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THE CASE FOR TESTING MULTIPLE ENVIRONMENTAL FACTORS

Investigating the impacts of predicted changes in our atmosphere and climate change on insect–
plant interactions is a widely pursued area of research. To date, the majority of experimental
studies have tested the impacts of single environmental factors on insect–plant interactions,
but meta-analyses have clearly illustrated the importance of investigating multiple factors in
tandem (Zvereva and Kozlov, 2006; Robinson et al., 2012). In particular, environmental change
factors often interact with each other which can either strengthen or mitigate the effects of
environmental factors acting alone (Robinson et al., 2012). For example, the positive effects of
elevated atmospheric carbon dioxide concentrations (e[CO2]) on plant growth are stronger under
high nitrogen (N) conditions compared to lowN conditions (+32 and +19%, respectively; Robinson
et al., 2012). Likewise, from the limited number of studies available, Robinson et al. (2012) showed
that e[CO2] had different impacts on plant nitrogen, plant biomass, and secondary metabolites
under elevated air temperature (eT) conditions. This does not invalidate single factor studies, of
which we have published numerous examples, but this is an important consideration for making
realistic predictions about how plants and insects will respond to future climates (Facey et al.,
2014).

LEGUME–INSECT INTERACTIONS

A key feature of legumes is their capacity for biological nitrogen fixation (BNF), which they
accomplish via symbiotic relationships with soil bacteria which associate with the plant in discrete
root nodules. Given that insect herbivores are frequently nitrogen limited (Mattson, 1980),
concentrations of N in legumes derived from BNF are likely to be crucial determinants of plant–
herbivore interactions. Legumes differ markedly from non-legume plants in their responses to
environmental change because BNF is often significantly affected (Robinson et al., 2012). Moreover,
e[CO2] and eT appear to have contrasting effects on BNF; e[CO2] tends to promote BNF via several
mechanisms (Soussana and Hartwig, 1996), including larger numbers of N2-fixing symbiotic
bacteria in the rhizosphere (Schortemeyer et al., 1996), increased nodulation (Ryle and Powell,
1992) and enhanced nitrogenase activity (Norby, 1987). In contrast, eT tends to have an inhibitory
effect on BNF because of the low tolerance of N2-fixing bacteria to higher temperatures (Zahran,
1999; Whittington et al., 2013). These generalizations are, of course, contingent on nutrient
availability in the soil (e.g., Edwards et al., 2006).

Given this, one might assume that e[CO2] and eT might have contrasting impacts
on insect herbivores of legumes since they affect nitrogen concentrations in the plant
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tissues in a divergent manner. This seems to be the case,
with e[CO2] either having no adverse effects (e.g., Karowe
and Migliaccio, 2011) or, more often, a beneficial impact
on herbivore performance (e.g., Johnson and McNicol, 2010),
particularly for aphids (Guo et al., 2013, 2014; Johnson et al.,
2014). However, our recent work with lucerne (Medicago
sativa) has shown that the positive impacts of e[CO2] on
pea aphids (Acyrthosiphon pisum) were negated under eT
because eT caused decreases in nodulation and amino acid
concentrations in the foliage (Ryalls et al., 2013, 2015).
Testing multiple environmental factors, including soil nutrients,
therefore seems to be particularly relevant for investigations into
how legume herbivores will respond to atmospheric and climate
change research.

THE CHALLENGES: REPLICATION AND
REVIEWERS

Why are there so few multi-factorial experiments in climate
change research? Put simply, constraints on replication are the
biggest obstacles faced by investigators. Pseudoreplication (a
term first coined in Hurlbert, 1984) is particularly common in
climate change research (Newman et al., 2011). For example,
49 of the 110 climate change studies reviewed by Wernberg
et al. (2012) had pseudoreplication issues. This usually arises
because when environmental factors are applied to controlled
chambers, glasshouses, or FACE (Free Air CO2 Enrichment)
rings, the unit of replication for those treatments is the chamber,
greenhouse, or ring, respectively (Lindroth and Raffa, in press).
Subunits (e.g., individual plants) are not independently subjected
to the treatment, and therefore not true replicates. As a
result, statistical tests are based on artificially high degrees of
freedom, resulting in a larger F statistic, potentially leading
to type I errors (i.e., false positives; Lindroth and Raffa,
in press). For this reason, many reviewers for scientific journals
automatically reject manuscripts if any part of an experiment
is pseudoreplicated without necessarily considering whether the
biological conclusions of the study are really compromised by
pseudoreplication (Davies and Gray, 2015). This is possibly an
overzealous interpretation of the case by Hurlbert (1984), the
authority on the subject, who states that “there should be no
automatic rejection of [such] experiments” (Hurlbert, 2004).
In a recent and comprehensive article, Davies and Gray argue
convincingly that reviewers erroneously and dogmatically reject
papers that have pseudoreplication issues which is slowing the
pace of ecological research. While Davies and Gray (2015)
focussed on non-manipulative experiments in natural systems,
many of the points were germane to multi-factorial climate
change research. In particular, many contemporary statistical
tests, such as nested designs and random/mixed effect models,
account for the lack of independence between pseudoreplicates
so may help in some cases (Chaves, 2010; Leather et al.,
2014; Davies and Gray, 2015). Of course, such statistical
approaches could only help where a treatment combination

was repeated in more than one chamber, glasshouse, or
FACE ring.

COMPARING EXPERIMENTAL
APPROACHES—POTENTIAL FOR
REBUTTAL?

How do researchers attempt to overcome the pseudoreplication
problem experimentally? The simplest way is to avoid it
altogether by fully replicating environmental treatments.
However, using even the bare minimum of replicates (e.g.,
N = 4) would require 16 separate chambers, glasshouses, or
rings for an e[CO2] × eT experiment. Many researchers cannot
readily access this number of identical facilities or monopolize
them for that matter. Repeating the experiment several times
and using experimental run as the source of replication is
another approach (e.g., Johnson et al., 2011), but this can
be logistically demanding in time and cost. Even when fully
replicated, the degrees of freedom in these studies are often
so low that they are susceptible to type II errors, whereby
“real responses” are not statistically detected (e.g., the “false
negative”).

Another approach that researchers sometimes use is “chamber
swapping”, whereby experimental units (e.g., plants) are moved
within, and then between, chambers with attendant changes
in environmental conditions (e.g., Bezemer et al., 1998). This
does not eliminate pseudoreplication, but rather serves to
minimize its effects by equalizing any unintended “chamber
effects” across all experimental units. While this approach
might be criticized because chamber effects might affect plants
differently during different stages of their development (Potvin
and Tardif, 1988), researchers have addressed this by staggering
experiments so plants are exposed to particular chambers
at the same stage of development (e.g., Vuorinen et al.,
2004a,b).

How do results from a “chamber swapping” experiment
compare with replicated experiments? We can answer this
question, in part, using three comparable published studies that
examined the impacts of environmental change on interactions
between lucerne and the pea aphid. One experiment was
replicated using multiple chambers (Johnson et al., 2014),
one replicated using multiple experimental runs (Ryalls et al.,
2015) and one adopted the chamber swapping approach
(Ryalls, 2016). The first of these only examined e[CO2],
whereas the other two experiments also included eT. Figure 1
shows the increase in dry mass of plants (with and without
aphids) grown under e[CO2] and eT relative to plants grown
under ambient conditions. This response was selected for
comparison since it was evidently measured the same way
in each experiment. Despite using very different approaches,
in most cases we obtained very similar responses whether
the experiment was fully replicated or conducted with regular
chamber swaps (c. every 10 days). Analysis of variance
suggested that study type had little impact on the response
we measured [F(2, 219) = 0.20, P = 0.82]. This is a crude
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FIGURE 1 | Relative change in plant biomass at elevated [CO2] compared to plants grown at ambient [CO2], indicated with the dashed line, with and

without (control) aphids (mean ± S.E. shown). Data from three experiments using replication with multiple chambers (Johnson et al., 2014) and multiple

experimental runs (Ryalls et al., 2015) compared with the “chamber swapping” approach (Ryalls, 2016). All experiments used the same cultivar (Sequel) and similar

levels of [CO2] (400 vs. 600–640ppm) and temperature (25–26 vs. 30◦C).

comparison, but it is reassuring that we obtained similar data
and reached identical conclusions using the chamber swapping
approach.

CONCLUSIONS AND
RECOMMENDATIONS

While incorporation of multiple environmental factors is
desirable in many climate change studies of plant–herbivore
interactions (clearly advocated by Robinson et al., 2012), we
argue here that it is especially relevant to legume–insect
research. Nitrogen status in legumes is shaped by BNF, which
is highly affected by atmospheric and climatic change, often in
divergent directions. This will inevitably affect legume quality
for herbivores (i.e., especially primary metabolites, but possibly
secondarymetabolites too), and likely affect herbivore abundance
and performance. Nonetheless, experimental manipulation of
multiple factors is challenging and prone to pseudoreplication.
“Chamber swapping” does not eliminate this problem, but it
appears to minimize “chamber effects” and give comparable
results to fully replicated experiments—at least in the lucerne-
aphid system. We recommend that researchers working in other
systems also take a cautious approach with regard to careful
replication until they can develop confidence that their observed
effects are real and repeatable. The statistical significance of

numerical differences remain inflated, however, so it would be
judicious to treat any marginally significant results with caution
and rather interpret effect sizes rather than P-values per se
(see discussion by Ellison et al., 2014). Davies and Gray (2015)
make the similar arguments and suggest that conclusions can be
phrased as new hypotheses if necessary. In conclusion, we agree
with Newman et al. (2011) on this issue that “as long as authors
are clear about the use of pseudoreplicates, and the readers

appreciate the potential problems interpreting such results, then

such studies are valuable despite their pseudoreplication.”
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