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Abstract 

Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence 

mechanism but has potential to contribute to the local activation of carcinogens. Bladder 

epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This 

study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of 

NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in 

normal human urothelial (NHU) cells maintained in both undifferentiated and functional 

barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation 

(EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were 

predominantly detected in differentiated NHU cell cultures. This gain-of-function was 

attributable to the expression of POR, an essential electron donor for all CYPs, which was 

significantly upregulated as part of urothelial differentiation. Immunohistology of muscle 

invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. 

Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and 

cytokeratin 5/6 labelling, showed POR over-expression by a subgroup of the differentiated 

luminal tumours. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal 

PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 

cells than in differentiated NHU cells, indicating that CYP-function is related to 

differentiation status in bladder cancers. This study establishes POR as a predictive 

biomarker of metabolic potential. This has implications in bladder carcinogenesis for the 

hepatic versus local activation of carcinogens and as a functional predictor of the potential 

for MIBC to respond to prodrug therapies. 
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Summary 

The urothelium exhibits differentiation-associated xenobiotic metabolism capable of 

activating pro-carcinogens, which may play an important role in cancer initiation. 

Cytochrome P450 metabolic capacity is enhanced in a sub-group of differentiated/luminal 

muscle-invasive bladder cancers.  
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Introduction 

The epithelial lining of the bladder and associated urinary tract, the urothelium, functions as 

a barrier to prevent reabsorption of the concentrated waste products of metabolism. The 

mechanisms used by the urothelium to survive a lifetime of toxin and toxicant exposure 

remain underexplored, although preliminary evidence of cytochrome P450 (CYP) 

transcript/activity supports a potentially important role in the urinary tract (reviewed [1]). 

The aryl-hydrocarbon receptor (AHR) is a transcription factor expressed constitutively by 

many epithelial tissues. In epidermal keratinocytes, AHR-mediated transcription has been 

implicated in differentiation [2], although AHR is better known for regulating expression of a 

battery of CYP genes (including CYP1A1, CYP1A2 and CYP1B1) as part of Phase I metabolism 

in the detoxification of xenobiotics. CYP1-mediated metabolism is particularly important for 

aromatic amines, which include the bladder pro-carcinogens 2-naphthylamine and 4-

aminobiphenyl, and polycyclic aromatic hydrocarbons (PAH), including benzo[a]pyrene (BaP; 

reviewed [3]). Phase I metabolism of xenobiotics by CYPs is often the first step in 

detoxification as it supports the Phase II conjugation reactions. However, Phase I 

metabolites are frequently reactive and studies have shown CYP1 enzyme function to be 

activating in the case of PAH pro-carcinogens [4]. CYP1A1, CYP1B1 and the AHR nuclear 

translocator (ARNT) have been identified as potential risk factors for human bladder cancer 

through association of single nucleotide polymorphisms (SNPs) with the disease [5,6], but a 

robust case is lacking and it remains unclear whether the SNPs affect production of 

genotoxicants solely in the liver, or whether extra-hepatic metabolism is involved. 

Bladder cancer has a high prevalence of somatic mutations, a trait shared with cancers 

where chronic mutagen exposure plays a causal role (such as lung cancer and melanoma, 

[7]). Smoking is the main risk factor for bladder cancer with a hazard ratio of 2.33 for former 

smokers and 4.27 for current smokers [8]. Following PAH exposure, incomplete hepatic 

metabolism leads to the excretion of bladder pro-carcinogens in the urine [9] where 

urothelial CYP-activity could lead to DNA adduct formation and ultimately mutation. BaP is 

the major PAH in cigarette smoke and the bladder tissue of current smokers contains bulky 

DNA adducts [10]. 
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Acting in combination with microsomal epoxide hydrolase (EPHX1), the bioactivation of BaP 

to species capable of forming DNA adducts is performed most efficiently by CYP1A1 and 

CYP1B1 [11]. Studies of Cyp1-knockout mice suggest Cyp1a1 is essential for detoxification of 

BaP in the epithelium of the gastrointestinal tract, but the bladder remains unstudied 

(reviewed [12]). CYP activity is driven by electron donation from the NADPH:cytochrome 

P450 oxidoreductase (POR) and abundance of POR determines metabolic capacity in the 

CYP system [13,14]. POR is one member of the diflavin oxidoreductase family (nitric oxide 

synthase is the other) and is not specifically a reductase for the CYPs but can donate 

electrons to heme oxygenase among other enzymes (reviewed [15]). POR expression in 

normal and neoplastic urothelium of humans remains unquantified, although a SNP was 

recently associated with increased bladder cancer risk [16]. 

Since the first report of CYP1 activity in rabbit bladders in 1985 [17], there has only been 

fragmented study of AHR-mediated metabolism in the urinary tract. Studies of non-

transformed cells have used either normal porcine urothelial cells (which demonstrate no 

ethoxyresorufin O-deethylation, a measure for CYP1 enzyme activity [18]) or human cells 

cultured from urinary sediments (which most likely originate from the kidney [19]), limiting 

their relevance to human urothelium. It is therefore timely to establish whether CYP1 

enzymes function in human urothelium and whether there is sufficient capacity to activate 

potential bladder carcinogens. 

Normal (non-neoplastic) human urothelium is not available in the quantities required to 

generate microsomes for the study of enzyme activity. The aim of this study was to establish 

the potential of bladder CYP1 metabolism; using in vitro cell culture models representing 

normal and neoplastic human urothelium in undifferentiated and differentiated states 

(reviewed [20]). Immunohistology was used to relate in vitro findings to the biology of 

human bladder tissue and muscle-invasive bladder cancers (MIBC). 
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Methods 

Tissues and Cells 

All tissues were collected with appropriate Research Ethics Committee approvals and 

patient consents as required. In the UK, tissues were collected under the following NHS REC-

approved projects (Leeds East REC projects 99/095, 02/208, 00/22; York REC project 

99/04/003, Newcastle & North Tyneside 1 REC 13/NE/0081). In Germany, tissue use was 

approved by the local research ethics committee of the University of Regensburg (IRB 

Number: 08/108) and materials (tissue sections) were transferred to York under a Materials 

Transfer Agreement.  

Finite (non-transformed) normal human urothelial (NHU) cell lines were established from 

surgical specimens (most commonly discarded ureteric tissues from renal cell carcinoma or 

transplant), as previously detailed [21]. NHU cell lines were propagated as undifferentiated 

cultures in Keratinocyte Serum-Free Medium containing recombinant epidermal growth 

factor and bovine pituitary extract (KSFMc; Invitrogen) [21]. For the studies described here, 

15 independent cell lines were used between passages 1 and 5. In the figures, each 

independent donor NHU cell line used has been given a unique symbol consistent between 

every panel (including supplementary). 

Differentiation of in vitro-propagated NHU cell cultures into barrier-forming stratified 

urothelial cell sheets was performed as described in detail elsewhere [22]. Briefly, NHU cells 

propagated in KSFMc were preconditioned for 5 days in 5% adult bovine serum (ABS) before 

harvesting and reseeding in same. After 24 h, the exogenous calcium concentration was 

increased to near-physiological [2 mM] and cultures were maintained for 7 days before 

performing assays. 

The endogenous natural ligand 2-(1’H-indole-3’-carbonyl)-thiazole-4-carboxylic acid methyl 

ester (ITE; Tocris) was used to activate AHR in cell cultures at a concentration of 1 µM. NHU 

cell cultures were exposed to BaP (CAS no. 50-32-8; purity ≥96 %; Sigma) at a concentration 

of 2 µM for 6 h. CYP1-activity and BaP metabolism were inhibited by 2,3’,4,5’-

tetramethoxystilbene (TMS; Enzo Life Sciences) at 0.5-12 µM.  Both compounds used DMSO 
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as a vehicle and all controls contained a matched concentration of DMSO (not greater than 

0.1% v/v). 

For bladder cancer cell organ cultures [23], stromal tissue remaining after de-

epithelialisation [21] was dissected into 0.5 cm2 pieces and placed on Falcon membrane 

inserts (3 µm pore, Corning) for culture. RT4 (ECACC 91091914, sourced in 2000), RT112 

(ECACC RT112/84 85061106, sourced in 2000) T24 (ATCC HTB-4, sourced in 1999) and 

SCaBER (ATCC HTB-3, sourced in 1999) cells were authenticated by short tandem repeat 

profiling using the PowerPlex16 System (Promega) in September 2016 and within 5 passages 

of use in this study (all cell lines were a perfect match to the ATCC genotype records). 

Bladder cancer cell lines were seeded onto the basement membrane of de-epithelialised 

ureters and cultured at the air:liquid interface in DMEM:RPMI 1640 (50:50, v/v) with 5% 

fetal bovine serum for 4 weeks. Cancer cell organ cultures were fixed in formalin for 24 h, 

processed into paraffin wax and sectioned at 5 µm for immunoperoxidase labelling. 

A tissue microarray (TMA) was constructed from formalin-fixed paraffin wax-embedded 

MIBC biopsies, exactly as described [24] using tumour biopsies obtained from 61 non-

consecutive patients who underwent radical cystectomy for muscle-invasive urothelial 

carcinoma of the urinary bladder in the Department of Urology, Regensburg University 

Medical Center, between 1998 and 2008. Median patient age was 71 (range: 55-87) years. 

81% of patients were male. Surgical specimens were assessed histopathologically by a single 

expert uropathologist for grading and staging based on the criteria of the 1973 WHO 

classification and 2010 TNM system [25,26]. Clinical characteristics of the patients are 

summarised in Supplementary Table 1. 1.5-mm donor tissue cores were used, and the 

representativeness of the TMA was confirmed histopathologically by comparing the TMA 

and the original tissue sections for each tumour. Immunoperoxidase labelling of the MIBC 

TMAs was performed on 4-µm sections mounted on poly-L-lysine–coated glass slides and 

compared to a “normal” control group of bladders (non-trigone cold-cut biopsies) with no 

history of bladder malignancy. These tissues were from patients biopsied for a range of 

conditions including prostate cancer, stress incontinence, overactive bladder and cystitis, 

some of which have been described previously [27]. 
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Indirect-immunofluorescent Labelling 

To generate differentiated NHU cell cultures for immunolabelling, NHU cells preconditioned 

for 5 days in 5% ABS were passaged and seeded onto glass 12-well slides at 3x104 cells/well. 

After 24 h the calcium concentration was raised to 2 mM and the cultures maintained for 7 

days, before treatment with ITE or a vehicle control. After 16 h, slides were fixed in 

methanol:acetone (1:1) for 30 s, air dried and rabbit anti-AHR affinity-purified polyclonal 

was applied overnight at 4°C (1:500 dilution; Enzo Life Sciences, BML-SA210). Unbound 

primary antibody was removed by washing in PBS and secondary antibody (Alexa-594, 

Molecular Probes) was applied for 1 h at ambient temperature. Slides were washed in PBS, 

with 0.1 µg/ml Hoechst 33258 added to the penultimate wash, before mounting in antifade 

mountant and visualisation by epifluorescence on a BX60 microscope (Olympus). Analysis 

was performed on images collected at a fixed exposure using TissueQuest Software (Tissue 

Gnostics). 

 

Western Blotting 

Twenty µg of whole cell protein was loaded into each gel track for electrotransfer to PVDF 

membranes with the full method provided in Supplementary Methods. The test antibodies 

used were anti-AHR (1:2,000, rabbit, Enzo Life Sciences, BML-SA210), anti-CYP1A1 (1:4000, 

rabbit, generous gift from Prof. F. Peter Guengerich, Vanderbilt University, USA), anti-POR 

(1:10,000, rabbit “CH60” a kind gift from Prof. Roland Wolf and Dr Colin Henderson, Dundee 

University [28]). Homogeneous loading and transfer were evaluated using β-actin antibodies 

(Sigma, Clone AC15, Mouse, 1:10,000 dilution). Detection of CYP1A1 and GAPDH protein 

was performed exactly as described [29]. Densitometry was performed in all cases using 

Image Studio Lite Ver 5.0 software (LI-COR). Cropped Western blots are shown in the main 

figures with full blots provided as Supplementary Figures 1&2. 

 

Reverse Transcribed-quantitative Polymerase Chain Reaction (RT-qPCR) 

Method and primers are provided in Supplementary Materials. 
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Ethoxyresorufin O-deethylation (EROD) Activity Assays 

EROD activity assays, used as a measure for CYP1 enzyme activity, were performed as 

described in detail elsewhere [30] with minor modifications to convert the assay for black-

walled collagen-coated glass coverslip-bottomed 96-well plates (BD Biosciences). Briefly, 

NHU/RT4/RT112/T24/SCaBER cells seeded at 6x104/well were induced with ITE for 

predetermined times before washing in HEPES-buffered saline (HBS; 138 mM NaCl, 5 mM 

KCl, 0.3 mM KH2PO4, 4 mM NaHCO3, 0.3 mM NaHPO4, 1 mM MgCl2, 2 mM CaCl2 and 10 mM 

HEPES pH 7.4) and treatment with 5 µM ethoxyresorufin (Cambridge Bioscience) in HBS. 

CYP1 enzyme activity was specifically inhibited by inclusion of TMS in the 

ethoxyresorufin/HBS. Plates were incubated for 75 min at 37°C; fluorescence was detected 

with 544 nm excitation and 590 nm emission filters using a POLARstar optima plate reader 

(BMG Labetch) and EROD activities were calculated using a (19-625 nM) resorufin standard 

curve (R2=0.996), which was corrected for cellular auto-fluorescence. Following fluorescence 

measurement, plates were washed twice in phosphate-buffered saline (PBS) and cells lysed 

in RIPA buffer (25 mM Hepes pH 7.4, 125 mM NaCl, 10 mM NaF, 10 mM sodium 

orthovanadate, 10 mM sodium pyrophosphate, 0.2% (w/v) SDS, 0.5% (w/v) sodium 

deoxycholate acid, 1% (w/v) Triton X-100, 1 mg/ml aprotinin, 10 mg/ml leupeptin and 100 

mg/ml phenylmethylsulphonyl fluoride) for a bicinchoninic acid (BCA) protein assay used for 

normalisation (Fisher). 

 

High Performance Liquid Chromatography (HPLC) Analysis of BaP Metabolites 

Culture medium from confluent 10 cm dishes of NHU cells was collected on ice, centrifuged 

at 4°C for 5 min at 300 g and stored at ‒80°C until analysis. Per sample, 1 ml of medium was 

extracted twice with 1 ml of ethyl acetate. Extracts were evaporated and taken up in 30 µl 

methanol, of which 20 µl aliquots were injected on HPLC. HPLC analysis was performed 

using a HPLC Agilent 1100 System (Agilent Technologies) with a SunFireTM C18 reverse 

phase column (250 × 4.6 mm, 5 µm; Waters). The conditions used for the chromatographic 

separation of BaP metabolites were as follows: mobile phase A: 50% acetonitrile in water 
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(v/v), mobile phase B: 85% acetonitrile in water (v/v). The separation started with an 

isocratic elution of 1.4% of mobile phase B. Then a linear gradient to 98.5% of mobile phase 

B in 34.5 min was followed by isocratic elution for 6 min, a linear gradient from 98.5% to 

1.4% of mobile phase B in 3 min, followed by an isocratic elution for 1.5 min. Total run time 

was 45 min at a flow rate of 1 ml/min. The metabolites were analysed by fluorescence 

detection (excitation wavelength 381 nm, emission wavelength 431 nm). The two BaP 

metabolites analysed, (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BaP-t-7,8-

dihydrodiol) and (±)-r-7,t-8,t-9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP-

tetrol-I-1), were identified using authentic standards which were synthesised as described 

[29]. 

 

32
P-Postlabelling of BaP-DNA Adducts 

Following collection of the medium, cultures were washed twice in cold D-PBS (Gibco), 

scraped in 1 ml PBS, centrifuged at 800g for 5 min at 4°C and dry cell pellets were stored 

at -80°C until analysis. DNA was isolated from BaP-treated cells using a standard 

phenol/chloroform extraction method. BaP-DNA adduct formation was determined using 

the nuclease P1 digestion enrichment version of thin-layer chromatography (TLC) and  32P-

postlabelling assay was carried out as described [31]. Briefly, DNA samples (4 μg) were 

digested with micrococcal nuclease (288 mU; Sigma) and calf spleen phosphodiesterase (1.2 

mU; MP Biomedical) and then enriched and labelled. Solvent conditions for the resolution of 

32P-labelled adducts on polyethyleneimine–cellulose TLC were as described [31]. 

Subsequently, TLC sheets were scanned using a Packard Instant Imager (Dowers Grove, IL, 

USA) and DNA adducts (RAL, relative adduct labelling) were quantified from the adduct 

counts per minute (cpm), the specific activity of [γ-32P]ATP (HP601PE; Hartmann Analytic) 

and the amount of DNA (pmol of DNA-P) used. Results were expressed as DNA adducts per 

108 normal nucleotides. An external BPDE-DNA standard [32] was employed for 

identification of adducts in experimental samples. 

 

Immunoperoxidase Labelling 
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For immunolabelling of POR (1:4,000, Mouse Clone F10, Santa Crux, sc-25270) and GATA3 

(1:800, Rabbit antibody D13C9, Cell Signalling), heat-mediated antigen retrieval was used 

(boiling for 10 min in 10 mM citric acid buffer (pH 6)); and labelling was performed using the 

Impress polymer detection kit according to the manufacturer’s instructions (VectorLabs). All 

sections were counterstained with Mayer’s haematoxylin, dehydrated and mounted in DPX 

(CellPath). 

Cytokeratin 5/6 (KRT5/6; 1:50, M7237, Dako) labelling was performed on the Leica Bond 3 

platform using Epitope Retrieval Solution 2 (AR9640; Leica Biosystems) for 30 minutes, a 

primary antibody application of 15 minutes, the Bond Polymer Refine Detection Kit (DS9800; 

Leica Biosystems) and Bond DAB enhancer (AR9432; Leica Biosystems) for 5 minutes. 

Slides were imaged using an AxioScan.Z1 slide scanner (Zeiss). Labelling intensities were 

quantified using Histoquest software (v3.5, Tissue Gnostics) whereby regions containing 

>90% tumour cells were manually identified. For KRT5/6 quantification, the percentage area 

of tumour tissue labelled above the threshold intensity (of 50 arbitrary units) was 

calculated. An automated algorithm identified nuclei and cytoplasm based on the 

haematoxylin counterstain in order to perform the following analyses. Contaminating 

lymphocytes were removed from the analysis by gating out cells with a nuclear size smaller 

than 30µm2. For GATA3 labelling, mean nuclear DAB intensity was quantified and a defined 

threshold (of labelling intensity 14; arbitrary units) was used to generate a labelling index of 

percentage positive nuclei within each tumour. For POR labelling, identified nuclei were 

used to support recognition of the surrounding cell body and cytoplasmic DAB intensity was 

quantified. The basal/luminal classification of the tumours based on GATA3 and KRT5/6 

labelling was performed by reproducing the Logistic regression (LRA) and support vector 

machine (SVM) cut-off lines derived previously by Dadhania et al. [33]. 

 

Statistical Analysis 

Data were assessed for statistical significance using InStat 3 or Prism 6 software (Graphpad). 

On all graphs statistical significance is represented as follows; * = p<0.05, ** = p<0.01 & *** 

= p<0.001. 
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Results 

AHR in Urothelial Differentiation 

AHR protein was detected in similar abundance in both undifferentiated and differentiated 

NHU cell cultures (Figure 1A). AHR protein was observed to be widely distributed 

throughout the cell in differentiated NHU cells treated with a vehicle control; however, 

following exposure to 1 µM ITE for 16 h, AHR was significantly more abundant in the nucleus 

(Figure 1B and C). 

AHR expression in epidermis has been attributed to a role in differentiation [2]. Ahr-

knockout mice showed no perturbation of urothelial morphology or in the expression or 

distribution of proteins involved in urinary barrier function (including Claudin 5 and 

Uroplakin 3a, Supplementary Figure 3 & Supplementary Methods). Furthermore, trans-

epithelial electrical resistance monitored as a measure of barrier-function in differentiated 

NHU cell cultures showed no significant change in response to ITE exposure throughout 

differentiation (mean resistance of 5007 versus 4978 �.cm2 for vehicle control and 1 µM ITE 

treatment, respectively; Student’s t-test p=0.96, n=6 cultures; Supplementary Figure 1 & 

Supplementary Methods). 

 

Induction of CYP1A1 and CYP1B1 Transcripts by AHR 

The effect of the endogenous AHR ligand “ITE” on CYP1 gene expression was studied in NHU 

cell lines from 6 independent donors. Significant (p≤0.001) induction of CYP1A1 and CYP1B1 

transcripts was observed in response to ITE in both undifferentiated (30 and 49-fold, 

respectively) and differentiated (23 and 19-fold, respectively) cultures compared to their 

respective vehicle controls (Figure 1D). Differentiated NHU cells showed preferential 

upregulation of CYP1A1 transcript, whilst undifferentiated cells induced CYP1B1 to a greater 

extent (Supplementary Figure 4). Differentiation of NHU cells itself induced a smaller 

increase in CYP1A1 and CYP1B1 transcript expression (4.1 and 1.5-fold, respectively; Figure 

1D). No expression of CYP1A2 transcript was detected in NHU cells (data not shown).  

 

Page 13 of 33

John Wiley & Sons

Molecular Carcinogenesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

14 

 

Induction of EROD Activity in NHU Cells by AHR 

Basal EROD activity was barely detectable in NHU cells and was not inducible in 

undifferentiated NHU cells (Figure 2). EROD activity was rapidly induced in differentiated 

NHU cells by 1 µM ITE, with effects apparent by 8 h and a peak of activity at 16 h (mean 55-

fold increase, Figure 2). After 16 h (without replenishment of ITE), EROD activity in 

differentiated NHU cells began returning to baseline (Figure 2). 

 

Inhibition of EROD Activity by TMS 

EROD can be performed by all CYP1 family members with varying degrees of efficiency [34]. 

As no CYP1A2 transcript expression was observed in the urothelium, this enzyme was ruled 

out. Following a 16 h treatment with 1 µM ITE, induced CYP1 enzyme activity was inhibited 

by TMS in differentiated NHU cells from 3 donors with a mean IC50 of 6.9 µM (Figure 3A). To 

further characterise the inhibition of EROD-activity by TMS, a Ki was derived from 

differentiated NHU cells following a 16 h treatment with 1 µM ITE. A Michaelis fit 

Lineweaver-Burk plot demonstrated a mixed-type inhibition where TMS had greater affinity 

for the free enzyme(s) than for the enzyme/substrate complex (Figure 3B). The mean 

estimated Ki for TMS against differentiated NHU cell CYP1 enzymes was 0.39 µM (±0.07) 

using quadratic analysis or 0.26 µM by identifying the X axis intersect of the Km/Vmax 

trendline (Figure 3C). 

 

CYP1A1 and POR Western Blotting Before and After BaP Exposure 

NHU cells from 3 independent donors were lysed for whole-cell western blots to determine 

CYP1A1 and POR expression. Induction of CYP1A1 protein by 16 h pre-treatment ±1 µM ITE 

confirmed RT-qPCR data suggesting expression was low for control cells and significantly 

induced by ITE in both undifferentiated and differentiated states, but to a significantly 

greater extent in differentiated NHU cell cultures (Figure 4).  

RT-qPCR showed BaP exposure did not induce CYP1 transcripts in undifferentiated NHU cells 

but did significantly in differentiated cultures (Supplementary Figure 5A). This result was 
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confirmed for CYP1A1 at the protein level, where BaP exposure did not induce CYP1A1 

expression in undifferentiated NHU cells, but did significantly in the differentiated cultures 

(Figure 4). No specific antibody could be found to support CYP1B1 detection. 

Western blotting for POR established that abundance was not affected by ITE, TMS or BaP 

exposure; but was elevated by differentiation of NHU cells (mean 2.1-fold; Figure 4). RT-

qPCR of POR transcript confirmed differentiation of NHU cells from three donors increased 

POR transcript expression on average by 2.9-fold; however, 1 µM ITE treatment had no 

significant effect on POR mRNA expression (Supplementary Figure 5B). 

 

BaP Metabolism 

Cell lines established from three independent donors were monitored before (EROD, Figure 

5A) and after BaP treatment (HPLC and 32P-postlabelling, Figure 5B-D). Monitoring EROD-

activity prior to BaP exposure confirmed significant induction of CYP1-function in all three 

independent cell lines (mean 42-fold) and showed that TMS provided significant inhibition 

of enzyme function in differentiated NHU cells (mean 14% of ITE-induced activity, Figure 

5A).  

To establish whether urothelial CYP1 was capable of activating the known carcinogen BaP, 

cultures were exposed for six hours and metabolites were measured in the culture medium 

by HPLC (Supplementary Figure 6). First, CYP1A1 oxidises BaP to an epoxide (i.e. BaP-7,8-

epoxide), which is then converted to BaP-7,8-dihydrodiol by EPHX1. Further bioactivation by 

CYP1A1 leads to the reactive species, BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) and BaP-

tetrol-I-1 is formed by spontaneous hydrolysis of BPDE. Peaks, referenced to standards, 

were observed and quantified for BaP-7,8-dihydrodiol (Figure 5B) and BaP-tetrol-I-1 (Figure 

5C). The formation of BaP metabolites mirrored the trends observed for EROD-activity 

(Figure 5A); with metabolism greatest in differentiated NHU cell cultures, inducible by pre-

treatment with ITE (2.7 & 4.1-fold for dihydrodiol & tetrol, respectively) and inhibited by 

TMS (to 46% & 35% for dihydrodiol & tetrol, respectively; Figure 5B&C).  

The presence of BaP-tetrol-I-1 in the medium of NHU cell cultures (Figure 5C) suggested that 

BPDE might also be forming the pre-mutagenic DNA adducts (i.e. 10-(deoxyguanosin-N2-
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yl)−7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (dG-N2-BPDE) that have previously 

been observed in vitro and in vivo [14]. Indeed the formation of dG-N2-BPDE adducts was 

confirmed by 32P-postlabelling (Supplementary Figure 7). No DNA adducts were detected in 

control (untreated) samples. Pre-treatment of differentiated NHU cells with 1 µM ITE 

significantly increased BaP-DNA adduct levels compared to controls (3.7-fold) and 12 µM 

TMS significantly reduced this (to 21% of induced levels; Figure 5D). Whilst the changes 

were not statistically significant, dG-N2-BPDE adducts were formed in undifferentiated NHU 

cell cultures and adduct levels were both increased by ITE pre-treatment and inhibited by 

TMS (Figure 5D). The correlation between EROD-activity and BaP-DNA adduct levels in the 

same three cell lines had an R2=0.757 (Supplementary Figure 8). 

 

Xenobiotic Metabolism in Bladder Cancer 

Immunoperoxidase labelling of MIBC showed significant (p<0.05) reduction in mean POR 

expression when compared to normal non-neoplastic bladder urothelium (Figure 6A). A sub-

group of MIBC (11.9% of tumours) was noted to over-express POR, as compared to the 

normal bladders (open circles in Figure 6A). Both CYP1A1 and POR transcript expression was 

significantly higher in luminal MIBC as compared with basal MIBC in The Cancer Genome 

Atlas cohort (Supplementary Figure 9). MIBCs were stratified into luminal and basal 

subgroups based on the GATA3 and cytokeratin 5/6 (KRT5/6) histology classifier first 

described by Dadhania et al. that separates the two subtypes with 91% accuracy [33]. The 

basal group had significantly less POR expression (p<0.05, Mann Whitney Test) and the 

luminal group contained all the POR over-expressing tumours identified previously (16.6% of 

luminal tumours; Figure 6B&C). The basal (Supplementary Figure 10) PORlo bladder cancer 

cell lines T24 and SCaBER were used as in vitro models of POR suppression in MIBC (Figure 

6A&C) and showed no/low inducible CYP1 enzyme activity, respectively (Figure 6D) despite 

CYP1A1 and CYP1B1 transcripts being ITE-inducible (Supplementary Figure 11). As a model 

of the POR over-expressing tumours (Figure 6A&C), the well-differentiated/luminal 

(Supplementary Figure 10) RT4 and RT112 bladder cancer cell lines showed 1 µM ITE-

inducible EROD-activity (Figure 6D). Mean peak EROD activity at 16 h was 60.0, 89.3 and 
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83.3 nM resorufin/min/mg for differentiated NHU, RT4 and RT112 cells, respectively (Figure 

6D). 
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Discussion 

This study provides experimental and clinical evidence that CYP-activity by normal 

urothelium is reliant on the differentiation-dependent expression of POR, thereby defining 

the CYP-capacity of different neoplastic programmes. POR abundance has been shown to 

influence CYP2B6-mediated bioactivation of cyclophosphamide in patients [13] and total 

CYP-mediated metabolism in mice [14], and combined with this study suggests POR can be 

used as a biomarker of total CYP-capacity in tissues. MIBC showed an overall suppression of 

POR; this was exemplified by the basal-type T24 and SCaBER cell lines, which showed no 

EROD-activity even though CYP1 transcripts were inducible (Supplementary Figure 11), 

suggesting an overall loss of functional CYP-activity in basal MIBC. By contrast, a subset of 

MIBC was identified that over-expressed POR relative to normal bladder urothelium. In our 

series, this subgroup defined 16.6% of the luminal tumours. Using RT4 and RT112 cells as 

representative luminal POR over-expressing bladder cancer cell lines, it was confirmed that 

these cells showed greater induced peak metabolic activity than achieved by differentiated 

NHU cells. These observations are important in associating functional, drug-metabolising 

activity to histologically-defined tumour sub-groups. Several CYP1-activated therapies are in 

development to target epithelial tumours [35-37] and POR is thought to be critical to the 

activation of some hypoxia-activated prodrugs [38], offering potential for future trials 

targeting the PORhi group of MIBC patients we report here. 

The evidence presented here for CYP1A1 function in human urothelium and its role in BaP 

metabolism builds on earlier work showing BaP metabolism by organ cultures of human 

bladder tissue [39,40]. These earlier studies demonstrated that the tissue had capacity to 

metabolise BaP, but without confirming the cell type responsible due to the heterogeneous 

nature of the cell types present. In particular, it was noted that the bladder was the most 

active BaP metaboliser of all the human explant tissues tested at that point [40]. 

Our study has shown CYP1A1 and CYP1B1 transcript expression by human urothelium and 

confirmed CYP1A1 protein, although no suitable antibody could be found for CYP1B1. 

Studies of purified enzymes show that CYP1A1 is more efficient at EROD (12-fold) and BaP 

hydroxylation (2-7 fold) than CYP1B1 [34,41]. Based on the greater induction of transcript in 
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NHU cells and the greater efficiency of CYP1A1 to perform the reactions studied here, we 

believe that CYP1A1 is the critical enzyme in urothelial activation of BaP.  

The potential for activation of pro-carcinogens by human urothelium observed in this study 

provides a mechanism for SNPs previously linked to bladder cancer (CYP1A1, CYP1B1 and 

ARNT [5,6] and, more recently, POR [16]). Despite strong evidence for the association of 

smoking and occupational BaP exposure with bladder cancer and the support in this study 

for urothelial activation of PAHs, the smoking-associated mutational signature seen in lung 

cancer has not been observed in bladder cancer [7,42]. This may be due to the tissue-

specific nature of extra-hepatic CYP activity (reviewed in [1]) and the role of other CYPs that 

might metabolise BaP [11] in human urothelium. This conclusion is supported by the 

efficacy of TMS inhibition which reduced EROD activity to 14%, BaP-7,8-dihydrodiol 

formation only to 46%, BaP-tetrol formation to 35% and BaP-DNA adduct formation to 21% 

relative to ITE-induced cells; suggesting that other enzymes not inhibited by TMS may play a 

role in BaP metabolism by the urothelium. 

Natural AHR ligands, such as the tryptophan metabolites indigo and indirubin (which are 

structurally similar to ITE), have been detected in urine from healthy patients [43] making 

them potential drivers of urothelial CYP1 activity. It is therefore theoretically possible that 

the coincidence of endogenous AHR ligands with urinary pro-carcinogens in the bladder 

might contribute to accelerated carcinogenesis in some patients  

No evidence was found to support a role for AHR in urothelial cytodifferentiation, which is 

known to be primarily driven by peroxisome proliferator-activated receptor γ (PPARγ) [44]. 

By contrast, adipocyte differentiation is also mediated by PPARγ and during that process 

AHR expression is lost [45] suggesting a functional maintenance of AHR by differentiated 

urothelium. 

To what extent urothelial (rather than hepatic) metabolism generates the mutagens that 

drive cancer initiation remains to be established in future studies. However, the temptation 

to resort to in vivo studies is flawed by the poor homology between human CYP1A1 protein 

and the rat/mouse/pig orthologs in the BaP interacting region (80.6%, 80.9% and 82.5%, 

respectively; Supplementary Figure 12). In particular, Asn-222 of CYP1A1 has evolved as a 

negatively charged aspartic acid in rats, mice and pigs. Asn-222 lies centrally in the five-residue 
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disruption of helix F that is unique to CYP1A1 and appears to modulate substrate movement, binding 

and orientation [46]. In addition, Asn-222 is thought to be within 5Å of BaP when bound by CYP1A1 

and involved in an extensive hydrogen bonding network that stabilises the binding pocket [46]. 

Taken together with the differences in rodent urinary tract physiology, with short duration 

of urinary storage, differences in urothelial cell cycle regulation and a low threshold for 

cancer initiation [47], this limits the validity of extrapolating rodent in vivo studies to 

humans. In this study, a more direct human line of evidence was pursued from 2D cultures 

of normal and malignant urothelium, via organoids to primary MIBC, offering an alternative 

route to the in vitro-in vivo paradigm. 

 

Conclusion 

It has been thought for decades that the metabolism of pro-carcinogens occurred in the 

liver and that bladder cancer was caused by the hydrolysis of conjugated metabolites in the 

urine or by enzymatic deconjugation in the urothelium. This study demonstrates the 

capacity of functionally-differentiated normal human urothelium to activate the pro-

carcinogen BaP locally to active intermediates capable of forming DNA adducts (i.e. dG-N2-

BPDE). The relative contributions of hepatic and urothelial metabolism to carcinogen 

activation should be re-evaluated to better understand their relative roles in bladder cancer 

initiation. Furthermore, the association between differentiation and xenobiotic metabolism 

is maintained in a sub-group of POR-overexpressing luminal MIBC of predicted high 

metabolic potential, suggesting these patients as candidates for prodrug therapies. 
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Figure Legends 

Figure 1 – (A) Western blotting of whole cell lysates found AHR protein was detectable at 

similar abundance in undifferentiated and differentiated NHU cells. (B) Immunofluorescence 

labelling of differentiated NHU cells treated with either a vehicle control or 1 µM ITE for 16 

h. AHR was distributed throughout cells in controls but was predominantly nuclear following 

ITE treatment. Scale bar = 100 µm. (C) Quantification of nuclear fluorescence intensity 

revealed a significant (p<0.001, Student’s t-test) increase in nuclear:cytoplasmic ratio of AHR 

following 16 h exposure to 1 µM ITE. n=3 experiments with >700 cells analysed per 

treatment; boxes show median and 95% confidence interval with error bars showing SD and 

outliers shown as dots. (D) RT-qPCR analysis of CYP1A1 and CYP1B1 transcript in NHU cell 

cultures treated with either vehicle control or 1 µM ITE for 24 h. In order to enable 

comparison of CYP1 transcript abundance, RT-qPCR data for urothelial cells are visualised in 

comparison with expression in whole normal human liver from pooled donors. ANOVA with 

Tukey-Kramer post test showed ITE-treatment provoked significant (p≤0.001) increases in 

CYP1A1 and CYP1B1 gene expression. Results are presented as mean ± SD (n = 6 

independent donor cell lines). 

 

Figure 2 - EROD activity assays demonstrated inducible CYP1-enzyme function in 

differentiated NHU cells.  EROD activity was not inducible in undifferentiated cultures. 

Differentiated NHU cell from 4 donors showed the same trend of 1 µM ITE-induced EROD-

activity peaking at 16 h and returning to control levels by 40 h. Results are presented as 

mean ± SD (n = 6 replicates per independent donor cell line). 

 

Figure 3 – (A) Differentiated NHU cells treated for 16 h with 1 µM ITE were assessed for 

EROD activity in the presence of increasing concentrations of the specific CYP1 inhibitor 

TMS. Linear regression had an R2 of 0.99 and the IC50 was 6.9 µM. Results are presented as 

mean ± SD (n = 3 independent donor cell lines with 6 replicates per donor). (B) 

Differentiated NHU cells treated for 16 h with 1 µM ITE were exposed to varying 

concentrations of ethoxyresorufin and TMS to generate a Lineweaver-Burk plot. The 

experiment was repeated in 3 independent donor cell lines; this figure shows representative 
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data from a single donor, values are the mean of duplicates. Trend-lines were derived from 

Michaelis fitted data. (C) The Ki for TMS against differentiated NHU cell EROD activity was 

estimated as 0.26 µM by identifying the X-axis intersect of the Km/Vmax trendline. 

 

Figure 4 – Western blotting of CYP1A1 normalised to GAPDH; and POR normalised to β-actin 

in NHU cell cultures. CYP1A1 was significantly inducible in undifferentiated cells and 

differentiated cultures (4.9 and 5.0-fold; p<0.05 & p<0.001, respectively) but reached 

significantly greater ITE-induced abundance in differentiated cells (1.9-fold p<0.01). BaP 

exposure alone did not induce CYP1A1 expression in undifferentiated cells but did 

significantly in differentiated cultures (4.2-fold; p<0.001). POR expression was on average 

2.2-fold (p<0.01) higher in differentiated cultures, but did not respond significantly to either 

ITE or BaP exposure. Results are presented as mean ± SD (n = 3 independent donor cell 

lines) with significance in expression assessed by ANOVA with Tukey-Kramer post-test. 

Representative Western blots shown from single donor. N/A, not applicable. 

 

Figure 5 – Schematic illustrating the metabolism of BaP by CYP1A1 with graphs showing 

data supporting active metabolism of BaP by differentiated NHU cells. (A) EROD activity was 

negligible in undifferentiated cultures. In differentiated NHU cells EROD was induced by 16 h 

1 µM ITE pre-treatment (42-fold; p<0.001) and inhibited to 14% of peak activity by 12 µM 

TMS (p<0.0001). n = 3 independent donor cell lines; six replicate experiments per donor. (B) 

HPLC analysis of BaP-7,8-dihydrodiol in NHU cultures exposed to 2 µM BaP for 6 h. 1 µM ITE 

pre-treatment of differentiated NHU cells significantly increased the abundance of BaP-7,8-

dihydrodiol in the culture medium compared to controls (2.7-fold; p<0.05) and 12 µM TMS 

reduced this to 46% (not significant). n = 3 independent donor cell lines; duplicate replicate 

experiments per donor. Representative chromatograms of the HPLC analysis are shown in 

Supplementary Figure 4. (C) HPLC analysis of BaP-tetrol-I-1 in NHU cultures exposed to 2 µM 

BaP for 6 h. 1 µM ITE pre-treatment of differentiated NHU cells significantly increased the 

abundance of BaP-tetrol in the culture medium compared to controls (4.1-fold; p<0.01) and 

12 µM TMS significantly reduced this to 35% of induced levels (p<0.05). Results are 

presented as mean ± SD (n = 3 independent donor cell lines; duplicate replicate experiments 
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per donor). Representative chromatograms of the HPLC analysis are shown in 

Supplementary Figure 4. (D) 32P-postlabelling analysis of BaP-DNA adducts in NHU cultures 

exposed to 2 µM BaP for 6 h. 1 µM ITE pre-treatment of differentiated NHU cells 

significantly increased the number of dG-N2-BPDE adducts per 108 nucleotides compared to 

controls (3.7-fold; p<0.001) and 12 µM TMS significantly reduced this (to 21% of induced 

levels; p<0.001). n = 3 independent donor cell lines; duplicate experiments per donor. 

Representative autoradiograms showing the DNA adduct profiles obtained by 32P-

postlabelling are shown in Supplementary Figure 5. 

For all panels, results are presented as mean ± SD, significance was assessed by ANOVA with 

Tukey-Kramer post-tests and cell lines from the same 3 donors were used for all 

graphs/biological end-points. 

 

Figure 6 – Analysis of NADPH:P450 oxidoreductase (POR) expression and CYP-activity in 

bladder cancer. (A) Immunoperoxidase labelling of POR was quantified in a group of 

“normal” non-neoplastic bladders (n=16) and compared with muscle invasive bladder 

cancer (MIBC; n=59) and organoid models of bladder cancer selected to represent POR 

suppressed (T24 & SCaBER) and over-expressing (RT4 & RT112) tumours. MIBC showed 

significant (p<0.05, Mann Whitney U test) suppression of mean POR expression; however, a 

group of outliers was noted which over-expressed POR (open circles, representing 11.9% of 

cases). (B) Classification of MIBC as either luminal or basal based on quantification of GATA3 

and KRT5/6 immunoperoxidase labelling was performed according to Dadhania et al. [33], 

reproducing the logistic regression analysis (LRA) and support vector machine (SVM) cut-off 

lines derived in that study. All POR over-expressing tumours (red circles) were classified as 

the more differentiated luminal type of MIBC. (C) Micrographs illustrating the POR 

immunoperoxidase labelling of normal bladder, MIBC and cancer cell line (RT4, RT112, T24 

& SCaBER) organ culture samples described in panel A. Scale bar represents 50 µm and 

applies to all images. (D) T24 & SCaBER cells generated peak EROD-activity of 1.6 & 19.5 nM 

resorufin/min/mg, respectively following ITE exposure. By contrast, 1 µM ITE-induced a 

peak EROD-activity of 89.3 & 83.1 nM resorufin/min/mg in the POR over-expressing RT4 & 

RT112 cell lines, respectively.  RT4 and RT112 EROD was significantly higher than the mean 
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of 60.0 nM resorufin/min/mg observed for differentiated NHU cells (n=8 donors; each data 

point is the mean of six replicate cultures per donor).  
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Figure 1 – (A) Western blotting of whole cell lysates found AHR protein was detectable at similar abundance 
in undifferentiated and differentiated NHU cells. (B) Immunofluorescence labelling of differentiated NHU cells 

treated with either a vehicle control or 1 µM ITE for 16 h. AHR was distributed throughout cells in controls 

but was predominantly nuclear following ITE treatment. Scale bar = 100 µm. (C) Quantification of nuclear 
fluorescence intensity revealed a significant (p<0.001, Student’s t2test) increase in nuclear:cytoplasmic ratio 

of AHR following 16 h exposure to 1 µM ITE. n=3 experiments with >700 cells analysed per treatment; 
boxes show median and 95% confidence interval with error bars showing SD and outliers shown as dots. (D) 
RT2qPCR analysis of CYP1A1 and CYP1B1 transcript in NHU cell cultures treated with either vehicle control or 
1 µM ITE for 24 h. In order to enable comparison of CYP1 transcript abundance, RT2qPCR data for urothelial 
cells are visualised in comparison with expression in whole normal human liver from pooled donors. ANOVA 
with Tukey2Kramer post test showed ITE2treatment provoked significant (p≤0.001) increases in CYP1A1 and 

CYP1B1 gene expression. Results are presented as mean ± SD (n = 6 independent donor cell lines).  
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Figure 2 	 EROD activity assays demonstrated inducible CYP1	enzyme function in differentiated NHU 
cells.  EROD activity was not inducible in undifferentiated cultures. Differentiated NHU cell from 4 donors 
showed the same trend of 1 µM ITE	induced EROD	activity peaking at 16 h and returning to control levels 

by 40 h. Results are presented as mean ± SD (n = 6 replicates per independent donor cell line).  
 

100x115mm (300 x 300 DPI)  

�

�

Page 30 of 33

John Wiley & Sons

Molecular Carcinogenesis

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

��

�

�

Figure 3 – (A) Differentiated NHU cells treated for 16 h with 1 µM ITE were assessed for EROD activity in the 
presence of increasing concentrations of the specific CYP1 inhibitor TMS. Linear regression had an R2 of 0.99 

and the IC50 was 6.9 µM. Results are presented as mean ± SD (n = 3 independent donor cell lines with 6 

replicates per donor). (B) Differentiated NHU cells treated for 16 h with 1 µM ITE were exposed to varying 
concentrations of ethoxyresorufin and TMS to generate a Lineweaver8Burk plot. The experiment was 

repeated in 3 independent donor cell lines; this figure shows representative data from a single donor, values 
are the mean of duplicates. Trend8lines were derived from Michaelis fitted data. (C) The Ki for TMS against 
differentiated NHU cell EROD activity was estimated as 0.26 µM by identifying the X8axis intersect of the 

Km/Vmax trendline.  
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Figure 4 – Western blotting of CYP1A1 normalised to GAPDH; and POR normalised to β!actin in NHU cell 
cultures. CYP1A1 was significantly inducible in undifferentiated cells and differentiated cultures (4.9 and 5.0!

fold; p<0.05 & p<0.001, respectively) but reached significantly greater ITE!induced abundance in 

differentiated cells (1.9!fold p<0.01). BaP exposure alone did not induce CYP1A1 expression in 
undifferentiated cells but did significantly in differentiated cultures (4.2!fold; p<0.001). POR expression was 
on average 2.2!fold (p<0.01) higher in differentiated cultures, but did not respond significantly to either ITE 
or BaP exposure. Results are presented as mean ± SD (n = 3 independent donor cell lines) with significance 
in expression assessed by ANOVA with Tukey!Kramer post!test. Representative Western blots shown from 

single donor. N/A, not applicable.  
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Figure 5 – Schematic illustrating the metabolism of BaP by CYP1A1 with graphs showing data supporting 
active metabolism of BaP by differentiated NHU cells. (A) EROD activity was negligible in undifferentiated 

cultures. In differentiated NHU cells EROD was induced by 16 h 1 µM ITE pre0treatment (420fold; p<0.001) 

and inhibited to 14% of peak activity by 12 µM TMS (p<0.0001). n = 3 independent donor cell lines; six 
replicate experiments per donor. (B) HPLC analysis of BaP07,80dihydrodiol in NHU cultures exposed to 2 µM 

BaP for 6 h. 1 µM ITE pre0treatment of differentiated NHU cells significantly increased the abundance of BaP0
7,80dihydrodiol in the culture medium compared to controls (2.70fold; p<0.05) and 12 µM TMS reduced this 

to 46% (not significant). n = 3 independent donor cell lines; duplicate replicate experiments per donor. 
Representative chromatograms of the HPLC analysis are shown in Supplementary Figure 4. (C) HPLC 

analysis of BaP0tetrol0I01 in NHU cultures exposed to 2 µM BaP for 6 h. 1 µM ITE pre0treatment of 
differentiated NHU cells significantly increased the abundance of BaP0tetrol in the culture medium compared 
to controls (4.10fold; p<0.01) and 12 µM TMS significantly reduced this to 35% of induced levels (p<0.05). 
Results are presented as mean ± SD (n = 3 independent donor cell lines; duplicate replicate experiments 

per donor). Representative chromatograms of the HPLC analysis are shown in Supplementary Figure 4. (D) 

32P0postlabelling analysis of BaP0DNA adducts in NHU cultures exposed to 2 µM BaP for 6 h. 1 µM ITE pre0
treatment of differentiated NHU cells significantly increased the number of dG0N20BPDE adducts per 108 

nucleotides compared to controls (3.70fold; p<0.001) and 12 µM TMS significantly reduced this (to 21% of 
induced levels; p<0.001). n = 3 independent donor cell lines; duplicate experiments per donor. 

Representative autoradiograms showing the DNA adduct profiles obtained by 32P0postlabelling are shown in 
Supplementary Figure 5.  

For all panels, results are presented as mean ± SD, significance was assessed by ANOVA with Tukey0Kramer 
post0tests and cell lines from the same 3 donors were used for all graphs/biological end0points.  
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Figure 6 – Analysis of NADPH:P450 oxidoreductase (POR) expression and CYP%activity in bladder cancer. (A) 
Immunoperoxidase labelling of POR was quantified in a group of “normal” non%neoplastic bladders (n=16) 
and compared with muscle invasive bladder cancer (MIBC; n=59) and organoid models of bladder cancer 

selected to represent POR suppressed (T24 & SCaBER) and over%expressing (RT4 & RT112) tumours. MIBC 
showed significant (p<0.05, Mann Whitney U test) suppression of mean POR expression; however, a group 

of outliers was noted which over%expressed POR (open circles, representing 11.9% of cases). (B) 
Classification of MIBC as either luminal or basal based on quantification of GATA3 and KRT5/6 

immunoperoxidase labelling was performed according to Dadhania et al. [33], reproducing the logistic 
regression analysis (LRA) and support vector machine (SVM) cut%off lines derived in that study. All POR 

over%expressing tumours (red circles) were classified as the more differentiated luminal type of MIBC. (C) 
Micrographs illustrating the POR immunoperoxidase labelling of normal bladder, MIBC and cancer cell line 
(RT4, RT112, T24 & SCaBER) organ culture samples described in panel A. Scale bar represents 50 µm and 

applies to all images. (D) T24 & SCaBER cells generated peak EROD%activity of 1.6 & 19.5 nM 
resorufin/min/mg, respectively following ITE exposure. By contrast, 1 µM ITE%induced a peak EROD%activity 

of 89.3 & 83.1 nM resorufin/min/mg in the POR over%expressing RT4 & RT112 cell lines, respectively.  RT4 
and RT112 EROD was significantly higher than the mean of 60.0 nM resorufin/min/mg observed for 

differentiated NHU cells (n=8 donors; each data point is the mean of six replicate cultures per donor).  
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