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ABSTRACT

Aims. In the present study we investigate the nature of the magnetic Rayleigh-Taylor instability appearing at a tangential discontinuity
in a partially ionised plasma when the effect of magnetic shear is taken into account.
Methods. The partially ionised character of the plasma is described by the ambipolar diffusion in the induction equation. The dynamics
of the plasma is investigated in a single-fluid approximation. After matching the solutions on both sides of the interface we derive a
dispersion equation and calculate the instability increment using analytical methods for particular cases of parameters, and numerical
investigation for a wide range of parameters.
Results. We calculated the dependence of the instability increment on the perturbation wavenumber. We also calculated the depen-
dence of the maximum instability increment on the shear angle of the magnetic field for various values of the ionisation degree.
Conclusions. Our results show that the Rayleigh-Taylor instability becomes sensitive to the degree of plasma ionisation only for
plasmas with small values of plasma beta and in a very weakly ionised state. Perturbations are unstable only for those wavenumbers
that are below a cut-off value.
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1. Introduction

One of the key questions related to magnetic structures in space
plasmas is their stability, that is the analysis of the evolution
of perturbations over time. Instabilities are ubiquitous in space
plasmas as they can provide the dissipation and transport of
momentum over large scales.

The magnetic Rayleigh-Taylor (MRT) instability operates
in a variety of astrophysical systems. For example, it mani-
fests itself in buoyant magnetised bubbles identified in clus-
ters of galaxies (Robinson et al. 2004; Jones & De Young 2005;
O’Neil et al. 2009), in shells of young supernova remnants
(Jun et al. 1995; Jun & Norman 1996), and at the interface be-
tween an expanding pulsar wind nebula and its surrounding su-
pernova remnant (Bucciantini et al. 2004).

The MRT instability is also very important in applications to
solar physics. Isobe et al. (2005, 2006) proposed that the MRT
instability is a possible cause of the filamentary structure in mass
and current density in the emerging flux regions. Ryutova et al.
(2010) suggested that several dynamic processes taking place in
prominences are most probably related to the MRT instabilities.
Hilier et al. (2011, 2012a,b) have performed three-dimensional
magnetohydrodynamic simulations to investigate the non-linear
evolution of the Kippenhahn-Shlüter prominence model due to
the MRT instability.

The MRT instability may also affect magnetic threads in so-
lar prominences. The threads are parts of magnetic tubes filled
with the colder plasma and with a high density contrast with

respect to the coronal plasma. They are quite thin, of the order
of 100 km, aligned with the magnetic field and, in many cases,
they seem to lie horizontally with respect to the photosphere. Be-
cause of their low temperature the thread plasma is only partially
ionised. The MRT instability in partially ionised plasmas has
been studied both analytically (Díaz et al. 2014) and numerically
(Khomenko et al. 2014) under an assumption that the magnetic
field both in the dense prominence thread and in the surround-
ing hot plasma has the same direction. However, observations
show (Leroy et al. 1984; Bommier et al. 1994) that the angle be-
tween the magnetic field vector and the prominence long axis
can be as large as 53◦ ± 15◦. In addition, the magnetic field in
the corona can also be tilted with respect to the longitudinal axis
of the prominence. This is why in a realistic model the magnetic
field at the interface between the prominence and corona has a
shear, perfectly justifying our present analysis.

Observations show that the threads have short lifetimes, typ-
ically of the order of only 10 min. These observations inspired
Terradas et al. (2012) to propose that the magnetic Rayleigh-
Taylor instability could be responsible for this phenomenon.
They considered a very simple model. The thread was assumed
to be a Cartesian slab permeated by a horizontal magnetic field
that has the same direction inside the thread and in the surround-
ing hot plasma. A drawback of this model is that the instability
growth rate is unbounded. Perturbations with an arbitrary wave-
length propagating perpendicular to the magnetic field are un-
stable, and the perturbation increment tends to infinity when the
wavelength tends to zero.
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Ruderman et al. (2014) improved the model suggested by
Terradas et al. (2012) including the magnetic shear. They stud-
ied the MRT instability of both a single magnetic interface
and a slab. In particular, they found that the maximum incre-
ment is inversely proportional to the angle between the mag-
netic field direction inside the thread and in the external plasma.
Assuming that the thread lifetime is equal to the inverse of the
maximum increment they managed to estimate the shear angle.
Ruderman (2015) studied the effect of flow in a thread on the
estimation of the shear angle and found that this effect is mi-
nor. Ruderman (2017) investigated the MRT instability in a com-
pressible plasma and found that the effect of compressibility on
the estimation of the shear angle is also weak.

Terradas et al. (2012), Ruderman et al. (2014), and
Ruderman (2015, 2017) used the approximation of ideal
plasmas to study the MRT instability. However, as we have
already mentioned, due to its low temperature the prominence
plasma is only partially ionised. Díaz et al. (2014) showed
that in such a plasma ambipolar diffusion has to be taken into
account. In this article we investigate the effect of ambipolar
diffusion on the MRT instability with sheared magnetic field.
Even in the approximation of ideal plasmas the dispersion equa-
tion describing the MRT instability in a compressible plasma is
very complex and can only be solved numerically. The account
of ambipolar diffusion makes the dispersion equation even
more complex. Using the incompressible plasma approximation
enormously simplifies the analysis and enables to study the
problem analytically. Unfortunately, in this approximation the
effect of ambipolar diffusion disappears, hence we need to study
the effect of ambipolar diffusion in a compressible plasma.

The paper is organised as follows: in Sect. 2, we formulate
the problem and introduce the main equations and boundary con-
ditions. Section 3 is devoted to the derivation of the dispersion
equation for perturbations of the interface. Analytical and nu-
merical solutions are found in Sect. 4. Finally, our results are
summarised and discussed in Sect. 5.

2. Problem formulation

Our study focuses on the stability of a tangential discontinuity
also called a magnetic interface in an inviscid infinitely conduct-
ing plasma, where the only non-ideal process that we take into
account is ambipolar diffusion. The linearised equations describ-
ing the plasma motion in the presence of ambipolar diffusion in
the single-fluid approximation have been derived by Díaz et al.
(2014) and they can be given as

∂ρ

∂t
+ ρ0∇ · u = 0, (1)

ρ0
∂u
∂t

= −∇p +
1
µ0

(∇ × b) × B + ρg, (2)

∂b
∂t

= ∇ ×

(
u × B +

ηA

B2 [(∇ × b) × B] × B
)
, (3)

∂p
∂t

= −γp0∇ · u. (4)

In the above equations u is the plasma velocity, b the magnetic
field perturbation, g the gravity acceleration, B the equilibrium
magnetic field, ρ0 and p0 the equilibrium density and pressure,
ρ and p the density and pressure perturbation, µ0 magnetic per-
meability of free space, ηA the coefficient of ambipolar diffusion,
and γ the ratio of specific heats. The coefficient of ambipolar

diffusion is given by

ηA =
mpξnc2

A

4σin(1 − ξn)

√
π(2 − ξn)
ρ0 p0

, (5)

where mp is the proton mass, ξn the ionisation degree defined as
the ratio of the number density of neutrals and the total num-
ber density (neutrals plus ions), σin ≈ 5 × 10−19 m2 the colli-
sional cross-section for proton-neutral collisions assuming that
the neutrals are the hydrogen atoms, and cA is the Alfvén speed
defined as

c2
A =

B2

µ0ρ0
· (6)

It should be noted that when Díaz et al. (2014) derived the sys-
tem of Eqs. (1)–(4), they assumed that all the equilibrium quan-
tities are constant. The validity of this assumption is discussed
in detail by, e.g. Ruderman (2017). In what follows we also need
the expression for the generalised Ohm’s law, where ambipolar
diffusion is taken into account. In the linearised form the Ohm’s
law reads

E′ ≡ E + u × B =
ηA

B2 B × [(∇ × b) × B], (7)

where E is the electric field. This equation immediately follows
from Eq. (3) if we recall the relation between the time derivative
of the magnetic field and the curl of the electrical field.

In our analysis we consider the same equilibrium configu-
ration as in Ruderman et al. (2014) and Ruderman (2017). Our
working model consists of two semi-infinite regions separated
by the xy-plane in Cartesian coordinates x, y, z with the z-axis in
the vertical direction (see Fig. 1). The plasma density and back-
ground magnetic fields are constant in the two regions, and are
given by

ρ0 =

{
ρ1, z < 0,

ρ2, z > 0,
B =

{ B1, z < 0,

B2, z > 0.
(8)

The background magnetic field in both regions is assumed
to be parallel to the xy-plane. The major difference between
the equilibrium configuration used here and that used by
Díaz et al. (2014) is that here we consider a magnetic shear,
while Díaz et al. (2014) assumed that the equilibrium magnetic
field is the same at the two sides of the interface. In Fig. 1 the
angle α denotes the angle between the direction of the two mag-
netic fields (i.e. a measure of the magnetic shear), while the an-
gle φ determines the direction of the perturbation wave vector
with respect to the direction of the magnetic field in the promi-
nence.

Since we are dealing with a tangential discontinuity, the
equilibrium total plasma pressure must be continuous at the
interface, so

p1 +
B2

1

µ0ρ1
= p2 +

B2
2

µ0ρ2
· (9)

The equilibrium magnetic field is discontinuous at z = 0. In gen-
eral, the magnetic field discontinuity cannot exist in a plasma
with ambipolar diffusion. However, the only exception is when
ambipolar diffusion operates only on one side of the disconti-
nuity. Therefore, in what follows we only consider ambipolar
diffusion in the plasma region above the discontinuity, while we
assume that the plasma dynamics is described by the ideal MHD
equations in the region below the discontinuity. This set-up is a
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Fig. 1. Sketch of the equilibrium. The interface at z = 0 separates the
fully ionised solar corona (region 1) and the partially ionised promi-
nence (region 2).

very viable assumption because the plasma below the disconti-
nuity is almost fully ionised, meaning that ξn ≈ 0. Then it fol-
lows from Eq. (5) that ηA is very small and ambipolar diffusion
can be neglected.

Equations (1)–(4) must be supplemented with the boundary
conditions at z = 0. Let us define the jump of function f (z) across
the interface as

[[ f ]] = lim
z→+0

[ f (z) − f (−z)].

The first boundary condition is the kinematic boundary condi-
tion that expresses the continuity of the normal component of
plasma displacement at the interface. In the absence of equilib-
rium flow this condition reduces in the linear approximation to a
very simple form:

[[uz]] = 0. (10)

The second boundary condition is the dynamic boundary condi-
tion expressing the continuity of the total pressure. It is written as[[

p0 + p +
(B + b)2

2µ0

]]
= 0 at z = h(t, x, y),

where z = h(t, x, y) is the equation of the perturbed surface of
the discontinuity. We can linearise this equation, and using the
Taylor expansion of p0 near z = 0 and the equation defining the
equilibrium pressure (dp0/dz = −gρ0), we eventually obtain

[[P − gρ0h]] = 0 at z = 0, (11)

where

P = p +
b · B
µ0

(12)

is the perturbation of the total pressure (kinetic plus magnetic).
Differentiating this equation with respect to time and using the
equation uz = ∂h/∂t valid in the linear approximation at z = 0 to
eliminate h, we finally arrive at[[
gρ0uz −

∂P
∂t

]]
= 0. (13)

The continuity of the normal component of the plasma veloc-
ity and the total pressure perturbation are the only two boundary
conditions that must be imposed at a tangential discontinuity in
ideal MHD. However, since we consider ambipolar diffusion, we
need one more boundary condition that can be obtained using

the continuity of tangential component of the electric field cal-
culated in the instantaneous reference frame, where a particular
infinitesimal volume of plasma is at rest, i.e. E′τ = E′ − ez(ez ·E′)
with ez being the unit vector in the z-direction. Then, using
Eq. (7) and taking into account that ηA = 0 for z < 0 we ob-
tain the additional boundary condition that has to be satisfied at
z = 0 in the form(
B2

2I − B2B2 − B2
2ezez

)
· ∇ × b2 = 0, (14)

where I is the unit tensor, ezez denotes the dyadic product of two
vectors ez, and the subscript “2” indicates a quantity defined for
z > 0.

3. Derivation of the dispersion equation

In order to derive the dispersion equation for waves propagating
along the magnetic interface, we performed a Fourier analysis of
the perturbations of all quantities and take them proportional to
exp[i(k · r − ωt)], where k = (kx, ky, 0) and r = (x, y, z). Then,
writing u and b as

u = u⊥ + uzez, b = b⊥ + bzez, (15)

we can reduce Eqs. (1)–(4) to

ρ0
duz

dz
− i(ωρ − ρ0 k · u⊥) = 0, (16)

ωu⊥ =
kP
ρ0
−

c2
Ab⊥(k · B)

B2 , (17)

ωuz = −
i
ρ0

dP
dz
−

c2
Abz(k · B)

B2 −
igρ
ρ0
, (18)

ωb⊥ = B(k · u) − u⊥(k · B) − iB
duz

dz
−

iηA

B2

{
(k · B)2b⊥

−B
d2(b · B)

dz2 + (b · B)
[
k2B − k(k · B)

] }
, (19)

ωbz = (k · B)
[
− uz +

ηA

B2 B ·
(

db
dz
− ikbz

)]
, (20)

p = c2
sρ, (21)

where cs is the sound speed defined by

c2
s =

γp0

ρ0
· (22)

When deriving Eqs. (19) and (20) we have used the equation
∇ · b = 0.

The boundary condition (13) reduces to

[[gρ0uz + iωP]] = 0 at z = 0. (23)

The boundary condition (14) can be transformed into

k × b⊥2 + (k × ez)bz2 − iez ×
db⊥2

dz
− ez[ez · (k × b⊥2)]

−
B2

B2
2

(
[B2 · (k × ez)]bz2 − i(B2 × ez) ·

db⊥2

dz

)
= 0. (24)

It is straightforward to verify that the projections of the left-hand
side of this equation on vectors ez and B2 are equal to zero.
Hence, the only non-trivial projection is on vector ez × B2 and it
becomes

B2 ·

(
db2

dz
− ikbz2

)
= 0 at z = 0. (25)

A23, page 3 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731534&pdf_id=1


A&A 609, A23 (2017)

Eliminating ρ, u⊥, and b⊥ from Eqs. (16)–(21) we obtain the
system of equations for uz, bz, and P,(
g

d
dz

+ ω2
) (

uz +
k · B
µ0ρ0ω

bz

)
+

iω
ρ0

(
dP
dz

+
gk2

ω2 P
)

= 0, (26)

(k · B)uz + ωbz =
iηA(k · B)
ωc2

A

(
dΨ

dz
−
ω(k · B)
µ0ρ0

bz

)
, (27)

[
ω2(c2

A + c2
s
)
− ω2

Ac2
s − iωc2

sηA

(
d2

dz2 − k2
)]

Ψ =

iω
ρ0

(
ω2

Ac2
s − ω

2c2
A
)
P, (28)

where

Ψ = c2
s

(
duz

dz
+

k · B
µ0ρ0ω

dbz

dz

)
−

i
(
ω2 − c2

s k2)
ρ0ω

P, (29)

and ωA is the Alfvén frequency defined by

ωA =
k · B
√
µ0ρ0

· (30)

The boundary condition given by Eq. (25) reduces to

dΨ2

dz
−
ω(k · B2)
µ0ρ02

bz2 = 0. (31)

Finally, we require that perturbations should be evanescent in the
transversal direction; therefore, we impose the condition that all
perturbations tend to zero as |z| → ∞.

Eliminating all variables in favour of P in the system of
Eqs. (26)–(29) we can obtain the differential equation for P,[
ω2(c2

A + c2
s
)
− ω2

Ac2
s − iωc2

sηA

(
d2

dz2 − k2
) ](

c2
s

d2P
dz2 + g

dP
dz

+
(
ω2 − k2c2

s
)
P
)

=
(
ω2c2

A − ω
2
Ac2

s
) (
g

dP
dz

+ ω2P
)
. (32)

In order to be able to derive a dispersion relation, we would also
need the equations that relate the variables uz, bz, and Ψ with P,
and they are

g
duz

dz
+ω2uz =

−1
ρ0

[
c2

A
(
ω2 − ω2

A
)

+ iωω2
AηA

]
×

[
ω2

AηA

(
c2

s
d3P
dz3 + g

d2P
dz2

)
+

(
ic2

Aω
3

− ηAω
2
Ak2c2

s

) dP
dz

+ gk2
(
iωc2

A − ω
2
AηA

)
P
]
, (33)

g
dbz

dz
+ω2bz =

ω(k · B)
ρ0

[
c2

A
(
ω2 − ω2

A
)

+ iωω2
AηA

] (c2
sηA

d3P
dz3

+ gηA
d2P
dz2 +

[
ic2

Aω + ηA
(
ω2 − k2c2

s
)] dP

dz
+

igk2c2
A

ω
P
)
, (34)

g
dΨ

dz
+ω2Ψ = −

iω
ρ0

(
c2

s
d2P
dz2 + g

dP
dz

+
(
ω2 − k2c2

s

)
P
)
. (35)

Assuming that in each region the dependence of the total pres-
sure on z varies as ∼eλz we can determine the characteristic

equation corresponding to Eq. (32) as

ωηAc2
sλ

4 + ωgηAλ
3 +

[
iω2(c2

A + c2
s
)
− iω2

Ac2
s

+ ωηA
(
ω2 − 2k2c2

s
)]
λ2 + ωgλ

(
iω − ηAk2)

+ i
[
ω4 − ω2k2(c2

A + c2
s
)

+ k2ω2
Ac2

s

]
− ωk2ηA

(
ω2 − k2c2

s
)

= 0. (36)

Obviously the sign of the parameter λ will be chosen in such a
way that the evanescence of the perturbation in the transversal
direction is insured. In what follows we determine solutions to
Eq. (36) in both regions and then match them at the interface.

3.1. Solution in the lower region

In the lower region (z < 0) ηA = 0, therefore, Eq. (36) reduces to[
ω2(c2

A1 + c2
s1
)
− ω2

A1c2
s1

]
λ2 + ω2gλ

+ ω4 − ω2k2(c2
A1 + c2

s1
)

+ k2ω2
A1c2

s1 = 0. (37)

We assume that this quadratic equation has exactly one root with
the positive real part. We denote this root as λ1. Under this as-
sumption it follows from Eqs. (33) and (34) that the solution
decaying as z→ −∞ is given by

P1 = A1eλ1z, uz1 = −
iωA1eλ1z(ω2λ1 + gk2)
ρ1

(
gλ1 + ω2)(ω2 − ω2

A1
) ,

bz1 =
iA1eλ1z(k · B1)

(
ω2λ1 + gk2)

ρ1
(
gλ1 + ω2)(ω2 − ω2

A1
) , (38)

where A1 is an arbitrary constant.

3.2. Solution in the upper region

In the upper region (z > 0) we take into account the ambipolar
diffusion, i.e. ηA , 0. Now we assume that in this case Eq. (36)
has exactly two roots with negative real parts. We denote these
roots as −λ2 and −λ3. The general solution to Eq. (32) tending
to zero as z→ ∞ is

P2 = A2e−λ2z + A3e−λ3z, (39)

where A2 and A3 are arbitrary constants. Then it follows from
Eqs. (33)–(35) that

uz2 =
1

ρ2W

3∑
j=2

A je−λ jz

ω2 − gλ j

[
ηAω

2
A2λ

2
j

(
c2

s2λ j − g
)

+ λ j

(
ic2

A2ω
3

− ηAω
2
A2k2c2

s2

)
− gk2

(
iωc2

A2 − ηAω
2
A2

)]
, (40)

bz2 =
k · B2

ρ2W

3∑
j=2

A je−λ jz

gλ j − ω2

{
ηAωλ

2
j

(
c2

s2λ j − g
)

+ λ jω
[
ic2

A2ω + ηA

(
ω2 − k2c2

s2

)]
− igk2c2

A2

}
, (41)

Ψ2 =
iω
ρ2

3∑
j=2

A je−λ jz
(
c2

s2λ
2
j − gλ j + ω2 − k2c2

s2
)

gλ j − ω2 , (42)

where

W = c2
A2

(
ω2 − ω2

A2

)
+ iωω2

A2ηA. (43)
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3.3. Matching solutions

At this stage it is convenient to introduce the dimensionless
variables

ζ =
ρ2

ρ1
, κ =

kc2
A2

g
, σ = −

iωcA2

g
, χ =

B2
1

B2
2

, ν =
gηA

c3
A2

,

β1,2 =
c2

s1,2

c2
A1,2

, Λ1 =
λ1c2

A2

g
, Λ2,3 =

λ2,3c2
A2

g
· (44)

It follows from Eq. (9) that due to the continuity of the equilib-
rium total pressure we can write

χ =
2β2 + γ

2β1 + γ
· (45)

In the dimensionless variables Eqs. (36) and (37) reduce to

νσβ2Λ4
j − νσΛ3

j −
[
σ2(1 + β2) + νσ

(
σ2 + 2κ2β2

)
+ κ2β2 cos2 φ

]
Λ2

j + σ
(
σ + κ2ν

)
Λ j + σ4 + σ2κ2(1 + β2

)
+ κ4β2 cos2 φ + σνκ2(σ2 + κ2β2

)
= 0, (46)

χζ
[
σ2(1 + β1) + β1χζκ

2 cos2(φ − α)
]
Λ2

1 + σ2Λ1

− σ4 − χζσ2κ2(1 + β1) − β1χ
2ζ2κ4 cos2(φ − α) = 0. (47)

In Eq. (46) the index j takes the values j = 2, 3. In what fol-
lows we only consider unstable modes and make an assumption
that the value of σ corresponding to these modes is real. Since
the value of the dimensionless quantity σ is positive, it immedi-
ately follows that Eq. (47) has exactly one real positive root. It is
proved in Appendix A that, for σ > 0, Eq. (46) has exactly two
real positive roots.

To match the solutions in the lower and upper regions we
substitute them in the boundary conditions Eqs. (10), (23),
and (25). This yields

ζσA1
(
σ2Λ1 − κ

2)(
Λ1 − σ2)[σ2 + χζκ2 cos2(φ − α

)
]
−

1

W̃

3∑
j=2

A j

σ2 + Λ j

×
[
νΛ2

jκ
2(β2Λ j − 1) cos2 φ +Λ j

(
σ3 − νβ2κ

4 cos2 φ
)

+ κ2
(
σ + νκ2 cos2 φ

)]
= 0, (48)

σA1U(
Λ1 − σ2)[σ2 + χζκ2 cos2(φ − α

)
]

−
1

W̃

3∑
j=2

A j

σ2 + Λ j

{
νκ2Λ2

j (β2Λ j − 1) cos2 φ

− Λ jκ
2
[
σ + ν

(
σ2 + β2κ

2
)]

cos2 φ − νκ2
(
σ4 − κ2

)
cos2 φ

− σ
(
σ4 + σ2κ2 cos2 φ − κ2

)}
= 0, (49)

3∑
j=2

A jQ j

σ2 + Λ j
= 0, (50)

where we used the notation

W̃ =
(
σ2 + κ2 cos2 φ

)
+ νσκ2 cos2 φ, (51)

U = σ4 − κ2 + κ2χζ
(
σ2 − Λ1

)
cos2(φ − α), (52)

Q j = Λ j

(
σ2 + κ2 cos2 φ

)(
β2Λ2

j − Λ j − β2κ
2
)

− σ4Λ j + κ4 cos2 φ. (53)

The constant A1 can be eliminated using Eqs. (48) and (49) to
obtain

3∑
j=2

A jS j

σ2 + Λ j
= 0, (54)

where

S j = ζ
(
σ2Λ1 − κ

2
) {
νκ2Λ2

j (β2Λ j − 1) cos2 φ

−Λ jκ
2
[
σ + ν

(
σ2 + β2κ

2
)]

cos2 φ

− νκ2
(
σ4 − κ2

)
cos2 φ − σ

(
σ4 + σ2κ2 cos2 φ − κ2

)}
−U

[
νΛ2

jκ
2(β2Λ j − 1) cos2 φ

+Λ j

(
σ3 − νβ2κ

4 cos2 φ
)

+ κ2
(
σ + νκ2 cos2 φ

)]
. (55)

Equations (50) and (54) constitute the system of two linear ho-
mogeneous algebraic equations for A2 and A3. The condition
of existence of non-trivial solutions to this system gives the
dispersion equation

Q2S 3 − Q3S 2 = 0. (56)

Equations (46), (47), and (56) determine the dependence of σ on
the value of κ.

4. Investigation of the dispersion equation

4.1. Analytical results

4.1.1. Critical wavenumber

Ruderman (2017) studied the MRT stability of a magnetic in-
terface in the approximation of ideal MHD. He showed that a
normal mode is only unstable when the wavenumber is smaller
than the critical wavenumber. This critical wavenumber is in-
dependent of the plasma β and is the same as that obtained
by Ruderman et al. (2014) in the approximation of incompress-
ible plasma. We will now show that this result remains valid
even when the ambipolar diffusion is taken into account, i.e. in
partially ionised plasmas.

Since for unstable modes the value of σ was assumed to be
real, we obtain that σ → 0 when κ → κc, where κc is the critical
wavenumber in the dimensionless form. When σ→ 0 it follows
from Eq. (47) that Λ1 = κ +O

(
σ2). It is easy to show that in this

limit we can obtain from Eq. (46) that

Λ2 = κ + O(σ), Λ3 =
κ cos φ
√
νσ

+ O(1). (57)

Substituting these results into Eqs. (53) and (55) yields

Q2 = O
(
σ2), Q3 = O

(
σ−3/2), S 3 = O

(
σ−3/2), (58)

S 2 = σκ4{ζκ[cos2 φ + χ cos2(φ − α)] − ζ + 1} + O
(
σ2). (59)

Using these estimations we obtain from Eq. (56) that S 2/σ→ 0
as σ→ 0. As a result we arrive at

κc =
ζ − 1

ζ[cos2 φ + χ cos2(φ − α)]
, (60)

which is identical to the expression for κc obtained by
Ruderman et al. (2014) and Ruderman (2017). A normal mode
is unstable when κ < κc and stable otherwise. The above equa-
tion also means that there are particular values of angles (i.e.
α = 0, φ = (2n + 1)π/2) for which the critical wavenumber is
infinity, i.e. all waves are unstable. This corresponds to the case
of parallel magnetic fields at both sides.
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4.1.2. Approximation of ideal MHD

Next we show that the dispersion equation Eq. (56) reduces to
the dispersion equation derived by Ruderman (2017) in the ap-
proximation of ideal MHD, i.e. when ν → 0. Let us introduce
the same notation as in Ruderman (2017), in particular

Ψ1 = σ2 + χζκ2 cos2(φ − α),

Ψ2 = σ2 + κ2 cos2 φ,

Φ1 = σ2(β1 + 1) + β1χζκ
2 cos2(φ − α),

Φ2 = σ2(β2 + 1) + β2κ
2 cos2 φ,

∆1 = σ4 + χζκ2σ2(β1 + 1) + β1χ
2ζ2κ4 cos2(φ − α),

∆2 = σ4 + κ2σ2(β2 + 1) + β2κ
4 cos2 φ.

(61)

Then we obtain from Eqs. (46), and (47) that

Λ1 =
−σ2 +

√
σ4 + 4χζΦ1∆1

2χζΦ1
, (62)

Λ2 =
σ2 +

√
σ4 + 4Φ2∆2

2Φ2
+ O(ν), Λ3 = O

(
ν−1/2). (63)

Using Eq. (63) we obtain the estimates Q2 = O(1), Q3 =
O
(
ν−3/2), S 2 = O(1), and S 3 = O

(
ν−1/2). Then it follows from

Eq. (56) in the leading order approximation with respect to ν that
S 2 = 0. Taking ν = 0 in this equation we obtain

ζ
(
σ2Λ1 − κ

2
) (
σ2Ψ2 + κ2Λ2 cos2 φ − κ2

)
(
σ2Λ2 + κ2

) [
σ2Ψ1 − χζκ

2Λ1 cos2(φ − α) − κ2
]

= 0. (64)

Multiplying this equation by[
χζΨ1

(
σ2Λ1 + κ2

)
+ σ4

] [
Ψ2

(
σ2Λ2 − κ

2
)
− σ4

]
,

and using the identities(
σ2Λ1 − κ

2
) [
χζΨ1

(
σ2Λ1 + κ2

)
+ σ4

]
= σ4

(
∆1 − κ

2
)
− χζκ4Ψ1,(

σ2Λ2 + κ2
) [

Ψ2

(
σ2Λ1 + κ2

)
− σ4

]
= σ4

(
∆2 − κ

2
)
− κ4Ψ2,

we transform Eq. (64) to

ζ
[
σ4

(
∆1 − κ

2
)
− χζκ4Ψ1

] {
σ2κ2Φ2Λ2

2 cos2 φ

+
[
σ2Φ2

(
σ2Ψ2 − κ

2
)
−

(
κ2Φ2 + σ4

)
κ2 cos2 φ

]
Λ2

−
(
σ2Ψ2 − κ

2
) (
κ2Φ2 + σ4

)}
−

[
σ4

(
∆2 − κ

2
)
− κ4Ψ1

]
×

{
χ2ζ2σ2κ2Φ1Λ2

1 cos2(φ − α) − χζ
[
σ2Φ1

(
σ2Ψ1 − κ

2
)

−
(
χζκ2Φ2 + σ4

)
κ2 cos2(φ − α)

]
Λ1

−
(
σ2Ψ1 − κ

2
) (
χζκ2Φ2 + σ4

)}
= 0. (65)

Now, with the aid of Eqs. (61)–(63), after long but straightfor-
ward calculation we reduce Eq. (65) to

F(σ, β1, β2) ≡
ζΨ2

∆2

(
σ2 +

√
σ4 + 4∆2Φ2

)
−

Ψ1

∆1

(
σ2 −

√
σ4 + 4χζ∆1Φ1

)
= 2ζ − 2. (66)

This is exactly the dispersion equation obtained by Ruderman
(2017) in the approximation of ideal MHD. We verified nu-
merically for a very wide range of parameter variation that, for
κ ∈ (0, κc), F(σ, β1, β2) is a monotonically increasing function
of σwhen σ > 0. Since F(σ, β1, β2)→ 2(ζ−1)(κ/κc) as σ→ 0,
and F(σ, β1, β2)→ ∞ as σ→ ∞, we conclude that Eq. (66) has
exactly one positive root when κ < κc, and no positive roots when
κ > κc.

4.1.3. Approximation of incompressible plasma

Finally, we consider the approximation of incompressible
plasma and take β1 = β2 = β → ∞. Then it follows from
Eqs. (46) and (47) that

Λ1 = κ + O
(
β−1),

Λ2 = κ +
β−1σ2(σ2 + κ

)
2κ

(
σ2 + κ2 cos2 φ

) + O
(
β−2),

Λ3 =

√
κ2 +

σ2 + κ2 cos2 φ

νσ
+ O

(
β−1).

(67)

Using these results we obtain the estimates

Q2 = O
(
β−1), Q3 = O(β), S 3 = O(β), (68)

and the expression

S 2 = −σκ
(
σ4 − κ2

) (
1 +

νσκ cos2 φ

σ2 − κ2 cos2 φ

) {
(ζ + 1)σ2

− (ζ − 1)κ + ζκ2
[
cos2 φ + χ cos2(φ − α)

]}
. (69)

It follows from Eqs. (68) and (69) that, in the leading order ap-
proximation with respect to β, the dispersion equation Eq. (56)
reduces to S 2 = 0. Hence, in the approximation of incompress-
ible plasma, the dispersion relation is given by

σ2 =
(ζ − 1)κ − ζκ2[ cos2 φ + χ cos2(φ − α)

]
ζ + 1

· (70)

This relation is exactly the equation derived by Ruderman et al.
(2014) and Ruderman (2017) in the approximation of ideal MHD
and incompressible plasma. In the approximation of incompress-
ible plasma, we see that the ambipolar diffusion does not affect
the MRT instability.

4.2. Numerical results

In this section we are going to analyse numerically the general
dispersion relation (56). The instability increment σ depends on
the dimensionless parameters ζ, χ, β1, β2, κ, φ, α, and ν, of which
only seven are independent because χ, β1, and β2 are related via
Eq. (45). The left-hand side of Eq. (56) is a periodic function
of both φ and α, and the period with respect to each of these
two angles is π. In addition, the dispersion relation is invariant
with respect to the substitution π − φ → φ and π − α → α.
This observation enables us to restrict the intervals of variation
of these two angles to 0 ≤ φ < π and 0 ≤ α ≤ π/2.

When solving the dispersion equation Eq. (56) numerically
we consider ζ = 100 and χ = 1. Then it follows from Eq. (45)
that β1 = β2 = β. We now estimate the dimensionless coeffi-
cient of ambipolar diffusion ν. For typical values of the promi-
nence plasma we take ρ2 = 10−10 kg m−3, cA2 = 100 km s−1,
g = 274 m s−2, and the plasma temperature 104 K. Then, taking
into account that the prominence plasma is only weakly ionised
and ξn ≈ 1, we obtain

ν ≈
5 × 10−6

1 − ξn
· (71)

The above relation shows that unless the plasma is extremely
weakly ionised, ν � 1. We calculated the dependence of
the instability increment σ on κ for various values of β, α,
and φ, and for ν = 10−4, 0.1, and 1, which corresponds to
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Fig. 2. Dependence of the dimensionless instability increment σ on the ratio of the wavenumber to the critical wavenumber κ/κc for four particular
values of the angles α and φ. The left, middle, and right panels correspond to β = 5, 1, and 0.01, respectively. The solid, dashed, and dash-dotted
curves correspond to ν = 10−4, 0.1, and 1, respectively. In the left panels all the curves are indistinguishable. In the middle panels the solid and
dashed curves are indistinguishable.
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Fig. 3. Dependence of the maximum with respect to κ of the dimensionless instability increment, σm, on the angle φ. The left, middle, and right
panels correspond to β = 5, 1, and 0.01, respectively. The solid, dashed, and dash-dotted curves correspond to ν = 10−4, 0.1, and 1, respectively.
In the panels where one single curve is plotted all the curves are indistinguishable.
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1 − ξn = 0.05, 5 × 10−5, and 5 × 10−6. The results of this cal-
culation are shown in Fig. 2. These plots show that when β = 5,
which is very close to the limit of incompressible plasma, the
three curves are indistinguishable and the maximum instability
increment is obtained for κ/κc ≈ 0.5. The result obtained in this
case confirms the conclusion that, in the limit of incompressible
plasma, the ambipolar diffusion does not affect the MRT instabil-
ity. We verified that for all values of β, α, and φ the solid curves
corresponding to ν = 10−4 are the same as those obtained in the
approximation of ideal MHD. Hence, we can conclude that even
when the prominence plasma is relatively weakly ionized with
only one proton per 20 hydrogen atoms the effect of ambipolar
diffusion on the appearance of the MRT instability at the inter-
face between the prominence and corona is almost negligible.

In general, we see that the ambipolar diffusion reduces the
instability increment and the maximum increment is obtained
for smaller wavenumbers (larger wavelengths) as the number of
neutrals is increased. For small values of plasma beta (as in the
case of prominences) the decrease in the increment for ν = 1 can
be up to 40%. Nevertheless, even for these values of plasma beta,
noticeable reduction in the instability increment occurs when the
prominence plasma is extremely weakly ionised, with the ratio
of number of neutral hydrogen atoms to the number of ions of
the order of 105.

We also study the dependence on φ of the maximum instabil-
ity increment with respect to κ, and the dependence on α of the
maximum instability increment with respect to κ and φ. These
two quantities are defined by

σm = max
κ
σ, σM = max

κ, φ
σ. (72)

The results of our calculations are shown in Figs. 3 and 4. In
Fig. 3, we see that the effect of ambipolar diffusion becomes
stronger when α increases and β decreases. Again, a significant
variation in the instability increment occurs for β � 1, i.e. for
the prominence and upper chromospheric conditions. We also
see that the maximum increment occurs when the wave vector is
almost perpendicular to the ambient magnetic field in the promi-
nence. When β � 1 the increment decreases with the increase in
the number of neutrals in the plasma. The value of σm is almost
independent of φ and close to 0.5 when α = 90◦ and β = 5. This
result agrees very well with the fact that, in the approximation
of incompressible plasma, σm = 0.5 when α = 90◦. We also
verified that the solid curves corresponding to ν = 10−4 almost
coincide with the similar curves obtained by Ruderman (2017)
in the approximation of ideal MHD.

We verified that the solid curves in Fig. 4 corresponding to
ν = 10−4 coincide with the similar curves obtained by Ruderman
(2017) in the approximation of ideal MHD. Figure 4 also re-
veals that the ambipolar diffusion only affects the maximum
growth rate σM when the plasma beta is very small and, in
addition, the prominence plasma is extremely weakly ionised.
This conclusion is important for applications to the prominence
seismology. Following the assumption by Terradas et al. (2012)
that the prominence disappearance evident from the observa-
tional results reported by Okamoto et al. (2007) was caused
by the MRT instability, Ruderman et al. (2014) estimated the
shear angle α between the magnetic field in the prominence
and in the surrounding coronal plasma. When doing so they
used the results obtained in the approximation of incompress-
ible plasma. Ruderman (2017) extended this analysis to include
the plasma compressibility and also applied it to observations of
the MRT instability in prominences reported by Ryutova et al.
(2010). He found that the account of plasma compressibility

Fig. 4. Dependence of the maximum with respect to κ and φ of the
dimensionless instability increment, σM, on the angle α. The upper,
middle, and lower panels correspond to β = 5, 1, and 0.01, respectively.
The solid, dashed, and dash-dotted curves correspond to ν = 10−4, 0.1,
and 1, respectively. In the upper and middle panels all the curves are
indistinguishable.

does not affect the estimates of α. On the basis of the results ob-
tained in this article we can make the same conclusion about the
effect of ambipolar diffusion. The values of σM in Fig. 4 do not
reach a maximum value, instead their evolution towards smaller
shear angle was cut because σM → ∞ as α→ 0.

5. Conclusions

The present study deals with the problem of the magnetic
Rayleigh-Taylor instability in partially ionised compressible
plasmas in the presence of magnetic shear, meaning that the
equilibrium magnetic field has different directions below and
above the magnetic interface. The dynamics of the plasma was
described within the framework of single-fluid MHD, and the
effect of partial ionisation appeared in the induction equation in
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the form of ambipolar diffusion. The magnitude of the dissipa-
tive coefficient is determined by the amount of neutrals in the
fluid.

First of all, our analysis demonstrated that the MRT insta-
bility only appears for wavenumbers that are smaller than a crit-
ical cut-off value. This value is determined by the density and
magnetic field contrasts between the two regions, by the an-
gle between the wave vector of a perturbation and the equilib-
rium magnetic field, and by the degree of magnetic shear. How-
ever, this critical wavenumber is independent of the plasma beta
and ionisation degree of the plasma. Hence, fully and partially
ionised plasmas have the same critical wavenumber. We need
to mention here that the existence of the critical wavenumber is
very much connected to the equilibrium chosen for our model.
Díaz et al. (2014) and Khomenko et al. (2014) studied the MRT
instability of a magnetic interface with the plasma only partially
ionised at both sides. They found that for such an equilibrium
there is no critical wavenumber meaning that perturbations with
any wavenumber are unstable. Hence, the existence of the crit-
ical wavenumber is related to the assumption that the plasma is
fully ionised at one side of the magnetic interface.

In the incompressible limit the ambipolar diffusion does not
affect the evolution of the instability. This result is further con-
firmed by our numerical investigation for high values of plasma
beta. When the plasma beta is large the curves showing the de-
pendence of the maximum increment σM on the magnetic shear
angle α and corresponding to different degrees of ionisation
practically coincide (see Fig. 4). Our investigation showed that a
significant dependence of the maximum instability increment on
the ionisation degree only occurs in the β � 1 regime, where the
decrease in the increment can be as large as 40% for the values
of parameters considered here.

There is a simple physical explanation why the ambipolar
diffusion does not affect the maximum increment of the MRT in-
stability in the approximation of incompressible plasma corre-
sponding to β → ∞. Ambipolar diffusion appears because the
neutrals and ions have different velocities. This velocity differ-
ence, in turn, appears because the Lorentz force affects the mo-
tion of ions and does not affect the motion of neutrals. In the limit
of β→ ∞ the Lorentz force is negligible in comparison with the
pressure gradient. As a result, the ions and neutrals move with
the same velocity and the effect of ambipolar diffusion disap-
pears. When β is finite but large the velocities of ions and neu-
trals do not coincide; however, their difference is very small and,
consequently, the effect of ambipolar diffusion is also very small.
Our calculations show that this effect is actually very small even
when β is of the order of unity. It only becomes substantial when
β � 1.

The value of β also affects the maximum value of the in-
crement; this maximum value decreases when β decreases while
the values of propagation angle and magnetic shear are fixed.
The increment takes its maximum when the wave vector of a
perturbation is almost perpendicular to the magnetic field in the
dense plasma. It is only affected by the ionisation degree when
this degree is extremely small and, in addition, β is small.

We note that in the numerical investigation of the dispersion
equation we always took β1 = β2 = β. If we make a viable
assumption that β2 & 1 when β1 & 1, then ambipolar diffusion
does not affect the maximum instability increment for any values
of β2/β1. On the other hand, the maximum increment becomes
independent of β1 and β2 when both these quantities are smaller
than or of the order of 0.01. For these small values of β1 and β2 it
is very nearly equal to its limiting value obtained when β1 → 0
and β2 → 0.
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Appendix A: Investigation of Eq. (46)

In this section we show that Eq. (46) has exactly two positive
roots when σ > 0. We rewrite Eq. (46) as

f1(Λ) = f2(Λ), (A.1)

where

f1(Λ) = νσ
(
Λ2 − κ2

) (
β2Λ2 − Λ − σ2 − β2κ

2
)
, (A.2)

f2(Λ) =
[
σ2(1 + β2) + β2κ

2 cos2 φ
]
Λ2

−σ2Λ − σ4 − σ2κ2(1 + β2) − β2κ
4 cos2 φ, (A.3)

and Λ = Λ j. It is straightforward to see that the equation
f1(Λ) = 0 has exactly two positive and two negative roots, and
the equation f2(Λ) = 0 has exactly one positive and one negative
root. Typical graphs of functions f1(Λ) and f2(Λ) are shown in
Fig. A.1. We note that the mutual positions of negative zeros of
functions f1(Λ) and f2(Λ) can be different from those shown in
Fig. A.1. However, this fact is not important because we are only
interested in the positive roots of Eq. (46). The smaller positive
zero of function f1(Λ) is κ, while the larger positive zero is

Λ0 =
1 +

√
1 + 4β2

(
σ2 + β2κ2)

2β2
· (A.4)

We denote the positive zero of function f1(Λ) as Λ+ and prove
that κ < Λ+ < Λ0. We have f2(κ) = −σ2κ < 0, which implies

Fig. A.1. Graphical investigation of Eq. (A.1). The curve with four zeros
is the graph of function f1(Λ), while the curve with two zeros is the
graph of function f2(Λ).

that κ < Λ+. After straightforward calculation we obtain that the
inequality f2(Λ0) > 0 is equivalent to the obvious inequality√

1 + 4β2
(
σ2 + β2κ2) + 1 + 2β2σ

2 > 0. (A.5)

The inequality f2(Λ0) > 0 implies that Λ+ < Λ0. This inequality
implies that the graphs of functions f1(Λ) and f2(Λ) have two
points of intersection for Λ > 0 meaning that Eq. (46) has exactly
two positive roots.
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