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Evolving Graphs by Graph Programming

Timothy Atkinson⋆, Detlef Plump, and Susan Stepney

Department of Computer Science, University of York, UK
{tja511,detlef.plump,susan.stepney}@york.ac.uk

Abstract. Rule-based graph programming is a deep and rich topic. We
present an approach to exploiting the power of graph programming as a
representation and as an execution medium in an evolutionary algorithm
(EGGP). We demonstrate this power in comparison with Cartesian Ge-
netic Programming (CGP), showing that it is significantly more efficient
in terms of fitness evaluations on some classic benchmark problems. We
hypothesise that this is due to its ability to exploit the full graph struc-
ture, leading to a richer mutation set, and outline future work to test
this hypothesis, and to exploit further the power of graph programming
within an EA.

1 Introduction

Representation is crucial in computer science, and an important specific rep-
resentation is the graph. Graphs are used in a wide range of applications and
algorithms, see for example [4, 22, 5]. In evolutionary algorithms (EAs), graphs
are used in some applications, but are usually encoded in a linear genome, with
the genome undergoing mutation and crossover, and a later “genotype to phe-
notype mapping” used to decode the linear genome into a graph structure. For
example in Cartesian Genetic Programming (CGP) [14, 12], the connections of
feed forward networks are encoded in a linear genome. NEAT [24, 23] provides a
linear encoding of ANNs which are seen as graph structures. Trees (a subset of
more general graphs) are also used in EAs. Grammatical Evolution [15, 21] uses
a linear genome of integers to indirectly encode programs. Genetic Programming
[7, 6] is unusual for an EA: rather than using a linear genome, it typically directly
manipulates abstract syntax trees. Poli [20, 19] uses a ‘graph on a grid’ repre-
sentation: the underlying structure is a graph, but the nodes are constrained to
lie on discrete grid points. MOIST [8] proposes using trees with multiple output
nodes and sharing to extend traditional genetic programming to domains where
problems have multiple, related outputs. Pereira et al [16] represent Turing ma-
chines as graphs encoded in a linear genome, and develop a crossover operator
based on the structure of the underlying graph.

There are arguments for and against linear genomes representing graphs.
Linear genomes are standard in EAs, and they can exploit the knowledge about
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evolutionary operators. However, they can hide the underlying structure of the
problem, and can have biases in the effect of the evolutionary operators. There
may be advantages in evolving graphs directly, rather than via linear genome
encodings or 2D grid encodings, and defining mutation operators that respect
the graph structure. Direct graph transformation has deep theoretical under-
pinnings, and has become increasingly accessible through efficient graph pro-
gramming languages such as GP 2 [17, 2]. GP 2 enables high-level problem solv-
ing in the domain of graphs, freeing programmers from handling low-level data
structures. It has a simple syntax whose basic computational units are graph
transformation rules which can be graphically edited. Also, GP 2 comes with a
concise operational semantics to facilitate formal reasoning on programs.

Here we exploit an extension to GP 2 [1] that has probabilistic elements to
support EA applications. We perform experiments of evolving graphs directly,
and compare the results with experiments previously done with CGP. Using
graph transformations, we write evolutionary operators as graph transformation
rules, and we calculate fitness in the same context. Our results indicate that
direct evolution can be significantly more efficient (significantly fewer fitness
function evaluations) than basic CGP, due to the increased number of mutations
available, allowing more effective exploration of the search landscape.

The paper is organised as follows. In §2 we overview Graph Programming.
In §3 we describe how we have incorporated an EA into graph programming
(EGGP). In §4 we compare our EGGP setup with Cartesian Genetic Program-
ming (CGP). In §5 we describe benchmark experiments, and in §6 provide the
results, demonstrating that EGGP is significantly more efficient, in terms of fit-
ness evaluations, than vanilla CGP. In §7 we draw conclusions and outline future
work in examining the reasons for this improvement.

2 Graph Programming

This section is a (very) brief introduction to the graph programming language
GP 2; see [18] for a detailed account of the syntax and semantics of the language.
A graph program consists of declarations of graph transformation rules and a
main command sequence controlling the application of the rules. Graphs are
directed and may contain loops and parallel edges. The rules operate on host

graphs whose nodes and edges are labelled with integers, character strings or
lists of integers and strings. Variables in rules are of type int, char, string,
atom or list, where atom is the union of int and string. Atoms are considered
as lists of length one, hence integers and strings are also lists. For example, in
Figure 1, the list variables a, c and e are used as edge labels while b and d serve
as node labels. The small numbers attached to nodes are identifiers that specify
the correspondence between the nodes in the left and the right graph of the rule.

Besides carrying list expressions, nodes and edges can be marked. For exam-
ple, in the program of Figure 3, blue and red node marks are used to prevent
the rule mutateEdge from creating a cycle.



Main := link!

link(a,b,c,d,e:list)
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where not edge(1,3)

Fig. 1: A GP 2 program computing the transitive closure of a graph.

The principal programming constructs in GP 2 are conditional graph-trans-
formation rules labelled with expressions. The program in Figure 1 applies the
single rule link as long as possible to a host graph. In general, any subprogram
can be iterated with the postfix operator “!”. Applying link amounts to non-
deterministically selecting a subgraph of the host graph that matches link’s
left graph, and adding to it an edge from node 1 to node 3 provided there is
no such edge (with any label). The application condition where not edge(1,3)

ensures that the program terminates and extends the host graph with a minimal
number of edges. Rule matching is injective and involves instantiating variables
with concrete values. We remark that GP 2’s inherent non-determinism is useful
as many graph problems are naturally multi-valued, for example the computation
of a shortest path or a minimum spanning tree.

Given any graph G, the program in Figure 1 produces the smallest transitive
graph that results from adding unlabelled edges to G. (A graph is transitive

if for each directed path from a node v1 to another node v2, there is an edge
from v1 to v2.) In general, the execution of a program on a host graph may
result in different graphs, fail, or diverge. The semantics of a program P maps
each host graph to the set of all possible outcomes [17]. GP 2 is computationally
complete in that every computable function on graphs can be programmed [18].
Commands not used in this paper are the non-deterministic application of a set
of rules and various branching commands.

While rule matching in GP 2 is non-deterministic, the refined language P-GP
2 (for Probabilistic GP 2 ) selects a match for a rule uniformly at random [1]. This
language has been used to obtain the results described in the rest of this paper.

3 Evolving Graphs by Graph Programming (EGGP)

3.1 Representation

Our approach uses the following representation of individual solutions. An indi-
vidual I over function set F = {f1, f2, ...fn} is a directed graph containing a set
Vi of input nodes which have no outgoing edges and a set Vo of output nodes
which have one outgoing edge and no incoming edges. Each non-input and non-
output node is associated with some function in F . For simplicity we assume
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Fig. 2: An example EGGP Individual for a binary logic problem.

that all functions in F (and the fitness function) operate on a single domain.
EGGP individuals are defined in Definition 1.

Further, for each function node v labelled with a function f of arity n, v has
outgoing edges e1, ..., en such that for i = 1, ..., n, a(ei) = i. Then a provides
the order in which to pass v’s inputs to f , resolving ambiguity for asymmetric
functions. We assume acyclic graphs in this work, and hence an individual I

represents a solution as a network, where each node computes a function on
its inputs (which are given by its outgoing edges). We refer to acyclic EGGP
individuals as being “feed-forward”.

Definition 1 (EGGP Individual). An EGGP Individual over function set F

is a directed graph I = {V, E, s, t, l, a, Vi, Vo} where V is a finite set of nodes

and E is a finite set of edges. s : E → V is a function associating each edge

with its source. t : E → V is a function associating each edge with its target.

Vi ⊆ V is a set of input nodes. Each node in Vi has no outgoing edges and is

not associated with a function. Vo ⊆ V is a set of output nodes. Each node in Vo

has one outgoing edge, no incoming edges and is not associated with a function.

l : V → F labels every “function node” that is not in Vi ∪ Vo with a function in

F . a : E → Z labels every edge with a positive integer.

Such a representation may contain neutral material; nodes to which there is
no path from any output and therefore do not contribute to the functionality
of the solution. This is a direct encoding, and the conversion from genotype to
phenotype is given by simply removing material which does not contribute to
any output. We present an example individual in Figure 2. This individual is
both feed-forward and satisfies the arities of its associated function set F = {OR,
AND, NOR} This individual has two input nodes, labeled i1 and i2, and two



Main := pickEdge; markOutput!; mutateEdge; unmark!

pickEdge(a,b,c:list)
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Fig. 3: Mutating an edge of an EGGP individual while preserving feed-
forwardness using a graph program.

output nodes, labeled o1 and o2. Neutral material, which does not contribute to
the phenotype of the individual, is coloured gray. Edge labels are omitted for
visual clarity, and is unambiguous for this example as all of the functions in F
are symmetrical.

3.2 Atomic Mutations

We describe two point mutations for an EGGP individual that appear maximally
simplistic; changing the function associated with a node and changing a single
input to a node.

As we assume that individuals are feed-forward in this work we require a
mutation that respects this constraint. A point mutation of a node’s input edge
while maintaining feed-forwardness is shown in Figure 3. Firstly an edge to
mutate is chosen and marked, with uniform probability, with pickEdge and then
all nodes which have a path to the source of the chosen edge are marked using
markOutput!. The edge is then mutated to target some unmarked node, chosen
with uniform probability, using mutateEdge, and clearly there cannot be a cycle
introduced as the earlier steps of the mutation have not marked that node and
therefore that node does not have a path to the source of the chosen edge. Finally,
we unmark all marked nodes using the unmark rule. Using the given mutation,
we are able to mutate an individual while respecting feed-forwardness without



mutateFunction-fy(fx:string)

fx

1
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Fig. 4: Mutating the function of an EGGP individual’s node to some function
fy. fx is the existing function of the node being mutated, and an equivalent rule
can be constructed for each function in the function set.

applying any restraints to the individual or the mutation, by transforming the
individual using a graph program.

A point mutation of a node’s function is shown in Figure 4. Here node 1
has its function updated to some function fy ∈ F . This operator clearly pre-
serves feed-forwardness as it introduces no new edges. In this work we deal with
function sets with fixed, common arities. However, this may not always be de-
sirable, for example when attempting symbolic regression over a function set
containing both addition and sin operators. In the C-based library for Cartesian
Genetic Programming this is overcome by simply using the first few inputs for
lower arity functions [26], but in EGGP this would prevent some feed-forward
preserving mutations when a node appears to contribute to the input of another
but in truth does not. Although we do not address this issue in this work, we
propose that it would be possible to add and delete input edges when mutating
a node’s function to maintain correct function arities, while also maintaining
feed-forwardness when adding those new input edges in a similar manner to the
algorithm for edge mutations given in Figure 3.

3.3 Evolutionary Algorithm

Crossover between EGGP individuals is not obvious as there is no apparent re-
lationship between the nodes and edges of any two individual solutions. It might
be possible to use historical markers, as used in the graph-based neuroevolu-
tion algorithm NEAT [24], or some other approach, but this is not attempted in
this work. Without a crossover operator, it is natural to consider single-survivor
evolutionary algorithms. As we intend to benchmark against Cartesian Genetic
Programming in §5, we propose the use of the evolutionary algorithm most com-
monly used with it, the 1 + λ evolutionary algorithm shown in Figure 5. This
algorithm is an extended form of Random Hill Climbing, where in each gen-
eration λ new individuals are generated by mutating the sole surviving parent
from the previous generation. Additionally, we allow a new individual with equal
fitness to its parent to replace its parent in the next generation, facilitating the
phenomena of “neutral drift”. Propagating changes in the genotype which result
in neutral changes in the phenotype is known to positively influence the perfor-
mance of CGP [13] and we see no obvious reason why this would not also be the
case in EGGP.



1: procedure 1 + λ(maxGenerations, λ)
2: parent← generateindividual

3: parentScore← evaluate(parent)
4: generation← 0
5: while solution not found and generation ≤ maxGenerations do

6: newP arent← parent

7: for i = 0 to λ do

8: child← mutate(parent)
9: childScore← evaluate(child)

10: if childScore ≤ parentScore then

11: newP arent← child

12: parentScore← childScore

13: parent← newP arent

14: generation← generation + 1

Fig. 5: The 1 + λ evolutionary algorithm with neutral drift enabled.

3.4 Parameters

Use of the EGGP representation and the 1 + λ algorithm is parameterised by
the following items:

• mr: the mutation rate. Nodes and edges have no particular order in EGGP,
and the order in which feed-forward edges are mutated may influence the
availability of future mutations. We therefore opt to generate the number of
node mutations and edge mutations to apply to the individual using binomial
distributions (simulating one probabilistic mutation for each node or edge)
and then distribute these mutations across the individual at random.

• λ: the number of individuals to generate in each generation of the 1 + λ

algorithm.
• F : A function set. The maximum arity of functions in F is used to specify

the number of input edges associated with each function node.
• n: the number of function nodes to use in each individual.
• p: the number of inputs that each individual should have to interface with

the fitness function (|Vi| = p).
• q: the number of outputs that each individual should have to interface with

the fitness function (|Vo| = q).
• A fitness function used to evaluate each individual.

4 Relation to Cartesian Genetic Programming

4.1 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a type of evolutionary algorithm in
which individuals are represented as linear sequences of genes corresponding to
a directed acyclic graph. Each gene is an integer representing either (1) where a
node gets its inputs from or (2) the function of a node. These nodes are ordered so



Node 1 Node 2 Node 3 Output

Genotype: 0 0 1 1 0 2 0 1 0 2

Phenotype:
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Fig. 6: The genotype-phenotype mapping of a simple CGP individual consisting
of 1 input, 3 nodes and 1 output and arity 2. Each node is represented by 3
genes; the first 2 describe the indices of the node’s inputs (starting at index 0 for
the individual’s input i) and the third describing the node’s function. Function
indices 0, 1 and 2 correspond to AND, OR and NOR respectively. The final gene
describes the index of the node used by the individual’s output o. .

that all input connections must respect that ordering, preventing cycles. When
evolving over a function set where each function takes 2 inputs, there are 3
genes for each node in the individual; 2 representing each of the node’s inputs,
and 1 representing the node’s function. Outputs are represented as single genes
describing the node in the individual which corresponds to that output. These
connection genes (nodes’ input genes and the singular output genes) point to
other nodes based on their index in the ordering.

An example genotype-phenotype mapping is given in Figure 6. Here an indi-
vidual consisting of 3 nodes over a function set of arity 2, 1 input and 1 output
is represented by 10 genes. These genes decode into the shown directed acyclic
graph. In CGP individuals may be seen as a grid of nr rows and nc columns; a
node in a certain column may use any node from any row in an earlier column
as an input. Hence the total n = nr × nc nodes are ordered under a ≤ operator.
The example shown in Figure 6 is a single row instance of CGP.

4.2 Comparison to EGGP

Here we demonstrate that EGGP provides a richer representation than CGP:

• For a fixed number of nodes n and function set F , any CGP individual can
be represented as an EGGP individual, whereas the converse may not always
hold when the number of rows in a CGP individual is greater than one.

• Any order-preserving CGP mutation can be represented as a feed-forward
preserving mutation in EGGP, whereas some feed-forward preserving muta-
tions may not be order-preserving nor valid in the CGP framework.
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Fig. 7: A feed-forward preserving edge mutation. An edge (red) directed from
node 2 to node 1 is replaced with an edge (blue) directed to node 3. This mutation
produces a valid circuit but is impossible in CGP as it does not preserve order.

Firstly, consider the genotype-phenotype decoding of a CGP individual. Here
we have clearly defined sets of input, output and function nodes. Additionally
each function node is associated with some function from the function set, and
there are ordered input connections (edges) from each function node to its inputs.
Clearly this decoded individual can be treated as an EGGP individual fitting
Definition 1. Conversely, consider the case where nr > 1. Then there is the trivial
counter example of an EGGP individual with a solution depth greater than nc

(as n > nc) which clearly cannot be expressed as a CGP individual limited to
depth nc.

We now consider mutations available over a CGP individual in comparison
to those for an EGGP individual where feed-forward preserving mutations are
used. Clearly, as each order preserving mutation is feed-forward preserving, any
valid mutation for the CGP individual is available for its EGGP equivalent.
However, consider the example shown in Figure 7. Here a feed-forward mutation,
connecting node 3 to node 4 is available in the EGGP setting but is not order
preserving so is impossible in the CGP setting. Additionally, the semantic change
that has occurred here, where an active node has been inserted between two
adjacent active nodes is a type of phenotype growth that is impossible in CGP.
Hence every mutation available in CGP is available in EGGP for an equivalent
individual but the converse may not be true.

Therefore the landscape described by EGGP over the same function set and
number of nodes is a generalisation of that described by CGP, with all individual
solutions and viable mutations available, alongside further individual solutions
and mutations that were previously unavailable.

4.3 Ordered EGGP (O-EGGP)

To demonstrate whether any differences in performance between EGGP and
CGP arise from the freedom of mutation using feed-forward preserving, rather



Digital Circuit Number of Inputs Number of Outputs

1-bit adder (1-Add) 3 2

2-bit adder (2-Add) 5 3

3-bit adder (3-Add) 7 4

2-bit multiplier (2-Mul) 4 4

3-bit multiplier (3-Mul) 6 6

3:8-bit de-multiplexer (DeMux) 6 6

4×1-bit comparator (Comp) 4 18

3-bit Even Parity (3-EP) 3 1

4-bit Even Parity (4-EP) 4 1

5-bit Even Parity (5-EP) 5 1

6-bit Even Parity (6-EP) 6 1

7-bit Even Parity (7-EP) 7 1

Table 1: Digital Circuit benchmark problems.

than order-preserving, input mutations, we compare performance against an
ordered variant of EGGP, called Ordered EGGP.

Each node in an O-EGGP individual is associated with an order in an analo-
gous manner to CGP. Node function mutations from EGGP are used, but input
mutations are order-preserving rather than feed-forward preserving. Hence the
same set of mutation operators, with the same probability distribution over
their outcomes, is available for equivalent O-EGGP and CGP individuals. This
approach simulates the landscape and search process of CGP under identical
conditions, so should produce identical results to an equivalent CGP implemen-
tation. By also benchmarking O-EGGP we demonstrate that it is EGGP’s free
graphical representation and the associated more general ability to mutate in-
put connections with respect to preserving feed-forwardness that yields higher
quality results.

5 Benchmarking

To benchmark EGGP we compare against basic CGP and O-EGGP for a set of
Digital Circuit problems taken from [28], which are used in comparisons between
CGP and its Embedded variant ECGP. We produce our own CGP benchmark
results, which are roughly in line with those available in [28], by using the C-
based CGP library [26]. The set of Digital Circuit problems studied is given in
Table 1; we study bit adders, bit multipliers and even-parity circuits of various
sizes alongside a 3:8-Bit de-multiplexer and a 4×1-Bit comparator (see [28] for
details). As many of these circuits are typically constructed manually using XOR
gates, we use the function set {AND, OR, NAND, NOR} to artificially increase
the difficulty of these problems. We use the number of incorrect bits produced by



a candidate solution in comparison to the full truth table of the given problem
as the fitness function.

Each algorithm is run 100 times, with a maximum generation cap of 20,000,000;
every run in each case successfully produced a result with the exception of the
3-Mul for CGP, which produced a correct solution in 99% of cases. In all 3 bench-
marks, 100 nodes are used for each individual. Following conventional wisdom
for CGP, we use a mutation rate of 4% for CGP and O-EGGP benchmarks. Ad-
ditionally, a single row of nodes is used in each of these cases (nr = 1). However,
from our observations EGGP works better with a lower mutation rate, so for
EGGP benchmarks we use 1%. An investigation of how mutation rate influences
the performance in EGGP is left for future work. The 1 + λ algorithm is used in
all 3 cases, with λ = 4. Due to time constraints, O-EGGP is only benchmarked
on easier problems; 1-Add, 2-Add, 2-Mul, DeMux, 3-EP, 4-EP and 5-EP. We
argue that if the results from these benchmarks are in line with the CGP bench-
mark results we may extrapolate that O-EGGP is indeed simulating CGP. In this
case the two distinguishing factors between the EGGP and CGP benchmarks
are the use of mutation operator (feed-forward preserving vs. order preserving)
and mutation rate (1% vs. 4%).

To provide comparisons, we use the following metrics; median number of
evaluations (ME), median absolute deviation (MAD; median of the absolute de-
viation from the evaluation median ME), and interquartile range (IQR). The
number of evaluations taken for each run is calculated as the number of gener-
ations used multiplied by the total population size (1 + λ = 5). The hypotheses
we investigate for these benchmarks are:

1. EGGP performs significantly better than CGP on the same problems under
similar conditions. This hypothesis, if validated, would demonstrate the value
of our approach.

2. O-EGGP does not perform significantly better or worse than CGP on the
same problems under identical conditions. This hypothesis, if validated,
would indicate that the possible factors influencing EGGP’s greater perfor-
mance for the first hypothesis would be reduced to the use of the feed-forward
mutation operator and the mutation rate.

6 Results

Here we present results from our benchmarking experiments. Digital circuit re-
sults for EGGP and CGP are given in Table 2; results for O-EGGP on a smaller
benchmark suite are given in Table 3.

To test for statistical significance we use the two-tailed Mann-Whitney U

test [10], which (essentially) tests the null hypothesis that two distributions have
the same medians (the non-parametric analogue of the t-test applicable only to
normally distributed data). In the case where we get a statistically significant
result (p < 0.05), we also calculate the effect size, using the non-parametric
Vargha-Delaney A Test [27].



EGGP CGP

Problem ME MAD IQR ME MAD IQR p A

1-Add 5,723 3,020 7,123 6,018 3,312 7,768 0.62 –

2-Add 74,633 32,863 66,018 180,760 88,558 198,595 10−15 0.82

3-Add 275,180 114,838 298,250 2,161,378 957,035 1,837,942 10−31 0.97

2-Mul 14,118 5,553 12,955 10,178 5,258 14,459 0.018 0.60

3-Mul 1,241,880 437,210 829,223 15,816,940 7,948,870 19,987,744 10−34 0.99

DeMux 16,763 4,710 9,210 20,890 6,845 14,063 0.013 0.60

Comp 262,660 84,248 174,185 1,148,823 425,758 1,012,149 10−31 0.97

3-EP 2,755 1,558 4,836 4,365 2,530 5,345 0.038 0.58

4-EP 13,920 5,803 11,629 22,690 11,835 24,340 10−6 0.69

5-EP 34,368 15,190 30,054 106,735 55,615 126,063 10−18 0.86

6-EP 83,053 33,273 66,611 485,920 248,150 535,793 10−3 0.97

7-EP 197,575 61,405 131,215 1,828,495 843,655 1,860,773 10−33 0.99

Table 2: Results from Digital Circuit benchmarks for CGP and EGGP. The p

value is from the two-tailed Mann-Whitney U test. Where p < 0.05, the effect
size from the Vargha-Delaney A test is shown; large effect sizes (A > 0.71) are
shown in bold. The values for CGP on the 3-Mul problem include the single
failed run.

Comparing EGGP to CGP in Table 2, we find no significant improvement
of EGGP over CGP for small problems (1-Add, 2-Mul). Indeed, for 2-Mul CGP
significantly outperforms EGGP (p < 0.05), albeit with a small effect size (0.56 <

A < 0.64). As the problems get larger and harder we find significant (p <

0.05) improvement of EGGP over CGP in all cases. The effect size is small
(0.56 < A < 0.64) for the 3:8-Bit De-Mux and 3-Bit Even Parity, and medium
(0.64 < A < 0.71) for 4-EP. We find highly significant (p < 0.001) improvements
along with large effect sizes (0.71 < A) on all other problems, including the most
difficult problems: 3-Add, 3-Mul, 4 × 1-Bit Comparator and 7-Bit Even Parity.
So there is a clear progression of increasing improvement with problem difficulty.

We visualise some highly significant results as box-plots, with raw data over-
layed and jittered, in Figure 8. For each of the named problems, it can be clearly
seen that EGGP’s interquartile range shares no overlap with CGP’s, highlight-
ing the significance of the improvement made. Overall, we see these results to
validate our first hypothesis that EGGP performs significantly better than CGP
when addressing the same harder problems, although we note that no significant
improvement is made for simpler problems.

When comparing O-EGGP to CGP in Table 3, we find no significant differ-
ence between either approach on any of the problems in the smaller benchmark
set. The results show similar numbers of median evaluations (ME) in each case,
and produce p values indicating no significant difference between the samples.



Fig. 8: Box-plots with data overlayed for the following highly significant results;
(A) 3-Bit Adder, (B) 3-Bit Multiplier, (C) 4 x 1-Bit Comparator and (D) 7-Bit
Even Parity. Overlayed data is jittered for visual clarity.



O-EGGP

Problem ME MAD IQR p

1-Add 6,253 3,610 9036 0.66

2-Add 193,753 109,420 239,133 0.95

2-Mul 13,930 7,905 19,104 0.12

DeMux 21,406 5,115 10,065 0.66

3-EP 3,903 2,315 4,831 0.64

4-EP 23,360 11,893 21,865 0.84

5-EP 121,820 51,150 107,868 0.56

Table 3: Results from Digital Circuit benchmarks for O-EGGP on a smaller
benchmark suite. The p value is from the two-tailed Mann-Whitney significance
test comparing against CGP; no result is statistically significant (α = 0.05).

We believe that these findings support our hypothesis that O-EGGP does not
perform significantly better or worse than CGP on identical problems under iden-
tical conditions. As O-EGGP theoretically simulates CGP, this indicates that we
can consider the differences between the runs of EGGP and O-EGGP, namely
feed-forward preserving mutations and mutation rate, as the major contributors
to the differences in performance shown in Table 2.

Further, we suggest that the significant differences in results would not be
resolved by tuning the mutation rate parameter. Therefore we turn our atten-
tion to the feed-forward preserving input mutation operator. As shown in Fig-
ure 7, feed-forward preserving mutations may insert nodes between nodes that
would be considered adjacent in the CGP framework. This allows a subgraph of
the solution to grow and change in previously unavailable manners. Performing
functionally equivalent mutations with order preserving input mutations might
require the construction of an entirely new subgraph in the neutral component
of the individual which is then activated. We propose that the former mutation
is more likely to occur than the sequence of mutations required to achieve the
latter. Therefore where those unavailable mutations are “good” mutations in the
sense of the fitness function, better performance will be achieved by using them
directly. A future investigation into the quality of the neighborhood when using
the feed-forward preserving mutation would clarify this hypothesis.

Additionally, this ability to insert material from anywhere in the individual
that preserves feed-forwardness allows various neutral drifts to occur in the ac-
tive component, even between nodes that would be considered adjacent in the
CGP framework. For example, a connection using node x as input could be re-
placed by the semantically equivalent AND(x, x), for the function set used here.
The insertion of that AND gate would then allow new mutations in the active
component; for example changing its function, or mutating one of its inputs.
Similar neutral mutations exist in this domain, such as the insertion of double
negations using NAND gates. Additionally, the reverses of these transformations



are also possible, freeing up genetic material to be used elsewhere. How useful
these neutral mutations in the active component are is left for future work.

7 Conclusion and Future Work

We have proposed graphs as a fundamental representation for evolutionary algo-
rithms and in particular the use of rule-based graph programming as a means to
perform mutations. We have developed an algorithm, Evolving Graphs by Graph
Programming, and demonstrated significantly improved performance on a suite
of classic benchmark problems in comparison to CGP. We have demonstrated
an ordered variant of EGGP, O-EGGP, that simulates and produces similar re-
sults to CGP, to support our hypothesis that the feed-forward preserving input
mutation leads to improved performance. We believe this sets a clear prece-
dent for future work on evolutionary algorithms using graphs as a fundamental
representation and graph programming as a mechanism for transforming them.

There are a number of directions in which this work may be built upon.
Further investigation into the value of the feed-forward preserving mutation op-
erator and how the phenotype is able to change under it is necessary. If our
hypothesis that neutral mutations in the active component are useful is con-
firmed, it may then be possible to force similar neutral mutations by encoding
equivalence laws for a given domain as graph programming mutations, such as
logical equivalence laws for circuits [11] or the ZX-calculus’s equivalence rules for
quantum graphs [3]. Additionally, a study of whether strict adherence to func-
tion arities for function sets with varying arities is helpful, as discussed in §3.2,
may be worthwhile. In the present work we have avoided crossover operators,
but a thorough investigation into how graphs can be usefully recombined would
be of interest. Existing ideas such as history-based crossover [23] and subgraph
swapping [16, 9] offer potential inspiration. We note the possibility of transferring
the active component of one individual into the neutral component of another to
be reabsorbed via future mutations (in a manner analogous to horizontal gene
transfer in bacteria [25]), a mechanism made possible by the lack of constraint
on our representation.

References

1. Atkinson, T., Plump, D., Stepney, S.: Probabilistic graph programming. In: Proc.
International Workshop on Graph Computation Models (GCM 17) (2017)

2. Bak, C., Plump, D.: Compiling graph programs to C. In: Proc. International Con-
ference on Graph Transformation 2016. LNCS, vol. 9761, pp. 102–117. Springer
(2016)

3. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics 13(4) (2011), 86 pages

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, 3rd edn. (2009)

5. Jungnickel, D.: Graphs, Networks and Algorithms. Springer, 4th edn. (2013)



6. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection. MIT Press (1993)

7. Koza, J.R., III, F.H.B., Stiffelman, O.: Genetic Programming as a Darwinian in-
vention machine. In: EuroGP 1999. LNCS, vol. 1598, pp. 93–108. Springer (1999)
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