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Recovered Finite Element Methods

Emmanuil H. Georgoulis∗ Tristan Pryer†

January 11, 2018

Abstract

We introduce a family of Galerkin finite element methods which are constructed via recovery
operators over element-wise discontinuous approximation spaces. This new family, termed
collectively as recovered finite element methods (R-FEM) has a number of attractive features
over both classical finite element and discontinuous Galerkin approaches, most important of
which is its potential to produce stable conforming approximations in a variety of settings.
Moreover, for special choices of recovery operators, R-FEM produces the same approximate
solution as the classical conforming finite element method, while, trivially, one can recast
(primal formulation) discontinuous Galerkin methods. A priori error bounds are shown
for linear second order boundary value problems, verifying the optimality of the proposed
method. Residual-type a posteriori bounds are also derived, highlighting the potential of
R-FEM in the context of adaptive computations. Numerical experiments highlight the good
approximation properties of the method in practice. A discussion on the potential use of
R-FEM in various settings is also included.

1 Introduction

Galerkin procedures are extremely popular in numerical approximation of solutions to initial
and/or boundary value problems for partial differential equations (PDEs). The most used fam-
ilies of Galerkin procedures are the (classical, conforming or non-conforming) finite element
(FEM) and, more recently, discontinuous Galerkin (dG) finite element families of methods.
Roughly speaking, FEM are attractive for their simplicity and robustness, especially in struc-
tural mechanics and heat flow simulations, owing to their variational interpretation and origins;
dG methods, on the other hand, are popular in fluid flow and fast convection/transport sim-
ulations, due to their superior numerical stability properties, stemming from the ability to
incorporate general numerical flux functions seamlessly.

FEM typically incorporate (approximate) continuity/conformity of the state variable(s)
and/or of some moments directly into the finite element space in order to imitate the respective
properties of the underlying continuous problem. As a result, FEM’s approximation capabilities
have to be assessed for each choice of finite element spaces. At the other end of the spectrum,
dG methods typically employ element-wise discontinuous approximation spaces whose approx-
imation properties are clear; the continuity/conformity of the state variable(s) and/or of some
moments is enforced weakly via numerical flux functions incorporated in the variational formu-
lation of the dG method. Consequently, the approximation capabilities of dG schemes is only
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dependent on the ability to show Céa-type quasi-optimality results, i.e., relies on the structure
of the respective weak formulation of the dG method. This enables the construction of stable
dG methods in a number of settings, e.g., hyperbolic and/or convection-dominated problems
[30, 27, 24, 15, 23], and locking-free approximations for elasticity [22, 32] (see also [6, 26] for
similar ideas in the context of classical non-conforming methods).

In an effort to combine the “generic” approximation-space capabilities of dG methods while
retaining the attractive conformity or near-conformity of the discretizations (enjoyed normally
in FEM), we introduce a family of Galerkin finite element-type methods which are constructed
via (conforming or classical non-conforming) recovery operators applied to element-wise discon-
tinuous approximation spaces. This family will be termed collectively as recovered finite element
methods (R-FEM) and has a number of attractive features over both FEM and dG approaches.

More specifically, R-FEM combines completely discontinuous local finite element-type spaces,
resulting, nonetheless, to conforming FEM-like approximations, or classical non-conforming
ones, e.g., of Crouzeix-Raviart type. To fix ideas, let E : Vh → Ṽh∩H1

0 (Ω) an operator mapping
a discontinuous piecewise polynomial space Vh over a triangulation onto a space of continuous
piecewise polynomial space Ṽh ∩ H1

0 (Ω) over the same or a finer triangulation; such recovery
operators E can be constructed locally, e.g., by (weighted) averaging of the nodal degrees of
freedom [25, 13]. We can now consider the method: find uh ∈ Vh, such that∫

Ω
∇E(uh) · ∇E(vh)dx+ s(uh, vh) =

∫
Ω
fE(vh)dx, for all vh ∈ Vh,

to solve the Poisson problem with homogeneous essential boundary conditions, f ∈ H−1(Ω), for
suitable stabilization s(·, ·) : Wh×Wh → R, where Wh ⊂ Vh such that Vh = Wh⊕ (Vh∩H1

0 (Ω)).
We observe that, despite using element-wise discontinuous polynomial test space Vh, the method
also produces simultaneously a conforming approximation E(uh). We note that the above
method yields, in general, different numerical solutions to those one would get by postprocessing
standard dG approximations via the recovery operator E . On the other hand, as we shall see
below, we can also retrieve classical conforming FEM approximations from R-FEM, by making
specific choices of recovery operators E . Therefore, in a sense R-FEM is both a generalisation
and a variant of known finite element methods.

The above basic example is intended to highlight a number of attractive features for R-FEM:
conformity is not hard-wired in the approximation spaces and there is considerable flexibility
in the particular choice of: (a) the recovery operator E ; (b) the finite element space E(Vh); and,
(c) the stabilisation s used. An important property of R-FEM is the extreme flexibility in the
choice and nature of degrees of freedom to be recovered locally (e.g., nodal values in one element,
normal fluxes or higher moments in another, etc.) while avoiding the often cumbersome proof of
respective unisolvency of the global linear system. Another interesting potential development
would be to consider recovery operators into finite element spaces of higher regularity than
merely continuity, which is known to be rather tedious and cumbersome in the standard FEM
setting; this will be discussed elsewhere. Moreover, a crucial practical attribute of R-FEM is
that it can be implemented in a rather straightforward manner into existing conforming or
non-conforming finite element implementations, as we shall discuss below.

The use of element-wise discontinuous polynomial spaces in standard dG methods is often
found to increase the number of numerical degrees of freedom on a given mesh, without achieving
better approximation per degree of freedom. Generally speaking, this is the case for low order
approximation spaces. Recent work has shown that this is not necessarily the case for higher
order polynomial degrees and/or hp-version dG methods [11, 10, 9], once appropriate choices
of local basis are determined, e.g., using local basis of total polynomial degree on box-type or,
generally, polygonal/polyhedral elements. Since the use of total degree bases on such meshes
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necessitates relaxation of conformity requirements for the approximation spaces, dG methods
have been used in this context as the underlying discretization. It is evident that R-FEM can
be naturally extended to accept such reduced approximation spaces, once a suitable choice
of recovery is constructed; we refer to the forthcoming work [17] for the construction of R-
FEM for general polygonal/polyhedral element shapes. Also, recalling that R-FEM is based
on discontinuous approximation spaces also, R-FEM is expected to be able to produce stable
conforming approximations in the context of convection-dominated problems. A numerical
investigation in this direction is presented in the numerical experiments below.

The idea of variational methods involving some form of recovery, e.g., as (enhanced) gradient
approximation, has appeared in various forms in the literature, especially in the context of dG
methods, see, e.g., [19, 14, 8, 16, 18]. All these approaches, however, recover the gradient of the
numerical solution, through the solution of additional local (or global) weak problems. At the
other end of the spectrum, the recent framework of virtual element methods (VEMs) [5] applied
to meshes with polygonal/polyhedral element shapes, use non-polynomial basis functions to
ensure conformity, which are not computed fully in practice. Indeed, the local VEM spaces
are constructed so that they contain a, typically discontinuous, polynomial subspace ensuring
optimal approximation; the approximate solution is then computed over this subspace and over
the mesh skeleton.

As a first work introducing the recovered finite element method, we confine ourselves to its
definition for linear elliptic problems on simplicial and/or box-type triangulations (Section 2).
After discussing its relation on known, popular methods (Section 3), we prove a priori bounds
(Section 4) showing the optimality of the proposed method with respect to meshsize h, as well
as residual-type a posteriori error bounds (Section 5). We also investigate carefully the lowest
order case, whereby the underlying discontinuous space Vh consists of element-wise constant
functions recovered into conforming linear elements on a triangular mesh; the resulting method
is shown to converge optimally in the energy norm. We investigate a number of implementation
and conditioning issues for the proposed method, assessing its competitiveness against FEM
and dG in terms of complexity (Section 6). Numerical experiments highlighting the good
approximation properties of the method in practice and comparisons against FEM and dG are
performed in Section 7. Finally, we conclude by discussing a number of currently developed and
future extensions of the R-FEM framework to complex problems.

Throughout this work we denote the standard Lebesgue spaces by Lp(ω), 1 ≤ p ≤ ∞,
ω ⊂ Rd, d = 2, 3, with corresponding norms ‖ · ‖Lp(ω); the norm of L2(ω) will be denoted by
‖·‖ω for brevity. Let also Hs(ω), be the Hilbertian Sobolev space of index s ∈ R of real-valued
functions defined on ω ⊂ Rd, constructed via standard interpolation and/or duality procedures,
along with the corresponding norm and seminorm ‖·‖s,ω and | · |s,ω, respectively. We also denote
by H1

0 (ω) the space of functions in H1(ω) with vanishing trace on ∂ω.
For Ω a bounded open polygonal domain in Rd, d = 2, 3, with ∂Ω denoting its boundary,

we consider the elliptic problem

−∇ ·A∇u = f in Ω, (1)

where f ∈ H−1(Ω), for some uniformly positive definite diffusion tensor A ∈ [L∞(Ω)]d×d. For
simplicity of the presentation only, we impose homogeneous essential boundary conditions u = 0
on ∂Ω, although this is by no means an essential restriction on what follows. Moreover, we shall
also briefly consider a linear convection-diffusion problem in Section 7 to highlight the versatility
of the proposed framework.
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2 Recovered finite element method

Let T be a regular subdivision of Ω into disjoint simplicial or box-type (quadrilateral/hexahedral)
elements T ∈ T . We assume that the subdivision T is shape-regular (see, e.g., p.124 in [12]),
that Ω̄ = ∪T∈T T̄ and that the elemental faces are straight line (for d = 2) or planar (for d = 3)
segments; these will be, henceforth, referred to as facets. By Γ we shall denote the union of all
(d− 1)-dimensional facets associated with the subdivision T including the boundary. Further,
we set Γint := Γ\∂Ω.

For a nonnegative integer r, we denote the set of all polynomials of total degree at most
r by Pr(T ), while the set of all tensor-product polynomials on T of degree at most r in each
variable is denoted by Qr(T ). For r ≥ 1, we consider the finite element space

V r
h := {v ∈ L2(Ω) : v|T ∈ Rr(T ), T ∈ T }, (2)

where Rr(T ) ∈ {Pr(T ),Qr(T )}. We stress that, in this context, we can consider local bases in
Pr(T ) also for box-type elements; we shall return to this point below, cf., [11, 10, 9].

Further, let T+, T− be two (generic) elements sharing a facet e := ∂T+ ∩ ∂T− ⊂ Γint with
respective outward normal unit vectors n+ and n− on e. For a function v : Ω → R that may
be discontinuous across Γint, we set v+ := v|e⊂∂T+ , v− := v|e⊂∂T− , and we define the jump by

[v] := v+n+ + v−n−;

if e ∈ ∂T ∩ ∂Ω, we set [v] := v+n. Also, we define hT := diam(T ) and we collect them into the
element-wise constant function h : Ω → R, with h|T = hT , T ∈ T , h|e = (hT+ + hT−)/2 for
e ⊂ Γint and h|e = hT for e ⊂ ∂T ∩ ∂Ω. We assume that the families of meshes considered in
this work are locally quasi-uniform.

For the definition of the proposed method, we require recovery operators of the form

E : V r
h → H1

0 (Ω) ∩ V s
h , (3)

mapping element-wise discontinuous functions into functions in the solution space for the bound-
ary value problem, for some s, r ∈ N ∪ {0}, or respective non-conforming recovery

E : V r
h → Vnc, (4)

for some classical non-conforming finite element space Vnc, e.g., Crouzeix-Raviart elements.
Evidently, there is considerable flexibility in the choice of such recovery operators; indeed,
various choices of E may give rise to a different methods.

For recovery operator E : V r
h → Ṽ , with Ṽ ∈ {H1

0 (Ω) ∩ V s
h , Vnc}, we consider the recovered

finite element method reading: find uh ∈ V r
h such that

B(wh, vh) := a(E(wh), E(vh)) + sh(wh, vh) = `(E(vh)), for all vh ∈ Ṽ , (5)

where

a(w, v) :=
∑
T∈T

∫
T
A∇w · ∇v dx, for all w, v ∈

∏
T∈T

H1(T ), (6)

and

`(v) :=

∫
Ω
fv dx, for all v ∈

∏
T∈T

H1(T ),

with sh(·, ·) : V r
h ×V r

h → R a symmetric bilinear form, henceforth referred to as the stabilisation;
possible choices for sh, resulting, in general, to different methods, will be given below. As we
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shall see below, specific choices of E and of sh can lead to the same recovered solutions produced
by both classical FEM and dG methods.

Recovery operators of the form (3) have appeared in various settings in the theory of finite
element methods, e.g., [13, 31, 28, 25, 7, 20]. They are typically used to recover a conforming
function from a non-conforming one under minimal regularity requirements.

Classical examples include the construction of the so-called Clément or Scott-Zhang op-
erators [13, 31], based on local averages of functions. Another popular example is the nodal
averaging operator for which the following stability result was proven by Karakashian and Pascal
in [25].

Lemma 2.1 Let T a locally quasi-uniform mesh. The operator Es : V s
h → V s

h ∩H1
0 (Ω), defined

on the conforming Lagrange nodes ν ∈ N , N denoting the set of all Lagrange nodes of V s
h , by:

Es(v)(ν) :=

{ |ων |−1
∑
T∈ων

v|T (ν), ν ∈ Ω;

0, ν ∈ ∂Ω,

with ων :=
⋃
T∈T :ν∈T̄ T, the set of elements sharing the node ν ∈ N and |ων | their number.

Then, the following bound holds∑
T∈T
|v − Es(v)|2α,T ≤ CKP,|α|‖h1/2−α[v]‖2Γ, (7)

with |α| = 0, 1, CKP,|α| ≡ C|α|(r) > 0 a constant independent of h, v and T , but depending on
the shape-regularity of T and on the polynomial degree s.

Proof. See Karakashian and Pascal [25].
�

Note that, since V r
h ⊂ V s

h for r ≤ s, the recovery operator Es from Lemma 2.1 is also an
operator from V r

h into V s
h ∩ H1

0 (Ω) for 0 ≤ r ≤ s. The bound (7) shows, in particular, that

‖h−1/2[v]‖2Γ is a norm on the orthogonal complement W s
h of V s

h ∩H1
0 (Ω) in V s

h with respect to
the a(·, ·) inner product. This motivates the following choice for the stabilisation bilinear form:

sh(wh, vh) :=

∫
Γ
σ[wh] · [vh] ds, (8)

for some non-negative function σ : Γ → R, to be defined below, henceforth referred to as
discontinuity-penalization parameter. In particular, since R-FEM (5) is defined on the discon-
tinuous space V r

h , one has to take into account the part of V r
h that is not in V s

h ∩H1
0 (Ω): Lemma

2.1 suggests that, upon defining sh is in (8), the well-posedness of the method should be ex-
pected. Indeed, setting wh = vh = w in (5) we immediately arrive at the coercivity identity

‖
√
A∇E(w)‖2Ω + ‖

√
σ[w]‖2Γ = B(w,w) ∀ w ∈ V r

h . (9)

With the help, now, of Lemma 2.1, we can show that the left-hand side of (9) is a norm in V r
h .

To this end, upon checking that ‖
√
A∇E(w)‖2Ω + ‖

√
σ[w]‖2Γ = 0 implies w = 0 (the other two

norm properties being obvious). Indeed, we then have ∇E(w) = 0 in Ω and [w] = 0 on Γ. Since
E(w) ∈ H1

0 (Ω), this, in turn, implies E(w) = 0. Also, from Lemma 2.1, for α = 0, we have
w − E(w) = 0, ensuring, thus, w = 0.

Remark 2.2 The above argument may also motivate an alternative choice for the stabilisation
s. In particular, choosing sh ≡ s̃h : V r

h × V r
h → R with

s̃h(wh, vh) :=

∫
Ω
σ̃
(
wh − E(wh)

)(
vh − E(vh)

)
dx, (10)
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for some non-negative function σ̃ : Γ→ R, as we we, then, have the coercivity identity

‖
√
A∇E(w)‖2Ω + ‖

√
σ̃
(
w − E(w)

)
‖2Ω = B(w,w) ∀ w ∈ V r

h . (11)

To retain a level of generality in the R-FEM framework presented below, we make the
following assumptions on the bilinear form sh, rather than prescribe it specifically.

Assumption 2.3 We assume that the stabilisation sh ≡ sh,α satisfies the equivalence

c0‖hα−1/2[v]‖2Γ ≤ sh(v, v) ≤ C0‖hα−1/2[v]‖2Γ, for all v ∈ V r
h , (12)

for some constant α ∈ R, and for c0, C0 > 0, depending only on the local elemental polynomial
degree and on the mesh regularity, topology and geometry, but not on the local mesh-size. (This
means that any dependence on the local mesh-size h will be implicit in the definition of sh itself.)

Note that both choices of stabilisation (8) and (10) satisfy Assumption 2.3 with α = 0, while
(8) also satisfies c0 = C0 = 1.

Assumption 2.4 We assume that the stabilisation sh satisfies the bound

sh(w, v) ≤ C̃0

(
sh(w,w)

)1/2(
sh(v, v)

)1/2
, for all w, v ∈ V r

h , (13)

for C̃0 > 0, depending only on the local elemental polynomial degree and on the mesh regularity,
topology and geometry, but not on the local mesh-size.

It is evident that both choices of stabilisation (8) and (10) satisfy Assumption 2.4 with C̃0 = 1.
In practical choices of sh, a number of possible conditions on sh and on the approximation of the
underlying spaces may imply for the validity of Assumptions 2.4 and (13); cf Lemma 2.1 above.
We prefer to keep the discussion in this abstract setting to highlight the essential features of
the proofs of error bounds for the R-FEM.

Remark 2.5 In the proof of a posteriori error estimates below, we shall make use of local
versions of Assumptions 2.3 and 2.4, applied to subsets ω ⊂ Ω of the computational domain.
These can be easily shown to be valid by using the bilinearity of sh and selecting supp(v) ⊂ ω,
noting that (12) implies that sh(v, v) will vanish away from ω.

3 Connections to known methods

Interestingly, employing the nodal averaging recovery operator Es in the R-FEM formulation (5)
on finite element spaces containing conforming subspaces, results to Es(uh) being the approxi-
mate solution computed via classical conforming finite element method! Indeed, the boundary
value problem in weak form reads: find u ∈ H1

0 (Ω) such that a(u, v) = `(v) for all v ∈ H1
0 (Ω).

Setting v = Es(vh) for a vh ∈ V r
h , we deduce a(u, Es(vh)) = `(Es(vh)), which, upon subtraction

of (5), leads to
a(u− Es(uh), Es(vh)) = sh(uh, vh), for all vh ∈ V r

h . (14)

Now, if V r
h is such that it contains the respective conforming subspace of the same order, setting

vh ∈ V r
h ∩H1

0 (Ω), we have from (18)

a(u− Es(uh), vh) = 0, for all vh ∈ V r
h ∩H1

0 (Ω), (15)
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noting, furthermore, that vh = Es(vh) for vh ∈ V r
h ∩ H1

0 (Ω). Therefore, (15) implies that
Es(uh) = uFEMh where, uFEMh ∈ V r

h ∩H1
0 (Ω) is such that

a(uFEMh , vh) = `(vh), for all vh ∈ V r
h ∩H1

0 (Ω). (16)

Thus, when there exists V r
h,c := V r

h ∩ H1
0 (Ω) of the same polynomial degree, the recovery

operator used in (5) is such that it preserves conforming functions, i.e., we have E(vh) = vh, for
all vh ∈ V r

h,c and also when the stabilisation s is such that s(wh, vh) = 0, R-FEM can retrieve
the classical FEM solutions (albeit in a wasteful fashion).

At the other end of the spectrum, we can trivially obtain interior penalty discontinuous
Galerkin methods by setting E to be the identity operator, i.e., no recovery and letting

sh(wh, vh) =

∫
Γ

(
σ[wh] · [vh]− {A∇wh} · [vh]− θ{A∇vh} · [wh]

)
ds, (17)

with {·} denoting the average operator on Γ, defined face-wise as {qh}|e := 1
2(qh|e⊂∂T +qh|e⊂∂T ′)

for e = ∂T ∩ ∂T ′ and T, T ′ neighbouring elements in T ; θ ∈ [−1, 1] typically, and σ denotes the
usual discontinuity-penalization parameter. Note that Assumptions 2.3 and 2.4 are not satisfied
verbatim in this case. However, provided the discontinuity penalization parameter σ is chosen
large enough, see, e.g., [1, 2, 23], it can be shown that

c0‖hα−1/2[v]‖2Γ−
1

2
‖
√
A∇E(v)‖2Ω ≤ sh(v, v) ≤ C0‖hα−1/2[v]‖2Γ +

1

2
‖
√
A∇E(v)‖2Ω, for all v ∈ V r

h ,

and, respectively, for Assumption 2.4, allowing for the error analysis below to still hold. We
refrained from using this, more general, version of Assumptions 2.3 and 2.4 in this work for
simplicity of the presentation, as the benefit of generality does not seem to provide any significant
new insight at this point.

Crucially, however, R-FEM offers significant flexibility in the choice of both the finite element
spaces, of the recovery operators and of the stabilisation terms, thereby allowing also for new
numerical methods. Indeed, many classical recovery operators, e.g., of Clément type do not
satisfy the condition E(vh) = vh, for all vh ∈ V r

h,c, thereby giving rise to R-FEM with various
properties even for the model elliptic problem considered above. A pertinent example will be
given below where we consider recoveries from element-wise constant functions onto conforming
linear elements or, in general, recovery between different finite element spaces. Furthermore,
as we shall see below, for more general PDE problems, such as convection-diffusion equations
the flexibility offered by the R-FEM construction allows for the construction stable methods in
the convection-dominating regime. In this case, the use of Es can result in non-standard/novel
numerical methods.

4 A priori error analysis

The boundary value problem in weak form reads: find u ∈ H1
0 (Ω) such that a(u, v) = `(v) for

all v ∈ H1
0 (Ω). Setting v = E(vh) for a vh ∈ V r

h , we deduce a(u, E(vh)) = `(E(vh)), which, upon
subtraction of (5), leads to

a(u− E(uh), E(vh)) = sh(uh, vh), for all vh ∈ V r
h . (18)

Using (18) and Assumption 2.4, we have, respectively,

‖
√
A∇(u− E(uh))‖2Ω + sh(uh, uh) = a(u− E(uh), u− E(uh)) + sh(uh, uh)

= a(u− E(uh), u− E(vh)) + sh(uh, vh)

≤ ‖
√
A∇(u− E(uh))‖Ω‖

√
A∇(u− E(vh))‖Ω

+ C̃0

(
sh(uh, uh)

)1/2(
sh(vh, vh)

)1/2
,

(19)
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for all vh ∈ V r
h , with the last step following from the Cauchy-Schwarz inequality and Assumption

2.4. This implies the quasi-optimality bound

‖
√
A∇(u− E(uh))‖2Ω + sh(uh, uh) ≤ inf

vh∈V rh

(
‖
√
A∇(u− E(vh))‖2Ω + C̃2

0sh(vh, vh)
)
. (20)

For Πr : L2(Ω)→ V r
h denoting the orthogonal L2-projection operator onto the finite dimen-

sional space V r
h , we have the estimate

inf
vh∈V rh

sh(vh, vh) ≤ sh(Πru,Πru) ≤ C0‖hα−1/2[Πru]‖2Γ = C0‖hα−1/2[u−Πru]‖2Γ

≤ C
∑
T∈T
‖hα−1(u−Πru)‖2T + ‖hα∇(u−Πru)‖2T ≤ C

∑
T∈T

h
2(α+s)
T |u|2s+1,T ,

(21)

for 0 ≤ s ≤ min{r, l}, when u ∈
∏
T∈T H

l+1(T ) ∩ H1
0 (Ω), for l ≥ 0, using the standard trace

estimate and the best approximation properties of Πr.
Now, using Assumption 2.3 and (21) on (20) already proves the following result.

Theorem 4.1 Let u ∈
∏
T∈T H

l+1(T )∩H1
0 (Ω), for l ≥ 0 be the solution to (1) and uh ∈ V r

h its
R-FEM approximation with the stabilisation term satisfying Assumptions 2.3 and 2.4. Then,
we have the a priori bound

‖
√
A∇(u−E(uh))‖2Ω + c0‖hα−1/2[uh]‖2Γ ≤ inf

vh∈V rh
‖
√
A∇(u−E(vh))‖2Ω +C

∑
T∈T

h
2(α+s)
T |u|2s+1,T ,

for all 0 ≤ s ≤ min{r, l}, with C a positive constant, independent of u, uh, h and of E.

Assuming now that the recovery operator E in the definition of R-FEM allows for optimal
approximation of u by E(vh) for some vh ∈ V r

h , one can recover optimal a priori error bounds.
Below we highlight some interesting cases of E and polynomial order r.

4.1 Case r = s ≥ 1.

We begin by considering the case of recovery into a conforming finite element space of the same
polynomial degree. As discussed in Section 3, for certain choices of E this case results to E(uh)
being the conforming FEM solution. Nonetheless, as we shall see below, this is not necessarily
the case for more general elliptic operators involving lower order terms, (see Section 7.4 below,)
or, indeed when the recovery takes place on a different triangulation than the underlying mesh
V r
h is defined on; see Section 8.1 below.

When r = s, the discontinuous space V r
h contains sufficient approximation power to ensure

r-th order convergence in the energy norm.

Corollary 4.2 Let Ā|T := maxx∈T A(x), T ∈ T , and set A = E(Ā). Let also the discontinuity-
penalization parameter σ be given by

σ = cσAh−1, (22)

for any cσ > 0 and let the recovery operator E be such that V r
h ∩ H1

0 (Ω) ⊂ E(V r
h ). Further,

assuming that u|T ∈ Hk+1(T ), T ∈ T , k ≥ 1, we have the a priori bound

‖
√
A∇(u− E(uh))‖2Ω + sh(uh, uh) ≤ C

∑
T∈T
A|Th2q

T |u|
2
q+1,T , (23)

with 0 ≤ q ≤ min{k, r}, for a C positive constant, independent of the meshsize and of u.
�
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4.2 Case 0 ≤ r < s.

One may wish to recover from an element-wise discontinuous polynomial space of order r, into an
H1-conforming polynomial space of strictly higher order s. In this setting, a recovered element
method of optimal order at least with respect to r is expected. The analysis presented in Section
4.1 above, with the choice (22) for the discontinuity-penalization parameter, immediately gives
the error bound (23) with 0 ≤ q ≤ min{k, r} < s. It is clear that the above bound is of
lower order than the respective finite element method involving polynomials of order s. This is,
perhaps, not surprising as the approximation power of V r

h allows, in general, for optimal rates
with respect to r only.

However, in practice there are some advantages in recovering from lower into higher poly-
nomial order spaces. In particular, as we shall see below when using r = s− 1, for s = 1, 2, . . . ,
with appropriately chosen power α in the stabilisation sh, one can recover s-th order conver-
gent method on simplicial meshes! To highlight this, somewhat surprising feature, we focus
on the case 0 = r < s = 1, i.e., recovering element-wise constants uh ∈ V 0

h into conforming
element-wise linear elements E(uh) ∈ V 1

h ∩H1
0 (Ω), where first order convergence in the energy

norm and second order convergence in the L2-norm is observed for a suitable choice of the
discontinuity-penalization parameter on shape-regular meshes; see Section 7 for a numerical
illustration.

To show this, setting
σ = cσAh, (24)

for any cσ > 0, (and, consequently we shall have α = 1 in Assumption 2.3,) we deduce from
Theorem 4.1 that

‖
√
A∇(u− E(uh))‖2Ω + sh(uh, uh) ≤ inf

vh∈V 0
h

‖
√
A∇(u− E(vh))‖2Ω + C

∑
T∈T

h2
T |u|21,T . (25)

If one can show, e.g., that E(V 0
h ) = V 1

h ∩H1
0 (Ω), (at least for some appropriately designed

meshes,) then the first term on the right-hand side of (25) becomes

inf
vh∈V 0

h

‖
√
A∇(u− E(vh))‖2 = inf

wh∈V 1
h ∩H

1
0 (Ω)
‖
√
A∇(u− wh)‖2 ≤ C

∑
T∈T

h2
T |u|2T,2, (26)

from standard Bramble-Hilbert type approximation results [12], i.e., optimal linear convergence
is retrieved. We shall now complete the proof of (26) for the case of a two-dimensional simplicial
mesh.

Lemma 4.3 For d = 2, let T be a regular simplicial mesh. Then, we have E(V 0
h ) = V 1

h ∩H1
0 (Ω).

Proof. Recalling that N denotes the set of all Lagrange nodes ν ∈ Ω, we set N0 to be the set
of respective Lagrange nodes situated on ∂Ω. (Since we are concerned with linear elements on
a simplicial mesh, N is equal to the set of internal nodes in the mesh.) To prove the result, it
is sufficient to prove that each Lagrange nodal basis φν can be constructed as a recovery of an
element-wise constant function ψν ∈ V 0

h , i.e., φν = E(ψν).
To construct ψν ∈ V 0

h , we split N into a union of disjoint subsets as follows. Let N1 ⊂ N
denote the set of nodes ν1 for which there exists a triangle T ∈ T having ν1 as a node and the
two remaining nodes in N0. For i = 2, . . . , r, for some r, let Ni ⊂ N\ ∪i−1

j=1 Nj denote the set
of nodes νi for which there exists a triangle T ∈ T having νi as a node and the two remaining
nodes in Ni−1. The existence of an r ∈ N such that N = ∪rj=1Nj follows from the assumption
that T is a regular simplicial mesh.
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Having constructed a pairwise disjoint subdivision {Nj}rj=1 of N , we can now give an algo-

rithm for the construction of ψν . Let rν ∈ N be such that ν ∈ Nrν and set ψν = 1 = (−1)0 on
the element Trν ∈ T with vertex ν and the two other vertices ν1, ν2 in Nrν−1. For each of the νi,
there exists a triangle T irν−1 ∈ T , i = 1, 2, with one vertex being νi and the other two vertices
being in Nrν−2. We now have 2 possibilities: 1) if T 1

rν−1 and T 2
rν−1 have a common vertex, say

ν3, then there exists a triangle Trν−1 ∈ T having vertices ν1, ν2 and ν3 on which we set ψν = −1
(notice that Trν−1 is necessarily different to the T irν−1’s); if T 1

rν−1 and T 2
rν−1 have no common

vertex, we set ψν = −1 = (−1)1 on both T 1
rν−1, T

2
rν−1. We continue the above algorithm by

setting ψν = (−1)j on T irν−j for an index set Ij 3 i, until we reach the boundary nodes in N0

for which the recovery imposes the homogeneous boundary conditions strongly. Noticing that
on each node νi there exist exactly two elements with non-zero values one +1 and the other −1,
we conclude that φν = cE(ψν) for some c > 0, which already proves the result.

�
Thus, we have proved the following a priori error bound.

Corollary 4.4 For d = 2, let T be a regular and shape-regular simplicial mesh. Further,
assuming that u|T ∈ H2(T ), T ∈ T , and that α = 1 in Assumption 2.3, we have that (23) holds
with q = 1.

So, we conclude that it is possible to have an optimally convergent finite element method
for second order elliptic problems based on element-wise constant finite element spaces. This
remarkable order increasing property of the method when recovering from element-wise con-
stants to conforming linear elements appears to hold for greater values of r. In particular, we
have observed numerically that R-FEM with r = s− 1, for s = 1, 2, 3 converges with order s in
the H1-norm and with order s+ 1 in the L2-norm when the stabilisation coefficient σ in (8) is
chosen as

σ = cσAhs, (27)

for cσ > 0 constant, i.e., α = s in (7). We refer to the numerical experiments in Section 7.1 for
a numerical illustration. The proof of this interesting property will be discussed elsewhere. We
conjecture that this property is due to dimensional considerations since dimV r

h > dim
(
V r+1
h ∩

H1
0 (Ω)

)
for r = 1, 2, 3. Nonetheless, it is not clear at this point why the scaling in (27) appears

to be necessary for observing optimal convergence.
Interestingly, such order-increasing behaviour is not observed for recoveries of the type

r = s− 2, s = 2, 3, . . . . Nonetheless, as we shall see in the numerical experiments below, it can
be still beneficial for the constant of the convergence rate to recover lower order discontinuous
spaces into higher order conforming ones for ‘compatible’ choices of α.

5 An a posteriori error bound

To highlight further the flexibility offered by the proposed R-FEM framework, we also prove a
basic residual-type a posteriori error bound for R-FEM with conforming recoveries.

Theorem 5.1 Let u be the solution of (1) and uh, E(uh) be the R-FEM solution defined through
(5) with E : V r

h → V s
h ∩ H1

0 (Ω), r ∈ N0 and s ∈ N. Assume also that the recovery operator E
satisfies (7) and that the stabilisation sh can be decomposed into local contributions sh,T , so that

sh(w, v) =
∑
T∈T

sh,T (w, v), for all w, v ∈ vrh,

10



(cf. Remark 2.5). Then, we have the bound

‖
√
A∇(u− E(uh))‖2Ω ≤ C

∑
T∈T

(
η2
T + h2α

T sh,T (uh, uh) + η2
A,T

)
, (28)

where

ηT :=
(
‖h (f +∇ ·ΠA∇E(uh)) ‖2T +

1

2
‖h1/2[ΠA∇E(uh)]‖2∂T\∂Ω

)1/2
, (29)

and ηA,T := ‖(A − ΠA)∇E(uh)‖T , for C > 0 an estimable-from-above constant depending on

C0, C̃0 and on the shape-regularity of the mesh; Π ≡ Πt : L2(Ω) → V t
h denotes the orthogonal

L2-projection onto V t
h for some t ∈ N ∪ {0}; when Π is applied to tensors it will be understood

as acting component-wise.

Proof. We have, respectively,

‖
√
A∇(u− E(uh))‖2Ω = a(u− E(uh), u− E(uh)− E(χ)) + sh(uh, χ)

=

∫
Ω
fvdx− a(E(uh), v) + sh(uh, χ),

from (18) for χ ∈ V r
h to be chosen precisely below, setting v := u − E(uh) − E(χ) for brevity.

Integration by parts and re-ordering of the terms yields

‖
√
A∇(u− E(uh))‖2Ω =

∑
T∈T

∫
T

(f +∇ ·ΠA∇E(uh)) v dx−
∫

Γint

[ΠA∇E(uh)]v ds+ sh(uh, χ)

+

∫
Ω

(A−ΠA)∇E(uh) · ∇v dx.

Application of Cauchy-Schwarz inequality results in

‖
√
A∇(u− E(uh))‖2Ω ≤

(∑
T∈T

η2
T

) 1
2 (‖h−1v‖2Ω + ‖h−1/2v‖2Γint

) 1
2 + sh(uh, χ)

+ ‖(A−ΠA)∇E(uh)‖Ω‖∇v‖Ω.
(30)

Selecting χ = Πr(u − E(uh)), (with Πr : L2(Ω) → V r
h the orthogonal L2-projection operator

onto V r
h ,) we have

‖h−1v‖Ω ≤ ‖h−1(u− E(uh)− χ)‖Ω + ‖h−1(χ− E(χ))‖Ω
≤ C‖∇(u− E(uh))‖Ω + ‖h−1(χ− E(χ))‖Ω.

Now, we have the bound

‖h−1(χ− E(χ))‖2Ω ≤ CKP,0‖h−1/2[χ]‖2Γ = CKP,0‖h−1/2[u− E(uh)− χ]‖2Γ
≤ C

(
‖h−1(u− E(uh)− χ)‖2Ω +

∑
T∈T
‖∇(u− E(uh)− χ)‖2T

)
≤ C‖∇(u− E(uh))‖2Ω,

from the best approximation properties of the L2-projection and its stability in the local H1-
seminorm. Completely analogously, we can show also that

‖h−1/2v‖Γint ≤ ‖h
−1/2(u− E(uh)− χ)‖Γint + ‖h−1/2(χ− E(χ))‖Γint

≤ C‖∇(u− E(uh))‖Ω + ‖h−1/2(χ− E(χ))‖Γint .
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and the bound
‖h−1/2(χ− E(χ))‖2Γint

≤ C‖∇(u− E(uh))‖2Ω.

Next, using a similar line of argument, we also have

‖∇v‖Ω ≤ C‖∇(u− E(uh))‖2Ω.

Moreover, Assumptions 2.4, 2.3 and Remark 2.5 imply

sh(uh, χ) =
∑
T∈T

sh,T (uh, χ) ≤ C̃0

∑
T∈T

(
h2α
T sh,T (uh, uh)

)1/2(
h−2α
T sh,T (χ, χ)

)1/2
≤ C̃0C

1/2
0

(∑
T∈T

h2α
T sh,T (uh, uh)

)1/2(∑
T∈T

h−2α
T ‖hα−1/2[χ]‖2∂T

)1/2
,

(31)

and we also have∑
T∈T

h−2α
T ‖hα−1/2[χ]‖2∂T ≤ C

∑
T∈T
‖h−1/2[χ]‖2∂T = C

∑
T∈T
‖h−1/2[u− E(uh)− χ]‖2∂T

≤ C‖∇(u− E(uh))‖2Ω.

Combining the above estimates and applying them to estimate the respective terms on the
right-hand side of (30), we arrive at the a posteriori bound.

�
Trivially, Assumption 2.3 implies also the bound

‖
√
A∇(u− E(uh))‖2Ω ≤ C

∑
T∈T

(
η2
T + η2

A,T

)
+ C‖h2α−1/2[uh]‖2Γ. (32)

Remark 5.2 The estimators ηA,T can be thought as data oscillation [29]. Indeed, setting vh =
uh in (5), using the Poincaré-Friedrichs inequality ‖E(uh)‖Ω ≤ C‖∇E(uh)‖Ω on the right-hand
side of (5), along with the uniform ellipticity of A, we can arrive at the stability estimate

‖
√
A∇E(uh)‖Ω ≤ C‖f‖Ω,

which, in turn, implies ∑
T∈T

η2
A,T ≤ C‖A−ΠA‖2L∞(Ω)‖f‖

2
Ω.

Remark 5.3 We remark that the hypothesis of the previous theorem, that E should satisfy (7),
does not imply that the result is applicable only when the averaging operator Es is used in the
R-FEM formulation. It merely states that for any recovery for which (7) holds, the above a
posteriori bound also holds.

Using standard tools, a lower bound for the error ‖
√
A∇(u− E(uh))‖2Ω can also be given.

Theorem 5.4 With the hypotheses of Theorem 5.1, for every T ∈ T , we have the bound

η2
T ≤ C‖

√
A∇(u− E(uh))‖2ωT + η2

A,T ,

where ωT := ∪T ′∈T :∂T ′∩∂T 6=∅T
′.
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6 Implementation and Complexity

We shall now describe the implementation of the R-FEM and some of the properties of the
resultant algebraic system.

Let NC := dim
(
V s
h ∩H1

0 (Ω)
)

and ND := dim(V r
h ), the dimensions of the conforming and

discontinuous spaces, respectively. The operator E : V r
h → V s

h ∩ H1
0 (Ω) can be represented

algebraically as a matrix E ∈ RNC×ND such that for u ∈ RND , Eu ∈ RNC . Denote also
by KFEM ∈ RNC×NC the stiffness matrix associated to the classical conforming finite element
method (15). Then the algebraic form of (5) is given by seeking u ∈ RND such that

Au :=(EᵀKFEME + S)u = b := Eb, (33)

for b ∈ RND given by bi =
∫

Ω fψidx, i = 1, . . . , ND and ψi ∈ V r
h being a basis of V r

h and S being
the algebraic representation of the stabilisation sh. For comparison’s sake, we also introduce
the dG stiffness matrix KIP ∈ RND×ND associated to the interior penalty dG method with
solution uIPh ∈ V r

h .

Theorem 6.1 (Condition number estimate) For d = 2, let T be a locally quasiuniform
triangulation, and assume that the basis functions of V r

h used in the computation have local
support. Assume also that the recovery operator E satisfies (7) and the stabilisation is such
that Assumptions 2.3 and 2.4 hold for 0 ≤ α ≤ 1. Then, the `2-condition number κ(A) of the
R-FEM stiffness matrix A satisfies

κ(A) ≤ C(ND + | log(h2ND)|), (34)

with h := minΩ h, for C a positive constant independent of the dimension of A. Also, under
the same assumptions, for d = 3, we have κ(A) ≤ CND.

Proof. Without loss of generality, we assume h ≤ 1. It is sufficient to find λ,Λ > 0 such that
λvᵀv ≤ vᵀAv ≤ Λvᵀv for all v ∈ RND ; then κ(A) ≤ Λ/λ. From (7) and Assumption 2.3, we
have, respectively,

vᵀAv = a(E(vh), E(vh)) + sh(vh, vh) ≤ ‖
√
A∇E(vh)‖2Ω + C0‖hα−1/2[vh]‖2Γ

≤ C
(∑
T∈T
‖∇vh‖2T + ‖hmin{α,0}−1/2[vh]‖2Γ

)
≤ C

∑
T∈T

(
1 + h

2 min{α,0}
T

)
‖vh‖2L∞(T ) ≤ Ch

2 min{α,0}vᵀv ≤ Cvᵀv,

since the basis functions used have local support.
Now, working analogously as in the proof of Theorem 4.1 from [3], for p ∈ (2,∞], we have

vᵀv ≤ C
∑
T∈T
‖vh‖2L∞(T ) ≤ C

∑
T∈T

h
−4/p
T ‖vh‖2Lp(T ) ≤ C

(∑
T∈T

h
−4/(p−2)
T

)1−2/p
‖vh‖2Lp(Ω)

≤ C
(∑
T∈T

h
−4/(p−2)
T

)1−2/p(
‖E(vh)‖2Lp(Ω) + ‖h(p−2)/2p(vh − E(vh))‖2Ω

)
≤ C

(∑
T∈T

h
−4/(p−2)
T

)1−2/p(
p‖∇E(vh)‖2Ω + ‖h1−1/p[vh]‖2Γ

)
≤ C(p+ h̄

3/2−1/p−α
)
(∑
T∈T

h
−4/(p−2)
T

)1−2/p(
‖
√
A∇E(vh)‖2Ω + c0‖hα−1/2[vh]‖2Γ

)
≤ Cp(h2ND)−2/pNDv

ᵀAv,
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using standard inverse estimates, Hölder’s inequality, (7), Sobolev Imbedding Theorem, and
setting h̄ := maxΩ h, respectively. Selecting now p = max{2, | log(h2ND)|}, the result follows.

The result for d = 3 is completely analogous, but it is omitted for brevity, as it essentially
follows the steps from [3].

�
The above result shows that R-FEM enjoys similar conditioning to standard FEM and dG

methods for 0 ≤ α ≤ 1.
For the case r = s− 1, for s = 1, 2, 3 discussed above, an inspection of the proof of Theorem

6.1 shows that the conditioning of A deteriorates when α > 1. This is an interesting challenge
for R-FEM implementation, which will be investigated further elsewhere. Crucially, however,
A is the respective stiffness matrix of the linear system solving for uh and not of the recovered
solution E(uh), for which the respective linear system is expected to be better conditioned in
practice. This could be a starting point for the development of preconditioning strategies for
R-FEM.

6.1 Matrix structure

Due to the compact support of the finite element basis functions, linear systems resulting from
the finite element discretisation of PDEs are typically sparse. Sparsity of the stiffness matrix is
traditionally an indicator of complexity of the solution of the respective linear system. To this
end, we begin by studing the sparsity of the R-FEM stiffness matrix and compare with FEM
and dG counterparts.

The recovery procedure can be implemented through local transition matrices. These are
defined by locally rewriting the basis functions of the underlying nonconforming space in terms
of the space used for reconstruction.

Example 6.2 (E : V 0
h → V 1

h ∩H1
0 (Ω)) Let M0 = dimP0(K) = 1 and M1 = dimP1(K) = 3.

The local transistion matrix is a mapping which takes the form TK ∈ RM0×M1 where

TK =
[
1, 1, 1

]
.

The global recovery matrix E can then be constructed by appropriately weighting and summing
over all elements.

Figure 1: The degrees of freedom of the P0 dG space and that of the reconstructed space P1.

3

1 2

1

Example 6.3 (E : V 1
h → V 2

h ∩H1
0 (Ω)) For M0 = dimP1(K) = 3 and M1 = dimP2(K) = 6.

The local transition matrix TK ∈ RM0×M1 is given by

TK =

1 0 0 0 1/2 1/2
0 1 0 1/2 0 1/2
0 0 1 1/2 1/2 0

 .
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Figure 2: The degrees of freedom of the P1 dG space and that of the reconstructed space P2.
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Figure 3: Illustrations of the structure of the recovery matrices, E, for different recovery degrees
over the same mesh. The mesh is of criss-cross type and is formed of 256 elements.

(a) E ∈ R256×145 for E : V 0
h →

V 1
h ∩H1

0 (Ω).
(b) E ∈ R768×145 for E : V 1

h →
V 1
h ∩H1

0 (Ω).
(c) E ∈ R768×545 for E : V 1

h →
V 2
h ∩H1

0 (Ω).

When considering the resulting full linear systems, we observe that the R-FEM yield system
matrices that have the same dimension but are less sparse than the respective dG counterparts
on the same space Ṽ . Indeed, the R-FEM stiffness matrix appears to have the sparsity pattern
of a (conforming or non-conforming) finite element method applied to V s

h but the dimension of
V r
h , which may in general be larger than the one of Ṽ on standard simplicial meshes. Moreover,

the higher the regularity of the recovered space Ṽ , the larger the bandwidth of the resultant
matrix. We refer to Figure 3 for a visualisation of the sparsity structure of the recovery matrix
E and to Figure 4 for a comparison of the sparsity patterns for A, KFEM and KIP over the same
mesh. Nonetheless, R-FEM potential in terms of computational complexity should be sought
in more complex scenarios than the present one of a coercive elliptic problem, such as the ones
discussed in Section 8 below.

7 Numerical Benchmarking

We now illustrate the performance of the R-FEM through a series of numerical experiments.
The implementation of R-FEM used is available at [21].

7.1 Test 1 – Asymptotic behaviour approximating a smooth solution

As a first test, we consider A = I and the domain Ω = [0, 1]2. We fix f such that the exact
solution is given by

u(x, y) = sin(πx) sin(πy), (35)

and approximate Ω through a uniformly generated, criss-cross triangular type mesh to test the
asymptotic behaviour of the numerical approximation. The results are summarised in Figure 5
(a) – (c), and confirm the theoretical findings in Section 4. More specifically, upon selecting σ
as in (27), we witness s = r + 1 order of convergence in the energy norm error u − E(uh), for
r = 0, 1, 2 and respective s+ 1 = r + 2 order of convergence in the L2-norm.
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Figure 4: Illustrations of the structure of the full R-FEM system matrix, A, for the R-FEM with
E : V 0

h → V 1
h ∩H1

0 (Ω), and comparison to KIP and KFEM with discontinuous and continuous
linear elements, respectively, over the same 256-element criss-cross type mesh.

(a) A ∈ R256×256 (b) KFEM ∈ R145×145. (c) KIP ∈ R768×768.

As a further test, we consider the case r = 1, s = 3 and α = 3, i.e., when recovering
discontinuous linear elements into conforming cubic elements. In this case, only first order
convergence rate in the H1-norm and second order convergence in the L2-norm are observed,
i.e., there is no improvement in the convergence rate. However, this recovery can be still
beneficial for the constant of the convergence rate: in Figure 5(d) we observe a reduction in the
absolute energy norm error against numerical degrees of freedom along with a comparison to
the (classical) conforming linear FEM.

Next, we compare the lowest order R-FEM method with E : V 0
h → V 1

h ∩ H1
0 (Ω) and (8)

with (24) against the dG interior penalty method for the same problem and perform a series of
asymptotic benchmarks varying the penalty parameter cσ. Recall that for R-FEM cσ > 0 can
be chosen arbitrarily, as opposed to interior penalty dG methods where σ should be given by
(22) with cσ sufficiently large so as to ensure coercivity of the bilinear form. The results are
given in Figure 6. We fix the dG penalty parameter to be σIP = 10h−1 and vary the R-FEM
penalty parameter, cσ. Note that R-FEM behaves comparably to the interior penalty method
and there is a region of values of cσ where ‖u−E(uh)‖L2(Ω) < ‖u− uIPh ‖L2(Ω). For small values

of cσ we see ‖∇(u−E(uh))‖Ω ≈ ‖u−uIPh ‖dG with ‖ · ‖dG denoting energy-like dG-norm defined
as

‖w‖dG :=
(∑
T∈T
‖∇w‖2T + ‖

√
σIP[w]‖2Γ

)1/2
.

7.2 Test 2 – Asymptotic behaviour approximating a singular solution

We choose f so that
u(x, y) = r2/3 sin(2θ/3)

(
x2 − 1

)(
y2 − 1

)
, (36)

where r2 = x2 + y2 and θ = arctan(y/x) are the associated polar coordinates, over the domain
Ω = (−1, 1)2\[0, 1) × (−1, 0]. We triangulate the domain with a criss-cross triangular mesh.
Note the solution is not H2(Ω), as the radial derivative is singular at the origin. We test the
convergence of the R-FEM approximation under a uniform h-refinement. We also take the
opportunity to test the a posteriori estimate given in Theorem 5.1. Results are summarised in
Figure 7, where convergence plots for r = 0, s = 1 are presented.
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Figure 5: Convergence plots for the R-FEM (5) for Test 1. We measure error norms involving
the R-FEM solution, uh, and its reconstruction, E(uh).

(a) R-FEM with E : V 0
h → V 1

h ∩H1
0 (Ω) (b) R-FEM with E : V 1

h → V 2
h ∩H1

0 (Ω)

(c) R-FEM with E : V 2
h → V 3

h ∩H1
0 (Ω) (d) R-FEM with E : V 1

h → V 3
h ∩H1

0 (Ω) and linear FEM

7.3 Test 3 – Mesh adaptivity

We continue with testing the behaviour of the estimator within a standard adaptive algorithm
of the form SOLVE → ESTIMATE → MARK → REFINE. In this context, over a coarse
mesh we solve the R-FEM problem, estimate the error using the a posteriori error bound from
Theorem 5.1, mark a subset of elements where the a posteriori indicator is large, and refine
those elements. The algorithm is then iterated until a prescribed tolerance is achieved. For the
marking step we make use of the maximum strategy, that is we mark a set of elementsM⊂ Th
such that ∑

T∈M
ηT ≤ θ max

T∈Th
ηT ,

where θ ∈ (0, 1] is the ratio of refined elements. In our experiments we choose θ = 0.25. The
numerical results are summarised in Figure 8, where convergence plots for the lowest order
(r = 0, s = 1) adaptive R-FEM approximation to the solution of the above problem are shown,
indicating that the adaptive approximation is optimally convergent and its effectivity index,
i.e., the ratio between the estimator and the exact error, is small and remains bounded.
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Figure 6: Convergence plots for lowest order R-FEM for (35) and comparison with dG method
for different values of cσ.

(a) Convergence for σ = 10h. (b) Convergence for σ = h.

(c) Convergence for σ = 0.1h. (d) Convergence for σ = 0.01h.
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Figure 7: Convergence plots for the R-FEM approximation of a solution with singular deriva-
tives of the Poisson problem on the re-entrant corner problem.

(a) R-FEM with E : V0
h → V 1

h ∩H1
0 (Ω). (b) Computed solution uh ∈ V 0

h from Fig. 7(a).

7.4 Test 4 – R-FEM for convection-diffusion problems

To showcase the versatility of the R-FEM framework, we consider a convection-diffusion problem
solved by a ‘hybrid’ R-FEM discretisation for the second order term and an upwinded dG
method for the first order term. We envisage such a combination of R-FEM with stabilised
methods for such multiscale problems as a typical area of applications for R-FEM, aiming
to combined the advantages of conforming (or classical non-conforming) discretisations with
considerable freedom in the treatment of lower order terms. To this end, we consider the
convection-diffusion problem

−ε∆u+ w · ∇u+ cu = f, on Ω, (37)

where R 3 ε� 1 represents viscosity and w ∈ C(Ω̄)d and c ∈ L2(Ω) are some prescribed convec-
tion vector field and reaction coefficients, respectively. We supplement (37) with homogeneous
Dirichlet (no-slip) boundary conditions on ∂Ω.

The flexibility in the design of R-FEM described above, which employs element-wise dis-
continuous discrete spaces, allows naturally the treatment of the diffusion term in a conforming
manner and, simultaneously, the convection term in an upwinded nonconforming fashion. This
allows for the construction of stable methods in the convection-dominated regime. To this end,
consider the R-FEM discretisation: find uh ∈ V 0

h (with E(uh) ∈ V 1
h ∩H1

0 (Ω)), such that:∫
Ω
ε∇E(uh) · ∇E(vh) + cuhvhdx+

∫
Γ
σ[uh] · [vh]ds

+
∑
T∈T

(∫
T
w · ∇uhvhdx+

∫
∂−T

(w · n)buhcv+
h ds

)
=

∫
Ω
fE(vh)dx ∀ vh ∈ V 0

h ,
(38)

where bvc(x) := limδ→0+
(
v(x + δw(x)) − v(x − δw(x))

)
, for (almost every) x ∈ ∂T , is the

upwind jump and
∂−T := {x ∈ ∂T : w(x) · n(x) < 0}, (39)

denotes the inflow boundary of an element T ∈ T ; when x ∈ ∂Ω, we set the respective downwind
value to zero in the definition of b·c.
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Figure 8: Convergence for the lowest order (r = 0, s = 1) adaptive R-FEM approximation,
meshes produced and its effectivity.

(a) Convergence against number of degrees of freedom. (b) The effectivity index of the estimator.

(c) The initial mesh. (d) The mesh after 11 adaptive algorithm iterations.

We shall investigate the convergence and stability properties of the proposed method (38)
for Ω = (0, 1)2 by setting

(a) w =
(
(2x2 − 1)(1− x2

1), 2x1x2(x2 − 1)
)ᵀ

and (b) w = (1, 1)ᵀ, (40)

together with an exact solution given by

u(x, y) = sin(πx) sin(πy) + sin(2πx) sin(2πy) (41)

and vary the diffusion parameter ε throughout the tests. Using the convection field (a), we
test the method’s convergence properties for σ given as in (24), cσ = 1 and A = ε; the results
are summarised in Figure 9.
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Figure 9: Convergence for a smooth solution of the convection-diffusion problem with coefficient
(a), for ε = 10−1 and (b), for ε = 10−4.

(a) ε = 10−1 (b) ε = 10−4

To test the stability of the R-FEM approach, we consider (37) with the diagonal convection
coefficient (b) for small values of ε = 10−2, 10−3 on a quasi-uniform mesh with h ≈ 5 × 10−3.
The exact solution to this problem admits a boundary layer of scale ε on the top and right
boundaries. Therefore, the mesh is sufficiently fine to resolve the layer for ε = 10−2 but not for
ε = 10−3. We compare the performance of R-FEM against a standard stable method, namely
the (upwinded) interior penalty dG method which reads: find uIPh ∈ V 1

h such that∑
T∈T

(∫
T
ε∇uIPh · ∇vh + w · ∇uIPh vh + cuIPh vhdx+

∫
∂−T

(w · n)buIPh cv+
h ds

)
−
∫

Γ
[uIPh ] · {ε∇vh}+ [vh] · {ε∇uIPh }ds+

∫
Γ
σ[uIPh ] · [vh]ds =

∫
Ω
vh ∀ vh ∈ V 1

h ,

(42)

with σ given by (22). Some representative solutions are given in Figure 10, using the recovered
finite element method (38) (left plots) and the dG method (42) (right plots), respectively.
We observe that R-FEM produces stable solution even in the non-resolving regime ε = 10−4

including smooth profiles on the boundary layer. On the other hand, as expected, the dG
solution is stable away from the layer, with oscillatory behaviour only present in the close
vicinity of the boundary layer. We can see, therefore, that R-FEM has the potential in delivering
stable, conforming discretisations for stiff PDE problems. Of course, the R-FEM scheme
given in (38) is not monotone with the presented choices of stabilisation sh and, indeed, small
oscillations may appear in the vicinity of the layer. What is interesting to note, however, is that
these oscillations are far less pronounced than dG typically. Nevertheless, it is an interesting
(open) question whether (nonlinear) monotone stabilisations can be constructed in this context.

8 Outlook and further applications

In an effort to combine the advantages of discontinuous finite element spaces, yet produce
conforming or classical non-conforming discretisations, we have introduced the framework of
recovered finite element methods. We have demonstrated the convergence properties of R-FEM
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Figure 10: R-FEM and dG solutions over a uniform grid with h ≈ 0.005 for two values of ε.
Notice that by postprocessing the IP solution with the recovery operator, the oscillations arising
from approximating the layer are reduced, however not to extent of the R-FEM solution.

(a) The R-FEM solution E(uh) with ε = 0.01. (b) The R-FEM solution E(uh) with ε = 0.001.

(c) The IP dG solution uIPh with ε = 0.01. (d) The IP dG solution uIPh with ε = 0.001.

(e) The postprocessed IP dG solution E(uIPh ) with
ε = 0.01.

(f) The postprocessed IP dG solution E(uIPh ) with
ε = 0.001.
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on standard simplicial and, in some instances, also on box-type meshes, we have proven an
posteriori error bound and we have assessed the conditioning of the resulting stiffness matrices.
As a first work on describing the R-FEM framework, we have refrained from describing advanced
potential areas of applications in detail, in an effort to focus on the key ideas. Nonetheless,
R-FEM is envisaged to be successfully applicable to a number of directions. Here, we shall
briefly comment on some of these.

8.1 R-FEM for polytopic meshes

An important attribute of the definition of R-FEM (5) is that the spaces V r
h and V s

h can differ.
This idea has been used above in the context of recovering into different local polynomial
degrees, yet on the same mesh, aiming to improve on the convergence rate and/or the error
per degree of freedom compared to respective conforming FEMs. However, it is by all means
possible to consider spaces V r

h and V s
h̃

subordinate to different meshes. One natural application
of this idea is the construction of R-FEM on general polygonal/polyhedral (termed collectively
henceforth as polytopic) meshes, based on a recovery operator E : V r

h → V s
h̃
∩H1

0 (Ω), whereby

V r
h is a discontinuous space subordinate to a polytopic mesh and V s

h̃
∩H1

0 (Ω) is a conforming
space subordinate to a (perhaps simplicial) finer mesh. This way once can construct conforming
approximations of elliptic problems on polytopic meshes where one has access to the whole of
the approximate solution; this is in contrast to the recent virtual element framework [5] whereby
only certain functionals of the approximate solution are available to the user. This is a significant
topic in its own right and will be discussed in detail in [17].

8.2 R-FEM for high order PDEs

The availability of classical H2-conforming (e.g., Argyris or Hsieh-Clough-Tocher elements [12]))
has allowed for the construction of respective recovery operators E(w) ∈ H2(Ω) for w ∈ V r

h or
w ∈ V r

h ∩ H1(Ω) [7, 20]. Therefore, it is possible to construct R-FEM methods for bihar-
monic/plate problems. As this is also a significant topic in its own right, it will be discussed
elsewhere.

8.3 Mixed R-FEM for problems with constraints

Upon constructing suitable recovery operators, it is interesting to revisit the classical problem
of numerical approximation of PDE problems with constraints, e.g., (nearly) incompressible
elasticity, Darcy or viscous incompressible flows. Indeed, the flexibility in the underlying degrees
of freedom offered by R-FEM in conjunction with suitable recovery operators, e.g., recovering
onto classical inf-sup stable mixed finite element pairs is a potentially substantial direction of
further research. For some first results in this context, we refer to [4].
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