
This is a repository copy of Compositional and Local Livelock Analysis for CSP.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/126283/

Version: Accepted Version

Article:

Filho, M. S. Conserva, Oliveira, Marcel Vinicius Medeiros, Sampaio, A. C. A. et al. (1 more
author) (2018) Compositional and Local Livelock Analysis for CSP. Information Processing
Letters. ISSN 0020-0190

https://doi.org/10.1016/j.ipl.2017.12.011

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted Manuscript

Compositional and Local Livelock Analysis for CSP

M.S. Conserva Filho, M.V.M. Oliveira, A. Sampaio, Ana Cavalcanti

PII: S0020-0190(18)30003-6

DOI: https://doi.org/10.1016/j.ipl.2017.12.011

Reference: IPL 5622

To appear in: Information Processing Letters

Received date: 7 December 2016

Revised date: 10 August 2017

Accepted date: 30 December 2017

Please cite this article in press as: M.S. Conserva Filho et al., Compositional and Local Livelock Analysis for CSP, Inf. Process. Lett.

(2018), https://doi.org/10.1016/j.ipl.2017.12.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing

this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is

published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all

legal disclaimers that apply to the journal pertain.

Highlights

• Livelock freedom analysis for CSP can scale using local and compositional techniques.

• The approach avoids the traditional explicit state-space exploration of the system.

• The strategy is based on a local analysis of the shortest event sequences (traces) that represent a recursive behaviour in the CSP

model.

• We provide evidence of the efficiency of the proposed approach.

Compositional and Local Livelock Analysis for CSP

M. S. Conserva Filhoa, M. V. M. Oliveiraa, A. Sampaiob, Ana Cavalcantic

aUniversidade Federal do Rio Grande do Norte, Brazil
bUniversidade Federal de Pernambuco, Brazil

cUniversity of York, UK

Abstract

The success of component-based techniques for software construction relies on
trust in the emergent behaviour of the compositions. Here, we propose an
efficient correct-by-construction technique for building livelock-free CSP models.
Its verification conditions are based on a local analysis of the shortest event
sequences (traces) that represent a recursive behaviour in the CSP model. This
affords significant gains in performance in model checking. We evaluate our
strategy based on models of the Milner’s scheduler and the dining philosophers.

Keywords: Process Algebra, Divergence, Model Checking, Components

1. Introduction1

Compositional modelling and verification approaches are popular [4], but2

rely on trust in the emergent behaviour of the compositions. Process algebras3

are among the adopted formalisms. CSP [6, 10] is a well established process al-4

gebra to model and verify concurrent systems. CSP offers consolidated semantic5

models that support a wide range of verifications, including livelock freedom.6

A system is livelock free (divergence free) if there exists no state from which it7

internally computes through an infinite sequence of internal actions [10].8

The main approach to prove divergence freedom requires a global analysis of9

the system. This strategy is automated for CSP, for instance, by FDR4 [5]. One10

alternative is a static analysis of the syntactic structure of a process [9]. For11

that, syntactic rules are proposed either to classify CSP systems as livelock-free12

or to report an inconclusive result. This approach is implemented in SLAP [9].13

We present a technique based on a local analysis, in which we can iden-14

tify livelock situations when compositions are being performed, predicting, by15

construction, global property based on known local properties of the compo-16

nents [1]. Our strategy aims at reducing complexity for verifying the absence17

of divergence, especially comparing with the approach in [9]. We illustrate our18

technique based on models of the Milner’s scheduler and the dining philosophers,19

and show that it outperforms both FDR4 and SLAP. In cases in which livelock20

Email address: madiel@ppgsc.ufrn.br (M. S. Conserva Filho)

Preprint submitted to Information Processing Letters January 11, 2018

freedom is not ensured, we either identify the possibility of divergence or report21

an inconclusive result. This incompleteness is the trade-off for scalability.22

The next section briefly describes our evaluation strategy. Section 3 describes23

our technique, whose performance is evaluated in Section 4.24

2. Material and methods25

The demonstration of the usefulness and efficiency of our technique consists26

of a comparative analysis of three different scenarios: (i) the traditional global27

analysis of FDR4, (ii) the static livelock-analysis of SLAP, and (iii) our local28

livelock analysis, which is presented in the next section. We have developed two29

case studies: the Milner’s task scheduler [7], which can be modelled as a ring of30

cells with pairwise synchronisation, and the dining philosophers [10]. All CSP31

scripts used in the case studies can be found at goo.gl/mAZWXq. We have used32

a server with 4 core AMD Phenom II, and 8 GB of RAM in a Ubuntu system.33

3. Theory34

In CSP, when composing divergence-free processes, divergent behaviour can35

arise from the use of hiding [10]. For a given CSP process P and a set of36

events X , the process P \ X converts visible occurrences of events of P in X37

into internal events. This transformation may yield an infinite loop of internal38

events. For instance, P = (a → P) \ {a} is defined in terms of the prefix39

operator (→): it engages in event a and then recurses, but it diverges because40

the event a is hidden, hence, P indefinitely performs internal events without41

communicating with its environment. If a process can engage in an unbroken42

sequence of events from a set X , we must ensure that X cannot be hidden.43

The hiding operator is also implicitly used in a particular kind of parallel44

composition: the linked parallel composition P [a ↔ b]Q , in which P and Q45

proceed in parallel with communications on a in P becoming hidden synchroni-46

sations with communications on b in Q . Communications on other channels are47

interleaved: they do not require synchronisation. In general, multiple channels48

may be linked as, for example, in P [a ↔ b, c ↔ d]Q .49

We propose a constructive approach which guarantees that, for livelock-50

free processes that obey certain conditions and are composed pairwisely using51

linked parallel, the resulting composition is livelock-free. To achieve scalability,52

we perform an optimisation (which we refer in Figure 1 as OP) that prunes53

the alternative behaviours of the resulting composition with interleaved events,54

choosing only one of the alternatives.55

Our approach is based on three main verifications, which are systematically56

applied (see Figure 1): the Simple Verification (SV) ensures livelock freedom57

based on an individual analysis of the processes involved in the composition.58

The absence of livelock is guaranteed if one of the processes is livelock-free after59

hiding its linking events locally. If that fails, the Complex Verification (CV)60

checks if the linked processes are able to communicate in an infinite loop via61

2

Figure 1: BPM Model of the Livelock Analysis for Linked Parallel Composition

the linked (internal) events. If they are, we have a livelock. Otherwise, if the62

optimisation (OP) has not been applied, the composition is livelock-free. If,63

however, the optimisation has been applied, our strategy guarantees livelock64

freedom only if we have a Safe Multiple Composition (SMCV), which does65

not link events on a many-to-many fashion. Otherwise, the interleaved events66

pruned by our optimisation may lead the system to divergence. Our strategy67

is, therefore, inconclusive in such cases. In what follows, we present the basic68

definitions used in our technique and formally describe these local verifications.69

3.1. Basic Definitions70

Our method considers developments that use livelock-free basic processes,71

which can be described using most of the CSP main operators, including con-72

ditionals, tail and mutual recursions. We also consider parameters. Further73

information on basic processes can be found in [3]. Parallelism (and hiding) is74

achieved by composing processes (either basic or resulting from previous com-75

positions) using the linked parallel composition.76

The first step of our technique is to identify the infinite behaviours of a given77

process. For that, we use a pair (tr ,mip) of sequences (traces). Its first element78

is a trace that leads a given process to a recursive behaviour. The second one79

is a minimal interaction pattern of a given process, that is, the shortest finite80

sequence of events that represents the recursion itself. The set XIP(P) contains81

all possible pairs (tr ,mip) of the process P .82

To exemplify our method, we introduce a classical concurrent system, the83

dining philosophers [10]. It consists of philosophers sitting at a round table that84

need to acquire a pair of shared forks before eating. The behaviour of each85

philosopher and each fork is modelled as a process Pi or Fi for values i from86

a set ID of philosopher and fork identifiers. We consider two philosophers and87

two forks and use ID = {1, 2}. A channel fk : ID .ID .EV , where EV = {U ,D}88

defines events fk .i .j .e that indicate that the fork i is put up or down, depending89

on whether e is U or D , by the philosopher j . The fork processes are as follows.90

F1 = fk .1.1.U → fk .1.1.D → F1 ✷ fk .1.2.U → fk .1.2.D → F1

F2 = fk .2.2.U → fk .2.2.D → F2 ✷ fk .2.1.U → fk .2.1.D → F2

Initially, a fork can be picked up by either philosopher. Once it is picked up,91

it can only be put down by the same philosopher. Accordingly, the process92

3

F1 offers a deterministic choice (✷): it engages either on the events fk .1.1.U93

or fk .1.2.U . The prefix operator (→) states that the corresponding down94

event (D) is offered afterwards. The process recurses after the down event.95

Hence, XIP(F1) = {(〈〉, 〈fk .1.1.U , fk .1.1.D〉), (〈〉, 〈fk .1.2.U , fk .1.2.D〉)}. In this96

example, as F1 returns to its initial state, tr is the empty trace (〈〉).97

Similarly, pfk .j .i .e records the action e on fork j by philosopher i . The98

channel wk : ID defines events wk .i , indicating that the philosopher i has just99

woken up. Finally, the channel lf : ID .LF , where LF = {T ,E} defines events100

lf .i .l , indicating that the philosopher i is either thinking (T) or eating (E).101

P1 = wk .1 → PS1
PS1 = lf .1.T → pfk .1.1.U → pfk .2.1.U → lf .1.E → pfk .1.1.D →

pfk .2.1.D → PS1
P2 = wk .2 → PS2
PS2 = lf .2.T → pfk .1.2.U → pfk .2.2.U → lf .2.E → pfk .1.2.D →

pfk .2.2.D → PS2

The process P1 initially performs the event wk .1 and then behaves as PS1,102

which represents the recursive behaviour of the philosopher: before eating, he103

thinks and picks the forks up; after eating, he puts the forks down. In this case,104

XIP(P1) = {(〈wk .1〉, 〈lf .1.T , pfk .1.1.U , pfk .2.1.U , lf .1.E , pfk .1.1.D , pfk .2.1.D〉)}.105

We are now able to calculate which events of a given process can be hidden106

without introducing livelock. The function Allowed(P) identifies all sets of107

events that can be individually hidden from P . Here, Σ is the set of all possible108

events, MIP(P) is the set that contains only the second element of the pairs109

(tr , mip) in XIP(P), and ran(s) is the set of the elements of the sequence s.110

Definition 3.1 (Allowed). Let P be a livelock-free CSP process. The set of111

sets of events of P that can be hidden with no introduction of divergence is given112

by Allowed(P), which is defined as follows:113

Allowed(P) = {cs : PΣ | ¬ ∃ s : MIP(P) • ran(s) ⊆ cs}

In our example, hiding either {fk .1.1.U , fk .1.1.D} or {fk .1.2.U , fk .1.2.D} from114

F1 introduces divergence because there exists an element in MIP(F1) that only115

has events in such sets; they are not in Allowed(F1). Our concern here is only116

with the sequences in MIP(P), since livelock may be introduced if we hide all117

elements of a sequence that is recursively offered by P . The first element of the118

pair (tr ,mip) is not relevant in this context because livelock is never introduced119

if we hide all elements of a sequence that is offered a finite number of times. We120

are now able to formally define our local verifications, as illustrated in Figure 1.121

3.2. Simple Verification122

As an example, we consider PComp1 = P1[pfk .1.1 ↔ fk .1.1]F1, which is123

equivalent to P1[pfk .1.1.U ↔ fk .1.1.U , pfk .1.1.D ↔ fk .1.1.D]F1. We observe124

that {pfk .1.1.U , pfk .1.1.D} is in Allowed(P1) and {fk .1.1.U , fk .1.1.D} is not125

in Allowed(F1). Nevertheless, the composition is livelock-free because, after126

4

synchronisation on pfk events, P1 necessarily has to engage on an independent127

visible event, such as lf .1.E . We present below our first result, which justifies our128

claim in this example. Here, α(P) is the set of events that P can communicate.129

Proposition 3.1 (SV). Let P and Q be two livelock-free CSP processes with130

α(P) ∩ α(Q) = ∅, and I = {i1, ..., in} and O = {o1, ..., on} two disjoint sets131

of events (I ∩ O = ∅). If either I ∈ Allowed(P) or O ∈ Allowed(Q), then the132

composition P [i1 ↔ o1, ..., in ↔ on]Q is livelock free.133

This proposition states that, if any of the connecting sets of events used in the134

composition belongs to the set of Allowed events of the corresponding process,135

the linked parallel composition is livelock-free.136

3.3. Complex Verification137

If the restriction indicated in Proposition 3.1 does not hold, we have local138

possibilities of livelock. This, however, does not necessarily introduce livelock139

because the composition diverges only if both processes synchronise indefinitely140

on the composed events. As an example, we consider the following processes.141

P3 = a → P4

P4 = b → c → P4

Q3 = e → Q4

Q4 = f → Q3

Here, we have XIP(P3) = {(〈a〉, 〈b, c〉)} and XIP(Q3) = {(〈〉, 〈e, f 〉)}. Neither142

{b, c} is in Allowed(P3) nor {e, f } is in Allowed(Q3). Therefore, if we hide the143

set of events {b, c} in P3, livelock is introduced. The same takes place when we144

hide {e, f } in Q3. However, if we perform the composition P3[b ↔ f , c ↔ e]Q3,145

livelock is not introduced because we have a deadlock.146

To make this verification, we consider ProjXIP(P , cs), which identifies the147

pairs (tr ,mip) in XIP(P) in which mip has only elements in cs. With cs as148

the set of events hidden in a composition of processes P and Q , we identify the149

sequences that may cause livelock using ProjXIP(P , cs) and ProjXIP(Q , cs) as150

described next. Since the elements that are not in cs do not contribute to the151

synchronisations, they are removed from tr in the pairs defined by ProjXIP .152

To check for the possibility of (indefinite) synchronisation between parallel153

processes, we compare their sets of pairs defined by ProjXIP and identify the154

possibility of matching communications on the linked events. Since these are155

(potentially) different events, like b and c, and e and f in the example above,156

we rename the pairs of traces in ProjXIP(P) using the function RenXIP(P , f).157

Nevertheless, only using RenXIP is not enough to compare the elements of the158

pairs. As an example, we consider the following CSP processes.159

P5 = a.1 → P6

P6 = a.2 → a.1 → P6

Q5 = b.1 → Q6

Q6 = c.1 → c.2 → Q6

Here, we have ProjXIP(P5, {a}) = {(〈a.1〉, 〈a.2, a.1〉)} and ProjXIP(Q5, {c}) =160

{(〈〉, 〈c.1, c.2〉)}. We use renaming functions f1 = {a.1 �→ x1, a.2 �→ x2} and161

f2 = {c.1 �→ x1, c.2 �→ x2} so that the linked events in P5[a ↔ c]Q5 are renamed162

5

to the same fresh events x1 and x2. The choice of names x1 and x2 is arbitrary.163

With these renaming functions, we have RenXIP(P5, f1) = {(〈x1〉, 〈x2, x1〉)}164

and RenXIP(Q5, f2) = {(〈〉, 〈x1, x2〉)}.165

Renaming the projected pairs is still not enough to identify the matching166

in these traces directly. In this case, before the recursion, the trace in tr of167

RenXIP(P5, f1) synchronises with the first element in mip of RenXIP(Q5, f2).168

After that, an infinite loop is reached due to the synchonisation of the mip169

〈x2, x1〉 of RenXIP(P5, f1) with 〈x2, x1〉, which is other possible behaviour in170

which the loop can be observed in RenXIP(Q5, f2). That is, besides the origi-171

nal pair in RenXIP(Q5, f2), we also can observe the recursion through the pair172

(〈x1〉, 〈x2, x1〉). For that, we consider RenXIP+, which identifies all pairs ob-173

tained from those in RenXIP that lead to a loop. They are possibilities in which174

the original pairs can perform the loops. With this, we identify that P5 and Q5175

communicate continuously via internal synchronisations on a and c.176

Our strategy uses these enriched sets to identify a Minimum Common In-177

teraction Pattern (MCIP) because we only need to perform this verification178

until the first minimum sequence is found; it identifies the first trace that leads179

the composition to divergence. The function MCIP(S1,S2) applies to two en-180

riched sets of projected renamed pairs, S1 and S2, and identifies the commom181

sequences that can be reached by the concatenation of the elements of tr with182

the arbitrary concatenation of the elements of mip of both sets. In our example,183

the minimum commom sequence is 〈x1, x2, x1〉.184

We now present our second main result for ensuring the absence of divergence185

for non-trivial linked parallel compositions.186

Proposition 3.2 (CV). Let P and Q be two livelock-free CSP processes with187

α(P)∩α(Q) = ∅, I = {i1, ..., in} and O = {o1, ..., on} two disjoint sets of events,188

X = {x1, ..., xn} a set of fresh event names, and f1 = {i1 �→ x1, ..., in �→ xn} and189

f2 = {o1 �→ x1, ..., on �→ xn} two renaming functions from events to fresh event190

names. If MCIP(RenXIP(P , f1)
+
,RenXIP(Q , f2)

+) = ∅, then the composition191

P [i1 ↔ o1, . . . , in ↔ on]Q is livelock-free; otherwise, there is a livelock.192

Proposition 3.2 states that livelock is not introduced if there exists no com-193

mon sequence that can be reached by the concatenation of the elements of any194

enriched renamed projected pairs of the processes involved in the composition.195

Otherwise, besides indicating the possibility of identifying livelock compositions,196

we also capture the traces that lead the composition to divergence.197

Although the method so far is complete, it does not scale for complex com-198

positions. We, therefore, consider an optimisation that prunes the alternative199

behaviours induced by the parallelism. With this, we lose completeness and200

need to consider a more elaborate strategy, but this is the trade-off for scala-201

bility. If the optimisation has been performed, the verification is based on the202

identification of a specific pattern of composition, as discussed next.203

3.4. Safe Multiple Composition Verification204

In CV, besides analysing the synchronisation of the processes, we also have to205

take into account the possible combinations of independent (interleaved) events206

6

that can be performed after a parallel composition. As an example, we consider207

the following livelock-free CSP processes.208

P7 = a → b → P7 ✷ c → P7 Q7 = d → e → Q7 R7 = f → g → R7

After synchronising on a and d , the composition PQ7 = P7[a ↔ d]Q7 needs to209

engage both in b and in e before it recurses. This can happen in two different210

ways: 〈b, e〉 or 〈e, b〉. In general, we have an interleaving on events that do not211

require synchronisation, and, from a practical point of view, the consideration212

of theses traces can lead to an explosion on the number of possible behaviours.213

To make our strategy scalable, we consider just one of the traces that can arise214

from the interleaving. As a result, we have, XIP(PQ7) = {(〈〉, 〈b, e〉), (〈〉, 〈c〉)}.215

The analysis of a further composition of PQ7 may be impacted by this. For216

example, in PQR7 = PQ7[b ↔ g , e ↔ f]R7, there is no divergence, according217

to our strategy as presented so far; however, if we had considered the pair218

(〈〉, 〈e, b〉) as part of XIP(PQ7), then our strategy would identify a divergence219

that indeed exists. The optimisation may cause the livelock analysis to fail.220

This problem can be circumvented by imposing restrictions on the composi-221

tion. Our strategy requires that, in every composition, each basic process on the222

left-hand side is linked with just one basic process on the right-hand side, and223

vice-versa. The verification of this requirement uses the notion of Basic Process224

Alphabet (BPA(P)): a set that contains the alphabets of the basic processes of225

a given process P . Each element of BPA(P) is the alphabet of a distinct basic226

process of P . In our example, we have:227

BPA(P7) = {{a, b, c}} BPA(Q7) = {{d , e}} BPA(R7) = {{f , g}}

The resulting BPA of a composition is the union of the BPAs of the processes228

involved in the composition with the linked events removed from them. For229

example, BPA(PQ7) = {{b, c}, {e}}.230

The analysis of compositions that only connect basic processes is not affected231

by our optimisation. This is because in our optimised verification, we still232

consider all pairs of basic processes. It is the compositions of composed processes233

that are affected, that is, compositions that originate different traces that always234

communicate on the same events. As an example, we consider PQR7 presented235

above. It does not satisfy our restriction because the left linked events b and e236

are originated from different basic processes in PQ7 (b ∈ α(P7) and e ∈ α(Q7)).237

On the other hand, PQR8 = PQ7[b ↔ f , c ↔ g]R7 satisfies our restriction238

because R7 is a basic process and the composition only connects events from239

P7, which is also a basic process in PQ7. For such compositions, the search for240

an MCIP is correctly performed since all traces that may lead the composition241

to divergence are verified because the traces of basic processes are not optimised;242

they do not have parallel composition in their behaviours.243

Our restriction, however, also allows connections of an arbitrary number244

of basic processes as long as they are effectively one-to-one connections. This245

condition is formally defined below. The expression R(| S |) is the relational246

image of the relation R : X ↔ Y on the set S ⊆ X .247

7

Definition 3.2 (Multiple Basic Processes Composition). Let P and Q248

be two livelock-free CSP processes with α(P)∩α(Q) = ∅, and I = {i1, ..., in} and249

O = {o1, ..., on} two disjoint sets of events (I ∩O = ∅). Then, the composition250

P [i1 ↔ o1, ..., in ↔ on]Q is a Multiple Basic Processes Composition if:251

MBPC (P ,Q) ∧ MBPC (Q ,P),where
MBPC (X ,Y) =

∀ p : BPA(X) •
¬ ∃ q1, q2 : BPA(Y) | q1 �= q2 • q1 ∩ L(| p |) �= ∅ ∧ q2 ∩ L(| p |) �= ∅

where L = {(i1, o1), ..., (in , on)}.

This condition requires that for every BPA of P , there exists at most one BPA252

of Q that is being linked to it, and vice-versa.253

Finally, we present our result for ensuring livelock-free linked parallel com-254

position for cases in which an optimisation has been performed.255

Proposition 3.3 (SMCV). Let P and Q be two livelock-free CSP processes256

with α(P) ∩ α(Q) = ∅, I = {i1, ..., in} and O = {o1, ..., on}, two disjoint sets257

of events (I ∩ O = ∅), X = {x1, . . . , xn} a set of fresh event names, and258

f1 = {i1 �→ x1, ..., in �→ xn} and f2 = {o1 �→ x1, ..., on �→ xn} two renam-259

ing functions from events to fresh event names. If the linked parallel composi-260

tion P [i1 ↔ o1, . . . , in ↔ on]Q is a Multiple Basic Processes Composition and261

MCIP(RenXIP(P , f1)
+
,RenXIP(Q , f2)

+) = ∅, then the linked parallel composi-262

tion P [i1 ↔ o1, . . . , in ↔ on]Q is livelock free.263

Proposition 3.3 states that a linked parallel composition is livelock-free in cases264

in which we do not have communications of basic processes on a many-to-many265

fashion and there exists no MCIP . Otherwise, our strategy is inconclusive.266

We have implemented an algorithm that supports livelock verification using267

these concepts. Further details can be found elsewhere [3].268

4. Results and Discussion269

The comparative analysis to evaluate our strategy has been conducted for270

a livelock-free Milner’s scheduler system and for a dining philosopher system.271

Table 1 and Table 2 summarise our results, where N is the size of the config-272

uration of these systems (for instance, on the first example it is the number of273

cells and in the second the number of philosophers and forks), and # represents274

the number of compositions. Furthermore, time is in seconds, * indicates one275

hour timeout, and ** indicates memory overflow.276

N # FDR4 SLAP CLLA
10 9 1,68 0.39 0.72
100 99 ** ** 1.98
1,000 999 ** ** 7.75
2,000 1,999 ** ** 12.72

Table 1: Results for the Milner’s Scheduler

N # FDR4 SLAP CLLA
10 19 ** 19.72 1.49
100 199 ** * 4.21
1,000 1,999 ** ** 53.40
10,000 10,999 ** ** 3451.02

Table 2: Results for the Dining Philosopher

8

The results show that FDR4 and SLAP are unable to deal with large syn-277

chronous models. On the other hand, our method (CLLA) verified, for instance,278

the absence of divergence for 10,000 philosophers and 10,000 forks (20,000 CSP279

processes and 10,999 linked parallel compositions) in less than 58 minutes. This280

is a promising result in dealing with large and complex systems.281

In [10], a technique called the order rule is proposed to check the absence of282

livelock. In summary, a network is proved to be livelock-free if there is a specific283

order on its components such that no component can communicate exclusively284

and infinitely with components lower than it in this order. This strategy has285

not been implemented so far, and, consequently, no practical experiment was286

provided in this work. Our strategy is not restricted to this communication287

pattern and analyses the components pairwise to improve performance.288

Another classical and extremely relevant property in concurrent systems is289

deadlock freedom. Approaches to local and compositional deadlock analysis290

have gained significant attention in the literature, including, for instance [2, 8].291

As in the case of livelock, the approaches are efficient, but incomplete.292

We plan to extend our technique to consider other kinds of parallel compo-293

sition. Of course, the impact in efficiency of these improvements would need to294

be analysed. Additional case studies are also in our research agenda.295

References296

[1] M. Abadi and L. Lamport. Composing specifications. TOPLAS, 15:73–132, 1993.297

[2] P. Antonino, T. Gibson-Robinson, and A.W. Roscoe. Efficient Deadlock-Freedom298

Checking Using Local Analysis and SAT Solving. In IFM, pages 345–360.299

Springer, 2016.300

[3] M. Conserva, M. Oliveira, A. Sampaio, and Ana Cavalcanti. Composi-301

tional and Local Livelock Analysis for CSP. Technical report, UFRN, 2017.302

http://goo.gl/mAZWXq.303

[4] I. Crnkovic, M. Chaudron, and S. Larsson. Component-based development pro-304

cess and component lifecycle. In ICSEA. IEEE, 2006.305

[5] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A.W. Roscoe. FDR3 - A306

Modern Refinement Checker for CSP. In TACAS, pages 187–201, 2014.307

[6] C. A. R. Hoare. Communicating sequential processes. ACM, 1978.308

[7] R. Milner. Communication and concurrency. Prentice hall, 1989.309

[8] M.V.M. Oliveira, P. Antonino, R. Ramos, A. Sampaio, A. Mota, and A.W.310

Roscoe. Rigorous development of component-based systems using component311

metadata and patterns. FAC, pages 1–68.312

[9] J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell. A static analysis313

framework for livelock freedom in CSP. LMCS, 2013.314

[10] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.315

9

