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Abstract

Despite the long history of Natural Language Generation (NLG) research, the potential
for influencing real world behaviour through automatically generated texts has not re-
ceived much attention. In this paper, we present SaferDrive, a behaviour change support
system that uses NLG and telematic data in order to create weekly textual feedback for
automobile drivers, which is delivered through a smartphone application. Usage-based
car insurances use sensors to track driver behaviour. Although the data collected by such
insurances could provide detailed feedback about the driving style, they are typically with-
held from the driver and used only to calculate insurance premiums. SaferDrive instead
provides detailed textual feedback about the driving style, with the intent to help drivers
improve their driving habits. We evaluate the system with real drivers and report that
the textual feedback generated by our system does have a positive influence on driving
habits, especially with regard to speeding.

1 Introduction

The use of Natural Language Generation (NLG) in feedback and Behaviour Change

Support Systems (BCSS) has proven to be helpful in different fields of application

(cf. Section 2.2). Despite the existence of several BCSS for ecological driving (cf.

Section 2.1) and a few NLG systems that summarise spatio-temporal data (cf.

Section 2.3.1), there has been no effort to date to create a BCSS for drivers based

on NLG. This is despite the fact that drivers, as suggested by Braun, Reiter, and

Siddharthan (2015), would enjoy such a system and even prefer it over existing

numerical or map-based feedback.

In this article, we present SaferDrive, the first behaviour change support system
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that uses natural language generation and telematic data in order to create textual

driver feedback. SaferDrive generates weekly feedback reports that are delivered to

the driver through a smartphone application (cf. Figure 1 for a screenshot). We

report the general design of the system and the psychological assumptions it is

based on. Moreover, we report the results of a real-world evaluation of the system

which shows that it does positively influence driving habits, especially with regard

to speeding.

Driving Report 31 August - 6 September 

You drove 170 kilometres in five hours and 40 minutes during the last week. 

You managed to reduce the number of acceleration incidents per kilometre 

by nearly 10%, well done!  

 

 

You didn't do any serious speeding, well done! However, you speeded on 31 

occasions, 15 times on weekdays on King Street.  

You accelerated or braked harshly 103 times, mostly on weekdays on A91 

and on weekdays on roads with 30 mph speed limit in Aberdeen.  

Fig. 1: SaferDrive feedback report1

1.1 Motivation

Although the number of road deaths in the UK is steadily decreasing, 1,730 people

died in road accidents in 2015 and 22,144 were seriously injured, according to the

1 For privacy reasons, this report is based on mock-up data.
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Department for Transport (2016). Nearly 33% of those who died were under the

age of 30.

In modern cars, numerous driving assistance systems are available to detect and

resolve dangerous situations. Although some of these systems have been available

for decades, such as the lane departure warning (LDW) system, which was first

introduced to the consumer market by Mitsubishi Motors in 1992 (Bhatia, 2003),

they still have a considerably low distribution. In Germany, for example, only 4% of

all new cars sold in 2013 were equipped with LDW systems, according to Endlein,

Trede, and Letzner-Friedlein (2014). And with the average car in the UK being 7.59

years old (Centre for Automotive Management, 2013), even once the majority of new

cars are equipped with these systems, it will presumably take decades until these

technologies reach a significant market penetration, particularly among younger

drivers. Therefore, it is important that research attempts to develop inexpensive

technologies which can be rapidly deployed to address the ever important issue of

road safety.

SaferDrive attempts to provide a contribution to this goal by examining and

evaluating the possibility of influencing driving behaviour through textual driver

feedback. With the growing popularity of so-called telematic car insurances (cf.

Section 1.2) and the upcoming EU-legislation “eCall”, which will make telematic

sensors mandatory in new cars from April 2018 (Riederer, 2014), an increasing

number of drivers already record the data which can be used to help them improving

their driving.

1.2 Telematic Car Insurances

So-called “black box” or “telematic” car insurances are becoming more and more

popular, especially among young drivers. Insurance companies expect that by 2020

nearly 40% of all car insurances in the UK will be telematic (Rose, 2013). Telematic

insurances use different sensors installed in the car to track the individual driving

style of their customers. Instead of calculating insurance premiums based on sta-

tistical risk groups, insurance companies can use these data to create individual

risk profiles and calculate insurance premiums accordingly. This offers drivers who

belong to a high-risk group, such as young male drivers, the opportunity to save

money. Very detailed feedback could be produced from these data, which could be

able to help drivers to improve their driving and hence road safety. However, the

feedback insurance companies give to their customers, if they give any feedback

at all, is often very sparse: currently, two state-of-the-art versions of driver feed-

back are utilised by large insurance companies. Policies like AXA Drivesave (cf.

Figure 2a) and Aviva Drive provide scores, e.g. from 0 to 100, in categories such

as “Anticipation”, “Smoothness”, “Pace” and “Calmness”. Policies like Intelligent

Marmalade (cf. Figure 2b) provide maps in which incidents are marked with pins.

As demonstrated by Braun et al. (2015), neither of these feedback formats are per-

ceived as very helpful by drivers: in a study with 21 participants, three types of

feedback (text, map, and score) were presented to each participant for four datasets.

13 participants chose textual feedback as their first preference, 4 the map, and 4
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the score. Besides being perceived as more helpful, the textual feedback was also

perceived as more encouraging and concrete than the other two feedback types.

(a) AXA Drivesave app (b) Intelligent Marmalade app

Fig. 2: State-of-the-art driver feedback

2 Related Work

2.1 Automotive Behaviour Change Support Systems

Most BCSS in the automotive domain focus on ecological aspects of driving rather

than road safety and all of them differ from SaferDrive with regard to the form of

feedback presentation.

The CarCoach project by Sharon, Selker, Wagner, and Frank (2005), for example,

used a broad range of sensors, such as cameras, pressure sensors, GPS, and infor-

mation provided by the car (e.g. gear and turn signal state), to track the behaviour

of the driver. Although the system also monitored fuel efficiency, its main focus

was on road safety. It attempted, for example, to identify turns without signalling

or driver distraction. CarCoach provided immediate feedback to the driver in three

different forms: visual (lights), acoustic (spoken messages), and haptic (vibration).

As a study by Arroyo, Sullivan, and Selker (2006) has demonstrated, the immediate

feedback from the CarCoach system can potentially increase the distraction of the

driver and its feedback could be perceived as frustrating. CarCoach also used many

additional sensors that are not usually available in cars, making it expensive.

DriveGain is a commercial smartphone application that was evaluated in a study

by Tulusan, Staake, and Fleisch (2012). The app uses the GPS receiver and the

acceleration sensor of phones to calculate scores from 0 to 100 in the categories

acceleration, braking and speed, as well as a so-called overall “Journey Score”,
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resulting in an app that is very similar to the feedback apps used by insurance

companies. The study with 50 participants, all of them corporate car drivers, found

an average improvement of 3.23% in fuel efficiency among subjects during the eight

week test period.

A system that used both instant and non-instant feedback was developed by

Boriboonsomsin, Vu, and Barth (2010). The system used a GPS receiver and data

provided by the car to give instant feedback regarding fuel consumption and CO2

emissions and provides advice such as “shift gear sooner”, “maintain steady speed”,

or “accelerate softly”. Following each trip, a summary was generated which included

information such as the overall fuel consumption, the overall CO2 emissions, the

distance driven, and the average speed. A study with 20 participants demonstrated

a 6% decrease in fuel consumption in cities and a 1% decrease on highways.

2.2 NLG feedback systems

Although no feedback systems or BCSS currently exist within the driving domain

that use NLG, there are many such systems in other domains that have proven to

be successful.

2.2.1 STOP

The STOP system is one of the very few well-documented cases of a BCSS that

failed (Reiter, Robertson, and Osman, 2003). In order to encourage people to stop

smoking, STOP generated tailored smoking cessation letters based on the responses

to a smoking questionnaire. In an extensive clinical trial, more than 2,500 smokers

participated and were randomly split among three groups. One group received tai-

lored letters, one group received non-tailored letters, and one group did not receive

any letters at all. After the 20 month trial period, only 89 participants could be

confirmed as new non-smokers. Broken down by groups, 3.5% of the tailored group,

4.4% of the non-tailored group and 2.6% of those who did not receive any letters

stopped smoking. This indicated that participants who received non-tailored let-

ters were more likely to stop smoking than participants that received tailored letters

from the NLG system.

2.2.2 SkillSum

Despite such drawbacks, many other NLG systems, such as SkillSum by Williams

and Reiter (2008), have been shown to be successful. SkillSum generated reports

about reading skills for low-skilled readers. Obviously, based on the type of au-

dience, the readability of the generated texts was crucial. But there was also a

psychological challenge since bad results regarding basic reading skills could easily

insult and demotivate people. An evaluation of the system showed that 92% of

the participants found the reports generated by SkillSum were more useful than

canned texts when they saw anonymized reports for someone else. However, only

55% of the participants preferred the text from the system when it was related to
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their own performance. More importantly, two participants of the study became

distressed and upset by their feedback, which underlines the importance of psycho-

logical consideration during the creation of a feedback system. SkillSum was based

on the GIRL (Generator for Individual Reading Levels) project (Williams, 2004),

which focused on the effects of changes on the discourse level (e.g. order, length,

etc.) on readers with different reading abilities.

2.2.3 Student Feedback

Gkatzia, Hastie, Janarthanam, and Lemon (2013) developed a statistical NLG sys-

tem that generated feedback for students based on time-series data. Each participat-

ing student was asked to complete a short questionnaire on a weekly basis, which in-

cluded questions regarding the number of upcoming deadlines and attended classes.

This information was combined with marks from a weekly assignment. Moreover,

feedback generated from 12 different lectures for three different sets of student data

was gathered and used to train the system. In an evaluation, the system was com-

pared against three baseline conditions: system 1 used a rule-based approach with

hand-crafted rules and templates. System 2 used a brute-force approach by ran-

domly creating 10,000 different feedbacks and searching for the one that fit best.

Finally, the third baseline condition was a text produced by a lecturer. 17 computer

science students were asked to compare and rank the different approaches. In the

ranking, the rule-based approach was preferred, while the learned system and the

lecturer’s feedback shared second place.

2.2.4 NLG from Uncertain Information

Gkatzia, Lemon, and Rieser (2016) compared different information presentations

(graphics only, text only, and graphics and text) for uncertain data. They used an

extended version of the Weather Game (Stephens, Mylne, and Spiegelhalter, 2011)

to find out which representation leads to better decisions. Their evaluation showed

that the multi-modal presentation (graphics and text) and the text presentation

both performed considerably better than the graphic presentation, although the

participants felt more confident with the graphical representation, compared to the

textual representation.

2.2.5 BeeWatch

BeeWatch (Blake, Siddharthan, Nguyen, Sharma, Robinson, O’Mahony, Darvill,

Mellish, and van der Wal, 2012; van der Wal, Sharma, Mellish, Robinson, and

Siddharthan, 2016) was a citizen science project which attempted to help people

to identify different bumblebee species in order to capture their distribution. The

species were identified with the help of an online tool where different visual features,

like the colour pattern of the thorax, or the presence of a pollen basket, could be

selected. In order to improve the quality of the collected data, two different feedback

systems were tested, one with and one without NLG. After six months of using the
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system, identification accuracy and retention were higher within the group that

received feedback from the NLG feedback system.

2.2.6 DIAG

DIAG (Diagnostic Instruction and Guidance) was a system developed by Towne

(1997) to teach students how to troubleshoot complex technical systems, such as

heating systems. Di Eugenio, Fossati, Yu, Haller, and Glass (2005) used the DIAG

system to evaluate the influence of aggregation on learning. They developed two

systems DIAG-NLP1 and DIAG-NLP2. The first system only used syntactic ag-

gregation, while the second system also used what the authors referred to as “func-

tional aggregation”. This system not only aggregated by language connections but

also by functional collections, such as aggregating different components to the ma-

chine they build. The evaluation of both systems, compared to the original system,

demonstrated that while syntactic aggregation did not improve the learning out-

come functional aggregation did.

2.3 Data-to-Text systems

SaferDrive creates textual summaries of driving (i.e. GPS and acceleration) data

and is therefore not only a BCSS but also a Data-to-Text system and follows the

architecture described by Reiter (2007). There are numerous examples of Data-

to-Text systems in many different domains, some of them more closely related to

SaferDrive than others.

2.3.1 Geographical Data

More closely related are systems which deal with geographical data, such as Turner,

Sripada, Reiter, and Davy (2008). Turner et al. investigated how to efficiently refer-

ence geographic areas based on different available features, such as altitude, direc-

tion, population, etc. The Tag2Blog project (Ponnamperuma, Siddharthan, Zeng,

Mellish, and van der Wal, 2013; van der Wal, Zeng, Heptinstall, Ponnamperuma,

Mellish, Ben, and Siddharthan, 2015) created diary-like texts from GPS tags at-

tached to birds, in order to raise awareness about endangered animals.

A very popular field of application for Data-to-Text systems, which also deals with

geographical data (but not exclusively), is the weather report. Early systems within

this domain already appeared in the 1990s, such as FOG from Goldberg, Driedger,

and Kittredge (1994). More recent examples are from Ramos-Soto, Bugaŕın, Barro,

Gallego, Rodŕıguez, Fraga, and Saunders (2015), who developed a Data-to-Text

system for forecasts about air quality, or Sripada, Burnett, Turner, Mastin, and

Evans (2014) who developed a Data-to-Text system for the UK national weather

service.



8 D. Braun et al.

2.3.2 Medical Data

Another very interesting though less closely related field of application for Data-to-

Text systems is the medical domain. Examples from this domain include BabyTalk

(Gatt, Portet, Reiter, Hunter, Mahamood, Moncur, and Sripada, 2009), a decision

support system for doctors in neonatal intensive care, and Hallett, Power, and

Scott (2006), who generated summaries for e-health data. While set in another

domain, both systems generated summaries for data which was collected over a

certain period of time, as we do with SaferDrive. Another example of such a system

is BT-Nurse (Hunter, Freer, Gatt, Reiter, Sripada, Sykes, and Westwater, 2011),

which created shift summaries for nurses in neonatal intensive care units. A more

commercial perspective to the topic is represented by Harris (2008), who described

the special challenges of creating a commercial Data-to-Text system within the

medical domain, compared to research projects.

2.3.3 Stochastic Text Generation

While the language generation of SaferDrive and most of the aforementioned sys-

tems, independent from their domain, is based on rules, there is also a recent trend

towards stochastic language generation approaches. While the trend is currently

fired by advances in machine learning, its roots go back to the Nitrogen realiser by

Langkilde and Knight (1998). More recent approaches include Konstas and Lapata

(2012), Mairesse, Gašić, Jurč́ıček, Keizer, Thomson, Yu, and Young (2010), Xu, Ba,

Kiros, Cho, Courville, Salakhudinov, Zemel, and Bengio (2015), and many others.

While these techniques have many advantages, they also have some disadvantages.

They, for example, need a sufficiently large corpus of training data. For SaferDrive,

there is no human generated equivalent of the reports we want to create. Creat-

ing such a corpus (if possible at all) would be very expensive. Moreover, especially

for BCSS, each word choice can be very important. While it is relatively easy to

adapt the generated texts of a rule-based NLG system at word-level, it is often not

possible in stochastic systems.

2.4 Psychological Aspects of Supporting Behaviour Change

Many different theories exist regarding how behaviour changes can be encouraged.

Some theories which are popular among BCSS (Lehto, 2012; Masthoff, Grasso, and

Ham, 2014) and influenced the development of SaferDrive are presented in this

section.

2.4.1 Fogg Behavior Model

In the Fogg Behavior Model (FBM), “behavior is a product of three factors: moti-

vation, ability, and triggers” (Fogg, 2009).

This implies that in order to increase the likelihood of a person performing a

certain behaviour, the person must be motivated to perform the behaviour, have

the ability to perform it, and needs a trigger (cf. Figure 3).
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Fig. 3: The Fogg Behavior Model (source: Fogg (2009))

For systems that use NLG, such as the one presented in this article, the mo-

tivation is always closely related to language choices. In our particular case, the

perspective of saving money represents another motivating factor. In Section 3.2,

we explain how the factor of “ability” is taken into account.

Fogg distinguishes three different types of triggers: a spark is a trigger with a

motivational element, which is used “when a person lacks motivation to perform a

target behavior” (Fogg, 2009) but has the ability. When a person lacks the ability

but has the motivation, a facilitator is used. A facilitator usually tells the user that

the target behaviour is easy to do. The third type of trigger, the signal, is used if

the user has both the ability and the motivation and just needs a reminder.

SaferDrive uses the generated feedback reports as a trigger. However, this trigger

does not fit one of the categories defined by Fogg, since the feedback contains moti-

vational elements and explains how the target behaviour can be achieved (ability).

It is therefore a combination of a spark and a facilitator.

2.4.2 Integrative Model by Fishbein

A slightly more complex but closely related model was developed by Fishbein

(2000) by combining different leading theories regarding behaviour prediction and

behaviour change from Ajzen and Fishbein (1980), Bandura (1994), Becker (1974),

and Rosenstock, Strecher, and Becker (1994).

Fishbein describes the main statement of his integrative model as: “if one has

made a strong commitment (or formed a strong intention) to perform a given be-

haviour, and if one has the necessary skills and the ability to perform the behaviour,

and if there are no environmental constraints to prevent the performance of that be-

haviour, the probability is close to one that the behaviour will be performed” (Fish-

bein, 2000).

What the FBM describes as “ability” is split into “skills” and “environmental

constraints” in this model. And what is split into “motivation” and “trigger” in the
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FBM represents part of the factors that influence the “intention” in the integrative

model by Fishbein (cf. Figure 4).

Fig. 4: Integrative model by Fishbein (source: Fishbein (2000))

2.5 Feedback Techniques

Besides these general behaviour models, a large amount of literature exists which

explicitly deals with textual or verbal feedback. The three following popular tech-

niques have special importance in our feedback generation. For future reference,

they are enumerated from FT1 to FT3.

Positive Feedback (FT1): One very popular piece of advice is to begin feed-

back reports with positive feedback. The reason for this is that positive feedback is

generally perceived as more accurate by the recipient than negative feedback (Ilgen,

Fisher, and Taylor, 1979). Beginning with positive feedback, therefore, can give the

feedback source more credibility in general, which can have a positive influence on

the perception and acceptance of following (possibly negative) feedback. Steelman

and Rutkowski (2004) conducted a study with 405 employees from two manufac-

turing companies. Participants were asked to rate the feedback they get from their

supervisor in categories like “My supervisor tells me when my work performance

does not meet organizational standards”, “My supervisor gives me useful feedback

about my job”, “My supervisor generally provides feedback in a thoughtless manner”,

“My supervisor is generally familiar with my performance on the job”, and “I want

to improve my job performance based on the feedback my supervisor provides”. The

statistical evaluation of the questionnaires showed that supervisors who regularly

give positive feedback are perceived as more credible than others, even when they

give negative feedback. Not surprisingly, it also showed that employees are more

motivated to improve their performance after negative feedback if the supervisor

has a high credibility.

This technique is also often used in clinical settings as part of the so-called “feed-

back sandwich”, which begins with positive feedback, followed by negative feedback



SaferDrive 11

and ends with positive feedback, as described by Dohrenwend (2002). We incorpo-

rate these findings in SaferDrive by starting the report, whenever possible, with

positive feedback.

Specific Goals (FT2): Another technique was emphasised by Hattie and Tim-

perley (2007), who demonstrated that specific goals are more effective because “they

focus students’ attention, and feedback can be more directed”. In a meta-analysis

of more than 7,000 studies about feedback, they even found that clear goals have a

higher effect size on learners than giving them rewards.

Our system addresses this by trying to describe misbehaviour as precisely as

possible and pointing out which parts of the feedback should be addressed during

the next feedback period.

Justified Feedback (FT3): The third feedback technique which plays a ma-

jor role in the present work is supported by a variety of publications, such as Ye

and Johnson (1995), Teach and Shortliffe (1987), and Weiner (1980). All of these

publications suggested that it is crucial for the acceptance of feedback, especially

from a computer system, that the feedback is presented in a form which allows

the recipient to understand and reconstruct how conclusions were drawn. In other

words, feedback has to be justified. In our system, this goal is mainly fulfilled by

non-textual elements which visualise the underlying data from which the feedback

was generated.

Ye and Johnson (1995) tested an expert system that analyses financial data

with 20 practising auditors. The participants were asked to express how much they

“believe the system’s conclusion is true or reasonable” on a scale from 1 (“strongly

disagree”) to 7 (“strongly agree”). Without an explanation from the system, the

mean of all answers was 5.56, with an explanation, the belief in the system increased

by more than 10% to 6.13.

3 System Design

3.1 Data Corpus

The data corpus we gathered for the development of our algorithms and the Safer-

Drive prototype consists of approximately 1,000 road kilometres, driven by five

different drivers in four different countries (namely Germany, the United Kingdom,

France, and Luxembourg - sorted by decreasing sample size). It was built using

an Android smartphone application that was based on previous work by Braun,

Endres, and Müller (2011). Depending on the update frequency provided by the

system (usually GPS position update every second and accelerometer update every

100-200 ms), this application creates a dump of all GPS and accelerometer values

every time they are updated. While “black boxes”, i.e. permanently installed sen-

sors, do offer the possibility to collect more data (e.g. through the CAN-Bus) and

sometimes more precise data (especially for acceleration), installing them is expen-

sive and might scare potential participants. In contrast, smartphones are widely

available and new applications can be deployed easily without any additional costs.
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Since smartphone applications are also widely used by insurance companies, we

decided to use them to collect data.

3.2 Relevant Behaviour

In order to provide feedback, we first have to decide which behaviours should be

classified as “right” and which as “wrong” and when wrong behaviour is relevant

or significant enough to be taken into account for the feedback generation. The

most obvious approach would be to expect law-abiding behaviour. However, it is

worth considering different points of view. From the police’s point of view, the

naive approach of law-abidance may be sufficient, but from a driving instructor’s

point of view other aspects are also important, like energy-saving and smoothness.

As our system is influenced by telematic insurances, particular attention should

be paid to the point of view of insurance companies. Although their exact metrics

are secret, we know that they take into account speeding, time of day, day of

week, acceleration, braking, elapsed distance, road type and other parameters (cf.

Händel, Skog, Wahlström, Bonawiede, Welch, Ohlsson, and Ohlsson (2014) for a

more extensive list). On one hand, we want to stick close to the insurance metrics,

on the other hand, from a motivational point of view, it is strongly advised to

analyse these parameters critically. It would be, for example, very frustrating for

drivers who need to drive to work at 6 a.m. every weekday, to be told that they

should not drive before 9 a.m., because it could increase insurance premiums.

After taking all these different considerations into account, we decided to con-

centrate on speeding and acceleration and braking behaviour. These are three of

the most important parameters for insurance companies, because wrong behaviour

in these categories often causes accidents and they are also important for driving

instructors. There are, of course, many other important parameters, like distraction

and safety distance, which can not be taken into account due to the limitation of

the available data.

Speeding, acceleration, and braking also possess quantitative dimensions which

are very important for feedback generation. While it is reasonable to define driving

at 50 mph on a road with a 30 mph speed limit as incorrect behaviour, it is debatable

as to whether driving at 31 mph on the same road is still considered incorrect

behaviour. In the UK, no compulsory law exists regarding the handling of these

issues; therefore the decision is up to the police officer’s discretion. The Association

of Chief Police Officers (2015) suggests a tolerance of 10% of the speed limit +

2mph. Other countries have a fixed tolerance, such as Germany, with a tolerance

of 3%, or no tolerance at all, like Switzerland. Due to the limited accuracy of our

measurement method, it was decided to adopt a tolerance of 10% of the speed limit,

before an exceeding of the speed limit is classified as speeding. It was also decided

to ignore violations of the speed limit with a distance under 10 metres. While the

quantification of speeding incidents can be derived from laws, the situation is less

obvious for inappropriate acceleration or braking. After numerous tests, we decided

to adopt the guidelines we derived from the AXA Drivesave app, which categorises
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speeding and braking incidents up to +/- 2m
s2 as permissible, and everything above

as non-permissible behaviour.

3.2.1 Importance

Based on these quantifications, the decision as to whether a specific incident should

be taken into account for the feedback generation is not based on a binary classifi-

cation (relevant behaviour / non-relevant behaviour), but on a numeric importance

value between 0 and 1 that is assigned to each violation of the aforementioned be-

haviour criteria. In order to calculate this value, each violation is represented as a

5-tuple, consisting of:

1. type: the type of the violation (i.e. speeding, accelerating, or braking)

2. length: the length in kilometres

3. max value: the maximum value (i.e. the maximum speed during the violation

in km/h or the maximum / minimum acceleration in m
s2 )

4. exp value: the expected or allowed value (i.e. the speed limit in km/h or

+/-2m
s2 )

5. road type: the type of the road the incident occurred on

This tuple is used to calculate importance values for each detected violation using

Algorithm 1. The development of the algorithm began based on the basic assump-

tions described at the beginning of this section (e.g. speeding is more important

than braking, and braking is more important than accelerating), the metrics from

insurance companies, recommendations from the police and advice from a driving

instructor. In order to refine the exact values, we ran multiple iterations in which

we tested the algorithm on the training data, and adjusted the values until the

results matched a manual assessment collaboratively created by the authors, the

domain expert and multiple drivers.

The development of the importance algorithm and the distance function, which

is introduced in the next section, did require a noticeable amount of manual work.

In the future, machine learning techniques could help to reduce this amount and

refine the algorithms further, or even adapt them to new violation types or new

domains.

3.2.2 Agglomeration

A single hour of driving can consist of up to 300,000 data points, which can result in

hundreds of violations per week. Since we aim to generate weekly feedback reports

that will be presented on a smartphone display, we need to summarise this data.

While maintaining awareness of the goal of behaviour change, a single violation

which occurred in the past is not very important or helpful for feedback generation

since the goal is to influence future behaviour. By clustering similar past violations

along meaningful features (like street name, street type, speed limit, time of the

day, and day of the week), we can detect behaviour patterns which occur regularly

and are therefore likely to be repeated in the future. Reporting these clusters could
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Algorithm 1 Importance Algorithm for Violations

1: function Importance(type, length,max value, exp value, road type)

2: i← 0 . init importance value with 0

3: if type = Speeding then

4: i← i + 0.25 . a priori importance of speeding violations

5: i← i + min(
⌊
length·1000

100

⌋
· 1

100 , 0.1)

6: if road type = Livingstreet ∨ road type = Residential then

7: i← i + 0.15

8: end if

9: ∆v ← max value− exp value . max exceedance of the speed limit

10: if ∆v ≤ 10 then

11: i← i + 0

12: else if ∆v ≤ 15 then

13: i← i + 0.02

14: else if ∆v ≤ 20 then

15: i← i + 0.08

16: else if ∆v ≤ 25 then

17: i← i + 0.14

18: else if ∆v ≤ 30 then

19: i← i + 0.20

20: else if ∆v ≤ 40 then

21: i← i + 0.26

22: else if ∆v ≤ 50 then

23: i← i + 0.32

24: else if ∆v ≤ 60 then

25: i← i + 0.38

26: else if ∆v ≤ 70 then

27: i← i + 0.44

28: else

29: i← i + 0.50

30: end if

31: else

32: if type = Braking then

33: i← i + 0.2 . a priori importance of braking violations

34: if road type = Highway then

35: i← i + 0.15

36: else if road type = Trunk then

37: i← i + 0.1

38: end if

39: else if type = Accelerating then

40: if road type = Livingstreet then

41: i← i + 0.15

42: else if road type = Residential then

43: i← i + 0.1

44: end if

45: end if

46: i← i + min(( b|max value|c
10 ), 0.4)

47: end if

48: return i

49: end function
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help drivers to avoid such behaviour in the future. A positive side effect of this

approach is that the influence of any measuring errors by the sensors is minimised.

Other NLG systems, e.g. by Hallet et al. (2006) and Gatt et al. (2009), also used

the concept of clustering to summarise data and locate patterns.

In order to produce helpful feedback, the features by which the violations are

clustered must be meaningful, which in this case implies the need to identify features

which have a causal relationship to the incidents, rather than just a correlation. In

order to identify such features, we tried to identify common behaviour patterns

that are caused by factors which are detectable in the available data set, together

with a driving instructor. Besides personal expertise, these patterns were mainly

derived from national road accidents statistics. Insights derived from this statistics

include the fact that the type of a road and the speed limit has a huge impact

on the number of accidents (Statistisches Bundesamt, 2016), as well as the time of

the day and the day of the week, since especially young drivers tend to have more

accidents at the weekend and during the night (Unger, 2012).

Therefore, we cluster the incidents by the following features: street name, street

type, speed limit, time of the day, and day of the week. With additional data

sources (such as personal schedules, traffic data, weather data, etc.) the results of

the clustering could be improved. However, ethical and privacy concerns prohibited

the use of some data sources (e.g. personal schedules) and others (such as traffic

and weather data) are difficult to obtain retrospectively.

Figure 5 shows a simplified representation of three violations which includes all

features taken into account for the cluster generation. Based on this selection and

our data corpus, we developed a distance function that calculates the similarity or

dissimilarity of two violations (v1 and v2) as a value between 0 and 1, as Algorithm 2

shows, whereby 0 means they are (nearly) equal and 1 means they have nothing

in common. Like the importance algorithm, we started with the basic assumptions

extracted from the literature and ran multiple iterations in which we tested the

algorithm on the training data, and refined the values until the results matched a

manual assessment collaboratively created by the authors, the domain expert and

multiple drivers. As mentioned before, in future systems, the amount of manual

work could be reduced by using machine learning techniques.

The algorithm which actually creates the clusters uses a bottom-up approach

and repeatedly joins the “nearest” clusters, this method is called hierarchical ag-

glomerative clustering. The creation of the clusters is a weighing up and a trade-off

between the cluster size and the tightness of a cluster. A large cluster describes a

behaviour pattern that occurs very often, which is desirable to report because it

makes it more likely to occur again in the future. On the other hand, a tight cluster

contains very similar elements, which means they can be described very precisely,

which is desirable to report because more specific feedback is better than general

feedback.

In order to keep these two interests balanced, the algorithm can be configured

with a minimal cluster size and a maximal cluster-distance. Clusters that do not

fulfil these requirements will not be used during the feedback generation. Moreover,

as soon as a cluster fulfils the minimal size criterion, it will not be joined with other
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id A
type Speeding
max value 35 mph
city Aberdeen

street

[
street name King Street
street type Secondary
speed limit 30 mph

]
time 08:15
day of week Friday





id B
type Speeding
max value 37 mph
city Aberdeen

street

[
street name King Street
street type Secondary
speed limit 30 mph

]
time 08:20
day of week Friday




id C
type Braking
max value −3.75 m

s2

city Aberdeen

street

[
street name King Street
street type Secondary
speed limit 30 mph

]
time 08:16
day of week Friday





id D
type Braking
max value −2.86 m

s2

city Aberdeen

street

[
street name King Street
street type Secondary
speed limit 30 mph

]
time 18:16
day of week Friday




id E
type Accelerating
max value +2.5 m

s2

city Aberdeen

street

[
street name Union Street
street type Secondary
speed limit 30 mph

]
time 12:30
day of week Monday


Fig. 5: Simplified representation of violations

clusters if the join would lead to a significant drop in tightness. This is how our

system takes into account feedback technique FT2 (cf. Section 2.5), by keeping

clusters tight and therefore more specific. The tightness, or inner distance, of a

cluster C is in our system defined as the maximum distance between two elements

of the cluster: max({distance(a, b) | ∀a, b ∈ C}). The distance between two clusters

C and D is defined as the maximum distance between an element from cluster C

and an element from cluster D: max({distance(a, b) | ∀a ∈ C, b ∈ D}).
Figure 6 provides an example how the clustering algorithm works, based on the

five example input violations in Figure 5.

In the first step, all five messages are represented as a cluster containing only

themselves. For every possible pair of clusters (AB, AC, AD, AE, BC, BD, BE,

CD, CE, and DE), the distance between the two clusters is calculated with Algo-

rithm 2. The calculation always begins with the distance 1. For the pair AB, 0.25 is

subtracted from this initial distance because both are of the same type (Speeding).

0.2 is subtracted because the speed limit is the same for both violations, and 0.2

more because they occurred on the same street. Since they also both occurred on a

Friday, 0.1 is subtracted and finally, 0.1 is subtracted again because they occurred

within 5 minutes of each other. Combined, the distance for the pair AB is there-
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Algorithm 2 Distance Function

1: function Distance(v1, v2)

2: d← 1.0 . init distance value with 1

3: if v1.type = v2.type ∨ (v1.type = Braking ∧ v2.type = Accelerating) ∨
(v1.type = Accelerating ∧ v2.type = Braking) then

4: d← d− 0.25

5: if v1.type = Speeding then

6: if v1.speed limit = v2.speed limit then

7: d← d− 0.2

8: end if

9: else if v1.type = Accelerating ∨ v1.type = Braking then

10: if sign(v1.max value) = sign(v2.max value) then . check if both

violations have the same direction

11: d← d− 0.2

12: end if

13: end if

14: end if

15: if v1.street name = v2.street name then

16: d← d− 0.2

17: else if v1.city = v2.city then

18: d← d− 0.1

19: end if

20: if v1.street type = v2.street type ∧ v1.street type ∈
{Livingstreet, Residential, T runk, Link,Highway} then

21: d← d− 0.15

22: end if

23: if v1.day of week = v2.day of week then

24: d← d− 0.1

25: else if v1.day of week ∈Weekend ∧ v2.day of week ∈Weekend then

26: d← d− 0.09

27: else if v1.day of week ∈Weekday ∧ v2.day of week ∈Weekday then

28: d← d− 0.07

29: end if

30: ∆t← |v1.time− v2.time| . time difference in minutes (not dependent on

the day)

31: d← d−max(0, (0.1−
⌊

∆t
2000

⌋
))

32: return d

33: end function

fore 0.15. The distances between A and all other violations and B and all other

violations are higher because they are not of the same type. The pair CD has the

distance 0.25, because they match in the same points, with the exception of the

time difference. All other combinations have higher distances. Therefore, in the first

step, A and B are joined.
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A B C D E

AB

dist.: 0.15
C D E

AB

dist.: 0.15

CD

dist.: 0.25
E

AB

dist.: 0.15

CDE

dist.: 0.58

Fig. 6: Visualisation cluster algorithm (cf. Figure 5 for input)

The newly created cluster AB has an inner distance of 0.15. In the second step,

the distances are calculated again for all possible pairs (ABC, ABD, ABE, CD,

CE, and DE). Since the distance between two clusters is defined as the distance

of the two elements with the highest distance, the distance between AB and C

would be the distance between B and C (because the time difference between B

and C is higher than the time difference between A and C). However, the two

nearest elements in this step are C and D, and they are therefore combined to a

new cluster CD with an inner distance of 0.25.

In the third step, the distance between CD and E is 0.58, and the distance

between AB and E is 0.83. Depending on the defined maximum inner distance,

the algorithm either terminates or joins CD and E to a new cluster with an inner

distance of 0.58.

In the fourth step, the only possible operation would be to join AB and CDE to a

new cluster ABCDE which would have an inner distance of 0.83. This would create

a cluster that only has the city (Aberdeen) and the fact that all incidents happened

on a weekday in common, which would clearly not be useful for our purposes.

In order to determine which clusters will be used for the feedback generation (cf.

Section 3.6.3), there is also an importance value attached to each cluster based on

the average importance of the elements within the cluster, the size of the cluster,

and the inner distance of the cluster (cf. Algorithm 3).
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Algorithm 3 Importance Algorithm for Clusters

1: function Importance Cluster(avg importance, size, inner distance)

2: i← 0.6 · avg importance

3: i← i + 0.2 ·min( size
MIN SIZE·10 , 1)

4: i← i + 0.2 · (1− inner distance
MAX DISTANCE )

5: return i

6: end function

3.3 General Architecture

The general architecture of SaferDrive is shown in Figure 7. The user application

collects raw sensor data from the accelerometer and GPS receiver on a smartphone.

The data is then sent to a server where it is parsed for violations, which are subse-

quently stored in a standard SQL database. One week after a user sent data for the

first time, the NLG-Module creates an HTML feedback report from the violations

database, which is immediately sent to the user and displayed as soon as the ap-

plication is opened again. Subsequently, feedback reports are created once a week.

So if users start to use the app e.g. at 1 p.m. on a Monday, they will receive a new

report every Monday at 1 p.m.

Nominatim

Violation DBUser Application

encrypted raw sensor data

GPS
coordinates

street, city, country, 
type, speed limit, city

violation type, time, position, 
value, importance, osmID

Multimodal HTML Feedback

Violation Parser

NLG-Module

Most im
porta

nt violations

OpenStreetMap API

osmID osmID

Fig. 7: System architecture

3.4 User Application

Insurance companies use mainly two different approaches to collect their data. They

either use permanently installed sensors, so-called “black boxes”, or smartphone
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applications. In both cases, GPS timestamps and coordinates, as well as acceleration

data, are logged. Although both smartphone and black box solutions raise questions

about data reliability and integrity, as pointed out by Händel et al. (2014) and

others, these two approaches have together a worldwide market share of nearly

80% of all telematic car insurances (Noël, 2015).

(a) Main screen (b) Feedback screen

Fig. 8: SaferDrive app

Our prototype application, which is shown in Figure 8a, is an Android-application

which collects raw sensor data from the accelerometer (cf. Table 1) and GPS receiver

(cf. Table 2). Before the data is transmitted to the server, the first and the last mile

of each trip are removed to reduce the possibility of identifying subjects by their

place of residence or work. The data is also encrypted with AES-256 before the

transmission.

The second important functionality of the user app is the delivery of the feed-

back reports (cf. Figure 8b) and the gathering of the user evaluation data. The app

checks regularly if a new feedback report is available from the server and down-

loads it automatically to the phone as soon as it is available. Before the feedback

report can be closed, the user has to complete a short survey, which is described in

Section 4.4.1.
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date time x y z

08.01.2015 12:07:10.838 1.49 2.10 9.76
08.01.2015 12:07:10.858 1.45 2.18 9.73
08.01.2015 12:07:10.879 1.64 2.15 9.65

Table 1: Raw data acceleration sensor (in m
s2 )

lat lon accuracy timestamp

57.16042614 -2.09462595 10.0 1420718831921
57.1604265 -2.0946818 6.0 1420718832933
57.16042663 -2.0946828 6.0 1420718833934

Table 2: Raw data GPS receiver (accuracy in m)

3.5 Violation Parser

As soon as the data is uploaded to the server it is parsed for violations, and the

raw sensor data is deleted immediately afterwards. Violations of the braking and

acceleration rules can be detected by using only the raw sensor data. Since the phone

is calibrated prior to each recording we just have to search for an acceleration of

more than 2m
s2 or less than −2m

s2 on the y-axis. However, only the maximum value

is of interest. This implies that while the absolute value of the acceleration is still

increasing, no violation is detected even if the threshold is already passed (as for

example in Figure 9 after x-value 1), until the acceleration has reached its maximum

and is decreasing again.

Since the value of the accelerometer is typically updated far more frequently than

the GPS position, it is possible that two different acceleration violations could exist

at the same GPS position, for example, if a driver is accelerating harshly and must

suddenly brake, as in Figure 9 between x-values 2 and 3. In this case, only the

incident with the higher absolute value is saved.

The detection of violations of the speed limit is slightly more complex. Since

speed is the distance travelled in a certain amount of time, a speeding violation can

never consist of a single point, but instead of a segment. The smallest segment for

which we can calculate a speed is the distance between two GPS position updates.

In order to calculate the distance between two GPS positions, we implemented the

Haversine formula (cf. e.g. Ratsameethammawong and Kasemsan (2010) and Yue,

Zhang, and Jacobsen (2013)). An exceeding of the speed limit is only classified as a

speeding violation if the speed limit is exceeded by more than 10% for more than 10

metres. A continued exceeding of the speed limit is saved as a continuous violation,

even if the necessary threshold is undershot for a short time in between. However,
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x (GPS points)

y (in m
s2 )

1 2 3 4

1

-1

3

-3

Fig. 9: Acceleration violation detection example (dots: detected violations)

in order to be able to connect each violation with a specific street, a new violation

is created every time the street or the speed limit changes.

Additional information that is necessary during the detection of violations, such

as street names, street types, and speed limits, are obtained from OpenStreetMap

(OSM). In order to access these data, it is necessary to first reverse geocode the po-

sition information to match them to a street in the OSM dataset. For this purpose,

we developed the Nominatim Reverse Geocoding JAPI, which uses Nominatim-

Servers2 to perform this task. In this way, a unique ID for each street is obtained,

which can be used to fetch additional information from the OSM API, most impor-

tantly for our application, the speed limit.

3.6 NLG-Module

The most important part of our prototype is the NLG-Module, which generates

the actual feedback reports from the information in the database. In general, the

prototype follows the architecture described by Reiter (2007), which consists of four

stages: Signal Analysis, Data Interpretation, Document Planning and Microplan-

ning and Realisation.

3.6.1 Signal Analysis

In our system, the Signal Analysis stage is implemented by the Violation Parser

and separated from the NLG-Module. The reason is quite simple: the NLG-Module

is only active when a feedback report has to be generated (i.e. once a week). For

2 https://nominatim.openstreetmap.org

https://nominatim.openstreetmap.org
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performance and privacy reasons, we do not want to keep the raw sensor data until

this happens. Therefore, the Signal Analysis stage is executed every time new data

is uploaded. The other three stages are described in this section.

3.6.2 Data Interpretation

The Data Interpretation stage fulfils multiple important tasks: it generates clusters

from the single violations, calculates a comparison between the current and the

previous feedback period, generates messages and assigns an importance value to

each message. In this context, a “message” is an abstraction that represents an

intermediate step between the data structure and the text that will be generated

from it (Reiter and Dale, 2000). In our system, there are seven different types of

messages which are represented as Java classes. The message types that represent

single violations are called SingleSpeedViolation, which represent speeding, and Sin-

gleAccelerationViolation, which represent harsh acceleration, but also harsh brak-

ing, since braking is just an acceleration with a negative sign. Similarly aggregated

violations are represented by two message types called AggregatedSpeedViolation

and AggregatedAccelerationViolation.

The generation of the clusters follows the method described in Section 3.2.2.

Based on tests with our data corpus we decided to set the minimal cluster size

to 7 and the maximum inner distance to 50. A higher minimal cluster size or

maximum inner distance would lead to clusters with only a few features in common.

As described in Section 3.2.2, such clusters can not be described precisely and

are therefore less suitable for feedback generation because they would not comply

with feedback technique FT2 (cf. Section 2.5). A lower minimal cluster size or

maximum inner distance, on the other hand, would lead to very small clusters

which would represent behaviour patterns that hardly occurred and are therefore

also less suitable for feedback generation. The importance values are calculated

according to the algorithm described in Section 3.2.1.

The calculated comparisons describe the change in the number of violations from

the previous week (or feedback period) to the current week (or feedback period) for

a cluster. However, they are not bound to the minimal cluster size and the maximal

inner distance: they can represent very general developments, such as a change in

the number of violations per kilometre, independent from the violation type, or a

change in the number of violations per kilometre for a single violation type, but also

very specific changes such as a change in the number of violations per kilometre for

a specific violation type, on a specific street type in a specific city. We will explain

in the next section why they are not bound by the same rules as the other clusters.

3.6.3 Document Planning

During the process of Data Interpretation, several hundred messages can be created

for a feedback period of one week. Clearly, a feedback report can not (or at least

should not) cover all of these messages. Since feedback reports will be shown on a
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small (smartphone) screen, the texts should be of a very limited length in order to

not lose the attention of users, as pointed out by Braun et al. (2015).

During the Document Planning stage, the system must decide which clusters

and violations, and hence which messages, are important enough to be mentioned

in the feedback report, and also in which order they should be mentioned and how

the document should be generally structured. These decisions are very dynamic

and depend strongly on the underlying data (cf. Algorithm 4). If someone is, for

example, a very careful driver, it might be worth mentioning if he or she exceeded

the speed limit by 20 mph once. But if someone is a rather forceful driver who

regularly exceeds the speed limit by an even bigger amount, this would probably

not be an incident worth mentioning.

Another reason why it is crucial to have a dynamic process of content selection

and ordering is the fact that the users will receive regular feedback reports. There-

fore, repetitive elements could get annoying rather quickly. To avoid this, we try

to vary our texts on three different levels: first and foremost we try to support a

change in behaviour. If this aim is successful, the underlying data will change due

to a behaviour change which will generate a “natural” variation in the content.

The second level is the stage of Document Planning where we alter the content

selection (i.e. leaving out less important information sometimes) and the structure.

The third and final method we utilise is a variation during the realisation process,

where we do not change what is communicated, but how it is communicated.

Nevertheless, there are rules for the structure of the document which are fixed.

Each report consists of a heading (cf. Algorithm 4, line 4), two text parts, and a

map. The first text part consists of one paragraph which contains a summary of the

driving activity during the feedback period and a comparison between the current

and the previous feedback period. The summary always contains the length of the

feedback period (e.g. one week) and the driven distance during this time (cf. line 7).

It can also contain the driven time, which is an optional variation that is randomly

added or excluded (cf. line 9). For this, and all other random decisions, we believe

that they do not influence the impact of the feedback. They are merely possibilities

to generate textual variance, without changing the underlying message or affecting

the psychological influence of the texts. However, we have not yet evaluated the

influence of single verbalisations on the effectiveness of the feedback.

For the comparison, the main criterion by which the message is selected is whether

or not it reflects a positive change (i.e. a decrease in the number of violations per

mile). The reason why we try to find a positive message here is feedback technique

FT1 (cf. Section 2.5). A negative change report is only selected if no significant

positive change could be found (cf. lines 11 to 15). Even if the overall tendency was

negative (e.g. an increase of all incidents by 50 %), a positive change report will be

reported first, if other improvements can be found (e.g. a decrease of speeding inci-

dents by 20 %), due to the aforementioned psychological reasons. The comparison

is, of course, not part of the first feedback report.

The second text part consists of two paragraphs. These can either be one para-

graph about single incidents and one about clusters, or one paragraph about speed-

ing violations and one about acceleration and braking violations. This is again cho-



SaferDrive 25

Algorithm 4 Process of Document Planning

1: function Document Plan(metadata, violations, clusters, comparisons)

2: d← Document()

3: . heading

4: d← d.setHeading(metadata.start day,metadata.end day)

5: . summary

6: paragraph1← Paragraph()

7: summary ← Summary(metadata.period,metadata.driven distance)

8: if variation1 then

9: summary ← summary.add(metadata.driven time)

10: end if

11: if comparisons contains positive change then

12: comparison← comparisons.select(positive, important)

13: else

14: comparison← comparisons.select(negative, important)

15: end if

16: summary ← summary.add(comparison)

17: paragraph1← paragraph1.add(summary)

18: d← d.addParagraph(paragraph1)

19: . map

20: d← d.addMap(violations)

21: . detailed report

22: paragraph2← Paragraph()

23: paragraph3← Paragraph()

24:

25: if violations contains speeding > 20km/h then

26: single incidents← violations.select(# <= 5, speeding > 20km/h)

27: else

28: single incidents← empty

29: end if

30: speeding clusters← clusters.select(speeding,# <= 3, important)

31: accel clusters← clusters.select(acceleration,# <= 3, important)

32:

33: paragraph2← paragraph2.add(single incidents)

34: if variation1 then

35: paragraph2← paragraph2.add(speeding clusters)

36: paragraph3← paragraph3.add(accel clusters)

37: else

38: paragraph3← paragraph3.add(speeding clusters)

39: paragraph3← paragraph3.add(accel clusters)

40: end if

41:

42: d← d.addParagraph(paragraph2)

43: d← d.addParagraph(paragraph3)

44:

45: return d

46: end function
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sen randomly in order to add additional variation to the feedback reports, without

influencing their impact (cf. lines 33 to 40). The content selection, however, is not

influenced by these structural decisions: Up to five single speeding violations are

selected for this part, but only the five with the highest absolute amount of speeding

and only such violations that exceed the speed limit by at least 20 km/h (cf. lines

25 to 29). Moreover, up to 3 clusters of speeding violations (cf. line 30) and up to

3 clusters of braking and acceleration violations (cf. line 31) are selected based on

their importance value, but only clusters which fulfil the minimum cluster size and

the maximum inner distance can be selected. Therefore, if a driver drove in general

very well during a week, even less important clusters, representing minor incidents,

may be reported. However, if there are important violations to be reported, this

less important information will probably not be reported.

Many studies (e.g. from Ye and Johnson (1995), Teach and Shortliffe (1987), and

Weiner (1980)) suggest that it is crucial for the acceptance of feedback, especially

from a computer system, that the feedback is presented in a form which allows

the recipient to understand and reconstruct how conclusions were drawn. In other

words, feedback has to be justified (FT3). Therefore, we decided to add a map to the

feedback reports in which all violations are marked with pins (cf. line 20). Depending

upon the type of the violation and its quantification, the pins have different colours.

If one of the pins is selected, a bubble opens which provides further information

regarding what occurred at the given position and when it occurred. All important

statements in the text, such as the description of the clusters, the number of the

worst speeding violations, among others, are links. If the user clicks on one of these

links the map shows only the incidents which are part of what he or she clicked on,

e.g. only the five worst single speeding violations or all violations that belong to a

certain cluster, in order to justify this statement from the text. The map is realised

with OSM and OpenLayers3.

3.6.4 Microplanning and Realisation

During the Microplanning and Realisation stage, the actual texts are produced

based on the messages selected during the Document Planning. Our prototype uses

SimpleNLG (Gatt and Reiter, 2009) for the surface realiser. An example feedback

text is shown in Figure 10.

The first sentence of the first paragraph contains a summary of the driving ac-

tivity during the feedback period. As mentioned previously, it is possible to vary

the content of this sentence by adding or leaving out the amount of time that was

driven. But it is also possible to vary the realisation so that there is a total of four

different possibilities to express the same data. Driving 34 miles in 1 hour and 32

minutes in one week could, for example, be expressed as follows: “You drove 35

miles during the last week.”, “During the last week, you drove 35 miles.”, “You

drove 35 miles in one hour and a half during the last week.” or “During the last

3 http://www.openlayers.org

http://www.openlayers.org
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Driving Report 19  25 January
You drove 390 miles in 10 hours and 50 minutes during the
last week. You reduced the number of speeding incidents
per mile by more than 10 %, well done!

Five times you drove more than 30 mph too fast: On Castle
Road, on Kirkton Road, on North Deeside Road and twice
on A92. Going 30 mph slower could shorten your braking
distance by 108 yards. You also speeded on 175 other
occasions, 7 times on roads with 20 mph speed limit and 12
times on weekends on roads with 30 mph speed limit.

You accelerated or braked harshly 645 times, mostly on
highways and on roads with 20 mph speed limit.

Fig. 10: Feedback text

week, you drove 35 miles in one hour and a half”. The numbers are rounded by up

to 10% of their value in order to make the text more fluent. While all underlying

data is always stored and processed in metric units, feedback reports can be created

using both the metric and imperial system.

The second sentence of the first paragraph is a realisation of the selected change

report, supported by an encouraging phrase if a positive change was detected. In

order to increase variation in the generated texts, there are multiple encouraging

phrases from which the system can choose, such as “keep up the good work”, “well

done”, etc. However, the main variation in this sentence should come from changing

behaviour. Some possible outputs are: “You reduced the number of speeding inci-

dents per mile by nearly 10 %, well done!”, “You reduced the number of speeding

incidents on highways by nearly 20 %, good job!”. If no positive change could be

detected, the change is reported without an additional phrase. A possible output

would be: “You increased the number of speeding incidents by nearly 20 %.”.

The second paragraph begins with up to five selected single speeding incidents.

However, if none of the single speeding incidents met the criteria to be selected,

the user is simply informed that they performed well: “You didn’t do any serious

speeding, keep up the good work!” or “You didn’t do any serious speeding during the

last week, keep up the good work!”. The encouraging phrase at the end can again

be replaced by another randomly selected phrase.

If there were serious violations of the speed limit, their reporting starts with the

number of selected violations and the infimum (greatest lower bound) of the abso-

lute amount of speeding, e.g. “Five times you drove more than 30 mph too fast:” or

“On five occasions you drove more than 30 mph too fast.”. This is followed by an

enumeration of the name of the streets on which the incidents happened. In order

to make the feedback more effective, we “provide information on consequences” as

suggested by Abraham and Michie (2008): we highlight to the driver how speeding

can influence the braking distance, e.g.: “Going 30 mph slower could shorten your

braking distance by 108 yards”. As the example shows, a positive way to communi-
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cate this fact is chosen (in opposite to “going 30 mph too fast extends your braking

distance by 108 yards”) in order to avoid a patronising method of communication.

If it was decided during the Document Planning that there is one paragraph about

single speeding incidents and one about clusters, a new paragraph begins after this

sentence. If there is one paragraph about speeding and one about acceleration

and braking, the following sentence still belongs to the first paragraph. The next

sentence is the realisation of up to three selected clusters of speeding incidents,

which are described by the number of violations they cover, their common features

and the total number of incidents, e.g.: “You also speeded on 163 other occasions, 15

times on roads with 20 mph speed limit and 13 times on motorways between 5 and 6

pm”. Afterwards, the process is repeated for the acceleration and braking clusters.

If there were no serious speeding incidents, the sentence starts with “However, you

speeded on X occasions”, instead of “You also speeded on X other occasions”. If

no relevant clusters were identified, these sentences are omitted entirely. We also

decided to highlight key passages and figures in the text by making them bold, in

order to help users to identify the most important information in the text quickly.

4 Evaluation

In order to evaluate our system in a real world scenario, we conducted a short lon-

gitudinal study using a protocol approved by the University of Aberdeen’s Ethical

Review Board for the College of Physical Sciences. Drivers used the prototype over

a period of four to five weeks, and we analysed their behaviour and whether or

not it changed. Additionally, the participants were asked to rate the quality of the

generated texts.

4.1 Participants

Six drivers used and evaluated the prototype during this period. Four participants

used it for five weeks and two participants used it for four weeks. Since the appli-

cation was publicly available in the Google Play Store and we wanted to maximise

the privacy of our participants, no further information was gathered from or about

them. The setup of this study placed high demands on the participants. Not only

did they have to be willing to share their location data, they also had to use the

app regularly over a long period of time.

4.2 Collected Data

Between August and September 2015 (calendar weeks 32 to 37), the six partic-

ipants drove more than 4,000 kilometres in Germany and the United Kingdom,

distributed over 129 single trips. More than 1,000 violations of the speed limit and

more than 2,600 harsh brakings and accelerations were recorded during the study.
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A total number of 27 weekly feedback reports were generated4 and rated by the

participants.

As Figure 11 displays, the driven distance varies greatly between the different

drivers. More than half of the overall distance was contributed by just two drivers

(users A and C). We could also observe two different patterns with regard to the

frequency of driving: one group (users A, C, and F) drove mostly the same routes

repeatedly on a very regular basis, whereas the other drivers (users B, D, and

E) drove less regularly and were rarely using the same route multiple times. In

order to be comparable, the total number of incidents has to be normalised by

the driven distance: 5 violations of the speed limit during a two kilometres drive is

obviously not good driving, while 5 violations of the speed limit during two hundred

kilometres seems to be rather acceptable. Although it seems reasonable to assume

that the connection between the driven distance and the number of incidents is

proportional, if the behaviour does not change, it is arguable if this also holds true

for very short distances. We believe that very short distances are less suitable to

capture general behaviour changes because they are more vulnerable to exceptional

external influences such as unforeseeable misbehaviour of other road users (law of

large numbers).

A B C D E F
0

500

1,000

Fig. 11: Driven distance in km by each user A – F

4.3 Control Group

We used the five drivers whose data was used for the development of the system

(cf. Section 3.1) as a control group. They used an app, which collects data in the

same manner as SaferDrive, for four to six weeks. However, they did not receive

any feedback. In the future, it would be desirable to compare the textual feedback

against the other, state-of-the-art, feedback technologies (namely scores and maps)

in order to evaluate if the preference for the textual feedback, which was found

in a lab setting by Braun et al. (2015), can be confirmed in a real-world scenario.

However, at this point in time, we wanted to evaluate whether the textual feedback

has any influence on the driving performance at all, and therefore, we used a control

group which did not receive any feedback.

4 One participant did not drive at all during one week of the study, therefore the number
is not 28 (4 · 5 + 2 · 4) but 27.



30 D. Braun et al.

4.4 Evaluation Criteria

4.4.1 Ratings

With every weekly feedback report, the participants were asked to rate the gener-

ated report in four categories on a scale from 0 (very bad) to 5 (very good). These

categories were: “The text was easy to understand”, “The text was a good sum-

mary of my driving”, “The text was encouraging” and “The feedback was helpful”.

At the end of the study participants were asked to give overall ratings in the same

categories and were additionally asked three questions which could be answered in

a free text field. These questions were: “Would you use the app in the future?”,

“What impact did the feedback have on you?” and “How would you improve the

app?”.

4.4.2 Behaviour Change

The main question we wanted to answer with this evaluation was whether the

feedback from our prototype can actually help the participants to improve their

driving. There is more than one possibility to assess successful behaviour change

in this setting. One could, for example, argue that the feedback is only successful

if the number of incidents per kilometre decreases with every subsequent feedback

report. However, that would be quite an unrealistic goal, especially since the dataset

is rather small and single “outliers” would, therefore, have a relatively high impact.

Moreover, we are aiming for a long-term behaviour change, which makes the overall

development more important than the impact of a single feedback report. Therefore,

we decided to define behaviour change in the evaluation as the difference between

the number of incidents per kilometre during the first and the last week.

4.5 Limitations

The method in which data was gathered for this evaluation results in certain lim-

itations. These limitations should be kept in mind when interpreting the results.

Most of these limitations are a result of our dedication to provide as much privacy

as possible to participants. Since the first and last mile (together ∼ 3.2 km) were re-

moved from each trip for privacy reasons, very short trips (i.e. < 3 miles) could not

be taken into account. This means that at least 412 kilometres that were driven by

our participants were not included in the feedback generation, and are not part of

this evaluation. Moreover, it is not known for certain whether participants recorded

all of their driving or just some of it. They may have, accidentally or on purpose,

not recorded certain trips. It is, for example, conceivable that some participants

did not use the app when they were in a hurry, which could influence the amount

of recorded violations.

External factors, like weather conditions or traffic density, could also potentially

influence the results. However, since the participants drove in two different countries

(control group in four different countries) and their starting dates were staggered,

the potential influence of these factors was reduced. The results could also be in-
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fluenced by the Hawthorne effect, i.e. the fact that people change their behaviour

when they are aware of being observed (Gale, 2004). It is likely that the partici-

pants improved more than the evaluation shows, compared to their usual driving

behaviour, not only because of the feedback but also because of the fact that they

were being observed. This assumption is supported by the fact that the control

group, which did not expect to be judged, had on average significantly more inci-

dents (cf. Section 5). However, since we take the first week of driving as baseline

for our analysis, when participants were already aware of being observed, this effect

should not affect our evaluation distinctly.

The presented study evaluates the system as a whole and not single parts, like

single algorithms or individual language choices. A larger number of participants

would have been necessary in order to evaluate and compare different versions of

individual parts of the system.

4.6 Hypotheses

We had two main hypotheses:

1. Participants will improve their driving based on the feedback:

(a) Short Term: the number of incidents per kilometre will drop immediately

after each weekly feedback report is read.

(b) Long term: the overall number of incidents per kilometre during the last

week of the trial will be lower than the number of incidents per kilometre

during the first week of the trial.

2. The user rating results will support the positive perception of textual feedback

found by Braun et al. (2015).

5 Results

Figure 12 presents the cumulated number of speeding incidents and acceleration

incidents for each user in relation to the driven distance. This figure provides evi-

dence for both hypothesis 1a and 1b. However, the effect is less visible with regard

to the acceleration incidents. For the number of speeding incidents, we can see how

the drivers improved over time: the slope, and hence the number of new incidents

decreases over time. While we do not see a decrease after every feedback report,

which was also not the goal since we aim for a long-term behaviour change, we

do see an immediate decrease in the number of speeding incidents after fourteen

feedback reports and an increase in only seven cases (cf. Table 3), which indicates

significance at level p < 0.1 (one-tailed sign test, p = 0.0946).

While for example a change of about -0.09 from user C, after the first report,

might not sound overwhelming, given the fact that this user drove more than 450

kilometres in the week after receiving the report, this small changes means a de-

crease of 40 speeding incidents. If we project for all users, how many speeding

incidents would have happened without these improvements, based on the number

of speeding incidents per kilometre before the first feedback and the total number of
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Fig. 12: Cumulated number of speeding (plain line) and acceleration (dashed line)

incidents after x driven kilometres (vertical lines indicate new feedback); dotted

line: projection of excepted number of speeding incidents, based on driving before

the first feedback; dashdotted line: projection of excepted number of acceleration

incidents, based on driving before the first feedback
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change in slope after report no.

user 1 2 3 4

A 0.056227036 -0.027729833 -0.044222019 0.005921144

B -0.235265312 0.071366544 -0.030403416

C -0.090130321 0.066718654 -0.048820117 0.031258856

D -0.040867756 0.046543372 -0.256687468

E -0.516508337 -0.010315516 0.213991874 -0.306099667

F -0.061752168 -0.049449789 -0.000436939

Table 3: Change in slope for speeding incidents after feedback reports

kilometres driven during the experiment, we get a total number of 1,316 incidents.

However, the number of speeding incidents that actually happened is just 1,069.

Thus, the system possibly prevented about 250 speeding incidents or 23%.

The users of the prototype began the study with markedly different driving habits

(the best driver averaged 0.19 incidents per km in the first week, while the worst

averaged 0.64, cf. Table 4). An anomaly is exhibited by Driver D in their final week

where there is a spike in the number of incidents per km. This is explained by

Table 4, which shows the number of incidents per km in the first and last weeks of

the study. Driver D only drove 2 km in the last week, which makes data from that

week unreliable as the average driven distance per week of this user was nearly 90

km.

first week last week

id incidents/km dist. incidents/km dist.

A 0.19 280 0.18 169
B 0.64 24 0.44 (0.47) 7 (24)
C 0.27 263 0.23 105
D 0.45 26 0.92 (0.20) 2 (393)
E 0.40 124 0.30 66
F 0.46 177 0.35 176

Table 4: Speeding incidents per km and driven distance in km during the 1st and

last week (2nd last week)

If we apply the definition of behaviour change given in Section 4.4.2 to the number

of speeding incidents per kilometre (cf. Table 4), all drivers except D have improved.

In the control group, only two out of five drivers have improved. However, a two-

tailed paired t-test does not indicate statistical significance (p > 0.99, t = 0.0124,

df = 5).
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Given the clear anomaly with the short distance travelled in the final week, we

also post-hoc tested the improvement between the first week and the last week in

which at least 10 km were driven. With this new constraint, the values from the

second last week from user B and D were taken into account. With these values, a

significant influence, with p = 0.0241 (t = 3.1963, df = 5) is evident.

For the control group, there is no significant influence (p > 0.5, t = 0.7238, df=

4). An F-test for a linear regression model with the number of received feedback

reports as predictor and the number of speeding incidents per kilometre as response

variable does not show a statistically significant influence (p = 0.62). However, this

was not expected, because, as mentioned before, the driving behaviour does not

improve in a monotonic fashion but does improve over time. Moreover, this finding

does not contradict our first hypothesis.

Although we were aware of the general problem with very short distances, we

underestimated the impact of such trips. An F-test for a linear regression model

with the length of a trip as predictor and the number of speeding incidents per

kilometre as response variable shows a significant influence (p = 0.026) of the trip

length on the number of incidents per kilometre. The connection between the length

of a trip and the average number of violations per kilometre is an issue that should

be further investigated in the future.

If we apply our definition of behaviour change to the number of acceleration in-

cidents per kilometre (cf. Table 5), it is evident that only 3 participants improved.

Not surprisingly no statistical significance was evident at p < 0.05. For the con-

trol group, the picture is very similar: only 3 drivers improved and no statistical

significance was evident.

first week last week

id incidents dist. incidents dist.

A 0.76 280 0.61 169

B 0.81 24 0.89 (0.82) 7 (24)

C 0.75 263 0.75 105

D 0.61 26 1.38 (0.55) 2 (393)

E 0.65 124 0.62 66

F 0.52 177 0.44 176

Table 5: Acceleration incidents per km and driven distance in km during the 1st

and last week (2nd last week)

Additionally, we ran three ANCOVA analyses, one with speeding incidents per

kilometre, one with acceleration incidents per kilometre, and one with incidents per

kilometre as dependent variable. In all three cases, the type of feedback (text/none)

was a fixed, categorical factor, the number of driven weeks a fixed, continuous factor,

and the user a random factor. In all three cases, we found a clear main effect of the
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feedback type with (speeding incidents per kilometre: F (1, 5) = 92.900, p < 0.0001;

acceleration incidents per kilometre: F (1, 5) = 58.762, p < 0.0001; incidents per

kilometre: F (1, 5) = 110.222, p < 0.0001). No other effects were significant at p <

0.05.

With regard to the first and likely most important hypothesis, we can conclude,

based on the presented data, that the prototype has a positive influence on the

driving behaviour of the participants, especially with regard to speeding incidents.

5.1 Perception of the Feedback

The results from the ratings at the end of the trial period are presented in Figure 13.

In general, the ratings are very positive and support the positive perception of tex-

tual feedback found by Braun et al. (2015), which confirms the second hypothesis.

0 1 2 3 4 5

S1

S2

S3

S4

rating

Fig. 13: Median of the overall ratings (S1: “The text was easy to understand”, S2:

“The text was a good summary of my driving”, S3: “The text was encouraging”,

S4: “The feedback was helpful”)

In the free text fields, three participants answered that they would use the app

in the future, two that they would not, and one that he or she would only use it

in connection with a telematic car insurance. All six participants stated that they

were influenced by the app and tried to change their behaviour. Two participants

also stated that they were unable to reduce the number of acceleration and braking

incidents, although they tried to. One reason could be that the definition of harsh

braking and acceleration we used was too strict. Another possible reason is that

drivers do not have an instrument in their car that indicates if they are braking

or accelerating harshly, which makes it more difficult for them to determine if they

are doing something wrong.

6 Conclusion

The evaluation of the SaferDrive system has confirmed our hypotheses, the system

helped participants to improve their driving behaviour, at least with regard to
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speeding, and the participants did like the textual feedback. Moreover, drivers who

received feedback from the system did perform better than drivers that did not

receive any feedback. This study demonstrates the potential for natural language

generation technology to effect behaviour change, even in challenging domains such

as driving behaviour.

In order to confirm the overall positive results, it would be desirable to repeat

the experiment with an improved system on a larger scale, with regard to both the

number of participants and the duration. A larger number of participants would

make it possible to evaluate individual parts of the system and language choices.

An increased duration of the experiment would allow us to investigate whether it

might be useful to increase the feedback period (e.g. to one month) after a certain

time of usage.

This work was motivated by the endeavour to improve road safety, and inspired

by the increasing usage of telematic car insurances. However, the algorithms and

technologies that have been developed could be adapted to other applications. Im-

mediately, they could, for example, be used as an electronic driving instructor in a

simulator, or for professional drivers (e.g. buses and lorries).
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