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Abstract

As model organism-based research shifts from forward to reverse genetics approaches,

largely due to the ease of genome editing technology, a low frequency of abnormal pheno-

types is being observed in lines with mutations predicted to lead to deleterious effects on the

encoded protein. In zebrafish, this low frequency is in part explained by compensation by

genes of redundant or similar function, often resulting from the additional round of teleost-

specific whole genome duplication within vertebrates. Here we offer additional explanations

for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zeb-

rafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9

or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA

processing: one through a skipped exon that did not lead to a frame shift, one through non-

sense-associated splicing that did not lead to a frame shift, and three through the use of

cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA

produced in mutant lines before making conclusions or embarking on studies that assume

loss of function as a result of a given genomic change. Furthermore, recognition of the types

of adaptations that can occur may inform the strategies of mutant generation.

Author summary

The recent rise of reverse genetic, gene targeting methods has allowed researchers to read-

ily generate mutations in any gene of interest with relative ease. Should these mutations

have the predicted effect on the mRNA and encoded protein, we would expect many
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more abnormal phenotypes than are typically being seen in reverse genetic screens. Here

we set out to explore some of the reasons for this discrepancy by studying seven separate

mutations in zebrafish. We present evidence that thorough cDNA sequence analysis is a

key step in assessing the likelihood that a given mutation will produce hypomorphic or

null alleles. This study reveals that mRNA processing in the mutant background often

produces transcripts that escape nonsense-mediated decay, thereby potentially preserving

gene function. By understanding the ways that cells avoid the deleterious consequences of

mutations, researchers can better design reverse genetic strategies to increase the likeli-

hood of gene disruption.

Introduction

The recent increased use of reverse genetic approaches has been largely driven by the ease,

affordability of construction, and implementation of the CRISPR/Cas9 and TALEN systems.

Recent communications recount numerous cases of generated mutations in genes of interest

lacking an expected effect on phenotypes [1, 2]. The shift from antisense-based knockdown

(morpholinos, RNAi) to mutant generation (gene targeting/TILLING methods) resulted in

discrepancies in phenotypes, leading researchers to question the specificity and mechanisms of

anti-sense technologies and also the methods by which mutants are generated [3]. A screen for

essential genes performed in a human cultured cell line found little correlation between genes

identified with short hairpin RNA (shRNA) silencing and CRISPR/Cas9 methods [4]. While

genome editing methods, such as the CRISPR/Cas9 and TALEN systems, have proven to be an

efficient and effective way to reduce or eliminate gene function, a frequent lack of a mutant

phenotype is observed, often explained by genetic compensation. This is a process wherein

related genes or pathway members are differentially regulated in the mutants to compensate

for the targeted loss of a specific gene [3].

In addition to genetic compensation, other mechanisms to recover the function of genes

harboring homozygous mutations involve variations in processing of mRNA. For example,

variations in essential splice sites (ESS) in humans often lead to loss of function resulting in

disease [5, 6]; however, there are several well described ways that function may be recovered

[7–9]. In canonical pre-mRNA splicing, joining exons for a functional product requires the

presence of a 5’ splice donor sequence (intronic GU), a branchpoint adenosine, the polypyri-

midine tract, and a splice acceptor sequence (intronic AG). Base variations in the ESSs lead to

one of four outcomes, in order of frequency: 1) exon skipping, 2) activation of cryptic splice

sites, 3) activation of cryptic start sites producing a pseudo-exon within the intron or 4) intron

inclusion, in the case of short or terminal introns [10]. Mutations in ESSs that lead to skipped

exons may result in transcripts that escape nonsense-mediated decay (NMD), the surveillance

system that reduces errors in gene expression, if the exon skip does not lead to a frame shift

and premature translation termination codon (PTC) [11]. Cryptic splice sites are present

throughout the genome both by chance and through evolution of introns [12] and their activa-

tion and use by splicing machinery is typical when exon definitions (such as the natural splice

sequences) have been altered [13, 14]. Depending on the location of the cryptic splice site used,

and the impact on the sequence and frame, functional transcripts may still be generated.

Nonsense-associated alternative splicing, in which a PTC-containing exon is skipped, may

also restore the reading frame of a mutated gene [8]. Again, if the exon skip does not lead to a

frame shift and new PTC, and the skipped exon does not contain essential motifs, transcripts

may be generated that escape nonsense-mediate decay. Location of the PTC also determines

mRNA processing in mutants produces transcripts that escape nonsense-mediated decay
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whether the nascent transcripts will be subject to NMD [15]; however, even though these tran-

scripts escape the surveillance system that detects PTCs, these transcripts may either be func-

tional or aberrant. Translation of the transcripts may result in wildtype or deleterious

function.

Recently, discussions on how to produce successful knockout models have been renewed

[16–18]. To better inform the generation of future mutations, this report analyzes the genetic

consequences of several chemical- and CRISPR-induced zebrafish mutant lines in depth. Zeb-

rafish are amenable to current genome editing methods [19, 20] and are a well-established ver-

tebrate model routinely used to assign functions to genes through the use of classical genetic

approaches [21]. To begin to investigate the type and frequency of adaptations that may lead

to unexpected splicing in the context of mutation, we carried out studies of mutant lines that

included measuring transcript levels and analyzing mRNA splicing (cDNA sequence) and

genomic sequence for the presence and use of cryptic splice or start sites. Of the seven mutant

lines presented in this study, we show five examples that result in altered mRNA processing.

Our findings emphasize the need to analyze putative mutant lines at the level of the mRNA

sequence and not assume that a mutation will have the predicted effect on mRNA and/or loss

of function.

Results

To begin to investigate how a functional product could be made from a gene containing a

putative loss-of-function mutation, we randomly selected seven mutant zebrafish lines gener-

ated through chemical- or CRISPR-mediated mutagenesis to study (Table 1). Six zebrafish

lines carrying mutations in genes involved in lipid metabolism were obtained through the Zeb-

rafish Mutation Project (ZMP, Wellcome Trust Sanger Institute) (abca1asa9624, abca1bsa18382,

cd36sa9388, creb3l3asa18218, pla2g12bsa659, and slc27a2asa30701). Lines were generated with point

mutations throughout the genome using classical ENU mutagenesis [22], followed by associa-

tion of the induced mutations with protein-coding genes using whole exome sequencing

methods [1]. We selected five lines that had mutations in essential splice sites and one line

with a nonsense mutation (creb3l3asa18218), with the aim to investigate the genome’s ability to

compensate for induced mutations through the generation of novel alternative transcripts. In

addition to the 6 ZMP lines with ENU-induced base changes, a line with a CRISPR/Cas9-gen-

erated deletion was included. cDNA sequence and transcript levels of pooled wildtype and

homozygous mutant larvae were analyzed.

Two of the five ZMP lines with ESS mutations lose the predicted exon

To determine whether each ZMP line containing an ESS mutation results in the predicted

skipping of an exon, adult heterozygote mutant zebrafish were incrossed and their offspring

Table 1. Mutations in this study.

Gene mutated Ensembl ID Allele Nature of mutation Method of mutation

abca1b ENSDARG00000079009 sa18382 point mutation in ESS ENU

slc27a2a ENSDARG00000036237 sa30701 point mutation in ESS ENU

abca1a ENSDARG00000074635 sa9624 point mutation in ESS ENU

cd36 ENSDARG00000032639 sa9388 point mutation in ESS ENU

pla2g12b ENSDARG00000015662 sa659 point mutation in ESS ENU

creb3l3a ENSDARG00000056226 sa18218 nonsense mutation ENU

smyd1a ENSDARG00000009280 mb4 7-bp deletion in exon CRISPR/Cas9

https://doi.org/10.1371/journal.pgen.1007105.t001
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were pooled or individually processed into total RNA and cDNA. PCR amplification of this

cDNA template revealed amplicons of the expected size from each ZMP line, while abca1bsa18382

(ATP-binding cassette transporter, sub-family A, member 1B) and slc27a2asa30701 (solute carrier

family 27, member 2a; protein is fatty acid transport protein, member 2a) also had a shorter

amplicon (116 and 210 bp shorter, respectively; S1 Fig) that matches the predicted length of

amplicons of these cDNAs after the omission of the affected exon. The pla2g12bsa659 (phos-

pholipase A2, group XIIB) mutant allele has a mutation in the essential splice acceptor site pre-

ceding its final (fourth) exon and could not be investigated for the loss of that exon using these

methods.

To confirm that exons are skipped in abca1bsa18382 and slc27a2asa30701 and determine why

the mutations in abca1asa9624 (ATP-binding cassette transporter, sub-family A, member 1A)

and cd36sa9388 (cluster of differentiation 36, aka fatty acid translocase) did not appear to lead to

the predicted skipping of exons (S2 Fig), individual 6-dpf larvae underwent genotyping,

gDNA and cDNA sequence analysis, and qPCR studies.

An ESS mutation in abca1b leads to a skipped exon and early

termination signal

abca1bsa18382 has a point mutation in the essential splice acceptor site of intron 33–34 (g.64427G>

T) (Fig 1). To determine whether the point mutation results in skipping of the subsequent exon

(e34) and use of the (next) essential splice acceptor site of intron 34–35, we performed PCR ampli-

fication using primers targeted to flanking exons of cDNA (synthesized from individual, geno-

typed larvae; 713-bp amplicon), followed by Sanger sequencing. As expected, cDNA sequencing

Fig 1. An ENU-induced G>T mutation in the 3’ essential splice site (ESS) of i33–34 of abca1b leads to a skipped exon and an early

termination signal. Analysis of cDNA sequence and agarose gel electrophoresis (S1 Fig) indicates that loss of exon 34 (116 bases) causes a frame

shift, followed by a short ORF (13 AA) and an early termination codon (shown in red). qPCR studies revealed transcript levels down 3.5-fold in 6-dpf

abca1bsa18382/sa18382 zebrafish. See S1 Table for sequence spanning mutation and predicted outcome.

https://doi.org/10.1371/journal.pgen.1007105.g001
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confirmed that exon 34 (116 bases) is skipped and leads to a frame shift in abca1bsa18382/+ and

abca1bsa18382/sa18382 larvae. Following the frame shift, the mutant cDNA encodes a 13 AA open

reading frame (ORF) and an early termination signal that would direct the loss of exons 34–46.

qPCR studies reveal transcript levels are down 3.5-fold in 6-dpf abca1bsa18382/sa18382 zebrafish

(ANOVA with Tukey’s test, p = 0.049).

An ESS mutation in slc27a2a leads to an expected skipped exon but not

a frame shift

slc27a2asa30701 has a point mutation in the essential splice donor site of intron 2–3 (g.3431G>A)

(Fig 2). cDNA sequencing confirms omission of exon 2 in slc27a2asa30701/+ and slc27a2asa30701/sa30701

larvae. No frame shift is observed since exon 2 is 210 bases long (encoding 70 AA). By qPCR,

transcript levels in 6-dpf slc27a2asa30701/sa30701 zebrafish did not differ from those of their wild-

type siblings (ANOVA with Tukey’s test; p-value greater than threshold of 0.05).

An ESS mutation in abca1a leads to use of a nearby cryptic splice

acceptor site and loss of a single AA

abca1asa9624 has a point mutation in the 3’ ESS of intron 29–30 (g.48320G>A) (Fig 3). Analysis

of cDNA sequence from individual genotyped larvae revealed the loss of three bases, “TAG”,

at the start of exon 30 in heterozygous and homozygous mutants. To look for cryptic splice

sites, a flanking region of gDNA was PCR amplified and sequenced. A cryptic splice acceptor

site (“AG”) was found 2 and 3 bases downstream of the mutated wildtype splice acceptor site,

in exon 30. Use of this cryptic splice acceptor site splices out the first three bases of exon 3

(“TAG”) and the protein this message encodes would lack one Serine (and remain in frame

with the wildtype product). Transcript levels in 6-dpf abca1asa9624/sa9624 zebrafish did not differ

from their wildtype siblings (ANOVA with Tukey’s test; p-value>0.05).

Fig 2. An ENU-induced G>A mutation in the 5’ essential splice site (ESS) of i2–3 of slc27a2a leads to a skipped exon. Analysis of cDNA sequence

and agarose gel electrophoresis (S1 Fig) reveals a loss of exon 2 (70 AA) with no frame shift. By qPCR, transcript levels of 6-dpf slc27a2asa30701/sa30701

zebrafish were not found to be different than their siblings. See S1 Table for sequence spanning mutation and predicted outcome.

https://doi.org/10.1371/journal.pgen.1007105.g002
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An ESS mutation in cd36 leads to use of a cryptic splice donor site,

frame shift, PTC, but not NMD

cd36sa9388 has a point mutation in the 5’ ESS (splice donor site) of intron 10–11 (g.11242G>A)

(Fig 4). cDNA sequencing of individual, genotyped larvae reveals incorporation of extra bases

“ATAT” in between the sequence for exon 10 and exon 11, which leads to a frame shift in the

mutant allele. After the frame shift, 18 AA and a PTC follow, predicting the loss of exon 12

(154 AA). The PTC position sits at the last exon-exon junction and thus transcripts are pre-

dicted to escape NMD. Transcript levels of 6-dpf cd36sa9388/sa9388 larvae did not differ signifi-

cantly from their wildtype siblings (ANOVA with Tukey’s test; p-value>0.05).

To look for the use of a cryptic splice donor site, a flanking region of gDNA isolated from

individual larvae was amplified and sequenced. The wildtype sequence at the 5’ end of intron

10–11 includes the splice donor “GT”. However, in the mutant allele, the first base is mutated

to an “A”, resulting in the loss of the splice donor site. The mutated intronic sequence begins

“ATATGT. . .”, which provides a cryptic splice donor site (“GT”) 3 and 4 bases downstream of

the mutated wildtype splice donor site (Fig 4).

Fig 3. An ENU-induced G>A mutation in the 3’ essential splice site (ESS) of i29–30 of abca1a leads to use of a nearby cryptic splice

site and loss of a single AA. The base change causes a missed splice acceptor and sequence immediately following the mutated base to

be used as a cryptic splice site, as confirmed by analysis of cDNA sequence. A single Serine is lost (boxed in green) and the product remains

in frame. By qPCR, transcript levels of 6-dpf abca1asa9624/sa9624 zebrafish were not found to be different than their siblings. See S2 Fig for

agarose gel electrophoresis of amplified cDNA and S1 Table for sequence spanning mutation and predicted outcome.

https://doi.org/10.1371/journal.pgen.1007105.g003

mRNA processing in mutants produces transcripts that escape nonsense-mediated decay
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An ESS mutation in pla2g12b is associated with lowered transcript

counts and a mutant phenotype

pla2g12bsa659 has a point mutation in the splice acceptor site of intron 3–4 (g.10194A>T) and is

predicted to skip the last (4 of 4) exon; thus, exons flanking the mutation could not be PCR

amplified to confirm the loss of exon 4 in mutants. Attempts to amplify an alternative transcript

with retention of either the final exon 4 or the intron 3–4 did not succeed when using cDNA

synthesized from homozygous mutant larvae as the template. During phenotypic screening and

genotyping of 5-dpf larvae from heterozygous incrosses, a total of 29 pla2g12bsa659/sa659 larvae

exhibited a darkened yolk phenotype while 52 pla2g12b+/+ siblings did not (2 experiments; S3

Fig). Correspondingly, RNA expression profiling demonstrates a 3-fold decrease in mutants/sib-

lings (adj. p = 3.68 x 10−8) [23] (S2 Table).

Fig 4. An ENU-induced G>A mutation in the 5’ essential splice site (ESS) of i10–11 of cd36 leads to use of a cryptic splice site and

a frame shift. The base change causes loss of a splice donor and use of a cryptic splice site 3 and 4 bases downstream, as confirmed by

analysis of cDNA sequence. The intronic sequence “ATAT” preceding the cryptic splice site is thus incorporated, leading to a frame shift.

After the frame shift, 18 AA follow before a stop codon (shown in red) directs early termination and loss of exon 12 (154 AA). By qPCR,

transcript levels of 6-dpf cd36sa9388/sa9388 zebrafish were not found to be different than their siblings. See S2 Fig for agarose gel

electrophoresis of amplified cDNA and S1 Table for sequence spanning mutation and predicted outcome.

https://doi.org/10.1371/journal.pgen.1007105.g004
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A nonsense mutation in creb3l3a leads to an unexpected skipped exon

but no frame shift

creb3l3asa18218 has a nonsense mutation in exon 2 of 10 (g.357C>T), which changes codon CAA

to TAA, a PTC (Fig 5). PCR amplification of cDNA (wildtype and homozygous pooled larval

intestines) followed by gel electrophoresis revealed two bands in homozygous mutants but only

the expected wildtype band in the wildtype siblings (Fig 5). cDNA sequencing of the bands

showed alternative transcripts with the unexpected omission of exon 2 in homozygous mutant

but not in wildtype larvae. Splicing out exon 2 (114bp encoding 38 AA) does not lead to a frame

shift. The nonsense mutation was found to occur in a predicted exonic splice enhancer (ESE)

sequence using the web-based prediction tool, ESEFinder [24]. Mutation of an ESE, an important

aspect of exon definition, could explain a reduction of transcripts that include exon 2 in mutant

cDNA. By qPCR, transcript levels of 6-dpf creb3l3asa18218/sa18218 dissected intestines did not differ

significantly from their wildtype siblings (Wilcoxon-Mann-Whitney test; p>0.05).

Analysis of the frequency of zebrafish exons that are divisible by 3

It has been shown that conserved alternative exons have a high percentage of preservation of

reading frame [11] and 41% of all human exons are symmetrical (divisible by 3) [25]. To

Fig 5. An ENU-induced C>T nonsense mutation in exon 2 of creb3l3a leads to a skipped exon. Analysis of cDNA sequence

reveals a loss of exon 2 (38 AA) with no frame shift. Agarose gel electrophoresis of amplified cDNA (from pooled intestines) revealed an

additional band in the homozygous mutants matching the expected size of a product with a skipped exon 2. By qPCR, transcript levels of

6-dpf creb3l3asa18218/sa18218 zebrafish were not found to be different than their siblings. See S1 Table for sequence spanning mutation

and predicted outcome. Band sizes (number of bases) for the ladder is indicated.

https://doi.org/10.1371/journal.pgen.1007105.g005
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determine whether zebrafish exons 2–10 were symmetrical at a higher frequency than expected

by random chance, we summarized the remainder (0, 1, and 2) for all coding genes in Ensembl

GRCz10 (Release 90; August 2017) across each exon. Our analysis of zebrafish coding exons

2–10 revealed between a 5.1% and 7.2% increase over chance (33.33%) in exons divisible by 3

(Chi-squared test, df = 2, p-value < 2.2e-16); S4 Fig).

A CRISPR-induced deletion in smyd1a correlates with the use of

upstream cryptic splice sites

To confirm that these adaptive phenomena are not specific to ENU-mutagenized lines, we

analyzed a 7-bp deletion in exon 3 of smyd1a (g.6948_6955del; SET and MYND domain con-

taining 1A) which was generated using CRISPR/Cas9 targeting methods. The 7-bp deletion

leads to a predicted frame shift and PTC (48/485 AA produced) (Fig 6). To look for evidence

Fig 6. A CRISPR-induced deletion (7 bp) in exon 3 of smyd1a corresponds to use of cryptic splice sites in exon 2 in mutant clones. A. A

7-bp deletion in exon 3 (boxed in green) is predicted to lead to a frame shift mutation and early termination. Of 20 mutant clones sequenced, all 20

had the expected 7-bp deletion. B. In addition, 3 revealed use of one cryptic splice site and another 3 revealed use of a second cryptic splice site in

exon 2, leading to a 13- and 40-bp deletion, respectively. Both deletions result in a frame shift and premature termination codon, shown in red text.

20 randomly selected wt clones did not show alternative splicing. By qPCR, transcript levels of 1- and 2-dpf smyd1amb4/mb4 zebrafish were down

thirteen-fold compared to wildtype siblings. See S1 Table for sequence spanning mutation and predicted outcome.

https://doi.org/10.1371/journal.pgen.1007105.g006

mRNA processing in mutants produces transcripts that escape nonsense-mediated decay

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007105 November 21, 2017 9 / 18

https://doi.org/10.1371/journal.pgen.1007105.g006
https://doi.org/10.1371/journal.pgen.1007105


of novel alternative splicing, smyd1a cDNA was sequenced from wildtype and mutant embryos

by cloning full-length PCR products. As expected, all 20 wildtype cDNA clones had the

smyd1a wildtype sequence and all 20 clones from the homozygous mutant embryos contained

the 7-bp deletion in exon 3. However, 6 of the 20 cDNA clones from mutant embryos exhib-

ited alternative splicing at exon 2 (Fig 6). Three clones had an alternative splice event using a

cryptic splice acceptor site (“AG”) in exon 2, located 13-bp downstream of the wildtype splice

acceptor site, leading to a 13-bp deletion at the 5’ end of the exon 2. Similarly, sequence data

from another three clones show the use of a cryptic splice acceptor site (“AG”) 40 bp down-

stream of the wildtype splicing site, resulting in a 40-bp deletion at the 5’ region of exon 2.

Both deletions are predicted to lead to a frame shift and premature translation termination.

qPCR studies revealed transcript levels of 1- and 2-dpf smyd1amb4/mb4 zebrafish were down

13-fold compared to wildtype siblings (Wilcoxon-Mann-Whitney test, p = 0.000077).

Discussion

In this report, we analyzed the compensatory mechanisms that function through permissive

mRNA processing in the context of ENU- and CRISPR-induced mutations (Table 2). Recently,

Popp et al. reviewed how the process of exon-junction-complex-mediated NMD influences

the success of creating loss-of-function mutations with CRISPR/Cas9 [17]. Most notable is

their earlier finding that NMD cannot occur if a PTC is within 50–55 nucleotides (nt) of the

last exon-exon junction [15]. In our study, we found one example of this phenomenon. For

the cd36sa9388 allele, the resultant PTC is within 1 nt of the last exon junction (e11–e12) and as

predicted, we observed wildtype transcript levels in the homozygous mutants.

Others have proposed identifying potential cryptic start sites before the construction of any

CRISPR or TALEN vectors, after finding wildtype expression levels in in vitro mouse NIH3T3

cell lines harboring frame-shift mutations in Gli3 [16]. Loss of function from mutations near

the translation initiation site may be recovered by utilizing nearby downstream alternative

translation initiation sites [26]. The mutations in our lines were closer to the middle or 3’ end

of genes. We did identify use of cryptic splice sites in the mutant allele in three of seven lines

(abca1asa9624, cd36sa9388, smyd1amb4), underlining the importance of identifying potential cryp-

tic splice sites prior to basing studies on presumed lack of gene function.

We also described an example of nonsense-associated splicing (creb3l3asa18218), wherein a

PTC-containing exon is spliced out and creb3l3asa18218/sa18218 larvae have wildtype transcript

Table 2. Summary of outcomes from this study.

Gene

mutated

Ensembl ID Allele Nature of

mutation

Method of

mutation

Outcome on cDNA sequence Outcome on mutant

transcript levels

abca1b ENSDARG00000079009 sa18382 point mutation

in ESS

ENU skipped exon (116 bp), frame shift, PTC 3.5-fold down

slc27a2a ENSDARG00000036237 sa30701 point mutation

in ESS

ENU skipped exon (210 bp), frame maintained WT levels

abca1a ENSDARG00000074635 sa9624 point mutation

in ESS

ENU downstream cryptic splice site used, loss of

single Serine, frame maintained

WT levels

cd36 ENSDARG00000032639 sa9388 point mutation

in ESS

ENU downstream cryptic splice site used, frame

shift, PTC

WT levels

pla2g12b ENSDARG00000015662 sa659 point mutation

in ESS

ENU no evidence found for retention of exon or

preceding intron

3-fold down

creb3l3a ENSDARG00000056226 sa18218 nonsense

mutation

ENU skipped affected exon (114 bp), frame

maintained

WT levels

smyd1a ENSDARG00000009280 mb4 7-bp deletion

in exon

CRISPR/

Cas9

(deletion) frame shift, PTC; two cryptic splice

sites used in mutant clones, frame shift, PTC

13-fold down

https://doi.org/10.1371/journal.pgen.1007105.t002
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levels. The mechanisms underlying this process are still being explored: in many cases, muta-

tions in conserved splice elements (such as exonic splice enhancers; ESE) have been shown to

cause nonsense-associated splicing [27–31]. Prykhozhij et al. also recently illustrated the need

for careful mutation analysis, beyond the level of gDNA sequence. They found only one of

three mutant zebrafish lines resulted in the predicted frameshift [18, 32]. Of the remaining two

lines, one displayed an exon skip, possibly due to a mutation in an ESE, and the other used an

alternative start site. Moreover, there have been two recent publications documenting numer-

ous cases of exon skipping in response to CRISPR/Cas9-mediated mutations [33, 34]. Our

analysis of whether zebrafish coding exons 2–10 are divisible by 3 greater than 33.33% of the

time revealed a 5.1–7.2% increase over expected. Taken together, these data suggest exon skip-

ping in response to mutation is more common than generally thought and support our sugges-

tion that when possible, researchers target exons that are not divisible by 3.

Since ESS mutations often lead to human disease [6], in vivo models are critical to our

understanding. However, we found that skipping an exon may still lead to a viable product: if

the exon is divisible by 3 and thus its omission does not lead to a frame shift and PTC, tran-

script levels were not subject to NMD (creb3l3asa18218, slc27a2a sa30701). In both lines found to

skip an exon in our study, sequence alignment with their human ortholog revealed no known

essential motifs in the skipped exons (S5 Fig). While the skipped exon 2 in zebrafish contains

part of the ATP/AMP binding motif responsible for fatty acid activation (through acyl-CoA

synthetase activity), data from functional studies suggest that it functions efficiently in long-

chain fatty acid transport through the FATP/VLACS motif [35]. Of the two human splice iso-

forms, FATP2a and FATP2b, the latter lacks the ATP/AMP binding motif but has the FATP/

VLACS motif. Expressing FATP2b in yeast and mammalian cultured cells revealed that it

functions in long chain fatty acid transport.

Examination of intron-spanning reads from available temporal expression data revealed no

evidence of the alternative transcripts we identified in this study in wildtype larvae [36], sug-

gesting that they did not result from wildtype alternative splicing events. These data are not

consistent with a low-abundance mRNA variant that is normally expressed in the WT back-

ground emerging to partially compensate for the loss of the major WT mRNA variant in the

mutant background.

In this study, we report that five of seven analyzed zebrafish lines with induced mutations

show evidence of compensation through altered mRNA processing and contribute to the

growing data of how to produce successful knockout models. Our data support a hypothesis

that there may be a surveying mechanism that could detect mutations and adapt mRNA alter-

native splicing to cope with potential loss of function. Our findings are consistent with an

analysis of 418 nonsense gene variants in the human population that catalog very similar adap-

tations and suggests “that permissive RNA processing and translation in human cells facilitates

the accumulation of otherwise deleterious genetic variation in the human population” [37].

Analysis of cDNA sequence in mutant alleles may allow for prediction of compensation, sim-

ply by scanning for proximal cryptic splice and initiation sites that might be used for alterna-

tive transcripts. Moreover, it is entirely possible that splice-blocking morpholinos could

engage some of the same compensatory mechanisms described in this study. This hypothesis

can be tested by future studies in which cDNA from morphants are subjected to sequencing

and supports our contention that researchers always sequence the cDNA in mutants and

morphants.

Employing multiple “guide” RNAs in the CRISPR/CAS9 system can result in large intron-

spanning deletions in or the elimination of targeted genes. While this approach has been used

to generate loss-of-function alleles, it can lead to the deletion of the genomic regions needed

for post-transcriptional regulation of gene expression or transcriptional regulation of other
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genes. It is estimated that 30–80% of human coding genes are post-transcriptionally regulated,

at least in part, by microRNAs (miRNAs) [38]; so far, 2,619 miRNAs and 324,219 miRNA-tar-

get interactions have been annotated in human (miRTarBase) [39] and approximately 40% of

miRNA genes are located within the introns of protein-coding genes [40]. Rather than creating

large deletions or removing an entire gene, other approaches, such as those used to generate

nonsense mutations or small deletions, may work better to generate loss-of-function alleles

that retain these regulatory regions. As we have shown, alternative transcripts may escape non-

sense-mediated decay so 1) analyze the DNA sequence for nearby cryptic splice sites, especially

those in frame to the natural/altered cryptic splice site, 2) check whether a nonsense mutation

is in a predicted splicing enhancer sequence using available web tools, and 3) in the case of

expected exon skip, analyze the exonic sequence for essential motifs and whether the exon

length is divisible by 3. Since shorter introns that precede expected affected exons may be

retained (instead of exon skip), intron length is also a factor to consider when generating

mutants. Performing these steps near the start of a project can inform the nature and location

of mutations that would most likely result in a loss-of-function mutant with a phenotype of

interest.

Materials and methods

Ethics statement

All procedures using zebrafish were approved by the Carnegie Institution Animal Care and

Use Committee (Protocol# 139) or the Institutional Animal Care and Use Committee of the

University of Maryland (Permit Number: 0610009).

Zebrafish husbandry

All lines were raised and crossed according to zebrafish husbandry guidelines [41].

Genotyping carriers (ZMP lines)

Heterozygotes for each mutation were identified through a fin-clip based gDNA isolation

(REDExtract-N-Amp Tissue PCR kit; Sigma-Aldrich), PCR amplification of a 400–600 bp

region around the mutation using designed primer sets (MacVector, Primer 3), and Sanger

sequencing using a nested sequencing primer. (Primer sets and conditions are in S3 Table.)

For the creb3l3asa18218 line, an NaOH-based DNA extraction method was used to extract

gDNA from fin tissues. Genotyping primers were designed using dCAPS finder 2.0 with one

mismatch (http://helix.wustl.edu/dcaps/dcaps.html; [42]). The primer introduces EcoRV

restriction sites in the mutant amplicons but not in the WT amplicons.

The genomic location of each mutation is based on Ensembl genome assembly GRCz10

and calculated according to the guidelines of the Human Genome Variation Society.

To look for evidence of a skipped exon in the lines with mutations in

essential splice sites (ZMP lines)

For each line with a mutation in an ESS, larvae were collected from incrosses of identified het-

erozygotes and 10–20 6-dpf larvae were pooled for generating RNA samples (using above pro-

tocol). RNA samples served as template to generate cDNA (iScript cDNA Synthesis Kit, Bio-

Rad). cDNA samples were PCR amplified to provide amplicon sizes of 400–700 bp) and the

products were separated and sized using gel electrophoresis. For lines that showed evidence of

a skipped exon, individual larvae were genotyped and treated similarly to above to correlate

amplicon size with genotype.
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To generate cDNA after genotyping individual larvae for qPCR analysis

(ZMP lines)

Adults that were found to carry the ESS mutation were incrossed and the progeny collected.

Individual 6-dpf larvae underwent a Trizol-based RNA prep adapted from Macedo and Fer-

reira (2014) [43] to include an additional chloroform extraction. To genotype individual sam-

ples, residual gDNA in the unpurified RNA samples was PCR amplified and sent for Sanger

sequencing. After genotypes were determined (SnapGene Viewer to view peak trace files),

RNA samples were DNAase I-treated and purified (RNA Clean and Concentrator, Zymo

Research), served as templates for cDNA synthesis (iScript cDNA Synthesis Kit, Bio-Rad), and

ultimately used in qPCR studies to analyze transcript levels.

To check transcript levels using Real-time PCR

qPCR methods included SYBR Green-based methods (Sigma-Aldrich, abca1a, creb3l3a,

smyd1a) and Taqman gene expression assays (ThermoFisher Scientific; cd36, slc27a2a, and

abca1b). ef1α (for smyd1a) or 18s rRNA (for all others) levels were used as reference genes.

Primer and assay information is shown in S2 Table.

cDNA samples for individual larvae, along with “No RT” controls and “No transcript” con-

trols were run on the CFX96 Touch Real-Time PCR Detection System (Bio-Rad) or on the

7500 Fast-Time PCR System (AB Applied Biosystem). Three technical replicates were run for

each sample and a minimum of three biological replicates were used for each genotype for

each line. Data was analyzed through calculation of Delta Ct values (18s rRNA as internal con-

trol) and either one-way analysis of variance (ANOVA) with the Tukey post hoc test or the

Wilcoxon-Mann-Whitney test [44].

To perform transcript counts

Transcript counting data for the pla2g12bsa659 mutant line was obtained from the Sanger Zeb-

rafish Mutation Project [1] and processed as described [36]. Differential expression analysis

was performed using DESeq2 (2010) [45]. The data are deposited at ENA under accession

number ERP004581 (samples ERS401972-ERS401991).

To analyze cDNA sequencing (ZMP lines)

cDNA for individual larvae was generated as described above and sequencing was obtained

using Sanger sequencing methods. Peak trace files were analyzed manually using SnapGene

Viewer (GSL Biotech, LLC) or MacVector. To assist in determining the two alleles of interest

(wildtype and potential mutant) for each line, Poly Peak Parser [46] and alignment of wildtype

and mutant alleles in MacVector (Align to Reference) were used.

Generation of the smyd1amb4 mutant

The smyd1a allele containing a 7-bp deletion was generated using the CRISPR/Cas9 targeting

method (Cai and Du, in preparation). The target site (5’-GGACCTGAAGGAGCTCAAA-3’)

was located in exon 3 of the smyd1a gene. Genotyping was carried out by using gDNA

extracted from the caudal fin as a template for PCR followed by SacI digestion of the resulting

amplicons. The 7-bp deletion abolished the SacI site, allowing resolution of bands by agarose

gel electrophoresis.
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DNA and mRNA sequence analysis of the smyd1a mb4 mutant

Homozygous smyd1a mutants were identified by PCR and SacI digestion, and confirmed by

sequencing the PCR product. To compare the smyd1a mRNA sequences from wild type (WT)

and mutant embryos, total RNA was isolated from a pool of 50 WT and homozygous smyd1a
mutant embryos at 48 hpf. cDNAs were generated using the RevertAid First Strand cDNA

Synthesis Kit (ThermoFisher, K1621). The full length smyd1a cDNA was amplified from the

WT and mutant template using Phusion High-Fidelity DNA Polymerase (NEB, M0530S). The

amplicons were A-tailed using Taq DNA polymerase (Promega, M8295) and subsequently

cloned into pGEM-T easy (Promega, A1360).

Summing symmetry in zebrafish exons

Length of all feature-tagged exons (1–10) in Ensembl genome assembly GRCz10 (Release 90;

August 2017) were divided by 3 and remainder (0, 1, or 2) noted. Number of exons analyzed

were as follows: for exon 1, 62895; 2, 57137; 3, 48568; 4, 41336; 5, 35312; 6, 30144; 7, 25617; 8,

21969; 9, 19057; 10, 16738. For each exon number, percentage of remainders 0, 1, and 2 were

calculated. Chi-squared test for given probabilities was performed using the R Project for Sta-

tistical Computing v3.3.1.

Supporting information

S1 Fig. Two lines with ESS mutations have a shorter amplicon, supporting an exon skip.

slc27a2asa30701 (solute carrier family 27, member 2a) and abca1bsa18382 (ATP-binding cassette

transporter, sub-family A, member 1B) had a shorter amplicon (210 and 116 bp shorter,

respectively) that matches the predicted length of amplicons of these cDNAs (pooled from het-

erozygous incrosses) after the omission of the affected exon. A. Red arrows indicate shorter

amplicons. “//” indicates where the gel image was digitally split in order to add ladder sizes.

Band sizes of the ladders are show in bases.

B. Primers used and sizes anticipated are listed. C. Primer locations are indicated by arrows.

The exons that are expected to be skipped as a result of ESS mutations are shown as dotted

lines.

(EPS)

S2 Fig. Three lines with ESS mutations do not reveal shorter amplicons expected with an

exon skip. abca1asa9624 (ATP-binding cassette, sub-family A, member 1A), cd36sa30701 (cluster

of differentiation cd), and pla2g12bsa659 (phospholipase A2 Group XIIB) yield PCR products

(using pooled larvae from heterozygous incrosses) that match the predicted length of ampli-

cons of the wildtype cDNAs and do not reveal a shorter amplicon expected with the omission

of the affected exon (A). Modifying PCR conditions to look for evidence of a retained intron

(i3–4) in pla2g12bsa659 did not yield a product in homozygous mutants. Band sizes of the lad-

ders are shown in bases.

B. Primers used and sizes anticipated are listed. C. Primer locations are indicated by arrows.

The exons that are expected to be skipped as a result of ESS mutations are shown as dotted

lines. For pla2g12bsa659, the splice acceptor sequence preceding exon 4 is mutated (and there is

no downstream natural splice acceptor sequence).

(PDF)

S3 Fig. 6-dpf pla2g12bsa659/sa659 larvae (bottom) display a darkened yolk sac compared to

wildtype siblings (top).

(EPS)
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S4 Fig. Exons 2–10 of zebrafish coding genes are divisible by 3 (symmetrical) more fre-

quently than one-third of the time. Length of exons 1–10 of all coding genes in Ensembl

genome assembly GRCz10 were divided by 3 and remainder (0, 1, or 2) noted. For each exon,

percentage of remainders 0, 1, and 2 were calculated and displayed.

(EPS)

S5 Fig. Sequence alignments of slc27a2 and creb3l3a. The shaded yellow region indicates the

skipped exon (2). For slc27a2, the shaded green region indicates the ATP/AMP motif and the

shaded blue region indicates the FATP/VLACS motif [47]. For creb3l3a, the shaded green

region indicates the basic region and the shaded blue region indicates the leucine zipper

domain (identified in [48]).

(PDF)

S1 Table. Mutations analyzed in this study and their predicted outcome.

(TIF)

S2 Table. RNA expression profiling reflect a 3-fold decrease in pla2g12bsa659/sa659 larvae

compared to wildtype siblings (adj. p = 3.68 x 10−8).

(XLSX)

S3 Table. List of primers and methods used in this study.

(TIFF)
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