-

View metadata, citation and similar papers at core.ac.uk brought to you byj(: CORE

provided by Cronfa at Swansea University

=
&

Swansea University ‘C ronfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
Journal of Hyperbolic Differential Equations

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa38288

Paper:
Lv, G. & Wu, J. (in press). Heterogeneous stochastic scalar conservation laws with non-homogeneous Dirichlet
boundary conditions. Journal of Hyperbolic Differential Equations

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


https://core.ac.uk/display/146486782?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa38288
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

Heterogeneous stochastic scalar conservation laws with
non-homogeneous Dirichlet boundary conditions

Guangying Lv
Institute of Contemporary Mathematics
Henan University
Kaifeng, Henan Province 475001, P. R. China
gylvmaths@henu.edu.cn

Jiang-Lun Wu

School of Mathematics
Northwest University

Xi’an, Shaanzi Province 710127, P. R. China

and
Department of Mathematics, College of Science
Swansea University
Singleton Park, Swansea SA2 8PP, United Kingdom

J.lwu@swansea.ac.uk

January 24, 2018

Abstract. We introduce a notion of stochastic entropy solutions for heterogeneous scalar
conservation laws with multiplicative noise on a bounded domain with non-homogeneous boundary
condition. Using the concept of measure-valued solutions and Kruzhkov’s semi-entropy formula-
tions, we show the existence and uniqueness of stochastic entropy solutions. Moreover, we establish
an explicit estimate for the continuous dependence of stochastic entropy solutions on the flux func-
tion and the random source function.
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1 Introduction

Fix N € N, we let D be a bounded open set in R with boundary 0D in which we assume the
boundary 9D is Lipschitz in case the space dimension N > 1. Let T' > 0 be arbitrarily fixed. Set
Q= (0,T)xDand ¥ = (0,7) x 9D. Let (Q, F,P; {Fi }1eo,r)) be a given probability set-up. In this
paper, we are interested in the first order stochastic conservation laws driven by a multiplicative
noise of the following type

du — [div(f(t,x,u)) — g(t, z,u)]dt = h(u)dw(t), in QxQ, (1.1)
with initial condition
u(0,:) = ug(-), in D, (1.2)
and boundary condition

u=a, onx, (1.3)



for a random scalar-valued function u : (w,t,z) € Q x [0,T] X D +— u(w,t,z) =: u(t,z) € R,
where f = (f1,...,fn) : [0,T] x D x R — R¥ is a differentiable vector field standing for the flux,
g:[0,T] x D xR — R and h: R — R are measurable, and w = {w(t)}o<t<7 is a standard one-
dimensional Brownian motion on the filtered probability space (2, F,P;{Fi}ico,77). The initial
data ug : D € RV — R will be specified later and the boundary data a : ¥ — R is supposed to be
measurable.

When f(t,z,u) = f(u), the problem (1.1)-(1.3) is studied by Kobayasi-Noboriguchi [21]. By
introducing a notion of kinetic formulations in which the kinetic defect measures on the boundary
of domain are turncated, they obtained the well-posedness of (1.1)-(1.3). Lv-Wu [29] revisited the
problem (1.1)-(1.3) and obtained the existence and uniqueness of stochastic entropy solution by
using the concept of measure-valued solutions and Kruzhkov’s semi-entropy formulations.

When h = 0 and f(¢,2,u) = f(u), the problem (1.1)-(1.3) is well studied by many authors,
see [1, 32] for example. In paper [32], the authors studied the problem (1.1)-(1.3) in L'-setting.
In order to deal with unbounded solutions, they defined a notion of renormalized entropy solution
which generalizes the definition of entropy solutions introduced by Otto in [31] in the L frame
work. They have proved existence and uniqueness of such generalized solution in the case when
f is locally Lipschitz and the boundary data a verifies the following condition: f..(a) € L'(X),
where fi,q. is the "maximal effective flux” defined by

fmaz(s) = {sup[f(t)], te[-s,sT]}

They gave an example to illustrate that the assumption a € L!(X) is not enough in order to prove
a priori estimates in L'(Q), and that the assumption should be f4.(a) € LY(X). Ammar et al.
[1] revisited the problem (1.1)-(1.3) with A = 0 and introduced a notion of entropy solution of
(1.1)-(1.3). Following [1], an entropy solution of (1.1)-(1.3) is a function v € L*>(Q) satisfying

- [t @Rata) < [ -k - e - £)- Ve
by Q
+ /D(uo —k)*t¢(0,-)  and (1.4)
—/ fw™ (2, k,a(t,x)) < / [(E —u)"& = Xpsu(f (k) = f(u)) - VE]
by Q
+ [ (= wyeo. (15)
for any ¢ € D([0,T) x RY), £ > 0 and for all k € R, where

+ k - _ =
W (aka) = max () f(5)) - (a)
(x, k = — -1
o (k) = [(£() - £(5)) - i(a)
for any k € R, a.e. x € 0D, and 7 denoting the unit outer normal to dD. Here and in what follows,
a Ak = min{a,k} and a V k := max{a, k}. It is remarked that the above definition of entropy
solution is a natural extension of the definition of that given by Otto [31].
When h = 0, the problem (1.1)-(1.3) is considered by Martin [30]. Using Kruzkov’s semi-entropy
formulations, they defined a weak entropy solution and obtained an existence and uniqueness result



in L* setting, where the solution u satisfies the following entropy inequality
0 < /D(uo — k)F£(0,2)dx — /Q sgne(u—k)[V - f(t, 2, k) + g(t, z,u)Edxdt
+ /Q(u — k)FO€ + sgn (u— k) (f(t, 2, u) = f(t.2,k)) - Védzdt
+Ly /E(a — k)*edSdt, Ve e DT([0,T) x RY),Vk € R, (1.6)

and Ly is the Lipschitz constant of flux function f. The Cauchy problem of (1.1) is well studied
by many authors [11, 22, 23].

To add a stochastic forcing h(u)dw(t) is natural for applications, which appears in wide variety of
field as physics, engineering, biology and so on. The Cauchy problem of equation (1.1) with additive
noise has been studied in [20]. J. U. Kim [20] proposed a method of compensated compactness to
prove, via vanishing viscosity approximation, the existence of a stochastic weak entropy solution. A
Kruzhkov-typy method was used to prove the uniqueness. Vallet-Wittbold [33] extended the results
of Kim to the multi-dimensional Dirichlet problem with additive noise. By using vanishing viscosity
method, Young measure techniques and Kruzhkov doubling variables technique, they proved the
existence and uniqueness of the stochastic entropy solution.

Concerning multiplicative noise, for Cauchy problem, Feng-Nualart [14] introduced a notion
of strong entropy solution in order to prove the uniqueness for the entropy solution. Using the
vanishing viscosity and compensated compactness arguments, they established the existence of
stochastic strong entropy solution only in 1D case. Chen et al. [9] proved that the multi-dimensional
stochastic problem is well-posedness by using a uniform spatial BV-bound. Following the idea of
[14, 9], Lv et al. [27] considered the Cauchy problem of stochastic nonlocal conservation law. Bauzet
et al.[2] proved a result of existence and uniqueness of the weak measure-valued entropy solution
to the multi-dimensional Cauchy problem. Recently, Friz and Gess [15] considered the stochastic
scalar conservation laws driven by rough paths.

Using a kinetic formulation, Debussche-Vovelle [12] obtained a result of existence and uniqueness
of the entropy solution to the problem posed in a d-dimensional torus, (also see [21, 18]).

Just recently, Bauzet et al. [3] studied the problem (1.1)-(1.3) with f(¢,z,u) = f(u), g = 0 and
a = 0. Under the assumptions that the flux function f and h satisfy the global Lipschitz condition,
they obtained the existence and uniqueness of measure-valued solution to problem (1.1)-(1.3) with
ft,z,u) = f(u),g = 0 and a = 0. Lv et al. [28] extended the result of [3] to the stochastic
nonlocal conservation law.

Cautious remarks: we give the following reasons to interpret why we write this paper.

1. The model (1.1)-(1.3) is a general model, which has not been studied so far. Due to
the nonlinear terms f, g depending on the time ¢ and the space x, we will define a new stochastic
entropy solution, which coincides with the earlier entropy solution (included the deterministic case),
see section 2 for more details. Moreover, we obtain the existence of stochastic entropy solution in
LPNBV,p>2.

2. The proof of the uniqueness of stochastic entropy solution in this paper is different from the
earlier results [2, 3, 9, 14, 29, 33] because the flux function depends on the space z, see section 4 for
more details. The trick used here is from the fact that |u — v| = |v — u|. We can see some difference
between the deterministic case and the stochastic case, see Remark 4.2 for details.

3. We remove the assumption ”flux function f satisfies Lipschitz condition” and only assume
that the flux function and its derivative with respect to x have at most polynomial growth. It is
worthing noting that the Lipschitz condition is corresponding to L2-solution, and the polynomial



growth is corresponding to LP-solution. Thus the definition of stochastic entropy solution is different
from that in [2, 3]. Furthermore we want to study the continuous dependence on flux function, we
need additional assumptions, see section 2.

4. The earlier results concerning with stochastic law on bounded domain are only well-posedness.
In this paper, we are also interested in the continuous dependence on flux function, nonlinear
terms and noise term. When f(¢,z,u) = f(u) and g = 0, the continuous dependence estimate of
Cauchy problem (1.1) was obtained by Chen et al. [9]. Relevant continuous dependence results
for deterministic conservation laws have been solved in [6, 25] and in [10] for strong degenerate
parabolic equations, see also [8, 19]. Just recently, Biswas et al. [5] considered the continuous
dependence estimate for conservation laws with Lévy noise.

As an extension, we propose in this paper to prove a result of existence, uniqueness and con-
tinuous dependence estimate of stochastic entropy solution to the initial boundary value problem
(1.1)-(1.3). A method of artificial viscosity is proposed to prove the existence of a solution. The
compactness properties used are based on the theory of Young measures and on measure-valued
solutions [7, 34]. An approximation adaptation of the Kruzhkov’s doubling variables is proposed to
prove the uniqueness of the measure-valued entropy solution. Using bounded variation (BV) esti-
mates for vanishing viscosity approximations, we derive an explicit continuous dependence estimate
on the flux function, nonlinear term and noise term.

The paper is organized as follows. In section 2, we introduce the notion of stochastic entropy
solution for (1.1)-(1.3) and state out the main results. In section 3, a priori estimate and the
existence of a measure-valued entropy solution for (1.1)-(1.3) is proved via a vanishing viscosity
approximation. Section 4 is devoted to the proof of uniqueness. In section 5, continuous dependence
estimates are obtained.

Before ending up this section, we introduce some notations.

Notations. In general, if G € RY, D(G) denotes the restriction to G of D(RY) functions u
such that support(u) NG is compact. Then D (G) will denote the subset of non-negative elements
of D(G). ||| pv(p) denotes the bounded variation on domain D. Ly denotes the Lipschitz constant
of the function f.

For a given separable Banach space X, we denote by N2(0,T, X) the space of the predictable
X-valued processes. This space is the space L?((0,7) x Q, X) for the product measure dt ® dP
on Pr, the predictable o-field (i.e. the o-field generated by the sets {0} x Fp and the rectangles
(s,t) x A for any A € Fy).

Denote £ as the set of non-negative convex functions 1 in C%!(R), approximating the semi-
Kruzhkov entropies * — x* such that n(z) = 0 if z < 0 and that there exists § > 0 such that
n'(z) = 1if > §. Then 1" has a compact support and 1 and 7" are Lipschitz-continuous functions.
&~ denotes the set {1j := n(—-),n € £T}; and for the definition of the entropy inequality. Then, for
convenience, denote

sgng (r) =1 if 2 >0 and 0 else; sgng (z) = —sgng (—x); sgno = sgng + sgng ,
F(CL, b) = sgno(a - b)[f(t,(L’, a) - f(t7$7 b)]7 F+(7)(a7 b) = Sgn(-;_(_)(a - b)[f(ta x7a) - f(ta Ly b)]?

and for any n € ETUE™, F'(a,b) = / n' (o — b)g(t,x,a)da.
b g

2 Entropy solution

The aim of this section is to give a definition of stochastic entropy solutions. We study certain
properties implicitly satisfied by such a solution, and then we present our main result of the paper.



Assume that for any positive ¢, u. is the solution of the following stochastic nonlinear parabolic
problem

due — [eAue + div(f(t, z,us)) — g(t, x, ue)|dt = h(ue)dw(t) in Q,
ue(0, ) = ups(x) in D, (2.1)

Us = Qg on X,

where ug. and a. satisfy the compatibility condition on ¥ N Q. In particular, ug. and a. should be
a restriction on the sets {0} x D and X, respectively. It follows from [13, Theorem 2.7] that the
solution wu. of (2.1) with a. = 0 belongs to L™ (2, C**Q), where m > 2 and 0 < ¢ < 1. Then by
using the technique of [24], we deduce that the solution u. of (2.1) also belongs to L™(2, C?TQ),
see [24, Remark 5.1.14].

In order to propose an entropy formula, let us analyze the viscous parabolic case. For this, we
consider ¢ € D([0,T) x RY), k a real number, and 7 € &.

Since n(u. — k) € L*(0,T; H'(D)) a.s., it is possible to apply Itd’s formula to the operator
W(t,ue) := [pn(ue — k)edr and thus we get

0 < [ wwT) - W)

= o —KeO)e + | e~ Ryoedads
+/Q77'(u5 — k)[eAue + div(f(t,x,us)) — g(t, x, ue)|pdxdt
+ /Q 1 (ue — k)h(ue)pdedw(t) + % /Q 1" (ue — k)h*(uz)pdadt

= e =000+ [ ntoe ~ Rpdupdrat — | of e~ Byt 7, 00
+ /Q 1 (ue — k)h(ue)pdzdw(t) + % /Q 1" (ue — k)h*(us)pdadt
—5/6277’(115 — k)Vue - Vdzdt — /Qn’(ue — k) f(t,z,u:) - Vdadt
—a/inl(ua — k)| Vue|*dzdt — /Qn"(ua —k)of(t,z,u.) - Vudzdt
+8/E77/(u5 — k)pVue - ii(x)dzxdt + /E 0 (a: — k)pf(t,x,a;) - ii(x)dxdt. (2.2)

Since the support of n” is compact, for any i = 1,--- N, R 3 r — o'(r — k) fi(t,z,r) is a

bounded continuous function uniformly in (¢,x) (Here we assume that f; is a continuous function
and f;(t,z,0) = 0). Then, by using the chain-rule Sobolev functions and integrating by part, we



have

I
|
S~
3\

ue — k) f(t,x,u) - Vodrdt — | 0" (ue — k)pf(t, z,ue) - Vuedadt

3\
—~

) / )
us — k) f(t, @, ue) - Voodrdt — / ediv (/ (o — k)f(t,z, a)da> dzdt + A
Q k

Il
S
<
©
~

/UE (o — k) f(t, 2, 0)do — 1 (ue — k) f(t, z, u5)> dzdt
k

Ue

"o —k)f(t,x,0)do - 7i(x)dSdt + A

AS)
_—
3

Ue

<
©
N
e

n' (o — k)g‘;(t,a:, a)da> dxdt — /Ecpnl(ug —k)f(t,x,ue) - i(z)dSdt

' (o — k)ga (t,x,0)do - i(x)dSdt + A

F'(ue, k)Vodxdt — / on' (ue — k) f(t, z,u.) - 7i(x)dSdt
p)

o, of
n' (o k)(%

+

+
——— S
©
2

&’1

(t,z,0)do - fi(zx)dSdt + A, (2.3)

AS)

k

where we have used 7/(0) = 0, and

A:/Q@(/k i >dm.

Thus we get
0 < [ ntun ~Dp(0)da + /Q (s — K)Ohpdadt — /Q o (e — k)g(t. . u.)pdadt
+ /Q 0 (us — k)h(ue)pdrdw(t) + % /Q 0" (ue — k)h? (ue)pdadt
—€ /Q 0 (ue — k)Vue - Vdzdt — / F'(ug, k)Veodzdt + A

+€/E77'(u5 —k)pVue - 7t d:vdt—i—/ / (t x,0)do - fi(x)dSdt. (2.4)

Now, let us assume that as € tends to 0, the approximation solution u. converges in an appropriate
sense to a function u € N2(0,T; L*(D)) such that for any dP-measurable set A

dE/ 140" (us — k)Vu, - Vodadt — 0, ase— 0,

Q

5E/ 0 (ue — k)pVu, - ii(x)dzdt — 0, ase— 0,
b

where we have used EEHVUEHZQ(D) < C,p>2and C does not depend on €. Since n(u) =1ifu > §

and n'(u) = 0 if u < 0, and f € C?, we can assume that f’ (here for simplicity, we assume that
the function f is a scalar function, and if f is a vector function, we can deal with the component
similaryly) keeps sign in (k, k+9) for any k € R. Note that ” > 0. If % > 0in (k, k+9) uniformly



with respect to ¢ and x, we have

Ue (k+6) k+6
/k n (o — k)gg(t,x, o)do = /lc+5 gf(t,x,o)da —i—/k n (o — k)g‘;(t, x,0)do

o

ueV(k+9) f . k+6
< — -5
< /k+6 B (t,x,0)do +n (5)/k e (t,x,0)do

= (ue — (k+0)T[f(t,z,ue) — f(t,x,k +0)]
+0' O)[f(t, 2,k +0) — f(t, 2, k)]
< U'(Us —k)[f(t,z,u) — f(t,z, k)]

If % < 01in (k,k 4 ¢) uniformly with respect to ¢ and x, we have

Ue UesV k‘+5) k+6
/k n' (o — k)%(t,x,a)do = /k gf (t,x cr)dcr—l—/k n (o — k‘)%(t,x,o}da

+6
ueV (k+6)

< / of —(t,z,0)do
k+6 do

< (ue — (b + 5))+[f(t,$, u:) — f(t,z, k + )],

In order to have the same estimate for the above two inequality, we will take maximum. Combining

‘/ / (75 x,0)do - fi(z)dSdt

the above discussion, we get

< / /Us (o0 — (t x,0)do - fi(x)|dSdt
< /n’(ue—k)gow (z, k,us)dzdt,
b
where
@t (x,kya) = max |[f(t,z,r) = f(t,2,5)] - 7A(2)].

k<r,s<aVk

Here we can see how we can define the boundary effect. We also remark that it coincides with
those in [1, 30, 32]. Lastly, we consider A. Integrating by part, we have

_ e Mg — 8fz o)do
A = /Q<p</k n"( kz) - o, ——(t,x, )d)dxdt

)dxdt

Ue , aZfz
+/an (/k; n (a_k);c'?xiao(t x O')dO') dxdt.

Then we may pass to the limit in (2.4) and obtain a family of entropy inequalities satisfied by

the limit of u. This observation motivates the definition of entropy solution for the stochastic
conservation law (1.1)-(1.3).
Define

(:)7(1‘7]{:,&) = a/\klgg?:};<k |[f(t,l‘,7“) - f(t,x,s)] ’ ﬁ($)‘



For convenience, for any function u of N2(0, T; L?(D)), any real number k and any regular function
n € ET, denote dP-a.s. in Q by p, i, the distribution in D defined by

n(up — k)p(0)dx + / n(u — k) — F"(u, k)Vpdrdt
Q

N
_ /Q o' (u — k) [Z gﬁ(t,x, u) + g(t, x, u)] dxdt

+/Q¢(/“ i

+ /Q 0 (u — k)h(u)edrdw(t) + % /Q 0 (u — k)h*(u)pdxdt

o= pnk(p) = /

D

(t,z,0 ClO‘) dxdt

+/ 0 (a —k)eo™t (z,k,a(t, x))dzdt;
b

o= pik(p) = / 1(uo — dl’-i—/ k)Orp — F'(u, k)Vdadt
D

ot li -

1

N 82f
—i—/Qcp(/ Zaxlaatmado>dxdt

+ /Q i (u — k)h(u)pdrdw(t) + % /Q i (u — k)h* (u)pdzdt

—i—/ i (a —k)po™ (z,k,a(t,z))dxdt.
s

Now we propose the following definition of entropy solution of (1.1)-(1.3).

Definition 2.1 A function v € N2(0,T; L*(D)) is an entropy solution of stochastic conser-
vation law (1.1 ) with the initial condition uy € LP(D) and boundary condition a € C(X), if
u € L2(07T? LQ(Q7 LP(D)))7 b= 27 37 Ty and

fn.k () = 0, pik(p) >0  dP —a.s.,
where ¢ € D+((O,T % RN))’ LER, ne &t and HeE

For technical reasons, we need to consider a generalized notion of entropy solution. In fact, in
the first step, we will only prove the existence of a Young measure-valued solution. Then, thanks
to a result of uniqueness, we will be able to deduce the existence of an entropy solution in the sense
of Definition 2.1.

Definition 2.2 A function u of N2(0,T;L*(D x (0,1))) N L*>(0,T; LP(2 x D x (0,1))) is

a Young measure-valued solution of stochastic conservation law (1.1 ) with the initial condition
ug € LP(D), p=2,3,---, and boundary condition a € C(%), if

1 1
/ pn e (p)da > 0, / pip(p)da >0 dP —a.s.,
0 0

where ¢ € DT((0, T xRN)), ke R, n€ET and € E~.



Remark 2.1 1. Note that an entropy solution of (1.1)-(1.3) is a.s. a weak solution, see [29]
for more details.

2. Let a =0 = g and f(t,x,u) = f(u), then we find j,(p) will become the “py, ()" in
Definition 1 of [3].

3. Let h =0=g and f(t,z,u) = f(u), then pyr(¢) > 0 and pyr(p) > 0 will coincide with
(1.4) and (1.5), respectively. That is to say, letting 6 — 0, then p, (p) > 0 will converge to (1.4).

4.Let h = 0, noting that |[f(t,z,7) — f(t,x,s)]-7fi(x)| < L¢lr —s| < Ly(a—k), then p, (@) >0
and py (@) > 0 will coincide with (1.6).

Therefore, Definition 2.1 is a natural extension of the definition of entropy solution given by
[1, 3, 30].

Throughout this paper, we assume that f = (f1, -+, fn), p=2,3,---, and

(Hy): The flux functions f and g—J;’Z (k,i=1,---,N) have at most polynomial growth
wrt. u, g : Ry x D xR ~ R is Lipschitz continuous w.r.t. u uniformly in (¢,z),
f €[C?([0,T) x DxR)YN with f(-,-,0) =0 and g € C?([0,T] x D x R) with g(-,-,0) = 0;

(H2): h: R+ R is a Lipschitz-continuous function with h(0) = 0;
(H3) up € LP(D) and a € C(X) for some p > 2;
(H%): up € LP(D)N BV(D) and a € L>=(0,T;C*(0D));

(Hy): agjg;j and 63791_ have at most polynomial growth w.r.t. u, both f and gj&cj_ satisfy
the Lipschitz condition, 7,57 =1,2,--- , N.

The main result of this paper is as follows

Theorem 2.1 Under assumptions (Hy) — (Hs), there exists a unique measure-valued entropy
solution u in the sense of Definition 2.2, which is obtained by viscous approximation.

It is unique entropy solution in the sense of Definition 2.1.

If w1, ua are entropy solutions of (1.1) corresponding to initial data ug1, up2 € LP(D) and the
boundary data ay, ag € C(X), respectively, then for any t € (0,T)

E / lur — ] < / ot — uos]dz + /  max (f(tz,r) — f(tz,5)) - ().
D D »y min(a1,

az)<r,s<mazx(ay,a2)

The proof of Theorem 2.1 is exactly similar to that in [29] except the uniqueness. In section 4,
we will prove the uniqueness. Now we focus on another case, that is, the condition (H3) is replaced

by (H3), (Ha).

Theorem 2.2 (Continuous dependence estimates) Under assumptions (Hy), (Hz), (Hy), (Ha),
there exists a unique measure-valued entropy solution u as stated in Theorem 2.1. Moreover, the
solution satisfies

1
E/O [Ju(t, -, a)|pv(p)] do < C (HUOHIip(D) + |uo| By (py + Ha||L°°(O,T;Cl(8D))) :

In addition, suppose (Hy),(Hz), (H3),(Hys) hold for the two given data sets (ug,a, f,g,h) and
(vo,&,f,f], iL) Let v be the solution to the stochastic parabolic problem (2.1). In addition, we
assume that either

u,v € L2 x Q) for any T > 0,



10

or

2 ; , i .
0% OF _OF Ofi Ok .4 4w

ou?’ Ou  Ou’ Ox; Ox;

Then, there is a constant Cp > 0 such that

E [/D /01 /01 lu(t, z, o) — v(t,x,/B)W(a;)dadﬁdaz]

< o ( |/ 1uae) = vo@)li(odo -+ Vel — il + o~ al

. of of ;
+llg = gllze + \Uo!BV(D)H% - %HLOO + [|h — hHLO") ;

where the constant Cr > 0 is independent of |volpy(py and Y(z) € DHRN) is any function
satisfying || < Cp and |V < Coyp (about the existence of this v, see [9]).

Remark 2.2 1. In order to consider the continuous dependence on the flux function f, we
must prove the bounded variation of u can be controlled by the bounded variation of ugy, see section
5 for details.

2. Thanks to the uniqueness result, we are able to prove that the measure-valued solution is an
entropy solution in the sense of Definition 2.1.

3. We remark that the nonlinear term g satisfying the Lipschitz condition is natural. It follows
from [26] that if g satisfies the local Lipschitz condition, then the solution of problem (2.1) maybe
blow up in finite time.

3 Existence

In this section, we mainly prove the existence of stochastic entropy solution in LP N BV. The aim
of this section is to prove the following

Theorem 3.1 Under assumptions (Hy),(Hz), (HS), (Hy), there exists a measure-valued en-
tropy solution in the sense of Definition 2.2 satisfying

1
E/O [Ju(t, -, a)|pv(p)] do < C (HUOHZP(D) + [uol gv(py + Ha||L°°(O,T;Cl(8D))) :

The technique used here is based on uniform spatial BV and the notion of narrow convergence
of Young measure. We first consider the spatial BV-estimate.

Lemma 3.1 Suppose (Hy),(Ha), (HS), (Hys) hold. Let u. be the solution of (2.1). Then, for
any t € (0,T), there exists a constant p > 2 such that

B[ Vultalde < c(||u05||g,,(m+ /| |Vu05|da:+||a5||Lm<o,T;CI<aD)>)

IN

C (Iluolly ) + ol 5y (o) + llall o 7:c 01y ) -

Proof. We assume that ug. € C°, a. € C°° such that

[uoeller < luolBv(py, Ellacll oo o,ric1@py) < llall Lo (0,01 o0))-
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Following [21], we have for every p > 2

T
B sup ety = [ [ [VuePdods <O (uollpy + lalieorerony) . ()
0<t< 0 D

Taking the derivative of the first equation to (2.1) with respect to z;, 1 <i < N, we obtain
Oplie — EAUze — div(ﬁ + Ouf(t, m u)uie) + gi + Oug(t, T, us)uze = b (ue)uidpw(t),
where v; = % for v = u.,g. Here f;, = (%, cee %fTN). Applying 1t6 formula to ns(u;.) yields

Oms(uze) = ng(“ia)[eAuis + div(ﬁ + Ouf(t, T, ue)uie) — gi — Oug(t, T, uc)use]
1
+77:S(ui€)h/(us)ui€8tw(t) + 577g(uis)(h,(us)ui€)2- (3.2)

Due to ns € €, we have
ens(uic) Auie < eAns(ue).

Integrating (3.2) with respect to = and ¢, and noting that

t
//ng(uis)h'(ug)uigdw(s)dx
D Jo
is a martingale, we get

B | [ mtucttois| < B | [ (a0,
t —
< E/ / s (wie) [div(fi + Ouf (8, T, ue)uic) — gi — Oug(s, T, us)u;:|deds

t
+5 E/ / 7]5 UZE us uu—:) +5/ Vng(uw)ﬁ(x)des
0 JoD

Letting § — 0 in above inequality and adding the resulting two inequalities for ns € €T and ns € £,

| [ udt,olde]

Eﬂﬁ%@@uwwgﬁZiéM@@—%mwww@+aj@%%m@ums

we have

IN

t
~lmE / / I (ie) — 7 (i) [gs + Oug (5, 2, we Yuie)dards

—|—%1rr(1] E/ / s (uie) + 115 ( uw)](h’(ug)uig)zd:cds
%

+de/ Vs (uiz) + i (uic)] - 7i(x)dSds
oD

= / |uz€(0,l‘)|dl‘—|—fl—|-+14
D
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For the term I, by using the assumption (H;), we have

L] < lim ’E/ot/de ([ng(uie)—ﬁg(uis)][fi—|—8uf(s,x,u€)uig]>dxds’

6—0

t —
+1im [ / / () + ) i) Vi - [+ 00 f (5, el |

= mE / /8 Inhlue) = (e L, + 0 o )] () dSds|

6—0
+ lim ‘E/ / [0 (wie ) + 1 (i) Vge - [fi + auf(s,w,ug)uig]dmds’
6—0 0 D

IN

C <||UOHI£p(D) + Ha||L°°(0,T;Cl(8D)))

t
+1im [E / / () 3 4| Vs - (i 00 (5,2, el s |
6—0 o JD

where constant C' depends on Ly and Y. Notice that
(75 (wie) + 15 (wic)Juie = 0 as d — 0
for almost everywhere (t,x) almost surely and there exists constant p > 2 such that
175 i)+ 5 ()| Vi - D (b, Juie| < OV uie? + ),

where the right-side term of the above inequality is integrable and independent of §. Thus the
dominated convergence theorem implies that

=0.

t
lim [E / / (i) + 72 (032)| Ve - Ouf (5, 2, 0 Yusedads
—0 o JD

By the assumption H4 and utilising (3.1), there exists a constant p such that

t
lim ‘E / / (05 (wie) + 15 (wie) | Ve - fidxdt’
6—0 o JD

= e [ bt ~ e s

6—0

t N 2
: 0" fi 0 fi
, . p—
+%1£%‘E/0 /D[%(UW) s(uie) (Z 0x;0z &mau )d dt’

< CEllall=(o.r:c1(0m)) + CE /0 | ucpazas
t
+C’L3wifIE/ / |Vul|dzds
0 JD
t
< C (Il + lalmocrony) +CE [ [ |Vus.o)ldads,

where the constant C' does not depend on .
For the term I, using the assumption (H4) and (3.1), there exists a constant p > 2 such that

t
Bl = —tmE [ [ )~ wlle + (s, . uuideds
0—0 D

t t
< C/ IE/ |u5|pd$ds+Lg]E/ / |Vu(s, z)|dxds

0 D 0 JD

t

< O (luoly ) + lallz=om:c10my) ) +CE /0 /D [Vu(s, o) dvds.
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Next we consider the term I3. By the condition (Hs) and the properties of 75, we have
(15 (uie) + 75 (wie)) (1 (ue uie)?| < Cluie|Lju, <5 < Cluie] € LY((0,T) x D).

We remark that |u;| is integrable and independent of ¢, and [u;c|1},, |<s — 0 as 6 — 0 for almost
everywhere (¢, ) almost surely. Then the dominated convergence theorem implies |I3| = 0.
For the last term I4, by the condition (Hj) and the properties of 75, we have

t
¢E /0 [ lnstue) + )] - (@) dSds < Clall o ricvomy

uniformly ¢ € (0, 1].
Combining the above estimates, we have

E [/ |wie (¢, 1:)|dx]
D
t
< /D |uie (0, )|dz + C (HUOHIEp(D) + HCLHLC’O(O,T;Cl(aD))) + CE/@ /D [Vu(s, z)|dzds.

Summing up the above inequality w.r.t. ¢ from 1 to N, and using the Gronwall inequality, one
can obtain the desired result. This completes the proof. [
Proof of Theorem 3.1 Following [2], there exists a unique solution

u(t,z, @) € N2(0,T; L*(D x (0,1))) N L®(0,T; LP(Q x D x (0,1)))

Vp > 2. Note that the constant in Lemma 3.1 is independent of €. Letting ¢ — 0, we obtain the
inequality in Theorem 3.1 by utilising Young measure convergence theorem. This completes the
proof. [

4 Uniqueness

The aim of this section is to show the following

Theorem 4.1 The solution given by Theorem 2.1 is the unique measure-valued entropy solu-
tion in the sense of Definition 2.2.

The following comparison result plays a crucial role in the proof of Theorem 4.1 and of the contin-
uous dependence estimate.

Lemma 4.1 Suppose (H1) — (Hs) hold for the two data sets (ug,a, f,g,h) and (vo, a, f,@, iz)
Let u be a solution of (1.1)-(1.3) in the sense of Definition 2.2. Let v be the solution to the following
stochastic parabolic problem

dv — [eAv + div(f(t,y,v)) — §(t, y,v)]dt = h(v)dw(t) in Q,
v(0,y) = vo(y) in D, (4.1)

vV=a on .

For ns € £, we introduce the associated entropy fluxes for u,v € R, respectively, as

Pitu) = [ ihio — 05l w0, Fww) = [ aio — o) 2L (0w 0o
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Then, for any ¢ € DY([0,T) x RN), the following holds
1

u(t,z, ) — v n(y — x)Oppdadydrd
B[ [ sttt 2,00 =0y~ mpipdadydri

1
—dE/ / / ns(u(t, z, ) — v(t, y)) pn(y — z)pAyvdadydzdt
+- E/ / / u(t, z, ) — v(t,y))puly — ) (h(u) — h(v))>edadyddt
() = () + 75 (0) = 199(0) + [ [ h(a—adepay— o)t @)

+ /D /D ns(utg — 0)p(0)p(y — ) dady, (4.2)

where pn(y — x) will be determined later, and
. 1 .
() = IE/ / / (Fn'S (u,v) — F" (v, U)) ©Vypn(y — z)dadydxdt;
QJDpJo
. 1
Hp) = E/ / / F (v, u)pp(y — ) Vypdadydxdt;
1) =5 | [ bttt z.0) =)oty — 210

X (/ ns(o — v) 82: o (t,z,0)do — ns(u—v) Z %(t x u)) dadydxdt
i—1 (2 .

—HET///% (t,z, ) —v(t,y))pnly — )
N
(/ -0y

T /// M5 (ult, z,a) —v(t,y)pa(y — 2)plg(t, x,u) — §(t, y,v)|dadydzdt.

A~

2fz - O
U (t,z,0)do — n(u—v g (t,z v)) dadydxdt;

s

Remark 4.1 Similar to Lemma 4.1, one can prove that for any ¢ € DT([0,T) x RY), the
following holds

E / / / i (ult 2, 0) — 0(t, 9))puly — 2)hpdadydadt

_E / / / u(t, 2, @) — v(t, y))puly — 2)0A yodadydzdt

3 g / / / T (ult, 7, 0) — vt y))pn(y — 2) (h(u) — h(v))2pdadydadt
() =P )+ 79 () = 1990) + [ [ (e = a)puty =k~ (@.0)

+ /D /D s (0 — v0)p(0)pu(y — 2)dady,

where n and 1 will be replaced by 1 and n in If7f(g0), If(gp), Jf’f(go) and J99(p), respectively.

Proof of Lemma 4.1. As usual, we shall use Kruzhkov’s technique of doubling variables
[22, 23] to show the comparison result. We choose two pairs of variables (¢,z) and (s,y) and then
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we consider u as a function of (t,xz) € @ and v as a function of (s,y) € Q. For any r > 0, let
{BI'}i=o.... m, be a covering of D satisfying Bj N dD = ), and such that, for each i > 1, B is
a ball of diameter < r, contained in some larger ball B; with BZ” N 0D is part of the graph of a
Lipschitz function. Let {¢]||i=o,... m, denote a partition of unity subordinate to the covering {B] };.
Let p € DH([0,T) x RY).

The proof of the following stochastic local inequality is similar to the general case, that is,
€€ DH([0,T) x RY). And we only prove the general case. For any & € D*(Q), one can prove

]E/Q/D /01 ns(u(t, z, ) — v(t,y))pn(y — )0 dadydrdt
1
—E/ / / ns(u(t, z, ) — v(t, y)) pn(y — )EA vdadydzdt
+- ]E/ / / u(t, x, o) — v(t,y))paly — ) (h(u) — h(v))2Edadydzdt
Q) = 1)+ 1) = 199 + [ [ oo =)oty — ko (@.00)

* /D /D ns(uo = v0)§(0)pn(y — z)dxdy, (4.3)

In particular, (4.3) holds with & = p¢p. Now, let i € {1,---,m,} be fixed in the following. For
simplicity, we omit the dependence on r and ¢ and simply set ¢ = ¢; and B = B;. We choose a
sequence of mollifiers (p,,), in RY such that = — p,(z—y) € Dforally € B. o,,(z) = [, pu(z—y)dy
is an increasing sequence for all z € B and o, (z) = 1 for all € B with dist(z,RY \ D) > £ for
some ¢ = c(i,r) depending on B = B]. Let (gp)m denote a sequence of mollifiers in R with
suppom C (—2,0).
Define the test function
Cmn(ts 2, 8,y) = @(8,4)0(y)pn(y — ) om(t — )

Note that, for m,n sufficiently large

(t,2) = Guan(t, 2, 5,9) € D((0,T) x RY),  for any (s,y) € Q,

(s,4) = Cmn(t @, 5,y) € D(Q), for any (¢,z) € Q.

Let v(s,y) be the solution of (4.1) with initial data vy and boundary data a, and ns € £
satisfying ns(-) = (-)* and n5(-) — sgng (-) as § — 0. Then taking ¢ = (i (t, 2, s,y) in Definition
2.2, for a. e. (t,z) € Q, we have

1
- / n5(a = k)Gmunw™ (2,k,a) < / / Ms(u — k) (Cmn)e — F™ (u, k) - Vil n] dzdtda
%

/ / n5(w — k)h(u1)Cmmndzdw(t)da
/Q<P775 u—k [Z gi t,w,u +g(twu)] dxdt
“ / 82fz
+/Q<p (/ ns(o — k); &ciaa(t x U)do‘) dxdt

/ / B2 (w6 — K)o

+/ 776(“01 - k)Cm,n(Oaxvsay)dx'
D
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Multiplying the above inequality by ¢;(k — v) and integrating in k and (¢, ) over R and @), respec-
tively, and taking expectation, we have

E///Ua(uo—k)Cm,n(O,x,s,y)da:gl(k—v)dk:dyds
QJRJD
1
+E/ / // ns(u — k)dppndiom(t — s)dapi(k — v)dkdzdtdyds
QJIQJIJRJO
1
E/ / // F(u, k)ppom - Vapn(y — x)dag(k — v)dkdzdtdyds
QJQJRJO

1 N of;
_E/Q/R/Q/O ns(u — k) [Z 83]:1 (t,z,u) —I—g(t,x,u)] Cmndao(k — v)dkdxdtdyds

N

1 u o,
+E/ // (m,n/ </ ns(oc —k g 03%80 (t,z,0)do | dag(k — v)dkdzdtdyds
2 E/ /// h2 TZ‘S u — k)(mndag(k — v)dkdxdtdyds

+E / / / / 7 (4 — BYh(u) Commdarduw(t)daor (k — v)dkdyds

—i—E/ //775 k) mnw™ (2, k, a)dSdto (k — v)dkdyds
= L4+ -+

As v is a viscous solution, the Itd formula applied to [ pNs(k —v) yields that for a.e. (t,z) € Q

0 S /776( _U)Cmntxoydy+/776 -V Cmn) dyds
D Q

_5/ ns(k — ) y'UCmndyds_/ Fﬁé VyCmndyds
Q Q

N
—/ ons(k —v)
Q
N

—i—/ /U 5(k—o) al (t,x,0)do | dzdt
Q 7 k "ls izl 8(6,80’

+% /Q 15 (k — v) B2 (0) CGmyndyds — /Qng(k — 0)h(0) Cmndyduw(s),

of; )
4 a—mi(t,x ;u) + g(t, x,u)] dxdt

where we used the fact that for any fixed (¢,z) € Q, Gnn(t, z,5,y) € D(Q).
Multiplying the above inequality by g;(u — k) and integrating in k over R, in (¢, x) over @) and
in a over (0, 1),respectively, and taking expectation, we have
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1
0 < E / / / / 15k — 0)Comn (.2, 0, y)e1(u — K)dadkdydzdt
oJrJpJo

1
‘HE/ / / / né(k — 'U)(as(pgm + (,Oasgm)d)pndydsgl(u _ k)dadkdxdt

_EE/ / / / 15k — 0)Ayv¢n ndydso(u — k)dadkdzdt
_E/ / / / 5 (v, k) - Vylmndydso(u — k)dadkdzdt

—E//// n5(k [ lgﬁ(t,x,v)—g(t,m,v)]

X Cmndydsor(u — k)dadkdzdt
N

+E////¢m,n(/k i _azajgamda>

><Cm ndydso;(u — k)dadkdxdt

+5 =5 / / / / (V)Cmndydso(u — k)dadkdzdt
) / / / / 15 (k — 0)h(0) Cmmdydw(s) o1 (u — k)dodkdadt

= Jit o+ + s

Noting that o, (t) =0, t € [0,T], we have

1
nedi = B[ [ [ st 0600 s pah - vdadrdydsds
QJrJDJo

= E/Q/R/D/Olna(u—k)s0¢pn9m(—8)@z(k—v)dadkdydxds
/D /D ns(uo — vo)pppndydz

Due to u € N2(0,T, L*(D)), ug, vo € L*(D) and the compact support of (. n, we know that the
convergences in above inequality hold, see [2] for the similar proof.
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By using the fact 0yom (t — s) + Jsom(t — s) = 0 and changing variable technique, we get

1
L+J, = E/ / / / ns(u — k)pdpndiom(t — s)dag(k — v)dkdzdtdyds
QJQJIRJO

1
+]E//// né(k71))(88809771+¢85Qm)¢pndyd59l(ufk)dadkdxdt
QJRJQJO

1
B E//// ns(k — v)0spomdpndydsor(u — k)dadkdrdt
QJRJQJO

1
+]E/ / // Ns(w —v — T)pdpn0som(t — s)dogy(T)drdxdtdyds
QJQJRJO
1
HE//// 15(w = v = T)Ppndsom(t — s)dydso(r)dadrdrdt
QJRJQJO

1
- E//// n5(k — v)0spomdpndydso)(u — k)dadkdxdt
QJ/RJQJO
1
“m E/// Ns(u — v)Opppppdydadzdt.
QJDJo

For the term .J3, we have

1
J3 = —€E//// n5(k — v) Ayvlm ndydso(u — k)dadkdzdt
QJRJIQJO

1
—m —5E/ / / n5(u — v)Ayvpdp,dydadzdt.
QJpJo
Similar to the case I + Jo, and noting that Vg, (y — z) = —=Vypn(y — x), we have

L+ Js=my 1 (00) — T (09).

By the definition of stochastic entropy solution and the compact support of the test function, we
know that the following limit holds

Iy +Js +Is + J6 —m Jf’f(%b) Jg’g(sﬂl));

Is + J7 =1m = / / / ny(u—v) ( )+ 52(v)> o(t, ) d(y)pn(y — x)dydadzdt.

Now, we come to the estimate of most interesting part, the stochastic integrals. Since a(t) =
fo o1(u(t,z, ) — k)dr is predictable and if one denotes

B(s) = /D 750k = V)h(0)Cmndy,

we have

[at) [ seruts)] <o) [ ssaus] -2 fae) [ sem)] =0

due to that

B[a) [ ants)] = [a(t)E ([ swe17)] <o [ saue)]

Similarly, let o (s — %) = oi(k —v) and
/ / 776 U= )Cm ndxda,
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then we get that

E/Q/Ra (s _ :l) /OT B(t)dw(t)dkdyds = /Q/REa <s - i) /(:_2)+ B(t)dw(t)dkdyds = 0

m

Thus, we have

I+ Js = //// ns(u — k)h(w)Cmndrdw(t)dao (k — v)dkdyds

STLLL o e s
_ ///_ // D (1 — K)o mdazduw(t)daor (k — v)dkdyds
T —

T e 2o

As dv = [eAv + div(f(t,y,v)) — §(t, y,v)]dt + h(v)dw(t) :== Acdt + h(v)dw(t), by 1t6’s formula,

we arrive that
k= ots.) = o (=v (5= 2.))
:=<—%:2ygﬂk—v®wDAdmyMJ

_/s L &k = v(o,y)h(v(o,y))dw(o)

1 i
+2/( e o (k — v(o, )R (v(o, y))d
_ _88k { (Sm) oi(k —v(o,y))Ac(o,y)d

Therefore,

Ii+Jg = —IE/// //néu k) B(w) G dazdaw (t) dex

x{-- }dkdyds
=: Ly + Lo+ Ls.

As in [2, 3], one can prove that

‘Lly —m 07 |L3| —m 0.



20

Thanks to Fubini’s theorem and the properties of 1t6 integral, we have

lim(Ly + Ly + L3)

_ —hmIE/// // w1 — k)h()Comndduw(t)da

x /( +@l<k—v<ay>>ﬁ<< y))dw(o)dkdyds

S STy

xo01(k —v(t,y))h(v (t y))dtdzdkdyds
 -E / /| / = v(t, ) h(W)p(E 1) (@)pn(y — 2)h(0(t, ) dadtdady

Therefore, we get

1
lim(le + Jr + I7 + Jg) = E/ // ny(u —v)
m,l 2 QJDJo

< (hw) = b)) o(t.v)6(W)pny — 2)dydaddt

Lastly, we consider Ig. From the assumptions for a5, we have
Is = ]E/ / / n5(a — k) mnw™ (2, k, a)dSdto(k — v)dkdyds
QJrR /S
/ / n5(a — a@)pppn(y — 2)w™ (2,4, a).
s JD
Combining all estimates above then yields
1
IE/ / / ns(u(t, z, o) — v(t,y))pn(y — x)Oppdadydzdt
QJpJo
1
e / / / T (ult,,0) — v(t, 1)) pu(y — 2)pdA vdadydzdt
+3E / /| / u(t,,0) — v(t, y)paly — ) (h(w) — h(v))2pddadydudt
T (00) = F0) + 79 00) = 199000 + [ [ e = a)gipnly - a)urt(@.d,0)
/ / 15 (uo — v0)@(0)ppn(y — x)dzdy,

Summing over i = 0,1,---,m,, taking into account the local inequality (4.3) for i = 0, we
obtain the desired inequality (4.2). This completes the proof. [J

Proof of Theorem 4.1 Let f = f, g = § and h = h in inequality (4.2). It is easy to see that
Iff(go) = 0. Next, we will show that

€,0—0

1
— lim 8E/ / / ns(u(t, z, ) — v(t,y)) pn(y — ) Ayvdadydzdt < 0.
QJDJO



21

By using the fact that n” > 0 and
Ayt (u—v) = 0§ (u—v)|Vyo* —nj5(u—v)Ayo,

we have

1
_5E/ / / n5(u(t, z, o) — v(t, y))pu(y — z)pAyvdadydzdt
QJDJO
1
- EE/ / / Ayns(u(t, z, o) — v(t,y))pn(y — 2)pAyvdadydrdt
SIE/ / / u(t, z, a) (t,y))|Vyv|2pn(y - $)<,0Ayvdadyd:cdt

IA

EE/Q/D/O Ayns(u(t, z, o) — v(t,y))pn(y — x)pdadydzdt

1
= EE/ / Vyns(u —v) - vpn(y — x)pdadSdxdt
0 JoD

1
e [ [ o %ot ) vt
QJo JoD

+€E/Q /01 /Dn(;(u — 0)Ay(pn(y — x)p)dadydxdt

=: J31 + J32 + J3s.

Using the bound of V,v and v on D, we get lin(l)(ng + J32) = 0.
e—

1
lim J33 = dE/ / / lu — v|Ay(pn(y — x)p)dadydzdt
6—0 QJo JD

dE/Q/Ol/D|uAy(pn(y—:v)go)dadydxdt
+¢CE (/D Iv\zdyf (/D[Ay(pn(y - :r)w)]zdyf

— 0, ase—0,

IN

where we have used the fact that [[v]|z2(py is uniform bounded for ¢ > 0. Thus, we get the desired
result. Noting that yn% n"(u) = do(u), where do(z) =1 if x = 0 and dp(x) = 0 otherwise, we have
—

}13(1) 2E/ / / u(t, z,a) — v(t,y))pn(y — ) (h(u) — h(v))*opdadydzdt = 0.
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Then taking limits in (4.2), we have

0 < lim lim lim RHS of (4.2)

m—00 e—0§—0

1 1
_ _ +
- E /Q /0 /0 (ult, 2, ) — v(t,y, B)) " DppdadBdrdt

1,1
_ -
E/Q/o /0 FT(u(t,z,a),v(t,z, 8))Vo(t, z)dadBdxdt

1 1
—E/Q/O /0 sgno+(u—v)[g(t,:c,u(t,x,a)) —g(t,z,v(t,z, B))]dadBdxdt

1 N A A
—E /Q /0 /01 sgnb"(u — ) ;[gﬁ(t, x,u(t, z, a)) + giz (t, x, U(t, xz, ﬁ))]dadﬁdl‘dt

—l—/ gpw"’(a:,&,a)det—}—/(uo—vo)+cp(0)da:.
> D

Next, we consider the second half. Similarly, as u is an entropy solution, using the other half
of Definition 2.2, and applying Itd’s formula to [, 75(v — k), we have the following

E/ /1 /l(v(t, Yy, B) — u(t, z,a)) " OypdadBdrdt
QJo Jo
—E/Q/Ol /01 FT(v(t,z,B),u(t, z,a))Ve(t, r)dadBdrdt
1 1
_E/Q/o /0 sgnd (v —u)[g(t, z,u(t,z,a)) — g(t, =, v(t, z, B))|dadBdzdt

1,1 N N
—E///sgn (v—u)
QJo Jo 0 Z;

+/ tpw_(w,d,a)det+/(vg—uo)+<p(0)d:p.
) D

of;
81‘1'

Q) + == (t, z,v(t, z, B))|dadBdxdt

Summing the above two inequalities, and using the fact |a — b| = (a — b)" + (b — a)™, we have
1 1
0 < E / / / ult, 2, @) — v(t, y, B)|Oupdadfdudt
—IE/ / / u(t,z, o), v(t,z, B))Ve(t, z)dadpdxdt
= / / sgno(u —v)lg(t, z, u(t, 2, a)) — g(t, 2, v(t, 2, B))]dadBddt
QJo Jo

N
K /Q /01 /01 sgno(u—v);[ggtmu(ma))+gﬁ (t, 2, 0(t, 2, B))|dadBdwdt

—I—/Egamin(a&) max N(ft ) = f(t,x,8)) 'ﬁ(x)\det+/D lug — volp(0)dz

,a)<r,s<max(a,d)

where we used the fact that

w(z,d,a) +wh (z,a4,a1) = max |(f(t,z,r) — f(t,x,s)) - 7i(z)] (4.4)

min(a,d)<r,s<max(a,a)
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We see that it is different from the case that f = f(u) and g = 0. Clearly, the following two terms

1ol
—E// / sgno(u —v)[g(t, z,u(t, z, a)) + g(t, z,v(t, z, B))|dadSdzdt

N

E/ / / sgno(u — v Z Ltz u(t, T, ) + gf (t,z,v(t,x, B))]dadBdzdt
=1 i
would not vanish. Fortunately, we remark that |u — v| = |v — u|, so we can obtain the following

inequality exactly as in the previous proof
1l
0 < E / / / [o(t,, B) — u(t, z, 0)|Dypdad Bdwdt
—IE// / v(t,z, B),u(t,xz,a))Ve(t, z)dadBdxdt

_IE/Q/O /0 sgno(v — u)[g(t, z,v(t, z, B)) — g(t, z,u(t, z,a))|dad Bdzdt

N
_E/Q /01 /01 sgno(v — u) ;[gﬁ(t,m,u(t,x,a)) + ga{i (t,z,v(t, z, B))]dadBdrdt

—i—/ 0 max |(ft,z,r) — f(t,z,s)) - ﬁ(m)\det+/ |vo — uole(0)dx
»,  min(a,a)<r,s<max(a,d) D

Notice that F(v(t,x, ), u(t,z,a)) = F(u(t,z,a),v(t,z,5)), adding up the two inequalities then
yields

0 < E / / 1 / ult, 2 0) — oty B)|OupdadBdudt
E / / / u(t, z,0), 0(t, 2, B))Ve(t, z)dadBdrdt
—IE/ / / lg(t, 2, 0(t, 2, B)) — g(t, 2, ult, 7, )| dadBdadt
/ . (F(tsr) — f(t 2, s)) - fi(x)|dSdt

a,a)<r,s<max(a,d)

/ [uo — volp(0)

The rest of the proof of Theorem 4.1 is routine (cf the proof of Theorem 3.8 in [4] for details). We
omit it here. This completes the proof. [J

Remark 4.2 We remark that there is a significant difference in the proof of the uniqueness
from that in [30]. To be more precise, there is a big difference between the deterministic case and
the stochastic case. The reason is that we can not add the two inequalities, i.e., p,, > 0 and
Wi = 0. But in deterministic case, one can add the two inequalities in the definition, see Lemma
16 in [30]. Therefore, for stochastic case, it becomes more difficult.

Another difference from [30] is that here we did not assume that the flur function fulfils the
Lipschitz condition. Moreover, the boundary data a satisfies a different condition from that in [30]
(cf Definition 1 of [30]). Our definition is a natural extension from those in [1, 31, 32].
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5 Continuous Dependence Estimates

The aim of this section is to prove the second part of Theorem 2.2, that is, we will show the
following

Theorem 5.1 (Continuous dependence estimats) Suppose (Hy), (Hz), (H}),(H4) hold for the
two data sets (ug,a, f,g,h) and (vo,a, f,§,h). Let u be a solution of (1.1)-(1.3) in the sense of
Definition 2.2. Let v be the solution to the stochastic parabolic problem (4.1). In addition, we
assume that either

u,v € L°(Q x Q) for any T > 0,
or

0*f of of of; of

ou?’ ou  Ou’ Ox; Ox;’

g—§, h—heL>.

Then, there is a constant Cp > 0 such that

E [/D /01 /01 lult, 7, 0) — v(t,x,ﬁ)]z/}(a:)dadﬂdx]

< Cr </DIUO($)—vo(x)llb(iﬁ)dwr\/fl!h—ﬁllm+||a—dHL°°

of of

+[lg — gz + \UOIBV(D)”% ey

oo + [lh = inLoo) ;

where the constant Cr > 0 is independent of |volpy(py and Y(z) € DH(RYN) is any function
satisfying || < Cy and |V| < Cotp, which includes ¥(x) = 1 when |z| < R and ¢¥(z) = 0 when

|z| > 2R. In particular, we have

E [/D /01 /01 ult, 2, 0) — v(t, 2, ﬁ)|dw]

< or ([ uote) — walde + vl il + o~ a1
D
) of of ’
Hlg =l + Rolavoyl o — g 4 h|Lo«>> .

Proof Denote 75(x) := ns(x) + 7s(x). Then, 75 satisfies 75((0) = 0, 7s((x) = 7s((—x). From
the Notation in section, we can assume that

_ . M,
[rl = M8 < ajs((r) < |rls 0 <75 ((r) < == Tpri<os
where M; > 0, i = 1,2. Such function can be easily given, for example the function in [9] will be
satisfied the above assumptions.
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It follows from Lemma 4.1 and Remark 4.1 that
1
E/ / / fis(u(t, z, ) — v(t,y))pn(y — z)pdadydrdt
QJDJO
1
_EE/ / / s (u(t, z, @) — v(t, y)) pn(y — 2)pAyvdadydadt
3 S / / / 7 (u(t, z, 0) — v(t,y))pu(y — 2)(h(u) — h(v))2pdadydzdt

—i—E/ / / F%(u,v) — Fs (v, u)) ©Vypn(y — z)dadydzdt
QJpJo

1
—E/ / / F5 (v, u) pp(y — )V ypdadydzdt

+IE/ // @Z/ 5 (o —v) (t x,0)dopy(y — z)dydzdt

wf Lo [

_E/Q /D /0 s(u(t, @, ) = v(t,y)puly — 2)¢lg(t, @, u) — §(t, y, v)ldadydzdt

+ /E /D ppn(y — x)w(z,a,a) + /D /D 7ls(uo — v0)¢(0)pn(y — x)dzdy, (5.1)

where we have used (4.4). Here and after, denote

@%)m%@*@MMﬁ

w(zx,a,a) = max |(f(t,z,7r) — f(t,x,s)) - 7i(x)].

min(a,a)<r,s<mazx(a,d)
For each h > 0 and 0 <t < T, define

if s <t,
ot if t <s<t+h,
if s>1t+4h.

Pn(s) =

O = =

Then, by standard approximation, truncation and mollification argument, (5.1) holds with

o(s,x) = on(s)y(x),

where 1 satisfies the assumptions in Theorem 5.1.

Define
s):=E [/D /01 ns(u(s,z, o) — v(s,x))dozdx] ,

then A € L] (0,7). It is easy to check that any right Lebesgue point of A(s) is also a right

Lebesgue point of
=& [ [ [ fsuts2.0) = sty ~ i)

Let ¢ be a right Lebesgue point of A. We choose this ¢ in the definition of ¢, (s). Then the inequality
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(5.1) implies that

/t+h /// M5 (u(s, z, @) —v(s,y))pn(y — ) (y)dadydzds

—sE/ // s (u(s, , ) — v(s,9)) pu(y — 2)on ()Y (y) Ayvdadydrds

IA

+3E / / / (5,,@) = v(s,1))pny — ) (W) — h(0))20n(s)(y)dadydads

+E / / / (F™ . 0) — E75(0,)) 60 ()(s) ¥,y — 2)dadydds

—E/ // Fs (v, u)p YVyon(s)Y(y)dadydzds
wf [ th(s)w(y)i / ﬁg’<a—v>§£<s,x,o>dapn<y—x)dyda:ds
N

,o)dapn(y — x)dydxds

[ f, [ e ZJF”

E / / / n(u(s, 2, 0) — v(s, 1)) pn(y — 2)on(8)0W)[g(5, 2, uw) — 35,9, v)]dadydzds

//w Y)on(y — x)w(z,a,a) //muo—vo (y — )dzdy. (5.2)

Letting & — 0 in (5.2), we get

e [ ] s(u(t,,0) — o, 9))puly — 20 (y)dadyda

—dE/t/ / /177(’5 (u(s, 2, a) — v(s,9))pn(y — 2)0(y) Ayvdadydzds

+= E/ / / / (s,2,0) — v(s,9))pn(y — z)(h(u) — h(v))?¢(y)dadydzds
+IE/ / / / F”5 (u,v) — F (v u)) D(y)Vypn(y — v)dadydzds

—E / / / / F3 (v, 0) po(y — )Vt (y)dadydads
[ L e Z/”

HE//// e Z/ ~”u—a sy, o)dopn(y — z)dydads

i=1v"Y

=) / I/ / (s, %, 0) — 0(s,9))puly — 2)6()[g(s, 7, u) — §(s,9,0)|dadydads

//1/1 Y)pnly — 2)w(z,a,a) //776 ug — V)Y (y — x)dxdy. (5.3)

From the above assumptions on 7, we know that the function

IN

,0)dapy(y — x)dydzds

Fs (u,v) == /u fis(o — U)%(t, x,0)do
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satisfies
00 (F7 ) — 0, 0) | < M1 2 L .
Notice that
Vy (Fﬁ5 (u,v) — E (v, u))
= Vyv-09, (Fﬁ‘S (u,v) — F (v, U)) | (ugo)=(u(t,z) 0(ty))

thus

Oy <Fﬁ5 (u,v) — Fﬁ5(v,u)) ‘

Oy <F7~75 (v,u) — Fﬁ‘s(v,u)) + 0, (Fﬁ‘s(u,v) — Fﬁ5(v,u)) ‘

of of
< av(tvxﬂ))_%(ﬂ > >‘+M2H8 QHLOO QXR)5

Hence, after an integration by part, we get

‘E /0 t /D /D /0 1 (Fﬁa(u, v) —F%(v,u)) W(y)Vypn(y — )dadydzds
-E / t / / / lﬁﬁé(v,u)pn(y—x)vy¢(y)dadydxds

- ‘IE/ / / / F’75 (u,) F%(v,u)) D(y)pnly — z)dadydads
E /O /D /D /0 Fis (4, v)pn(y—m)vyw(y)dadyda}ds‘

af of f
tE[lvo| gy (py]ll%]| L (II—IIL +M2|| ||L°o5)

012 - /E[/D / / is(u(s, 2,0) — v(s,1)pnly — )8 (y)dadydz] ds,

where we have used the properties of .

IN

Similar to the previous section, one can prove that

1
‘5/ / / Ty(u(t, z, ) — v(t,y)) pu(y — 2)pAyvdadydzdt| — 0, as e — 0.
QJpJo

Consequently, using the properties of 75 and the above discussion and letting n — oo and € — 0,



28

we can wrlte

///]utxa v(t, z, B)|Y(z)dadx

E/ // / u(s, x, o) — v(s, z, B))(h(u) — h(v))?¢(2)dadBdzds

[ L e Z/”’
+E////w Z/ ~”u—a sxa)dadﬁdxdt

i=1""Y

—E/ / / / i (u(s, z, ) — v(s, z, B))b(2)[g(s, z, u) — §(s, z,v)]|dadBdrds

IN

,0)dadfBdxdt

0 0 0
B0l v ) = (uf - JHLOO - ca) + Ol o

/ [// / [u(s, @, @) — (s, z, B)|¢(z )dadﬁd:c] ds
—i—/Eib z)w(z, a,a) +/Du0 ) — vo(a) [ (x)dx

By the assumptions of 77, we have

‘2 / // / (5,2, @) = v(s,z, 8)) (h(u) — h(v))*P(x)dadBdrds

M. R
E/O /D/O /0 721|u(s,x,a)—v(s,z,6)|<5(h’(u) - h(u))2w($)dad/8dxd5

t 1 1
M N R
+E/ / / / 721\u(s,:p,a)—v(s,x,ﬁ)|<5(h(u) - h(v))21/1(x)dadﬁdxdt
0 JDJO 0 4
=: A+ As.

IN

Clearly,

| A

IN

C’]E/Ot/D/Ol /01 wa)dadﬁdmds

tllh — hl?
Ol oy A= P

IN

and in view of Hs,

t 1,1
| Aa| SCL;L/O E [/D/O /0 lu(s, z, o) — v(s,x, B)|(x)dadfdz | ds
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By the assumption (Hy) and using integration by part, we get

’IE/ // / U(x Z/ ﬁga—v (s x,0)dadfdxds

N

+E/// / e Z/ il —o gﬁ (sxa)dadﬁdxdt’
i=1"7"Y

< CLafE/ / / / (/ 775(0—1))+ﬁg(u—a)]|a—u|da> dadBdzds
fi }
+E/0 /D/O / w(x)ﬁg(uv); (ai (s,z,v) — ai (s, u)) dadfBdxds
of; 0f;
< o= 2% - ~fHLm

+CL2£/ {/ / / lu(s, z, o) —v(s,x, B)|Y(x )dadﬁdm]

where Laf = max;—1... N Lay, . In view of (H3), we obtain
ox;

‘E////n(; u(s,x, ) —v(s,z, B)(x)g(s, z,u) — §(s,x,v)|dadBdxds
< Cllg = gllze~-

Notice that w(z,a,a) < C|la — a||r, we have then arrived at

E/D/O1 /01 lu(t, z, @) — v(t, z, )| (z)dadz

[ alo) - w@lotie + € (1501 + Ly +1;)
D (% CE

x/OtE UD/Ol /01 yu(s,x,a)—v(s,x,ﬁ)w(x)dadﬁdx] ds

) tlh—hl2.  Of; Of;
+C<w—amm+”ﬁ/+w*f f

5 9z, oe, llzee 4 1lg — gl

of 5f
Hlvo gy [¥lle<ll, — 5 Il + 5>,

which implies via the Gronwall inequality that, for any t > 0,

1 1

E/D/o /0 lu(t, =, a) — v(t, =, B)]p(x)dads

est/ luo(2) — vo(x) | (w)da: + Ce®* <||a&|m Lt = Pl
b 5

3f 8f
||L°°+||g 9llzee + thvolpv o) [llzell 5 — 5 llzee + 5>7

where B := C (H%HLOO + Loy + Lh)' The desired inequality is then obtained by choosing § =
oz
Vt||h — h||p. We are done. [J
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