the steps 

described above. Both direct and in-direct ELISA assays then require a substrate 

solution to be added to the plate. This can come in a stabilized premixed form (e.g. 

Tetramethyl-benzidine and hydrogen peroxidase mixed together) or as two separate 

solutions which have to be mixed immediately prior to use (colour reagent A, stabilised 

hydrogen peroxidase + colour reagent B, stabilised chromogen, tetramethyl-

benzidine).  The plate is placed in the dark at room temperature, and the enzyme-

substrate reaction leads to a colour change within each well (from clear to blue). 

Manufacturer’s suggest an incubation time (usually between 10-30 minutes) but it is 

very important to monitor the plate during this step during the first run of the assay, as 

over development of the high standard points will affect the range of the standard 

curve. It is important that the same incubation time is used between assays where more 

than one plate is performed serially.  An acidic stop solution is then added to the plate 

(e.g. sulphuric or hydrochloric acid) terminating the enzymatic reaction. The colour in 

the wells should change from blue to yellow. If the colour in the wells is green or does 

not appear uniform the plate was tapped gently to ensure thorough mixing with the 

acid. An overview of the ELISA assay procedure is shown in Figure 2-1. 
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Figure 2-1: Direct and in-direct sandwich ELISA overview 
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The optical density (OD) of each well was then determined using a BioTek ELx808 

microplate reader set to 450 nm. Duplicate readings for each standard and sample were 

averaged, and the average blank (negative control, assay diluent alone) OD reading 

was subtracted from all readings. The blank wells were expected to have an OD of 

<0.1, with a higher OD suggesting contamination of the assay diluent and invalidating 

the assay results. A four parameter logistic (4-PL) standard curve was fitted, plotting 

analyte concentration (x-axis) versus the OD (y-axis), using the KC Junior software 

which supports the BioTek ELx808 microplate reader. The curve fitting equation 

represents the relationship between the values and the optical density (R-square value) 

and should be as close to 1.0 as possible (see Figure 2-2). The standard curve was used 

to calculate the concentration of the analyte of interest within unknown samples, based 

upon their colour and thus their OD value. 

 

 
Figure 2-2: Typical 4-PL ELISA curve 
The optical density of standard points (shown by blue diamonds) are plotted against their known 
concentrations and the line of best fit is placed using a 4-parameter logistic regression equation.  
 

The details of the ELISA assays used in Chapters 4, 5 and 6 of this thesis are shown 

Table 2-1. 
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2.2.2! ELISA assay validation  
2.2.2.1! Co-efficient of variation between duplicate values  
All individual patient samples were run in duplicate on the ELISA plate. The co-

efficient of variation (CV) between the duplicate values was calculated, assessing for 

any differences between measurements which may have occurred due to pipetting 

errors, cross-contamination or temperature differences across the plate. It was 

calculated by determining the standard deviation (SD) of the duplicate values and 

dividing this by the mean of the two values. This was multiplied by 100 to obtain the 

% CV. The equation for CV calculation is shown below: 
 

•! CV (%) = ((value 1-value 2)/(mean of value 1+2)) x100 

The larger the CV the greater the variance between the measurements. A CV of <15% 

was considered acceptable, otherwise the sample was re-run. 

 

2.2.2.2! Spike and recovery  
A spike recovery assay is another measurement of assay validity, assessing if 

substances present within the experimental environment (e.g. assay buffer, sample 

matrix components, complement, heterophilic antibodies) interfere with detection of 

the given analyte. Spike recovery experiments were carried out for assays which had 

not been validated for use with urine samples. This type of experiment involves adding 

a known amount of the standard substance to the urine sample (spiked sample), 

running the urine sample neat without any spike (un-spiked sample) and adding the 

same amount of standard to matched wells containing assay diluent only (expected 

spike value). The recovery is calculated using the equation below:   
 

 % Recovery = Observed - Neat x 100 

          Expected 

  

Observed = spiked sample value  

Neat = un-spiked sample value  

Expected = amount spiked into sample 

 

The % recovery should fall between 80-120%, demonstrating good retrieval of the 

spiked standard.  
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2.2.2.3! Linearity of dilution (LOD) approach  
LOD experiments were carried out in-house for assays that were not validated for use 

in urine. If a sample type does not display LOD, this suggests that a sample component 

is interfering with the accurate detection of the analyte at a given dilution. Problems 

with poor LOD are most commonly seen at low dilution levels, where the 

concentration of interfering substance is highest. Practically LOD experiments indicate 

whether sample values generated from different dilutions can be directly compared, or 

whether the assay would have to be run at a single dilution to reduce error within the 

assay. LOD was considered acceptable if between 80-120%. 

 

To test LOD, patient samples with a range of LN severities were serially diluted when 

spiked or un-spiked (as above). In general, a starting dilution was chosen that was less 

that the dilution suggested by the manufacturer, and a 1:2 dilution series prepared. The 

sample was vortexed briefly between each dilution. LOD was then calculated using 

the equation below where a neat sample was serially diluted as an example: 

 

•! % recovery (1:2) = ((observed concentration of 1:2 diluted sample) / (neat sample 
concentration/2)) x 100 

 

•! % recovery (1:4) = ((observed concentration of 1:4 diluted sample) / (neat sample 
concentration/4)) x 100 

 

•! % recovery (1:8) = ((observed concentration of 1:2 diluted sample) / (neat sample 
concentration/8)) x 100 

 

2.2.2.4! Approach to range finding using patient samples  
ELISA assays for AGP, CP, LPGDS, TF and MCP-1 had been commercially validated 

for use with urine, and therefore provided suggested starting dilutions. In the context 

of LN, there was clear potential for the samples to display high biomarker levels 

requiring further dilution, therefore range finding with 15 active LN, 15 inactive LN 

and 10 HC samples was carried out for each assay, assessing the percentage of samples 

detectable at a given dilution, the number of samples extrapolated and the number that 

were un-detectable for each analyte.  
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2.2.2.5! Sample dilutions to be used for each ELISA assay following in-house 
LOD and range finding experiments  

A summary of the results from range finding and LOD experiments, along with 

suggested starting dilution is shown in Table 2-2. For TF, a starting dilution was not 

suggested by the manufacturers. 95% of samples were detectable when the assay was 

run at 1:100 dilution, with 16% of values extrapolated and 5% of samples off the high 

end of the curve. LOD was acceptable (102-106%) therefore less/more dilution would 

be possible as necessary. A starting dilution of 1:20 was suggested for CP by the assay 

manufacturers, however, the optimal dilution was identified to be 1:80. 21% of 

samples values were still extrapolated (high), suggesting that further dilution would be 

required for a proportion of samples (LOD 102-118%). Similarly, a starting dilution 

of 1:10 was suggested by the AGP assay manufacturers, however the optimal dilution 

was 1:80, and LOD was 103-115%, suggesting further/less dilution would be 

acceptable as necessary. 1:100 and 1:2 dilutions were suggested by the LPGDS and 

MCP-1 assay manufacturers, and found to perform optimally with LN samples (100% 

and 95% of samples detectable respectively), LOD was poor for both assays (106-

169% and 95-135% respectively), therefore alternative dilutions were to be avoided 

(see Table 2-2).  
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Dilution Samples 
detectable 

Samples 
extra-
polated 

Samples off  
STN curve 

LOD Optimal  
starting 
dilution 

TF 

neat 10/40 
(25%) 

5/10 
(50%) 

30/40 
(75%, H) 

na 

1:100 

1:50 31/40 
(78%) 

10/31 
(32%) 

9/40 
(22%, H) 

106% 

1:100 38/40 
(95%) 

6/38 
(16%) 

2/40 
(5%, H) 

104% 

1:200 33/40 
(83%) 

6/33 
(18%) 

7/40 
(17%, L) 

102% 

CP 

1:20 15/40 
(38%) 

3/15 
(20%) 

25/40 
(62%, H) 

na 

1:80 

1:40 28/40 
(70%) 

5/28 
(18%) 

12/40 
(30%, H) 

102% 

1:80 39/40 
(98%) 

8/39 
(21%) 

1/40 
(2%, H) 

114% 

1:160 31/40 
(78%) 

15/31 
(48%) 

9/40 
(22%, L) 

118% 

 
AGP 

1:10 12/40 
(30%) 

6/12 
(50%) 

28/40 
(70%, H) 

na 

1:80 

1:40 28/40 
(70%) 

10/28 
(36%) 

12/40 
(30%, H) 

103% 

1:80 38/40 
(95%) 

2/38 
(5%) 

2/40 
(5%, H) 

111% 

1:160 36/40 
(90%) 

12/36 
(33%) 

4/40 
(10%, L) 

115% 

LPGDS 

1:50 31/40 
(78%) 

5/31 
(16%) 

9/40 
(22%, H) 

na 

1:100  

1:100 40/40 
(100%) 

2/40 
(5%) 

0/40 
(0%) 

106% 

1:200 27/40 
(68%) 

7/27 
(26%) 

13/40 
(32%, L) 

143% 

1:400 15/40 
(38%) 

11/15 
(73%) 

25/40 
(62%, L) 

169% 

MCP-1 

neat 31/40 
(78%) 

5/31 
(16%) 

9/40 
(22%, H) 

na 

1:2 
 

1:2 38/40 
(95%) 

2/38 
(5%) 

2/10 
(5%, H) 

95% 

1:4 36/40 
(90%) 

9/36 
(25%) 

4/40 
(10%, L) 

119% 

1:8 29/40 
(73%) 

11/29 
(38%) 

11/40 
(27%, L) 

135% 

Table 2-2: Summary of results from range finding and linearity of dilution 
experiments for TF, CP, AGP, LPGDS and MCP-1 with suggested starting 
dilution.  
15 active LN, 15 inactive LN and 10 HCs samples included in the analysis. STN = standard curve. H = 
high. L = low. 
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2.2.2.6! Freeze thawing and biomarker stability  
The effect of up to three freeze thaw cycles was assessed in two active LN, two inactive 

LN and two HC patients for each ELISA assay. Urine samples were always freeze 

thawed on ice. LPGDS displayed acceptable recovery for up to three freeze thaw 

cycles (95-98% recovery). TF could be freeze thawed for up to two cycles (96.5% 

recovery for one freeze thaw cycle, 92% for two). Both MCP-1 and AGP could only 

undergo one freeze thaw cycle (recovery of 94% and 91% respectively). CP levels fell 

by >15% after one freeze thaw cycle, therefore freeze thawing was avoided. 

 

2.2.2.7! VCAM-1 R&D systems duo-kit ELISA assay  
An R&D systems duo-kit (R&D Systems Ltd, Minneapolis, USA) was used to quantify 

urinary VCAM-1. This more basic type of ELISA assay had not been commercially 

validated for use with urine and therefore required extensive internal validation, 

including selection of an appropriate assay buffer, assessment of spike recovery, LOD, 

sample dilution, and biomarker stability following freeze thawing of samples. Three 

diluents (a) phosphate buffered saline (PBS) + 10% fetal calf serum (FCS, both Sigma 

Aldrich, UK)), (b) PBS + 20% FCS and (c) a commercially available reagent diluent 

concentrate (DY995, R&D Systems Ltd, Minneapolis, USA) were assessed within a 

spike recovery experiment to see if any difference in the recovery could be detected 

dependent on the assay diluent used. Very minor differences were seen between the 

three conditions when spike recovery experiments were carried out (average 

percentage recovery with buffer (a) = 99.8%, buffer (b) = 105.6% and buffer (c) = 

104.1%), therefore the simplest buffer was chosen - PBS + 10% FCS. Samples were 

run neat, 1 in 50, 1 in 100 and 1 in 200 (in 15 active LN, 15 inactive LN and 10 HC 

patients) demonstrating LOD to be between 80-120%. 100% of samples were detected 

at 1 in 100 dilution, whereas with other dilutions, 11-33% of values were undetectable. 

Therefore, a 1 in 100 dilution was selected. Assessment of VCAM-1s stability with 

freeze thawing) showed VCAM-1 levels to fall on average by 22, 39 and 33% during 

freeze thaw cycles. Samples were not therefore used if they had previously been freeze 

thawed. A summary of the manufacturer and internal validation results for all ELISA 

assays is shown in Table 2-3. 
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Table 2-3 Summary of validation of all assays used for biomarker quantification.  
1All validation carried out in-house for use in urine. 2Sample dilution and effect of freeze thawing 
determined in-house, whereas linearity of dilution and spike recovery determined by the manufacturer. 
3Commercially validated chemiluminescent microparticle immunoassays for use as a clinical test in 
urine and run in the Alder Hey Children’s Hospital biochemistry laboratory on the Abbott Architect 
analyser. LOD = linearity of dilution. FT = freeze thaw.  
 

2.2.3! Abbott Architect urine NGAL and Creatinine assays  
Urinary NGAL and creatinine concentrations were measured using two separate 

commercially available clinical Abbott Architect chemiluminescent microparticle 

immunoassays (Abbott Laboratories, Texas, USA) in the Alder Hey Children’s 

Hospital biochemistry laboratory. Monoclonal antibodies for the detection of NGAL 

or creatinine coat the microparticles. In the first step of the assays, sample and wash 

buffer were combined (1:10 dilution for NGAL and 1:50 for creatinine). An aliquot of 

the diluted sample, wash buffer and paramagnetic microparticles were combined and 

the reaction mixture washed. In the second step, anti-NGAL or creatinine acridinium-

labelled conjugate was added. Following another wash cycle, pre-trigger and trigger 

solutions were added to the reaction mixture. The resulting chemiluminescent reaction 

was measured as relative light units (RLU), correlating with the amount of NGAL or 

Analyte Type of assay Spike 
recovery 

Dilution required 
and LOD 

Freeze thawing 

VCAM-11 R&D systems 
duo kit, DY809 

100-
106% 

1:100 dilution, LOD 
82-98% 

No 

MCP-12 R & D systems 
quantakine, 
DCP00 

96-120% 1:2 dilution 
LOD 95-135% 
Avoid dilution. 

Yes – up to 1 FT 
cycle (94% 
recovery) 

AGP2 R & D systems 
quantakine, 
DAGP00 

86-111% 1:80, LOD 103-115% Yes – up to 1 
cycle (91% 
recovery) 

Ceruloplasmin2 Assay Pro, 
EC4101-1 

85-116% 1:80, LOD 111% No 

LPGDS2 BioVendor 
ELISA plate, 
RD191113100R 

82-103% 1:100 dilution, LOD 
106-169%. Avoid 
dilution. 

Yes – up to 3 FT 
cycles (95-98% 
recovery) 

Transferrin2 GenWay elisa 
plate, GWB-
36931E 

104-
116% 

1:100 dilution, LOD 
102-106%  

Yes – up to 2 FT 
cycles (92-
96.5% recovery) 

NGAL and 
Creatinine3 

Abbott 
Architect  

90-108%  1:10 dilution for 
NGAL and 1:50 for 
creatinine, automated 
1:4 dilution if value 
high. LOD <10%  

Up to 3 FT 
cycles 
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creatinine present in the samples. If the value was off the top of the standard curve, an 

automated 1:4 dilution was performed. The manufacturer reported the following assay 

performance characteristics: 89-108% recovery, LOD <10% when auto-dilution is 

required and up to three freeze thaw cycles acceptable. All urine biomarker results 

were standardised for urinary creatinine (Cr) quantified on the Abbott Architect 

analyser and presented in units per milligram creatinine (mgCr). See Table 2-3 above 

for a summary of the above information. 

 

2.2.4! Multiplex protein assays  
2.2.4.1! Multiplex protein assay – background  
Traditional single analyte protein detection methods such as ELISA or western blotting 

are well established but can be very sample/time consuming and costly when used to 

measure numerous analytes. Multiplex (multi-analyte profiling technology) allows 

quantification of multiple proteins in a single well of a 96 well plate. The MAGPIX! 

instrument used in this study uses super-paramagnetic 6.5-micron microsphere beads 

which are internally dyed with precise proportions of red and infra-red flurophores of 

differing intensities, giving each bead type a unique spectral signature. Using this 

approach, up to 500 distinct bead sets can be produced (MAGPIX!  instrument can 

only quantify up to 50 analytes simultaneously). Each bead has a unique number/bead 

region allowing differentiation between beads. Individual beads are then coated with 

a capture antibody which is specific for one analyte. In contrast to ELISA assays, the 

beads coated with the capture antibody are suspended rather than being attached to the 

wells. A biotinylated detection antibody mixture is then added and incubated, followed 

by streptavidin-PE.  Within the MAGPIX!  analyser, a magnet captures and holds the 

magnetic beads in a monolyer while two light emitting diodes (LEDs) illuminate and 

excite the beads. The red LED interrogates the bead whilst the green one interrogates 

the bead label. The identity and quantity of beads corresponding to the concentration 

of the analyte is captured with a Charge Coupled Device (CCD) camera and 

fluorescent imager. This process is summarised in Figure 2-3. 
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Figure 2-3: MAGPIX!  multiplex assay principle 
In a multiplex assay different magnetic microsphere beads are found in suspension, coated with a 
capture antibody which is specific to one analyte. Step 1 - The beads and diluted samples are incubated. 
Step 2 – Biotinylated detection antibody is added and incubated, and then Streptavidin-PE is added and 
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incubated further. Step 3 – The assay is read in the MAGPIX!  instrument. A magnet is applied to the 
sample, holding the beads in a monolayer and two LED’S are used to identify the type and quantity of 
beads, corresponding to the concentration of the analyte present. 
 

2.2.4.2! Multiplex protocol overview  
Multiplex assays varied in terms of sample dilution, length of incubations and whether 

the beads are pre-mixed or require mixing, but generally followed the procedure 

detailed below. Before commencing an assay, the reagents were brought to room 

temperature. Urine samples were thawed, vortexed and then centrifuged to remove any 

debris which can interfere with the assay. For kits including individual bead vials, each 

antibody-bead vial was sonicated for 30 seconds and then vortexed for 1 minute. 60µL 

from each antibody bead vial was added to the mixing bottle, bringing the final volume 

to 3.0mL with bead diluent. Quality controls (QCs) and seven point working standards 

were reconstituted and prepared according to the manufacturer’s instructions.  

 

Prior to commencing the assay, 200µL of wash buffer was added to each well of the 

plate, the plate was sealed and mixed on a plate shaker for 10 minutes at room 

temperature. The wash buffer was removed from all wells by inverting the plate and 

tapping it onto absorbent towels several times. 25µL of each standard or control was 

added into the appropriate wells, with assay buffer used for the 0 pg/mL background 

standard. 25µL of appropriately diluted sample was added into the appropriate wells 

followed by 25µL of assay buffer to the all wells (sample, standard, control and 

background wells). 25µL of vortexed beads were then added to all wells (during 

addition of beads, the bead bottle was shaken intermittently to avoid bead settling). 

The plate was sealed, wrapped in foil and incubated with agitation on a plate shaker 

overnight at 4oC, or for 2 hours at room temperature (20-25oC) depending on the assay. 

Overnight incubation can improve assay sensitivity for some analytes. 

 

The plate was then washed. During wash steps/prior to the well contents being 

decanted, a handheld magnet was applied to the plate for 60 seconds to settle the beads 

and prevent them from being lost. Any decanting or tapping on absorbent pads was 

undertaken gently to remove residual liquid. To wash the plate, it was removed from 

the magnet, 200µL of wash buffer added, the plate shaken for 30 seconds, reattached 

to magnet for 60 seconds, and the well contents removed as described above. The wash 

steps were repeated 2-3 times as recommended in the assay procedure. 
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25µL of detection antibody was added to each well, the plate sealed, covered with foil 

and incubated with agitation on a plate shaker for 1 hour at room temperature. 25µL 

of Streptavidin-Phycoerythrin was then added to each well containing the 25µL of 

detection antibody. The plate was sealed, covered with foil and incubated with 

agitation on a plate shaker for 30 minutes at room temperature. The well contents were 

gently removed, and the plate washed following the instructions above. 150µL of drive 

fluid was added to all wells and the beads re-suspended on a plate shaker for 5 minutes. 

The plate was run on a MAGPIX! instrument with xPONENT( software. The raw 

data was exported and MILLIPLEX! Analyst 5.1 software used to generate a 5-

parameter logistic standard curve (5-pL) using the Median Fluorescent Intensity (MFI) 

data to calculate the analyte concentrations within samples. 

 

2.2.4.3! Calculation of unknown values using multiple standard curves  

Using the MILLIPLEX! Analyst software, multiple standard curves are constructed 

plotting the known standard concentration on the x-axis and the MFI on the y-axis, to 

produce 5-pL standard curves for calculating analyte concentrations in samples, with 

the MFI for each sample being proportional to the amount of analyte present. An 

example of multiple multiplex standard curves is shown in Figure 2-4. 
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Figure 2-4: Multiplex assay multiple standard curves   
Standards of a known concentration are plotted against the median fluorescent intensity for each analyte. 
The line of best fit is produced using MILLIPLEX! analyst 5.1 software and 5-parameter logistic 
regression curves. The slope of the line can be used to calculate samples of unknown antigen 
concentration from their measured MFI.  
 

2.2.4.4! Manufacturers validation for commercially available assays  
All multiplex assays are assessed for cross-reactivity between the antibodies for each 

analyte within a given panel. This is carried out by spiking low, medium and high 

standards into the assay for a given analyte and assessing for increases in MFI for any 

of the other analytes. The percentage CV (described in section 2.2.2.1) of 

measurements made in duplicate or triplicate is quoted (considered acceptable by 

manufacturers when <10%). Inter-assay CV% (identical sample triplicates analysed 

using two different plates from the same lot number on the same platform, <15% 

difference considered acceptable) and intra-assay CV% (identical sample triplicates at 

different positions on the same plate, <10% difference considered acceptable). The 

manufacturers report spike and recovery values for low, medium and high 

concentration spikes, representing acceptable retrieval of the spiked standards when 

between 80-120%. Multiplex assays are also supplied with high and low QCs to be run 

during the assay, with the range for each analyte provided on a card insert within the 

kit, providing assurance of correct assay performance when the assay is run. 
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2.2.5! Collection, processing and storage of patient urine samples  
In this study urine dipstick, microscopy and culture and sensitivities (MCS) excluded 

infection in UK patient samples. In US and SA patient samples, urine dipstick 

leucocytes/nitrites or the presence of clinical symptoms were assessed. The urine was 

processed as soon as possible or kept refrigerated until processing (up to 2 hours). The 

sample was centrifuged at 2000 rpm for 10 minutes. The urine supernatant was divided 

in to 1ml aliquots and stored in plastic Eppendorf’s at -80oC until required. 

 

2.2.6! Collection, processing and storage of plasma/serum  
2.2.6.1! Isolating monocytes and culturing them to become macrophages  
10-20mls of blood was collected from HCs for isolation of white blood cells and 

subsequent monocyte isolation using CD14+ magnetic bead selection. Firstly, 5mls of 

blood was gently layered on top of 6mls of polymorph preparation solution (Axis-

Shield PoC, Norway) in a sterile 12ml universal tube. This was centrifuged at 1000g 

for 30 minutes (without a break), allowing the cells to be separated according to their 

density. PBMCs formed the top layer of cells with neutrophils in the middle and red 

blood cells at the bottom of the sample (see Figure 2-5). 

 

 
Figure 2-5: Depiction of the three cell layers formed after centrifugation of whole 
blood with polymorph preparation solution. 
 

The band of PBMCs was carefully collected for these experiments and mixed in a 

sterile universal container with 10mls of Roswell Park Memorial Institute medium 

(RPMI) media (Lonza, UK). The cells were then re-centrifuged at 1000g for 10 

minutes to become pelleted. Where the pellet appeared contaminated with red blood 
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cells, 1ml of RPMI and 9mls of 1% Ammonium Chloride solution were added for 3 

minutes, and the cells re-pelleted (centrifuged at 1000g for 5 minutes). The cells were 

then re-suspended in 1ml of RPMI media, counted using a haemocytometer to identify 

the number of cells per ml (> 10 million PBMCs required), and then re-spun at 1000g 

for 5 minutes.  

 

A CD14+ magnetic cell selection kit (EasySepTM, Miltenyi Biotec Ltd, UK) was used 

to isolate monocytes from PBMCs. A buffer was made containing 50mls of cold PBS, 

2.5mls FCS and 2Mm (0.037g) of filtered ethylenediamine tetra-acetic acid (EDTA, 

Sigma-Aldrich, UK), and chilled on ice. 80µl of buffer + 20µl of CD14+ micro-

selection beads were added to pelleted cells, for every 1x107 cells previously counted. 

The mixture was incubated for 15 minutes at 4oC. 8mls of buffer was added to the 

solution, and then centrifuged for 10 minutes at 1000g. The cells were re-suspended 

in 0.5mls of the above buffer. 

 

A magnetic selection column was then used to isolate the CD14+ monocytes. The 

column was washed with 0.5mls of EDTA buffer to moisten the column, and then the 

cells were passed through the column followed by 3 x 0.5ml buffer washes. CD14- 

cells passed through the magnetic column into a waste collection tube. The column 

was taken off the magnetic field and the CD14+ monocytes were washed out of the 

column using 1ml of sterile EDTA buffer. The cells were re-counted using a 

haemocytometer and re-suspended in macrophage media according to the number of 

cells present (1x106 cells/ml required in RPMI media, 10% FCS, 1% penicillin 

streptomycin and 10ng/ml of macrophage colony stimulating factor (M-CSF, R&D 

Systems Ltd, USA)) to promote differentiation of monocytes into macrophages. The 

cells were seeded into a 24 well plate and incubated for 6 days at 37oC in 5% 

CO2.These experimental conditions have previously shown within our research group 

to lead to macrophage differentiation. The purity of the isolated monocytes has also 

been confirmed within our group by staining and analysing for the percentage of cells 

bearing CD14 positivity immediately after the cell separation process. Using flow 

cytometry, the CD14+ cells have been gated and counted, demonstrating a very pure 

population of cells with a purity of >95% [352,353].  
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2.2.6.2! Activation of monocyte derived macrophages  
Once differentiated into macrophages the cells were washed twice with PBS and then 

either exposed to 1ng/ml of IFN-" or RPMI media alone for 48 hours, leading to an 

activated or inactivated state respectively. 1ng/ml of IFN-" has previously been shown 

within our research group to be sufficient for macrophage activation using TNF- # as 

a marker of adequate macrophage activation. A dose of  1ng/ml IFN-" was shown to 

achieve the maximum TNF-α concentration (1000 pg/ml), with cell viability 

maintained [353] and therefore this dose was also used for macrophage activation in 

the current study.  After 48 hours incubation with the IFN-" or media alone, the 

macrophage supernatant was removed, centrifuged and stored at -80oC until required.  

 

2.2.6.3! Isolation of neutrophils for use as positive controls in apoptosis 
experiments  

Neutrophils are known to be short lived cells when cultured, with a high proportion 

undergoing apoptosis when cultured overnight. Neutrophils were isolated using a 

Hetacept/Histopaque (Sigma-Aldrich, UK) isolation method. 10mls of HC blood was 

aliquoted into two falcon tubes (5mls blood + 1ml Hetacept (Sigma-Aldrich, UK), 

mixed well and left at room temperature for 30 minutes in the hood until the 

plasma/PBMCs and red cells form two distinct layers (50:50 split). The PBMC/plasma 

layer was removed, PBS added (4-fold dilution) and centrifuged at 200g for 10 

minutes. The liquid was poured off, the pellet re-suspended in 1ml of media, layered 

onto histopaque (Sigma-Aldrich, UK), and centrifuged at 2000rpm for 20 minutes. 

 

The liquid (containing PBMCs) was removed and the resultant neutrophil pellet lysed 

to remove red cells (1ml of RPMI and 9mls of 1% Ammonium Chloride solution added 

to the cells for 3 minutes, cells centrifuged at 2000rpm for 5 minutes for the neutrophil 

pellet to re-form). The media was discarded and the cells re-suspended in 1ml of 

media. The neutrophils were counted using a haemocytometer and then plated [354].  

 

The following morning, flow cytometry was used to confirm apoptosis using Annexin 

V staining (Sigma-Aldrich, UK) prior to running the Caspase 3/7 apoptosis assay to 

confirm the validity of the positive control. 100µl of Hanks Balanced Salt Solution 

(HBSS, Sigma-Aldrich, UK) was added to 100microlitres of cells, and the mixture 

pipetted up and down. The plate was spun at 1500 rpm for 5 minutes, the fluid tipped 
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out and 99µl of HBSS and 1µl of Annexin added to each well. This was refrigerated 

for 15 minutes, a further 100µl of HBSS added and spun again for 5 minutes at 1500 

rpm. The HBSS was tipped out, a further 200µl of HBSS added, the cells mixed up 

and down to re-suspend the pellet and then run through the flow cytometer to confirm 

apoptosis immediately prior to the Caspase 3/7 Assay (Promega Corporation, UK, see 

section 4.4.4.1). This showed Annexin V to be positive in 88.8% of neutrophils, 

confirming apoptosis in positive control cells (see Figure 2-6). 

 

 
Figure 2-6: Flow cytometry dot plot confirming apoptosis in positive control cells 
(HC neutrophils cultured overnight).  
88.8% of cells fell within the bottom right quadrant and were positive for Annexin V, therefore 
considered to be apoptotic. Cells in the bottom left hand quadrant were negative for Annexin V and 
therefore considered to still be viable. 
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2.2.7! Podocyte cell line culture  
2.2.7.1! Background of the immortalized human podocyte cell line  
Podocytes are highly specialised cells with cell bodies, major processes, and minor 

foot processes which are interlinked by slit diaphragms (see section 1.1.7). In the 

mature terminally differentiated state, podocytes lose their proliferative capacity, 

making them difficult to culture in vitro. In the past, only rather ‘undifferentiated 

podocytes’ of questionable cellular origin were available in culture, with de-

differentiation often seen (e.g. loss of major processes) during the in vitro culture 

process [355,356]. A cell line was developed by Professor Moin Saleem and his 

research team at the University of Bristol Academic Renal Unit, to avoid such issues. 

They initially developed a conditionally immortalized podocyte cell line from the 

immortomouse, carrying a temperature sensitive T antigen as a transgene allowing the 

cells to proliferate at 33oC and differentiate into mature podocytes at 37oC. The 

differentiated cells display actin filaments, synaptopodin and microtubules forming 

processes which are similar to the podocyte processes in vivo [357]. On this basis they 

developed a human primary in vitro cell line, using cells which were obtained post 

nephrectomy from a 3-year old child’s kidney transfected with a Simian vacuolating 

virus 40 (SV40) large T antigen gene using a retroviral vector. As above, at 33°C these 

cells proliferate and when thermoswitched to 37°C, they stop proliferating and 

terminally differentiate into mature podocyte cells which have been shown to express 

podocyte proteins including Wils tumor-1 (WT-1), nephrin, podocin, P-cadherin, CD2 

associated protein (CD2AP) [358]. Clearly podocytes in culture differ from those in 

vivo in respect to the cell cycle, as the inability to replicate and regenerate is a key 

issue in the biology of podocytes playing a major role in the progression of renal injury. 

However, markers of cell proliferation (e.g. PCNA and Ki67) are downregulated when 

the cells are transferred to 37oC, reflecting the pattern seen in vivo [358].  A pre-

established collaboration between Professor Moin Saleem and Professor Michael 

Beresford has enabled use of this human podocyte cell line as part of this current work. 

 

2.2.7.2! Culture techniques  
The podocytes were grown in 25cm2 flask in 5mls of ‘podocyte cell media’ containing 

RPMI-1640 media (Lonza, UK) with 10% FBS, 1% penicillin-streptomycin and 1% 

insulin transferrin selenium liquid supplement (ITS) (all Sigma-Aldrich, UK). Cells 

were removed from liquid nitrogen storage, hand thawed, and seeded at a 1x105 
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concentration in 5mls of podocyte cell media and placed at 33°C in 5% CO2 until they 

reached 60% confluence. At this stage the cells could either be divided using trypsin 

EDTA (Sigma-Aldrich, UK) or thermoswitched to 37⁰C (with 5% CO2) allowing the 

podocytes to terminally differentiate for experimental purposes.  

 

To divide cells, the media was poured off, sterile cold PBS (Sigma-Aldrich, UK) used 

to wash the cells twice, and 1ml of trypsin (1x concentration; Sigma-Aldrich Ltd, 

USA) added to each flask. The cells were then placed at 37°C for a maximum of 5 

minutes to allow cell detachment (monitored regularly, detachment visible under the 

microscope with cells moving across the flask). 10mls of podocyte media was added 

to the trypsinated cells, which were transferred into a sterile universal container and 

centrifuged at 1000g (10 minutes). The media was poured off and the pelleted cells re-

suspended, counted and split into fresh flasks or plates for proliferation at 33°C. At 

each passage approximately 1/3 of cells were stored by placing them into a cryovial 

with 1ml of freezing media (1% Dimethyl Sulfoxide (Sigma-Aldrich, UK), 50% FCS, 

50% podocyte cell media), slowly cooled in an iso-propanol container at -80°C for 24 

hours, and then moved into long-term storage in liquid nitrogen.  

 

For cytokine production and apoptosis experiments, the podocytes were seeded in 6 or 

96-well plates, in 2mls or 100µl of podocyte cell media respectively. Once the cells 

reached 60% confluence at 33oC, they were thermoswitched to 37oC and allowed to 

terminally differentiate over 10-14 days, becoming the mature podocytes required for 

experimental purposes. Figure 2-7 shows podocytes when they are undifferentiated (at 

33oC) and again when they are terminally differentiated (37oC). At both temperatures, 

podocyte media was replaced every 3-4 days.  
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Figure 2-7: Morphology of podocytes at different cell culture stages.  
A. Undifferentiated podocytes plated at 33oC. B. 60% confluent podocytes, day 1 at 37oC. C. Mature 
terminally differentiated podocytes after 10 days at 37oC. 
 

Once terminally differentiated, the podocytes were washed twice with PBS prior to 

being exposed to the experimental test conditions (see section 4.4.4) for 48 hours at 

37oC, in keeping with previous work within our laboratory [359]. Podocyte 

supernatant was then aspirated from the cells carefully, avoiding the podocyte cell 

layer, and stored at -80oC. All podocytes were within two passage of each other for 

experiments. 

 

2.3! Statistical analysis  
A full description of the statistical techniques employed is provided in the methods 

section of each chapter. In brief, descriptive statistics were undertaken using Statistics 

Programme for Social Sciences (SPSS, IBM Corporation, USA) or GraphPad Prism 

software (GraphPad software, USA). All results were assessed to see whether they 

represented normality using the Shapiro-Wilk test. In data that was normally 

distributed (parametric), the data was presented as mean values with the standard error 

of the mean (SEM). In non-normally distributed data (non-parametric) the results were 

represented as median values with interquartile ranges [IQR]. Statistical comparison 

between two non-related groups of non-parametric data used the Mann-Whitney U test 

and the student t-test for parametric data. Comparison of more than two groups used 

the Kruskal-Wallis (non-parametric) or the one-way ANOVA test (parametric) with a 

post-hoc test (e.g. Dunnet’s test) to identify where the significance lay. For discrete 

variables with more than 2 categories, chi-squared tests were used. Bonferroni 

adjustment was made to account for multiple testing as appropriate, and the Bonferroni 

corrected p-value, pc reported. 

A CB
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More complex statistical tests were undertaken using R version 3.1.1 [360] in 

collaboration with Dr Andrea Jorgenson (Senior Lecturer in Biostatistics, Institute of 

Translational Medicine, UoL) and Dr Peng Yin (Research Associate, Biostatistics, 

Institute of Translational Medicine, UoL). Tests included univariate logistic 

regression, Cox proportional hazards modelling (with Kaplan Meyer curves and risk 

tables to display the model outputs), multiple regression modelling (with HRs, 95% 

CIs), multiple imputation of missing clinical data using ‘MICE’ package in R [361], 

binary logistic regression modelling and application of the step Akaike Information 

Criterion score (AIC) function in R to select the final model, and area under the curve 

receiver operating curve analysis (AUC ROC). Analysis of longitudinal biomarker 

data was undertaken in collaboration with Dr Antonio Eleuteri (Computer Scientist, 

Department of Physics, UoL) and Professor Antony Fisher (Professor of Physics and 

Clinical Engineering, Department of Physics, UoL), and involved fitting of a Markov 

model of state transitions, quoting the corrected AIC in R. Urine biomarkers were 

explored as factors predicting state transitions. Bayesian multiple imputation of 

missing clinical variables was used. GraphPad Prism software or R version 3.1.1 [360] 

were used to produce all graphical illustrations.  

 

2.4! Summary  
This chapter demonstrates how this study is placed within the context of the UK JSLE 

Cohort Study and how international collaborations with ethnically distinct JSLE 

cohorts have been formed to advance work looking at urine biomarkers for LN.  

The methods of patient recruitment, clinical data collection, sample processing and 

transfer have been described, highlighting the similarities and differences between 

different study sites.  

 

The theory behind the experimental methods and optimisation of experimental 

protocols has been discussed.  

 

The overview of the diverse range of statistical techniques employed in this work, 

made possible through collaborations within the UoL, has ensured that the results of 

this work are optimally explored and reported upon. 
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3! Clinical predictors of active LN and assessment of 
novel and traditional biomarkers for disease 
monitoring within the UK JSLE Cohort Study  

 

3.1! Introduction  

3.1.1! Clinical predictors of active LN development  
Many patients will have LN as part of their initial presentation, but a proportion will 

go on to develop this manifestation later [362,363]. Early recognition and appropriate 

management of LN is important as early response to treatment is known to be 

associated with better renal outcome [261]. Long term survival of JSLE [198] and 

adult-onset SLE [364] patients with LN is reduced as compared to those without LN. 

Identifying those with or at risk of developing LN is important, so that clinicians can 

be extra vigilant in monitoring for LN. To date, investigation of clinical and 

demographic factors predicting future LN development in children has been limited to 

a single small North American study including 47 patients [362]. This study identified 

low serum albumin (odds ratio (OR): 4.8, 95% CI: 1.9–12.5) and positive dsDNA 

antibodies (OR: 3.2, 95% CI: 1.7–5.9) to be associated with development of LN within 

a median of 3.3±2 years. In longitudinal analyses, the same study identified isolated 

sterile pyuria (HR: 3, 95% CI: 1.1–6.4) and low serum albumin (HR: 3.4, 95% CI: 

1.7–6.9) to be predictors of future LN [362]. This study included predominantly 

African American patients. Further exploration of such potential predictive factors is 

required in other ethnically distinct populations, to help the clinicians when monitoring 

patients and making treatment decisions. 

 

3.1.2! Predictors of recovery from proteinuria following an LN flare  
Following an LN flare, proteinuria has been shown to take a significant period of time 

to normalise in adults with LN, with 53% of patients requiring up to 2 years to recover 

and only 74% recovering by 5 years [253]. During this time, differentiating between 

proteinuria due to ongoing LN flare or chronic renal damage can be problematic. There 

is limited reliability of proteinuria measurements alone. This can at times result in 

repeated renal biopsies, despite there being no agreement as to the appropriate timing 

and indications for repeating a renal biopsy, particularly in children [232,365]. Several 

adult SLE studies have shown that an early reduction in proteinuria following initiation 
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of immunosuppressive therapy is associated with improved longer term renal 

outcomes [261,263,366,367]. Time to recovery from proteinuria in children with 

active LN receiving standard treatment has not been described to date. It is therefore 

of great interest to explore this within the national UK JSLE Cohort Study, to 

appreciate for how long proteinuria persists within a real world clinical setting (in 

contrast for example to a clinical trial setting). Identification of clinical and 

demographic prognostic factors at the onset of LN which are predictive of subsequent 

longer duration to resolution of proteinuria, could be useful for stratifying patients as 

high or low risk, helping to fine-tune the intensity and duration of early 

immunosuppressive therapy.  

 

3.1.3! Traditional biomarkers and active LN identification  
The predictive value of commonly available, so called ‘traditional’ biomarkers of 

JSLE activity for identifying active LN remains uncertain (see section 1.2.3) 

[259,368]. There have been reports highlighting ‘clinically silent LN’ patients who 

have no proteinuria, normal urinalysis and renal function, but biopsy defined active 

LN [255]. In clinical practice, paediatric rheumatologists and nephrologists rely 

heavily upon such non-invasive markers, as renal biopsies are invasive with significant 

potential associated complications, limiting their repeated use in children. Studies 

looking at the role of routinely measured immunological, haematological and 

inflammatory biomarkers in active LN identification in children are lacking. 

Therefore, assessment of the ability of these common, clinical biomarkers for 

differentiating the presence or absence of active LN, both individually and/or in 

combination, is of importance to patient care.  

 

3.1.4! Novel urine biomarker identification  
Screening for novel urine biomarkers using multiplex assays and profiling array kits 

(with capture and control antibodies for different biomarkers spotted onto 

nitrocellulose membranes) has become increasingly popular in the scientific literature 

for biomarker identification. This is in part due to the recognition that no single 

biomarker has emerged as pre-eminent, but also due to the increasing range of 

commercially available assays which can rapidly screen a large number of biomarkers 

[369]. Such assays have mainly been developed to detect drug-induced renal damage 
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and nephrotoxicity within the field of applied toxicology. The kidney is particularly 

susceptible to drug-induced injury as by the time the filtrate moves to the distal tubule 

and collecting ducts, its components can be concentrated more than 100 fold [370]. 

Monitoring of patients in clinical studies for signs of nephrotoxicity has previously 

been based upon serum creatinine and urea. However, both of these have limitations 

in their sensitivity and specificity, especially in individuals who still have significant 

renal reserve, where a large amount of kidney injury can occur without affecting GFR 

and serum creatinine. In patients who are ill with low muscle mass, there has to be an 

even greater decrease in GFR for serum creatinine to rise. Urea levels can increase 

with fluid depletion or if urea is increased due to protein supplementation, catabolic 

states, or blood within the gastrointestinal tract, impacting on ureas reliability as a 

marker of nephrotoxicity [370].   

 

Several promising candidate novel urine biomarkers have emerged detecting injury to 

different, specific nephron segments (see Figure 3-1). Such sites are of key importance 

to diverse kidney pathologies, therefore, such markers have also been evaluated in 

acute kidney injury in very low birth weight infants [371], liver cirrhosis [372], renal 

transplantation [373], bladder cancer [374] and painful bladder syndrome [375]. In the 

context of LN, two studies have used multiplex to assess urine biomarkers. Kiani et al 

looked at osteoprotegerin (OPG) and MCP-1, showing both markers to be associated 

with the renal visual analogue scale and renal disease activity descriptors of the 

SLEDAI score [300]. The second study used multiplex technology to look at 27 

cytokines, chemokines and cellular growth factors in the urine. MCP-1 was found to 

be the only immune mediator in urine, correlating with the SLEDAI score and 

demonstrating significantly higher levels in those with severe disease activity. The 

AUC value for detecting LN was 0.70 [376]. The utility of large commercially 

available kidney injury panels for identification of active LN has not been explored to 

date. 
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Figure 3-1: Nephron segment-specific kidney injury urine biomarkers . 
KIM-1 = kidney injury molecule-1. NGAL = neutrophil gelatinase associated lipocalin. GST-#/µ/) = 
Glutathione-S-transferase-#. NAG = N-acetyl-b-d- glucosaminidase. RBP = Retinol-binding protein. 
HGF = hepatocyte growth factor. Cyr61 = cysteine rich protein 61. NHE-3 = N+ / H+ exchanger isoform 
3. L-FABP = L-type fatty acid binding protein. H-FABP = H-type fatty acid binding protein. Figure 
adapted from [370]. 
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3.2! Hypotheses  
•! Clinical and demographic factors can be used to differentiate patients with and 

without LN and to predict those who are likely to develop LN over their disease 

course.  

•! In patients with LN, such factors may also help to predict time to recovery from 

proteinuria following an active LN flare, and be used to monitor for changes in LN 

activity.  

•! Use of commercially available kidney toxicity assay will help to identify novel 

urine biomarkers for LN identification. 

 

3.3! Aims  
The primary aim of this chapter is to use existing data from within the UK JSLE Cohort 

Study to assess clinical and demographic factors differentiating patients with and 

without LN and whether such factors play a role in predicting the development of LN, 

subsequent time to recovery from proteinuria following an LN flare, and their potential 

use in monitoring LN disease activity. The secondary aim was to assess whether 

commercially available kidney toxicity assays can be used to identify new urine 

biomarkers for active LN identification. 

 

The specific objectives of this study were:  

 

1.! To characterise patients with LN at baseline, and how they differ from patients 

without LN in terms of clinical and demographic factors.  

 

2.! For those without LN at baseline, who develop it at a later stage, to determine when 

they develop LN and whether there are clinical and demographic predictors at 

baseline which can predict subsequent development of LN. 

 

3.! To establish if clinical and demographic factors predict the occurrence and time to 

recovery from proteinuria following an active LN flare.  
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4.! To ascertain the ability of traditional haematological, immunological and 

inflammatory biomarkers of JSLE disease activity to be able to identify and 

differentiate active LN from inactive LN, both individually and in combination. 

 

5.! To establish whether urine biomarkers quantifiable through a commercially 

available kidney toxicity panel assays can differentiate active from inactive LN 

patients. 

 

3.4! Specific methods  

3.4.1! Clinical features characterising patients with LN at baseline  

Children participating in the UK JSLE Cohort Study (see section 2.1.1) between 2006-

2016 were included in this study if they were:  

•! Managed in paediatric rheumatology care. 

•! Recruited to the UK JSLE Cohort study within 1 year of diagnosis.  

•! Identified as having active LN at the time of the initial presentation to paediatric 

rheumatology care (referred to as ‘baseline’ throughout).  

Active LN was defined in the following ways:  

•! Biopsy defined LN documented on the baseline annual review study form (see 

Appendix 12).  

•! Nephritis on biopsy in the last 3 months documented on the baseline BILAG form 

(see Appendix 5).  

•! Renal BILAG defined LN. Characterised as having ‘active LN’ if they had a renal 

domain of BILAG of A or B, with complete renal BILAG data present, in contrast 

to ‘inactive LN’ if they had renal BILAG of D or E (see Appendix 6). 

Patients with and without active LN at baseline were compared in terms of the clinical 

and demographic factors shown in Table 3-1 using univariate logistic regression. A 

Bonferroni correction was applied for multiple testing (35 tests) and the significance 

level adjusted to p<0.00142. 
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Demographic features Haematological features 
at baseline 

BILAG domain 
involvement12 

•! Gender •! Haemoglobin  •! Constitutional  
•! Age at JSLE diagnosis 
•! Ethnicity2 

•! White cell count 
•!  Neutrophils 

•! Mucocutaneous 
•! Neuropsychiatric 

•! Any FH of 
autoimmunity1 

•! Lymphocytes 
•! Platelets 

•! Musculoskeletal 
•! Cardiorespiratory 

Renal features at baseline  Immunological features 

at baseline 

•! Gastrointestinal 

•! Proteinuria3  
•! Severe hypertension4 

•! Opthalmological 

•! C3 and C48 •! Haematological 
•! Serum creatinine •! Anti-dsDNA9 •! First ACR score 
•! Estimated GFR5 •! IgG, IgA, IgM10 

•! ANA titre 
•! ESR6 
•! CRP7 

 •! Anti-Sm, RNP, Anti-
Ro, Anti-La11 

 

Table 3-1: Clinical and demographic factors investigated at baseline 
1Any family history of autoimmunity (history of SLE, thyroid disease, rheumatoid arthritis, connective 
tissue disease, type-1 diabetes, ‘other family history’ documented). 2Ethnicity (Caucasian/non-
caucasian). 3spot protein/creatinine or albumin/creatinine ratio. 4blood pressure rising to > 170/110 mm 
Hg within 1 month with grade 3 or 4 Keith-Wagener-Barker retinal changes (flame-shaped 
haemorrhages or cotton-wool spots or papilloedema). 5eGFR = estimated glomerular filtration rate. 
6ESR = erythrocyte sedimentation rate. 7CRP = c-reactive protein. 8C3 and C4 = complement factors 3 
and 4. 9Anti-dsDNA = anti-double stranded DNA antibodies. 10Ig = immunoglobulin. 11Antibodies to 
extractable nuclear antigens. 12BILAG domain involvement = score of A or B for a given organ domain. 
 

3.4.2! Predictors of developing LN over time  
Those without LN at baseline were followed longitudinally to see if they subsequently 

developed LN during their disease course, and when this occurred. Those with only a 

single study visit were excluded from these analyses. The association between 

outcome (time to the development of LN) and each clinical and demographic variable 

at baseline (detailed in Table 3-1) was tested univariately using Cox Proportional 

hazard modelling. The endpoint for each patient was defined as the time from the 

baseline visit to the date of the first active LN episode (as defined in section 3.4.1). 

Patients who did not develop LN during follow-up were censored at the date of the last 

visit, therefore they did not change the cumulative probability of survival for the 

population (graphically depicted on Kaplan-Meier plots).  Variables with missing data 

were tested with complete cases only univariately.  

 

Covariates with a p<0.2 on univariate analysis were included in a multiple regression 

model. Where >10% of the data was missing for a given covariate, ‘MICE’ package 

in R version 3.2.0 was used to undertake multiple imputation [361]. This took place 
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for lymphocyte count, platelet count, C3 and C4. Covariates to be included in the final 

model were chosen using a backward stepwise model selection procedure (threshold 

p<0.05). HRs, 95% CIs and p-values were summarised for covariates present in the 

final model. The results were displayed graphically with Kaplan-Meier curves and risk 

tables. Within the Kaplan-Meier plots, the x-axis was time from zero (when 

observation began) to the last observed time point. The y-axis was the proportion of 

subjects with JSLE who survived without developing LN. A vertical drop indicates the 

occurrence of an event (i.e. a patient developing LN). Risk tables under each Kaplan-

Meier plot provide information about the number of patients still at risk of the outcome 

at the specific time points. All analysis and preparation of figures was undertaken with 

R version 3.2.0 [360]. 

 

3.4.3! Predictors of recovery from proteinuria following an LN flare 
All participants of the UK JSLE Cohort Study (see section 2.1.1) [28], managed within 

paediatric rheumatology care between 2006-2016, were included in the current study 

if they had:  

•! Active LN - defined in terms of either having renal biopsy defined active LN 

or renal BILAG defined LN (renal BILAG of A or B) and 

•! Proteinuria - defined as a UPCR or UACR ratio of > 50mg/mmol or a 24-hour 

urine protein of ≥0.5 g. Proteinuria cutoffs chosen on the basis of the renal 

BILAG score, where a UPCR or UACR ratio of > 50mg/mmol or a 24-hour 

urine protein of ≥0.5 g is required for a score of B to be achieved and 

•! At least 2 follow-up visits following the onset of proteinuria. 

Those with <2 follow-up visits or without proteinuria were excluded. Patients were 

categorised as having recovered from proteinuria (if spot UPCR or UACR ratio was 

<25mg/mmol at two consecutive visits) or not recovered at the latest follow-up. This 

cut off was chosen on the basis of the renal BILAG score as a spot UPCR or UACR 

ratio of >25mg/mmol would lead to a renal BILAG score of C, indicating ongoing 

mild LN rather than recovery.  

 

The study was undertaken on a cross-sectional basis. The groups were compared using 

two complementary approaches; firstly, a binary approach was used. The association 

between outcome (recovered versus not recovered) and clinico-demographic factors at 
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the time of LN onset were tested univariately using logistic regression modelling (see 

Table 3-2). Covariates with a p-value <0.2 were then included in a multiple regression 

model. Where >10% of the data was missing for a given covariate ‘MICE’ package in 

R version 3.2.0 was used to undertake multiple imputation [361]. This took place for 

serum creatinine, anti-dsDNA antibody levels, ESR, C3 and C4. The following 

covariates were not included in the multiple regression model due to the high levels of 

missing data (>40%); urine sediment results, CRP, IgG, IgA and IgM. Covariates to 

be included in the final model were selected using a backward stepwise model 

selection approach (threshold p<0.05). AUC ROC analysis of the final model was 

undertaken, looking at the ability of the model to predict patient outcome. 

 

Clinical features at time 
of LN onset 

Demographic features Medication use (yes/no, 
at time of LN onset) 

•! Proteinuria1  •! Age at LN onset •! Hydroxychloroquine 
•! Severe hypertension2 •! Gender •! Azathioprine 
•! Nephrotic syndrome3 •! Ethnicity •! Mycophenelate Mofetil 
•! Serum creatinine  •! Length of disease •! Prednisolone 
•! Presence of active urine 

sediment 
BILAG domain 
involvement 

•! IVIG10  
•! Rituximab (ever) 

•! eGFR 4  
•! Haemoglobin 

•! Constitutional 
•! Mucocutaneous 

•! Cyclophosphamide 
(ever) 

•! Total white cell count  •! Neuropsychiatric •! Angiotensin inhibitor or 
angiotensin receptor 
blocker 

•! Neutrophil count 
•! Lymphocyte count 

•! Musculoskeletal 
•! Cardiorespiratory 

•! Platelets count •! Gastrointestinal Other data 
•! ESR5 and CRP6 
•! C3 and C47  

•! Opthalmological 
•! Haematological 

•! Physician global 
assessment 

•! Anti-dsDNA8 
•! IgG, IgA, IgM9 

Total Numerical BILAG 
score 

 

Table 3-2: Clinical and demographic factors investigated at the time of LN with 
proteinuria onset (
1Spot urine protein/creatinine or albumin/creatinine ratio. 2Blood pressure rising to > 170/110 mm Hg 
within 1 month with grade 3 or 4 Keith-Wagener-Barker retinal changes (flame-shaped haemorrhages 
or cotton-wool spots or papilloedema). 3Nephrotic syndrome criteria: heavy proteinuria ( % 3.5 g/day or 
protein-creatinine ratio % 350 mg/mmol or albumin-creatinine ratio % 350 mg/mmol) and 
hypoalbuminaemia and oedema. 4eGFR = estimated glomerular filtration rate. 5ESR = erythrocyte 
sedimentation rate. 6CRP = c-reactive protein. 7C3 and C4 = complement factors 3 and 4. 8Anti-dsDNA 
= anti-double stranded DNA antibodies. 9Ig = immunoglobulin. 10IVIG = intra-venous immunoglobulin.  
 

The second approach looked at time to recovery from proteinuria following an active 

LN flare. Patients were censored when they had not recovered from proteinuria at the 
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final follow up visit. The endpoint for each patient was defined as the date of recovery 

from proteinuria, or the last visit date if censored.  Cox proportional hazard regression 

modelling was used to univariately test the association between each variable of 

interest (see Table 3-2) and outcome. Variables with missing data were tested with 

complete cases only univariately. Covariates with p<0.2 on univariate analysis were 

included in a multiple regression model. As above, where >10% of the data was 

missing for a given covariate, ‘MICE’ package in R version 3.2.0 was used to 

undertake multiple imputation [361]. Covariates to be included in the final model were 

chosen by using a backward stepwise model selection procedure (threshold p<0.05). 

HRs, 95% CIs and p-values were summarised for covariates present in the final model. 

The results were displayed graphically with Kaplan-Meyer curves and risk tables. All 

analysis and preparation of figures was undertaken with R version 3.2.0 [360]. 

 

3.4.4! Traditional biomarkers and LN monitoring  
Patients participating in the UK JSLE Cohort Study (see section 2.1.1) [28] between 

2006-2016, followed up in paediatric or adult rheumatology care were cross-

sectionally grouped according to the renal domain of BILAG disease activity score, as 

active LN or inactive LN. Individual patient visits were selected where the clinical data 

was most complete. So called ‘traditional’ JSLE immunological, haematological and 

inflammatory laboratory test results, routinely used in clinical practice, were compared 

between patients with active and inactive LN. These included: anti-dsDNA, C3, C4, 

ESR, CRP, Hb, WCC, neutrophils, lymphocytes, platelets IgG, IgA and IgM levels. 

As the definition of active LN was based on the composite renal BILAG score, that in 

turn is calculated from factors including: proteinuria, GFR, blood pressure, active urine 

sediment, plasma creatinine and recent biopsy findings, the performance of these 

traditional biomarkers could not be investigated.  

 

Demographic and traditional biomarker data were expressed as median values and 

IQRs. A binary logistic multiple regression model was fitted to assess for association 

between a combination of traditional biomarkers and LN status. All traditional 

biomarkers (log-transformed) excluding those contributing to the renal BILAG score 

were included in an initial model and the ‘stepAIC’ function in R [360] applied to 

select a final model. This function compares different models based on all possible 
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combinations of biomarkers and chooses the model with the minimum AIC value. The 

AIC is a measure of the relative quality of a model relative to each of the other models, 

with a lower value representing better quality. The AUC for the final model was 

calculated. AUC values of 1.0–0.9, 0.9–0.8, 0.8–0.7, 0.7–0.6, 0.6–0.5 were considered 

“excellent, good, fair, poor and fail” respectively. Data analysis was undertaken using 

R version 3.1.1 [360]. Where Bonferroni adjustment was made to account for multiple 

testing, the Bonferroni corrected p-value, pc is reported. 

 

The number of patients included in the studies detailed in sections 3.4.1, 3.4.2, 3.4.3 

and 3.4.4 above varied due to the timing of the analyses and inclusion criteria used for 

each study. The first study examining clinical features characterising patients with LN 

at baseline/predictors of LN over time (sections 3.4.1 and 3.4.2) included the lowest 

number of patients (n=331), due to exclusion of patients who were recruited to the UK 

JSLE Cohort Study >1 year after achieving a diagnosis of JSLE. Within the second 

study investigating predictors of recovery from proteinuria following an LN flare 

(section 3.4.3), patients had to have at least 2 follow-up visits with proteinuria 

measurements, leading to the exclusion of some patients (n=350). The greatest number 

of patients was seen in the study investigating traditional biomarkers and LN 

monitoring (n=370, section 3.4.4) as it included patients within the UK JSLE Cohort 

Study who were followed-up in paediatric or adult rheumatology, and there was no 

stipulation on the number of visits required per patient, therefore, even those with a 

single visit were eligible for inclusion. 

 

3.4.5! Novel urine biomarker identification using Human Kidney 
Injury (HKI) Multiplex Assays  

Three commercially available HKI Magnetic Bead panel multiplex assays (Merck 

Millipore, St Charles, USA) were undertaken looking at 21 different urinary 

biomarkers: 

•! HKI-1: Calbindin, Collagen IV, FABP-1, GST-α, GST-π, IP-10, KIM-1, 

Osteoactivin, Renin, Trefoil Factor-3 (TFF-3), and tissue inhibitor of 

metaloproteases-1 (TIMP-1).  

•! HKI-2: α-1-Microglobulin (A1mG), Albumin, Clusterin, Cystatin-C (Cys-C), 

Epidermal Growth Factor (EGF), NGAL, and osteopontin (OPN). 

•! HKI-3: Uromodulin, RBP-4, B2mG 
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The assays were undertaken as per manufacturer’s instructions (see section 2.2.4.2, for 

further details on multiplex technology and procedures), running the urine samples at 

1:2 dilution in assay buffer for HKI-1, 1:100 for HKI-2 and 1:500 for HKI-3. The 

analyses were carried out on an MAGPIX! array reader (Merck Millipore, USA (see 

section 2.2.4.1).  

 

A subset of the children participating in the UK JSLE Cohort Study [28] from Alder 

Hey Children’s NHS Foundation Trust, Liverpool, and Great Ormond Street NHS 

Hospital for Children, London, UK, were included in this study. Urine samples were 

collected during routine clinical care together with detailed demographic and clinical 

data. Renal disease activity was defined as active LN or inactive LN (see section 

2.1.1.4). At a later date, the three HKI multiplex assays were also carried out on patient 

samples from the US Cohort (see section 2.1.2) [334]. 

 

Biomarker concentrations were standardised to urinary creatinine and expressed as 

median values and IQRs. Mann Whitney U tests were used to compare biomarker 

concentrations between patient groups. A Bonferroni adjustment was applied to 

account for multiple testing according to the number of biomarkers tested per assay 

(11 for HKI assay 1, 7 for HKI 2 and 3 for HKI 3), and corrected p-values (pc) reported. 

 

3.5! Results  

3.5.1! Clinical features of patients with active LN at baseline  
The total study cohort consisted of 370 patients, of which 331 were eligible for the 

current study, due to exclusion of patients who were recruited to the UK JSLE Cohort 

Study >1 year after achieving a diagnosis of JSLE. A total of 121/331 (37%) patients 

had active LN as an initial presenting feature at baseline. Testing the association 

between clinical and demographic factors at baseline and outcome univariately, six 

factors differed significantly between active LN and non-LN patients after correction 

for multiple testing, including first ACR score (p=3.6 x10-6), severe hypertension 

(p=0.0006), proteinuria (p=5.7x10-12), serum creatinine (p=0.00024), ESR 

(p=0.00075) and C3 (p=1.3x10-7) (see Table 3-3 for summary statistics of the two 

patient cohorts with and without active LN).  
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Clinical and demographic factors 
at baseline 

Active LN 
(n=121) 

No LN 
(n=210) 

pc
1 

Proteinuria2 (mg/mmolCr, NA3=125) 63.1 [42, 153] 13 [8, 26] 5.7x10-12 
Serum creatinine (micromols/l, 
NA=56) 

61 [45, 75] 53 [45, 62] 0.00024 

First ACR Score of: 
 
 

4 42/121 (35%) 112/210 (53%) 3.6 x10-6 
 
 
 

5 32/121 (26%) 60/210 (29%) 
6 22/121 (18%) 26/210 (12%) 
7 17/121 (14%) 8/210 (4%) 
8 7/121 (6%) 4/210 (2%) 
9 2/121 (1%) 0 

Severe hypertension4 (NA=15) 14/115 (12%) 2/201 (0.5%) 0.00060 
ESR (mm/h, NA=66) 60 [22, 101] 32 [13, 67] 0.00075 
C3 (mg/L, NA=60) 0.52 [0.35, 0.82] 0.91 [0.60, 1.21] 1.3x10-7 
Female gender (NA=2) 104/121 (86%) 167/208 (80%) 0.20 
Caucasian ethnicity5 (NA=3) 53/119 (45%) 118/209 (56%) 0.0349 
Diagnosis age (years, NA=6) 13 [11.1, 14.5] 12.8 [10.5, 14.5] 0.48 
FH of autoimmunity6 58/121 (48%) 113/210 (54%) 0.30 
ANA titre (NA = 129) 640 [240, 1600] 640 [400, 1140] 0.83 
Anti-Sm positive 26/121 (21%) 40/210 (19%) 0.59 
Anti- RNP positive 27/121 (22%) 56/210 (27%) 0.38 
Anti-Ro positive 36/121 (30%) 57/210 (27%) 0.61 
Anti-La positive 17/121 (14%) 27/121 (22%) 0.76 
eGFR (ml/min/m2, NA=92) 102 [83, 135] 113 [101, 131] 0.75 
Haemoglobin (g/dl, NA=23) 11.1 [9.0, 12.2] 11.3 [10.1, 12.5] 0.086 
WCC (x109/L, NA=25) 5.8 [3.9, 9.6] 5.6 [4.0, 7.6] 0.03 
Neutrophils (x109/L, NA=37) 3.6 [2.3, 7.4] 3.4 [2.2, 5.1] 0.0021 
Lymphocytes (x109/L, NA = 34) 1.4 [0.8, 1.8] 1.3 [0.9, 1.9] 0.56 
Platelets (x109/L, NA=28) 226 [152, 315] 272 [195, 337] 0.024 
CRP (mg/L, NA=62) 5 [4, 7] 5 [4, 8] 0.61 
C4 (g/L, NA = 63) 0.06 [0.03, 0.14] 0.11 [0.06, 0.18] 0.046 
dsDNA Titre (IU/L, NA=60) 200 [34.5, 329] 53 [14.25, 200] 0.16 
IgG (g/L, NA=117) 13.7 [9.8, 19.9] 16.2 [12.7, 22.7] 0.45 
IgA (g/L, NA=117) 2.06 [1.33, 2.89] 1.97 [1.51, 2.57] 0.55 
IgM (g/L, NA=119) 1.29 [0.77, 1.9] 1.3 [0.93, 1.9] 0.88 
Constitutional involvement7 66/121 (55%) 94/210 (45%) 0.087 
Mucocutaneous involvement 70/121 (58%) 143/210 (68%) 0.062 
Neuropsychiatric involvement 15/121 (12%) 21/210 (10%) 0.50 
Musculoskeletal involvement 66/121 (55%) 134/210 (64%) 0.098 
Cardiorespiratory involvement 19/121 (16%) 23/210 (11%) 0.21 
Gastrointestinal involvement 11/121 (9%) 13/210 (11%) 0.33 
Ophthalmic involvement 5/121 (4%) 3/210 (1.4%) 0.14 
Haematological involvement 82/121 (68%) 146/210 (70%) 0.74 

Table 3-3: Clinical and demographic data at baseline in patients with and without 
active LN at baseline. 
Summary statistics used for continuous variables (median, IQR), whereas number count and percentage 
detailed for discrete variables (for each category). 1p-values are Bonferroni-corrected from univariate 
binary regression or Chi Squared tests appropriate, non-significant = p>0.00142, significant values 
shown in bold. 2Baseline Proteinuria = spot UACR or UPCR measurements depending on hospital 
laboratory (mg/mmolCr). 3Missing data shown in brackets with NA. 4BILAG defined severe 
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hypertension = blood pressure rising above 95th centile for gender and age according to height centile 
within 1 month +/- grade 3 or 4 Keith-Wagener-Barker retinal changes (flame-shaped haemorrhages or 
cotton-wool spots or papilloedema). 5Ethnicity classification simplified to Caucasian or non-Caucasian. 
6Any family history of autoimmunity including SLE, thyroid disease, rheumatoid arthritis, connective 
tissue disease, type-1 diabetes and ‘other autoimmune disease’ noted.7BILAG defined organ domain 
involvement (yes = BILAG score of A/B/C, no = D/E).  
 

3.5.2! Predictors of time to developing LN over the disease course  
Of the 210/331 patients without LN at baseline, 13 only had a single study visit and 

were therefore excluded from further analyses. A total of 197/210 patients without LN 

at baseline were therefore followed up longitudinally for a median of 3.1 years [IQR 

1.5-5.0]. 34/197 (17%) patients developed LN during the study period after a median 

of 2.04 years [IQR 0.8-3.7]. Testing for association between each clinical and 

demographic factor at baseline and outcome (developed LN or did not develop LN) 

univariately, the following factors had p-values of <0.2  and were included as 

covariates within a multiple regression model: any FH of autoimmunity, first ACR 

score, lymphocyte count, platelet count, C3, C4 and BILAG defined cardiorespiratory 

involvement (see Table 3-4). 
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Clinical and demographic factors  No LN(n=163) Active LN(n=34) pc
1 

Fa
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s c
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Family history of autoimmunity2 85/163 (52%) 22/34 (65%) 0.160 
First ACR Score of: 
 

4 90/163 (55%) 15/34 (43%) 0.0038 
 5 50/163 (32%) 7/34 (21%) 

6 17/163 (10%) 7/34 (21%) 
7 4/163 (2%) 4/34 (12%) 
8 2 (1%) 1/34 (3%) 

Lymphocytes (x109/L, NA3=20) 1.4 [0.9, 1.9] 1.2 [0.8, 1.7] 0.098 
Platelet count (x109/L, NA=18) 283 [216, 345] 214 [149, 291] 0.057 
C3 (g/L, NA=30) 0.94 [0.67, 1.24] 0.63 [0.45, 0.83] 0.0032 
C4 (g/L, NA=32)  0.12 [0.08, 0.19] 0.06 [0.03, 0.12] 0.067 
Cardiorespiratory involvement 16/163 (10%) 5/34 (9%) 0.17 

D
em
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Female gender 127/163 [78%] 29/34 [85%] 0.640 
Caucasian ethnicity4 92/163 (56%) 17/34 (50%) 0.400 
Diagnosis age (years, NA=1) 12.8 [10.7, 14.6] 12.6[10.4,14.1] 0.310 
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ANA titre (NA=69) 640 [400, 1140] 640 [400,1600] 0.898 
Anti-Sm positive 30/163 (18%) 7/34 (21%) 0.750 
Anti- RNP positive 45/163 8/34 0.40 
Anti-Ro positive 45/163 8/34 0.860 

Anti-La positive 21/163 4/34 0.840 
Severe hypertension5 (NA=8) 2/163 3/34 0.990 
Proteinuria6 (NA=90) 13 [8, 26] 17 [10, 28] 0.630 

Ser creatinine (µmols/L,NA=30) 53 [45, 62] 56 [46, 62] 0.821 

eGFR (ml/min/m2, NA=48) 114 [98.7, 130.5] 108 [101, 128] 0.623 

Haemoglobin (g/dl, NA=14) 11.3 [10.1, 12.4] 10.8 [9.4, 12.5] 0.844 
WCC (x109/L, NA=15) 5.8 [4.0, 7.9] 4.6 [3.9, 7.1] 0.213 
Neutrophils (x109/L, NA=19) 3.4 [2.2, 5.3] 3.4 [2.2, 4.4] 0.462 
ESR (mm/h, NA=31) 32.5 [14.5, 66.3] 40 [13.5, 83.3] 0.903 
CRP (mg/L, NA=35) 5 [4, 10] 4 [3.5, 5] 0.788 

dsDNA Titre (IU/L, NA=39) 44 [11.2, 200] 96 [20, 300] 0.471 

IgG (g/L,NA=61) 15.9 [12.1, 22.7] 17 [15.2, 22.2] 0.737 
IgA (g/L, NA=60) 2.0 [1.5, 2.5] 2.1 [1.7, 3.0] 0.916 
IgM (g/L, NA=63) 1.4 [0.9, 1.8] 1.3 [1.1, 2.3] 0.647 
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Constitutional involvement7 73/163 (45%) 18/34 (53%) 0.44 
Mucocutaneous involvement 108/163 (66%) 27/34 (79%) 0.29 
Neuropsychiatric involvement 17/163 (10%) 3/34 (9%) 0.81 
Musculoskeletal involvement 107/163 (66%) 23/34 (68%) 0.96 

Gastrointestinal involvement 9/163 (6%) 1/34 (3%) 0.52 
Ophthalmic involvement 2/163 (1.2%) 1/34 (3%) 0.840 
Haematological involvement 112/163 (69%) 26/34 (76%) 0.48 

Table 3-4: Clinical and demographic factors at baseline for patients with/without 
LN longitudinally. 
Summary statistics for continuous variables (median, IQR), number count and percentage detailed for 
discrete variables. 1p-values are from univariate Cox Proportion hazard models. 2Any FH of 
autoimmunity included SLE, thyroid disease, rheumatoid arthritis, connective tissue disease, type-1 
diabetes and ‘other autoimmune disease’.3Missing data shown in brackets. 4Ethnicity simplified to 
Caucasian or non-Caucasian. 5BILAG defined severe hypertension = blood pressure rising above 95th 
centile for gender and age according to height centile within 1 month +/- grade 3 or 4 Keith-Wagener-
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Barker retinal changes. 6Baseline Proteinuria = UPCR or UACR (mg/mmolCr). 7BILAG defined extra-
renal organ domain involvement (yes = BILAG score of A/B, no = D/E). 

 

The multiple regression model identified the first ACR score (p=0.014) and C3 value 

(p=0.0082) as being significant covariate variables remaining after backward stepwise 

model selection. Patients with a higher ACR score and a lower C3 value at baseline 

were at greater risk of developing LN at any point in time (ACR score: HR 1.45, 95% 

CI 1.08-1.95 and C3: HR 0.27, 95% CI 0.10-0.68) (see Table 3-5). The concordance 

statistic was 0.710 for the final Cox proportional hazard model. 

 

Variables p HR (95% CI) 
First ACR score  0.014 1.45 1.08-1.95 
C3 0.0082 0.27 0.10-0.68 

Table 3-5: Multiple logistic regression model differentiating those who did/did 
not develop LN on the basis of their clinical and demographic data at baseline. 
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The Kaplan Meier plot for the first ACR score (see Figure 3-2) divides the patients 

into two sub-groups with an ACR score of <5 (n=161), and >5 (n=35). The median 

ACR score for those who developed LN was 5, therefore this was used as the cut-off 

for plotting the Kaplan-Meier curve.  This plot demonstrates that at a given time, 

patients with a ACR score of >5 at diagnosis have an increased risk of developing LN 

(univariate analysis p=0.0038).  

 

 
Figure 3-2: Kaplan-Meier plot for ACR score at baseline  
Non-imputed data used for development of Kaplan-Meier plots, therefore n=156. 
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The Kaplan Meier plot for C3 (see Figure 3-3) divided the patients into two sub-groups 

with a C3 cut-off of >0.9g/L (in the normal range, n=77) or <0.9g/L 

(hypocomplementemia, n=78). This plot demonstrates that at a given time, patients 

with a C3 of <0.9g/L at diagnosis are at increased risk of developing LN (univariate 

analysis p=0.0032).  

 

 
Figure 3-3: Kaplan-Meier plot for C3 at baseline (<0.9 vs. >0.9 g/L) 
Non imputed data used for development of Kaplan-Meier plots, therefore n=156. 
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3.5.3! Predictors of recovery from proteinuria following an active 
LN flare  

As detailed in section 3.5.1, the total study cohort consisted of 370 JSLE patients, 350 

of which were considered in the current study due to the exclusion of patients with < 

2 follow-up visits. Of these, a total of 64/350 (18%) JSLE patients were included in 

this specific analysis, having had active LN with proteinuria, and at least 2 consecutive 

follow-up visits following the development of proteinuria. Resolution of proteinuria 

was seen in 25/64 (39%) patients, within a median of 17 months (IQR 3.5-49.2). 

Proteinuria had not resolved in the remaining 39/64 (61%) after a median follow-up 

period of 22 months (IQR 12.1-41.1).  

 

3.5.3.1! Do clinical and demographic factors at LN onset differentiate patients 
where proteinuria recovered or did not recover during the follow-up 
period?  

In testing the association between each clinical and demographic factor (at the time of 

LN onset, detailed in Table 3-6) and outcome (proteinuria recovered or not-recovered) 

univariately, ethnicity (Caucasian or non-Caucasian), eGFR, Azathioprine use, 

physicians global assessment score, BILAG defined constitutional involvement, 

cardiorespiratory involvement and haematological involvement all had p-values of 

<0.2  (see Table 3-6). These were therefore included as covariates within the multiple 

regression model.  
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 Clinical and demographic 
factors at LN onset 

Not recovered 
(n=39) 

Recovered 
(n=25) 

p 
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 Caucasian ethnicity1   13/39 (33%) 13/25 (52%) 0.141 
eGFR (ml/min/m2, NA = 2) 104 (29, 159) 121 (29,153) 0.140 
Azathioprine2 Y: 8, N: 31 Y: 2, N: 23 0.194 
Physician Global Assessment 23 (0, 75) 41 (1, 71) 0.089 
Constitutional involvement3 Y: 15, N: 24 Y: 15, N: 10 0.095 
Cardioresp involvement Y: 3, N: 36 Y: 5, N: 20 0.159 
Haematological involvement Y: 33, N: 6 Y: 13, N: 12 0.006 

D
em

o-
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ap
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Age at LN onset (days) 5071 (2352, 6455) 4976 (2952, 6540) 0.610 
Female gender 32/39 (82%) 18/25 (72%) 0.346 
Length of disease (days) 225 (0, 4857) 27 (0, 2679) 0.251 
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Baseline Proteinuria4 149 (50, 2772) 252 (51, 1418) 0.496 
Severe hypertension5(NA = 3) Y: 6, N: 31 Y: 3, N: 21 0.690 
Nephrotic Syndrome6(NA = 3) Y: 7, N: 30 Y: 5, N: 19 0.854 
Serum creatinine 
(micromol/l,NA=8) 

61 (34, 234) 50 (36, 177) 0.305 

Active urinary sed7 (NA = 40) Y: 5, N: 9 Y: 3, N: 7 0.770 
Haemoglobin (g/dl) 10.8 (5.6, 96) 11.3 (7.1, 14.9)  0.595 
WCC (x109/L) 4.8 (2.5, 22.4) 6.4 (0.5, 9.1) 0.461 
Neutrophils (x109/L, NA=2) 3.4 (1.1, 17.8) 3.44 (0.4, 12.33) 0.577 
Lymphocytes (x109/L, NA=2) 1.40 (0.1, 5.0) 1.53 (0.1, 5.42) 0.515 
Platelets (x109/L) 245 (77, 589) 225 (82, 522) 0.635 
ESR (mm/hr, NA=11) 40 (2, 170) 37.5 (4, 102) 0.435 
CRP (mg/l, NA=27) 5 (1, 19) 5 (1, 295) 0.369 
C3 (g/L, NA=7) 0.51 (0.18, 1.61) 0.71 (0.22, 1.31) 0.546 
C4 (g/L, NA=7) 0.06 (0.01, 0.90) 0.075 (0.02, 0.21) 0.753 
Anti-dsDNA (NA=22) 119 (0, 3503) 220 (42, 3770) 0.841 
IgG (g/L, NA=27) 14.6 (0.9, 70.2) 11.8 (2.8, 33.1) 0.397 
IgA (g/L, NA=28) 2.06 (0.8, 4.9) 2.36 (0.3, 3.7) 0.907 
IgM (g/L, NA=28) 1.11 (0.4, 9.6) (0.07, 2.5) 0.271 
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Hydroxychloroquine  Y: 21, N: 18 Y: 12, N: 13 0.648 
Mycophenalate Mofetil Y: 10, N: 29 Y: 6, N: 19 0.882 
Prednisolone Y: 24, N: 15 Y: 14, N: 11 0.660 
IV immunoglobulin (IVIG) Y: 2, N: 37 Y: 2, N: 23 0.646 
Rituximab ever Y: 2, N: 37 Y: 1, N: 14 0.835 
Cyclophosphamide ever Y: 3, N: 36 Y: 2, N: 23 0.964 
ACEi or AT2i8 Y: 11, N: 28 Y: 4, N: 21 0.266 
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Mucocutaneous involvement Y: 23, N: 16 Y: 15, N: 10 0.935 
Neuropsychiatric involvement Y: 3, N:36 Y: 3, N: 22 0.567 
Musculoskeletal involvement Y: 19, N: 20 Y: 14, N: 11 0.570 
Gastrointestinal involvement Y: 0, N: 39 Y: 3, N: 22 0.990 
Opthalmological involvement Y: 0, N: 39 Y: 2, N: 23 0.992 
Total numerical BILAG score 11 (3, 27) 11 (1, 53) 0.333 

Table 3-6: Summary statistics and univariate logistic regression test results for 
all variables at the time of active LN with proteinuria onset, in those who did/did 
not recover from proteinuria. 
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Summary statistics used for continuous variables (median, min, max), whereas number count was 
detailed for discrete variables. Missing data shown in brackets with NA. 1Ethnicity classification 
simplified to Caucasian or non-Caucasian. 2Medication use (yes) or non-use (no) rather than absolute 
drug dose. 3BILAG defined organ domain involvement (yes = BILAG score of A/B, no = D/E). 
4Baseline Proteinuria = UACR or UPCR measurements depending on hospital laboratory (mg/mmolCr). 
5BILAG defined severe hypertension = blood pressure rising above 95th centile for gender and age 
according to height centile within 1 month +/- grade 3 or 4 Keith-Wagener-Barker retinal changes. 
6Nephrotic syndrome = heavy proteinuria (> 50 mg/kg/day or > 3.5 g/day or  UPCR> 350 mg/mmol or 
UACR > 350mg/mmol) + hypoalbuminaemia + oedema). 7Active urine sediment = pyuria (> 5 white 
cells/hpf), haematuria (> 5red cells/hpf) or red cell casts in absence of other causes. 8ACEi or AT2i = 
Angiotensin inhibitor or angiotensin receptor blocker. 
 

Significant covariate variables remaining after backward stepwise model selection 

included ethnicity (Caucasian or non-Caucasian), eGFR, Azathioprine use, BILAG 

defined cardiorespiratory involvement and haematological involvement (all p<0.05, 

see Table 3-7).  

 

Clinical and demographic factors at LN onset Odds ratio (95% CI) p 
Ethnicity (Caucasian vs. non-Caucasian) 14.19 (2.52, 122.63) 0.007 
eGFR 1.04 (1.015, 1.08) 0.007 
Azathioprine use 0.093 (0.0070,  0.78) 0.044 
Cardiorespiratory involvement   11.22 (1.57, 107.54) 0.022 
Haematological involvement     0.13 (0.025, 0.53) 0.007 

Table 3-7: Multivariate logistic regression model differentiating those who 
recovered and did not recover from proteinuria following an LN flare. 
eGFR= estimated glomerular filtration rate, CI = confidence interval. 
 

Caucasian patients, those with a higher eGFR and BILAG defined cardio-respiratory 

involvement at the time of LN onset were more likely to recover from proteinuria 

(following an LN flare) during the study period. Those receiving Azathioprine 

treatment and with BILAG-defined haematological involvement were less likely to be 

recovered. The ability of the multivariate model to predict the two patient outcomes 

(proteinuria recovered/not-recovered following an LN flare) was assessed using AUC 

ROC analysis, providing a good AUC value of 0.830 (see Figure 3-4).  
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Figure 3-4: ROC curve of multivariate logistic model predicting the two patient 
outcomes (proteinuria recovered/not-recovered). 
 

3.5.3.2! Do clinical and/or demographic factors at LN onset influence time to 
recovery from proteinuria following an LN flare?  

The same clinical and demographic factors (at the time of LN onset, detailed in Table 

3-2 above) were tested for association with the outcome (time to recovery from 

proteinuria following an LN flare) using Cox proportional hazard regression 

modelling. The following covariates, including age of LN onset, serum creatinine, 

eGFR, neutrophil count, physician global assessment and BILAG defined 

haematological involvement had  p of <0.2 (see Table 3-8), and were therefore 

considered with a multiple regression model. All other co-variates had a p of >0.2 and 

were therefore not included within the multiple regression model (full data available 

in Appendix 18). 
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Clinical and demographic factors at LN onset p 
Age at LN onset 0.013 
Serum creatinine 0.184 
eGFR 0.060 
Neutrophil count 0.197 
Physicians global assessment 0.107 
Haematological involvement 0.038 

Table 3-8: Univariate association for each variable with outcome (time to 
recovery from proteinuria following LN flare) using Cox proportional hazard 
regression modelling. 
Descriptive statistics for these variables are shown in Table 3-6, and therefore not repeated here. 
 
The multivariate regression model identified younger patients, those with a lower 

eGFR and haematological involvement at the time of LN onset to have a longer time 

to recovery from proteinuria (see Table 3-9). For all three covariates, the 95% CI’s for 

the HRs excluded one. The concordance statistic was 0.719 for the multivariate Cox 

proportional hazard model, which showed that the model accurately discriminated 

patients 71.9% of the time. 

 

Clinical and demographic factors at LN 
onset 

HR (95% CI) p 

Age at LN onset (years) 1.384 (1.0952, 1.7501) 0.007 
eGFR 1.016 (1.0010, 1.0305) 0.035 
Haematological involvement 0.324 (0.1294, 0.8115) 0.016 

Table 3-9: Multivariate logistic regression model showing factors associated with 
time to recovery from proteinuria following an LN flare. 
eGFR= estimated glomerular filtration rate, HR = hazard ration, CI = confidence interval. 
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The median age for those who recovered from proteinuria was 14 years, therefore the 

Kaplan Meyer plot for age (see Figure 3-5) divides the patients into two sub-groups 

aged <14 years (n=32), and >14 years (n=31). This plot demonstrates that at a given 

time, patients who are older at the time of LN onset are more likely to have recovered 

from proteinuria (univariate analysis p=0.007). 

 

 
Figure 3-5: Kaplan-Meier plot for age (<14 vs. >14 years) 
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The Kaplan Meyer plot for eGFR (see Figure 3-6) divides the patients into two 

clinically relevant sub-groups with an eGFR of <80 mls/min (in the abnormal range, 

n=12) or >80 mls/min (in the normal range, n= 51). This plot demonstrates that at a 

given time, patients with a eGFR of >80 mls/min at LN onset are more likely to have 

recovered from proteinuria (univariate analysis p=0.035).  

 

 
Figure 3-6: Kaplan-Meier plot for eGFR (<80 vs. >80 mls/min) 
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The Kaplan Meyer plot for haematological involvement (see Figure 3-7) divides the 

patients into those with and without haematological involvement (n=45 and 18 

respectively). This plot illustrates that at a given time, patients without haematological 

involvement at LN onset are more likely to have recovered from proteinuria at each 

time point (univariate analysis p=0.016). 

 

 
Figure 3-7: Kaplan-Meier plot for haematological involvement 
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3.5.4! Traditional biomarkers and identification of active LN  
3.5.4.1! Patient demographics and traditional clinical biomarkers  
A larger number of JSLE patients was seen in the current study (n=370), when 

compared to those presented in sections 3.5.1 and 3.5.3, due to inclusion of patients 

who were followed-up in paediatric or adult rheumatology, even if they only had a 

single study visit. 191 active LN and 179 inactive LN patients were investigated, with 

a median age of 12.7 and 12.8 years respectively at diagnosis. At the time of analysis, 

median disease duration for active and inactive LN patients was 1.5 [0-4.6] and 1.6 [0-

5.7] years respectively. The non-renal traditional biomarker concentrations in the 

active and inactive LN patient groups are summarised in Table 3-10.   

 

 Inactive LN (n=179)1 Active LN (n=191)1 
Age at diagnosis (years) 12.7 [10.1-14.3] 12.8 [10.8-14.5] 
Disease duration (years) 1.6 [0-5.7] 1.5 [0-4.6] 
Female gender (n, %) 149 (83%) 159 (84%) 
Caucasian ethnicity2 (n, %) 95 (54%) 95 (51%) 
Anti-dsDNA (IU/L, NA=62) 29 [7-154] 77 [13-261] 
C3 (g/L, NA=31) 0.99 [0.75-1.23] 0.78 [0.43-1.08] 
C4 (g/L, NA=32) 0.15 [0.08-0.20] 0.10 [0.05-0.19] 
ESR (mm/h, NA=43) 18 [6-40] 40 [11-80] 
CRP (mg/L, NA=64) 5 [3-7] 5 [3-7] 
Haemoglobin (g/dl, NA=3) 12.1 [10.8-13.2] 11.5 [9.9-12.8] 
White cells (x109/L, NA=5) 5.4 [4.2-7.1] 5.7 [4.0-8.8] 
Neutrophils (x109/L, NA=5) 3.2 [2.1-4.3] 3.6 [2.4-6.4] 
Lymphocytes (x109/L, NA=5) 1.3 [0.9-1.9] 1.3 [0.9-1.9] 
Platelets (x109/L, NA=6) 270 [207-325] 261 [196-335] 
IgG (g/L, NA=79) 13.7 [10.9-18.6] 12.0 [9.2-18.1] 
IgA (g/L, NA=81) 1.8 [1.2-2.4] 1.9 [1.2-2.8] 
IgM (g/L, NA=83) 1.2 [0.8-1.7] 1.0 [0.6-1.6] 

Table 3-10: Key demographic data for the JSLE patients included in the 
traditional biomarkers study. 
1Results expressed as median values and IQRs or absolute counts and percentages as appropriate. 
2Ethnicity classification simplified to Caucasian or non-Caucasian. 
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3.5.4.2! Strength of traditional biomarkers for identifying active LN  
A binary multiple logistic regression model was fitted including all non-renal 

traditional biomarkers, and then applying the ‘StepAIC’ function in R [360]. The final 

selected model included six biomarkers including ESR, C3, WCC, neutrophils, 

lymphocytes and IgG (see Table 3-11). The AUC corresponding to this final model 

was 0.724, demonstrating this optimal combination of traditional non-renal biomarkers 

to have ‘fair’ ability for active LN identification. 

 

Biomarkers 

Final model fitted by including all biomarkers in a 
multiple logistic regression1 

Co-efficient Std. Error p AUC2 
ESR 0.019 0.007 0.003  

 
0.724 

C3 -1.035 0.488 0.034 
White cells -0.699 0.423 0.098 
Neutrophils 0.795 0.427 0.060 
Lymphocytes  0.735 0.503 0.144 
IgG -0.061 0.026 0.017 

Table 3-11: Binary logistic regression model for identification of active LN using 
traditional biomarkers. 
1185 patients (88 active LN and 97 inactive LN) included in this model as patients excluded when 
traditional biomarker measurements were missing. 2AUC: area under the curve. 

 

3.5.5! Novel urine biomarker identification – HKI Multiplex Assays  
3.5.5.1! Patient demographics 
A total of 35 patients from the UK JSLE Cohort Study were included in HKI multiplex 

assay analysis, 13/35 (37%) were classed as active LN and 22/35 (63%) as inactive 

LN JSLE patients. Active and inactive LN patients had a median diagnosis age of 12 

[8-13] and 10 [8-12] years respectively, with a median disease duration of 4.6 [2.9-

6.2] and 4.5 [2.1-6.7] years at the time of biomarker analysis. All patients had a median 

of 5 [4-7] ACR criteria at diagnosis. 92% of the active LN and 82% of the inactive LN 

patients were female (see Table 3-12). Overall, 37% of patients were Caucasian, 26% 

Indian/Pakistani and 14% were of African origin. 9% were Caribbean or Chinese and 

5% were mixed race 

 

At a later date, 30 US Cohort patients were included; 16/30 (53%) were classed as 

having active LN, and 14/30 (47%) as inactive LN JSLE patients. Active and inactive 

LN patients had a median diagnosis age of 17 [15-19] and 15 [14-17] years 
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respectively, with a median disease duration of 1.7 [0.5-5.6] and 3.1 [1.2-4.8] years at 

the time of biomarker analysis. 71% of the active LN and 100% of the inactive LN 

patients were female (see Table 3-12). Overall, 55% of patients were African 

American, 41% Hispanic and 4% Asian. 

 

 UK Cohort US Cohort 
Active LN 

(n=13) 
Inactive LN 

(n=22) 
Active LN 

(n=16) 
Inactive LN 

(n=14) 
Age at Diagnosis 
(years) 

12 
[8-13] 

10 
[8-12] 

17 
[15-19] 

15 
[14-17] 

Disease duration 
(years) 

4.6 
[2.9-6.2] 

4.5 
[2.1-6.7] 

1.7 
[0.5-5.6] 

3.1 
[1.2-4.8] 

Female 12 (92%) 18 (82%) 10 (71%) 16 (100%) 
ACR criteria at 
diagnosis 

5 
[4-7] 

5 
[4-7] 

5 
[4.5-6.0] 

5 
[5.0-5.8] 

Table 3-12: Demographic data for UK and US patients who contributed samples 
for HKI biomarker multiplex analysis. 
 

3.5.5.2! Human Kidney Injury urine biomarker concentrations  
Three different HKI assays were undertaken as detailed in section 3.4.5. For each 

assay, Table 3-13 shows the assay sensitivities in terms of the minimum detectable 

concentration for each biomarkers, low and high standard curve values (demonstrating 

the range of the assay), and the expected/actual QC values, whilst running each assay 

with UK and US Cohort samples. QC failures were reported when UK Cohort samples 

were run for GST-# , GST-), TIMP-1 (QC2 values only, all higher than expected), 

however, the difference between the expected and actual QC values was minimal. A 

QC failure was also seen for Albumin (both QC1 and QC2) when UK Cohort samples 

were run. A large discrepancy was seen between the actual and expected QC1 levels 

(actual 10.26, minimum expected 24 ngmL), with a smaller difference seen for QC2s 

(actual 255.71, minimum expected 260 ngmL). 
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 Biomarker Min 
DC1 

Low  
STN2 

 
High  
STN 

Expected QC3 range 
UK Cohort 

actual 
values4 

US Cohort 
actual 
values4 

QC 1 QC 2 QC 
1 

QC 
2 

QC 
1 

QC 
2 

H
K

I a
ss

ay
 1

 
Calbindin 
 

0.062 0.2 
200 1.2-2.4 13-26 2.1 17.2 1.6 16.2 

GST-#5 
 

0.043 0.05 
50 0.38-0.78 3.4-7.1 0.7 7.3 0.6 7.1 

GST-)6 
 

0.076 0.05 
50 0.29-0.60 3.0-6.2 0.6 6.9 0.5 5.7 

Osteoact7 
 

0.056 0.1 
100 0.62-1.3 6.7-14 1.2 12.7 1.1 10.4 

TIMP-18 
 

0.078 0.1 
100 0.61-1.3 6.9-14 1.3 15.9 1.2 10.3 

KIM-19 
 

0.014 0.05 
50 0.30-0.63 3.3-6.8 0.6 6.5 0.6 5.0 

IP-1010 
 

0.004 0.005 
5 0.03-0.07 0.33-0.68 0.07 0.6 0.06 0.5 

Renin 
 

0.016 0.02 
25 0.15-0.31 1.5-3.2 0.3 2.7 0.3 2.4 

FABP-111 
 

3.061 6 
6000 41-85 426-884 70.3 685 78.0 633 

Collagen-4  0.094 0.3 
350 2.2-4.6 23-49 4.3 41.3 3.9 35.9 

TFF-312 
 

0.312 0.5 
500 3.3-6.6 33-68 3.7 43.3 3.8 36.4 

H
K

I a
ss

ay
 2

 

EGF13 
 

0.02 0.01 
10 0.06-0.13 0.64-1.3 0.08 0.9 0.08 0.8 

NGAL14 
 

0.01 0.02 
20 0.13-0.26 1.2-2.6 0.16 1.8 0.16 1.7 

Albumin 
 

3.15 3.9 
4000 24-49 260-540 10 255 24 300 

Clusterin 
 

2.46 4.9 
5000 29-60 306-636 33 40 33 370 

Cystatin C  0.16 0.02 
20 0.12-0.24 1.2-2.5 0.2 1.8 0.2 1.6 

OPN15 
 

0.40 0.6 
600 4.0-8.4 38-78 4 47  5 43 

A1mG16 
 

0.70 1.0 
1000 6.1-133 66-138 6 83 6 78 

H
K

I  
as

sa
y 

3 Uromod17 
 

0.06 0.1 
100 0.60-1.25 6.4-13.2 1.2 9.4 0.7 11.4 

$2M18 
 

0.02 0.1 
100 0.30-0.63 3.0-6.2 0.5 4.3 0.4 4.9 

RBP-419 
 

0.08 0.05 
50 0.63-1.31 6.3-13.1 1.0 9.3 0.7 9.0 

Table 3-13: HKI assays 1-3: assay sensitivity, standard curve range and 
expected/actual quality control values.  
All biomarker concentrations measured in ng/ml. 1Min DC = minimum detectable concentration. 2Low 
and high standard curve values demonstrate the standard curve range. 3Expected quality control (QC) 
values provided by assay manufacturers. 4Actual observed QC measurements from the UK and US 
cohorts, with those that are out of range highlighted in bold text. 5GST-# = Glutathione-S-transferase-
#. 6GST-) = Glutathione-S-transferase-). 7Osteoact = Osteoactivin.8TIMP-1 = tissue inhibitor of 
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metaloproteases-1. 9KIM-1 = kidney injury molecule-1. 10IP-10 = Interferon gamma inducible protein 
10. 11FABP-1 = Fatty Acid Binding Protein 1. 12TFF-3 = trefoil factor 3. 13EGF = epidermal growth 
factor. 14NGAL = neutrophil gelatinase associated lipoclain. 15OPN = osteopontin. 16A1mG = Alpha-1-
microglobulin. 17Uromod = Uromodulin. 12$2M = beta-2-microglobulin. 13RBP = Retinol-binding 
protein 4. 
 

HKI-1 and 3 assay urine biomarker concentrations did not differ between active and 

inactive LN patients in either the UK or US Cohort (all pc=1.0, see Table 3-14). A 1:2 

dilution was used when running the HKI-1 assay as per manufacturer’s instructions. 

At this dilution FABP-1 levels fell below the lowest standard point and were 

extrapolated (see Table 3-13 and Table 3-14). For all other biomarkers, levels were 

detected in acceptable regions of the standard curve. With HKI-2, Albumin levels 

differed significantly between active LN and inactive LN patients (median of 522 

ngmgCr [IQR 274-1631] and 46 ngmgCr [IQR 29-115] respectively, pc<0.001). No 

difference was seen in UK Cohort Albumin levels, although a QC failure was detected 

for Albumin when the UK samples were run (see Table 3-13) questioning the 

reliability of the results for this analyte. No other biomarkers displayed a significant 

difference between patient groups (see Table 3-14). For all HKI-2 assay biomarkers, 

patient values were detected in acceptable regions of the standard curve.   
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Table 3-14: HKI Multiplex panel 1, 2, 3 urine biomarker concentrations in UK 
and US Cohort patients. 
Biomarker concentrations standardised to urinary creatinine (ngmgCr) and expressed as median values 
and IQRs. 1Mann Whitney U tests used to compare biomarker concentrations between active and 
inactive LN patients, and Bonferroni adjustment applied to account for multiple testing within each 
assay (HKI 1 = 11 tests, HKI 2 = 7 tests, HKI 3 = 3 tests), and corrected p-values (pc) reported. 
Significant differences highlighted with bold text. 2Calbin = calbindin. 3GST-# or ) = Glutathione-S-
transferase-# or ). 4Osteoa = osteoactivin. 5TIMP-1 = tissue inhibitor of metaloproteases-1. 6KIM-1 = 
kidney injury molecule-1. 7IP-10 = Interferon gamma inducible protein 10. 8FABP1 = Fatty Acid 
Binding Protein 1. 9Coll-4 = collagen 4. 10TFF-3 = trefoil factor 3. 11EGF = epidermal growth factor. 
12NGAL = neutrophil gelatinase associated lipoclain. 13Alb = albumin. 14Clust = clusterin. 15Cys C = 
cystatin C. 16OPN = osteopontin. 17A1mG = Alpha-1-microglobulin. 18Urom = uromodulin. 19$2M = 
beta-2-microglobulin. 20RBP = Retinol-binding protein 4. 
 

Biomarker UK Cohort US Cohort 

Active LN 
(n=13) 

Inactive LN 
(n=22) 

pc
1 Active LN 

(n=16) 
Inactive LN 

(n=14) 
pc

1 
H

K
I 1

 

Calbin2 3.4 [2.4-7.4] 5.4 [3.5-8.7] 1.0 0.4 [1.5-4.4] 0.2 [1.5-5.3] 1.0 

GST-#3 4.6 [19-99] 6.6 [19-83] 1.0 0.02 [2.4-18] 0.36 [0.9-4.0] 1.0 

GST-)3 2.4 [17-27] 7.4 [10-15] 1.0 1.6 [7.0-18] 1.2 [0.8-1.1] 1.0 

Osteoa4 0.63 [1.2-2.5] 0.89 [1.3-2.7] 1.0 0.6 [0.8-2.2] 0.60 [0.9-2.0] 1.0 

TIMP-15 1.5 [3.7-16] 1.0 [1.7-3.3] 1.0 1.7 [3.9-7.4] 1.1 [1.6-3.1] 1.0 

KIM-16 0.38 [0.9-3.0] 0.71 [0.9-1.5] 1.0 0.3 [0.7-1.2] 0.3 [0.4-0.7] 1.0 

IP-107 0.02 [0.03-0.05] 0.02 [0.03-0.07] 1.0 0.01 [0.05-0.08] 0.0 [0.02-0.03] 1.0 

Renin 0.03 [0.06-0.16] 0.04 [0.06-0.10] 1.0 0.01 [0.03-0.03] 0.02 [0.03-0.06] 1.0 

FABP-18 3.5 [12-17] 4.9 [15-32] 1.0 1.2 [5.8-16] 0.43 [1.6-6.3] 1.0 

Coll-49 27 [44-63] 37 [41-54] 1.0 23 [32-47] 16 [24-32] 1.0 

TFF-310 3.0 [7.8-20] 3.4 [6.5-9.0] 1.0 3.5 [6.3-21] 1.4 [2.6-5.4] 1.0 

H
K

I 2
 

EGF11 42 [5-60] 53 [30-87] 1.0 18 [12-23] 21 [14-29] 1.0 

NGAL12 48 [16-146] 46 [19-120] 1.0 35 [15-196] 28 [12-105] 1.0 

Alb13 125 [58-391] 60 [51-254] 1.0 522 [274-1631] 46 [29-115] <0.0
01 

Clust14 1442 [800-4124] 1581[1073-4238] 1.0 1586 [1257-4055] 2188 [845-5854] 1.0 

Cys C15 30 [5-54] 35 [26-54] 1.0 28 [19-32] 21 [18-36] 1.0 

OPN16 1506 [499-3517] 2739[1668-4419] 1.0 1246 [911-2065] 999 [792-1431] 1.0 

A1mG17 373 [313-3324] 836 [377-1572] 1.0 741 [228-1565] 339 [190-855] 1.0 

H
K

I 3
  Urom18 1954 [358-3701] 2976[1161-8992] 0.2

2 
812 [502-1565] 796 [578-2669] 1.0 

$2M19 258 [28-724] 151 [118-219] 1.0 1012 [563-2032] 1362 [660-2032] 1.0 

RBP420 651 [457-2611] 813 [616-1340] 1.0 187 [47-497] 401 [101-976] 1.0 
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3.6! Discussion  
Using existing clinical data from the UK JSLE Cohort Study, the main aim of this 

chapter was to explore the ability of clinical and demographic factors to differentiate 

patients with and without LN. In addition, it sought to determine whether such factors 

play a role in predicting the development of LN, the time to recovery from proteinuria 

following an LN flare, and their utility in identifying active LN. These analyses will 

in turn potentially help inform clinicians to be aware of patients who have an increased 

risk of future LN development, or slow proteinuria recovery from active LN.  

 

The role of traditional biomarkers in ongoing LN monitoring was found to be limited. 

The use of bio-banked urine samples was therefore adopted to screen for new urine 

biomarkers of LN activity using commercially available HKI assays.  

 

Clinical features characterising patients with LN at baseline. A total of 37% of UK 

JSLE Cohort Study patients were found to have active LN at baseline, with a further 

17% of patients developing LN after a median of 2.04 years [IQR 0.8-3.7]. These data 

highlight the ‘high risk’ period for LN development. Overall, 54% of patients were 

identified as ever having had LN. Other studies have reported 50-80% of JSLE patients 

to be affected by LN [28,29,37,108]. Differences in LN prevalence between cohorts 

may be due to variations in patient ethnicity and the method used for active LN 

identification. Watson et al looked at LN prevalence within the UK JSLE Cohort 

between 2006 and 2011, demonstrating 36% of patients to have ACR defined LN and 

80% to have LN if defined using disease activity assessed by the renal BILAG score 

[28]. Within the current study, LN patients were defined on the basis of biopsy and/or 

a renal BILAG score of A or B, whereas in the previous study renal BILAG C patients 

(mild renal disease) were also included in the renal BILAG defined LN group [28]. 

Hiraki et al demonstrated an LN prevalence of 37% in children, using the US Medicaid 

Analytic database for case identification [29], whereas Brunner at al reported a 78% 

LN prevalence in the Cincinnati JSLE cohort when LN was defined as a renal SLEDAI 

domain score of  >0 [36]. Sule et al studied another US JSLE cohort from Philadelphia, 

demonstrating 30% of patients to have developed LN during one month of diagnosis 

(defined by biopsy or meeting the ACR criteria for LN), with a further 30% developing 

LN within a median of 3.2±2 years [362].   
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Within the current study, six clinical and demographic factors were found to differ 

significantly between those with and those without LN at baseline. These were: the 

patient’s first ACR score, presence of severe hypertension and levels of proteinuria, 

serum creatinine, ESR and C3. Both ACR score and C3 levels at baseline were also 

identified as significant predictors for subsequent LN development. Such factors were 

also investigated by Sule et al [362], identifying low serum albumin and positive anti-

dsDNA as differentiating LN and non-LN patients. They also identified isolated sterile 

pyuria and low serum albumin as predictors of future LN [362]. Their study included 

predominantly African American patients and a smaller samples size than the UK 

study detailed within this chapter.  

 

Predictors of recovery from proteinuria following an LN flare – A total of 39% of 

patients were shown to recover from proteinuria following an LN flare during the study 

period, within a median of 17 months (IQR 3.5-49.2) with the remaining 61% 

continuing to have proteinuria after a median of 22 months (IQR 12.1-41.1). This 

observation provides useful information on the length of time necessary for proteinuria 

to resolve following an LN flare in clinical practice, as opposed to a clinical trial 

setting. This study included more patients than the previous study discussed above 

(characterising patients with LN at baseline and identifying factors predicative of 

subsequent LN development), as patients did not have to be recruited to the UK JSLE 

Cohort Study within one year of JSLE diagnosis to be eligible. The spot UPCR or 

UPCR ratio cut off chosen for inclusion in this study was >50ng/mmol (for either 

quantification method), corresponding with the minimum level required to score a 

renal BILAG score of B. The spot UPCR or UACR ratio cut off for recovery was 

chosen to be <25mg/mmol, on the basis that such a proteinuria level would not be 

adequate to even score a renal BILAG C score. 

 

The frequency and severity of LN is known to be increased in patients of African, 

Hispanic and Asian origin [30,32,222,281]. It is therefore not surprising that ethnicity 

differentiated patients who did and did not recover from proteinuria following an LN 

flare (p=0.007). Patients of non-Caucasian ethnicity were grouped due to the small 

numbers seen in individual ethnic minority groups, however, further assessment of 

such groups could reveal additional differences. Reductions in eGFR usually occur 
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following significant renal damage and may be preceded by a period of hyper-filtration 

[377-379]. It is therefore also not unexpected that low eGFR was found to differentiate 

those who did/did not recover from proteinuria following LN flare, and bear influence 

on time to recovery. Patient use of azathioprine at the time of LN onset differentiated 

patients who did from those who did not recover from proteinuria during follow-up. 

Azathioprine has been shown to display equivalence with MMF as maintenance 

treatment for LN [168]. However, it is not usually used as an induction treatment, 

having been shown to be inferior to MMF and cyclophosphamide when used for 

induction [380]. As this study collects historic data it may be that some patients 

received Azathioprine induction treatment. Younger patient age at the time of LN onset 

was shown to influence time to recovery from proteinuria, likely reflecting the more 

severe disease phenotype and potential genetic predisposition to JSLE/LN seen in 

younger patients [28,36,40,381-384]. Haematological involvement may affect the 

ability to intensify immunosuppressant treatment due to concerns about treatment 

toxicity, thereby differentiating patients who did/did not recover from proteinuria.  

There is no clear evidence as to why cardio-respiratory involvement should 

differentiate those who did/did not recover, however it can be speculated that 

associated factors like hypertension or poor renal perfusion could play a role. 

Awareness of these factors is important for stratification of patients at the time of LN 

onset, and considering the intensity and duration of early immunosuppressive therapy. 

 

Traditional biomarkers and LN monitoring – This study included a larger number of 

active LN patients (191/370) compared to the previous studies looking at clinical 

predictors for LN (155/331) and recovery of proteinuria following an LN flare 

(64/350). The results from the current study included data from a single patient visit 

whereas the first two studies featured more stringent inclusion criteria, e.g. 

requirement for recruitment to the UK JSLE Cohort within 1 year of diagnosis, >1 

follow-up visit, serial proteinuria data, patients followed up within paediatric practice 

only, thus reducing the number of available patients.  

 

ESR, C3, WCC, neutrophils, lymphocytes and IgG were found to contribute 

significantly to the optimal model for active LN identification, displaying ‘fair’ test 

accuracy (AUC 0.724). These results complement those of an adult SLE study which 

showed decreases in C3 to be associated with renal disease activity [368]. In a 
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prospective study serially monitoring C3/C4 levels in adult SLE patients, C4 was 

demonstrated to deteriorate before C3, starting 25 and 20 weeks respectively before 

the LN flare becoming clinically detectable [385]. Together with anti-dsDNA antibody 

levels, C3/C4 levels have been shown to have a good negative predictive value for 

active LN in a 6-year prospective study of 228 LN patients [386]. Our findings relating 

to ESR are also in keeping with those of a recent study that showed ESR to be 

correlated with renal involvement according to the Lupus Activity Index VAS and the 

SLEDAI score. ESR was also correlated with haematuria and proteinuria. Over time, 

a change in ESR between two visits was highly correlated with a concurrent change in 

the renal VAS [387].  

 

Anti-dsDNA antibody levels did not feature in the final multiple logistic regression 

model. Similar results have previously been reported in a study assessing anti-dsDNA 

antibody and C3/C4 levels, in 53 adult SLE patients 3-9 months preceding a flare. For 

all three tests, sensitivity and specificity for predicting renal and non-renal flares was 

in the region of 50% and 75% respectively, with positive and negative likelihood ratios 

being close to 1.0, suggesting little clinical value as a routine test [259]. In contrast, 

high titres of anti-dsDNA have been shown to differentiate proliferative from non-

proliferative LN at the time of renal biopsy [258], with some studies concluding that 

increased anti-dsDNA antibody levels should prompt pre-emptive treatment due to 

anti-dsDNA’s strong ability to predict SLE flares [388]. These conflicting results may 

be due to differences in sample size, disease activity measures and the frequency of 

biomarker testing. 

 

Overall, the ability of traditional non-renal immunological, haematological and 

inflammatory biomarkers for identifying active LN flares was rather disappointing. It 

is recognised however, that in clinical practice such markers would be considered 

alongside the information gained from traditional renal biomarkers (e.g. proteinuria, 

blood pressure, serum creatinine, GFR, urine sediment, and recent biopsy findings). 

As the definition of active LN was based on the composite renal BILAG score 

(calculated from the above renal biomarkers) it was not possible to add such traditional 

renal biomarkers as covariates within the regression model analysis. This would be 

necessary to provide the overall picture of the diagnostic tests currently available to 

the clinician. Further large, prospective longitudinal studies are required to look more 
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closely at the relationship between all traditional biomarkers and changes in LN 

activity using different outcome measures over time. 

 

Novel urine biomarker identification using HKI multiplex assays – A total of 21 

urine biomarkers previously implicated in drug induced HKI were assessed in 40 UK 

JSLE Cohort Study and 30 US Cohort patients, using commercially available 

multiplex assays. The only significant difference in biomarker levels between patient 

groups was for Albumin in the US Cohort (pc<0.001). No difference was seen in UK 

Cohort Albumin levels, although a QC failure was detected for Albumin when these 

samples were run (see Table 3-13). Other QC failures were reported when UK Cohort 

samples were run for GST-# , GST-), TIMP-1 (QC2 values only). Ideally these assays 

would be repeated but given the cost, that urinary Albumin is already known to be 

elevated in LN [344,345] and that differences in GST-# , GST-), TIMP-1 were not 

seen between US active and inactive LN patient groups, therefore repeating these 

assays was not considered worthwhile.  

 

Of the 21 markers explored by the HKI assays, only IP-10, NGAL, KIM-1, A1mG and 

uromodulin have previously been investigated in LN urine. In keeping with the results 

of this study, previous work using UK JSLE Cohort urine samples and ELISA 

techniques also failed to demonstrate a significant difference in urinary IP-10 levels 

between active and inactive LN patients [72].  NGAL has previously been shown to 

predict LN flare within the UK JSLE Cohort Study [74], but, like the current study, 

was unable to differentiate active and inactive patients on a cross-sectional basis [389]. 

Further investigation of its role is warranted in larger patient numbers/using distinct 

techniques for NGAL measurement.  

 

KIM-1, a marker of proximal tubular damage has been assessed in 37 active LN and 

20 inactive LN patients. 24 hour KIM-1 levels (ng/24h) were identified to be 

significantly higher in active LN than inactive LN urine samples [390]. This study 

differed from the current multiplex study where spot/random urine samples were 

included. Urinary KIM-1 has also been demonstrated to be part of a urine biomarker 

panel predictive of renal biopsy NIH Activity Index in 47 JSLE patients [348], 

however, its ability to differentiate active and inactive LN in isolation was again not 

investigated. A1mG, a glomerular marker, is one of a number of proteins associating 
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with ISN/RPS LN class and chronicity within an adult proteomic study [343]. In 

contrast to the current study, Uromodulin (also known as Tamm-Horsfall 

Glycoprotein) has been shown to be lower in patients with active LN than inactive LN 

patients in a small adult study including 15 active and 12 inactive LN patients [337]. 

From these HKI assays, it is clear that a more targeted approach to novel biomarker 

analysis is required, validating markers with good existing evidence in adult or 

paediatric SLE (see section 1.3), with the aim of optimising such tests.  

 

3.7! Summary  
Using existing clinical data from the UK JSLE Cohort Study, this chapter has explored 

the ability of basic clinical and demographic factors to stratify JSLE patients as high 

or low risk for LN at the time of their initial presentation and during the disease course.  

It has demonstrated that proteinuria can be persistent following an LN flare in children 

within a real world clinical setting. The characteristics of patients who are at increased 

risk of having prolonged proteinuria following an LN flare are described. Early 

reduction in proteinuria following initiation of immunosuppressive therapy has been 

shown to be associated with improved longer term renal outcomes in adult SLE, 

therefore, appreciation of those at risk of prolonged proteinuria may help the clinician 

to change, or fine-tune the intensity and duration of early immunosuppressive therapy. 

Paediatric rheumatologists and nephrologists rely heavily upon non-invasive blood 

and urine markers during ongoing LN monitoring. This study highlights that at best, 

haematological, immunological and inflammatory markers only display ‘fair’ ability 

for differentiating active from inactive LN. This significantly limits their use in this 

regard.  

 

Urine biomarkers that have been developed for identifying drug-induced renal damage 

and nephrotoxicity have not proven in this present study to be useful in an LN setting. 

This highlights that a more targeted approach to novel biomarker analysis is required 

in LN, with the aim of accelerating the translation of such tests into clinical practice.  
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3.8! Conclusions 
•! Active LN was demonstrated at baseline in 37% of UK JSLE Cohort Study 

patients, with a further 17% developing LN after a median of 2.04 years [IQR 

0.8-3.7], highlighting the ‘high risk’ LN period.  

•! First ACR score, presence of severe hypertension, levels of proteinuria, serum 

creatinine, ESR and C3, differed significantly between those with and without 

LN at baseline. ACR score (>5) and C3 (<0.9g/L) at baseline were identified 

as significant risk factors for subsequent LN. 

•! 39% of patients were shown to recover from proteinuria following an LN flare 

during the study period, within a median of 17 months (IQR 3.5-49.2). At a 

given time, patients who were older (>14 years), had a normal eGFR (>80 

mls/min) and no haematological involvement at the time of LN onset, were 

more likely to have recovered from proteinuria following an LN flare. 

•! At best, the optimal haematological, immunological and inflammatory markers 

(namely: ESR, C3, WCC, neutrophils, lymphocytes and IgG) displayed only a 

‘fair’ ability for identifying active LN, limiting their use in this regard. 

•! Urine biomarkers of drug-induced renal damage/nephrotoxicity have not 

proven useful in an LN setting.  

•! A more targeted approach, validating the most promising biomarkers to date is 

required, with the aim of accelerating their translation into clinical practice.  
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4! Targeted analysis of urine biomarkers and 
development of a urine biomarker panel for 
identifying active LN  

 

4.1! Introduction  
In Chapters 1 and 3, evidence from the existing literature and UK JSLE Cohort Study  

demonstrated that conventional markers of JSLE disease activity such as anti-dsDNA, 

C3/C4, ESR and full blood count parameters are poor at adequately identifying the 

occurrence of LN flares.  

 

In Chapter 3, screening of urinary biomarkers previously implicated in kidney injury 

models and/or drug toxicity studies was undertaken in urine samples from patients in 

the UK JSLE Cohort Study, showing that such markers are not informative in an LN 

setting.  

 

Building on this, Chapter 4 includes targeted analysis of promising urine biomarkers 

identified from the existing literature (see section 1.3), assessing whether combinations 

of such markers can improve active LN identification, over and above individual 

markers.  

 

4.1.1! Promising individual urine biomarkers in LN 
The existing evidence for urinary biomarkers in LN has been reviewed extensively in 

Chapter 1. From this, the most promising biomarkers to date warranting further 

evaluation appear to be MCP-1, NGAL, VCAM-1, AGP, CP, LPGDS and TF (see 

section 1.3). Urinary MCP-1, NGAL and VCAM-1 have been shown to individually 

outperform both traditional and novel serum biomarkers for identification of LN, with 

extensive evidence for MCP-1 and NGAL within paediatric studies (see sections 

1.3.4.2.1 and 1.3.4.2.2) [74,297,304,328,329]. There is strong evidence for VCAM-1 

in adult SLE but this had not been investigated in JSLE and warrants investigation (see 

section 1.3.4.2.3) [297,308,326-329]. AGP, TF and CP have been identified within 

two JSLE proteomic studies [290,345] and validated with alternative forms of protein 

binding techniques (ELISA and immunonephelometry), adding strength to the initial 

proteomic findings (see section 1.3.5.2 and Table 1-12) [318,348]. Within the UK 
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JSLE Cohort Study, urinary MCP-1 and AGP have been shown to differentiate patients 

with active LN, inactive LN and HCs [72]. Longitudinally, MCP-1 was found to be a 

good predictor of improving disease (AUC = 0.81), and NGAL was a fair biomarker 

of worsening disease [74]. Adult-onset SLE studies have indicated similar results 

[299,300].  

 

4.1.2! Biomarker panels  
To date, no individual urine biomarker has achieved an ‘excellent’ predictive ability 

(AUC>0.9) for identifying active LN on its own. The individual constituents of the 

JSLE LN proteomic signature described by Suzuki et al, including TF, CP, AGP, 

LPGDS, albumin and albumin-related fragments [290,345], displayed fair to good 

ability to identify SLEDAI or BILAG-defined active LN (AUC values between 0.68-

0.81), with the AUC improving to 0.85 when all of the biomarkers were considered 

together [290]. This observation highlighted the potential value of combining urinary 

biomarkers to improve diagnostic accuracy. A subsequent study demonstrated that 

combinations of urine biomarkers improve prediction of renal function loss in JSLE 

and SLE [391].  

 

The findings of proteomic biomarker studies are often criticised due to poor 

reproducibility. It is therefore important that the validity of biomarkers identified using 

these methods is assessed on distinct groups of patient cohorts, providing independent 

verification (see Table 1-12) [282,284]. Certain proteomic technology platforms may 

preferentially detect specific types of protein (e.g. high or low molecular weight), 

restricting their ability to actually undertake completely hypothesis free biomarker 

screening [392]. In the above proteomic studies by Suzuki et al [290,345], it is 

interesting that previously identified promising biomarkers such as MCP-1, VCAM-1 

and NGAL were not actually detected. This may in part be due to limitations of the 

proteomic techniques used. LN phenotype and severity can also vary with age, 

ethnicity and race [1,32,281], therefore it is also important to cross-validate previous 

results in ethnically distinct childhood SLE cohorts.  

 



  
138 

4.1.3! Effect of biomarker exposure on human podocytes  
Having determined a range of key biomarkers which are present in the urine of patients 

with active LN, a key question was whether these biomarkers originated from the 

kidneys themselves, reflecting local injury, or were being filtered through the 

glomerulus. This is currently under investigation by cell biologists within the 

University of Liverpool EATC for children. To explore this further, their impact upon 

a conditionally immortalised human podocyte cell line (see section 2.2.7 ) [358] was 

investigated as part of the current study, to gain an insight into whether such 

biomarkers may also be implicated in the pathogenesis of LN.  

 

In LN there is known to be increased urinary excretion of podocytes (identified in urine 

sediment), coupled with decreased expression of podocyte markers within kidney 

biopsies from LN patients [393]. Podocytes (see sections 1.1.7 and 2.2.7) are highly 

differentiated cells that are in direct contact with the urinary space and glomerular 

basement membrane, overlying the glomerular capillaries. They are formed of a body 

with extending major processes that branch further into intricately interdigitated foot 

processes, separated by a slit diaphragm. Although podocytes form the outer part of 

the glomerular filter, they are the cells that are most commonly affected during 

nephrotic diseases [394]. Loss of these cells due to apoptosis (or necrosis) would lead 

to their appearance in the urine, gross structural damage to the glomerulus and 

significant defects in the filtration barrier. It is therefore of relevance to assess in the 

first place, the effect of active synthetic or recombinant forms of these biomarkers in 

relation to podocyte apoptosis. 

 

A variety of cytokines, growth factors and their receptors have been shown to be 

produced by podocytes as part of LN and other kidney diseases [395,396]. Within our 

research group, podocytes have been shown to produce the chemokine MCP-1 in 

response to IFN-" activated macrophage media [359]. Similarly, in diabetic 

nephropathy in-vitro models, high glucose levels have been shown to induce MCP-1 

production [396]. Podocytes have also been shown to produce TWEAK [397], TNF-

# [396], IL-8 [398], IL-6 and IL-16 [399]. Following exposure of podocytes to active 

synthetic or recombinant forms of biomarkers, it would therefore be important to 
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undertake cytokine multiplex analysis, to examine whether a range of cytokines, 

chemokines and their receptors are produced.  

 

4.2! Hypotheses  
•! That a combination of novel biomarkers, identified through proteomic and 

candidate urine biomarker studies will improve the identification of active LN 

compared to those without active LN in children on a cross-sectional basis when 

compared to traditional biomarkers, as part of developing a potential ‘LN urinary 

biomarker panel’.  

•! That such urinary biomarkers are implicated in the pathogenesis of LN, inducing 

apoptosis and cytokine production in human podocytes. 

 

4.3! Aims and objectives 
The primary aim of this study was to assess if combining novel biomarkers can 

improve active LN identification. The secondary aim was to assess if addition of 

traditional JSLE disease activity data to a urine biomarker panel could help to further 

improve identification of active LN. The final aim was to assess whether the most 

promising urinary biomarkers for active LN identification induced apoptosis and 

cytokine production by human podocytes.  

 

The specific objectives of this chapter are: 

 

1.! To assess the performance of individual promising urine biomarkers for the 

identification of active LN in UK JSLE Cohort Study patients. 

 

2.! To assess if combining novel urine biomarkers in a biomarker panel, can improve 

identification of active LN, over and above individual biomarkers. 

 

3.! To evaluate the effect of adding traditional biomarkers data to such a urine 

biomarker panel, to see if this further improves identification of active LN.  
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4.! To assess urine biomarker levels in patients with and without active extra-renal 

JSLE disease.  

 

5.! To assess podocyte apoptosis using a Caspase-Glo® 3/7 assay following exposure 

to different concentrations of the most promising urine biomarkers for active LN 

identification. 

 

6.! To simultaneously quantify 41 different cytokines, growth factors and their 

receptors in podocyte supernatant following exposure to the most promising 

biomarkers previously identified in LN urine, using a magnetic bead panel 

multiplex assay. 

 

4.4! Specific methods  

4.4.1! Patients  
A subset of the children participating in the UK JSLE Cohort Study (see section 2.1.1) 

[28] were recruited, comprising all JSLE patients contributing to the UK JSLE Cohort 

Study recruited from Alder Hey Children’s NHS Foundation Trust, Liverpool, and 

Great Ormond Street NHS Hospital for Children, London, UK between 2010 and 

2014, in whom urine samples were collected. Exclusion criteria included patients with 

UTI or patients in whom no urine samples were collected. Patients were categorised 

as active LN and inactive LN according to the renal domain of BILAG disease activity 

score (see section 2.1.1.4). 

 

4.4.2! Extra-renal disease activity classification 
Within the inactive renal group, patients were subdivided further as having ‘any active 

extra-renal involvement’ (BILAG A/B in the following BILAG domains: 

constitutional, mucocutaneous, neuropsychiatric, musculoskeletal, cardiorespiratory, 

gastrointestinal, ophthalmic or haematological, see Appendix 6) or ‘no extra-renal 

involvement’ (BILAG score of D or E in all extra-renal domains) to allow assessment 

of biomarker levels according to whether extra-renal JSLE disease activity is present.  
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4.4.3! Laboratory techniques  
4.4.3.1! Biomarker quantification  
Urine samples were collected and stored as per section 2.2.5. Pre-coated ELISA kits 

were used for quantification of CP (St Charles, Assay Pro, USA), TF (GenWay, San 

Diego, USA), LPGDS (BioVendor, Brno, Czech Republic), AGP and MCP-1 (R&D 

Systems Ltd, Minneapolis, USA) as per the manufacturer’s instructions. These ELISA 

kits were already commercially validated for use with urine samples, therefore 

assessment of different assay buffers and spike recovery was not undertaken in-house. 

The required sample dilutions, LOD and ability to freeze thaw samples were however 

determined in-house. Further details on standard ELISA protocols and the in-house 

validation of these assays is provided in sections 2.2.2 and Table 2-2 and Table 2-3). 

Urinary NGAL and creatinine concentrations were measured using commercially 

available chemiluminescent microparticle Abbott Architect clinical immunoassays 

(Abbott Laboratories, Texas, USA) in Alder Hey Children’s Hospital lab (see section 

2.2.3). All biomarker results were standardised for urinary Cr concentration and 

presented in units per milligram creatinine (mgCr). 

 

4.4.4! Effect of biomarker exposure on human podocytes  
Full details of the podocyte culture techniques employed are detailed in section 2.2.7.2. 

In both the apoptosis and cytokine production experiments, podocytes were cultured 

until they were terminally differentiated at 37oC, washed twice with sterile PBS and 

then exposed to either ‘high’ or ‘low’ concentrations of biomarker for 48 hours, in 

keeping with previous work within our laboratory [359]. The cells were then either 

assessed for apoptosis using a Caspase-Glo® 3/7 assay (Promega corporation, UK, see 

below) or the podocyte supernatant was removed, centrifuged and stored at -70oC until 

required for cytokine analysis. The ‘high’ biomarker concentration corresponded to 

the median biomarker level detected in the urine of active LN patients from the UK 

JSLE Cohort Study (not corrected for urinary creatinine), and the ‘low’ concentration 

matched that of inactive LN patients (see Table 4-1 and section 4.5.2). The impact of 

all biomarkers together at ‘high’ +/- ‘low’ levels was also assessed. The most 

promising biomarkers from the UK JSLE Cohort study were chosen for inclusion in 

these experiments, namely AGP, CP, LPGDS and TF. Each experiment was repeated 

three times. 
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Biomarker High 
concentration 

Low 
concentration 

Details of biomarker used in 
experiments 

AGP 20,600 ng/ml 300 ng/ml Active native purified human 
AGP, full length protein, 
ABCAM, UK 

Cerulopasmin 4700 ng/ml 700 ng/ml Active native purified CP 
protein, Antibodies-Online, 
UK 

Transferrin 4900 ng/ml 1200 ng/ml Active recombinant TF 
protein, Antibodies-Online, 
UK 

LPGDS 1200 ng/ml 300 ng/ml Active recombinant LPGDS 
Cayman Chemical, USA 

Table 4-1: Concentrations and manufacturers of biomarkers applied to 
podocytes in the in-vitro experiments 
 

4.4.4.1! Podocyte apoptosis and biomarker exposure  
The Caspase-Glo® 3/7 Assay is a luminescent assay that measures caspase-3 and 7 

activities in cultures of adherent cells, and is designed for use with multi-well plate 

culture systems. Caspase 3/7 are members of the cysteine aspartic acid-specific 

protease (caspase) family which have key effector roles in apoptosis. The assay 

provides a luminogenic caspase-3/7 substrate which when added to the podocytes, 

causes cell lysis and is subsequently cleaved in the presence of caspase 3/7, resulting 

in the production of a luminescent signal, produced by luciferase.  Luminescence is 

proportional to the amount of caspase 3/7 activity present. The caspase and luciferase 

enzyme activities reach steady state so that the luminescent signal peaks after one hour 

(see Figure 4-1 for an overview of the assay). The Caspase-Glo® 3/7 Assay has been 

used in previous studies looking at apoptosis in the podocyte cell line included in this 

study [400,401]. Podocytes were cultured in white walled tissue culture plates for the 

luminescence assay and concurrently in a normal clear tissue culture plate, in order to 

be able to monitor the cells and assess the degree of differentiation by light 

microscopy. The full range of in-vitro test conditions for each Caspase-Glo® 3/7 

Apoptosis Assay experiment were as follows: 

1.! Caspase 3/7 Glo® reagent alone (blank) 

2.! Untreated podocytes (negative control) 

3.! Podocytes + high AGP levels  

4.! Podocytes + low AGP levels   
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5.! Podocytes + high CP levels  

6.! Podocytes + low CP levels  

7.! Podocytes + high TF levels  

8.! Podocytes + low TF levels   

9.! Podocytes + high LPGDS levels  

10.!Podocytes + low LPGDS levels  

11.!Podocytes + high CP + AGP + LPGDS + TF  

12.!Positive control (apoptotic neutrophils extracted previous day, see section 

2.2.6.3) 

 

 
Figure 4-1: Caspase-Glo® 3/7 Apoptosis assay overview 
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4.4.4.2! Podocyte cytokine production and biomarker exposure  
Using an HCYTOMAG-60K human cytokine/chemokine magnetic bead panel 

multiplex assay (Merck Millipore, USA), 41 different cytokines, growth factors and 

their receptors were simultaneously quantified in podocyte supernatant following 

exposure to high and low biomarker concentrations as detailed above. The markers 

quantified by the HCYTOMAG-60K multiplex assay included; Eotaxin, granulocyte 

colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor 

(GM-CSF), interleukin 1 receptor antagonist (IL- 1RA), Macrophage inflammatory 

protein (MIP-1α), transforming growth factor $ (TNF β), vascular endothelial growth 

factor (VEGF), fibroblast growth factor-2 (FGF-2), FMS-related tyrosine kinase 3 

ligand (FLT-3L), Fractalkine, chemokine (C-X-C motif) ligand 1 (GRO), MCP-3, 

macrophage derived chemokine (MDC), Platelet-derived growth factor-AA (PDGF-

AA), soluble cluster of differentiation 40 ligand (sCD40L), MCP-1, EGF, IFN-α, IFN-

γ, IL-10, IL-12P40, IL-12P70, IL-13, IL-15, IL-17A, IL-1α, IL-1β, IL-2, IL-3, IL-4, 

IL-5, IL-6, IL-7, IL-8, IP-10, MIP-1β, RANTES, TNFα, TGF-α, PDGF-AB/BB, and 

IL-9. The analysis was carried out an a MAGPIX! array reader (Merck Millipore, 

USA) as per the manufacturer’s instructions (see section 2.2.4 for further details on 

multiplex techniques and procedures). The full list of experimental conditions is 

detailed below: 

1.! Podocytes alone (negative control) 

2.! AGP high  

3.! AGP low  

4.! Ceruloplasmin high  

5.! Ceruloplasmin low  

6.! LPGDS high  

7.! LPGDS low  

8.! Transferrin high  

9.! Transferrin low  

10.!All biomarkers together – LOW 

11.!All biomarkers together – HIGH 

12.!Positive control – IFN-" activated macrophage media (see section 2.2.6.2) 
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4.4.4.3! Positive controls in apoptosis / cytokine production experiments 
The positive controls varied according to the experiment. For the apoptosis 

experiments, neutrophils were isolated using a Hetacept/Histopaque (Sigma-Aldrich, 

UK) isolation method and cultured overnight (see section 2.2.6.3). Neutrophils are 

known to be short lived when cultured, with a high proportion undergoing apoptosis 

which can be confirmed by flow cytometry using Annexin V staining (see Figure 2-6). 

For cytokine production experiments, the positive control comprised of podocytes 

exposed to supernatant from IFN-" activated human macrophages (see section 2.2.6.2), 

as such conditions have previously been shown to cause MCP-1 production by the 

podocyte cell line [359].  

 

4.4.5! Statistical analysis  
4.4.5.1! Cross-sectional urine biomarker analysis  
Summary statistics for demographics, baseline clinical data and biomarker data were 

provided in terms of median values and IQRs. Pearson’s chi-square test (binary data) 

and univariate logistic regression (quantitative data) were used to check for differences 

in demographic and clinical factors between different patient groups. Due to the 

number of factors explored, a Bonferroni adjustment was applied to account for 

multiple testing (32 comparisons).  

 

Mann Whitney U tests were used to compare biomarker concentrations between active 

and inactive LN patients. A Bonferroni adjustment was again applied to account for 

multiple testing (7 comparisons). A binary logistic regression model was fitted to 

assess for association between a combination of biomarkers and LN status (outcome: 

LN active=1; LN inactive=0). All novel biomarkers (log-transformed) were included 

in an initial model and the ‘stepAIC’ function in R [360] applied to select a final model. 

The AUC for the final model was calculated.  Each of the remaining novel biomarkers 

were then added into the final model in turn, in order of statistical significance 

according to the original model including all novel biomarkers, and the AUC 

calculated. This allowed exploration of the effect of each biomarker on the model’s 

AUC. Traditional biomarkers found to be significantly associated with active/inactive 

LN status in univariate analysis were then added to the model and the AUC again 

calculated. AUC values of 1.0–0.9, 0.9–0.8, 0.8–0.7, 0.7–0.6, 0.6–0.5 were considered 

“excellent, good, fair, poor and fail” respectively [402]. 
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To assess biomarker levels according to whether extra-renal JSLE disease activity was 

present, log biomarker levels from inactive LN patients with ‘any active extra-renal 

involvement’ were compared with inactive LN patients with ‘no extra-renal 

involvement’ using a Mann Whitney U test. Due to the six biomarkers explored, a 

Bonferroni adjustment was applied to account for multiple testing, and the Bonferroni 

corrected p-value, pc reported. 

 

4.4.5.2! Effect of biomarker exposure on human podocytes analysis  
Descriptive statistics (mean and SEM) quoted for Caspase 3/7 luminescence readings. 

Distribution of the data assessed using Shapiro-Wilks tests. ANOVA analysis with 

Dunnets post hoc test used to assess for significant differences in apoptosis between 

podocytes alone and all experimental conditions. For the HCYTOMAG assay, median 

values and IQRs were quoted. Multiple t-tests with 5% false discovery rate used to 

identify cytokine levels differing significantly between podocytes alone and when 

exposed to individual conditions.  

 

All data analysis and generation of graphical illustrations was undertaken using SPSS 

Ltd version 21.0, R version 3.1.1 [360] and GraphPad Prism version 6.0.  

 

4.5! Results 

4.5.1! Clinical and demographic data  
The study cohort consisted of 61 JSLE patients, 15 (25%) were classed as JSLE active 

LN (2/15 renal BILAG score=A, 13/15=B) and 46 (75%) as JSLE inactive LN (27/46 

renal BILAG score=D, 19/46=E). JSLE patients with active and inactive LN had a 

median age of 15.8 [14.8-17.1] and 15.4 [13.8-17.5] years respectively, with a disease 

duration of 2.8 [0.7-3.9] and 2.4 [0.8-4.8] respectively at the time of biomarker 

analysis. 86.7% of the active LN and 62.5% of the inactive LN patients were female. 

There was no difference in patient ethnicity between patient groups (pc = 1.0).  All 

JSLE patients had a median of 5 ACR classification criteria at diagnosis [IQR 4-7] 

(see Table 4-2). 
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Table 4-2: Key demographic and clinical data for the UK JSLE patients studied. 
1Expressed as median values and IQRs or numbers and percentages. 2 p-values are Bonferroni-corrected 
p-values from Chi Squared tests or univariate binary regression as appropriate. Abbreviations: 3gender 
data missing on 1 patient. 4Current medication use described for regular medications, those taken in 
courses/intermittently are described as having been used ‘ever’. 5ACEi = angiotensin converting enzyme 
inhibitor, 6AT2 = angiotensin 2 blocker. 7Number of patients contributing to analysis for each laboratory 
parameter. 8GFR = glomerular filtration rate, 9CRP = C-reactive protein, 10anti-dsDNA = anti-double 
stranded DNA antibody, 11C3 = complement factor 3, 12C4 = complement factor 4, 13WCC = total white 
cell count, 14Lymph = lymphocyte count, 15IgG = immunoglobulin G, 16IgA = immunoglobulin A, 17IgM 
= immunoglobulin M, 18BILAG defined extra-renal involvement.  
 

 Active LN (n=15)1 Inactive LN(n=46)1 pc
2 

Current age (years) 15.8  [14.8-17.1] 15.4 [13.8-17.5] 1.0 
Disease duration (years) 2.8 [0.7-3.9] 2.4 [0.8-4.8] 1.0 
Gender (Female n, %)3 13 (86.7%) 35 (62.5%) 1.0 
ACR criteria at diagnosis 5 [4-7] 5 [4-7] 1.0 
Patient ethnicity (n, %) 
Caucasian 
African 
Caribbean 
Mixed race 
Indian / Pakistani 
Chinese  

 
2 (13.3%) 
3 (20.0%) 
2 (13.3%) 
3 (20.0%) 
3 (20.0%) 
2 (13.3%) 

 
23 (50.0%) 
5 (10.8%) 
2 (4.4%) 
0 (0.0%) 

11 (23.9%) 
5 (11.0%) 

 
 
 

1.0 

Medications (n, %)4 

Prednisolone 
Hydroxychloroquine 
Azathioprine 
Mycophenolate mofetil 
Cycolphosphamide ever 
Rituximab ever 
ACEi5 or AT26 blocker 

 
12/15(80%) 
13/15 (87%) 
2/15 (13%) 

11/15 (73%) 
3/15 (20%) 
5/15 (33%) 
4/15 (27%) 

 
21/46 (46%) 
31/46 (67%) 
13/46 (28%) 
19/46 (41%) 

2/46 (4%) 
0/46 (0%) 

6/46 (13%) 

 
1.0 
1.0 
1.0 

0.96 
1.0 

0.03 
1.0 

Laboratory measures   (n)7    
eGFR8 (ml/min/m2) 53 100 [70-112] 116 [105-127] 0.96 
UACR (mg/mmolCr) 52 92.4 [22.7-153.4] 0.90 [0.7-1.6] <0.001 
ESR (mm/h) 60 55.0 [20-90] 9.0 [3.0-23.0] <0.001 
CRP9 (mg/L) 40 5.0 [4.0-5.0] 5.0 [4.0-5.0] 1.0 
Anti-dsDNA10 (IU/L) 54 48.0 [15.0-263.0] 1.9 [0.0-52.0] 0.29 
C311 (g/L) 40 0.96 [0.5-1.2] 1.09 [0.9-1.2] 1.0 
C412 (g/L) 41 0.14 [0.03-0.25] 0.17 [0.10-0.25] 1.0 
WCC13 (x109/L) 60 5.6 [4.9-7.0] 5.8 [4.4-7.6] 1.0 
Lymph14 (x109/L) 60 1.66 [1.35-1.9] 1.78 [1.16-2.5] 1.0 
Neutrophils (x109/L) 45 4.3 [1.8-5.0] 3.3 [2.4-4.8] 1.0 
Haemoglobin (g/dl) 45 10.8 [8.9-13.3] 13.1 [11.9-14.3] 1.0 
Platelets (x109/L) 45 315.5 [237.3-411.3] 275.0 [232.8-375.8] 1.0 
IgG15 (g/L) 31 10.3 [7.5-18.5] 13.3 [9.1-13.7] 1.0 
IgA16 (g/L) 31 1.8 [0.67-4.20] 1.2 [0.99-1.86] 1.0 
IgM17 (g/L) 31 0.84 [0.24-1.22] 0.85 [0.49-1.29] 1.0 
Extra-renal involvement18 
Constitutional 
Mucocutaneous 
Neuropsychiatric 
Musculoskeletal 
Cardiorespiratory 
Gastrointestinal 
Opthalmic 
Haematological 

 
4 (27%) 
4 (27%) 
2 (13%) 
6 (40%) 
0 (0%) 
1 (7%) 
0 (0%) 

8 (53%) 

 
5 (11%) 

14 (30%) 
0 (0%) 

10 (22%) 
0 (0%) 
1 (2%) 
0 (0%) 

20 (44%) 

 
1.0 
1.0 
1.0 
1.0 
NA 
1.0 
NA 
1.0 
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The number of patients receiving Rituximab treatment was significantly higher in the 

active LN group (pc<0.05), reflecting severity of disease, but use of other medications 

did not differ significantly between the patient groups. Of the laboratory parameters 

investigated, UACR and ESR were significantly higher in the active LN patients (all 

pc<0.05). No significant difference was seen between patient groups in the occurrence 

of extra-renal BILAG defined organ involvement (see Table 4-2).  

 

4.5.2! Individual novel urine biomarkers 
Figure 4-2 depicts the distribution of novel urinary biomarker concentrations 

standardised to urinary creatinine in the patient groups (raw data shown in Appendix 

19). Patients with active LN had significantly higher urinary concentrations of AGP, 

CP, VCAM-1, MCP-1, and LPGDS than inactive LN patients (all pc<0.05). Urinary 

TF and NGAL concentrations did not differ significantly between the patient groups 

(see Figure 4-2 and Table 4-3)  (pc = 0.06 and 1.0 respectively).  
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Figure 4-2: Distribution of urinary biomarker concentrations in patient groups.  
Median value shown by horizontal line for each group. Mann Whitney U tests used to compare 
distribution of biomarker concentrations between patient groups (active LN versus inactive LN). P-
values quoted are correct p-values, pc. The raw data relating to this figure are shown in Appendix 19. 
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Table 4-3: Urine biomarker concentrations standardised to urinary creatinine in 
active and inactive LN. 
Biomarker concentrations standardised to urinary creatinine and expressed as median values and IQRs. 
Mann Whitney U tests used to compare biomarker concentrations between patient groups. 1A 
Bonferroni adjustment was applied to account for multiple testing (7 tests), and corrected p-values 
reported (pc). 

2VCAM-1 measurement missing from 1 patient. The raw data relating to this table are 
shown in Appendix 19. 
  

Biomarkers 

Patient groups Active vs. 
inactive 

LN1 
(pc) 

Active LN Inactive LN 

AGP 
(ngmgCr) 

20,559 
[788-29,144] 

304 
[144-708] 

<0.001 

CP 
(ngmgCr) 

4,638 
[1891-25,062] 

701 
[505-1,010] 

<0.001 

VCAM-12 

(ngmgCr) 
18 

[8-62] 
2 

[1-8] 
0.007 

LPGDS 
(ngmgCr) 

1175 
[617-1,984] 

288 
[143-601] 

<0.001 

MCP-1 
(pgmgCr) 

376 
[180-599] 

157 
[105-295] 

0.028 

TF 
(ngmgCr) 

4,916 
[781-188,415] 

1,188 
[402-3,822] 

0.063 

NGAL 
(ngmgCr) 

20 
[12-22] 

10 
[4-30] 

1.000 
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4.5.3! Combining novel urine biomarkers  
On fitting a binary logistic regression model including all novel biomarkers, and 

applying the ‘stepAIC’ function in R [360], the final model included both AGP and 

CP (see Table 4-4). AUC for this final model was 0.88. 

 

Model including all biomarkers1 
Biomarker Co-efficient Std. Error p-value 
AGP 0.692 0.35 0.047 
CP 0.551 0.36 0.127 
VCAM-1 -0.228 0.38 0.553 
LPGDS 0.870 0.76 0.254 
MCP-1 -0.046 0.86 0.957 
TF 0.256 0.23 0.275 

Model after variable selection2 
AGP 0.782 2.84 0.004 
CP 0.602 0.34 0.080 

Table 4-4: Binary logistic regression models including all biomarkers and after 
variable selection 
159 patients included in novel biomarker models including VCAM-1 due to a missing measurement. 
2Model selected after applying the ‘stepAIC’ function in R. 
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On addition of LPGDS, the AUC increased to 0.90, increasing further to 0.92 on 

addition of TF. Addition of VCAM-1 and MCP-1 into the model however, did not 

increase the AUC any further (see Table 4-5). The receiver-operating curve (ROC) 

generated by the model including AGP, CP, LPGDS and TF is shown in Figure 4-3.  

 

Biomarkers included in binary logistic regression models AUC ROC 

Novel biomarker 
combinations  

AGP + CP 0.88 

AGP + CP + LPGDS 0.90 

AGP + CP + LPGDS + TF 0.92 

AGP + CP + LPGDS + TF + VCAM-11 0.92 

AGP + CP + LPGDS + TF + VCAM-1 + MCP-1 0.92 

 

Novel/traditional 
biomarker 
combination  

AGP + CP + LPGDS + TF + ESR2 0.91 

Table 4-5: Effect on AUC by adding novel and traditional biomarkers to the 
logistic regression model 
159 patients included in novel biomarker models including VCAM-1 due to missing biomarker 
measurements. 260 patients included in novel and traditional biomarker model, due to missing ESR data 
for one patient. 
 

 
Figure 4-3: Receiver operating curve for the optimal novel biomarker 
combination - AGP, CP, LPGDS and Transferrin (AUC 0.92).  
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4.5.4! Urine biomarkers and extra-renal involvement  
There was no significant difference in urinary biomarker levels in inactive LN patients 

with active extra-renal involvement and no extra-renal involvement (see Table 4-6). 

Within the inactive LN group, urinary biomarker levels did not differ between renal-

BILAG score D (inactive renal disease but previous involvement) and renal-BILAG 

score E patients (no previous renal involvement) (all pc>0.05).  Urine biomarker 

concentrations uncorrected for creatinine also did not alter the above findings.  

 

Novel 
biomarkers 

Inactive LN patients  Comparison between 
patients with / 

without extra-renal 
involvement (pc)1 

With extra-renal 
involvement 

Without extra-
renal involvement 

AGP  
(ngmgCr) 

511 
[285-1149] 

299 
[165-748] 

1.0 

CP 
(ngmgCr) 

835 
[557-1365] 

1027 
[627-1320] 

1.0 

VCAM-12 

(ngmgCr) 
5 

[1.5-20] 
3 

[0.6-10] 
0.28 

LPGDS 
(ngmgCr) 

342 
[169-856] 

365 
[204-584] 

1.0 

MCP-1 
(pgmgCr) 

143  
[101-298] 

152 
 [95-240] 

1.0 

TF  
(ngmgCr) 

789  
[372-4133] 

1188  
[359-3511] 

1.0 

NGAL 
(ngmgCr) 

13 
[8-52] 

9 
[5-26] 

1.0 

Table 4-6: Urine biomarker concentrations in inactive LN patients with/without 
extra-renal involvement. 
Biomarker concentrations standardised to urinary creatinine and expressed as median values and IQRs. 
Mann Whitney U tests used to compare biomarker concentrations between patient groups. 1A 
Bonferroni adjustment was applied to account for multiple testing, corrected p-values (pc) reported. 
2VCAM-1 measurement missing from 1 patient. 
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4.5.5! Comparing and combining novel and traditional biomarkers  
Traditional biomarkers which do not contribute to the composite renal BILAG score 

were assessed for their ability to identify active LN in the patients specifically included 

in this study, with Table 4-7 showing the AUC for each traditional biomarker. ESR 

was the best traditional biomarker with a fair AUC of 0.796. C3 and dsDNA showed 

a poor ability to identify active LN (AUC’s of 0.645 and 0.617 respectively). C4 

performed worst with an AUC of 0.593. Inclusion of all traditional biomarkers together 

in a regression model did not improve the AUC (see Table 4-7). Of the traditional 

biomarkers assessed univariately in Table 4-2, ESR was significantly different 

between active and inactive LN patients (pc<0.05). Addition of this traditional 

biomarker to the optimal novel biomarker logistic regression model including AGP, 

LPGDS, TF and CP, did not improve the AUC further (AUC 0.91, see Table 4-5).  

 

Traditional biomarkers AUC ROC 

dsDNA1 0.617 

C32 0.645 

C43 0.593 

ESR4 0.796 

All biomarkers 0.783 
Table 4-7: AUC values corresponding to ability of traditional biomarkers to 
identify active LN. 
AUC values obtained from logistic regression model probabilities for each traditional biomarker and all 
biomarkers together. 1dsDNA = anti-double stranded DNA antibody, 2C3 = complement factor 3, 3C4 
= complement factor 4, 4ESR – erythrocyte sedimentation rate. 
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4.5.6! Effect of biomarker exposure on human podocytes in vitro 
4.5.6.1! Podocyte apoptosis 
Using a Caspase-Glo® 3/7 Assay, luminescence in RLU corresponding to Caspase 3/7 

activity was determined following exposure of podocytes to the conditions listed in 

section 4.4.4.1. All results were normally distributed (Shapiro-Wilk test, p>0.05 for 

all experimental conditions). Podocytes alone displayed a mean luminescence of 1509 

(±100) RLU. In response to the experimental conditions applied to the podocytes, the 

mean luminesence varied between 1219-1669 RLU. ANOVA analysis with Dunnet’s 

multiple comparison tests compared the luminescence obtained with each 

experimental condition, to podocytes alone. No significant difference were seen in 

response to any of the experimental conditions (all pc > 0.05) except from the positive 

control wells (apoptotic neutrophils, RLU 6075 ± 354 RLU, pc<0.0001, see Table 4-8 

and Figure 4-4).  

 

Experimental condition Luminescence 
(RLU) 

Comparison 
between pod alone 

& pods + conditions 
(pc-value) 

Caspase 3/7 Glo reagent alone (blank) 0 NA 
Podocytes alone 1509 ± 100 NA 
Podocytes & High AGP 1291 ± 173 0.995 
Podocytes & Low AGP 1429 ± 207 0.999 
Podocytes & High CP 1608 ± 278 0.999 
Podocytes & Low CP 1268 ± 106 0.994 
Podocytes & High TF 1455 ± 48 0.999 
Podocytes & Low TF 1219 ± 84 0.983 
Podocytes & High LPGDS 1607 ± 70 0.999 
Podocytes & Low LPGDS 1501 ± 122 1.000 
Podocytes & High AGP+CP+TF+LPGDS 1669 ± 27 0.999 
Positive control (apoptotic neutrophils) 6075 ± 354 < 0.0001 

Table 4-8: Luminescence corresponding to Caspase 3/7 activity following 
exposure of podocytes to AGP, CP, TF and LPGDS. 
Values quoted are the mean ± standard error of the mean. All comparison between experimental 
conditions and podocytes alone were corrected for multiple testing (pc-value). RLU = reactive light 
units. Pods = podocytes. 
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Figure 4-4: Luminescence corresponding to Caspase 3/7 activity in podocytes 
exposed to varying experimental conditions.  
All experimental conditions include podocytes except from the assay positive control which is 
comprised of apoptotic neutrophils. Abbreviations: RLU = reactive light units, Pods = podocytes, +ve 
control = positive control. *significant result for comparison of podocytes alone vs. positive control (pc 
<0.0001). 
 

Apoptosis was confirmed in additional positive control wells using flow cytometry and 

Annexin V staining immediately prior to the Caspase Glo® 3/7 Assay. This showed 

Annexin V to be positive in 88.8% of neutrophils, suggesting that the Caspase 3/7 

Glo® assay results were reliable (see section 2.2.6.3 and the flow cytometry dot plot 

shown in Figure 2-6).  

 

4.5.6.2! Podocyte cytokine production 
Table 4-9 shows the median/IQR levels of each cytokine in podocyte supernatant 

following exposure of the podocytes to high/low concentrations of LN urinary 

biomarker. Multiple t-tests with a 5% false discovery rate were applied to log 

transformed data to assess the impact of the 10 experimental conditions on 41 markers, 

identifying markers differing significantly between podocytes alone and podocytes 

exposed to individual experimental conditions. Treatment with ‘high CP’ and ‘all 

biomarkers high’ was associated with a significant reduction in TNF-# secretion 

compared to podocytes alone; median of 19 and 20 pg/ml TNF-# respectively, as 

opposed to 26 pg/ml with podocytes alone (both p<0.001). No other differences in 

cytokine level were demonstrated according to the urine biomarker treatment 

conditions applied. 
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MCP-1 production was significantly increased in the presence of the positive control; 

15182 pg/ml [9919-16613] compared to the podocyte alone levels, 9289 pg/ml [8182-

9748] (p<0.001). The assays high/low QCs were also within range for all analytes. All 

podocyte supernatant samples were run undiluted, with the dynamic range of the assay 

being very wide (3.2–10,000 pg/ml). However, despite this IL-9, IL-1$, IL-3 and MIP-

1$ were undetectable in the podocyte supernatant suggesting that these markers are 

not presently secreted by podocytes. 
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4.6! Discussion  
Using a cross-sectional cohort of patients recruited to the UK JSLE Cohort Study, the 

aim of this study was to determine if urinary AGP, CP, VCAM-1, TF, LPGDS, MCP-

1 and NGAL are able to differentiate between JSLE patients with active and inactive 

LN. By simultaneously measuring each of these urinary biomarkers at a single patient 

visit, the association between different novel urinary and traditional serum biomarkers, 

both individually and in combination has been assessed. A ‘LN urinary biomarker 

panel’ demonstrated that it was able to improve significantly the identification of 

active LN, over and above individual biomarkers.  

 

The identification and validation of LN biomarkers in children is important as they 

generally have fewer co-morbidities and more frequent renal involvement than adult 

counterparts. Some of the biomarkers included in this study have been largely studied 

individually within adult SLE studies. Overall, an ideal biomarker must be non-

invasive, accurate, demonstrate good sensitivity and specificity for the condition in 

question, and sustain cross-validation within ethnically distinct patient cohorts (see 

section 1.3.1). In a condition such as JSLE, a biomarker must be organ domain specific 

as patients may concurrently display involvement of multiple organs. This study has 

shown that extra-renal JSLE disease activity does influence urine biomarker levels. 

 

This work builds upon that originally performed by Suzuki et al who showed AGP, 

CP, LPGDS and TF to be higher in active than inactive LN in a US JSLE cohort. When 

included in a model with albumin, and albumin-related fragments, their combined 

AUC for active LN identification (renal BILAG/SLEDAI defined) was 0.85 [290]. 

Within samples from the UK JSLE Cohort Study, additional improvement with a 

stronger AUC value (0.92) has been demonstrated when AGP, CP, LPGDS and TF 

were combined in a regression model. Of the additional biomarkers assessed in the 

current study, VCAM-1 and MCP-1 levels also differed significantly between active 

and inactive LN when tested individually. However, these biomarkers did not further 

improve the AUC when added into the model already including AGP, CP, LPGDS and 

TF. Both of these Cohorts include comparable patients in terms of age, gender and 

length of disease. However, there were marked differences in the terms of ethnicity; 

only 17% were Caucasian within the US Cohort and 41% in the UK Cohort. Notably, 
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African, African American and Asian patients often have more severe disease and 

more kidney involvement in SLE [32,281,403]. This transatlantic comparison of a 

similar biomarker panel provides considerable strength to the hypothesis that a panel 

approach involving some or all of these urinary biomarkers may be an important way 

of differentiating active from inactive LN.  

 

It is important to consider the origin and renal-specificity of these novel biomarkers. 

AGP (also called Orosomucoid) belongs to the immunocalin family, a group of 

binding proteins which bind and transport small hydrophobic molecules and have 

immunomodulatory functions. AGP is also one of the major acute phase proteins, 

mainly secreted by hepatocytes as part of the systemic response to inflammatory 

mediators (IL-1, IL-6, IL-8) or stressful stimuli such as physical trauma or bacterial 

infections. AGP production has also been reported in several tissues outside the liver 

including alveolar stimulated macrophages [404], human endothelial cells [405], 

cultured monocytes [406,407], resting and activated polymorphs [408,409]. In active 

LN, increased production as part of the acute phase response, coupled with production 

by cells infiltrating the kidney, may be responsible for the high urinary levels 

demonstrated.  

 

CP is involved in the metabolism of iron and carries the vast amount of circulating 

copper in the plasma [410]. TF is a metal binding protein with high affinity for iron, 

binding and moving it into cells and tissues. Iron is important to normal immune 

function, contributing to cell differentiation and growth. Alterations in iron 

homeostasis have been associated with several rheumatological and autoimmune 

diseases [411]. Both CP and TF differ from albumin in terms of their molecular radii 

and isoelectric points, and have been shown to predict the onset of microalbuminuria 

at an early stage in type 2 diabetes [412,413].  

 

LPGDS is secretory protein of the lipocalin superfamily that acts as an enzyme 

responsible for the production of prostaglandin D2. It is produced in the brain by the 

choroid plexus or leptomeninges and is continuously secreted through cerebrospinal 

fluid into blood. LPGDS is similar to albumin in chemical properties but is much 

smaller, allowing it to pass more readily through the glomerular capillary walls [414]. 

In type-2 diabetes, urinary LPGDS has been shown to increase in the early stages of 
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kidney injury [415]. Hypertensive patients also excrete more urinary LPGDS than 

normotensive patients [416]. 

 

This study has shown for the first time in JSLE that urinary VCAM-1 levels differ 

significantly between active and inactive LN (good biomarker, AUC 0.80). Previous 

studies looking at VCAM-1 in adults have found VCAM-1 to be associated with 

physician’s global estimate of disease, UPCR, SLICC renal activity score [308] and 

the revised SLAM-R [329], class III, IV and V LN [328], and the renal pathology NIH 

AI [297]. Urinary levels are higher than blood levels, suggesting that the inflamed 

kidney may represent an important source of urinary VCAM-1 [326]. Although 

VCAM-1 is not contained within the optimal biomarker panel, it warrants further 

evaluation longitudinally to assess its performance in predicting LN flares.  

 

Exposure of podocytes to the biomarkers AGP, CP, TF and LPGDS at ‘high’/‘low’ 

concentrations (corresponding to the median levels detected in the urine of 

active/inactive LN patients) did not appear to induce podocyte apoptosis. The Caspase-

Glo® 3/7 Assay is an established method for detecting apoptosis in adherent cells, and 

has been used by others working with this conditionally immortalised podocyte cell 

line [400,401]. Further investigation could include a time series, where the biomarker 

exposure occurs for a shorter/longer period. Although exposure to the biomarkers did 

not induce podocyte apoptosis, biomarker exposure could lead to structural damage to 

the glomerulus and defects in the filtration barrier due to conformational changes 

within the podocyte, or podocyte detachment [417,418]. Future experiments could 

therefore assess podocyte detachment by trypsinizing the cells until they are suspended 

and subsequently allowing them to settle in culture medium containing the 

experimental conditions. After a set period, cells in suspension and adherent cells 

could be collected and counted to assess for differences in cell attachment according 

to the experimental conditions [400,419]. The podocyte slit diaphragm is most 

commonly affected by glomerular disease [394] and assessment of slit diaphragm 

proteins such as nephrin, podocin and CD2-associated protein by immunofluorescence 

[420] could also provide insights into slit diaphragm structure and function in response 

to urine biomarker exposure. 
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Regarding cytokine production in response to ‘high’/‘low’ biomarker concentrations, 

TNF-# levels were significantly decreased in the presence of ‘high’ CP or ‘all 

biomarkers high’. In both conditions, ‘high’ CP may have led to the decrease in TNF-

# as it was a common factor across both conditions. CP is the major copper-carrying 

protein in the blood, but also assists TF in iron transport [410]. CP is mainly produced 

by hepatocytes but also activated macrophages as part of the acute-phase response 

[421,422]. Copper plays a role in stress-induced release of cytokines such as TNF-#, 

IL-1 #/$ and TGF-$ by immune cells [423]. TNF-α is a pro-inflammatory cytokine 

involved in systemic inflammation and is mainly produced by activated macrophages, 

although it can be produced by many other cell types, including podocytes [396]. In 

Wilson’s disease, where low CP and high copper levels are seen, serum TNF-# is 

known to be increased as compared to controls [424]. In addition, serum copper has 

been shown to correlate positively with TNF-# levels in RA patients [425], therefore 

CP (the copper scavenger) may correlate negatively with TNF-#. In the current study, 

when CP levels are high TNF-# is decreased, therefore it is hypothesised that a 

negative feedback loop may be in operation. Soluble TNF receptor levels may also 

influence TNF-# levels under theses cpnditions [426], requiring further investigation.  

 

Certain limitations to this study warrant recognition and should be addressed in future 

work. The definition of active LN was based on the composite renal BILAG score, 

calculated from proteinuria, GFR, blood pressure, active urine sediment, plasma 

creatinine and recent biopsy findings, therefore one could not directly compare such 

traditional markers with the novel urinary biomarkers studied. Patients were 

considered to have an active LN episode if they had a renal BILAG score of A or B 

and previous histological confirmation of LN at some stage during their disease. This 

influences the ability to directly compare the results of the current study with others 

which do not include this stipulation. This condition was felt to be important in 

ensuring the active LN patient group were truly representative of patients with active 

LN. Inspection of the clinical data of JSLE patients followed longitudinally revealed 

that at times, patients may score a renal BILAG score of B (e.g. on the basis of having 

2+ urine dipstick at a single visit) but have no change to their steroid or 

immunosuppressive treatment suggesting that the clinician had not been convinced 

that the patient had renal involvement. At subsequently visits, such patients do not 
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demonstrate further renal BILAG A or B scores, suggesting that this has been an 

isolated incident and that the patient may not have had true active LN. In patients with 

a renal BILAG score of A or B and previous histological confirmation of LN at some 

stage during their disease, changes in renal BILAG score were more persistent and 

reflective of changes in treatment, suggesting that this approach to patient stratification 

is more appropriate.  

 

The cross-sectional nature of this study also limits the ability to comment on the 

relationship of such biomarkers with other stages of the fluctuating LN disease course 

(e.g. prediction of flare/remission). Although only a quarter of patients had ‘active’ 

disease, the numbers included are comparable or in excess of many previous studies 

[72,74,297,299,328,329]. These promising findings require validation in a larger, 

international, longitudinal, prospectively collected study including children and young 

people with the full range of active (severe or mild) and inactive disease. Concurrent 

investigation of the role of such biomarkers in LN mouse models or more sophisticated 

in vitro LN models, will also help to improve understanding of LN pathophysiology.  

 

4.7! Summary  
This study has demonstrated that combining novel urine biomarkers improves LN 

identification in JSLE patients. Further validation of this ‘excellent’ novel urine 

biomarker panel is required in independent international JSLE cohorts, both cross-

sectionally and longitudinally, to define biomarker profiles that predict LN flare and 

remission. It is anticipated that a future urinary biomarker point of care testing device 

will help to improve the renal outcome for JSLE patients through biomarker-led renal 

monitoring in routine clinical practice.  

 

4.8! Conclusions  
•! The optimal excellent ‘LN urinary biomarker panel’ identified within the UK JSLE 

Cohort Study for cross-sectionally differentiating active from inactive LN patients 

includes: AGP, CP, LPGDS and TF (AUC 0.920).  

•! Combining traditional biomarkers with the optimal novel biomarker panel did not 

improve the AUC further. 
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•! Exposure of podocytes to the biomarkers AGP, CP, TF and LPGDS at ‘high’/‘low’ 

concentrations reduced TNF-# production only, and did not induce podocyte 

apoptosis. 
•! Next steps should therefore include: 

o! Investigation of whether the above biomarker panel performs comparably 

within ethnically distinct JSLE patient cohorts. 

o! Assessment of whether constituents of the LN urinary biomarker panel are 

able to longitudinally predict LN flare or remission in advance.  
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5! International validation of the urine biomarker 
panel and longitudinal analysis  

 

5.1! Introduction  

5.1.1! Ethnic differences in SLE and LN  
Further investigation of the excellent novel ‘LN urinary biomarker panel’ described in 

Chapter 4 for identification of active LN is required in independent JSLE cohorts, both 

cross-sectionally and longitudinally, to cross-validate previous findings and define 

biomarker profiles that predict LN flare and remission. Significant differences in 

disease phenotype and clinical outcome have been shown to occur in JSLE patients of 

different ethnicities (see section 1.1.1). Hispanic JSLE patients have been shown to 

have significantly longer lengths of hospital stay, more re-admissions and higher in-

hospital mortality than their non-Hispanic counterparts, including White, African 

American, Asian and American Indian patients. African American JSLE patients have 

been shown to be significantly more likely to be admitted to intensive care than the 

other patient groups mentioned above. Both African American and Hispanic patients 

are also more likely to have end-stage renal disease and higher mortality rate than 

White, and American Indian JSLE patients [30]. The crude death rate of adult SLE 

patients of African descent has also been shown to be three times higher than 

Caucasians [427]. In a further study conducted across 47 US states, the risk of death 

was significantly higher among Native American and Black adult SLE patients 

compared with Caucasian patients. Whilst, Hispanic and Asian patients had lower 

mortality risks compared with Caucasians [428]. 

 

Survival rates of adult SLE patients in developing countries are substantially lower 

than in the developed world. In an adult SLE study including mainly Black patients 

seen at a tertiary institution in Soweto, South Africa, the 5-year survival rate was 78% 

[429], compared with the reported > 90% 5-year survival rates in many industrialised 

countries including Sweden [430], the United Kingdom [431], Italy [432] and in a 

multicentre study across seven European countries [433]. Within a South African adult 

SLE Cohort, multivariate analysis showed LN to be the sole predictor of patient 

mortality [429]. In an American adult SLE study, African Americans with end stage 

renal failure were at significantly increased risk of death compared with their non-
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African contemporaries [32]. In Cape Town, South African adults with proliferative 

LN have also been shown to have lower renal specific survival rates than in non-

African countries with 5- and 10- year survival rates of 63% and 52% respectively 

[279]. The SLICC Inception Cohort [434], the largest multi-ethnic/racial SLE 

inception cohort of patients from across Europe, North America and Canada has 

recently reported the cumulative renal survival at 5 and 10 years to be 96.7% and 

95.7% at 5 and 10 years respectively [222], highlighting the marked differences in 

renal survival between developed and developing countries.  

 

The above examples of differences between SLE disease phenotype according to 

ethnicity emphasise the importance of cross-validating our experimental findings in 

different SLE populations rather than automatically generalising between them, to see 

if urine biomarkers can still differentiate active from inactive disease activity 

irrespective of the ethnic origin of the cohort, and provide new evidence for an 

internationally applicable urine biomarker panel for LN.  

 

In the current chapter, two international collaborations with the US Einstein Lupus 

Cohort (referred to as the ‘US Cohort’ [334], described in section 2.1.2) and the 

Paediatric Lupus Erythematosus in South Africa Cohort (referred to as the ‘SA Cohort’ 

[435], described in section 2.1.3) were developed to investigate the urine biomarker 

panel in ethnically distinct cohorts. Within the SA cohort, Lewandowski et al have 

recently demonstrated that 61% of patients initially presented with LN (documented 

by renal biopsy), with 63% of these patients displaying severe ISN/RPS class III or IV 

LN. The increased LN severity within this cohort as compared to the well described 

North American CARRA registry cohort [436] is highlighted within their recent paper. 

15% of patients within the SA Cohort required dialysis vs. 1% in the CARRA cohort 

(p<0.001), with strikingly higher transplantation rates seen in the SA cohort; 8% vs. 

<1% in their North American peers (p<0.001) [435].  

 

Validation of the UK JSLE Cohort ‘biomarker panel’ in such ethnically distinct and 

‘severe’ LN cohorts will provide important insight into these proposed urinary 

biomarkers on an international level.  
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5.1.2! Longitudinal assessment of urine biomarkers 
Renal biopsy remains the gold standard for diagnosing and monitoring LN. In children, 

biopsy is associated with significant risks of bleeding (in up to 25% of patients), 

infections (0.2% risk), adverse reactions to sedatives, and poses a significant 

psychological burden to the child and family [437-440]. At diagnosis, renal biopsy 

provides prognostic information and guides treatment so its benefits outweigh these 

risks; however, it has a limited role in ongoing monitoring. Currently, children with 

long-standing LN could potentially require multiple biopsies throughout their disease 

course due to the limitations of traditional blood and urine tests in LN monitoring (see 

sections 1.2.2, 1.2.3 and 1.2.4). Urine biomarkers have been shown to be better than 

serum biomarkers in differentiating renal disease from other organ manifestations (see 

section 4.5.4 and [73,322]). There is therefore an urgent need to develop a non-invasive 

urine biomarker panel test that allows the clinician to quickly and accurately determine 

an individual child’s LN activity and predict fluctuations in disease activity over time. 

Such a test could prompt treatment intensification, alleviating or preventing disease 

flare and modifying the course of disease to improve renal outcome. Similarly, 

identifying patients who will go into remission over subsequent months could help to 

limit their time on potentially toxic treatment, personalising their care.  

 

Constituents of the biomarker panel including AGP, TF and LPGDS have been shown 

to be elevated at least 3 months before an LN flare becomes diagnosed clinically. 

However, significant increases in AGP and LPGDS were also demonstrated in patients 

with stable active LN, improving LN (AGP) and inactive LN (LPGDS) [290], 

highlighting the need for further prospective studies to improve understanding of the 

relationship of these biomarkers to disease activity over time. The effect of combining 

such markers longitudinally also warrants assessment, to see if this improves the 

ability to predict LN flare or other stages of the LN disease process. MCP-1 did not 

emerge as part of the urine biomarker panel demonstrated in Chapter 4, but a paediatric 

longitudinal biomarker study has shown low urinary MCP-1 levels to be a good 

predictor of future renal disease improvement [74], therefore further longitudinal 

evaluation is required. In an adult SLE longitudinal study, urinary MCP-1 has been 

shown to increase 2-4 months before an LN flare, decreasing in patients who respond 

to treatment, and remaining persistently elevated in non-responders [299]. Similarly, 

urinary VCAM-1 was not part of the optimal urinary biomarker panel but in an adult 
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SLE longitudinal study it was shown to correlate with renal SLICC score, UPCR and 

physicians global assessment over time [308]. The UK, US and SA JSLE Cohorts 

collect serial samples during routine clinical care, presenting the opportunity to assess 

the above markers in a ‘real world’ longitudinal setting.  

 

5.2! Hypotheses  
•! The ‘optimal urinary biomarker panel’ identified within the UK JSLE Cohort will 

perform to a comparable level within the distinct, and ethnically diverse US and 

SA JSLE Cohorts.  

•! Individually or collectively, constituents of the ‘optimal urinary biomarker panel’ 

will play a role in the prediction of LN flare and remission over time.  

 

5.3! Aims and objectives 
The primary aim of this study was to assess if the ‘optimal urinary biomarker panel’ 

for identification of active LN identified in the UK JSLE Cohort Study performed in a 

comparable way within two international, ethnically distinct JSLE cohorts from the 

US and SA. The secondary aim was to determine longitudinally, using data and 

samples from all three cohorts, if the urinary biomarker panel itself, or its constituent 

members, are able to predict LN flare and remission in advance.  

 

The specific objectives of this chapter were: 

 

1.! To evaluate the performance of the UK optimal urinary biomarker panel cross-

sectionally within the US and SA Cohorts, to see if the same ‘excellent’ ability for 

identification of active LN is demonstrated.  

 

2.! To compare the urine biomarker concentrations in HC patients (from within the 

SA Cohort) to those within the SA JSLE patient groups.  
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3.! To assess urine biomarker levels in patients with proven renal biopsy versus renal 

BILAG-defined LN, to assess performance of the renal BILAG score as a proxy 

measure of LN disease activity.  

 

4.! Using data from all three ‘real world’ JSLE cohorts from three different countries, 

to develop a Markov Multi-State model of urine biomarker dynamics in LN, 

assessing their ability to predict future LN flare and remission. 

 

5.4! Specific methods  

5.4.1! Patient cohorts  
5.4.1.1! The US and SA Cohorts and renal disease activity classification  
The US Cohort included patients followed at the Children’s Hospital at Montefiore, 

Bronx, NY, USA [334]. SA Cohort patients attend Red Cross Memorial and Groote 

Schuur Hospital Hospitals, Cape Town, South Africa (see sections 2.1.2 and 2.1.3 for 

more details). HCs with non-inflammatory non-infective diagnoses, normal urinalysis 

and no symptoms of UTI were also recruited within the SA Cohort. In both cohorts, 

urine samples were collected during routine clinical care together with detailed 

demographic data, self-reported ethnicity data, clinical laboratory results and 

medication information. Renal disease activity was defined as per UK JSLE Cohort 

patients (see section 2.1.1.4).  

 

5.4.2! Laboratory techniques  
US and SA urine samples were processed following the same SOP as UK samples and 

stored at -80oC prior to transfer to the University of Liverpool on dry ice (see section 

2.2.5). The same ELISA kits, techniques and conditions were used for biomarker 

quantification as with the UK samples previously (see section 2.2.2 and Table 2-3). 

All biomarker results were standardised for urinary creatinine (Cr) concentration and 

presented in units per milligram creatinine (mgCr). 
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5.4.3! Statistical analysis  
5.4.3.1! International validation of the urine biomarker panel – cross sectional  
Summary statistics for demographics, baseline clinical data and biomarker data are 

presented as median values and IQRs. Univariate logistic regression (quantitative data) 

and Pearson’s chi-square test (binary data) were used to assess for differences in 

demographic and clinical factors between different patient groups. Due to the number 

of factors explored, a Bonferroni adjustment was applied to account for multiple 

testing (15 comparisons per cohort). 

 

Mann Whitney U tests with Bonferroni adjustments were used to compare biomarker 

concentrations between active and inactive LN patients (7 comparisons for US patients 

and 6 for SA patients), as well as inactive and HC SA patients (6 comparisons). When 

comparing urinary biomarker levels in patients where a diagnosis of LN was made on 

the basis of recent renal biopsy results versus BILAG defined nephritis alone, 

Bonferroni adjusted Mann Whitney U tests were also used. 

 

The US data was analysed following the same methodological approach as the UK 

data (see section 4.4.5.1). On using a standard logistic regression approach to analyse 

the SA data, problems were encountered due to a phenomenon known within the 

statistical literature as ‘separation’, whereby a linear function of the covariates within 

a regression model can generate perfect predictions of the outcome variable. This 

phenomenon is discussed in detail in reference [441]. A consequence is that maximum 

likelihood estimates of the parameters suffer from bias when using standard logistic 

regression, and the standard errors of parameters are over-inflated. One solution to the 

problem is to use Firth’s Penalised Likelihood Logistic Regression [41,442,443],  

which removes the bias from the maximum likelihood estimators, and is the approach 

used to analyse the SA data. Again, the baseline model included biomarkers AGP + 

CP for consistency with the baseline model identified in the UK dataset, and each of 

the remaining novel biomarkers were then added to the baseline model in turn in the 

same way as was done in the UK dataset, and the AUC for each updated model 

calculated. The data from all three cohorts were then pooled, and analysed in the same 

way as the US and UK data given the larger sample size (see section 4.4.5.1). AUC 

values of 1.0–0.9, 0.9–0.8, 0.8–0.7, 0.7–0.6, 0.6–0.5 were considered “excellent, good, 

fair, poor and fail” respectively [402]. 
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5.4.3.2! Longitudinal analyses of urinary biomarkers  
A subset of children included in the UK, US and SA JSLE cohorts had >1 urine sample 

available for novel urine biomarkers measurement over time. As the samples were 

collected during routine clinical care, the time between samples and the number of 

samples varied between patients. Six novel urinary biomarkers (AGP, CP, LPGDS, 

TF, MCP-1 and VCAM-1) were quantified by ELISA (see section  2.2.2 and Table 

2-3). Patients were seen to transition between active LN (renal BILAG A/B), mildly 

active LN (renal BILAG C) and inactive LN (renal BILAG D/E). A binary outcome 

of ‘any LN activity’/inactive LN was required for longitudinal analysis. Inspection of 

urine biomarker values for renal BILAG C patient episodes showed them to cluster 

with renal BILAG A/B episodes (see Figure 5-6). This grouping is also in keeping with 

the previous BILAG validation study [68] by Yee et al (assessing the BILAG intention 

to treat principle), which showed fluctuation between adjacent renal BILAG categories 

of A and B or B and C to occur without changes in LN treatment (see section 1.1.4.2). 

The longitudinal ‘any LN activity group’ therefore included patients with a renal 

domain BILAG score of A, B or C & previous histological confirmation of LN (State 

2), or inactive LN (renal domain BILAG score D or E, State 1). 

 

Biomarker and clinical-demographic data including age, sex, duration of disease, 

ethnicity, C3/C4, and anti-dsDNA antibodies were considered within the models. 

Some predictors contained missing (at random) data which would reduce the sample 

size available for the model, multiple imputation based on the Bayesian Alternating 

Conditional Expectation algorithm [444], was therefore used to avoid this. 

Heterogeneity was found in the distributions of some of the prognostic factors and 

states (statistical significance assessed via Kolmogorov-Smirnov and Fisher tests, for 

continuous and binary data, respectively). To address this, Huber’s robust “sandwich” 

estimate [444] of the co-variance matrix of model parameters was utilised, taking into 

account the intra-cluster correlation of the data in each cohort. The effect of such a 

correction of the covariance matrix using a Huber’s estimate is to increase the standard 

errors of the parameter estimates, thus reducing the chances of false rejections of 

statistical tests, and increasing the width of the confidence intervals.  

 



  
173 

A baseline homogeneous Markov Multi-State model of disease state transitions was 

fitted by Dr Antonio Eleuteri, Department of Physics and Clinical Engineering, UoL. 

The model was fitted assuming that individuals independently transition among the 

two states of active and inactive LN according to a continuous-time Markov process 

as depicted in Figure 5-1 below. At a given time-point, the aim of the model would be 

to provide the instantaneous probability of a patient staying in the same state (active 

or inactive LN) or transitioning (active to inactive, of vice versa).  

 

 

  

 

 

 

Figure 5-1: State transitions assumed by the Markov Multi-State model.  
 

A 2 x 2 transition intensity matrix was derived, and then extended so that the transition 

intensities could depend upon prognostic factors. Within the present data set there were 

13 potential predictors (novel biomarkers and clinico-demographic factors), which 

would require a model with 28 parameters. While no formal definition of an effective 

sample size for Markov Multi-State models exists in literature to date [444], it was 

assumed the somewhat restrictive definition of the smallest number of observed state 

transitions. In these data it was observed that only n=10 transitions from the inactive 

to the active state, so this was our effective sample size when developing the model. 

Using the empirical assessment of model complexity in regression analysis [444], it 

was estimated that no more than two predictors can be used in the model without the 

risk of overfitting.  

 

To select candidate predictors, the expected relative Kullback-Leibler information 

[445] estimated by the AIC score was used. The AIC is essentially a measure of 

information loss induced by approximating the data generating process with a model, 

the best model is therefore one with the lowest AIC score. All data analysis was 

undertaken using R version 3.1.1 [360]. Graphical illustrations were generated in R or 

using GraphPad Prism version 6.0. Where Bonferroni adjustment was made to account 

for multiple testing, the Bonferroni corrected p-value, pc is reported. 

Inactive 

Nephritis 

(1) 

Active 

Nephritis 

(2) 
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5.5! Results  

5.5.1! Cross-sectional biomarker panel validation - US and SA 
cohorts 

5.5.1.1! US Cohort  
The US Cohort consisted of 30 JSLE patients, 16 (53%) were classed as active LN 

(11/16 renal BILAG score=A, 5/16=B) and 14 (47%) as inactive LN JSLE patients 

(6/16 renal BILAG score=D, 8/16=E). Active and inactive LN JSLE patients had a 

median age of 15 [14-17] and 17 [15-19] years respectively, with a disease duration of 

3.1 and 1.7 years at the time of biomarker analysis. One hundred percent of the active 

LN and 71% of the inactive LN patients were female. US Cohort patients were largely 

African/African American (53%) and Hispanic (43%), whereas the UK JSLE Cohort 

patients assessed in Chapter 4 were predominantly Caucasian (41%) and Indian (23%). 

All active LN patients had biopsy proven LN during their disease course, with the 

ISN/RPS 2003 classes as follows; class III = 19%, class IV = 19%, class V = 31%, 

mixed class III/V = 31%, and a median of 5 ACR classification criteria at diagnosis. 

Active LN and inactive LN patients differed significantly in terms of their UACR and 

use of ACEi/AT2 blockers (both p<0.05, see Table 5-1). 

 

5.5.1.2! SA Cohort  
The SA JSLE Cohort consisted of 23 JSLE patients and 18 HCs, 9 JSLE patients (39%) 

were classed as having active LN (8/9 renal BILAG score=A, 1/9=B) and 14 (61%) as 

inactive LN (5/14 renal BILAG score=D, 9/14=E). Active LN, inactive LN patients 

and HCs had a median age of 13 [11-15], 14 [13-15] and 11 [10-12] years respectively, 

with a disease duration of 2.8 and 2.6 years for the JSLE patients at the time of 

biomarker analysis. 89% of the active LN, 86% of the inactive LN patients and 78% 

of the HCs were female. SA JSLE patients were mainly Coloured1 (55% of active LN 

and 57% on inactive) and Black African (34% of active LN and 29% of inactive). 11% 

of active LN and 7% of inactive LN patients were Indian/Asian. 45% of HCs were 

Coloured1 and 55% were Black African. All active LN patients had biopsy proven LN 

                                                
1 Coloured is an ethnic label for people of mixed ethnic origin who possess ancestry from 

Europe, Asia, and various Khoisan and Bantu ethnic groups of Southern Africa.  
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during their disease course, with the ISN/RPS 2003 classes as follows; class II = 44%, 

class IV = 34%, class V = 22%, and a median of 6 ACR classification criteria at 

diagnosis. Active LN and inactive LN patients differed significantly in terms of their 

UACR (p<0.01, see Table 5-1).  

 

 US Cohort SA Cohort 
Active LN Inactive LN pc

 Active LN Inactive LN pc 
Age1 15 

[14-17] 
17 

[15-19] 
ns 

13 
[11-15] 

14 
[13-15] 

ns 

Duration2 3.1 
[1.2-4.8] 

1.7 
[0.5-5.6] 

ns 
2.8 

[0.7-4.9] 
2.6 

[1.8-4.0] 
ns 

Female 16 (100) 10 (71) ns 8 (89) 12 (86) ns 

ACR3 5 
[5.0-5.8] 

5 
[4.5-6.0] 

ns 
6 

[4-8] 
5 

[4-6] 
ns 

Prednisolone4 

MMF5 
CYC6 ever 
Ritux7ever 
ACEi/AT28 

14 (88) 
7 (44) 
9 (56) 
6 (38) 

10 (63) 

12 (86) 
3 (21) 
4 (29) 
5 (36) 
1 (7) 

ns 
ns 
ns 
ns 

0.03 

6 (67) 
3 (33) 
1 (11) 
1 (11) 
5 (56) 

8 (57) 
7 (50) 

0 
0 

1 (7) 

ns 

GFR9 126 
[90-160] 

110 
[100-123] 

ns 
136 

[72-156] 
150 

[118-160] 
ns 

UACR10 555 
[137-2059] 

9 
[3-19] 

0.03 
210 

[90-415] 
15 

[10-20] 
<0.01 

Serum creat11 53 
[44-71] 

66 
[62-73] 

ns 
39 

[36-78] 
40 

[35-51] 
ns 

dsDNA12 156 
[96-179] 

87 
[23-178] 

ns 
48 

[12-244] 
17 

[9-42] 
ns 

C313 0.8 
[0.7-1.0] 

1.0 
[0.8-1.2] 

ns 
1.0 

[0.7-1.1] 
1.2 

[0.9-1.3] 
ns 

ESR14 - - - 
61 

[25-83] 
50 

[20-77] 
ns 

Table 5-1: Clinico-demographic data of US and SA Cohort patients at the time of 
urinary biomarker quantification. 
Data expressed as median values and IQRs in square brackets, or numbers and percentages in curved 
brackets. p-values are Bonferroni-corrected (pc) from Chi Squared tests or univariate binary regression 
as appropriate, ns = non-significant, pc>0.05. 1Age in years at time of analysis. 2Duration = disease 
duration in years. 3ACR = number of American College of Rheumatology criteria for SLE fulfilled at 
diagnosis. 4Current medication use described for regular medications, those taken in 
courses/intermittently are described as having been used ‘ever’. 5MMF= mycophenolate mofetil. 6CYC 
= cyclophosphamide. 7Ritux = rituximab. 8ACEi/AT2= angiotensin converting enzyme inhibitor or 
angiotensin 2 blocker. 9GFR = glomerular filtration rate, 10UACR = urinary albumin creatinine ratio 
(mg/mmolCr), 11Serum creat = serum creatinine (µmol/L). 12dsDNA = anti-double stranded DNA 
antibody (IU/L), 13C3 = complement factor 3 (g/L), 14ESR = erythrocyte sedimentation rate (mm/h), 
ESR not routinely measured in the US Cohort. 
 



  
176 

5.5.1.3! Individual novel urine biomarkers 
Figure 5-2 shows the distribution of novel urinary biomarker concentrations in US and 

SA Cohort patients, compared to UK JSLE Cohort patients. Patients with active LN 

from both US and SA validation cohorts had significantly higher urinary 

concentrations of AGP, CP, LPGDS, TF, MCP-1 and VCAM-1 than inactive LN 

patients (all pc<0.05). Whilst similar for AGP, CP, LPGDS, MCP-1 and VCAM-1, 

this contrasts to the UK JSLE Cohort results where a significant difference in TF levels 

was not seen between active and inactive LN (pc = 0.06). Some subtle variation was 

seen in the strength of the corrected p-values assessing the biomarkers’ ability to 

differentiate active and inactive LN biomarker concentrations between cohorts for 

LPGDS, MCP-1 and VCAM-1. NGAL levels did not differ between US Cohort patient 

groups (pc=1.0) and were not quantified in the SA Cohort (see Table 5-2). In the SA 

Cohort, none of the urine biomarker levels differed significantly between inactive LN 

and HC patients (all pc values 1.0, see Table 5-3).  
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Figure 5-2: Distribution of biomarker concentrations in active/inactive LN 
patients from the UK, US and SA JSLE cohorts.  
Median biomarker values shown by horizontal line. Mann Whitney-U tests used to compare distribution 
of biomarker concentrations between patient groups. Bonferroni corrected p-values (pc). The raw data 
relating this figure are shown in Appendix 19. 
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Biomarker 
 

Inactive LN 
[med, IQR], n=14 

HC 
[med, IQR], n=18 

Inactive vs. HC  
(pc ) 

VCAM-1  4 [2-11] 4 [2-6] 1.0 
MCP-1  219 [150-334] 296 [186-448] 1.0 
LPGDS 601 [151-900] 577 [314-765] 1.0 
AGP 680 [394-2985] 605 [408-1458] 1.0 
CP 1901 [1140-3276] 1700 [1324-2999] 1.0 
TF 433 [221-1020] 425 [234-928] 1.0 

Table 5-3: Urine biomarker concentrations standardised to urinary creatinine in 
inactive LN and HC patients from the SA Cohort. 
P-values quoted are corrected, pc. Med = median. Median values and IQRs provided. MCP-1 
concentration in pgmgCr, all other biomarkers in ngmgCr. NGAL levels not measured. 
 

5.5.1.4! Combinations of urine biomarkers  
In the US and SA cohorts, binary logistic regression models including AGP, CP, 

LPGDS and TF again produced the optimal AUCs (0.991 and 1.0 respectively). As a 

combination of biomarkers led to excellent identification of active LN in both 

validation cohorts, AUCs were also calculated for all three cohorts combined (see 

Table 5-4).  

 

Biomarker combinations  UK 
Cohort1 

US  
Cohort2 

SA  
Cohort3 

All cohorts  
together 

AGP + CP 0.881 0.982 0.992 0.937 

AGP + CP + LPGDS 0.900 0.982 0.992 0.942 

AGP + CP + LPGDS + 
TF 

0.920 0.991 1 0.951 

AGP + CP + LPGDS + 
TF + VCAM-1 

0.920 0.987 NA4 0.953 

AGP + CP + LPGDS + 
TF + VCAM-1 + MCP-1 

0.920 NA4 NA4 0.952 

Table 5-4: Effect on AUC of adding biomarkers to the regression models in 
individual cohorts or together. 
159 UK patients included in novel biomarker models including VCAM-1 due to missing biomarker 
measurements. 230 US patients included in novel biomarker models. 323 SA patients included in novel 
biomarker models. 4Patient number precludes fitting of a model. 
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The combined model for all three cohorts, including AGP, CP, LPGDS and Transferrin 

again gave an excellent AUC (0.951). However, adding VCAM-1 slightly improved 

the AUC still further (0.953). The receiver-operating curve (ROC) generated by the 

optimal three cohort model is shown in Figure 5-3. 

 

 
Figure 5-3: ROC generated from the optimal binary logistic regression model 
when data from all three cohorts were combined.  
Optimal model includes AGP, CP, LPGDS, TF and VCAM-1 (AUC = 0.953). 
 

5.5.1.5! Urine biomarker concentrations in biopsy versus renal BILAG defined 
LN  

Urine biomarker levels from 12 samples from the US Cohort patients which were taken 

at the time of, or within six weeks of renal biopsy (8 at the time or biopsy, 2 up to 3 

weeks before biopsy and 2 up to 6 weeks post biopsy), were compared with 11 patient 

samples who had had biopsy proven LN at some other point during their disease course 

but currently had a composite renal BILAG score-based diagnosis of active LN. 

Urinary AGP, CP, LPGDS, TF, MCP-1 and VCAM-1 levels did not differ significantly 

between the two groups of active LN patients (all pc = 1.0; see Figure 5-4). Urine 

samples from the UK and SA Cohorts were not available close enough to the time of 

renal biopsy, therefore comparable groups were not available for inclusion in these 

analyses. Within the US Cohort samples taken at the time of, or within six weeks of 

renal biopsy, urinary biomarker levels appeared to be lower in class II ISN/RPS 2003 

LN sub-class as compared to all other classes, however the numbers available were 

limited and therefore statistical tests were not possible (see Figure 5-5). 
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Figure 5-4: Urine biomarker concentrations in US Cohort patients with biopsy 
vs. BILAG defined active LN.  
LN & biopsy patients, n=12. LN no biopsy, n=11. P-values quoted are corrected, pc. 
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Figure 5-5: Urine biomarker concentrations according to renal biopsy ISN/RPS 
2003 LN subclass. 
Urine samples taken at the time of or within 6 weeks of renal biopsy. Individual patient values shown 
in the figure and median biomarker concentrations shown by the horizontal line. Total n =12 with 1 
class II patient, 1 class III patient, 3 class IV, 4 class V and 3 mixed class III and V.  
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5.5.2! Longitudinal analysis within three ‘real world’ JSLE Cohorts 
5.5.2.1! The longitudinal data  
This study included 184 observations from 57 UK patients, 27 from 13 US patients, 

and 33 from 10 SA patients. Across the data set there were 10 transitions from the 

inactive to active LN disease state (1*2 transition), 18 from active to inactive LN 

(2*1 transition), with 93 and 43 remaining inactive and active respectively between 

time points (see section 5.4.3.2). The median follow-up period was 10.85 months [IQR 

6.07-23.0]. Patients included within the original cross-sectional studies who only had 

one visit were excluded from these analyses. Inspection of the longitudinal urine 

biomarker values for renal BILAG C patient episodes showed them to cluster with 

renal BILAG A/B episodes (see Figure 5-6) rather than D/E episodes. On the basis of 

this observation and the findings of Yee et al (see [68] and section 5.4.3.2), the 

longitudinal active LN group therefore included patients with a renal domain BILAG 

score of A, B or C & previous histological confirmation of LN (State 2), or inactive 

LN where the renal domain BILAG score was D or E (State 1).  
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Figure 5-6: Urine biomarker values for UK, US, SA Cohort patients included in 
the longitudinal analysis according to renal BILAG score. 
Horizontal line represents the median biomarker concentration. Each data point represents a biomarker 
value at a given time. 
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5.5.2.2! Developing a Markov Multi-State model of LN urine biomarker 
dynamics 

A series of time-homogeneous Markov Multi-State models were fitted to the data using 

routines from the R library msm [446]. The AIC values for each model are shown in 

Table 5-5. The baseline model, including no factors had a AIC of 147.85, therefore 

models with a lower AIC than this had better evidence than the baseline model. The 

two models with the highest evidence are therefore ones including AGP (AIC 139.81) 

and CP (AIC 141.40) as predictors.  

 

No factor LPGDS MCP-1 CP AGP VCAM-1 TF 
147.85 152.14 154.74 141.40 139.81 142.59 151.64 

Ethnicity Sex Age Disease 
duration 

dsDNA- 
antibody 

C3 C4 

151.41 154.35 154.57 153.89 147.35 155.88 157.12 
Table 5-5: AIC values obtained by fitting a series of time-homogeneous Markov 
Multi-State models to each of the 13 potential predictors (novel biomarkers and 
clinico-demographic factors). 
 

Combining both AGP and CP in a model (no more than two predictors allowed, due 

to the small effective sample size), the AIC was 157.19, so the increased complexity 

of the model did not improve the evidence for the model. The hazard ratios for this 

model (with 95% CIs) are shown in Table 5-6. Inspection of the confidence intervals 

associated with the prognostic factors added to the model revealed that they include 

the value 1 in the case of CP for state 1-2 transitions (inactive to active), and in the 

case of AGP for state 2-1 transitions (active to inactive). This suggested that the data 

is not informative enough to reliably assess the impact of CP/AGP on both of these 

transitions.  

 

State 
transitions 

Baseline model 
 

AGP CP 

1-2 0.25 (0.03, 1.89) 1.80 (1.08, 3.01) 0.46 (0.17,1.28) 
2-1 0.19 (0.03, 1.41) 1.22 (0.78, 1.91) 0.33 (0.18, 0.62) 

Table 5-6: Hazard ratios for state transition dependent upon each prognostic 
factor in the full model containing both AGP and CP.  
The baseline model was fitted using mean AGP and CP values. Hazard ratios and 95% confidence 
intervals shown. State 1 = inactive LN, State 2 = active LN.  
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A simplified model was then fitted with each biomarker only impacting on one 

transition, i.e. AGP for the 1-2 transition (inactive to active, predicting flare) and CP 

for the 2-1 transition (active to inactive, predicting remission). The new simplified 

model’s AIC was 127.53, which is the lowest among both the single factor models, 

and the previous full model. Table 5-7 shows the HRs with 95% Cis for the simplified 

model.  

 

State  
transitions 

Baseline model AGP CP 

1-2 0.59 (0.24, 1.45) 1.49 (1.10, 2.02) - 
2-1 2.11 (0.90, 4.94) - 0.60 (0.39, 0.93) 

Table 5-7: Transition intensities with hazard ratios for each prognostic factor in 
the simplified model containing AGP and CP. 
The baseline model was fitted using mean AGP and CP values. State 1 = inactive LN, State 2 = active 
LN. Hazard ratios with 95% confidence intervals shown. 
 

5.5.2.3! Assessing the performance of the optimal Markov Multi-State model  
Table 5-8 shows the optimal model’s performance in predicting state prevalence up to 

one year, in three-months intervals, when AGP was seen to impact on 1-2 transitions 

and CP on 2-1 transitions. This is also represented graphically in Figure 5-7.  

 

 State 1 (BILAG D, E) State 2 (BILAG A, B, C) 
Time Observed Expected Observed Expected 
3 months 50 51 23 22 
6 months 41 42 18 17 
9 months 33 35 16 14 
1 year 21 22 11 10 

Table 5-8: Observed and expected state prevalence’s of state 1 and 2 over a 1-
year period using the optimal Markov Multi-State model. 
State 1 = inactive LN, State 2 = active LN. 
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Figure 5-7: Observed and expected state prevalence over a 1-year period. 
The blue line represents the observed state prevalence, whereas the red dotted line shows the state 
prevalence expected by the model. State 1 = inactive LN, State 2 = active LN. Times are shown in 
fractions of a year. 
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5.5.2.4! Using the Multi-State Markov model of LN urine biomarker dynamics - 
a worked example 

Using a test subject where the AGP and CP values are known (patient 10045, who had 

active LN at the time of biomarker quantification), predictions of LN disease state over 

3, 6 and 12 months can be demonstrated. For example, with a: 

•! CP of 2090 ngmgCr (log CP 7.64) 
•! AGP of 14043 ngmgCr (log AGP 9.55) 

The Markov Multi-State model predicts that the mean time that they will remain in 

state 2 (active LN) = 0.41 years [0.16, 1.03]. Over the course of the 12 months the 

probabilities of state transition for this patient are shown in Table 5-9: 

 

3 months To 
From State 1 State 2 
State 1 0.79 0.21 
State 2 0.40 0.60 

 
6 months To 
From State 1 State 2 
State 1 0.71 0.29 
State 2 0.55 0.45 

 
12 months To 
From State 1 State 2 
State 1 0.66 0.34 
State 2 0.64 0.36 

 

Table 5-9: Test subjects probabilities of state transition at 3, 6 and 12 months 
following urine biomarker quantification. 
State 1 = inactive LN, State 2 = active LN. 
 

Therefore, the probability of this patient (currently with active LN) of remaining active 

at 3 months is moderate (HR 0.60), however by 6 and 12 months the probability of 

remaining active falls (HR 0.45 at 6 months and 0.36 at 12 months). Table 5-10 shows 

the actual LN disease course of this patient during the subsequent follow-up visits, 

showing that at 3 months the patient had a renal BILAG B score, becoming inactive 

(renal BILAG D) by 6 months. 
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Time renal 
BILAG 

SBP DBP Sev 
Hyper 

U 
Dip 

UACR Serum 
creat 

eGFR Act  
Sed 

Biopsy 

0 A 98 60 N 4+ 628 39 152 NA Y 
3/12 B 102 50 N 1+ 9.6 49 120 Y N 
6/12 D 98 59 N 1+ 3.2 49 118 N N 
12/12 D 100 60 N 1+ 0.9 51 116 N N 

Table 5-10: Clinical LN disease course of the patient during follow up visits after 
urine biomarker quantification. 
Time = time following biomarker quantification. SBP = systolic blood pressure. DBP = diastolic blood 
pressure. Sev Hypert = severe hypertension. Y/N = yes or no. U Dip = urine dipstick. UACR = urine 
albumin creatinine ratio. Serum creat = serum creatinine. eGFR = estimated GFR. Act Sed = active 
sediment. Biopsy = biopsy defined LN within the last 3 months.  
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5.6! Discussion 
By simultaneously measuring urinary AGP, CP, VCAM-1, TF, LPGDS and MCP-1 in 

two distinct, ethnically diverse validation cohorts of JSLE patients, the primary aim of 

this study was to evaluate the performance of the UK optimal urine biomarker panel, 

to see if the same ‘excellent’ ability for LN identification could be demonstrated. In 

all three cohorts (UK, US, SA) the optimal urinary biomarker combination for 

identification of active LN was shown to include AGP, CP, LPGDS and TF with 

excellent an AUC values of 0.920 in the UK, 0.991 in the US anda perfect AUC of 1.0 

in the SA Cohort. This is the first LN urine biomarker panel study to include 

exploratory and validation cohorts. 

 

The secondary aim was to use longitudinal data from all three ‘real world’ cohorts to 

see if constituents of the biomarker panel are able to predict LN flare and remission in 

advance, using Markov Multi-State modelling. During the longitudinal study period, 

a relatively small number of patients transitioned from inactive to active LN (or vice 

versa), so the model was restricted to containing two biomarkers (to avoid overfitting). 

The two biomarkers with the highest evidence for predicting changes in LN activity 

were found to be AGP and CP. The optimal model including both AGP and CP 

suggested that AGP was best at predicting flare, and CP was best for predicting 

remission. Using this model, it is possible to develop individual patient predictions of 

LN disease state over 3, 6, 9 and 12 months. 

 

As mentioned in Chapter 4, previous studies complementing our work have focused 

on identification of biomarker combinations reflective of LN histological subtypes in 

patients with biopsy proven LN. Brunner et al’s study of 28 childhood onset and 48 

adult SLE patients assessed biomarker combinations differentiating biopsy defined 

activity, chronicity or membranous LN in samples taken within 2 months of biopsy. 

The best predictive ability was seen for LN activity, when MCP-1, AGP, CP and 

UPCR were considered together (AUC 0.850) [318]. Within the UK, US and SA 

cohorts, we have demonstrated stronger AUC values (0.920, 0.991 and 1.0 

respectively) for identification of active LN with urinary AGP, CP, LPGDS and TF in 

combination. When the results from the UK, US and SA Cohorts are pooled, VCAM-

1 also adds to the diagnostic ability of the above biomarker panel.  
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The improved performance of the urine biomarker panel in the validation cohorts (US 

and SA) as compared to the original exploratory UK Cohort is interesting, and may be 

partially explained by differences in the ethnicity and severity of LN between the 

patient cohorts. The UK JSLE Cohort comprised of predominately Caucasian and 

Indian patients, the US Cohort of African American and Hispanic patients, and the SA 

Cohort mostly included Coloured and Black African patients. Notably, African and 

African American patients are known to often have more severe kidney involvement 

in SLE [32,281,403]. In the US and SA Cohorts there was also a greater proportion of 

active LN patients relative to the total patient numbers (53 and 39% in US/SA 

respectively, vs. 25% in UK). Although standardized SOPs were used throughout the 

course of the study, there could be operator-related improvements in lab techniques 

which could reduce variability in the assays and bear influence on these results. 

 

Using samples from the US Cohort we were able to assess for potential differences in 

urine biomarker levels dependent on how the diagnosis of active LN was derived. In 

the UK and SA Cohorts all patients with ‘active LN’ had biopsy proven LN at some 

point during their disease course, but at the time of urine sampling they were defined 

as having active LN based upon their composite renal BILAG score (A or B). Within 

the US Cohort twelve samples were available which were taken at the time of or within 

6 weeks of renal biopsy. Biomarker levels in these samples could therefore be 

compared to those in a further eleven patient samples who had a composite renal 

BILAG score-based diagnosis of active LN (but biopsy proven LN at some point 

during their disease course) as per the UK and SA patients.  Urinary AGP, CP, LPGDS, 

TF, MCP-1 and VCAM-1 levels did not differ significantly between the two groups of 

‘active LN’ patients (all pc = 1.0), supporting the grouping of these patients together.  

 

In the current study, all urinary biomarker levels appeared to be lower in class II 

ISN/RPS 2003 LN sub-class as compared to all other classes, however the number of 

patients available was limited and therefore statistical analysis was not possible. Some 

members of the urinary biomarker panel have been shown to correlate with histological 

subclasses in the literature. Abd-Elkareem et al studied 50 adult SLE patients and 

found elevated urinary VCAM-1 in class III, IV and V LN but not in class I/II LN 

[328]. Singh et al found VCAM-1 to have a positive correlation with the presence of 
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class IV LN [297]. In an adult SLE longitudinal study, Rovin et al demonstrated MCP-

1 levels to be higher in patients with proliferative LN (WHO class III/IV) as opposed 

to membranous (class V) nephritis [299]. 

 

A recent study by Brunner et al assessing how urine biomarkers relate to composite 

NIH histological AI/CI indices (rather than distinct histological sub-classes), has 

looked at samples taken at the time of biopsy from 47 children. They demonstrated 

NGAL, MCP-1, CP, adiponectin, hematopexin and KIM-1 to be the best predictors of 

NIH LN AI, proposing a biomarker based Renal Activity Index for Lupus (RAIL) 

[348]. The RAIL includes additional biomarkers to those assessed in the current study, 

also within a biomarker panel. These results require further validation in larger 

international cohorts, assessing the measurement properties of the RAIL, cutoff scores 

in different populations and their ability to reflect ISN/RPS LN classes. In contrast to 

the markers validated in the current study, it remains unclear whether these biomarkers 

would be able to differentiate patients with active LN versus inactive LN as all patients 

in the above study had definite biopsy-defined active LN at the time of biomarker 

quantification. 

 

In this study it was not possible to demonstrate a significant difference in urinary 

NGAL levels between those with active LN/inactive LN in either the UK or US cohorts 

on a cross-sectional basis. This is in contrast with previous work which has shown 

NGAL to be highly sensitive/specific for identification of biopsy proven LN in 

children [74]. These results may be explained by differences in the timing of the 

sample and the outcome measures used. Urinary NGAL has previously been shown to 

be a useful predictor of impending flare in the UK JSLE Cohort [74], and the adult 

arm of the Einstein Lupus Cohort [71]. Kiani et al were also unable to detect an 

association between urinary NGAL and LN in a prospective study including 107 adult 

SLE patients [308]. These observations may be due to urinary NGAL levels peaking 

before flares, and receding before it becomes clinically detectable [320]. Urinary 

NGAL has also been demonstrated as a marker of renal damage in LN [321], which 

may also explain why patients with a history of biopsy proven LN have higher urinary 

NGAL levels. 
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Longitudinal LN urine biomarker studies to date have featured individual biomarkers 

and small cohorts of patients from single countries [74,290,299,308]. The clear 

benefits of the current study deriving a Markov Multi-State model of LN urine 

biomarker disease dynamics, are the relatively large number of patients (n=97, with 

184 individual visits), the international representation within the study population, and 

the rigorous statistical methods used.  Of the six novel urine biomarkers, and seven 

clinico-demographic factors evaluated in the model, AGP and CP were found to be 

most informative. Fitting of the time homogeneous Markov Multi-State model showed 

AGP to be predictive of active LN flare, and CP to be predictive of remission. Looking 

at the AIC for each candidate predictor, VCAM-1 for example had a similar AIC value 

to AGP and CP (VCAM-1 = 142.59, AGP = 139.81, CP = 141.40), so if more data 

were available, including more LN disease state transitions, it would also be interesting 

to look at the impact of adding VCAM-1 to the model.  

 

In contrast to the cross-sectional analysis where renal BILAG C patient episodes were 

excluded, the longitudinal active LN group included patients with a renal BILAG score 

of A, B or C. Inspection of the urine biomarker values for renal BILAG C patient 

episodes showed them to cluster with renal BILAG A/B episodes (see Figure 5-6) 

rather than D/E episodes. As discussed in sections 1.1.4.2 and 5.4.3.2, this approach 

was in keeping with the previous BILAG validation study [68] by Yee et al, which 

showed fluctuation between adjacent renal BILAG categories of A and B or B and C 

to occur without changes in LN treatment. Clinically it was also felt most appropriate 

to group patients with ‘any LN activity’ together in this way. Exclusion of these patient 

episodes within the longitudinal analysis would have led to long gaps between urine 

sampling episodes, and inclusion of a third category would increase the complexity of 

the modelling process given the sample size.  

 

Despite these limitations, this study has demonstrated significant data regarding a 

panel of urine biomarkers which are able to predict changes in LN disease activity in 

ethnically diverse cohorts. The Markov Multi-State model therefore warrants further 

rigorous testing in a larger, prospectively conducted clinical trial of biomarker-led LN 

monitoring. These data support the argument eluded to in the current Chapters 

introduction, that very few tests are ideal biomarkers at every time point, therefore a 

longitudinal biomarker panel-based approach is required (see section 5.1.2), with AGP 
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and CP demonstrating predictive ability for different stages of the disease process. 

Validating these results in the context of a clinical trial (rather than a prospective 

observational study) would ensure that samples and clinical data are collected on a 

comprehensive, very regular and systematic basis. This would allow for more thorough 

assessment of the predictive abilities of the Markov Multi-State model. Such a study 

could be adequately powered to facilitate assessment of other markers which may 

improve the model further (e.g. VCAM-1) and ultimately could assess whether urine 

biomarker-led monitoring can actually improve renal outcome for patients.  

 

5.7! Summary  
This study has demonstrated and validated, a renal-specific ‘excellent’ novel urinary 

biomarker panel for recognition of active LN in three ethnically diverse JSLE 

populations. This adds considerable strength to the original proposed panel findings. 

Development of a Markov Multi-State model of LN urine biomarker disease dynamics 

demonstrated that AGP is predictive of active LN flare, and CP is predictive of 

remission in three independent cohorts from three continents, representing a 

significant step in the advancement of developing a urinary biomarker panel for LN.  

This is the first urine biomarker panel study to include both cross-sectional and 

longitudinal exploratory and validation cohorts, providing a firm foundation for 

development of a longitudinal clinical trial of urine biomarker-led monitoring in LN. 

To this end, efforts must be made to improve the method of urine biomarker panel 

quantification as current ELISA techniques are very time consuming and costly, 

prohibiting their use in a real-time study of biomarker-led monitoring, where a short 

turnaround time for results would be required.  

 

5.8! Conclusions  
•! The optimal ‘LN urinary biomarker panel’ derived within UK JSLE Cohort Study 

samples displayed an equivalent ability for active LN identification in both the US 

and SA JSLE cohorts. 

•! Within a Markov Multi-State model of LN urine biomarker dynamics, AGP was 

found to be best at predicting LN flare and CP was best for predicting LN 

remission. 
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•! To enable development of a future clinical trial of urine biomarker-led monitoring, 

urine biomarker panel quantification must be streamlined to allow the biomarker 

panel to be quantified quickly and conveniently. 
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6! Developing a urine biomarker panel test for use in 
a clinical trial in children 

 

6.1! Introduction  

6.1.1! Making steps towards a prospective clinical trial of urine 
biomarker-led monitoring in LN  

As noted in Chapter 1, a six step process should be considered when translating an 

experimental biomarker into clinical practice, including: (1) initial biomarker 

identification, (2) evaluation of the results by independent experts, (3) further 

evaluation in a suitable biobank of existing samples or newly collected samples, (4) 

evaluation in a clinical trial or prospective study, (5) implementation in clinical 

practice, and (6) proving the cost-effectiveness of the validated biomarker [282].  

 

The majority of LN urine biomarker studies to date have focused upon step one and 

two of this process. Through chapters 1-5 of this present thesis, step three has been 

reached by (1) identifying a panel of biomarkers which accurately identify LN in a UK 

JSLE population; (2) undertaking independent confirmatory analyses of the results by 

statistician’s out with the laboratory research team; (3) subsequently evaluating the 

biomarker panel in two independent, international cohorts (US biobank of existing 

samples and SA prospectively collected samples). The next step necessary would 

therefore be to evaluate this biomarker panel within a prospective clinical trial. 

However, improving the method by which these multiple biomarkers are quantified is 

needed to make such a trial realistic.  

 

6.1.2! Need for streamlined biomarker panel analysis to facilitate a 
future prospective clinical trial 

Individual ELISA assays were used for urine biomarker quantification in Chapters 4 

and 5. However a need to streamline biomarker panel analysis through a single 

combined biomarker assay was recognised, allowing the biomarker panel to be 

quantified quickly and conveniently as part of a future clinical trial. Such an assay 

would be expected to use a smaller sample volume than previous individual ELISA 

assays, whilst providing comparable results, and would then be a key enabler of a 

future larger prospective clinical trial of biomarker-led monitoring in clinical care.  



  
197 

 

After undertaking a series of introductory meetings with several industry partners, the 

multiplex assay emerged as the most suitable method to combine these biomarkers into 

a single test. External commercial small-to-medium sized enterprise (SME) companies 

specialising in developing small point of care devices (e.g. similar to a pregnancy test) 

were only able to offer devices which would measure 1 or 2 biomarkers in 

combination. In 2014, Dr Smith was selected from >150 international entrants as the 

winner of the Merck Millipore 2014 MAGPIX! Grant program. She was awarded a 

MAGPIX! Luminex Multiplex Instrument for accurate magnetic bead-based 

biomarker quantification using multi-analyte panels (worth £30,000), MILIPLEX 

Analyst 5.1 software, technical support (worth £5000) and £10,000 of assays (see 

Appendix 20). Using this technology, it is possible to simultaneously measure up to 

50 analytes in a 25µl patient sample.  

 

Dr Smith was awarded this prize on the basis of her proposal for using this platform 

for assessing the urinary biomarker panel, recognising that the ‘MAGPIX! instrument 

could really make a difference to your research and potentially benefit human health’. 

As part of this, Millipore were keen to showcase how its products can help ‘real world 

academics’ in the translation of biomarkers. The off-the-shelf multiplex kits developed 

by Merck Millipore (and other multiplex assay manufacturers) did not however 

measure our candidate biomarkers together, nor had they been validated for use in 

urine. To take full advantage of this technology and get the most out of Merck 

Millipore’s prize, funding was sought to develop an LN urinary biomarker panel 

multiplex assay with Merck Millipore. 

 

6.1.3! MRC Confidence in Concept Award  
In March 2015, Dr Smith led a UoL MRC Confidence in Concept (CiC) scheme grant 

application, along with Professor Beresford and co-applicants; Professor Matthew 

Peak (Director of Research, Alder Hey Children’s NHS Foundation Trust) and Dr 

Louise Oni (NIHR Academic Clinical Lecturer, Women and Children’s Health, 

University of Liverpool). Collaborators included Professor Chris Scott (University of 

Cape Town, SA), Assistant Professor Beatrice Goilav (Albert Einstein College of 

Medicine, New York, USA) and Mr Lawrence Rentoul (Merck Millipore, Nottingham, 
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UK). This scheme aimed to accelerate the transition from discovery science to the early 

stages of therapeutic/diagnostic development and was therefore ideally suited to our 

work (see Appendix 21). 

 

Applications had to be for projects that would cost no more than £50,000 and run 

between 6-12 months. Applications had to show how MRC CiC funding would 

provide a firm foundation for subsequent competitive funding or partnership with 

industry. The MRC was keen to promote academic-industry interactions and so 

applicants were strongly encouraged to explore how an award could be used to develop 

these interactions, which could include in-kind contributions from an industry partner. 

The application was successful and focused upon completing the assessment of urine 

biomarker panels within the international JSLE Cohorts (US/SA), development and 

validation of a custom multiplex assay for use in JSLE patient urine samples with 

Merck Millipore (using the multiplex platform gifted by them), and optimisation of 

the assay to replicate the results previously measured by ELISA.  

 

It was anticipated that working with Merck Millipore to simplify methods for 

biomarker quantification, through development of a proof-of-concept custom single 

multiplex assay could position this work in a strong position to apply for a future 

substantive grant (e.g. MRC, NIHR Invention for Innovation, Wellcome Trust 

Translation Award, Arthritis Research IUK) to undertake a larger prospective multi-

centre study of urine biomarker-led monitoring in clinical care, with clear potential for 

commercial and healthcare benefits. The outputs from the MRC CiC award will be 

detailed in the current chapter. 

 

6.1.4! Considering the design of a prospective clinical trial of urine 
biomarker-led monitoring in LN - can patients send their 
urine samples through the post? 

In a future clinical study or trial of urine biomarker-led monitoring, frequent, fixed 

time point serial urine samples would need to be collected to accurately assess the 

ability of the biomarker panel to predict events such as LN flare, remission, treatment 

response and prognosis. To reduce the impact of such a study on patients’ lives, these 

samples would ideally be sent to hospital through the post so that an increased 

frequency of hospital attendance is not required. Protease inhibitors are used by some 
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investigators for long-term storage of urine samples to prevent degradation of proteins 

over time [447]. Certain analysis techniques (e.g. high-performance liquid 

chromatography or urinary exosome analysis) have been shown to be particularly 

susceptible to the effects of prolonged storage, and therefore protease inhibitors are 

used routinely to prevent such problems [448,449]. Evidence for routine use of 

protease inhibitors for the analytes seen within our urinary biomarker panel is lacking, 

therefore our standard procedure has been to centrifuge samples, aliquot the urine 

supernatant and store at -80oC as soon as possible after the patient voiding.  

 

It is anticipated that ice packs +/- protease inhibitors may prove beneficial with 

samples undergoing delayed processing and being transported through the post. In a 

study looking at NGAL and KIM-1 levels in samples which were stored at 4°C 

and −80°C with or without protease inhibitors, urinary NGAL and KIM-1 

concentrations were stable for up to 48 hours when stored at 4°C and up to 6 months 

when stored at −80°C, independent of the addition of protease inhibitors [450]. With 

an ice pack sent through the post, it may not be possible to maintain a consistent 

temperature of 4oC, and therefore protease inhibitors may confer additional benefit. 

Boric acid (BA) is a preservative which can be used in the clinical setting where sample 

transport delays are expected before bacterial culture, to inhibit non-specific (mixed) 

bacterial growth and contamination [451]. BA is known to interfere with routine 

biochemical urine UPCR ratio measurement, so although it may have a beneficial 

effect on reducing bacterial contamination it may affect the integrity of the biomarkers 

and therefore warrants further investigation.  

 

It would therefore be necessary to undertake a series of experiments to determine 

whether home urine collection (in the appropriate manner) would provide an 

opportunity for a clinical study of frequent monitoring of urine biomarker levels, 

ensuring prospective validation of the utility of the LN urine biomarker panel is 

practical, and has minimal impact of the patients’ day to day life and activities.  

 

6.2! Hypothesis 
•! A multiplex assay, specifically developed for use in JSLE patient samples, will 

rapidly and accurately quantify AGP, CP, LPGDS, TF, VCAM-1 and MCP-1 in a 
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single assay when compared to the six individual ELISA assays which are 

currently in use. 

 

6.3! Aims and objectives  
The primary aim of the study presented in this chapter was to develop a multiplex 

assay for quantification of the internationally validated LN urinary biomarker panel in 

collaboration with industry partner Merck Millipore, in order to streamline the process 

of biomarker quantification.  

 

The secondary aim was to assess if urine samples can undergo delayed processing (48 

hours after sample collection) and still maintain urine biomarker stability by 

transporting samples in the presence of additives and/or a cool environment, allowing 

patients to send in samples from home as part of a future prospective clinical study or 

trial. Comparison of urine biomarker levels in patients with UTI, mixed growth or no 

growth samples is also important, as samples sent from home are more likely to display 

such issues. 

 

The specific objectives of this chapter were: 

 

1.! To identify antibody pairs capable of detecting each biomarker within urine 

samples and assess for cross reactivity between them to determine if they were 

appropriate for use in a multiplex assay format. 

 

2.! To assess for JSLE urine/sample related matrix effects that could impact on the 

accuracy of the multiplex results through spike/recovery and LOD experiments. 

 

3.! To undertake range finding experiments on a large number of JSLE patient samples 

to be clear on the sample dilution/dilutions required for a future prospective clinical 

trial. 

 

4.! To assess the agreement between ELISA and multiplex biomarker results, 

comparing the ability of both assays for detection of active LN disease state. 
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5.! To assess the stability of urine biomarkers in samples which have been processed 

using accepted standard techniques compared with those that undergo delayed 

processing but are maintained in the presence of certain experimental conditions 

(protease inhibitors +/- BA +/- an ice pack). 

 

6.! To compare urine biomarker levels in patients with a UTI, mixed growth or no 

growth in their urine sample. 

 

6.4! Specific methods 

6.4.1! Custom multiplex assay development  

The assay was developed by the Merck Millipore Multiplex Research and 

Development Team, St Charles, US, with close collaboration, project management and 

discussion with the team at the UoL, led by Dr Smith. Regular e-mail discussions, 

exchange of update reports, teleconferences and a face to face meeting, led by Dr 

Smith, were important in ensuring that the optimal assay was developed, and tailored 

to the disease state (LN).  Following development of a prototype assay, further rigorous 

in-house beta testing was carried out at the UoL by Dr Smith to ensure that the results 

obtained by Merck Millipore could be replicated in a ‘real world’ clinical-academic 

research laboratory, that optimal dilutions were chosen based on a wide range of 

patient samples, and that this new assay provided equivalent results to existing ELISA 

techniques. Close communication was maintained with the Merck Millipore team 

during the beta-testing process by Dr Smith.  

 

Multiplex assay principles and the specifics of the MAGPIX! instrument used in this 

study are described fully in section 2.2.4 and Figure 2-3. Multiplex assay development 

is an iterative process, involving stages of optimisation due to the potential for complex 

interactions between assay components. The ability to test for multiple analytes 

simultaneously provides many benefits over traditional single analyte testing but can 

lead to problems with cross-reactivity between analytes and high background levels in 

the target matrix due to non-specific binding. A variety of potential capture antibodies 

(for a particular biomarker) can be coupled to different microsphere sets and then 
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tested with the individual candidate detection antibodies, allowing for rapid 

identification of the best-performing capture and detection antibody pairs. Polyclonal 

and monoclonal antibodies can be used as detection antibodies. If a monoclonal 

detection antibody is used it should be specific for a different epitope than the capture 

antibody. Detection antibodies are typically biotinylated with streptavidin-PE as the 

reporter, eliminating the need for a separate reporter labelling step. 

 

Assay conditions which may require optimisation, including sample volume/dilution, 

buffers/blocking agents, reaction volume, number of microsphere beads per reaction 

(2000–5000 per region per well), concentration of capture reagent for coupling, 

detection antibody/reporter concentration, and incubation times. The final step is to 

undertake the fully multiplexed assay to determine sensitivity and interference when 

all analytes and reagents are present in the reaction [452]. These specific stages of the 

development process were undertaken by Merck Millipore using their existing 

protocols, and not shared or presented here to protect their existing IP relating to 

multiplex assay development. The performance of the assay was however re-evaluated 

with JSLE urine samples at the UoL. 5p log standard curves were plotted for all 

analytes and unknown values determined using MILLIPLEX! Analyst 5.1 software 

[453].  

 

6.4.1.1! Selection of antibody pairs and assessment of cross-reactivity  
Merck Millipore used existing antibody pairs from their commercially available assays 

for the following analytes; VCAM-1 and MCP-1 (already present in their human 

cytokine/chemokine panel 1 assay), AGP and CP (present in their Human Neurological 

Disorders Panel 2). They did not have existing antibody pairs for TF or LPGDS and 

therefore were required to firstly undertake microsphere coupling (primary amines on 

antibodies covalently linked to the carboxyl groups on the surface of the microspheres 

using a standard two-step carbodiimide coupling procedure [452]), and secondly check 

a range of antibody pairs for suitability. Generally, reagents used for other singleplex 

immunoassays will perform well in multiplex assays, provided they have sufficient 

sensitivity and specificity.  

 

For TF, Merck Millipore tested all possible configurations using one standard, three 

monoclonal and one polyclonal TF antibody. Only one combination of antibodies 
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(including a monoclonal capture antibody and a polyclonal detection antibody 

conjugated to streptavidin-R-phycoerythrin) were able to detect the standard and TF 

in urine samples (antibody suppliers not shared by Merck Millipore).   

 

LPGDS, and in particular the “Lipocalin” specific version of Prostaglandin D 

Synthase, proved more difficult to detect in urine using commercially available 

antibodies. Merck Millipore tested all possible antibody combinations using one 

standard, one monoclonal and two polyclonal antibodies, but could not get any 

significant signals. We suggested they contact BioVendor the manufacturers of the 

ELISA kits 

(https://www.biovendor.com/country26/product/immunoassays/prostaglandin-d-

synthase-lipocalin-type-human-elisa), who were willing to share their reagents. Using 

the BioVendor antibodies, the monoclonal capture antibody was coupled to the 

microspheres and the standard and native LPGDS could be detected by a polyclonal 

detection antibody (conjugated to streptavidin-R-phycoerythrin) in all samples. 

 

Once antibody pairs were selected, cross-reactivity to non-target proteins was assessed 

by adding a single standard in turn to multiplexed beads and detection antibodies (all 

six analyte beads and detection antibodies together). The MFI for each analyte was 

assessed in the presence of the individual spiked standard. One should expect to see a 

high MFI corresponding to the given standard which has been spiked in, with 

background MFI levels for all other analytes. If cross-reactivity is present, one would 

see MFI levels above background for analytes other than the one specifically spiked 

in, with dose dependent variations in the MFI depending on the size of the spike. In 

such a situation, it may be necessary to replace or alter the concentration of the cross-

reacting capture or detection antibody [452].  

 

6.4.1.2! Range finding 
Preliminary range finding and determination of the optimal sample dilution for use 

with the assay was carried out by Merck Millipore using UK JSLE patient and HC 

samples which were transferred from the UoL. Multiple aliquots of eight inactive LN, 

nine active LN and nine HC samples were transferred for use in the assay development 

process. In a multiplex assay, there needs to be careful assessment of a range of 

representative samples to ensure that values are detected for each analyte at a given 
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dilution. It may be that a single dilution is not achievable, and that each sample needs 

to be run at two or three dilutions. The range finding process continued as part of the 

beta testing process at the UoL using a larger number of samples from UK JSLE 

Cohort study, US and SA cohorts. During this process we assessed the percentage of 

samples detectable at a given dilution, the number of samples extrapolated and the 

number of samples that were un-detectable for each analyte. The optimal dilution was 

chosen and standard curves plotted showing where the patient samples are detected on 

the standard curve. Ideally most samples should be on the linear portion of the standard 

curve. 

 

6.4.1.3! Spike recovery and linearity of dilution 
Assay buffer components, multiplexed antibodies, urine sample matrix and JSLE 

related factors such as complement, heterophilic antibodies or rheumatoid factor all 

have potential to impact on the accuracy of multiplex results [452].  It was therefore 

important to validate the assay with urine from JSLE patients with varying disease 

activity through spike/recovery and LOD experiments. These techniques are explained 

fully in sections 2.2.2.2 and 2.2.2.3, but in brief, a known amount of standard is 

‘spiked’ into the sample type of interest (observed spiked concentration) and the assay 

buffer alone (expected amount of spike).  The level of the biomarker in the neat ‘un-

spiked’ sample is also quantified. The recovery is calculated from the difference 

between the observed spiked concentration minus the amount of spike in the neat un-

spiked samples, divided by the expected amount of spike. This is multiplied by 100 to 

get the percentage recovery.  

 

Samples were also serially diluted to test for LOD and assess whether sample values 

generated from different dilutions are comparable, or whether a single dilution is 

required to reduce error within the assay. If a sample does not exhibit linear dilution, 

this suggests that a component within the sample is interfering with accurate detection 

of a specific analyte at a given dilution and that a single dilution should be used for the 

assay to obtain comparable results. Both spike/recovery and LOD should be in the 

range of 80-120%. 

 



  
205 

6.4.1.4! Intra and inter-assay precision 
In order to define the precision or repeatability of immunoassays it is important to 

report the inter-assay (between plate) and intra-assay (within a plate) CV. The CV is 

calculated by dividing the SD of a set of measurements by the mean of the set. An 

inter-assay CV of <15% is generally acceptable and intra-assay CV should be <10% 

[452].  

•! Inter-assay overall % CV = (SD of plate means ÷ mean of plate means) x 100 
•! Intra-assay % CV for each sample = (SD 1 and 2 ÷ duplicate mean) x 100 

 

6.4.1.5! Comparison of multiplex performance with existing ELISA techniques 
In clinical laboratory medicine it is common to assess agreement between two 

quantitative methods of measurement (e.g. two methods for measuring haemoglobin 

in the blood), ensuring that the values obtained are within a similar range and that any 

differences between the tests are minimal. Bland Altman plots are frequently used to 

quantify agreement between two measurements [454].  Acceptable limits of agreement 

must be defined a priori, based upon the clinical utility of the test.  A graph is then 

produced plotting the difference in the two paired measurements (y axis) against the 

mean of these two measurements (x axis). The 95% Cis for the difference is calculated 

and marked on the plot, and this interval is compared to the acceptable limits of 

agreement to assess whether the interval is within those limits. This approach requires 

the difference in measurements between the two assays to be normally distributed (or 

assume a normal distribution when log transformed) [455]. Otherwise a non-

parametric Bland Altman approach may be used which involves estimating the 2.5th 

and 97.5th quantiles of the distribution of differences and superimposing these centiles 

on the scatter diagram, representing the 95% confidence interval of the difference 

between the two measurement methods. This non-parametric approach is less reliable 

than the parametric methods described, but is a useful alternative depending upon the 

dataset [454].  

 

For novel biomarkers which are experimental, the level of agreement between different 

methods of biomarker measurement can be considered secondary to whether the two 

tests show the same ability to identify the disease state of the patient [452] (i.e. the 

presence of active LN). Descriptive statistics (median values and IQRs) were used to 

inspect the distribution of biomarker measurements using the two techniques. Mann 
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Whitney U tests and Firth’s penalised-likelihood binary logistic regression with AUC 

ROC analysis using the ‘logistf’ R package [360] were used to assess and compare the 

ability of the ELISA and multiplex assays to detect disease state, both univariately and 

in combination, allowing comparison between techniques. 

 

6.4.2! Stability of biomarkers with delayed sample processing  
6.4.2.1! Urine sample processing protocols  
This series of experiments was carried out in two stages. During stage 1, 13 different 

urine processing conditions were compared using urine samples from two HCs.  On 

the basis of these results, a smaller number of conditions were compared in six JSLE 

patients during stage 2. In clinical practice, patient urine samples are usually 

subdivided, with the majority of the sample going for clinical tests and the remainder 

being used for research. This approach was therefore more practical and minimised 

the amount of urine required per patient during stage 2 experiments.  

 

During stage 1 experiments, the protocol below was followed:  

1.! 5mls of urine was aliquoted into a tube containing Boric Acid, producing a 

concentration of 10g/L (SIGMA, UK).  

2.! 0.5mls of urine (from the original sample) were aliquoted into tubes labelled one 

to seven using a Pasteur pipette (the amount of urine was important due to the 

presence of protease inhibitors in some tubes). 

a.! Tube 1 - spun at 2000rpm for five minutes and then frozen straight away 

at -80°C as per the usual urine processing SOP (see section 2.2.5). 

b.! Tube 2 - kept at room temperature. 

c.! Tube 3 - placed between ice packs.  

d.! Tube 4 - mixed using the Pasteur pipette (contained protease inhibitor 1, 

Protease/Phosphatase Inhibitor Cocktail (100X), Cell Signalling 

Technologies, USA) and kept at room temperature. 

e.! Tube 5 - mixed using the Pasteur pipette (contained protease inhibitor 2, 

Halt™ Protease and Phosphatase Inhibitor Single-Use Cocktail (100X), 

ThermoFisher, USA) and kept at room temperature. 

f.! Tube 6 - mixed using the Pasteur pipette (contained protease inhibitor 1) 

and placed between the ice packs.  
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g.! Tube 7 - mixed using the Pasteur pipette (contained protease inhibitor 2) 

and placed in between the ice packs.  

 

3.! Using the urine containing boric acid - 0.5ml of urine was aliquoted into tubes 

labelled eight to thirteen using the Pasteur pipette. 

a.! Tube 8 – kept at room temperature. 

b.! Tube 9 – placed between the ice packs.  

c.! Tube 10 - mixed using the Pasteur pipette (contained protease inhibitor 1) 

and kept at room temperature. 

d.! Tube 11 – mixed using the Pasteur pipette (contained protease inhibitor 2) 

and kept at room temperature. 

e.! Tube 12 – mixed using the Pasteur pipette (contained protease inhibitor 1) 

and placed between the ice packs. 

f.! Tube 13 - mixed using the Pasteur pipette (contained protease inhibitors 2) 

and placed in between the ice packs.  

4.! After 48 hours, samples 2-13 were centrifuged at 2000 rpm for five minutes and 

frozen at -80 °C. 

During stage 2, the same protocol was used but a limited number of conditions 

included.  

 

6.4.2.2! Biomarker quantification and analysis 
These experiments pre-dated the completion of the multiplex assay, therefore ELISA 

techniques were used for quantification of AGP, CP, LPGDS, TF, MCP-1 and VCAM-

1, as detailed in Table 2-3. Biomarker concentrations in samples exposed to the 

treatment conditions were compared to those processed in the standard fashion, and 

expressed as a percentage of the standard processing concentration. 

 

6.4.3! Urinary tract infection, contamination of urine with 
commensals and urine biomarker levels 

Urine samples collected during the UK JSLE Cohort Study undergo microscopy, 

culture and antibiotic sensitivity testing within the respective hospital microbiology 

department, to assess for UTIs. Samples are reported as displaying A) UTI, pure 

growth of a single organism with bacterial counts of %108 cfu/L, B) mixed growth 
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(urine containing more than one organism, usually due to difficulty with sample 

collection technique resulting in contamination with faecal or skin flora) or C) no-

growth, in accordance with the UK standards for microbiology investigations, issued 

by Public Health England [456]. ELISA techniques were used to quantify urinary 

biomarker levels (see Table 2-3) in samples displaying UTI or mixed growth. 

Descriptive statistics (median value and IQR) were used to describe the biomarker 

levels in UTI or mixed growth urine in relation to samples displaying no-growth 

(samples included in previous analyses, see section 4.5.2). Mann Whitney U tests were 

used to compare biomarker levels in UTI versus no-growth urine samples, and mixed 

growth versus no-growth urines.  

 

6.5! Results 

6.5.1! Cross-reactivity between antibodies for different biomarkers 
Cross-reactivity assessment was carried out by Merck Millipore, spiking in standards 

5, 6 and 7 (for each biomarker) in turn. The MFI was assessed for each biomarker to 

identify potential antibody cross-reactivity. When LPGDS standard was spiked into 

the assay, the MFI for TF, CP, AGP, MCP-1 and VCAM-1 remained the same as the 

background MFI when no standard was spiked in (average of 33 RFU). Similar results 

were demonstrated when MCP-1 and VCAM-1 standards were spiked in (see Table 

6-1). When the TF standard was spiked in the MFI for CP was 249 RFU (close to the 

TF background levels, range 236-300 RFU), whereas the MFI for all other analytes 

was well below background level. The inverse was seen when CP standards were 

spiked in (TF MFI levels equivalent to CP background levels). When AGP standard 

was spiked into the assay the CP and TF MFIs were increased above the background 

level (range 416-498 RFU) but were still less than the lowest AGP standard (from MFI 

of 1636 RFU). For all three analytes, the MFI did not serially increase with the 

different concentrations of spiked standard suggesting that there was not significant 

cross-reactivity.  
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Marker 
Std 

spiked 
Average MFI from duplicate readings 

LPGDS TF CP AGP MCP-1 VCAM-1 

LPGDS 0 33 137 30 38 28 18 

5 3987 143 32 40 28 18 

6 7846 145 32 43 28 18 

7 9468 146 33 47 28 19 

TF 0 31 254 285 446 31 16 

5 29 5239 271 442 30 16 

6 30 9322 275 430 30 16 

7 31 12155 284 460 31 17 

CP 0 29 238 275 445 30 17 

5 29 239 5377 421 28 16 

6 31 248 8051 439 29 17 

7 33 295 11042 475 32 18 

AGP 0 33 145 32 39 29 18 

5 32 141 32 1644 28 18 

6 33 149 33 2326 29 18 

7 34 150 40 2743 28 18 

MCP-1 0 31 136 30 38 27 18 

5 33 137 30 40 2459 26 

6 35 141 32 41 9118 66 

7 35 145 33 44 17741 18 

VCAM-1 0 33 128 28 39 26 17 

5 35 143 32 42 29 5007 

6 33 136 31 42 28 9428 

7 36 150 38 46 28 11287 

Table 6-1: Assessment of cross-reactivity between different antibodies within the 
six plex custom multiplex assay. 
Std = standards spiked in; 0 = blank/media spiked in, 5 = standard 5, 6 = standard 6, 7 = standard 7. The 
grey shading highlights the average MFI readings for the standards that have been spiked in. The MFI’s 
obtained for all other analytes should be compared to these readings to assess for cross-reactivity.  
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6.5.2! Range finding in UK JSLE Cohort Study patients and 
determination of the optimal dilution  

6.5.2.1! Merck Millipore range finding results  
Having established antibody pairs able to detect all biomarkers (except for LPGDS 

initially) with minimal cross reactivity, range finding was initiated. The antibodies for 

LPGDS were identified at a later stage and therefore range finding was undertaken 

separately. Samples from JSLE patients with active LN (n=8), inactive LN (n=4) and 

HCs (n=8) were run at 1 in 10 dilution to get an indication of the dilution that may be 

required (see Table 6-2). 11/20 (55%) of TF values were off the scale (high). 1/20 (5%) 

of CP values were high. No AGP values were off the scale, but 4/12 (20%) were 

extrapolated (>400000 pg/ml). 1/20 (5%) MCP-1 values were extrapolated (low, 

<4pg/ml). 4/20 (20%) VCAM-1 levels were off the scale (low) and a further 7 values 

(35%) were extrapolated (low, <122pg/ml).  
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Sample TF 
(pg/ml) 

CP 
(pg/ml) 

AGP 
(pg/ml) 

MCP-1 
(pg/ml) 

VCAM-1 
(pg/ml) 

A 1 >199299 >4539495 461809 69.4 454 
A 2 >199299 490029 326811 55.3 2544 
A 3 >199299 185119 465316 5.4 202 
A 4 >199299 996411 503111 7.3 715 
A 5 >199299 603039 307432 56.2 623 
A 6 >199299 58406 383882 194.3 76 
A 7 >199299 187368 478064 355.9 845 
A 8 >199299 354828 240772 39.4 2102 
IA 1 22746 2107 108086 25.3 124 
IA 2 9709 2399 11570 11.5 <57.52 
IA 3 >199299 22499 285050 29.4 95 
IA 4 51832 8928 170713 6.9 61 
HC 1 52071 2412 44147 19.3 <57.52 
HC 2 22023 2747 17683 3.2 <57.52 
HC 3 42992 2742 73336 44.0 85 
HC 4 59997 10550 304849 19.6 157 
HC 5 5501 2286 13737 4.1 68 
HC 6 32499 999 48794 40.5 <57.52 
HC 7 >199299 36989 114256 21.7 101 
HC 8 >199299 15970 132015 16.9 67 

Number off 
the scale 

11/20 (55%) 
H 

1/20 (5%) 
H 0 0 

4/20 (20%) 
L 

Number 
extrapolated 0 0 

4/20 (20%) 
H 

1/20 (5%) 
L 

7/20 (35%) 
L 

Table 6-2: First multiplex range finding experiment at 1 in 10 dilution.  
A = active, IA = inactive, HC = healthy control.  H = high. L = low. Dark grey shaded cells were off 
the scale. Light grey shaded cells were high but extrapolated.  
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The standard curves could not be adjusted to go higher/lower due to the curve already 

flattening in these areas. It was concluded that TF, CP and AGP required more than 1 

in 10 dilution and MCP-1/VCAM-1 required less. TF, CP, AGP and LPGDS were 

therefore re-run at 1 in 100, 1 in 200, 1 in 400 and 1 in 800 and MCP-1/VCAM-1 were 

run neat (see Table 6-3).  This experiment suggested that LPGDS could be run at any 

dilution, TF and AGP should be run at %1 in 200 dilution, and CP at 1 in 100 or less. 

100% of MCP-1 and VCAM-1 values were detected when the assay was run neat. 

Initial expectation was that the assay could be run at a single (or at most two) dilutions 

to save space on costly multiplex assay plates. Given the small samples size it was 

concluded that more range finding experiments would be required during beta testing.  

 

Analyte Dilution Samples 
detectable at 
given dilution 

Number of 
samples 

extrapolated 

Number of 
samples off 
the curve 

Optimal  
dilution 

TF 1 in 100 5/7 (71%) 0 2/7 (29% H)  
1 in 200 
appears 

best 

1 in 200 6/7 (86%) 0 1/7 (14% H)  
1 in 400 6/7 (86%) 1/6 (17%) 1/7 (14% H)  
1 in 800 6/7 (86%) 1/6 (17%) 1/7 (14% L)  

CP 1 in 100 7/7 (100%) 3/7 (43%) 0 1 in 100 
or less 
appears 

best 

1 in 200 4/7 (57%) 0 3/7 (43% L)  
1 in 400 4/7 (57%) 0 3/7 (43% L) 
1 in 800 4/7 (57%) 0 3/7 (43% L) 

AGP 1 in 100 7/7 (100%) 2/7 (29%)  0 
>1 in 200 

best 
1 in 200 7/7 (100%) 0 0 
1 in 400 7/7 (100%) 0 0 
1 in 800 7/7 (100%) 0 0 

LPGDS 1 in 100 7/7 (100%) 0 0 
Any 

dilution 
possible 

1 in 200 7/7 (100%) 0 0 
1 in 400 7/7 (100%) 0 0 
1 in 800 7/7 (100%) 0 0 

MCP-1 Neat 7/7 (100%) 0 0 Neat 
VCAM-1 Neat 7/7 (100%) 0 0 Neat 

Table 6-3: Second Merck Millipore multiplex range finding experiment  
Samples run at 1 in 100, 1 in 200, 1 in 400 and 1 in 800 dilutions for TF, CP, AGP, LPGDS and neat 
for MCP-1 and VCAM-1. 3 active LN, 2 inactive LN and 2 HCs samples included in the analysis. H = 
high. L = low.  
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6.5.2.2! Beta testing – range finding in a greater number of samples – UK JSLE 
Cohort patients 

A rigorous approach to range finding was undertaken during the beta testing process. 

Initially 10 active and 11 inactive UK JSLE patient samples were run neat, at 1 in 10, 

1 in 100, 1 in 400 and 1 in 800 dilutions. The assay was run as a six plex for all analytes. 

Once two target dilutions were chosen the assay was run in a larger number of samples 

from the UK JSLE Cohort, US and SA cohorts to assess the dilutions required on an 

international level. Table 6-4 shows the results obtained when the initial UK JSLE 

Cohort samples were run neat, at 1 in 10, 1 in 100, 1 in 400 and 1 in 800 dilutions.  

 

 
Table 6-4: First UK JSLE Cohort beta testing range finding experiment in 10 
active and 11 inactive UK JSLE patient samples.  
Samples run neat, at 1 in 10, 1 in 100, 1 in 400 and 1 in 800 dilutions. N=20 for some analytes/dilutions 
due to a value being excluded for technical reasons (inadequate bead count). The best dilutions for each 
analyte are highlighted in bold text and grey background. H = high. L = low. 

Analyte Dilution % of samples detectable 
at the given dilution

Number of samples 
extrapolated

Number of samples off 
the curve

LPGDS Neat 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 10 21/21 (100%) 0/21 (0%) 0/21 (0%)
1 in 100 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 400 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 800 20/20 (100%) 0/20 (0%) 0/20 (0%)

TF Neat 15/20 (75%) 5/15 (33%) 5/20 (25%)
1 in 10 16/21 (76%) 4/16 (25%) 5/21 (24%)
1 in 100 19/21 (90%) 3/19 (16%) 1/21 (5%, L)
1 in 400 19/20 (95%) 0/19 (0%) 1/20 (5%, L)
1 in 800 17/21 (81%) 1/21 (5%) 4/21 - 19%

CP Neat 19/20 (95%) 3/19 (16%) 1/20 (5%, L)
1 in 10 19/20 (95%) 1/19 (5%) 1/20 (5%, L)
1 in 100 17/20 (85%) 2/17 (12%) 3/20 (15%)
1 in 400 15/20 (75%) 1/15 (7%) 5/20 (25%)
1 in 800 13/21 (62%) 2/13 (15%) 8/21 (38%)

AGP Neat 15/20 (75%) 4/20 (20%) 5/15 (33%)
1 in 10 14/21 (66%) 3/14 (21%) 7/21 (33%)
1 in 100 18/20 (90%) 4/18 (22%) 2/21 (10%)
1 in 400 19/20 (95%) 0/19 (0%) 1/20 (5%, H)
1 in 800 21/21 (100%) 2/21 (9.5%) 0/21 (0%)

MCP-1 Neat 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 10 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 100 20/20 (100%) 0/20 (0%) 0/20 (0%)
1 in 400 18/19 (95%) 6/18 (33%) 1/19 (5%)
1 in 800 18/21 (86%) 8/18 (44%) 3/21 (14%)

VCAM-1 Neat 20/20 (100%) 1/20 (5%) 0/20 (0%)
1 in 10 17/21 (81%) 6/17 (35%) 4/21 (19%)
1 in 100 8/20 (40%) 4/8 (50%) 12/20 (60%)
1 in 400 4/20 (20%) 4/4 (100%) 16/20 (80%)
1 in 800 3/21 (14%) 3/3 (100%) 18/21 (86%)
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LPGDS levels were detectable at all dilutions in all patients, with no values requiring 

extrapolation. Plotting the patient sample values on their standard curve, it was clear 

that the values fell on the linear portion of the curve when a dilution of 1 in 400 was 

used (see Figure 6-1). On balance, a dilution of 1 in 400 also proved best for TF and 

AGP. At this dilution, sample values were detectable for 95% of patients, with no 

values requiring extrapolation. One sample (5%) had a low TF level and one had a 

high AGP level at 1 in 400 dilution. MCP-1 and VCAM-1 values were both detectable 

in 100% of patients when run neat, with one VCAM-1 sample (5%) being extrapolated. 

95% of CP values were detectable when samples were run neat or at 1 in 10 dilution, 

with less samples values being extrapolated at 1 in 10 dilution (16% high vs. 5% high). 

At both dilutions, one sample was undetectable due to being low. In view of the plan 

to ultimately run the assay at two dilutions CP was run neat in future assays (see Table 

6-4 and Figure 6-1). 
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Figure 6-1: Beta testing standard curves showing the position of UK JSLE Cohort 
patient samples on the standard curves.  
CP, MCP-1, VCAM1 = neat. LPGDS, TF, AGP = 1:400. Each red dot represents a patient sample value. 
MFI = median fluorescence intensity. 
 
On the basis of the above results, the multiplex assay was run on a further 35 UK 

JSLE Cohort patients (28 inactive and 7 active LN) at the two chosen dilutions (neat 

and 1 in 400) to verify that biomarker values could be obtained using these dilutions. 

A similar percentage of sample values was detected for LPGDS, CP, AGP, MCP-1 

and VCAM-1 as compared to the previous beta testing experiment. Less TF values 

were detectable (86% vs. 95%) but given the need to run the assay at two dilutions it 

was decided that TF should continue being run at 1 in 400 dilution (see Table 6-5). 
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Analyte and 
dilution 

% of samples 
detectable at a 
given dilution 

Number of samples 
extrapolated 

Number of samples 
off the curve 

LPGDS (1 in 400) 35/35 (100%) 0 0 
TF (1 in 400) 30/35 (86%) 0 5 (15%, L) 
CP (neat) 31/35 (91%) 3/31 (9.7%) 1 (3%, H) 
AGP (1 in 400) 35/35 (100%) 2/25 (6%) 0 
MCP-1 (neat) 35/35 (100%) 0 0 
VCAM-1 (neat) 35/35 (100%) 2/35 (5.7%) 0 

Table 6-5: Second UK JSLE Cohort beta testing range finding experiment  
Run in a further 7 active and 28 inactive UK JSLE patient samples run neat and at 1 in 400 dilution. H 
= high. L = low. 
 

6.5.2.3! Range finding in international samples – US and SA Cohort patients 
The range finding was extended to include samples from US and SA JSLE patients, to 

assess if the assay could be used in the same way across different countries. Samples 

from 28 US (14 inactive and 14 active LN) and 23 SA patients (14 inactive and 9 active 

LN) were run neat and at 1 in 400 dilutions as per the UK samples. The percentage of 

sample values detectable for LPGDS, TF, AGP, MCP-1 and VCAM-1 were similar 

across all three international cohorts, using the dilutions derived from UK JSLE Cohort 

beta testing. CP levels were found to be higher in the US and SA patients, with only 

72 and 77% of samples respectively being detectable when the samples were run neat. 

At 1 in 400 dilution this improved to 96% detectable across both cohorts, therefore this 

dilution is preferred to obtain CP levels within the US and SA cohorts (see Table 6-6). 

This highlights a potential need for country/ethnic group specific validation of the 

assay prior to use. 
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 % of samples 
detectable at a 
given dilution 

Number of samples 
extrapolated 

Number of samples 
off the curve 

US Cohort 
LPGDS (1 in 400) 28/28 (100%) 0 0 
TF (1 in 400) 28/28 (100%) 2/28 (7%) 0 
CP (neat) 21/29 (72%) 4/21 (19%) 8/29 (28%), H 
CP (1 in 400)* 27/28 (96%) 3/27 (11%) 1/28 (4%), L 
AGP (1 in 400) 24/28 (86%) 0 4/18 (14%), H 
MCP-1 (neat) 29/29 (100%) 1/29 (3%) 0 
VCAM-1 (neat) 29/29 (100%) 1/29 (3%) 0 

SA Cohort 
LPGDS (1 in 400) 26/26 (100%) 0 0 
TF (1 in 400) 25/26 (96%) 0 1/26 (4%), H 
CP (neat) 20/26 (77%) 2/20 (10%) 6/26 (23%), H 
CP (1 in 400)* 25/26 (96%) 1/25 (4%) 1/26 (4%), L 
AGP (1 in 400) 23/26 (89%) 0 3/26 (11%), H 
MCP-1 (neat) 25/26 (96%) 0 1/26 (4%), H 
VCAM-1 (neat) 26/26 (100%) 0 0 

Table 6-6: Third beta testing range finding in US and SA JSLE cohort patients  
Samples run neat or at 1 in 400 dilution as indicated in the table. *Optimal dilution for CP in US and 
SA cohort patients. 
 

6.5.3! Spike recovery results  
6.5.3.1! Merck Millipore spike recovery results  
Standards 2, 3 and 4 (low, medium and high) were spiked into four active LN samples, 

two inactive LN and two HC samples. During this experiment TF, CP, AGP and 

LPGDS were run together as part of a four plex at 1 in 100 dilution. MCP-1 and VCAM 

were run together as a two plex, neat. Average spike recovery results were between 

80-120% for all analytes when the standards were spiked into the assays (see Table 

6-7). Further spike recovery experiments would therefore be required during the beta 

testing phase, to run the assay as a six plex at the optimal dilutions determined during 

beta testing experiments.  
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Sample 
 STN 

spiked  

% recovery 
4 plex assay (1 in 100 dilution) 2 plex assay (neat) 

LPGDS TF CP AGP-1 MCP-1 VCAM-1 
A 1 
 
 

2 93 95 103 99 108 101 
3 87 98 102 78 102 101 
4 75 96 106 90 95 94 

A 2 2 94 100 107 109 108 105 
3 87 103 97 108 104 108 
4 82 100 99 105 112 111 

A 3 
 
 

2 93 94 98 84 102 101 
3 93 95 104 88 101 93 
4 79 98 109 90 90 81 

A 4 
 
 

2 93 95 102 98 110 99 
3 91 95 99 100 117 99 
4 82 99 101 106 118 94 

IA 1 
 
 

2 92  
High 

100 115 94 92 
3 86 109 81 97 83 
4 75 110 70 79 72 

IA 2 
 
 

2 100 104 106 103 96 91 
3 88 108 98 101 105 87 
4 80 111 103 110 109 81 

HC 1 2 88 
High 

91 76 106 69 
3 92 104 106 100 60 
4 76 109 109 95 64 

HC 2 
 
 

2 94 102 108 96 99 88 
3 87 103 99 100 105 80 
4 81 105 97 99 87 73 

Average % 
recovery 87 100 102 97 102 89 

Table 6-7: Merck Millipore spike recovery results  
TF, CP, AGP and LPGDS were run together as part of a four plex (1 in 100 dilution) and MCP-1 and 
VCAM-1 were as a two plex (neat). Percentage recovery shown for each patient when standards 2, 3, 4 
were spiked in, along with the overall average percentage recovery for each analyte. STN = standard, 
A = active, IA = inactive, HC = healthy control.   
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6.5.3.2! Beta testing – spike recovery in UK samples  
Standard 3 (medium sized spike) was added to three inactive, three active and three 

HC samples. The assay was run as a six plex at the two chosen optimal dilutions for 

each analyte (LPGDS, TF, AGP at 1 in 400, CP, MCP-1 and VCAM-1 neat). 

Percentage recovery was calculated for each patient along with the overall average 

percentage recovery for each analyte. Average spike recovery results were acceptable 

(between 80-120%) for all analytes at the chosen dilutions (see Table 6-8). Three 

individual patient VCAM-1 percentage recoveries were <80%, however the overall 

average recovery was 82%.  

 

Sample 

% recovery 
LPGDS 

(1 in 400) 
TF 

(1 in 400) 
CP 

(neat) 
AGP 

(1 in 400) 
MCP-1 
(neat) 

VCAM-
1 (neat) 

IA 1 92 99 114 94 59 81 
IA 2 93 97 81 102 104 80 
IA 3 106 102 101 102 106 91 
A 1 98 116 96 74 102 69 
A 2 95 81 102 102 87 91 
A 3 94 98 98 95 85 82 
HC 1 108 104 104 104 96 73 
HC 2 97 99 89 88 101 90 
HC 3 96 96 85 92 93 77 
Ave % 
recovery 98 99 97 95 93 82 

Table 6-8: Beta testing spike recovery results when the assay was run as a six-
plex at the two chosen optimal dilutions.  
Percentage recovery shown for each patient along with the overall average percentage recovery for each 
analyte. A = active, IA = inactive, HC = healthy control.   
 

6.5.4! Linearity of dilution 
6.5.4.1! Merck Millipore linearity of dilution  
LOD was determined in four active LN samples, two inactive LN and two HC samples. 

Similar to the spike recovery experiments, TF, CP, AGP and LPGDS were run together 

as part of a four plex with a 1 in 100 starting dilution. MCP-1 and VCAM were run 

together as a two plex, starting with neat samples. LOD was tested by diluting the 

initial samples 1 in 2, 1 in 4 and 1 in 8, and the average LOD for each dilution is 

presented. On average TF, CP, MCP-1 and VCAM-1 displayed acceptable LOD (80-

120%), whereas LPGDS and AGP did not (LPGDS 192%, AGP 133%). Although the 
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average LOD was acceptable for TF, some individual samples displayed a LOD below 

80%. Similarly, for CP, MCP-1 and VCAM-1, some individual % LOD’s were above 

120%, with the average LOD remaining within the acceptable range (107, 99, 98% 

respectively). For some samples, dilution resulted in biomarker levels going below the 

limits of detection of the assay, therefore the number of patients included in 

determination of the average LOD percentage was less than 7 in these instances (TF n 

= 6, CP n=4, VCAM-1 n=5, see Table 6-9). Further LOD experiments were required 

during the beta testing, running the assay as a six plex in a greater number of samples.  
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Table 6-9: Merck Millipore linearity of dilution results 
TF, CP, AGP and LPGDS run together as part of a four plex (1 in 100 starting dilution). MCP-1 and 
VCAM run together as a two plex (neat starting dilution). Samples diluted 1 in 2, 1 in 4 and 1 in 8, and 
the average linearity for each dilution presented. A = active, IA = inactive, HC = healthy control, Ave 
= average, LOD = linearity of dilution. Low = analytes that were un-detectable at the given dilution. 
 

Sample Dilution 

4 plex assay,  
starting dilution 1 in 100  

2 plex assay, 
starting dilution 

neat 

LPGDS TF CP AGP MCP-1 VCAM-
1 

 
A1 
 

1 in 2 173 114 98 84 96 88 

1 in 4 269 117 100 141 86 75 
1 in 8 362 111 104 178 81 64 

A2 
1 in 2 128 83  97 97 73 
1 in 4 144 72 Low 95 96 62 
1 in 8 155 57  99 99 57 

 
A3 
 

1 in 2 122 99 101 112 99 101 
1 in 4 153 102 104 152 102 97 
1 in 8 166 96 108 210 96 88 

 
A4 
 

1 in 2 115   101 105 93 
1 in 4 129 Low Low 128 88 Low 
1 in 8 134   90 81  

 
IA 1 
 

1 in 2 176 106 101 138 129 159 
1 in 4 295 110 102 144 164 180 
1 in 8 477 108 96 130 145 160 

 
IA 2 
 

1 in 2 106 85  114 91  
1 in 4 129 121 Low 153 84 Low 
1 in 8 107 63  131 Low  

HC 1 
1 in 2 148  117 147 90  
1 in 4 254 Low 125 199 91 Low 
1 in 8 426  133 253 Low  

 
HC 2 
 

1 in 2 124 70  96 84 80 
1 in 4 153 54 Low 103 77 58 

1 in 8 153 Low  88 Low 133 

Ave % 
LOD at 
each 
dilution 

1 in 2 137 90 104 111 99 99 

1 in 4 191 93 106 139 99 94 

1 in 8 248 82 109 147 100 100 

Overall 192 91 107 133 99 98 



  
222 

6.5.4.2! Beta testing – linearity of dilution results  
LOD was assessed using the six plex assay in 10 active and 11 inactive LN patient 

samples which were run neat, at 1 in 10, 1 in 100, 1 in 400 and 1 in 800 dilutions. LOD 

was found to be problematic for all analytes, improving with dilution for TF, CP and 

AGP. LPGDS and VCAM-1 did not display acceptable LOD for any dilutions. MCP-

1 displayed acceptable LOD when going from neat to 1 in 10 dilution. At dilutions 

over 1 in 100, TF, CP and AGP displayed acceptable LOD (80-120%), suggesting that 

if a sample value was unobtainable due to being high and off the standard curve, then 

the assay could be repeated and the sample diluted further. See Table 6-10 for full 

results. 

 

 
Average LOD for each analyte (%) 

LPGDS TF CP AGP MCP-1 VCAM-1 
1 in 10 850 373 310 265 113 168 
1 in 100 5423 1165 431 4138 155 157 
1 in 400 202 99 86 100 181 64 
1 in 800 126 102 95 118 142 128 

Table 6-10: Beta testing average LOD results for each analyte when the assay was 
run as a six plex. 
Acceptable LOD results shown in bold. 
 

6.5.5! Merck Millipore - intra/inter assay precision  

Intra-assay precision was assessed by running the two quality control’s (QC1 & 2) 16 

times within a single assay at different positions on the plate, assessing the average 

CVs. All CVs were <10%, ranging between 4.1-8.5% (see Table 6-11). To assess inter-

assay variability, the QC’s were run on three different plates/on three different days. 

Average inter-assay CV’s ranged between 3.6-7.8% (see Table 6-11). 
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CV (%) 

LPGDS TF CP AGP MCP-1 VCAM-1 
Average intra-
assay precision 5.1 4.0 6.3 8.5 4.8 4.5 

Average inter-assay 
precision 7.8 7.2 3.6 5.3 5.4 6.6 

Table 6-11: Merck Millipore intra and inter-assay CVs using QCs 1 and 2  

 

6.5.6! Beta testing – intra and inter assay precision 
Intra-plate precision was assessed using patient samples run neat and at 1 in 400 

dilution from 10 active and 11 inactive UK JSLE patients.  Average CVs for the 

different biomarkers varied between 3.6-7.6%. Inter-assay precision was assessed 

using six UK JSLE patients across six different assays.  LPGDS, CP, AGP, MCP-1 

and VCAM-1 displayed acceptable inter-assay CV’s (<15%), with TF showing a 

slightly high CV of 16.4% (Table 6-12). 

 

  
CVs (%) 

LPGDS TF CP AGP MCP-1 VCAM-1 
Average intra-
assay precision 5.1 3.6 4.9 6.3 7.6 3.9 

Average inter-
assay precision 4.4 16.4 5.4 14.3 2.8 15.0 

Table 6-12: Beta testing intra and inter-assay CVs. 
 

6.5.7! Assessment of the multiplex assay in three international JSLE 
cohorts 

6.5.7.1! Patient demographics 
Biomarker analysis was undertaken on a total of 106 JSLE patients across the three 

cohorts; 54 from the UK, 29 US and 23 SA. Samples were not available from all 

UK/US patients included in previous work, therefore the demographic details of the 

patients included in the multiplex analysis are shown below. The proportion of female 

patients in the UK/US/SA cohorts was 74%, 86%, 91% respectively. Age at time of 

biomarker analysis was similar in the UK and SA cohorts (median of 13.6 and 13.5 

years respectively) and higher in the US Cohort (median of 16 years). The length of 

disease at the time of biomarker analysis was similar across the three cohorts (median 

of 2.3-2.6 years). See Table 6-13 for further details.  
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 UK US SA 
Patients 54 29 23 
Gender 40 F (74%) 25 F (86%) 21 F (91%) 
Age  13.6 [11.8-15.6] 16  [14-18] 13.5 [12.0-15.3] 
Length of 
disease  

2.3 [1.3-4.1] 2.5 [0.7-4.7] 2.6 [0.9-3.5] 

Ethnicity1    
Caucasian 
 

19  
(35%) 

Caucasian 0 Caucasian 1 
(4%) 

African/ 
Caribbean 

15  
(28%) 

African 
American 

16 
(55%) 

Black 
 

7 
(31%) 

Indian/ 
Pakistani/ 
Bangladeshi 

13  
(24%) 

Hispanic 
 

12 
(41%) 

Coloured 
 

13 
(56%) 

Asian/ 
Chinese 

7  
( 13%) 

Asian 1  
(4%) 

Indian/ 
Asian 

2 
(9%) 

Table 6-13: Demographics of the patients included in the multiplex assay 
biomarker analysis from the UK, US and SA JSLE cohorts.  
F = female. Age and length of disease given in years with median value and IQR in square brackets. 
1Self-reported ethnicity classification categories vary between the patient cohorts. 
 

6.5.8! Head to head assessment of multiplex vs. ELISA assay 
performance  

6.5.8.1! Comparing multiplex and ELISA absolute values 
Figure 6-2 and Table 6-14 show the biomarker levels for all three cohorts combined 

when run by multiplex vs. ELISA. They highlight that differences in the absolute 

biomarker values can be seen depending on the type of assay used. For some analytes 

the levels measured by multiplex are consistently higher than those measured by 

ELISA, or vice-versa. With LPGDS, higher values are seen with multiplex than 

ELISA, whereas with CP, VCAM-1 and AGP, lower levels are seen with multiplex 

than ELISA. Similar levels were seen between the assays for TF and MCP-1. The p-

values obtained for individual biomarkers when comparing active and inactive LN 

biomarker values are the same, regardless of whether multiplex or ELISA has been 

used to quantify the marker (see Table 6-14). 
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Figure 6-2: Distribution of urine biomarker values in active and inactive LN 
patients quantified by multiplex assay or ELISA in patients from all three JSLE 
cohorts.  
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Table 6-14: Absolute urine biomarker values in active and inactive LN patients 
quantified by multiplex assay or ELISA in patients from all three cohorts.  
All biomarker concentrations expressed as ng per mg creatinine (ngmgCr) except MCP-1 (pgmgCr). 
Median values and IQRs shown. Pc = Bonferroni correction adjusted p-values (adjusted for the 6 Mann 
Whitney U tests comparing active and inactive LN for each biomarker quantification technique). 
 

Initial assessment of the differences in measurements between the two assays 

identified that these were not normally distributed (all Shapiro-Wilkinson test p-values 

<0.05). Attempts to achieve normality through log transformation were unsuccessful. 

Given that these novel biomarkers are experimental, and that existing clinically 

relevant cut-offs do not exist, it was difficult to determine clinically meaningful 

acceptable limits of agreement between the two tests a priori. We therefore constructed 

non-parametric Bland Altman plots, showing the 95% CIs to gauge where the majority 

of differences in measurement between ELISA and multiplex techniques lay (see 

Figure 6-3). 

 

 

MULTIPLEX ELISA 
Active  

LN 
In 

active LN 
pc  

value 
Active  

LN 
In 

active LN 
pc 

value 
LPGDS 
 

4714 
[2872-9291] 

1454 
[840-2889] 

<0.0001 1324 
[515-2184] 

312 
[157-592] 

<0.0001 

CP  
 

2836 
[957-10903] 

40 
[14-158] 

<0.0001 22354 
[9910-52954] 

1137 
[632-1773] 

<0.0001 

TF 
 

68191 
[34734-171614] 

407 
[162-843] 

<0.0001 51198 
[25889-115025] 

789 
[256-1658] 

<0.0001 

AGP 
 

26175 
[1544-103177] 

66 
[14-1386] 

<0.0001 53911 
[24899-129315] 

338 
[153-841] 

<0.0001 

MCP-1 
 

652 
[233-1219] 

163 
[104-242] 

<0.0001 689 
[270-1287] 

159 
[108-248] 

<0.001 

VCAM1 
 

10 
[4-21] 

1 
[0-2] 

<0.0001 41 
[15-81] 

3 
[1-7] 

<0.0001 
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Figure 6-3: Non-parametric Bland Altman plots  
The non-parametric Bland Altman plots show the difference between individual biomarker values 
quantified by ELISA or multiplex, against the mean biomarker value for the two techniques. 
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The narrowest 95% CIs were seen for VCAM-1 (-84242 to 313577) suggesting best 

agreement between the ELISA and multiplex assays for this biomarker. For all other 

analytes, as the mean biomarker level increased (along the x-axis) the points became 

more divergent leading to widening of the 95% CIs for LPGDS (-54731 to 15161), CP 

(-146869 to -36), TF (-84242 to 313577), AGP (-46190 to 252122) and MCP-1 

(126368 to 966). For TF and AGP, the higher the mean TF or AGP value, the higher 

the mean difference became. Conversely, for LPGDS, CP and MCP-1, the higher the 

mean value, the more negative the mean difference became. Using either assay, high 

biomarker levels are more likely to be extrapolated and therefore ‘best guess’ values 

are generated by the assay software. Each assay will therefore have its own inherent 

error which will contribute to the divergence between the points [452]. In keeping with 

this, VCAM-1 levels were not frequently extrapolated, therefore the CIs were narrow.  

 

6.5.9! Comparison of multiplex and ELISA techniques for 
identification of active LN disease state 

Firth’s penalised binary regression with AUC ROC analysis was used to compare the 

ability of multiplex and ELISA assays to detect disease state, both univariately and in 

combination. Table 6-15 shows the AUC values for active LN identification generated 

from running Firths’s penalised binary regression models looking at each biomarker 

univariately with ELISA or multiplex. Similar AUC values are obtained regardless of 

the biomarker quantification technique, e.g. for LPGDS the ELISA AUC value is 

0.826 and the multiplex AUC value is 0.829. For all biomarkers the multiplex AUC is 

higher than the ELISA AUC, suggesting that the multiplex technique is better at 

correctly identifying active LN disease state. 
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Biomarkers Univariate penalised binary regression with 
AUC ROC analysis 

ELISA Multiplex 
LPGDS 0.826 0.829 
TF 0.829 0.996 
CP 0.901 0.983 
AGP 0.934 0.979 
MCP-1 0.812 0.818 
VCAM-1 0.863 0.899 

Table 6-15: AUC values generated from Firth’s penalised binary regression 
models looking at each biomarker univariately with ELISA or multiplex. 
 

Previous analysis of the ELISA data from all three international cohorts combined 

identified the best panel of biomarkers for active LN identification to combine AGP, 

CP, LPGDS, TF and VCAM-1, with an AUC of 0.953 (see Table 5-4). Combining the 

multiplex biomarker data in the same order as was previously used for the ELISA data 

led to a progressive increase in AUC as biomarkers were added to the model. The 

optimal multiplex model contained all six biomarkers whereas the ELISA model 

contained five. The increase in AUC associated with addition of extra biomarkers after 

the model included AGP, CP, LPGDS and TF was however very modest (see Table 

6-16).  

 

Table 6-16: Comparison of biomarker combination AUC ROC values when 
ELISA or multiplex assays used.  
 

The combined three cohort multiplex dataset was subsequently considered in isolation, 

developing a Firth’s penalised regression model from scratch. All biomarkers were 

forced into the initial model and the ‘backward’ function used to select variables for 

the final model. The final model contained TF only, and the AUC for this was 

evaluated showing TF in isolation to produce an AUC of 0.996 (see Table 6-17).  

Biomarker combinations included in the Firth’s 
penalised binary regression models 

ELISA 
AUC 

Multiplex 
AUC 

AGP 0.880 0.979 
AGP + CP 0.937 0.986 
AGP + CP + LGPDS 0.942 0.985 
AGP + CP  + LGPDS + TF 0.951 0.995 
AGP + CP + LGPDS + TF + VCAM-1 0.953 0.997 
AGP + CP + LGPDS + TF + VCAM-1 + MCP-1 0.952 0.998 
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Model including all biomarkers 

Co-efficient Std. Error p 

TF 2.62 0.98 0.003 
AGP -1.88 1.24 0.203 
MCP-1 0.72 0.66 0.385 
VCAM-1 0.94 0.84 0.452 
CP 0.28 0.68 0.784 
LPGDS 0.17 0.98 0.888 
 Final model after variable selection 
TF 1.97 0.48 <0.001 

Table 6-17: Penalised regression models for multiplex dataset, initially including 
all biomarkers, and after variable selection.  
 

As per previous ELISA work, the change in AUC was then evaluated after 

incorporating each of the other biomarkers in turn. The order used for adding them to 

the model was dependent on the order of statistical significance in the original model 

including all biomarkers (see Table 6-17). Again, combining biomarkers led to a 

progressive increase in AUC with the optimal model including TF + AGP + MCP-1 + 

VCAM-1 (AUC 0.999, see Table 6-18). When building this model, the addition of 

AGP to TF did not increase the AUC (remaining at 0.996), therefore the increase in 

AUC noted above is likely to be due to the combination of TF, MCP-1 and VCAM-1. 

With a starting AUC of 0.996 for TF alone, further increases in AUC were smaller 

than those seen when combinations of biomarkers were considered in previous ELISA 

models (see Table 5-4). Comparing the ELISA and multiplex model combinations, it 

is evident that a more accurate identification of disease state (active LN) can be 

obtained with the multiplex assay, using a smaller number of biomarkers.  
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Biomarker combinations included in the penalised binary 
regression models  AUC 
TF 0.996 
TF + AGP 0.996 
TF + AGP + MCP-1 0.997 
TF + AGP + MCP-1 + VCAM-1 0.999 
TF + AGP + MCP-1 + VCAM-1 + CP 0.998 
TF + AGP + MCP-1 + VCAM-1 + CP + LPGDS 0.998 

Table 6-18: Effect on AUC of adding further biomarkers to the multiplex 
penalised regression model. 
 

6.5.10! Stability of biomarkers during sample postage 
6.5.10.1!Stage 1 – Healthy control samples  
Two adult female HCs aged 34 and 33 years were included in stage 1. Urine dipstick 

analysis was normal, with no signs of infection. Conditions 5, 6, 11 and 12 proved 

best, maintaining biomarker levels within 20% of the standard processing levels.  

These four conditions included an ice pack and a protease inhibitor +/- BA. With the 

simpler processing conditions (e.g. 48 hours at room temperature, 48 hours on ice), 

biomarker levels were often > or < 20% of the standard processing levels, and therefore 

considered unacceptable (see Table 6-19).  
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Urine processing conditions 
% of Standard Processing (average) 

VCAM-1 AGP CP TF LPGDS MCP-1 

1.! 48 hours at RT 75 71 81 65 90 83 

2.! 48 hours on ice 92 80 157 72 75 105 

3.! Prot inhibitor 1 (RT) 90 65 221 105 80 114 

4.! Prot inhibitor 2 (RT) 117 130 141 133 90 111 

5.! Prot inhibitor 1 + ice 80 81 113 80 104 104 

6.! Prot inhibitor 2 + ice 86 102 99 90 108 98 

7.! BA + room temp 86 75 108 130 77 102 

8.! BA + ice 79 92 98 89 117 80 

9.! BA + prot inhibitor 1 (RT) 78 79 145 91 75 100 

10.!BA + prot inhibitor 2 (RT) 85 80 97 79 70 75 

11.!BA + prot inhibitor 1 + ice 81 100 104 90 119 100 

12.!BA + prot inhibitor 2 + ice 90 119 92 98 120 104 

Table 6-19: Stability of urine biomarkers in HC samples following exposure to 
different urine processing conditions.  
Biomarker values presented as an average % of standard processing value. RT = room temperature. Ice 
= ice-pack. Prot = protease. Green font highlights biomarker levels falling within 10% of standard 
processing levels. Blue font highlights those falling within 20% of standard processing levels. Black 
font indicates values which are > or < 20% of the standard processing levels and considered 
unacceptable. RT = room temperature, BA = boric acid. 
 

In view of these results, the following conditions were included in stage 2 of the 

experiment: 

1.! Standard processing 

2.! Protease inhibitor 1 + ice 

3.! Protease inhibitor 2 + ice 

4.! BA + protease inhibitor 1 + ice 

5.! BA + protease inhibitor 2 + ice 

6.5.10.2!Stage 2 results – JSLE patient samples 
Six JSLE patients were included in stage 2 (5 female:1 male), with a median age of 

15.6 years (IQR 12.1-16.6) and length of disease of 1.8 years (IQR 13.2-16.2). The 

testing conditions were re-numbered as outlined in Table 6-20. Condition 1, including 

protease inhibitor 1 and an ice pack, proved to be better than other conditions for 
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maintaining biomarker levels between 80-120% of the standard processing biomarker 

levels. Compared with standard processing, biomarkers levels in the presence of 

condition 1 were as follows; VCAM-1 111%, AGP 87%, CP 120%, TF 99%, LPGDS 

108%, MCP-1 106%. The second best condition was condition 3 (including protease 

inhibitor 1, BA and an ice pack), however, MCP-1 measurements were 78% of the 

standard processing values and therefore considered unacceptable (see Table 6-20). In 

the presence of conditions 2 and 4, between 2-3 markers differed by >20% of standard 

processing levels, therefore these conditions were favoured least. 

 

Urine processing conditions 
 

% of Standard Processing (average) 
VCAM-1 AGP CP TF LPGDS MCP-1 

1.! Prot inhibitor 1 + ice 111 87 120 99 108 106 

2.! Prot inhibitor 2 + ice 114 95 122 85 116 62 

3.! BA + prot inhibitor 1 + ice 114 104 116 106 106 78 

4.! BA + prot inhibitor 2 + ice 116 121 113 171 117 426 

Table 6-20: Stability of urine biomarkers in JSLE patient samples following 
exposure to different urine processing conditions.  
Average % of standard processing quoted. Prot = protease. BA = boric acid. Green font 
highlights biomarker levels falling within 10% of standard processing levels. Blue font 
highlights those falling within 20% of standard processing levels. Black font indicates values 
which are > or < 20% of the standard processing levels, and considered unacceptable. 
 

6.5.11!Urinary tract infection, contamination of urine with 
commensals and urine biomarker levels 

Ten samples from JSLE patients with mixed growth and seven JSLE patients with UTI 

were included in these analyses. All patients with UTI had a pure growth of E-coli, 

whereas those with mixed growth had different combinations of the following 

organisms; e-coli, coliforms, proteus, klesiella, enterococcus and staphylococcus. 

These patients were all female and had inactive LN, with a renal BILAG score of D or 

E. Urine biomarker levels from these patients were compared to those of the 46 UK 

patients with inactive LN included in precious analyses, who had no growth on 

microscopy, culture and antibiotic sensitivity testing (see  

Table 4-3).  
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Urine biomarker levels in the above patient groups are shown in Table 6-21. CP, 

LPGDS and TF levels were higher in patients with UTI than the other groups, although 

this difference did not achieve significance (all p>0.05). Urine biomarker levels were 

comparable between mixed growth and no growth samples, and again no significant 

difference was seen (all p>0.05). These results therefore suggest that the presence of 

UTI or a mixed growth within the urine does not influence biomarker levels. 

 

Table 6-21: Urine biomarker levels in samples with proven UTI, mixed growth 
or no-growth.  
All biomarker values in ngmgCr except for MCP-1 which is in pgmgCr. Median values and IQRs 
presented. Mann-Whitney U tests used to compare biomarker levels between groups. Abbreviations: 
UTI = urinary tract infection. 
  

 
 
 

Biomarker 

Urine culture result  p-values 
UTI 

(n=3) 
Mixed 
growth 
(n=10) 

No-growth 
(n=46) 

UTI vs. 
No-growth 

Mixed 
growth vs. 
No-growth 

AGP  324 
[233-556] 

892 
[162-5300] 

304 
[144-708] 

0.825 0.384 

CP  
 

1093 
[699-1382] 

814 
[438-2249] 

701 
[505-1010] 

0.871 0.528 

LPGDS  325 
[233-532] 

199 
[143-874] 

288 
[143-601] 

0.937 0.389 

MCP-1  277 
[111-330] 

132 
[106-568] 

157 
[105-295] 

0.221 0.908 

VCAM-1  2 
[2-5] 

2 
[0.4-23] 

2 
[1-8] 

0.996 0.844 

TF  
 

523 
[284-600] 

696 
[356-1162] 

1,188 
[402-3822] 

0.192 0.222 
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6.6! Discussion 
The main aim of the study presented in this chapter was to assess feasibility of a custom 

multiplex assay for quantification of the internationally validated LN urinary 

biomarker panel. This was done in collaboration with an industry partner, Merck 

Millipore, and undertaken in order to streamline the process of urine biomarker 

quantification. In this chapter the steps involved in the development and validation of 

this multiplex assay have been presented. They highlight the process undertaken to 

identify antibody pairs capable of detecting each marker within the urine, assessment 

for cross reactivity between antibodies, exploration for JSLE urine sample matrix 

effects, rigorous range finding in three international JSLE cohorts, and the comparison 

of multiplex and ELISA assays for their ability to identify LN disease state. The major 

advantage to this approach is that it reduces cost, processing time and the volume of 

sample required, as compared to ELISA techniques. Notably, the multiplex assay 

format increased diagnostic accuracy over and above existing ELISA assays. It will 

therefore maximise the amount and value of information collected from very small 

sample volumes.   

 

The secondary aim of this work was to assess if urine samples could undergo delayed 

processing (e.g. 48 hours after sample collection) and still maintain urine biomarker 

stability by transporting samples in the presence of additives or a cool environment, 

allowing patients to send in samples from home as part of a future prospective clinical 

trial. Initial testing of 13 separate combinations of conditions (with/without different 

protease inhibitors, ice packs, BA) took place in samples from HCs. A smaller number 

of conditions were then assessed in JSLE patient urine samples. Use of a protease 

inhibitor and an ice-pack was, on balance, best at maintaining biomarker stability 

within 87-120% of the standard processing concentrations.  

 

The associated secondary aim was to compare urine biomarker levels in JSLE patients 

who had a concomitant UTI, mixed growth or no-growth in their urine. This is of 

importance as it will be difficult to assess samples sent from home for infection given 

the delayed sample processing time. No significant difference was seen in urine 

biomarker levels between UTI, mixed growth and no-growth samples. This 
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information will be of importance when planning a future study of urine biomarker-

led monitoring in LN.  

 

During the multiplex assay development process, when LPGDS, MCP-1 and VCAM-

1 standards were individually spiked into an assay containing the multiplexed beads 

and detection antibodies, no cross-reactivity was demonstrated. However, when TF, 

CP and AGP standards were spiked in the MFIs for other analytes did display subtle 

increases (see section 6.5.1). Non-specific interaction between different antibodies 

and/or unrelated analytes in the reaction mix must be assessed for when using a 

multiplex assay format, as many proteins have closely related structures with highly 

conserved epitopes which can lead to cross-reactivity. Of crucial importance, there was 

not a dose response relationship (i.e. increasing the concentration of the spike did not 

increase the MFI detected for the non-specific analytes) suggesting that this apparent 

constant low level of cross reactivity will occur across all samples and not vary 

according to the concentration of endogenous biomarker within a sample. This is a 

recognised problem in multiplex assay development and is often accepted as long as a 

dose response relationship is not seen [452]. Merck Millipore did not feel that these 

observations represented the presence of significant cross-reactivity and highlighted 

that the MFIs seen for these analytes were always lower than that of the lowest 

standards.  

 

The accuracy of the assay was assessed through spike recovery and LOD experiments. 

During alpha testing, Merck Millipore added low, medium and high concentration 

spikes into samples from patients with a range of different disease activities. During 

the beta testing stage a medium sized spike was used to minimise the contributory 

effect of the endogenous biomarker component whilst avoiding the assay’s upper limit 

of detection. The average percentage recovery for each analyte was between 80-120% 

across both experiments, meeting existing acceptable criteria for spike recovery 

experiments [452,457,458], and suggesting that JSLE urine as a matrix did not 

interfere with analyte recovery. 

 

Dilution is a useful additional check on assay accuracy and provides practical 

information as to whether an individual sample can be re-run more/less diluted at a 

later stage if the initial value is out with the assay’s limit of detection. Several samples 
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were assessed from patients with a range of LN disease activity to ensure that the 

analyte values fell across the working range of the assay. During the alpha testing 

stage, Merck Millipore ran their LOD experiments in a four plex (for LPGDS, TF, CP 

and AGP) and two plex assay (MCP-1 and VCAM-1) whereas during the beta testing 

stage, the full six plex assay was used. They diluted eight patient samples 1 in 100, 1 

in 200, 1 in 400 and 1 in 800 and demonstrated acceptable LOD on average for TF, 

CP, MCP-1 and VCAM-1 (between 80-120%), but not for LPGDS and AGP (LPGDS 

192%, AGP 133%). During beta testing the six plex assay was used with a larger 

number of samples (10 active, 11 inactive LN) run neat, 1 in 10, 1 in 100, 1 in 400 and 

1 in 800. LOD was found to be problematic for all analytes. This may be a result of 

the assay being run as a six plex vs. a four/two plex, pipetting errors or differences in 

antibody affinity dependent on the amount of diluent present. Samples containing high 

affinity antibody can show over-recovery on dilution, whereas low affinity antibodies 

may show lower recovery on dilution [452].  

 

Under these circumstances, to avoid the introduction of errors associated with poor 

LOD, significant effort was made to assess a large number of patient samples to 

identify a single dilution factor for each analyte that would permit the measurement of 

the biomarkers in the majority of patients [452,457]. After identification of the optimal 

single dilution for each analyte in UK patients, these dilutions were re-tested in US 

and SA patient samples. Minor country-specific differences were seen in the optimal 

dilutions required for each analyte. In all countries, AGP, LPGDS and TF could be run 

at 1 in 400 dilution and MCP-1/VCAM-1 could be run neat. However, in the UK cohort 

CP should be run neat, whereas in US/SA patients, a 1 in 400 dilution was required.  

This extensive evaluation of individual biomarker concentration ranges in a total of 

106 JSLE patients has provided strong evidence for the individual dilutions required, 

mitigating the demonstrated effects of poor LOD.  

 

The head-to-head assessment of multiplex assay performance as compared to existing 

ELISA techniques showed that a more accurate identification of disease state can be 

obtained with the multiplex assay as compared with ELISA techniques, using a smaller 

number of biomarkers. Combining the multiplex biomarker data in the same order as 

was previously used for the ELISA data, a similar progressive increase in AUC was 

seen with addition of biomarkers to the model. Due to the increased accuracy of each 
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marker individually, the increases in AUC associated with the addition of each extra 

biomarker were more modest than previously seen with the ELISA analysis. However, 

overall the multiplex provided a better AUC for identification of disease state than 

ELISA analysis (multiplex AUC = 0.998, ELISA AUC = 0.952). Repeating the 

penalised binary regression modelling process from the beginning using a hypothesis 

free approach based on the multiplex data alone, TF was identified as the best 

individual marker within the final model (AUC 0.996) and although addition of AGP, 

MCP-1 and VCAM-1 led to the highest AUC, the improvement was again marginal 

(AUC of 0.999).  

 

Other investigators have similarly found multiplex assays to outperform ELISA’s for  

accuracy and identification of disease state [459,460]. This is thought to be based on a 

range of factors. Firstly, multiplex assays are based on detection of fluorescence as 

opposed to colorimetric detection, leading to better sensitivity. Secondly, with 

multiplex assays there is higher avidity of the capture antibodies to beads due to 

covalent coupling, leading to a higher density of capture antibodies per surface area. 

In contrast, ELISA plates are passively coated leading to increased risk of being 

washed off and higher background signals due to non-specific binding of the detection 

antibody [452].  

 

The non-parametric Bland Altman plot for VCAM-1 suggested a high level of 

agreement between the ELISA and multiplex assays for this marker. For all other 

analytes, as the mean biomarker level increased (beyond low-medium biomarker 

values) the points became more divergent, broadening the 95% CIs. This is likely to 

relate to the relative precision of both assays at the high end of their standard curves. 

Using either assay, high biomarker levels are more likely to be extrapolated and 

imprecise, therefore a new method of biomarker quantification could not be expected 

to demonstrate agreement. Even if the original assay was re-run multiple times using 

the same high biomarker concentration sample, poor agreement is likely to be obtained 

between measurements due to the samples position on the non-linear portion of the 

standard curve [452]. Clearly use of data obtained beyond the lowest/upper 

quantifiable limit of the calibration curve should be undertaken with caution as the 

variability of these values is high. However, reporting of these numeric results can be 

justified on the basis that it provides actual numerical estimates rather than the 
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assignment of ‘high’ or ‘low’,  as such values cannot be considered in analyses and 

may have a major impact on the study conclusions if an individual study group yields 

many values in these regions [457]. It is thought that these factors may be contributing 

to the wide CIs demonstrated on the non-parametric Bland Altman plots. 

 

Looking towards a clinical trial of urine biomarker-led monitoring in LN, this study 

has shown that use of a protease inhibitor and ice pack for 48 hours before sample 

processing helps to maintains urine biomarker stability within 87-120% of its standard 

immediate processing concentration. Urine biomarker levels were also shown to be 

comparable between UTI, mixed growth and no-growth JSLE urine samples. To date, 

only urinary MCP-1 has been looked at in the context of UTI and shown not to be 

increased in elderly patients with acute cystitis or asyptomatic bacteruria [461]. These 

interesting results suggest that patient samples could be sent to hospital directly by 

patients and that the presence of UTI or a mixed growth does not influence biomarker 

levels. These analyses have been undertaken using the ELISA assays and should be 

repeated in the future using multiplex in a greater number of JSLE patients with a 

wider range of LN disease activity.  

 

Drawing on the data from Chapters 3-6, the next chapter will bring these data together 

and discuss the design and implementation of a clinical trial of urine biomarker-led 

monitoring in LN, building on the firm foundations developed during this PhD. 

 

6.7! Summary 
The study included in this chapter has demonstrated feasibility of a custom multiplex 

assay for quantification of a urine biomarker panel in LN patients in collaboration with 

industry partner Merck Millipore. Use of this assay will streamline the process of urine 

biomarker quantification by reducing the cost, processing time and the volume of 

sample required for biomarker measurement. The multiplex assay has also shown an 

improved capacity for active LN disease state identification as compared to existing 

ELISA techniques.   
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6.8! Conclusions 
•! The multiplex ‘LN urinary biomarker panel’ assay has proven to be better than 

existing ELISA techniques for identification of active LN disease state.  

•! ‘LN urinary biomarker panel’ stability is maintained despite delayed urine sample 

processing, when in the presence of an ice pack and protease inhibitor.  

•! Presence of UTI or mixed bacterial growth do not influence ‘LN urinary biomarker 

panel’ levels. 

•! The results from Chapters 3-6 evidently lay the foundations for a future clinical 

trial of urine biomarker-led monitoring. 
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7! Discussion 
 

The overarching hypothesis for this thesis was that: 

  

‘A combination of traditional clinical and promising non-invasive novel urinary 

biomarkers, as part of a ‘LN biomarker panel’, are better than traditional 

biomarkers alone at differentiating JSLE patients with active LN from those 

without, and in predicting fluctuations in LN disease activity over time, within 

ethnically distinct JSLE cohorts’. 

 

The following steps were undertaken to investigate this hypothesis, with the clinical 

and research implications of these results discussed below.  

 

•! In Chapter 3, prospective clinical data collected over 10 years from the UK JSLE 

Cohort Study were interrogated, demonstrating the number of UK JSLE patients 

developing LN, their clinical and demographic characteristics, and the ‘high risk’ 

period for LN development. Clinical and demographic factors were shown to 

differentiate those who did/did not recover from proteinuria following an LN flare 

(during the follow-up period). Recognition of such factors predictive of a longer 

time to recovery could have important implications for treatment choices. Non-

renal specific, haematological, inflammatory and immunological traditional 

biomarkers which are routinely measured in clinical practice were shown to only 

display a ‘fair’ test accuracy for active LN identification. 

•! Novel urine biomarkers warranting further assessment as part of an ‘LN biomarker 

panel’ were identified through detailed literature review (published in Clinical 

Immunology as a review, see Appendix 22). Multiplex screening of urine 

biomarkers previously implicated in drug induced human kidney injury was 

undertaken, but did not demonstrate any biomarkers worth pursuing (Chapter 3). 

The ultimate biomarkers selected for further investigation included AGP, CP, 

VCAM-1, TF, LPGDS, MCP-1 and NGAL, based upon the strength of evidence 

on how they relate to the LN disease course in JSLE, and the likelihood that further 

assessment as part of the current study could facilitate translation towards clinical 

practice. 
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•! In Chapter 4, urine samples from UK JSLE Cohort study patients were used to 

cross-sectionally assess if individual biomarkers differed significantly between 

active and inactive LN patients. Novel and traditional markers of JSLE disease 

activity were then combined to assess whether a ‘LN biomarker panel’ could 

improve active LN identification. An optimal cross-sectional urine biomarker 

panel for active LN identification was identified, demonstrating an ‘excellent’ 

ability for active LN identification (AUC 0.920). Combining traditional 

biomarkers with the optimal novel urine biomarker panel did not improve the AUC 

further.  

•! At the end of Chapter 4, immortalised human podocytes were exposed to AGP, 

CP, LPGDS and TF (the optimal ‘LN urinary biomarker panel’ constituents) in 

vitro, to investigate whether these biomarkers could influence processes which are 

implicated in LN pathogenesis (podocyte apoptosis and cytokine production). No 

significant differences were seen with respect to these outcomes in vitro, and 

further investigation is required (discussed in section 7.2.4 below).  

•! In Chapter 5, to robustly validate the above biomarker panel and determine whether 

it performed comparably within ethnically distinct JSLE patient cohorts, 

collaborations were developed with the US Einstein Lupus Cohort [334] and the 

SA Paediatric Lupus Erythematosus in South Africa Cohort [435]. The optimal 

‘LN urinary biomarker panel’ derived within UK JSLE Cohort samples displayed 

equivalent ability for active LN identification in both the US and SA JSLE cohorts 

(AUC values of 0.991 and 1.0 respectively). 

•! To determine longitudinally, if constituents of the LN urinary biomarker panel 

were able to predict LN flare or remission in advance, data from all three cohorts 

were combined within a Markov Multi State model of LN urine biomarker 

dynamics (Chapter 5). AGP was found to be best at predicting LN flare and CP 

was best for predicting LN remission. Using this model, individual patient 

predictions of LN disease state over the subsequent three, six, nine and twelve 

months can be determined. 

•! In Chapter 6, a multiplex ‘LN urinary biomarker panel’ assay was developed and 

validated in collaboration with industry partner Merck Millipore, supported by the 

award of an MRC CiC grant, in order to streamline the process of urine biomarker 

panel quantification, and enable development of a future clinical trial of urine 



  
243 

biomarker-led monitoring. The multiplex assay proved to be better for 

identification of active LN disease state than existing ELISA techniques.  

•! At the end of Chapter 6, as an aid to the proposed clinical trial, ‘LN urinary 

biomarker panel’ stability was investigated following delayed urine sample 

processing (after 48 hours), demonstrating a protease inhibitor and ice pack to 

maintain urine biomarker stability within 87-120% of standard immediate 

processing concentrations.  

The overarching hypothesis of this thesis has therefore been thoroughly examined, 

identifying important insights from clinical and demographic data, deriving/cross-

validating an ‘LN urinary biomarker panel’ to differentiate JSLE patients with and 

without LN, and identifying biomarkers which predict LN flare/remission, within three 

ethnically distinct JSLE cohorts. Through development and validation of a multiplex 

assay capable of LN biomarker panel quantification, we are now in a strong position 

to undertake a future paediatric clinical trial to prospectively validate this panel, and 

in due course to determine whether urine biomarker-led monitoring improves renal 

outcome in JSLE. 

 

7.1! Clinical and research implications of this study 

7.1.1! Clinico-demographic factors and LN 
Early recognition of LN is important as early treatment and adequate response to 

treatment is known to be associated with better renal outcome [261]. Identification of 

those at risk of a prolonged LN course will help the clinician to start, modify, and fine-

tune the intensity and duration of immunosuppressive therapy. In this present study, 

36% of UK JSLE Cohort Study patients were found to have LN at the time of their 

initial presentation. A further 17% developed LN during a median follow up of 2.04 

years [IQR 0.8-3.7], highlighting a ‘high risk’ period for development of LN in this 

cohort. This observation is important when considering the study design, sample size 

and inclusion criteria for a future clinical trial of urine biomarker-led monitoring, as 

such a trial will need to capture patients who undergo LN disease state transitions 

(active to inactive LN transitions, and vice versa), to test further the urine biomarker 

Markov Multi State model derived in Chapter 5.  

 



  
244 

Six clinical features were univariately found to differentiate patients with active LN at 

baseline from those without LN. These were: first ACR score, presence of severe 

hypertension, level of proteinuria, serum creatinine, ESR and C3. By highlighting 

clinical features which differentiate those with active LN from those without LN at 

baseline, these features may serve as a prompt for renal biopsy at an early stage. Both 

an ACR score of >5, and C3 levels of <0.9 mg/L at baseline, were also identified as 

significant independent risk factors for subsequent LN development within a 

multivariate model, over a median of 3.1 years [IQR 1.5-5.0]. Within a future clinical 

trial of urine biomarker-led monitoring, recruitment of patients with a high ACR score 

and low C3 at baseline would therefore also be anticipated to improve the yield of 

recruits who develop active LN.  

 

Within the UK JSLE Cohort Study, 39% of patients were shown to recover from 

proteinuria following an LN flare within a median of 17 months (min 2.4, max 78), 

with the remaining 61% continuing to have proteinuria despite a median of 22 months 

follow-up (min 2.3, max 132). In an adult SLE study looking at time to recovery from 

proteinuria in patients with LN receiving standard treatment, proteinuria was shown to 

recover in 53% of patients by 2 years [253], suggesting that with current treatment 

regimens, children may take longer to go into remission than adults, likely relating to 

their more severe LN phenotype. Clinico-demographic factors univariately 

differentiating patients who did recover during follow-up compared to those who did 

not, included ethnicity, younger age at LN onset, the presence of reduced GFR, 

azathioprine use and concomitant BILAG defined haematological/cardio-respiratory 

involvement at the time of active LN with proteinuria development. Within a 

multivariate model, normal eGFR (>80mls/min), older age (>14 years), and 

concomitant haematological involvement at the time of active LN with proteinuria 

development, were all independently associated with increased rate of recovery from 

proteinuria at a given time-point. Recognition of such clinico-demographic factors 

predictive of longer time to recovery could also have important implications for 

treatment choices. For example, helping to modify the intensity and duration of 

immunosuppressive therapy. They may also impact on the design and conduct of the 

prospective clinical trial of urine biomarker-led monitoring in LN, whereby patients 

displaying the above features could either have more frequent biomarker monitoring, 

or more rapid treatment escalation in response to biomarker changes.  
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Clinicians currently rely heavily upon non-invasive blood and urine biomarkers as part 

of ongoing LN monitoring. This study highlights that although the non-renal-specific 

traditional biomarkers including ESR, C3, WCC, neutrophils, lymphocytes and IgG, 

can assist with identification of active LN, they rather disappointingly only display a 

‘fair’ test accuracy (AUC 0.724) for active LN identification. In actual routine clinical 

practice, the information gained from these traditional biomarkers would be naturally 

supplemented with the information gained routinely from renal markers (e.g. 

proteinuria, BP, serum creatinine, eGFR). This will go some way to further improving 

the clinician’s ability to accurately identify active disease. However, as our definition 

of active LN was based on the composite renal BILAG score (calculated directly from 

these traditional renal markers) we were unable to add such factors as covariates within 

the regression model analysis. At the same time, reports of ‘clinically silent LN’ in 

patients with no proteinuria, normal urinalysis/renal function, but biopsy defined LN 

[255], raise concerns about the role of such renal markers in LN monitoring, 

reinforcing the need for novel biomarkers for LN monitoring. A manuscript has been 

submitted on the basis of this work examining traditional non-renal biomarkers in LN 

monitoring (see Appendix 23). 

 

7.1.2! Novel urine biomarkers within the UK JSLE Cohort Study 
Notably, multiplex screening of urine biomarkers previously implicated in drug 

induced human kidney injury did not identify any specific biomarkers for LN within 

samples from the UK JSLE Cohort Study. This may relate to the fact that the majority 

of the biomarkers screened for were tubular injury markers, as tubules are more 

commonly affected by drug toxicity [370], whereas LN predominantly affects the 

glomerulus (see sections 1.1.7 and 3.5.5). JSLE urine specific factors may also have 

interfered with these assays, despite them being commercially validated for use with 

urine. Rather than searching de novo for further novel urinary biomarkers using for 

example, a urinary proteomic technique, an evidence-based, targeted approach was 

taken. This was undertaken initially nationally, and then internationally, validating 

biomarkers with a strong existing evidence in JSLE and/or adult SLE.  
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Within the UK JSLE Cohort Study, AGP, CP, LPGDS and TF were shown to 

constitute an optimal cross-sectional urine biomarker panel for active LN identification 

(AUC 0.920). This provided significant strength to the hypothesis that a urinary 

biomarker panel approach is better for differentiating active from inactive LN patients 

compared to any specific individual biomarker. These urinary biomarkers have 

previously been shown to be higher in patients with biopsy defined active LN 

compared to those with inactive LN in a US JSLE cohort. In the US study, a slightly 

lower AUC (0.85) was demonstrated for their ability to identify active LN, despite 

combination with further markers (albumin, and albumin-related fragments) additional 

to AGP, CP, LPGDS and TF  [290].  

 

In the current study, extra-renal JSLE disease activity was also shown not to influence 

urine biomarker levels, suggesting that such markers are renal specific. VCAM-1 and 

MCP-1 levels also differed significantly between UK patients with active compared to 

inactive LN. However, their addition to the above optimal urine biomarker panel 

model did not improve the AUC further. Both of these biomarkers have previously 

been shown to play a significant role in predicting changes in LN activity [74,308], 

therefore, they continued to be investigated longitudinally within Chapter 5 and were 

incorporated within the custom multiplex assay. Combining non-renal traditional 

biomarkers with the optimal novel biomarker panel did not significantly improve the 

AUC further, highlighting the improved performance of novel over traditional 

biomarkers.  

 

7.1.3! International validation and longitudinal analyses of the novel 
LN urine biomarker panel  

Significant differences in disease phenotype, clinical outcomes, complications, 

mortality and renal-specific survival rates have been shown to occur in JSLE patients 

of different ethnicities [30,32,222,428-433].  The UK optimal LN urine biomarker 

panel combination displayed the same ‘excellent’ ability for active LN identification 

in both a US [334] and SA [462] cohort; with AUC values of 0.991 and 1.0 respectively 

(see Chapter 5). Previously published urine biomarker panel studies in JSLE have 

failed to undertake such cross-cultural validation. The improved performance of the 

urine biomarker panel within these cohorts may be explained by differences seen in 

ethnicity and LN disease severity between the cohorts. Within the US Cohort, patients 
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were predominantly African American and Hispanic, whereas the SA Cohort mainly 

included Coloured and Black African patients. African and African American patients 

have been shown to have a more severe LN phenotype [32,281,403,435], and both 

validation cohorts featured a greater proportion of active LN patients than in the 

original UK JSLE Cohort (25% active LN in UK cohort, 53% in US and 39% in SA). 

Overall, in all three JSLE patient cohorts, the LN urine biomarker panel (AGP, CP, 

LPGDS and TF) performed extremely well, despite ethnic diversity, a wide range of 

disease severity, and assessment within severe LN cohorts. A manuscript has been 

accepted for publication based upon the UK/US biomarker panel results (see Appendix 

24). 

 

Combining data from all three cohorts, it was possible to assess constituents of the 

biomarker panel within a Markov Multi-State model of LN urine biomarker dynamics, 

to see if the urine biomarkers were able to predict LN flare and remission in advance 

(see Chapter 5). Only two biomarkers could be included within this model to avoid 

overfitting (model complexity limited by the number of patients undergoing disease 

state transitions, active to inactive LN or vice versa). Within the optimal longitudinal 

model, AGP was found to be best at predicting LN flare and CP was best for predicting 

LN remission. These data therefore support the hypothesis that a biomarker panel can 

also improve prediction of different stages of the LN disease process. 

 

Figure 7-1 summarises the evidence stemming from this study as described in sections 

7.1.1–7.1.3 above. It outlines when clinico-demographic factors could also be of use 

when monitoring patients for active LN. It also shows how both clinico-demographic 

factors and novel urine biomarkers can integrate as part of such monitoring, forming 

the basis for further longitudinal validation and a clinical trial assessing the impact of 

urine biomarker-led monitoring in LN. 
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Figure 7-1: Summary of the evidence stemming from this PhD, outlining when 
clinico-demographic factors and novel biomarkers should be considered during 
the monitoring of JSLE patients.  
Blue text is used to highlight evidence derived from the current study. 
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7.1.4! Advancing towards a prospective clinical trial of urinary 
biomarker panel-led monitoring of LN 

7.1.4.1! Multiplex assay development 
The need for streamlined biomarker panel quantification was recognised following 

cross-validation and longitudinal assessment of the biomarker panel. This was 

regarded as crucial for enabling development of a future clinical trial of urine 

biomarker-led monitoring, where rapid assessment of the urine biomarker panel would 

be required. A custom, multiplex LN urine biomarker panel assay was therefore 

developed in collaboration with industry partner Merck Millipore, undergoing beta 

testing in 107 cross-sectional UK/US/SA cohort samples, allowing head-to-head 

assessment of the multiplex assay’s performance as compared to existing ELISA 

techniques. Combining the multiplex biomarker data in a binary logistic regression 

model, in the same order as with ELISA analysis, the optimal urine biomarker model 

again included AGP, CP, LPGDS, and TF (AUC = 0.998). The multiplex assay also 

provided a better AUC for identification of active LN disease state than previous 

ELISA techniques (AUC = 0.952). The multiplex approach reduces processing time, 

cost and the volume of precious patient sample required. Having developed a custom 

multiplex assay and demonstrated feasibility for its use, we are now in a strong position 

to apply for competitive funding for a future clinical trial.  

 

7.1.4.2! Biomarker stability - delayed sample processing or urinary tract 
infection 

In a future clinical study, frequent, fixed time point serial urine samples need to be 

collected to accurately assess the ability of the biomarker panel to predict events such 

as LN flare, remission, treatment response and prognosis. This study has shown that 

use of a protease inhibitor and ice pack for 48 hours before sample processing helps to 

maintain urine biomarker stability within 87-120% of its standard immediate 

processing concentration. Urine biomarker levels were also shown to be comparable 

between UTI, mixed growth and no growth JSLE urine samples. These results suggest 

that patients could send urine samples straight to hospital through the post, reducing 

the impact of the proposed study on patients’ lives.   
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7.2! Limitations 

7.2.1! The inherent difficulties of cohort studies 
The clinical data and samples included in this study have been collected as part of the 

‘real world’ UK JSLE Cohort Study. As with many cohort studies, data is 

prospectively collected alongside routine clinical care with the addition of 

retrospective data where necessary. Compared for example to the study design of an 

RCT, the follow-up visit interval is extremely variable and the amount of missing data 

is likely to be far higher than if the data was collected during a shorter, tightly regulated 

RCT. This is evident within this thesis when assessing patients with and without LN 

at diagnosis, and during follow up.  Patients recruited during the early years of this 

study had more retrospectively collected baseline data, leading to multiple imputation 

of some clinical variables or exclusion of certain patients.  

 

One of the main advantages of observational cohort studies is the ability to recruit 

larger numbers of patients than would be possible in a standard RCT design (given 

also the cost per patient), increasing the generalisability and the external validity of the 

results, length of follow-up, and reducing the clinical trial/placebo related effects that 

can be seen in RCTs [463]. The UK JSLE Cohort Study is the largest JSLE cohort in 

Europe, with representation from across the UK, mitigating some of the difficulties 

detailed above and providing strength to the results obtained. Similar sized cohorts are 

seen in the US, differing in terms of patient ethnicity, and influencing the ability to 

make direct inferences between populations. The UK JSLE Cohort Study case report 

forms are very comprehensive, collecting a broad range of disease activity, damage 

and outcome data, but clearly the possibility remains that other uncollected 

characteristics may also affect outcome.  

 

7.2.2! Definitions of renal disease activity 
Within the current study, patients were considered to have active LN on the basis of 

their renal BILAG score and having a previous renal biopsy demonstrating active LN 

(for the reasons outlined in section 1.1.4.2). The BILAG score is the most 

comprehensive composite scoring system, providing assessment of new activity, flare, 

remission in individual organs/systems [53,54,65,66], whereas other indices have been 

designed to provide a global score [56,57,59,464]. The wide range of outcome 
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measures used to define active LN influences the ability to directly compare results 

between different studies. In section 5.5.1.5, urine biomarker concentrations were 

shown to be the same between US Cohort patient samples which were taken at the time 

(or within 6 weeks) of renal biopsy, as compared to patients who had biopsy proven 

LN at some other point during their disease course but currently had a composite renal 

BILAG score-based diagnosis of active LN. This suggests that the definition of active 

LN utilised within this study is a reasonable proxy for biopsy defined active LN.  

 

It was not possible to determine the relationship between constituents of the urinary 

biomarker panel and different ISN/RPS LN biopsy classes due to the small number of 

samples collected at the time of renal biopsy. Novel urine biomarkers and traditional 

renal biomarkers could also not be directly compared due to the definition of active 

LN being calculated from proteinuria, GFR, blood pressure, active urine sediment, 

plasma creatinine and recent biopsy findings (components of the composite renal 

BILAG score). The renal BILAG score is also unable to differentiate renal activity and 

damage. To address the above limitations, future work, including urine samples 

collected at the time of renal biopsy, is required.  

 

7.2.3! Patient numbers and length of follow-up 
The SA Cohort included the smallest number of patients, requiring a different 

statistical approach (Firth’s Penalised Likelihood Logistic Regression) to that which 

was used with the UK and US cohorts. The longitudinal Markov Multi-State model 

was also limited by the number of transitions in disease state observed. Further urine 

biomarkers or clinical factors could have been included within a more complex model 

if a greater number of state transitions were seen. The nature of the study, being ‘real 

world’ without rigid follow-up intervals means that some episodes of flare may be 

missed and that there will be differences in the timing of the sample in relation to LN 

flare between patients. These problems are inherent to undertaking research in rare 

paediatric rheumatic diseases, and through inclusion of three cohorts the samples size 

has been optimised. In future studies it would be of interest to look at additional Asian, 

Chinese and South American cohorts to increase ethnic diversity of the study 

population. 
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The analyses looking at clinico-demographic features and how they relate to a variety 

of renal outcomes could be developed further by undertaking more complex 

longitudinal analysis, looking at the impact of treatment regimens and other clinico-

demographic factors over time. Given the multitude of treatment strategies, different 

steroid regimens, and varying lengths of treatment, such analysis would be 

challenging. Within the current study patients with different lengths of follow-up are 

included, leading to censoring before the study outcome is reached for some patients. 

Repeating these analyses in 5-10 years would therefore be of interest to increase the 

length of follow-up.  

 

7.2.4! In vitro podocyte cell line experiments 
 

No difference was seen in podocyte apoptosis or cytokine production following 

exposure to urine biomarkers in vitro. The biomarkers used in these experiments were 

‘active’ native or recombinant proteins (see Table 4-1). However, it is not possible to 

be certain whether these proteins were sufficiently biologically similar to the 

biomarkers present within urine. Other co-factors present within the urine could also 

modulate the effect of such biomarkers, but be lacking within the experimental 

conditions. The biomarker concentrations used in the experiments were chosen on the 

basis of the concentrations detected within LN urine, however in the future it would 

be interesting to look for a dose response relationship. It may also be that other native 

renal cells (e.g. endothelial cells) react to these biomarkers, and this also requires 

further investigation. It is also possible that the conditionally immortalized podocytes 

used in these experiments may be inherently resistant to apoptosis and an alternative 

podocyte specific positive control should therefore have been included to investigate 

for this (e.g. puromycin aminonucleoside treatment, [465]). Of key importance, cell 

biologists within the UoL, as part of the UK EATC for Children, are assessing whether 

these biomarkers originate from the kidney itself, or are passively filtered through the 

glomerulus.  

 

7.2.5! Urine biomarker panel multiplex assay development 
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LOD was shown to be unacceptable during the beta testing phase of assay 

development. To avoid the introduction of errors associated with non-linearity, 

rigorous range finding was undertaken in order to determine the optimal sample 

dilutions in 106 UK, US, SA patient samples. In all countries, it was demonstrated that 

AGP, LPGDS and TF should be run at 1 in 400 dilution and MCP-1/VCAM-1 should 

be run neat. There was a difference demonstrated between cohorts for CP (UK cohort 

run neat, US/SA run at 1 in 400 dilution).  This extensive evaluation has therefore 

overcome the difficulties associated with poor LOD.   

 

Comparing ELISA and multiplex biomarker values head to head, differences could be 

seen between values, especially for samples measured at the high end of the standard 

curves where a greater number of extrapolated values are seen. However, for novel 

biomarkers which are experimental, the level of agreement between different methods 

of biomarker measurement can be considered secondary to whether the two tests show 

the same ability to identify the disease state of the patient [452]. A more accurate 

identification of active LN disease state could be obtained by multiplex as compared 

with ELISA techniques; AUC for identification of active LN was 0.998 and 0.952 

respectively.  

 

A summary of the limitations detailed above, along with potential solutions and 

suggestions for future research, are detailed in Table 7-1 and considered within the 

following section on next steps.  
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Limitations  Potential solutions and plans for future research 
Cohort 
study 
approach 
 
  

•! Future prospective study with strict, regular/more frequent follow-up 
visits, run like a tightly regulated clinical trial/RCT.  

•! Clinico-demographic factors to be re-assessed to see if the results of 
the current study can be validated. 

•! To capture more transitions in disease state: 
o! Patients send their urine samples directly to hospital at 

regular intervals, increasing urine sampling frequency. 
o! Promote patient recruitment at/of: 

!! Initial JSLE diagnosis (highest LN risk from 
diagnosis-2 years). 

!! Those with an ACR score of >5 or C3<0.9mg/l at 
baseline (independent risk factors for LN 
development). 

Definition of 
LN activity 
based upon 
the renal 
BILAG 
score 
 
  

•! Obtain urine samples and clinical data at the time of renal biopsy to 
assess the association between urinary biomarkers and LN sub-
classes. 

o! Recent UK JSLE Cohort Study ethics amendment approved 
to facilitate use of excess renal biopsy tissue for research 
purposes. This study will raise awareness of the need for 
urine, tissue samples and clinical data at the time of renal 
biopsy. 

o! International collaboration likely to be required to obtain 
sufficient samples in a timely manner. 

•! Use of a biopsy based LN (ISN/RPS class, AI or CI) outcome measure 
will enable head to head comparison of urine/traditional renal 
biomarkers.  

Ethnic 
diversity  

•! Despite this being the 1st JSLE biomarker study to include a 
validation cohort, further ethnic diversity required (e.g. Chinese, 
South American). 

Origin and 
role of urine 
biomarkers 
in LN 
pathogenesis 

•! Under investigation by cell biologists within the UK EATC for 
children. 

•! Development of a complex in vitro LN model including podocytes ± 
co-culture with other renal cells (e.g. endothelial, mesangial) ± 
immune cells (e.g. macrophages, neutrophils, DC’s) or supernatant 
from such cells ± cytokines and other factors implicated in LN 
pathogenesis (e.g. IFN-#, NETs).  

o! Enable assessment of the origin of these biomarkers. 
o! Re-investigate the impact of urine biomarkers on apoptosis 

and cytokine production.  

Table 7-1: Limitations and suggestions for future research.  
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7.3! Next steps 
Leading on from these findings, two clinical studies are required to advance the urine 

biomarker panel towards translation into clinical practice. Further input is required 

from a paediatric clinical trials unit (CTU) and patients before proceeding further, but 

a preliminary overview for these studies is discussed below using a PICO format (P: 

patient or population, I: intervention or indicator, C: comparison or control and O: 

outcome) [466].  A preliminary outline of these two studies, based on the findings of 

the thesis, are now summarised. 

 

7.3.1! ‘LUPUS MODEL’ Pilot study (LUPUS Multiplex Outcomes 
During Evaluation Longitudinally)  

Rationale: The prototype longitudinal Markov Multi-State Model requires further 

validation, measuring the urine biomarkers by multiplex (as opposed to ELISA) in 

prospectively collected JSLE urine samples which have been collected at 

frequent/regular time points. Increasing the number of disease state transitions 

observed will facilitate assessment of further urine biomarkers or clinical factors 

within a more complex Markov Multi-State Model.  

 

Prospective urine sampling at regular intervals (4-6 weekly) will increase 

understanding of biomarkers which predict flare, persistently active LN, remission, 

and help to decide upon the sampling frequency required in clinical study 2 (see section 

7.3.2). UK centres with the highest rates of LN will be targeted for this study to capture 

the maximum number of disease state transitions (e.g. London, Birmingham, 

Liverpool, Manchester, Scotland). Through such a validation study, the 

pilot/feasibility data underpinning a larger and more costly clinical trial of urine 

biomarker-led monitoring would be strengthened. A PICO for the Lupus MODEL 

study is shown below (also see Figure 7-2).  

 

P: JSLE patients within the UK JSLE Cohort, who prospectively send urine samples 

to the hospital every 4-6 weeks by post (capturing the period before, during and after 

an LN flare). At the time of routine clinic appointments (3-4 monthly) half of the urine 

sample would be processed immediately and the other half sent to hospital through the 

post. 
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I: Urine biomarker quantification by bespoke LN urinary biomarker multiplex assay.   

 

C: Ability of urine biomarker panel constituents (namely: AGP, CP, LPGDS, TF, 

MCP-1 and VCAM-1), and the most promising clinico-demographic factors to predict 

flare, persistently active LN, and remission. 

 

O: Primary - Robust assessment and refinement of the Markov Multi-State Model, 

identifying whether constituents of the urine biomarker panel can individually or in 

combination, predict flare, persistently active LN, remission, in order to finalise the 

longitudinal biomarker panel warranting assessment during the subsequent clinical 

trial of urine biomarker-led monitoring. Secondary – A) Assessment of when 

biomarker values change in advance of subsequent LN flare or remission. B) 

Identification of the frequency of biomarker quantification required within a clinical 

trial of urine biomarker-led monitoring. 

 

 
Figure 7-2: Overview of proposed ‘LUPUS MODEL’ pilot study  
Samples would be collected 4-6 weekly (by post) to identify whether biomarker values change 
in advance of LN flare or remission, predicting such events. Assessment of these frequent 
samples will also help to identify the optimal urine sampling frequency. At clinic visits, a urine 
sample will be obtained and a renal BILAG assessment undertaken. Half of the urine sample 
will be processed immediately (standard urine processing SOP) and the other half sent through 
the post (postal SOP) in order to assess biomarker stability in samples which have been 
analysed by multiplex.  
 

 

Pre$– LN$flare LN$Flare LN$Flare Post$– LN$flare

Urine samples collected
374 monthly at hospital
along with a renal BILAG
assessment to refine the
prototype Markov Model

Urine samples collected
476 weekly from home to
identify whether
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remission, and the
optimal urine sampling
frequency
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Further pre-study work required: 

•! Use custom multiplex assays to assess existing longitudinal JSLE samples from 

UK/US/SA cohorts to undertake preliminary Markov Multistate Modelling using 

multiplex data (validation the work which has already been undertaken in Chapter 

5). 

•! Multiplex and urine biomarker stability assessment. 

•! Multiplex and biomarker levels in the presence of UTI and mixed growth samples. 

•! Consultation with patients, parents and key funding stakeholders (e.g. Association 

of Medical Research Charity members including Arthritis Research UK, Lupus 

UK, and the National Institute of Health Research Evaluation, Trials and Studies 

(NETS; http://www.nets.nihr.ac.uk/mis/about funding programmes), along with a 

paediatric CTU and the MRC North West Coast Hub for Trials Methodology 

Research (https://www.liverpool.ac.uk/translational-

medicine/departmentsandgroups/nwhtmr/) on study design to optimise study 

acceptability and recruitment in view of the intensive follow-up schedule of the 

prospective study group.  

 

7.3.2! Clinical trial: ‘Can urine biomarker-led monitoring improve 
clinical outcomes for children with LN?’ 

Rationale: To justify translation of urine biomarkers into routine clinical care, the 

ultimate question is whether urine biomarker-led monitoring can improve renal 

outcomes. Specifically, this study would managed LN patients in accordance with a 

pre-defined biomarker based treatment algorithm, which uses the Markov Multi-State 

Model predictions to guide treatment. Such a study would be informed by the results 

of the LUPUS MODEL pilot/feasibility study (see section 7.3.1). This study would 

indicate which constituents of the biomarker panel merit quantification, the urine 

sampling frequency and the mode of sample transport (post or standard processing). 

Given the unique opportunities that this study would present, an up-to-date review of 

the literature on urine biomarkers, and those predictive of treatment response (see 

section 7.3.3) would also be undertaken at that time to assess whether further urine 

biomarkers merit parallel assessment. Treatment algorithms and study outcomes 

would be defined through an expert consensus process at the start of the study (e.g. 

using Delphi and Nominal Group techniques). Given the cost and long follow up 
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period required in such a study, discussions would be held with a CTU and the MRC 

North West Hub for Trials Methodology Research, University of Liverpool [467], to 

consider whether an adaptive trial design could be used.  

 

P: Prospectively recruited JSLE patients (<18 years at the time of SLE onset) who are 

within 2 years of diagnosis (high risk period for LN development). 

 

I: Urine biomarker quantification and adjustment of LN treatment in accordance with 

a pre-defined algorithm which uses biomarker based Markov Multi-State Model 

predictions to guide treatment. 

 

C: Control JSLE patients (<18 years at the time of SLE onset) who are monitored and 

treated in accordance with standard clinical care, without urine biomarker 

quantification. 

 

O: To be determined through consensus process.  

 

Potential primary outcomes could include:  

 

A) Time to achievement of renal BILAG defined remission (score of D) within time 

‘x’ OR 

B) Complete renal response within time ‘x’, defined by UPCR OR UACR of 

≤20mg/mmol (=<0.2mg/mg) in a spot urine AND eGFR ≥60ml/min, or if <60ml/min 

at screening, not fallen by >20% compared to screening AND inactive urinary 

sediment defined as +5 red blood cells and +5 white blood cells per hpf and no cellular 

casts [468]. 

 

Potential secondary outcomes could include:  

 

A) Low disease activity (D/E) in extra-renal organs/systems with no more than 7.5mg 

prednisolone (or equivalent) daily for at least 14 days before assessment.  

 

B) SLE Responder Index (SRI) score at time points ‘x’ and ‘y’ [469].  
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C) BILAG-based Combined Lupus Assessment (BICLA) score at time points ‘x’ and 

‘y’  [470]. 

 

D) Change in SLEDAI [81] or numeric BILAG [65] at time points ‘x’ and ‘y’. 

 

E) Change in physician’s VAS at time points ‘x’ and ‘y’. 

 

F) Change in daily oral prednisolone requirement at time points ‘x’ and ‘y’. 

 

G) Change in patient-reported outcomes (e.g. VAS, pain, and fatigue, LupusQoL [50], 

SF-36 [47], CHAQ [49] at time points ‘x’ and ‘y’. 

 

H) Patient questionnaire on perceived acceptability and practicality of urine biomarker 

based monitoring and treatment. 

 

I) Standard questionnaire reporting healthcare utilisation during the study period. 

 

J) Longer term outcomes could include number of LN flares at 2 and 5 years or renal 

survival (absence of end-stage renal failure, dialysis or transplant). This would require 

significant follow-up and funding. 

 

Pre-study work required: 

 

•! LUPUS MODEL pilot study. 

•! Consultation within UK paediatric rheumatology and nephrology communities to 

estimate the number of eligible patients per month and consider of international 

recruitment through existing collaborations and the Paediatric Rheumatology 

European Society (PReS) JSLE Working Group. 

•! Comprehensive review of JSLE disease activity and outcome measures. 

•! Comprehensive review of adaptive trial design methodologies and consultation of 

a paediatric CTU. 

•! Consultation with patients, parents and key stakeholders (e.g. Lupus UK) on study 

design to optimise study acceptability, recruitment and retention. 
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7.3.3! Performance of urine biomarkers as predictors of response to 
treatment  

Adult clinical studies looking at response to treatment [150] and clinical trials [187] 

are increasingly including JSLE patients as part of their study protocols. Both the US 

FDA paediatric exclusivity program [471] and European Union Paediatric Drug 

Regulations [472] provide financial incentives for drugs studied in paediatric 

populations, with the aim of increasing research and drug development for children. 

Establishing links with industry and chief investigators undertaking investigator-led 

trials could enable inclusion of the LN urinary biomarker panel as secondary outcomes 

within such study protocols, to assess whether constituents of the urine biomarker 

panel are able to predict response to treatment. MASTERPLANS: ‘An open label 

observational study to identify predictors of response to rituximab and MMF in 

patients with SLE including cutaneous or renal manifestations’ [473] is currently being 

set-up and due to recruit JSLE patients over the age of 12 years. This study will collect 

urine samples alongside other biological specimens, enabling assessment of whether 

urine biomarkers can predict treatment response to Rituximab or MMF in JSLE and 

adult SLE patients with LN. Such opportunistic investigation within well conducted 

phase II and III trials is an important step towards gathering robust evidence for urine 

biomarker-led monitoring in LN. 

 

7.4! Final conclusions 
Evidence presented within this thesis has demonstrated and validated an excellent 

urine biomarker panel for identification of active LN in ethnically distinct UK/US and 

SA JSLE cohorts.  It has shown that different constituents of the biomarker panel are 

best suited at predicting the occurrence of LN flare and remission longitudinally, 

utilising a prototype longitudinal Markov Multi-State model of urine biomarker 

dynamics. To advance these laboratory observations towards clinical translation, a 

custom multiplex assay has been developed in collaboration with industry partner 

Merck Millipore and validated at the UoL in JSLE urine samples from UK/US/SA 

cohorts. The multiplex assay has been shown to be better at identifying active LN than 

existing ELISA techniques, and substantially reduces the time, cost and quantity of 

patient sample required for urine biomarker panel quantification. This work has laid 
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the foundations for clinical studies longitudinally measuring the urine biomarker panel 

by multiplex, allowing refinement and inclusion of further biomarkers within the 

Markov Multi-State Model. The second clinical study would examine whether urine 

biomarker-led monitoring can actually improve outcomes for children with LN, and is 

anticipated to yield pivotal evidence for the translation of urine biomarkers into routine 

clinical practice, producing significant progress in the field of urine biomarker 

monitoring for the benefit of children with JSLE. 
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Appendix 1: UK JSLE Cohort Study ACR and SLICC form 
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Appendix 2: UK JSLE Cohort Study CHAQ 
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Appendix 3: UK JSLE Cohort Study CHQ 
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Appendix 4: UK JSLE Cohort Study SF36 
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JSLE -  SF36

Your Health and Well-Being
Name
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a) Cut down on the amount of time you spent on work or other activities
b) Accomplished less than you would like

c)Were limited in the kind of work or other activities
d) Had difficulty performing the work or other activities ( for example it took
extra effort)

Survey : 7270r lll l l l l l l l l l l l
UK JSLE Study Group O - SF36 Version 3

P a g e :  1

ilililllt r
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The following survey asks questions about your health, how you feel and how well you are able to do your
usual activities. Please give the best answer you can, but do not spend too much time answering (your
immediate response is usually the most accurate). Please select onlv one answer per question.
Thank you.

1. ln general, would you say your health is:
Excellent f] Very good ! Good I Fair !

2. Compared to ONE YEAR AGO, how would you rate your health in general NOW?
MUCH BETTER than one yearago I

Somewhat BETTER now than one year ago I
About the SAME as one year ago I

Somewhat WORSE now than one year ago I
MUCH WORSE now than one year ago I

3. The following items are about activities you might do during a typical day. Does your health now
limit you in these activit ies? lf  so, how much?

, yes, No,
a lot limited a little not limited at all

a)Viqorous activities, such as running, lifting heavy
objects, participating in strenuous sports
b) Moderate activities, such as moving a table,
pushing a vacuum cleaner, bowling, playing golf
c) Lifting or carrying groceries

d) Climbing several flights of stairs

e) Climbing one flight of stairs

f) Bending, kneeling or stooping

g) Walking more than a mi le

h) Walking several blocks

i)Walking one block

j) Bathing or dressing yourself

4. During the past 4 weeks, have you had any of the following problems with your school, college, work
or other regular activities as a result of vour phvsical health?

Poor !
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Appendix 5: UK JSLE Cohort Study BILAG form 

 

 



  
274 

 



  
275 

 

 



  
276 

 



  
277 

 

 

 

 

  



  
278 

Appendix 6: BILAG scoring guidance 

BILAG2004 INDEX SCORING 
 

    • scoring based on the principle of physician’s intention to treat 
 

Category Definition 
 

A 
 
Severe disease activity requiring any of the following treatment: 
 
1. systemic high dose oral glucocorticoids (equivalent to prednisolone > 
20  
    mg/day) 
 
2. intravenous pulse glucocorticoids (equivalent to pulse 
methylprednisolone  
    ≥ 500 mg) 
 
3. systemic immunomodulators (include biologicals, immunoglobulins 
and  
    plasmapheresis) 
 
4. therapeutic high dose anticoagulation in the presence of high dose 
steroids  
    or immunomodulators 
      eg: warfarin with target INR 3 - 4 
 

 
B 
 

 
Moderate disease activity requiring any of the following treatment: 
 
1. systemic low dose oral glucocorticoids (equivalent to prednisolone ≤ 
20  
    mg/day) 
 
2. intramuscular or intra-articular or soft tissue glucocorticoids 
injection  
    (equivalent to methylprednisolone < 500mg) 
 
3. topical glucocorticoids 
4. topical immunomodulators 
5. antimalarials or thalidomide or prasterone or acitretin 
6. symptomatic therapy 
      eg: NSAIDs for inflammatory arthritis 
 

 
C 
 

 
Mild disease 
 

 
D 
 

 
Inactive disease but previously affected 
 

 
E 

 
System never involved 
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CONSTITUTIONAL 
 
Category A 
Pyrexia recorded as 2 (same), 3 (worse) or 4 (new)  AND  
 
Any 2 or more of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 
  Weight loss 
  Lymphadenopathy/splenomegaly 
  Anorexia 
 
Category B 
Pyrexia recorded as 2 (same), 3 (worse) or 4 (new)  OR  
 
Any 2 or more of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 
  Weight loss 
  Lymphadenopathy/splenomegaly 
  Anorexia 
 
BUT do not fulfil criteria for Category A 
 
Category C 
Pyrexia recorded as 1 (improving)  OR 
 
One or more of the following recorded as > 0:  
 

Weight loss 
  Lymphadenopathy/Splenomegaly 
  Anorexia 
 
BUT does not fulfil criteria for category A or B 
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
 
MUCOCUTANEOUS 
 
Category A   
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 
  Skin eruption - severe  

Angio-oedema - severe 
  Mucosal ulceration - severe 
  Panniculitis/Bullous lupus - severe 

Major cutaneous vasculitis/thrombosis 
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Category B  
Any Category A features recorded as 1 (improving) OR  
 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 

 
Skin eruption - mild 
Panniculitis/Bullous lupus - mild 

  Digital infarcts or nodular vasculitis 
  Alopecia - severe 
   
Category C   
Any Category B features recorded as 1 (improving) OR 
 
Any of the following recorded as > 0: 
 
  Angio-oedema - mild 
  Mucosal ulceration - mild 
  Alopecia - mild 

Periungual erythema/chilblains 
Splinter haemorrhages 

 
Category D  
Previous involvement 

 
Category E  
No previous involvement 
 
NEUROPSYCHIATRIC 
 
Category A 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 

Aseptic meningitis 
Cerebral vasculitis 
Demyelinating syndrome 
Myelopathy 
Acute confusional state 
Psychosis 
Acute inflammatory demyelinating polyradiculoneuropathy 
Mononeuropathy (single/multiplex) 
Cranial neuropathy 
Plexopathy 
Polyneuropathy 
Status epilepticus 
Cerebellar ataxia 

 
Category B 
Any Category A features recorded as 1 (improving) OR 
 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
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Seizure disorder  
Cerebrovascular disease (not due to vasculitis) 
Cognitive dysfunction 
Movement disorder 
Autonomic disorder  
Lupus headache - severe unremitting 
Headache due to raised intracranial hypertension 

 
Category C 
Any Category B features recorded as 1 (improving) 
 
Category D  
Previous involvement 
 
Category E  
No previous involvement 
 
 
MUSCULOSKELETAL 
 
Category A 
Any of the following recorded  as 2 (same), 3 (worse) or 4 (new): 
 

Severe Myositis 
Severe Arthritis 

 
Category B 
Any Category A features recorded as 1 (improving)  OR 
 
Any of the following recorded  as 2 (same), 3 (worse) or 4 (new): 
 

 Mild Myositis 
Moderate Arthritis/Tendonitis/Tenosynovitis 

 
Category C 
Any Category B features recorded as 1 (improving) OR  
 
Any of the following recorded as > 0: 
 

 Mild Arthritis/Arthralgia/Myalgia 
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
 
CARDIORESPIRATORY 
 
Category A 
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Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 

Myocarditis/Endocarditis + Cardiac failure 
  Arrhythmia 
  New valvular dysfunction 

Cardiac tamponade 
  Pleural effusion with dyspnoea 

  Pulmonary haemorrhage/vasculitis  
Interstitial alveolitis/pneumonitis  
Shrinking lung syndrome 
Aortitis 
Coronary vasculitis 

 
Category B 
Any Category A features recorded as 1 (improving) OR  
 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 

Pleurisy/Pericarditis 
Myocarditis - mild 

 
Category C 
Any Category B features recorded as 1 (improving) 
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
 
GASTROINTESTINAL 
Category A 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 

Peritonitis 
Lupus enteritis/colitis 
Intestinal pseudo-obstruction  
Acute lupus cholecystitis 
Acute lupus pancreatitis 

 
Category B 
Any Category A feature recorded as 1 (improving) OR 
 
Any of the following recorded  as 2 (same), 3 (worse) or 4 (new): 
 

Abdominal serositis and/or ascites  
Malabsorption 
Protein losing enteropathy 
Lupus hepatitis 
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Category C 
Any Category B features recorded as 1 (improving)  
 
Category D  
Previous involvement 
 
Category E   
No previous involvement 
 
OPHTHALMIC 
 
Category A 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 
Orbital inflammation/myositis/proptosis 

Keratitis - severe 
Posterior uveitis/retinal vasculitis - severe 
Scleritis - severe 
Retinal/choroidal vaso-occlusive disease 
Optic neuritis 
Anterior ischaemic optic neuropathy  

 
Category B 
Any Category A features recorded as 1 (improving) OR  
 
Any of the following recorded as 2 (same), 3 (worse) or 4 (new): 
 
  Keratitis - mild 

Anterior uveitis 
Posterior uveitis/retinal vasculitis - mild 
Scleritis - mild 

 
Category C 
Any Category B features recorded as 1 (improving) OR  
 
Any of the following recorded as > 0: 
 
Episcleritis 
Isolated cotton-wool spots (cytoid bodies) 
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
 
RENAL 
 
Category A 
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Two or more of the following providing 1, 4 or 5 is included: 
 
1. Deteriorating proteinuria (severe) defined as   
 
      (a) urine dipstick increased by ≥ 2 levels (used only if other methods of urine 
protein estimation not   
             available); or  
 
      (b) 24 hour urine protein > 1 g that has not decreased (improved) by � 25%; or 
      (c) urine protein-creatinine ratio > 100 mg/mmol that has not decreased (improved) 
by � 25%; or 
      (d) urine albumin-creatinine ratio > 100 mg/mmol that has not decreased 
(improved) by � 25% 
 
2. Accelerated hypertension  
3. Deteriorating renal function (severe) defined as  
 
      (a) plasma creatinine > 130 �mol/l and having risen to > 130% of previous value; 
or  
      (b) GFR < 80 ml/min per 1.73 m2 and having fallen to < 67% of previous value; 
or  
      (c) GFR < 50 ml/min per 1.73 m2, and last time was > 50 ml/min per 1.73 m2 or 
was not measured. 
 
4. Active urinary sediment 
5. Histological evidence of active nephritis within last 3 months  
6. Nephrotic syndrome 
 
Category B 
One of the following: 
 
1. One of the Category A feature 
  
2. Proteinuria (that has not fulfilled Category A criteria) 
      (a) urine dipstick which has risen by 1 level to at least 2+ (used only if other 
methods of urine  
             protein estimation not available); or 
 
      (b) 24 hour urine protein ≥ 0.5 g that has not decreased (improved) by � 25%; or 
      (c) urine protein-creatinine ratio ≥ 50 mg/mmol that has not decreased (improved) 
by � 25%; or 
      (d) urine albumin-creatinine ratio ≥ 50 mg/mmol that has not decreased (improved) 
by � 25% 
  
3. Plasma creatinine > 130 �mol/l and having risen to ≥ 115% but ≤ 130% of previous 
value 
 
Category C 
One of the following: 
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1. Mild/Stable proteinuria defined as 
 
(a) urine dipstick ≥ 1+ but has not fulfilled criteria for Category A & B (used only 
if other methods  
 of urine protein estimation not available); or 
      (b) 24 hour urine protein > 0.25 g but has not fulfilled criteria for Category A & B 
; or 
      (c) urine protein-creatinine ratio > 25 mg/mmol but has not fulfilled criteria for 
Category A & B; or  
      (d) urine albumin-creatinine ratio > 25 mg/mmol but has not fulfilled criteria for 
Category A & B 
  
  
2. Rising blood pressure (providing the recorded values are > 140/90 mm Hg) which 
has not fulfilled criteria for Category A & B, defined as 
  
(a) systolic rise of ≥ 30 mm Hg; and  
(b) diastolic rise of ≥ 15mm Hg  
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
 
Note: although albumin-creatinine ratio and protein-creatinine ratio are different, we 
use the same cut-off values for this index 
 
HAEMATOLOGICAL  
 
Category A 
TTP recorded as 2 (same), 3 (worse) or 4 (new)   OR 
 
Any of the following: 
   
Haemoglobin   < 8 g/dl 
White cell count  < 1.0 x 109/l 
Neutrophil count  < 0.5 x 109/l  
Platelet count   < 25 x 109/l 
 
Category B 
TTP recorded as 1 (improving)   OR 
 
Any of the following:  
 
Haemoglobin   8 - 8.9 g/dl 
White cell count  1 - 1.9 x 109/l 
Neutrophil count  0.5 - 0.9 x 109/l 
Platelet count   25 - 49 x 109/l 
Evidence of active haemolysis 
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Category C 
Any of the following: 
 
Haemoglobin    9 - 10.9 g/dl  
White cell count  2 - 3.9 x 109/l 
Neutrophil count  1 - 1.9 x 109/l 
Lymphocyte count  < 1.0 x 109/L 
Platelet count  50 - 149 x 109/l 
Isolated Coombs’ test positive  
 
Category D 
Previous involvement 
 
Category E 
No previous involvement 
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Appendix 7: SLEDAI score  
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Appendix 8: BILAG Glossary 

Extended Paediatric BILAG 2004 Definitions 
 
Guidance on filling out BILAG forms 

•! It is implicit in this scoring system that all features scored must ONLY be 
attributable to SLE and not due to damage, infection, thrombosis (in absence of 
inflammatory process) or other conditions 

•! Assessment refers to manifestations occurring in the last 4 weeks compared with the 
previous 4 weeks  

•! In some manifestations, it may be difficult to differentiate SLE from other causes as 
there may not be any specific test and the decision would then lies with the physician’s 
judgement on the balance of probabilities  

 

Guidance for scoring 

The questionnaire asks whether features are improving, the same, worse or new.  

•! NEW (4): manifestations are recorded as new when it is a new episode occurring in 
the last 4 weeks (compared to the previous 4 weeks) that has not improved and this 
includes new episodes (recurrence) of old manifestations  
o! Note - a new episode occurring in the last 4 weeks but also satisfying the criteria 

for                    improvement (below) would be classified as improving (scoring a 
1) instead of new (4) 
 

•! WORSE (3): this refers to manifestations that have deteriorated in the last 4 weeks 
compared to the previous 4 weeks 
 

•! SAME (2): This refers to manifestations that have been present for the last 4 weeks 
and the previous 4 weeks without significant improvement or deterioration  

•! this also applies to manifestations that have improved over the last 4 weeks 
compared to the previous 4 weeks but do not meet the criteria for improvement 
 

•! IMPROVING (1): Definition of improvement:  
o! (a) the amount of improvement is sufficient for consideration of reduction 

in therapy and would not justify escalation in therapy, AND:   
o! (b) improvement must be present currently and for at least 2 weeks out of 

the last 4 weeks, OR: manifestation that has completely resolved and 
remained absent over the whole of last 1 week 
 

•! NOT PRESENT (0) 
 

•! NOT DONE: it is important to indicate if a test has not been performed (particularly 
laboratory investigations) so that this will be recorded as such in the database & not 
as normal or absent (which is the default) 

 

•! Most are self-explanatory but definitions are available for most descriptors (see below) 
•! Ophthalmic manifestations need to be assessed by ophthalmologist  
•! For descriptors that are based on measurements (in renal and haematology systems), it is 

important to indicate if these are not due to lupus (for consideration of scoring) as they are 
usually recorded routinely into a database (eg drug side effects). 
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BILAG score calculation: 

•! This intends to reflect and be based upon the physician’s intention to treat. 
•! Patients score as A-E for each of the 9 BILAG domains (general, mucocutaneous, 

neurological, musculoskeltal, cardiovascular/respiratory, vasculitis, renal, 
gastrointestinal, ophthalmic).  
 

Category Definition 
 

A 
 
Severe disease activity requiring any of the following treatment: 
 
1. systemic high dose oral glucocorticoids (equivalent to prednisolone > 
20  
    mg/day) 
 
2. intravenous pulse glucocorticoids (equivalent to pulse 
methylprednisolone  
    ≥ 500 mg) 
 
3. systemic immunomodulators (include biologicals, immunoglobulins 
and  
    plasmapheresis) 
 
4. therapeutic high dose anticoagulation in the presence of high dose 
steroids  
    or immunomodulators 
      e.g: warfarin with target INR 3 - 4 

 
B 
 

 
Moderate disease activity requiring any of the following treatment: 
 
1. systemic low dose oral glucocorticoids (equivalent to prednisolone ≤ 20  
    mg/day) 
 
2. intramuscular or intra-articular or soft tissue glucocorticoids injection  
    (equivalent to methylprednisolone < 500mg) 
 
3. topical glucocorticoids 
4. topical immunomodulators 
5. antimalarials or thalidomide or prasterone or acitretin 
6. symptomatic therapy 
      e.g: NSAIDs for inflammatory arthritis 

 
C 

 
Mild disease 

 
D 
 

 
Inactive disease but previously affected 

 
E 

 
System never involved 
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BILAG - Glossary of terms 

 

CONSTITUTIONAL 

No Parameter Definition (as required) 

1.  Pyrexia Temperature > 37.5°C documented 

2.  Weight loss Unintentional weight loss > 5% 

3.  Lymphadenopathy  palpable lymph node more than 1 cm diameter; having excluded 

infection 

4.  Fatigue or malaise or lethargy 

5.  Anorexia 

MUCOCUTANEOUS  

6. Skin eruption - Severe 

active 

 

•! >18% (2/9) body surface area  
•! Any lupus rash except panniculitis, bullous lesion & angio-

oedema 
•! Body surface area (BSA) is defined using the rules of nines 

(used to assess extent of burns) as follows: Palm (excluding 
fingers) = 1% BSA each lower limb = 18% BSA, each upper 
limb = 9% BSA, torso (front) = 18% BSA, torso (back) = 18% 
BSA, head = 9% BSA, genital (male) = 1% BSA  

7. Skin eruption - Mild •! ≤ 18% body surface area  
•! Any lupus rash except panniculitis, bullous lesion & angio-

oedema 
8.  Active discoid lesions Generalised / extensive 

9. Active discoid 

lesions: localized 

include lupus 

profundus 

Lupus profundus: Erythematous elevated plaques with an overlying 

discoid skin lesion 

10. Alopecia (severe, 

active) 

Clinically detectable (diffuse or patchy) hair loss with scalp 

inflammation (redness over scalp) 

11. Alopecia (mild) Diffuse or patchy hair loss without scalp inflammation (clinically 

detectable or by history) 

12. Panniculitis / bullous 

(severe) 

Severe if any one of:  

•! > 9% body surface area;  
•! facial panniculitis;  
•! pannicultis that threatens to ulcerate;  
•! pannicultitis that threatens integrity of subcutaneous tissue 

(beginning to cause surface depression) on >9% body surface 
area. 

Panniculitis presents as palpable and tender subcutaneous induration 

/ nodule.  

Established surface depression and atrophy associated with fat 

necrosis alone is likely to be due to damage 

13. Panniculitis (mild) As for severe but ≤ 9% body surface area and does not fulfill any 

criteria for severe panniculitis 
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14.  a. Angio-oedema 

(severe) 

 

 

b. Angio-oedema 

(mild) 

•! Potentially life-threatening eg: stridor, affecting tongue or lips.  
•! Angio-oedema is a variant form of urticaria which affects the 

subcutaneous, submucosal and deep dermal tissues 
•! Not life threatening 

15. Mucosal ulceration 

(severe) 

•! Disabling (significantly interfering with oral intake) 
•! Extensive & deep ulceration (must have been observed by a 

physician) 
16. Mucosal ulceration 

(mild) 

Localised and / or non-disabling ulceration  

17. Malar erythema Malar rash must have been observed by a physician and has to be 

present continuously (persistent) for at least 1 week to be considered 

significant (to be recorded)  

18. Subcutaneous nodules 

19. Perniotic skin lesions 

20. Peri-ungal erythema / 

chillblains 

Chilblains are localised inflammatory lesions (may ulcerate) which 

are precipitated by exposure to cold 

21. Swollen fingers 

22. Sclerodactyly Localized thickening and tightness of the skin of the fingers or toes. 

23. Calcinosis Calcium salt depositis in the skin or subcutaneous tissues 

24. Telangiectasia Dilatation of the capillaries causing them to appear as small red or 

purple clusters, often spidery in appearance on the skin. 

25. Splinter 

haemorrhages 

Small areas of bleeding (hemorrhage) under the fingernails or 

toenails 

NEUROPSYCHIATRIC  

26. Impaired level of consciousness 

27. Cognitive 

dysfunction 

Significant deficits in any cognitive functions:  

•! simple attention (ability to register and maintain information) 
•! complex attention  
•! memory (ability to register, recall, and recognize information 

e.g. learning, recall) 
•! visual-spatial processing (ability to analyze, synthesize and 

manipulate visual-spatial information) 
•! language (ability to comprehend, repeat and produce oral / 

written material e.g. verbal fluency, naming) 
•! reasoning/problem solving (ability to reason and sbstract) 
•! psychomotor speed  
•! executive functions (e.g. planning, organizing, sequencing) 
in absence of disturbance of consciousness or level of arousal 

o! sufficiently severe to interfere with daily living  
neuropsychological testing should be done if possible or 

corroborating history from third party if possible 

exclude substance abuse 
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28. Acute psychosis or 

delirium or 

confusional state 

Severe disturbance in the perception of reality characterised by: 

delusions, hallucinations, incoherence, marked illogical thinking or 

catatonic behaviour.  

Acute confusional state: acute disturbance of consciousness or level 

of arousal with reduced ability to focus, maintain or shift attention 

includes hypo- and hyperaroused states and encompasses the 

spectrum from delirium to coma 

29. Psychosis •! Delusion or hallucinations does not occur exclusively during 
course of a delirium  

•! exclude drugs, substance abuse, primary psychotic disorder  
30. Seizure disorder Independent description of seizure by reliable witness 

31. Status epilepticus Seizure or series of seizures lasting ≥ 30 minutes without full 

recovery to baseline 

32. Cerebrovascular 

disease (not due to 

vasculitis) 

Anyone with supporting imaging: (not due to vasculitis) stroke 

syndrome; transient ischaemic attack; intracranial haemorrhage; 

•! exclude hypoglycaemia, cerebral sinus thrombosis, vascular 
malformation, tumour, abscess  

•! Cerebral sinus thrombosis not included as definite thrombosis 
not considered part of lupus activity 

33. Cerebral vasculitis Should be present with features of vasculitis in another system and 

supportive imaging &/or biopsy findings 

34. Aseptic meningitis  •! Criteria (all): acute/subacute onset headache, fever, abnormal 
CSF (raised protein and/or lymphocyte predominance) but 
negative cultures  

•! Exclude CNS/meningeal infection, intracranial haemorrhage 
•! Preferably photophobia, neck stiffness, signs of meningeal 

irritation should be present but not essential 
35. Mononeuropathy 

(single/multiplex) 

Supportive electrophysiology study preferred 

36. Ascending or transverse myelitis 

37. Demyelinating 

syndrome 

•! Discrete white matter lesion with associated neurological 
deficit not recorded elsewhere 

•! Ideally there should have been at least one previously recorded 
event 

•! Supportive imaging required 
•! Exclude multiple sclerosis 

38. Myelopathy •! Acute onset of rapidly evolving paraparesis or quadriparesis 
and/or sensory level 

•! Exclude intramedullary and extramedullary space occupying 
lesion 

39.  Acute inflammatory 

demyelinating 

polyradiculoneuropat

hy 

Criteria:  

•! progressive polyradiculoneuropathy  
•! loss of reflexes  
•! symmetrical involvement  
•! increased CSF protein without pleocytosis  
•! supportive electrophysiology study 

40. Peripheral or cranial neuropathy 

41. Cranial neuropathy Except optic neuropathy which is classified under ophthalmic 
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42. Plexopathy •! Disorder of brachial or lumbosacral plexus resulting in 
neurological deficit not corresponding to territory of single 
root or nerve  

•! Supportive electrophysiology study required 
43. Polyneuropathy •! Acute symmetrical distal sensory and/or motor deficit  

•! Supportive electrophysiology study required 
44. Autonomic disorder Any one:  

•! fall in blood pressure to standing > 30/15 mmHg 
(systolic/diastolic)  

•! increase in heart rate to standing ≥ 30bpm  
•! loss of heart rate variation with respiration (max – min < 15 

bpm, expiration:inspiration ratio < 1.2, Valsalva ratio < 1.4)  
•! loss of sweating over body and limbs (anhidrosis) by sweat test  
exclude drugs and diabetes mellitus  

45. Disc swelling / cytoid 

swellings 

Isolated cotton-wool spots. Also known as cytoid bodies 

(see ophthalmology – scored here for original Paed BILAG) 

46. Chorea Jerky involuntary movements affecting especially the shoulders, 

hips, and face. 

47. Cerebellar ataxia Cerebellar ataxia in isolation of other CNS features 

usually subacute presentation 

48. Movement disorder Exclude drugs 

49. Severe headache 

(unremitting) 

Disabling headache unresponsive to narcotic analgesia & lasting ≥ 

3days  

exclude intracranical space occupying lesion and CNS infection 

50. Episodic migrainous 

headaches 

With/without aura recurrent attacks of headache lasting 4 – 72hours 

may be preceded by neurological aura (lasting up to 1 hour)  

 

51. Tension headache Recurrent episodes of headaches lasting minutes to days 

52. Cluster headache Attacks of severe unilateral headache lasting 15 - 180 minutes 

attacks at least once every other day and up to 8 times a day attacks 

occur in clusters (series of weeks or months) separated by remissions 

of usually months or years 

53. Headache from IC 

hypertension 

Exclude cerebral sinus thrombosis  

54. Organic depressive 

illness 

Associated with somatic symptoms and severe enough to merit 

treatment with anti-depressive medication 

55. Mood disorder 

(depression/mania) 

Prominent & persistent disturbance in mood characterised by 

depressed mood or markedly diminished interest or pleasure in 

almost all activities or elevated, expansive or irritable mood should 

result in significant distress or impaired functioning  

56. Anxiety disorder Prominent anxiety, panic disorder, panic attacks or obsessions or 

compulsions resulting in clinically significant distress or impaired 

functioning 



  
294 

57. Organic Brain 

disorder 

Organic brain syndrome: impaired orientation, memory or other 

intellectual function in the absence of metabolic, psychiatric or 

pharmacological causes. Clinical features develop over a short 

period (usually hours to days) and tend to fluctuate over the course 

of the day. 

a) clouding of consciousness with reduced capacity to focus and 

sustain attention to environment 

b) i  perceptual disturbance: misinterpretations, illusions or 

hallucinations 

    ii  incoherent speech 

   iii  insomnia or daytime drowsiness 

   iv  increased or decreased psychomotor activity 

c) disorientation and recent memory impairment 

MUSCULOSKELETAL 

58. Definite myositis 

(severe) 

≥ 3 criteria: proximal muscle weakness; elevated muscle enzymes; 

positive muscle biopsy; abnormal EMG; positive MRI 

Exclude endocrine and drug-induced myopathy 

59. Incomplete myositis 2 above criteria 

60. Myositis (mild) Raised muscle enzymes with myalgia but without significant 

weakness 

Asymptomatic raised muscle enzymes not included 

Exclude endocrine and drug-induced myopathy 

61. Myalgia Inflammatory muscle pain which does not fulfill the criteria for 

arthritis or myositis 

62. Severe polyarthritis – 

with loss of function 

Observed active synovitis ≥ 2 joints with marked loss of functional 

range of movement and significant impairment of activities of daily 

living and has been present on several days (cumulatively) over the 

last 4 weeks 

63. Arthritis (Moderate) Active synovitis ≥ 1 joint (observed or through history) with some 

impairment of function, which has been present on several days over 

the last 4 weeks 

64. Arthralgia Inflammatory joint pain (worse in morning with stiffness, usually 

improves with activity and not brought on by activity) which does 

not fulfill the above criteria for arthritis  

65. Tendonitis / 

tenosynovitis 

Tendonitis / tenosynovitis with some impairment of function, which 

has been present on several days over the last 4 weeks 

66. Tendon contractures 

& fixed deformity 

Fixed deformity caused by permanent shortening of muscles, 

tendons, and/or ligaments 

67. Aseptic necrosis Generally avascular necrosis of bone associated with lupus. 

CARDIOVASCULAR & RESPIRATORY 
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68. Pleuropericardial 

pain 

Localized sharp or dull pain in chest aggravated by respiration 

•! convincing history &/or physical findings that you would 
consider treating 

•! in absence of cardiac tamponade or pleural effusion with 
dyspnoea 

do not score if you are unsure whether or not it is pleurisy/pericarditis 

69. Dyspnoea On exertion 

70. Cardiac failure Cardiac failure due to myocarditis or non-infective inflammation of 

endocardium or cardiac valves (endocarditis) 

•! cardiac failure due to myocarditis is defined by left ventricular 
ejection fraction ≤ 40% & pulmonary oedema or peripheral 
oedema 

•! cardiac failure due to acute valvular regurgitation (from 
endocarditis) can be associated with normal left ventricular 
ejection fraction 

diastolic heart failure is not included 

71. Friction rub Audible on auscultation 

72. Effusion (pericardial 

or pleural) 

On Echo / CXR 

73. Mild / intermittent 

chest pain 

Non-specific (not clearly pleuritic, pericardial, musculoskeletal or 

angina) 

74. Progressive CXR changes – lung fields 

75. Progressive CXR changes – heart size 

76. ECG evidence of pericarditis / myocarditis 

77. Cardiac arrhythmia  No fever (except sinus tachycardia) due to myocarditis or non-

infective inflammation of endocardium or cardiac valves 

(endocarditis) 

Confirmation by ECG required (history palpitations insufficient) 

78. Pulmonary function 

fall by >20% 

>20% less than expected (for height, weight, sex, age), or >20% fall 

in total lung capacity (FVC) and / or DLCO expected less >20% 

79.  Histological evidence of inflammatory lung disease 

80. Mild myocarditis Inflammation of myocardium with raised cardiac enzymes &/or 

ECG changes and without resulting cardiac failure, arrhythmia or 

valvular dysfunction 

81. New valvular 

dysfunction 

New cardiac valvular dysfunction due to myocarditis or non-

infective inflammation of endocardium or cardiac valves 

(endocarditis) 

82. Cardiac tamponade Supporting imaging required 

83. Pleural effusion with 

dyspnoea 

Supporting imaging required 

84. Pulmonary 

haemorrhage/vasculit

is 

Inflammation of pulmonary vasculature with haemoptysis &/or 

dyspnoea &/or pulmonary hypertension  

supporting imaging &/or histological diagnosis 
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85. Interstitial 

alveolitis/pneumoniti

s 

Radiological features of alveolar infiltration not due to infection or 

haemorrhage required 

corrected gas transfer Kco (< 70% normal) or fall of >20% if 

previously normal 

on going activity would be determined by clinical findings and lung 

function tests, and repeated imaging may be required in those with 

deterioration (clinically or lung function tests) or failure to respond 

to therapy 

86. Shrinking lung 

syndrome 

Acute reduction (> 20% if previous measurement available) in lung 

volumes (to < 70% predicted) in the presence of normal corrected 

gas transfer (Kco) & dysfunctional diaphragmatic movements 

87. Aortitis Inflammation of aorta with or without dissection with supporting 

imaging abnormalities accompanied by > 10 mm Hg difference in 

BP between arms &/or claudication of extremities &/or vascular 

bruits  

repeated imaging would be required to determine on-going activity 

in those with clinical deterioration or failure to respond to therapy 

88. Coronary vasculitis Inflammation of coronary vessels with radiographic evidence of 

non-atheromatous narrowing, obstruction or aneurismal changes  

VASCULITIS 

89. Major cutaneous 

vasculitis including 

ulcers  

Accompanied by infarction in past month, extensive gangrene and / 

or ulceration or skin infarction 

90. Major abdominal 

crisis due to vasculitis 

See also Gastrointestinal (scored here in original Paed BILAG) 

91. Recurrent 

thromboembolism 

(excluding strokes) 

e.g. Recurrent pulmonary embolism or deep vein thrombosis 

92. Raynaud’s Usually fingers or toes change in colour to white, then blue and then 

red, as the bloodflow returns. It may associated with pain, numbness, 

swelling, tingling, and a painful "pins and needles" sensation. Can 

affect other areas e.g. nose, earlobes.  

93. Livido reticularis Mottled reticulated vascular pattern that appears as a lace-like 

purplish discoloration of the skin. 

94. Superficial phlebitis Inflammation of a superficial vein under the skin. 

95. Minor cutaneous 

vasculitis 

Localised single or multiple infarct(s) over digit(s) or tender 

erythematous nodule(s) E.g. digital vasculitis, nailfold infarcts, 

purpura, urticaria 

96. Thromboembolism 

1st episode 

First pulmonary embolism or deep vein thrombosis 
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RENAL 

97. Systolic blood 

pressure 

BP measurement should be confirmed on repeat. Percentile detailed 

in table 2 below. 

98. Diastolic blood 

pressure  

BP measurement should be confirmed on repeat. In <13 years, 

diastolic phase 4; >13 years phase 5. Percentiles detailed in table 2 

below. 

99. Severe hypertension 

blood pressure 

Severe BP by Task Force criteria (see table 2 of percentiles below) 

rising to that level within 1 month +/- accompanied by Grade III or 

IV retinal changes (haemorrhages, exudates, papilloedema)  

100. Proteinuria on 

dipstick 

- = 0; + = 1; ++ = 2; +++ = 3 

102

a 

Urine albumin-

creatinine ratio 

On freshly voided urine sample – First early Morning Urine (EMU) 

preferable 

102

b 

Urine protein-

creatinine ratio 

On freshly voided urine sample – First early Morning Urine (EMU) 

preferable 

104 Nephrotic syndrome Criteria: heavy proteinuria (> 50 mg/kg/day or > 3.5 g/day or 

protein-creatinine ratio > 350 mg/mmol or albumin-creatinine ratio 

> 350mg/mmol) hypoalbuminaemia oedema – First early Morning 

Urine (EMU) preferable 

105 Creatinine 

(plasma/serum) 

 

106

a 

GFR measured Using Cr EDTA clearance (mLs/min/1.73m2). Not performed 

routinely but please provide measurement if undertaken. 

106

b 

GFR estimated The Pbilag database will calculate this directly when height and 

serum creatinine measurements are provided (eGFR = 40 x height 

(cm) / creatinine (µmol/L) 

107 Active urinary 

sediment 

Uncentrifuged specimen, definition is: pyuria (> 5 WCC/hpf), 

haematuria (> 5 RBC/hpf) or red cell casts in absence of other 

causes. Therefore mark as having active sediment if any of the above 

are present.  

108 Histology of active 

nephritis 

WHO Class II, III, IV or V within last 3 months or since previous 

assessments if seen less than 3 months ago. Glomerular sclerosis 

without inflammation not regarded as evidence of active nephritis 

GASTROINTESTINAL 

109 Lupus Peritonitis Serositis presenting as acute abdomen with rebound/guarding  

110 Abdominal serositis 

or ascites 

Not presenting as acute abdomen 

111 Lupus enteritis or 

colitis 

Vasculitis or inflammation of small or large bowel with supportive 

imaging &/or biopsy findings 
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112 Malabsorption With abnormal D- xylose absorption test or increased faecal fat 

excretion after exclusion of coeliac’s disease (poor response to 

gluten-free diet) and gut vasculitis  

113 Protein-losing 

enteropathy 

Diarrhoea with hypoalbuminaemia or increased fecal excretion of iv 

radiolabeled albumin after exclusion of gut vasculitis 

114 Intestinal pseudo-

obstruction 

Subacute intestinal obstruction due to intestinal hypomotility  

 

115 Lupus Hepatitis Raised transaminases in absence of autoantibodies specific to 

autoimmune hepatitis (eg: anti-smooth muscle, anti-liver cytosol 1) 

&/or biopsy appearance of chronic active hepatitis  

116 Acute lupus 

cholecystitis 

After exclusion of gallstones and infection  

117 Acute lupus 

pancreatitis 

Usually associated multisystem involvement  

OPHTHALMIC 

118 Orbital inflammation orbital inflammation with myositis &/or extra-ocular muscle 

swelling &/or proptosis  

supportive imaging required 

119 Severe keratitis Sight threatening includes: corneal melt peripheral ulcerative 

keratitis 

120 Mild keratitis  Not sight threatening 

121 Anterior uveitis 

122 Severe posterior 

uveitis &/or retinal 

vasculitis  

sight-threatening &/or retinal vasculitis  

not due to vaso-occlusive disease 

123 Mild posterior uveitis 

&/or retinal vasculitis  

not sight-threatening  

not due to vaso-occlusive disease 

124 Episcleritis 

125 Severe scleritis Necrotising anterior scleritis  

Anterior &/or posterior scleritis requiring systemic 

steroids/immunosuppression &/or not responding to NSAIDs  

126 Mild scleritis Anterior &/or posterior scleritis not requiring systemic steroids  

excludes necrotising anterior scleritis 

127 Retinal/choroidal 

vaso-occlusive 

Includes: retinal arterial & venous occlusion disease serous retinal 

&/or retinal ligment epithelial detachments secondary to choroidal 

vasculopathy  

128 Isolated cotton-wool 

spots 

Also known as cytoid bodies 

129 Optic neuritis Excludes anterior ischaemic optic neuropathy 
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130 Anterior ischaemic 

optic neuropathy 

Visual loss with pale swollen optic disc due to occlusion of posterior 

ciliary arteries  

HAEMATOLOGY  

 

131 Haemoglobin Exclude dietary deficiency & GI blood loss. Measurement in g/dl. 

132 White cell count Exclude drug-induced cause of abnormality. Measurement in x 109/l 

133 Neutrophil count Exclude drug-induced cause of abnormality. Measurement in x 109/l 

134 Lymphocyte count Exclude drug-induced cause of abnormality. Measurement in x 109/l 

135 Platelet count Exclude thrombocytopenia of antiphospholipid Syndrome & drug-

induced cause 

136 Active haemolysis  Positive Coomb’s test & evidence of haemolysis (raised bilirubin or 

raised reticulocyte count or reduced haptoglobulins) 

137 Isolated positive 

Coomb’s test 

Without features of active haemolysis described under 136 above. 

138 TTP •! thrombotic thrombocytopaenic purpura  
•! clinical syndrome of micro-angiopathic haemolytic anaemia 

and thrombocytopenia in absence of any other identifiable 
cause 

TREATMENT 

•! Provide the current does that they have been taking and the revised dose if changed during 
clinic/admission. 

•! ACEi = angiotensin converting enzyme inhibitor 
•! Ca** blocker = calcium channel blocker 
•! Rituximab and cyclophosphamide are usually given as a number of infusions in a cycle of 

treatment.  
o! For Rituximab - a cycle may be two infusions, given two weeks apart, although 

some centres may do otherwise. Document the number infusions per cycle, the 
total dose from all infusions given within the cycle (mg) and the total number 
of cycles since last visit. For example, if giving two infusions of 600mg, the total 
dose per cycle will be 1,200mg. Please ensure height and weight are recorded on 
the form as usual. 

o! For cyclophosphamide – a number of infusions may be given over a certain 
period (e.g. 6 months) representing a course of cyclophosphamide treatment. 
Document the number of individual infusions given since the last visit, the total 
dose given since the last visit (mg) and the total cumulative dose to date. 

o!  
CLINICIANS INTENTION REGARDING MEDICATIONS 

•! These data will assist with validation of the pBILAG score assessing whether it reflects the 
clinicians intention to treat. Tick what best describes your treatment plan and the rationale for 
treatment changes.  
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TABLE 1:  95TH PERCENTILE OF BLOOD PRESSURE IN BOYS AND GIRLS 3 TO 16 YEARS 
OF AGE, ACCORDING TO HEIGHT 

*  The height percentiles were determined with standard growth curves. 
  
Data are adapted from those of the Task Force on High Blood Pressure in Children and Adolescents 
TABLE 2:  CLASSIFICATION OF HYPERTENSION BY AGE GROUP 

 

  

 
Blood  
Pressure 

 
Age 

 
Height Percentage 

for Boys 

 
Height Percentage 

for Girls 
 
 

 
 

 
5th 

 
25th 

 
75th 

 
95th 

 
5th 

 
25th 

 
75th 

 
95th 

 
 

 
yr 

 
mmHg 

 
mmHg 

 
Systolic 

 
3 

 
104 

 
107 

 
111 

 
113 

 
104 

 
105 

 
108 

 
110 

 
 

 
6 

 
109 

 
112 

 
115 

 
117 

 
108 

 
110 

 
112 

 
114 

 
 

 
10 

 
114 

 
117 

 
121 

 
123 

 
116 

 
117 

 
120 

 
122 

 
 

 
13 

 
121 

 
124 

 
128 

 
130 

 
121 

 
123 

 
126 

 
128 

 
 

 
16 

 
129 

 
132 

 
136 

 
138 

 
125 

 
127 

 
130 

 
132 

 
Diastolic 

 
3 

 
63 

 
64 

 
66 

 
67 

 
65 

 
65 

 
67 

 
68 

 
 

 
6 

 
72 

 
73 

 
75 

 
76 

 
71 

 
72 

 
73 

 
75 

 
 

 
10 

 
77 

 
79 

 
80 

 
82 

 
77 

 
77 

 
79 

 
80 

 
 

 
13 

 
79 

 
81 

 
83 

 
84 

 
80 

 
81 

 
82 

 
84 

 
 

 
16 

 
83 

 
84 

 
86 

 
87 

 
83 

 
83 

 
85 

 
86 

Age Group Significant Hypertension (mmHg) Severe Hypertension 
(mmHg) 

Newborn     7 d 
8-30 d 

Systolic   BP > 96 
Systolic   BP > 104 

Systolic   BP > 106 
Systolic   BP > 110 

Infant (< 2yrs) Systolic   BP > 112 
Diastolic  BP > 74 

Systolic   BP > 118 
Diastolic  BP > 82 

Children (3-5 yrs) Systolic   BP > 116 
Diastolic  BP > 76 

Systolic   BP > 124 
Diastolic  BP > 84 

Children (6-9 yrs) Systolic   BP > 122 
Diastolic  BP > 78 

Systolic   BP > 130 
Diastolic  BP > 86 

Children (10-12 yrs) Systolic   BP > 126 
Diastolic  BP > 82 

Systolic   BP > 134 
Diastolic  BP > 90 

Adolescents (13-15 
yrs) 

Systolic   BP > 136 
Diastolic  BP > 86 

Systolic   BP > 144 
Diastolic  BP > 92 

Adolescents (16-18 
yrs) 

Systolic   BP > 142 
Diastolic  BP > 92 

Systolic   BP > 150 
Diastolic  BP > 98 
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Appendix 9: UK JSLE Cohort Study Participant Information Sheet example (16-

18 years) 
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Appendix 10: UK JSLE Cohort Study consent form example (16-18 years) 
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Appendix 11: UK JSLE Cohort Study Baseline demographics form 
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Appendix 12: UK JSLE Cohort Study Annual Assessment form 
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Appendix 13: Great Ormond Street Hospital MTA 
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Appendix 14: Einstein Lupus Cohort MTA 
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Appendix 15: Paediatric Lupus Erythematosus in SA Cohort Study ethical 

approval February 2015 
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Appendix 16: Paediatric Lupus Erythematosus in SA Cohort Study Healthy 

Control Case Report form 
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Appendix 17: Paediatric Lupus Erythematosus in SA Cohort Study MTA 
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Appendix 18: Univariate association of each clinico-demographic variable with 

outcome in analysis looking at time to recovery from proteinuria following active 

LN 
 

Clinical and demographic factors p-value 

Age at LN onset 0.013 

Serum creatinine 0.184 

eGFR (ml/min/m2) 0.0602 

Neutrophil count (x109/L) 0.197 

Physicians global assessment (0-100 scale) 0.107 

Haematological involvement1 0.0377 

Gender  0.322 

Ethnicity (Caucasian or non-Caucasian) 0.421 

Length of disease  0.934 

Baseline Proteinuria (urine protein or albumin:creatinine ratio, mg/mmolCr)2 0.989 

Severe hypertension3  0.253 

Nephrotic syndrome4 0.765 

Active urinary sediment5 0.466 

Haemoglobin (g/dl) 0.979 

WCC (x109/L) 0.426 

Lymphocytes (x109/L) 0.879 

Platelets (x109/L) 0.342 

ESR (mm/h) 0.353 

CRP (mg/L) 0.601 

C3 (g/L) 0.986 

C4 (g/L) 0.537 

Anti-dsDNA antibody titres (IU/L) 0.577 

IgG (g/L) 0.296 

IgA (g/L) 0.636 

IgM (g/L) 0.252 

Hydroxychloroquine6 0.328 

Azathioprine 0.377 

Mycophenolate Mofetil 0.475 

Prednisolone 0.581 

Intravenous immunoglobulin (IVIG) 0.762 

Rituximab ever 0.351 

Cyclophosphamide ever 0.463 

ACEi or AT2i7 0.607 

Constitutional involvement 0.411 
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Mucocutaneous involvement 0.936 

Neuropsychiatric involvement 0.901 

Musculoskeletal involvement 0.272 

Cardiorespiratory involvement 0.663 

Gastrointestinal involvement 0.680 

Opthalmological involvement 0.919 

Total numerical BILAG score 0.424 

Univariate association of each clinicao-demographic variable with outcome, in 
analysis looking at time to recovery from proteinuria following active LN. 
 

Cox proportional hazard regression modelling used. 1BILAG defined organ domain involvement. 
2Baseline Proteinuria = UPAC or UAUC measurements depending on hospital laboratory). 3BILAG 
defined severe hypertension. 4Nephrotic syndrome = heavy proteinuria (> 50 mg/kg/day or > 3.5 g/day 
or protein-creatinine ratio > 350 mg/mmol or albumin-creatinine ratio > 350mg/mmol) + 
hypoalbuminaemia + oedema. 5Active urine sediment = pyuria (> 5 WCC/hpf), haematuria (> 5 
RBC/hpf) or red cell casts in absence of other causes. 6Medication use (yes) or non-use (no) considered 
rather than absolute drug dose. 7ACEi or AT2i = Angiotensin inhibitor or angiotensin receptor blocker. 
Note – descriptive statistics for these variables are shown in Table 3-6 and therefore not repeated. 
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Appendix 19: ELISA urine biomarker raw data from UK/US/SA JSLE patients 

 
Cohort STUDY ID DATE BILAG LPGDS MCP-1 CP AGP VCAM-1 TF 

UK 10003 02/11/2011 D 830 80 712 299 11 406 

UK 10003 30/05/2012 D 621 81 618 217 70 168 

UK 10003 13/03/2013 D 584 137 1197 166 3 59 

UK 10004 07/04/2010 D 534 95 2596 1746 0 556 

UK 10004 14/04/2011 D 503 179 1128 102 0 352 

UK 10004 19/12/2012 D 581 195 728 440 1 252 

UK 10017 14/07/2010 C 1825 125 3351 27697 49 14180 

UK 10017 07/10/2010 D 52 48 282 59 1 593 

UK 10017 12/01/2011 D 941 98 1168 13179 163 35008 

UK 10021 20/10/2010 D 204 236 2771 324 7 5972 

UK 10021 09/02/2011 D 312 337 529 774 6 1423 

UK 10030 19/07/2011 E 705 572 1757 285 2 355 

UK 10030 17/10/2011 E 210 45 755 110 0 257 

UK 10030 31/01/2013 E 179 149 445 250 1 1051 

UK 10034 18/11/2009 D 327 110 1066 224 2 813 

UK 10034 13/01/2010 D 302 53 301 343 2 789 

UK 10034 06/10/2010 D 52 86 117 108 0 53 

UK 10035 19/12/2009 E 413 271 554 231 8 1405 

UK 10035 10/03/2010 E 631 630 795 515 8 770 

UK 10035 03/11/2010 E 50 39 45 50 2 46 

UK 10036 22/09/2010 D 112 84 277 83 1 3110 

UK 10040 10/02/2010 D 132 606 NaN 1553 1 1876 

UK 10040 26/01/2011 D 288 86 505 154 0 336 

UK 10041 02/12/2009 D 123 34 462 181 0 522 

UK 10041 30/06/2010 D 271 85 826 647 8 37 

UK 10041 20/10/2010 D 345 92 680 653 3 1156 

UK 10042 03/11/2010 D 1100 1000 1001 1199 158 23 

UK 10042 25/08/2011 D 575 465 1197 910 0 1840 

UK 10043 15/12/2010 E 135 111 266 205 7 590 

UK 10043 09/02/2011 E 57 131 430 211 2 539 

UK 10043 24/08/2011 E 342 204 606 263 4 1847 

UK 10045 11/09/2009 A 1073 277 2089 14043 17 2078 

UK 10045 08/06/2010 D 168 153 832 355 20 226 

UK 10045 06/10/2010 D 41 26 65 362 0 76 

UK 10045 09/03/2011 D 219 NaN 527 925 NaN 402 

UK 10045 19/10/2011 D 330 NaN 643 1092 NaN 299 

UK 10045 17/10/2012 D 473 NaN 1328 1741 NaN 1114 

UK 10045 06/03/2013 B 718 NaN 997 2510 NaN 889 

UK 10049 04/05/2011 E 287 219 984 268 1 1734 

UK 10049 23/11/2011 E 131 341 604 83 0 155 

UK 10049 10/06/2013 D 481 137 729 622 52 3921 

UK 10050 22/08/2012 E 352 157 1115 21 1 154 

UK 10050 17/10/2012 E 387 510 1079 33 0 63 

UK 10050 16/10/2013 E 287 134 1284 88 0 69 

UK 10051 06/12/2010 D 42 92 1376 183 1 184 
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UK 10051 02/09/2011 D 64 103 817 134 0 360 

UK 10052 06/10/2011 E 584 94 1390 445 1 415 

UK 10052 13/03/2013 E 1141 143 1042 3397 34 373 

UK 10057 26/08/2011 E 218 298 701 595 3 659 

UK 10057 15/05/2012 E 411 137 1026 409 0 3622 

UK 10057 22/08/2012 E 1015 283 834 858 30 3690 

UK 10060 10/07/2012 E 856 1402 1871 1162 4 579 

UK 10060 03/10/2012 E 365 96 969 591 3 1646 

UK 10061 09/01/2013 E 985 33 1318 2668 4 2160 

UK 10061 06/02/2013 E 916 31 1365 3710 11 519 

UK 10061 15/05/2013 E 729 94 511 938 2 210 

UK 10062 02/10/2013 B 669 369 1298 896 0 867 

UK 10062 13/11/2013 B 574 274 964 1018 6 1239 

UK 10062 21/01/2014 D 334 150 474 151 3 190 

UK 10062 09/07/2014 D 52 NaN 773 131 NaN 478 

UK 10062 01/10/2014 D 134 NaN 1288 145 NaN 302 

UK 10064 18/09/2013 E 2578 422 1725 1149 39 4344 

UK 10069 20/08/2014 A 3164 NaN 99720 214944 NaN 243086 

UK 10069 29/10/2014 A 468 NaN 11350 39416 NaN 31826 

UK 15001 30/12/2010 E 477 319 910 309 7 2535 

UK 15001 29/09/2011 E 267 246 557 296 5 1579 

UK 15002 06/05/2010 D 129 NaN 1718 1709 NaN 3442 

UK 15002 31/03/2011 D 180 NaN 660 529 NaN 3067 

UK 15004 05/08/2010 B 142 NaN 1934 15686 NaN 27842 

UK 15004 23/05/2011 D 124 71 361 360 24 255 

UK 15004 16/08/2012 C 406 280 6046 13510 10 83439 

UK 15004 20/12/2012 B 230 184 2364 22787 29 109114 

UK 15004 31/07/2014 D 305 NaN 1223 7096 NaN 7855 

UK 15005 19/07/2012 D 484 80 401 166 10 413 

UK 15005 17/01/2013 D 586 94 663 255 2 319 

UK 15015 18/08/2011 D 112 302 1121 178 2 589 

UK 15015 15/08/2013 D 104 165 2146 86 1 3041 

UK 15024 04/10/2012 D 217 178 1320 365 4 903 

UK 15024 04/04/2013 D 569 188 1765 277 23 3149 

UK 15024 03/10/2013 D 462 240 1069 304 4 322 

UK 15032 06/10/2011 D 893 135 938 754 16 1188 

UK 15032 15/03/2012 D 283 107 1357 7 5 1728 

UK 15032 29/09/2012 D 524 77 1052 748 29 116 

UK 15047 15/12/2011 A 983 1838 37507 49407 65 43815 

UK 15047 15/03/2012 B 278 1188 2700 52798 3 53043 

UK 15047 19/04/2012 A 1958 580 20521 158901 8 1457 

UK 15048 05/08/2010 B 1180 NaN 73900 23426 NaN 185367 

UK 15048 03/05/2012 A 4009 2289 20417 501 89 286 

UK 15048 30/08/2012 A 2994 2733 25419 93109 23 499890 

UK 15053 29/11/2012 D 132 125 902 282 1 306 

UK 15053 16/05/2013 D 151 1322 389 231 2 425 

UK 15054 15/12/2011 D 1477 183 1611 2564 5 725 

UK 15054 15/11/2012 D 523 160 1711 274 4 1436 
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UK 15054 07/11/2013 D 573 182 766 230 8 7 

UK 15056 16/02/2012 E 134 70 478 206 2 1040 

UK 15058 21/07/2011 D 220 116 34 154 0 1763 

UK 15060 05/04/2012 D 234 164 1025 260 1 9749 

UK 15060 05/07/2012 D 164 28 1025 229 1 2286 

UK 15060 04/04/2013 D 520 86 1598 221 10 5893 

UK 15062 24/04/2011 D 161 135 379 3901 13 851 

UK 15062 29/09/2011 D 340 137 1608 1315 2 779 

UK 15062 19/01/2012 D 147 157 689 492 0 1908 

UK 15063 02/02/2012 D 617 126 748 333 10 1182 

UK 15063 21/06/2012 D 875 91 1144 432 4 74 

UK 15063 20/12/2012 D 1005 175 1100 449 1 430 

UK 15066 04/10/2011 D 407 484 2531 401 1 450 

UK 15066 18/04/2013 D 233 174 2154 193 0 206 

UK 15066 17/10/2013 D 152 290 709 48 14 10419 

UK 15068 06/09/2012 B 1257 261 6443 14451 64 63018 

UK 15068 07/02/2013 B 1835 383 78 464 18 356368 

UK 15068 18/07/2013 D 192 114 812 2851 4 2735 

UK 15068 06/03/2014 D 964 NaN 5428 5043 NaN 6846 

UK 15068 03/07/2014 D 792 NaN 1369 6307 NaN 2376 

UK 15070 04/08/2011 C 775 NaN 2657 190000 NaN 50576 

UK 15070 20/10/2011 D 674 NaN 12765 190000 NaN 8159 

UK 15070 03/01/2013 A 1572 1015 3118 55405 52 1781 

UK 15070 07/02/2013 C 1382 854 24418 5954 29 15585 

UK 15070 04/07/2013 B 2063 1802 6941 26527 97 1647 

UK 15070 02/01/2014 B 2024 NaN 4639 41772 NaN 42177 

UK 15070 06/02/2014 B 1382 NaN 10638 30770 NaN 24376 

UK 15070 29/05/2014 C 1296 NaN 2741 16108 NaN 21366 

UK 15070 31/07/2014 C 835 NaN 1728 23684 NaN 21010 

UK 15073 16/06/2011 B 1278 353 3836 27821 15 7754 

UK 15073 20/10/2011 B 862 NaN 5354 6858 NaN 7568 

UK 15073 16/01/2014 D 99 NaN 1459 732 NaN 2069 

UK 15074 18/10/2012 D 298 274 648 298 1 2746 

UK 15078 26/02/2012 D 2947 187 1284 14939 93 175 

UK 15078 21/06/2012 B 2181 167 2161 33115 122 411 

UK 15079 06/12/2012 C 2046 209 5267 43378 104 38823 

UK 15079 21/11/2013 B 1958 605 16711 33034 0 34234 

UK 15079 30/01/2014 C 1164 690 11825 77102 55 4811 

UK 15079 03/07/2014 B 1183 NaN 13919 42905 NaN 23518 

UK 15079 16/10/2014 B 1610 NaN 18213 98974 NaN 28614 

UK 15080 02/02/2012 E 1198 296 911 637 21 4965 

UK 15080 17/05/2012 E 1756 101 1591 560 19 2148 

UK 15080 04/07/2013 E 680 92 1284 225 10 12420 

UK 15082 17/05/2012 E 131 64 487 117 0 17004 

UK 15082 02/08/2012 E 139 110 441 83 0 279 

UK 15082 17/01/2013 E 162 104 2199 511 1 31807 

UK 15083 05/07/2012 A 148 275 25648 19379 14 63000 

UK 15083 07/02/2013 D 385 81 1732 318 0 40192 
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UK 15083 16/01/2014 D 24 NaN 2075 535 NaN 4034 

UK 15083 20/03/2014 D 42 NaN 848 236 NaN 1745 

UK 15083 03/07/2014 D 7 NaN 642 50 NaN 1725 

UK 15085 21/03/2013 D 225 72 3036 289 1 1238 

UK 15086 06/12/2012 D 521 97 970 639 19 29465 

UK 15086 06/06/2013 D 291 156 1176 183 4 968 

UK 15086 09/12/2013 D 661 147 569 371 10 9159 

UK 15087 20/03/2013 B 268 265 138977 38177 31 88443 

UK 15087 19/12/2013 B 1471 494 39475 18331 7 132431 

UK 15087 04/09/2014 C 984 NaN 10453 190000 NaN 84102 

UK 15088 06/06/2013 D 806 338 2500 245 4 850 

UK 15088 01/08/2013 D 996 444 2625 312 10 1514 

UK 15089 04/04/2013 E 139 107 616 36 1 4133 

UK 15089 18/07/2013 E 442 185 2809 96 0 2631 

UK 15090 05/09/2013 E 213 387 1107 408 1 1179 

UK 15090 21/11/2013 E 156 195 1122 55 1 11382 

UK 15092 19/12/2013 E 215 152 627 70 0 561 

UK 15102 02/02/2012 D 470 289 2009 22356 33 18221 

UK 15102 20/09/2012 C 305 78 3249 20664 10 9839 

UK 15106 07/04/2011 D 2450 503 7216 1474 14 50227 

UK 15106 17/11/2011 D 1072 266 4130 3909 17 45936 

UK 15106 19/04/2012 D 1871 564 12113 12276 17 11402 

UK 15118 07/02/2013 D 309 294 1150 1638 5 25531 

UK 15118 18/07/2013 D 906 311 1328 1521 4 926 

UK 15119 17/11/2011 D 383 NaN 1159 198 NaN 690 

UK 15119 17/05/2012 D NaN NaN 1314 72 NaN 771 

UK 15119 16/08/2012 D 479 NaN 604 182 NaN 216 

UK 15119 29/11/2012 D 385 NaN 1256 157 NaN 324 

UK 15119 03/01/2013 D 116 NaN 395 126 NaN 203 

UK 15119 18/07/2013 D 280 153 524 209 1 3282 

UK 15119 17/10/2013 B 745 654 24943 7581 54 92001 

UK 15119 02/01/2014 D 457 982 1195 1270 3 7919 

UK 15120 06/05/2010 A 1317 NaN 10002 190000 NaN 161713 

UK 15120 20/10/2011 B 841 NaN 38930 27933 NaN 72390 

UK 15120 03/05/2012 B 257 NaN 31991 24655 NaN 48415 

UK 15120 18/10/2012 B 1179 339 8676 22867 43 64861 

UK 15120 20/12/2012 B 462 100 5440 27756 86 2255697 

UK 15120 07/02/2013 B 1027 172 20908 300 31 8331176 

UK 15120 29/05/2014 A 704 NaN 15530 190000 NaN 138306 

UK 15120 04/09/2014 B 1796 NaN 137442 187564 NaN 256747 

UK 15122 07/03/2013 D 249 371 1674 329 17 9287 

UK 15122 04/07/2013 D 154 206 556 248 1 13137 

UK 15122 03/10/2013 D 83 141 548 474 0 1142 

UK 15123 01/03/2012 D 401 104 1290 1190 31 39806 

UK 15123 19/04/2012 D 11260 4782 42931 18147 52 100628 

UK 15123 30/08/2012 D 424 210 1178 662 1 2731 

UK 15124 19/04/2012 B 876 806 7482 432 30 88357 

UK 15124 29/11/2012 B 461 240 5406 21489 10 62124 
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UK 15124 07/03/2013 B 803 516 136641 340 17 434 

UK 15124 05/06/2014 B 564 NaN 34355 190000 NaN 207767 

US AA5173 28/02/2012 A 254 672 5885 14258 15 5356 

US AD5 26/07/2010 E 120 278 3395 112 2 907 

US AD5 21/09/2010 D 71 182 3298 155 1 978 

US AF5156 11/04/2011 B 1939 1386 72057 119917 195 199170 

US AV5 27/10/2009 D 504 182 10997 6988 4 10181 

US AV5 18/11/2009 E 193 396 8808 862 3 812 

US BD5082 03/06/2010 E 2172 351 6085 2984 16 1246 

US BP5191 07/11/2013 A 1981 2701 36746 138713 34 51198 

US BS5180 11/04/2013 A 747 295 3917 4521 13 412 

US CD5059 11/01/2010 E 531 129 1188 360 1 683 

US DC5 18/09/2009 E 811 193 1696 1219 58 527 

US DC5 14/04/2010 D 707 129 3888 535 10 390 

US DF5315 13/02/2015 A 427 482 22354 32491 19 20046 

US DH5 31/03/2010 A 769 311 3133 1343 7 355 

US DH5 15/09/2010 D 293 249 1834 136 1 208 

US EA5 11/08/2010 A 2645 950 160039 94067 146 416412 

US EA5 14/03/2014 B 1539 853 12046 59173 110 26539 

US JC1387 31/07/2009 A 578 311 7484 26691 40 13566 

US JS5063 20/01/2010 D 413 169 1628 338 4 164 

US JV5 18/07/2013 A 1148 352 42255 93792 1 52695 

US JV5 09/05/2014 D 102 112 1554 1178 2 1665 

US KB5148 14/02/2011 B 388 247 22633 39354 12 32288 

US MA1385 29/07/2009 A 1460 600 7701 111382 43 31334 

US MG5 12/01/2012 A 416 352 4423 1004 3 584 

US MG5 13/02/2015 D 253 104 1159 137 1 604 

US MS5177 07/02/2013 A 2206 8353 81430 254412 191 444887 

US PB5309 15/01/2015 A 1324 236 15621 92812 131 69862 

US RA5 11/11/2009 A 1901 898 56080 171898 42 148865 

US RA5 26/02/2014 B 466 149 22932 64695 14 17263 

US RR5 15/12/2010 B 941 689 24371 32221 13 14856 

US RR5 28/10/2011 C 703 449 5909 12317 10 4843 

US RR5 08/01/2015 B 644 853 15383 60421 29 65493 

US RS5 08/12/2009 E 541 329 1137 410 8 255 

US RS5 28/02/2012 B 73 25 172 307 0 68 

US RT5 26/08/2009 E 515 240 938 332 4 207 

US RT5 12/08/2014 B 2522 3015 56044 72504 119 95764 

US SB5 06/12/2010 E 431 182 2684 2711 9 1438 

US SB5 23/08/2012 A 77 271 1767 14188 37 420 

US SL5 10/08/2009 A 3862 2456 87003 22869 349 503 

US SL5 28/12/2009 D 624 247 7317 1717 3 2416 

US TE5302 06/01/2015 B 562 379 8917 2601 5 5715 

US TO5189 17/10/2013 A 1147 868 10903 42765 27 29279 

US TP5312 20/01/2015 B 1113 243 12383 54293 43 18278 

SA PID001 07/07/2015 E 621 113 2090 410 12 659 

SA PID001 12/01/2016 E 275 139 604 41 2 210 

SA PID003 19/01/2016 E 602 100 1700 572 7 228 
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SA PID005 05/05/2015 E 599 160 1190 406 4 123 

SA PID008 14/01/2016 A 3171 6931 54193 53911 59 25239 

SA PID010 25/08/2015 E 209 1889 3339 790 3 1245 

SA PID012 26/02/2015 E 855 235 1175 359 3 201 

SA PID012 05/05/2015 E 894 271 1973 8108 6 776 

SA PID012 25/08/2015 E 796 114 738 111 4 113 

SA PID012 20/10/2015 E 380 191 1867 156 1 209 

SA PID012 02/02/2016 E 452 98 1244 39 0 545 

SA PID013 04/05/2015 A 8561 2329 164366 283704 146 120935 

SA PID013 21/07/2015 A 2508 245 34657 31313 38 20863 

SA PID013 20/10/2015 A 2771 4982 271804 216754 419 211558 

SA PID013 14/01/2016 A 1040 362 106411 76937 145 69716 

SA PID013 02/02/2016 B 3582 14509 399096 447270 282 231025 

SA PID016 10/03/2015 C 1060 192 10809 6808 13 7657 

SA PID016 20/10/2015 C 1524 192 18745 17046 34 25224 

SA PID016 19/01/2016 B 2207 355 34493 27012 43 40502 

SA PID017 06/03/2015 A 3131 160 48369 66981 73 177987 

SA PID018 13/01/2016 E 116 118 928 38 2 352 

SA PID019 18/03/2015 D 72 178 857 821 1 422 

SA PID019 04/08/2015 D 183 305 3376 3540 2 3759 

SA PID020 25/11/2015 A 1117 850 502873 145435 136 134065 

SA PID022 20/10/2015 A 2162 466 190640 239383 41 264122 

SA PID023 22/01/2016 D 373 281 1711 412 2 142 

SA PID026 31/03/2015 E 148 211 1034 135 1 401 

SA PID027 25/08/2015 A 118 1020 51714 55581 4 57666 

SA PID036 13/04/2015 D 152 188 4585 1985 4 1651 

SA PID080 28/07/2015 E 804 397 2935 1317 6 444 

SA PID080 25/08/2015 E 368 83 5240 665 0 2406 

SA PID080 14/01/2016 E 149 230 990 228 1 887 

SA PID082 31/08/2015 D 1035 228 32647 87919 85 25274 

SA PID083 15/04/2015 E 1098 313 3255 5985 12 944 

SA PID083 22/01/2016 E 626 227 8210 5793 7 9192 

SA PID084 20/10/2015 C 2114 449 18266 20289 31 26929 

SA PID085 08/01/2015 A 2683 1555 31926 261352 102 63630 

SA PID085 18/03/2015 C 2980 903 5468 9459 52 994 

SA PID085 04/05/2015 C 1087 1267 5729 5424 20 2110 

SA PID085 07/07/2015 D 627 307 1860 1381 20 146 

SA PID085 28/07/2015 D 1514 328 2942 6671 31 239 

SA PID085 25/08/2015 C 737 384 5003 31796 110 1773 

SA PID085 02/02/2016 D 672 370 1656 602 3 546 

SA PID086 25/03/2015 C 2289 568 4320 13519 12 1974 

SA PID086 04/05/2015 D 1463 679 2288 10558 11 714 

SA PID092 22/06/2015 A 4034 4956 35230 228195 52 35640 

SA PID092 18/01/2016 D 215 394 3791 957 1 294 

SA PID095 13/10/2015 C 2425 2490 9727 6137 142 2347 

 

  



  
323 

Appendix 20: Merck Millipore 2014 Magpix Grant award program 

confirmation 
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Appendix 21: Successful MRC Confidence in Concept (CiC) scheme grant 

application 
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Appendix 22: Published manuscript - Urinary biomarkers in childhood lupus 

nephritis (review) 

 

This text box is where the unabridged thesis included the following third party 

copyright material: 

 

Appendix 23: Manuscript under consideration - Do classical blood biomarkers of 

JSLE identify active Lupus Nephritis? Evidence from the UK JSLE Cohort 

Study 
 

This text box is where the unabridged thesis included the following third party 

copyright material: 

 

 

Appendix 24: Accepted manuscript confirmation - International validation of a 

urinary biomarker panel for identification of active lupus nephritis in children 

 

This text box is where the unabridged thesis included the following third party 

copyright material: 

 

Smith EMD, Jorgensen AL, Midgley A, Oni L, Goilav B, Putterman C, Wahezi 

D, Rubinstein T, Ekdawy D, Corkhill R, Jones CA, Marks SD, Newland P, 

Pilkington C, Tullus K, Beresford MW. International validation of a urinary 

biomarker panel for identification of active lupus nephritis in children. Pediatric 

Nephrology 2016 (Sept 3rd, Epub ahead of print]; DOI: 10.1007/s00467-016-

3485-3. 

Smith EMD, Jorgensen AL, Beresford MWB. Do classical blood biomarkers of 

JSLE identify active Lupus Nephritis?  Evidence from the UK JSLE Cohort Study. 

Lupus journal (re-submitted September 2016). 

Smith EMD, Beresford MWB. Urinary biomarkers in childhood lupus nephritis. 

Clinical Immunology 2016 (published on-line first, June 29th, 

http://dx.doi.org/10.1016/j.clim.2016.06.010). 
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