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Functional reconstruction of a eukaryotic-like
E1/E2/(RING) E3 ubiquitylation cascade from an
uncultured archaeon
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The covalent modification of protein substrates by ubiquitin regulates a diverse range of

critical biological functions. Although it has been established that ubiquitin-like modifiers

evolved from prokaryotic sulphur transfer proteins it is less clear how complex eukaryotic

ubiquitylation system arose and diversified from these prokaryotic antecedents. The dis-

covery of ubiquitin, E1-like, E2-like and small-RING finger (srfp) protein components in the

Aigarchaeota and the Asgard archaea superphyla has provided a substantive step toward

addressing this evolutionary question. Encoded in operons, these components are likely

representative of the progenitor apparatus that founded the modern eukaryotic ubiquitin

modification systems. Here we report that these proteins from the archaeon Candidatus

‘Caldiarchaeum subterraneum’ operate together as a bona fide ubiquitin modification system,

mediating a sequential ubiquitylation cascade reminiscent of the eukaryotic process. Our

observations support the hypothesis that complex eukaryotic ubiquitylation signalling path-

ways have developed from compact systems originally inherited from an archaeal ancestor.
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The complex ubiquitylation systems of eukaryotes orches-
trate diverse regulatory cell signalling pathways that play
instrumental roles in maintaining cellular viability. It is well

documented that the attachment of the ubiquitin small modifier is
central to proteasomal degradation pathways, transcriptional
control, DNA repair, cell cycle regulation and a plethora of other
regulatory pathways1–8. How these ubiquitylation systems were
acquired by the earliest eukaryotes and then subsequently devel-
oped into the sophisticated apparatus employed by the most

complex descendants has garnered considerable interest of late.
Indeed, it has been hypothesised that the acquisition of a primitive
prokaryotic ubiquitylation system may have been a prerequisite to
permit the endosymbiotic event central to eukaryogenesis9. Fur-
thermore, the diversification of this protein modification system
has been shown to be concomitant with the increasing cellular
complexity during eukaryotic evolution10–14.

The canonical eukaryotic ubiquitylation process involves three
key biochemical steps, operating in a sequential cascade, which
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Fig. 1 Operonic arrangement of the putative archaeal ubiquitylation apparatus. a Gene clusters of the putative ubiquitin-like protein modifier system
identified in archaeal species: the ubiquitin, E1-like, E2-like and small RING finger protein (srfp) components are coloured as indicated in the key. The
Cluster I and II division is described in Supplementary Fig. 1, which provides a more comprehensive analysis showing an additional Cluster III. See Methods
and Supplementary Table 2 for more details on the E1-like C-terminal ubiquitin-like (UBL) domain identification. (boxed inset): Operonic arrangement of
the genes encoding the components of the C. subterraneum ubiquitylation cascade investigated in this study. The Rpn11/JAMM domain metalloprotease
homologue is juxtaposed to the operon and transcribed right to left, whereas the ubiquitylation operon is transcribed left to right
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ultimately results in the covalent attachment of the small ubi-
quitin modifier to a target lysine on a substrate. The first protein,
referred to as the E1 enzyme, activates the modifier by adeny-
lating the C-terminal residue of the di-glycine motif that is a
feature of almost all ubiquitin-like modifier proteins15, 16. The

activated modifier is then transferred to the catalytic cysteine of
the E1 enzyme, forming a covalent thioester intermediate4. Upon
interaction with a second protein, the E2 conjugating enzyme,
this activated ubiquitin moiety is then shuttled from the catalytic
centre of the E1 protein to the catalytic cysteine of the E2 protein
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Fig. 2 Rpn11/JAMM metalloprotease cleavage of the C. subterraneum ubiquitin precursor to generate a canonical C-terminal di-glycine motif that is
subsequently activated by the E1-like enzyme. a C. subterraneum Rpn11 specific cleavage of the C-terminus of the pro-ubiquitin generates a mature ubiquitin
species. Lane 1: pro-ubiquitin only; lane 2: pro-ubiquitin plus Rpn11. (Asterisk: C-terminal truncation of Rpn11). b Auto-ubiquitylation of the E1-like and
E2-like components by ATP-dependent conjugation of the cleaved ubiquitin species via the exposed ubiquitin di-glycine motif. Lane 1 and 2: uncleaved,
full-length, pro-ubiquitin (Ubq-FL) plus E1 in the presence and absence of ATP, respectively; lanes 3 and 4 as in lanes 1 and 2 but with the inclusion of the
E2-enzyme; lanes 5–8 as in lanes 1–4 but using Rpn11-cleaved ubiquitin (Ubq-CLV) (assay at 60 °C for 15 min). c Ubiquitin truncated by a stop-codon after
the di-glycine motif (Ubq-GG) also auto-ubiquitylates the E1-like and E2-like proteins. Reactions using Ubq-GG in the absence or presence of ATP are
displayed in lanes 1 and 2, respectively (cf Ubq-FL shown in lanes 3 and 4). Reactions were performed as described in b. Products in a, b and c separated by
SDS-PAGE and visualised by Coomassie staining. The C-terminal Rpn11-specific cleavage site in pro-ubiquitin is displayed below panel a (solid arrow).
Trypsin digestion (dashed arrow) results in the generation of the ‘TVGG’ moiety detected as an isopeptide linkage in the tandem mass-spectrometry
analyses. d MS/MS spectra of the auto-ubiquitylated E1 peptides following trypsin digestion to generate the ‘TVGG’ isopeptide linked moiety. m/z values
of the precursor ions are shown in the top left of each panel. (2+) indicates doubly charged precursor ions. Spectra show the annotated peaks that are due
to C-terminal y (coloured red) and N-terminal b (coloured blue) fragment ions. In each case, the m/z values of the precursor ions and the m/z values of
the fragment ions are consistent with lysine residues modified with the ‘TVGG’ moiety. The amino-acid sequence of the trypsin-generated peptide,
including the ‘TVGG’ modified lysine, is shown within in each example. e MS/MS spectra of the auto-ubiquitylated E2 peptide, as described in d
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via a trans-thioesterification event4, 17, 18. It has been revealed that
dramatic conformational changes within the E1 enzyme are
coincident with these two sequential thioesterification events
during which a second ubiquitin moiety is bound to the acti-
vating-enzyme, facilitating the transfer of the first ubiquitin to the
E2-enzyme17, 18. The next stage in the ubiquitylation cascade is
mediated by the E3 ligase19–21. This protein stimulates the
activity of the E2 conjugating enzyme and catalyses the amino-

lysis based transfer of the ubiquitin from the E2 enzyme onto a
specific lysine residue on the target protein18. The cascade ulti-
mately results in an isopeptide bond formed between the primary
amino group on a lysine residue on the substrate and the carboxyl
group of the ubiquitin moiety2. While hundreds of E3 enzymes
have been identified to date, these enzymes can be divided into
three broad classes20. RING-E3 enzymes mediate direct transfer
of ubiquitin from the E2 enzyme to the target, and simultaneously
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Fig. 3 Structural features and key residues conserved between the C. subterraneum and eukaryotic E1-like and E2-like homologues. a top left; Crystal
structure of the H. sapiens NEDD8 activating E1-enzyme (PDB: 3GZN) predicted as a structural homologue of the C. subterraneum E1-like enzyme by
PHYRE2; top right I-TASSER model of the C. subterraneum E1-like enzyme. Active and inactive Rossman fold domains are coloured dark and light salmon,
respectively; the active cysteine-containing domain is coloured green (key cysteines are shown as gold sticks); the ubiquitin-like (UBL) domains are
coloured grey. A coordinated zinc-ion is represented by a gold sphere. The two specific auto-ubiquitylated lysine residues in the C. subterraneum structure
are shown as red sticks. The glycine rich ATP-binding loop is coloured blue. bottom, schematic representation of the Homo sapiens and C. subterraneum E1-
like enzymes with colours as described in a. Yellow ‘C’s represent the zinc-binding and catalytic cysteine residues. Blue ‘GxG’ lettering denotes the glycine-
rich ATP-binding loop. Conserved ‘D’, ‘NR’, ‘K’ and ‘DR’ residues are critical for ubiquitin adenylation in eukaryotic E1-enzymes38 are indicated (see
Supplementary Notes 2 and 3 for further details). b left; crystal structure of the S. cerevisiae Ubc1 E2-enzyme (PDB: 1TTE), a PHYRE2 predicted homologue
of the C. subterraneum E1-like enzyme. Middle: I-TASSER model of the C. subterraneum E2-like enzyme. The N-terminal E1-interacting helix is coloured light
blue (‘R’ indicates an invariant arginine), the hydrophobic cross-over helix (labelled ‘hb’) is coloured yellow; the catalytic cysteine shown as green sticks
(labelled ‘C’). The HPN loop is labelled ‘N’ and coloured magenta. Loop 4 is coloured light green and labelled ‘PS’, while loop 7 is coloured red and labelled
‘WSPA/S’. Loop 8 is coloured purple (labelled ‘P’) and the S. cerevisiae UBA domain is shaded grey. Structural figures generated using PyMOL. right;
schematic representation of the S. cerevisiae and C. subterraneum E1-like enzymes with the same colours and labels. The consensus sequence of the
conserved E1 (or E3) interacting motifs for the C. subterraneum E2-like enzyme, and yeast E2 homologues (S. cerevisiae Ubc1 and Ubc9 and S. pombe Ubc2
and Ubc16) are illustrated. Structural figures were prepared using PyMOL
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Fig. 4 Phylogenetic comparisons between the archaeal and eukaryotic E1 and E2 homologues and demonstration of the C. subterraneum E1-E2 interaction
and complex formation by size exclusion chromatography. a–b Phylogenetic analysis of the E1-like a and E2-like b homologues. Unrooted maximum
likelihood trees inferred with iqtree and the LG + R8 a and LG + R6 b models. Ultrafast-bootstrap support values for the deepest nodes are indicated by
empty (UFBoot≥ 95) and filled circles (UFBoot≥ 99). Major clades of the E1 and E2 phylogenies are named according to the nomenclature used by
Burroughs et al.38 and Stewart et al.18, respectively. Clades are colour-coded according their taxonomic affiliation: eukaryotes (red), bacteria (blue),
archaea (orange) and mixed (grey). Asterisks denote E2-like homologues described further in Supplementary Fig. 1. Abbreviations: a, Asgard archaea
homologues. c Physical interaction between the C. subterraneum E1 and E2 components demonstrated by size exclusion chromatography. left: C.
subterraneum E1-like enzyme only (top), E2-like protein only (middle), or pre-incubated E1-like and E2-like proteins (bottom) were separated on a superdex
S200 HR 10/300 size exclusion chromatography column. The relative elution volumes of the size standards bovine serum albumin (BSA) (66 kDa) and
carbonic anhydrase (29 kDa) are also indicated (in grey). Eluted fractions were resolved by SDS-PAGE and visualised by Coomassie stain. Right:
chromatography UV traces (at 280 nm) for the respective elution profiles
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bind the E2 enzyme and the substrate22. By contrast, the HECT
(homology to E6AP C terminus)23 and RBR (RING-between-
RING)24 classes of E3 enzymes catalyse an additional
trans-thioesterification event during which the ubiquitin is passed

to an additional catalytic cysteine residue within the E3 enzyme
itself before the final transfer to the target lysine on the sub-
strate20. The selective pairing between the E2 conjugating
enzymes and their multiple cognate E3 ligases confers the
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Fig. 5 Structural prediction of the canonical RING-domain crossbrace arrangement of the C. subterraneum srfp (E3) protein. a (left top) schematic
representation of the RING-domain cross-brace structure with the zinc-coordinating residues circled in red; (left bottom) consensus sequence of the RING-
domain (RING-H2 family) with zinc-binding residues highlighted in red (‘X’ any residue); (middle top): RING-domain of the Homo sapiens RING-E3 ubiquitin
ligase praja-1 (PDB: 2L0B); (right top): I-TASSER model of the C. subterraneum srfp (E3-like) homologue. Zinc-binding residues are coloured pink (with
carbon and sulphur atoms in blue and yellow, respectively) and a conserved tryptophan coloured blue. Green spheres denote Zn2+ ions. Loops that interact
with conserved residues in the E2-enzymes are coloured blue. b Schematic predicting contacts between residues in the C. subterraneum RING domain and
the E2-like enzyme loops 4 and 7 based upon conservation of residues in eukaryotic components21, 22, 41, 44. Zinc-coordinating residues are coloured red;
the conserved tryptophan and the hydrophobic residues presented on loops in the RING domain are coloured blue. Key conserved hydrophobic residues on
the E2-like enzyme (PY or PS on loops 4 or 7, respectively) are indicated. c Multiple sequence alignments of the C. subterraneum E2-like and E3-like protein
amino-acid sequences with the closest eukaryotic homologues also indicating the specific E2/E3 interactions shown in b. E2-ubiquitin-conjugating
homologues: (Paramecium tetraurelia [Alveolata ciliate], Musa acuminata [banana], Aureococcus anophagefferens [alga], Tarenaya hassleriana [spider flower],
Theileria orientalis [Apicomplexan parasite]). E3-RING homologues: (Elaeis guineensis [oil-palm], Vigna radiata [mung bean], Beta vulgaris [sugar beet],
Arabidopsis lyrata [rockcress], Prunus persica [peach]). The conserved motifs on loops 4 and 7 of the E2-like enzymes are represented by green and red
bars, respectively. The catalytic cysteine is denoted by a green circle. The E3-like zinc-binding cysteines and histidines are highlighted by purple circles.
Note that the position of the C. subterraneum C3 and H4 are out of alignment by 2 residues (red box). The conserved tryptophan (blue circle) and
hydrophobic interaction interfaces between cysteines C1 and C2 and C7 and C8 (blue bars) are also highlighted. The position of residues I30, W58 and
R69 are also indicated. Structural figures were prepared using PyMOL
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specificity necessary for the varied biological pathways regulated
by ubiquitylation20, 22.

The identification of an operon encoding a eukaryotic-like
ubiquitylation system in the genome of the uncultured archaeon
Candidatus ‘Caldiarchaeum subterraneum’ (hereafter C. sub-
terraneum) has led to the proposal that a streamlined ubiquity-
lation modification system may have been inherited during
eukaryogenesis from an archaeal progenitor25. More recent
bioinformatics studies have provided further data that is sup-
portive of this assumption11, 25–28. While primitive archaeal
ubiquitin-like modifications have been reported previously, these
pathways are believed to be dependent on just an E1 enzyme29, 30,
reminiscent of the mechanisms utilised by prokaryotic sulphur
transfer pathways from which they evolved31, 32. In contrast, a
complete prokaryotic ubiquitylation cascade utilising all three
enzymatic steps has not been demonstrated experimentally to
date. In this study we synthetically reconstitute and biochemically
characterize the four components encoded within the ubiquity-
lation operon and also the associated Rpn11 metalloprotease
enzyme. We reveal that the C. subterraneum genome does indeed
encode a fully functional and minimal ubiquitylation system. We
compare our findings to the previously described eukaryotic
ubiquitylation cascades and discuss our results in the context of
the evolution of eukaryotic ubiquitylation systems.

Results
Cleavage of the C. subterraneum pro-ubiquitin by Rpn11. To
demonstrate functional activity of the Candidatus ‘Caldiarchaeum
subterraneum’ (hereafter C. subterraneum) ubiquitylation operon,
we synthesised the genes encoding ubiquitin, E1-like, E2-like and
srfp (E3-like) components and expressed and purified these
proteins. The C. subterraneum ubiquitin homologue is encoded in
the reconstructed composite genome25 as a pro-ubiquitin with a
nine amino-acid peptide extending beyond the conserved C-
terminal di-glycine motif. Similarly, in eukaryotes, ubiquitin and
many other ubiquitin-like modifiers such as SUMO (small
ubiquitin-like modifier) and NEDD8 (neural precursor cell-
expressed, developmentally downregulated)33 are commonly
expressed as fusion proteins or pro-ubiquitin-like precursors, and
the generation of the mature ubiquitin moiety requires the action
of a dedicated protease34. It therefore followed that the C. sub-
terraneum C-terminal pro-peptide must be removed to generate
the mature active ubiquitin. We predicted that the Rpn11
metalloprotease homologue, encoded close to the ubiquitylation
operon in C. subterraneum and a number of other archaeal
species (Fig. 1 and Supplementary Fig. 1), would function to
generate the mature ubiquitin species. Combination of the pro-
ubiquitin and the Rpn11-like homologues in a proteolytic pro-
cessing assay revealed that the metalloprotease enzyme was
competent to cleave the pro-ubiquitin (Fig. 2a). Tandem mass
spectrometry analysis of the cleaved product confirmed that the
nine-amino acid pro-peptide was removed, exposing the di-
glycine motif of the modifier (see Supplementary Note 1). Fur-
thermore, we revealed that while the full-length pro-ubiquitin was
refractory to activation by the E1 enzyme as predicted, Rpn11-
cleaved ubiquitin, or ubiquitin C-terminally truncated immedi-
ately after the di-glycine motif by the introduction of a stop-
codon, were activated and the reaction resulted in auto-
ubiquitylation of the E1 protein itself (Fig. 2b, c). Tandem mass
spectrometry analysis of the modified product confirmed that the
ubiquitin moiety was covalently attached via an isopeptide bond
between the terminal glycine and specific lysine residues on the
E1 enzyme (Fig. 2d). Ubiquitin-like auto-modifications of
archaeal E1-like enzymes have been observed previously29, 30 (see
Supplementary Note 2 for further discussion). Addition of the

E2-like conjugating enzyme to the E1-dependent ubiquitin acti-
vation reaction resulted in the generation of another distinct
ubiquitylated product (Fig. 2b, c). Tandem mass spectrometry
revealed this product to be a specific auto-mono-ubiquitylation
on a C-terminal lysine on the E2 component itself (Fig. 2e and
see Supplementary Note 3 for further discussion).

Structural conservation of the archaeal / eukaryotic enzymes.
Generation of structural models for the C. subterraneum E1-like
and E2-like enzymes, using the I-TASSER server35–37 (Supple-
mentary Table 1), revealed conservation of the major structural
features and key catalytic residues that are characteristic of the E1
ubiquitin-activating and the E2 ubiquitin-conjugating (UBC)
domains (Fig. 3a, b, and Supplementary Figs 2 and 3, respec-
tively)17, 18, 38–42. These conserved structural features shared
between the archaeal and eukaryotic E1-like and E2-like enzymes
are central to the eukaryotic ubiquitylation cascade. The I-
TASSER model of the C. subterraneum E2 enzyme revealed that
the first N-terminal alpha-helix harboured a motif that matched
the consensus sequence observed in the equivalent helix of the
eukaryotic E2 homologues (Fig. 3b). This region is known to
mediate interaction with the ubiquitin-binding domain of the
eukaryotic E1-enzyme, and also forms the canonical binding site
with E3 enzymes18, 22, 43. The model also revealed conservation of
the essential loops 4 and 7 (including the PxxPP and D/ExWSP
motifs; Fig. 3b), which have been proposed to play essential roles
in the specific interactions with the cognate E3 ligases in eukar-
yotic systems41, 44 as discussed further in the Supplementary
Note 3. Furthermore, phylogenetic analyses of the E1-like and
E2-like proteins confirmed the close evolutionary relationship
between the C. subterraneum and eukaryotic homologues
(Fig. 4a, b, respectively and additional discussion in the Supple-
mentary Note 4). In addition to the functional biochemical
activity identified in the auto-ubiquitylation assays, a stable
physical interaction between the C. subterraneum E1 and E2
components was also observed by analytical size exclusion
chromatography (Fig. 4c).

The overall similarity in structural arrangement of the
eukaryotic and archaeal E2 enzymes extended to the conservation
of key amino-acid residues that mediate the interaction with E3
ligases21, 22, 41 (Fig. 3b and Supplementary Figs 3 and 4). We
therefore also compared the C. subterraneum E3-like srfp protein
with known structural homologues to search for the reciprocal
conserved regions on the archaeal ligase that might mediate these
interactions. It has been established that eukaryotic RING-
domain proteins fold with a cross-brace arrangement by
coordinating Zn2+ ions, forming an interface for E2
binding21, 22, 45. The PHYRE2 protein fold recognition server46

identified the zinc finger domain of the Homo sapiens E3
ubiquitin-protein ligase Praja-1 (PDB code: 2L0B) as a top
structural homologue (Fig. 5a and Supplementary Table 1).
Furthermore, the I-TASSER structural prediction software
generated a model for the C. subterraneum homologue, which
revealed that the key residues and surfaces involved in the
interaction with the E2 conjugating enzyme were also conserved
(Fig. 5a–c and Supplementary Figs 3 and 4). The conserved
zinc-coordinating cysteine and histidine residues indicated that
the C. subterraneum srfp protein belongs to the RING-H2 class of
proteins, defined by a C3H2C3 sequence of zinc-binding residues
(Fig. 5a)21. However, it should be noted that the position of the C.
subterraneum C3 and H4 residues are out of alignment by two
residues and an additional cysteine residue (denoted C3B) may be
involved in the coordination of the second zinc ion, as predicted
in the I-TASSER model (Fig. 5a–c). As suggested in previous
studies in eukaryotic systems45, 47–49, it seems plausible that the
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conserved residues P67/Y68 and P103/S104 on the C. subterra-
neum E2-enzyme on loops L4 and L7, respectively, are critical for
the interaction with the E3 components (Figs. 5b, c and
Supplementary Figs 3 and 4). These residues associate either
with conserved hydrophobic residues that are located on two

loops on the E3 protein, or with an invariant tryptophan on the
intervening α-helix, which contributes to the E2 interaction
surface (Fig. 5a–c)22. In eukaryotic systems it had previously been
demonstrated that the docking of the E3 RING domain onto the
cognate E2-conjugating enzyme is able to dramatically stimulate
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the activity of the E2-enzyme by restricting movement of the
ubiquitin-E2 thioester intermediate, inducing a conformationally
constrained or ‘closed’ state in which it is positioned ideally for
the catalytic transfer to a lysine on the substrate50, 51. The
conservation of the key residues and structural features on the
reciprocal binding surfaces of the C. subterraneum E2 and srfp-E3
proteins predicted in the I-TASSER models suggested that the
archaeal ubiquitylation system also operates by an equivalent
mechanism. We sought to verify these bioinformatics predictions
experimentally by attempting to biochemically reconstitute the
E1/E2/srfp(E3) ubiquitylation cascade and then probe the system
using site-directed mutations of the key residues.

Reconstitution of the E1/E2/(RING)E3 ubiquitylation cascade.
As, to date, C. subterraneum is an uncultured organism with its
composite genome reconstructed from metagenomic data25, it is
currently not possible to determine the physiological substrates
acted upon by the ubiquitylation cascade. In the absence of a
known candidate, we decided to use the thermophilic
Mre11/Rad50 complex from the thermophilic crenarchaeote Sul-
folobus acidocaldarius as a substrate. We have previously shown
that the Rad50 component of this bi-partite DNA repair complex
was extensively modified by the Urm1/SAMP protein following
in vivo overexpression of this ubiquitin-like modifier in S. acid-
ocaldarius cells30. Inclusion of the Mre11/Rad50 complex in a
reconstituted ubiquitylation assay with the C. subterraneum ubi-
quitin, E1-like, E2-like and srfp (E3-like) components resulted in
the covalent modification of the S. acidocaldarius Rad50 protein
(Fig. 6a). Crucially, these modifications were dependent on the
addition of the srfp E3-like homologue. Indeed, if any one of the
E1-like/E2-like/srfp (E3-like) enzymes was removed from the
reaction, we could no longer observe the formation of the con-
jugates (Fig. 6a), which were detected by both Coomassie staining
and tandem mass spectrometry analyses (Fig. 6a, b). It was
therefore evident that the conjugates were generated via a cano-
nical eukaryotic-like ubiquitylation cascade. The ubiquitylation
assays identified at least two major products above 100 kDa con-
sistent with mono and di-ubiquitylations, respectively. Further-
more, smeared products visible in the region above the two
discrete modified bands were suggestive of ubiquitin chain for-
mation (Figs. 6a, c). Tandem mass-spectrometry analysis of the
modified region of the gel above the native Rad50 band revealed
conjugations of ubiquitin on four specific lysine residues within
the coiled-coil regions on the Rad50 substrate (K256, K600, K618,
K662) (Fig. 6b).

In order to investigate the role of the predicted key residues
involved in the ubiquitylation cascades, site-directed mutants of
the E2-like, srfp (E3-like) and ubiquitin proteins were generated

and used in the functional assay (Fig. 6c). The E2-PY67/68AA
(loop 4) and E2-PS103/104AA (loop7) mutations, along with the
complementary srfp (E3-like) mutations W58A and I30Q were
examined in order to explore the predicted E2/E3 protein-protein
interface (Fig. 5b, c). Substituting the E2-PY67/68AA and srfp
(E3-like)-I30Q mutant components in the place of the native
proteins resulted in an abrogation of the ubiquitylation reaction
(Fig. 6c; lanes 2 and 7, respectively), while the srfp (E3like)-W58A
mutation also significantly impaired the ubiquitylation reaction.
Although mono- and di-ubiquitylations were detected when the
srfp (E3-like)-W58A mutant was tested (Fig. 6c; lane 6) the long
smear suggestive of ubiquitin chain elongation was no longer
detectable. In contrast to the E2-PY67/68AA (E2-loop 4)
mutation, the E2-PS103/104AA (E2-loop 7) mutation did not
appear to affect the efficiency of the ubiquitylation reaction when
compared to the wild-type control (Fig. 6c; lane 3). However,
combination of both the E2-PS103/104AA (E2-loop 7) and srfp
(E3like)-W58A mutations resulted in an inhibition of the
ubiquitylation reaction that was more pronounced than the effect
observed with W58A mutation alone (Fig. 6; lane 4, compared
with lane 6). Since, the S104A substitution in the E2-PS103/
104AA (E2-loop 7) loop mutant was a conserved change, and an
alanine was often encoded in the equivalent position in
eukaryotic homologues (Fig. 5c), an E2-PS103/104AQ (E2-loop
7) mutant in which the serine was instead substituted for the
bulky polar residue glutamine was also investigated. This
mutation resulted in considerable impairment of the ubiquityla-
tion reaction (Fig. 6; lane 5). These results were therefore
suggestive that the conserved residues on both loops 4 and 7 of
the E2-like enzyme, and the corresponding I30 and W58 residues
on the srfp (E3like), do indeed play a critical role in the
interaction between these two components and regulate the
subsequent ubiquitylation process, as seen for the eukaryotic
apparatus21.

An additional mutation in the srfp (E3-like) protein, R69A, was
also found to impair the ubiquitylation cascade (Fig. 6c; lane 8).
This residue is conserved (as either a lysine or arginine) in all
E3-RING proteins and plays a critical role in the ubiquitylation
process by regulating formation of the conformationally con-
strained ‘closed’ state of the E2-ubiquitin intermediate required
for efficient chain elongation51. In the light of the R69A result it
seems likely that this mechanism also operates in the conserved
archaeal systems. Indeed, in further support of this assumption
we demonstrated that mutation of the hydrophobic patch on the
surface of ubiquitin, a region that is essential for the formation of
the ‘closed’ E2-ubiquitin intermediate state51, also resulted in a
dramatic impairment of the ubiquitylation reaction (Fig. 6c,
lane 9).

Fig. 6 Requirement of the E3 component for the in vitro ubiquitylation of a Rad50 substrate from Sulfolobus solfataricus and investigation of the key residues
predicted by the structural models to be required for the functional enzymatic cascade. a The C. subterraneum srfp (E3-like) protein is required for the
in vitro ubiquitylation of a S. solfataricus Rad50 substrate. (left) Lanes 1 and 2: ubiquitylation reaction containing Rad50 substrate and the ubiquitin, E1-like,
E2-like proteins in the absence or presence of the srfp (E3-like) protein, respectively. ubiquitylation assay and srfp (E3-like) proteins required for the
ubiquitylation cascade. (right) exclusion of any individual component from the reaction prevents ubiquitylation of the Rad50 component. The reaction in
lanes 4 lacks the srfp (E3-like) component, while the reactions in lane 5 and 6 lack the E2-like and E3-like enzymes, respectively. b MS/MS spectra of the
ubiquitylated S. solfataricus Rad50 peptides identified in the modified bands. (2+) indicates doubly charged precursor ions. Spectra show the annotated
peaks that are due to C-terminal y (coloured red) and N-terminal b (coloured blue) fragment ions. In each case, the m/z values of the precursor ions and
the m/z values of the fragment ions are consistent with ubiquitylations. The lysine modified with the ‘TVGG’ isopeptide-linked moiety, generated following
trypsin digestion, is underlined. c Examining the importance of predicted key residues in the ubiquitin, E1-like and E2-like proteins using the functional
in vitro ubiquitylation assay of the S. solfataricus Rad50 substrate. All reactions included the ubiquitin, E1-like, E2-like and srfp (E3)-like components. Mutant
proteins were substituted for the native (wild-type) proteins as indicated. Lane 1, native protein (wild-type) proteins only (control); lane 2, E2-PY67/68AA
(loop 4) mutant; lane 3, E2-PS103/104AA (loop7) mutant; lane 4, combination of E2-PS103/104AA (loop7) and E3-W58A mutants; lane 5, E2-PS103/
104AQ mutant; lane 6, E3-W58A mutant; lane 7, E3-I30Q mutant; lane 8, E3-R69A mutant; lane 9, ubiquitin-T46D mutant. All assays were performed at
60 °C for 60min as described in the methods section. Products were separated by SDS-PAGE and visualised by Coomassie staining
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Ubiquitin chain linkages arising from the enzymatic cascade.
In addition to the modifications identified on the Rad50 substrate,
three ubiquitylated lysine residues (K4, K53, K68) were also
observed by tandem mass-spectrometry on the ubiquitin moiety
itself (Fig. 7a, b), consistent with the possibility of ubiquitin chain
formation. Comparison of the crystal structure of human ubi-
quitin (PDB code: 1UBQ) with the available C. subterraneum
NMR solution structure (PDB code: 2MQJ) revealed that the

modification on residue K53 was located at a position that
appeared to be positioned closely to the highly-characterised K48
ubiquitin modification site in eukaryotic homologues (Fig. 7c, d),
which has well-established roles as a protein degradation signal3.
In addition, the modification on residue K68 of the C. sub-
terraneum ubiquitin was located on strand β5 (Fig. 7d, f) while
the eukaryotic K63 modification, which functions in membrane
protein trafficking, immune response and DNA repair (Fig. 7c, d)
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3 is juxtaposed to strand β5 and located on the same face of the
ubiquitin moiety (Fig. 7d, f). The third modification site (K4)
occupies a similar position on the surface of the molecule on
strand β1 of the structure that abuts the K68 residue, which lies
on the adjoining strand β5 of the β-grasp fold (Fig. 7c, d).
Interestingly, the eukaryotic K6 residue, which is modified to
form atypical chains52 is also positioned similarly in both the
archaeal and eukaryotic homologues, located on the β1-strand of
the β-sheet in both structures. We also observed that residues K31
and K36 on the C. subterraneum ubiquitin structure occupied
positions on the first α—helix that appeared structurally
equivalent to the residues K29 and K33 of human ubiquitin that
are involved in forming other atypical ubiquitin chain linkages
(Fig. 7d, e)52.

The three distinct modification sites identified by the tandem
mass-spectrometry analyses on the C. subterraneum ubiquitin
moiety raise the intriguing possibility that different ubiquitin
chain linkages could be formed by some archaeal ubiquitylation
systems. Indeed, it is tempting to speculate that early eukaryotic
cells arising from archaeal organisms possessing similar E1/E2/E3
ubiquitylation cascades may have diversified their ubiquitin chain
repertoire to permit the regulation of diverse biological pathways.
Subsequent expansion, especially of the E3 components, of this
early eukaryotic ubiquitylation toolkit would lead to the evolution
of the extremely complex chain-linkages observed in modern
eukaryotic cells, which control a plethora of biological
functions3, 52 (discussed further in Supplementary Notes 5, 6).

Further comparison of the human and archaeal ubiquitin
structures revealed similar exposed hydrophobic patches on both
proteins (Fig. 7e, f). In eukaryotic systems this region forms a
critical interface with the E2 enzyme during the ‘closed’ state
required for efficient ubiquitin transfer51. The hydrophobic patch
in human ubiquitin is centred on I44 and includes residues L8
and V70 (Fig. 7e, f). Similarly, in most archaeal homologues the
I44 residue is conserved as a hydrophobic residue (most
commonly an isoleucine or valine), although it is notable that
the equivalent residue in the C. subterraneum ubiquitin is a
threonine (T46), which influences the hydrophobic character of
the exposed patch, composed of the residues A8, G10, V70, I72
and G49 (Fig. 7e, f). Nevertheless, as described above, mutation of
this residue at the centre of this patch to a hydrophilic aspartic
acid residue results in the inactivation of the C. subterraneum
ubiquitylation reaction (Fig. 6c; lane 9).

Rpn11 deconjugation of C. subterraneum ubiquitin linkages.
Having revealed that the C. subterraneum E1/E2/E3 cascade does

appear to operate in a manner reminiscent of the eukaryotic
ubiquitylation systems, potentially forming covalently linked
ubiquitin chains extending from substrates, we next examined if
the Rpn11/JAMM metalloprotease homologue, encoded in the
genome close to the ubiquitin operon, could deconjugate these
isopeptide linkages. Following retrieval by Ni-NTA IMAC from
the reconstituted in vitro ubiquitylation reactions (see Methods
for details), we determined that the modified Rad50 products
could be deubiquitylated upon addition of the Rpn11 homologue
(Fig. 8a). In addition, we revealed that a fusion protein consisting
of a single ubiquitin moiety attached to the N-terminus of a
thermally stable superfolder (sf)GFP protein could also be
deconjugated by the metalloprotease (Fig. 8b and Supplementary
Note 7).

Discussion
In this study we have demonstrated that the compact ubiquity-
lation operon encoded in the genomes of archaea belonging to the
Aigarchaeota [25], and also reported subsequently across several
archaeal species including those of the Asgard superphylum26, 28,
operates to form a bona fide ubiquitylation cascade reminiscent of
that in eukaryotes. We have revealed that the small RING-finger
protein acts as an E3 ligase to stimulate the activity of the E2
conjugating enzyme and facilitates interaction with the substrate.
This E1/E2/RING-E3 mechanism appears essentially indis-
tinguishable from the known eukaryotic pathways previously
reported and seemingly involves the same key conserved amino
acid residues and structural features that are observed in both the
archaeal and eukaryotic homologues17, 21, 22, 40, 41, 43, 44. The close
phylogenetic roots of the archaeal ubiquitylation systems to
eukaryotic counterparts, combined with the inherent thermo-
stability and biochemical robustness of this reconstituted protein
modification apparatus makes this C. subterraneum E1/E2/E3
cascade an attractive model for future structural and biochemical
studies into the workings and intricacies of ubiquitylation pro-
cesses. Furthermore, the putative alternative ubiquitin chain lin-
kages and deubiquitlyation reactions observed during this study
merit further investigation to advance our understanding of how
complex ubiquitin-chain signalling evolved.

It is noteworthy that the broad substrate specificity displayed
by the C. subterraneum Rpn11/JAMM metalloprotease homo-
logue is also observed for other archaeal JAMM homologues53, as
discussed further in Supplementary Note 7. However, previous
phylogenetic classification of this C. subterraneum metallopro-
tease homologue places the C. subterraneum Rpn11 homologue
closely with the eukaryotic JAMM isopeptidase and DUB

Fig. 7 Identification of ubiquitylated lysines on the C. subterraneum modifier protein and structural comparisons of the C. subterraneum and H. sapiens
ubiquitins. a MS/MS spectra of ubiquitylated C. subterraneum ubiquitin peptides identified in the following the ubiquitylation of S. solfataricus Rad50. (2+)
indicates doubly charged precursor ions. Spectra show the annotated peaks that are due to C-terminal y (coloured red) and N-terminal b (coloured blue)
fragment ions. In each case, the m/z values of the precursor ions and the m/z values of the fragment ions are consistent with the underlined lysine
residues modified with the ‘TVGG’ moiety generated following trypsin digestion. b Amino acid sequence of C. subterraneum ubiquitin indicating the three
ubiquitylated lysine residues identified by the MS/MS data. c Solution (NMR) structure of the C. subterraneum ubiquitin protein (PDB: 2QMJ) with the
modified lysine residues shown as sticks (in purple). d Structural superposition of the crystal structure of H. sapiens ubiquitin in wheat (PDB: 1UBQ) and the
NMR structure of the C. subterraneum ubiquitin protein in blue (PDB: 2QMJ). (left) C. subterraneum modified lysines K4, K53, K68 (and an unmodified but
conserved K48 residue) shown in purple, with H. sapiens conserved lysine residues K6, K48 and K63 displayed in green. (right) View looking onto α-helix
1 showing the C. subterraneum residues K29 and K33 (purple), which occupy positions on the α–helix structurally reminiscent of the K31 and K36 residues
observed in the human ubiquitin molecule (green). e Multiple sequence alignments of the C. subterraneum ubiquitin protein amino-acid sequences with
eukaryotic and archaeal homologues: Homo sapiens [B isoform CRA_c], Entamoeba histolytica, Meloidogyne javanica, Homo sapiens, Odinarcheota
LCB4_14240, Caldiarchaeum subterraneum, Heimdallarcheota C3_02740, Heimdallarcheota C2_17770, Heimdallarcheota AB125_14240. Secondary structural
features are indicated above the alignments. Black circles indicate conserved lysines in the eukaryotic proteins, while purple circles denote the
C. subterraneum lysines displayed in (7c, 7d and 7e). The I44 and T46 residues are also highlighted. f Surface views of the C. subterraneum and H. sapiens
ubiquitins, showing the similar exposed hydrophobic patches (red), centred on the human I44 residue and equivalent T46 residue (yellow) in
C. subterraneum. Surface exposed lysines residues are displayed in purple
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domains, rather than grouping with the archaeal group 1 JAMM
proteases25, 53. Considering this close evolutionary relationship of
the C. subterraneum deubiquitylase to eukaryotic Rpn11 (of the
19 S proteasomal lid) and Csn5 (of the COP9 signalosome)
homologues, it is interesting that the archaeal homologue appears
to display activity in the absence of any interacting partner pro-
tein or complex. By contrast, the aforementioned eukaryotic
counterparts require incorporation within a larger multi-subunit
complex (as part of the regulatory 19 S lid of the proteasome or
the COP9 signalosome, respectively) in order to confer catalytic
competency. The archaeal Rpn11 homologue therefore likely
represents an interesting intermediate in the evolution of these
ubiquitin-linkage modulating systems. Furthermore, it has
recently been demonstrated that the zinc-chelating activity of the
antibiotic thiolutin inhibits the JAMM metalloprotease activity of
the eukaryotic Rpn11 proteasome-complex homologues, the
deNEDDylation function of the JAMM metalloproteases Csn5 (of
the COP9 signalosome) and also the activities of the eukaryotic
BRCC36 enzyme (a deubiquitylase specific to K63 linkages in the
BRCA1/BRCA2 complex)54. It therefore seems likely that thio-
lutin will also inhibit the archaeal Rpn11 homologues given the
wide-ranging activity of this antibiotic.

The clustering, often in an operonic arrangement, of the pro-
teins involved in the ubiquitylation cascade found in the
Aigarchaeota and also across the Asgard archaea is indicative that
this arrangement was a prokaryotic invention and does not
appear to have been acquired via horizontal gene transfer (HGT)
from a eukaryotic source11, 27, 55. Sporadic distribution of distant
E2 and E3 homologues has also been identified in several bacterial
species to date32, including some examples of complete oper-
ons27, indicative of HGT of the ubiquitylation components
between archaeal and bacterial species. However, the high degree
of sequence and structural identity of the archaeal components to
the well-characterised eukaryotic counterparts strongly indicates

that the ubiquitylation system adopted in early eukaryogenesis
evolved from a compact operon similar to the system recently
identified in C. subterraneum25 (see Supplementary Notes 3 and 7
for further discussion). In the current study, this ubiquitin
modifier system has been characterised biochemically, and shown
to function in a manner evocative of the eukaryotic ubiquitylation
cascade. The emergence of a functional ubiquitylation system has
been proposed to have been one of the primary requirements to
permit the evolution of cellular complexity and the eventual
emergence of the first eukaryotic cell9. Clearly, the subsequent
expansion of the ubiquitylation system from a compact ancestral
arrangement to the current sophisticated pathways operating in
complex eukaryotic organisms, utilising hundreds or even thou-
sands of E3 enzymes, was concomitant with the development of
advanced cellular mechanisms during the evolution of
eukaryotes11, 27, 55. Indeed, the identification of various
eukaryotic-like signature proteins including the E1/E2/E3 ubi-
quitylation cascade in the Asgard archaea superphylum26, 28

appears to provide our first glimpses into the emergence of these
vital cellular systems.

Methods
Protein expression and purification. The genes for Candidatus Caldiarchaeum
subterraneum rpn11 (Csub1473), ubiquitin (Csub1474), E2-like (Csub1475), E1-like
(Csub 1476) and srfp (E3-like) (Csub1476) were synthesised using the GeneArt
Genestrings service (ThermoFisher) and the ORFs then subsequently amplified by
PCR using the primers described in Supplementary Table 3. Both the full-length
ubiquitin (including the C-terminal pro-peptide) and a product truncated imme-
diately after the C-terminal di-glycine motif (Ubq-GG) were amplified. The
ubiquitin-GFP fusion construct was generated by amplifying Ubq-GG using the
CSUB_1474UBIforNdeI and CSUB1474_UBIrevNdeIGG primers and the ampli-
fied product was subsequent cloned into the NdeI site immediately upstream of a
previously generated (sf)GFP (Sandia Biotech) construct cloned into pET301. The
Sulfolobus acidocaldarius mre11 (Saci0052) and rad50 (Saci0051) ORFs were
amplified by PCR from S. acidocaldarius DSM639 genomic DNA using the primers
described in Supplementary Table 3 and cloned into pET28a and site 2 of pDUET
(Novagen), respectively. Amplified genes were cloned into the plasmids using the
restriction sites placing the ORFs in frame with the plasmid-encoded hexa-histi-
dine tags. The ubiquitin-T46D, E2-PY67/68AA (loop 4), E2-PS103/104AA (loop7),
E2-PS103/104AQ (loop7), srfp (E3-like)-W58A, srfp (E3-like)-I30Q and srfp (E3-
like)-R69A site-directed mutants were generated using the QuikChange system
(Agilent), using the primers indicated in Supplementary Table 3 to modify the
native clones. All clones were verified by DNA sequencing of the complete ORF.

Proteins were expressed in Rosetta (DE3) pLysS Escherichia coli cells
(Novagen). Cultures were grown at 37 °C to an OD600 of 0.3 then cooled to
25 °C and further grown to an OD600 of 0.6 and induced overnight with 0.33 mM
IPTG. Cells expressing the C. subterraneum proteins were harvested by
centrifugation, resuspended in 20 mM Tris-HCl (pH 8), 300 mM NaCl, 5%
glycerol, 0.05% β-mercaptoethanol, while cells expressing the S. acidocaldarius
Mre11/Rad50 complex were instead resuspended in 100 mM Tris-HCl pH 8, 300
mM NaCl, 10% glycerol. 1X EDTA-free protease inhibitors (Complete cocktail,
Roche) were added (with the exception of C. subterraneum Rpn11 protease) and
cells were lysed by sonication and heat clarified at 60 °C for 20 min before
centrifugation at (14,000 r.p.m. for 10 min) to remove insoluble material.
Supernatants were filtered and then applied by gravity flow to a column of Ni-NTA
agarose (Qiagen). The columns were washed with resuspension buffer and then
resuspension buffer plus 15 mM imidazole. Proteins were then eluted in
resuspension buffer plus 500 mM imidazole. At this stage the S. acidocaldarius
Mre11/Rad50 preparations were incubated with 500 units of Benzonase nuclease
(Sigma) for one hour. Fractions containing the purified proteins were pooled and
concentrated before running a size-exclusion chromatography step over a Superdex
200 16/600 column (GE Healthcare), or an S75 16/600 column (GE Healthcare) in
20 mM Tris-HCl pH 8, 300 mM NaCl, 5% glycerol, 0.5 mM dithiothreitol.
Fractions containing the purified proteins were pooled, concentrated, aliquoted and
flash frozen in liquid N2. Protein concentrations were quantified by UV
spectrophotometry.

Untagged proteins were prepared as above but prior to the final size-exclusion
chromatography step the tagged protein was dialysed against thrombin cleavage
buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 2.5 mM CaCl2, 5% glycerol)
overnight at room temperature. His-tags were removed by cleavage with thrombin
(Novagen) at room temperature for two hours. The cleaved sample was then
applied by gravity flow to a column containing Ni-NTA agarose (Qiagen) and
washed with 20 mM Tris-HCl pH 8, 300 mM NaCl, 5% glycerol 0.5 mM
dithiothreitol plus 15 mM imidazole. The untagged proteins were further purified
by size-exclusion chromatography as described above.
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Fig. 8 The Rpn11 JAMM metalloprotease acts as a deubiquitinase (DUB) to
deconjugate isopeptide-linked ubiquitin moieties. a (left) Coomassie
stained gel of the ubiquitylated S. solfataricus Rad50 product incubated
either with (lane 1) or without (lane 2) Rpn11 treatment. Middle and right;
western blot of duplicate gels, probed with an anti-Rad50, or anti-ubiquitin
antibodies, respectively. b The Rpn11 homologue also cleaves ubiquitin
moieties linked to the N-terminus of a substrate. Superfolder (sf)GFP or a
1xUbiquitin fusion to the N-terminus of sfGFP (1xUbq:sfGFP) incubated in
the presence or absence of Rpn11. Lane 1: (sf)GFP plus Rpn11. Lane 2: sfGFP
alone. Lane 3: 1xUbq:GFP following incubation with the Rpn11 protein. Lane
4: 1xUbq:GFP protein alone. Products were separated by SDS-PAGE and
visualised by Coomassie staining
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Pro-ubiquitin cleavage with the Rpn11 JAMM metalloprotease. 50 µg untagged
C. subterraneum pro-ubiquitin was incubated either with or without 50 µg
N-terminally His-tagged Rpn11 in 300 µl reaction buffer (20 mM Tris-HCl pH 8,
150 mM NaCl, 5% glycerol, 5 mM MgCl2, 1 mM dithiothreitol (DTT)) for 15 min
at 60 °C. Products were analysed by sodium dodecyl sulphate polyacrylamide gel
electrophoresis (SDS-PAGE) and visualised by Coomassie staining. Cleaved and
uncleaved products were examined further by tandem mass-spectrometry as
described below. For the downstream ubiquitylation assays the His-tagged Rpn11
protein was separated from the cleaved ubiquitin product by Ni-NTA IMAC.
100 µl of nickel-agarose slurry (Qiagen) was washed three times in 500 µl reaction
buffer and then applied to the cleaved reaction and incubated at room temperature
with agitation for 15 min. The supernatant, containing the cleaved ubiquitin, was
then aspirated and used in the subsequent ubiquitylation reactions.

Ubiquitylation reactions. For the E1 and E2 autoubiquitylation assays 50 µg of full
length pro-ubiquitin (Ubq-FL), pro-ubiquitin cleaved with Rpn11 (Ubq-CLV), or
ubiquitin truncated after the C-terminal di-glycine motif (Ubq-GG) were incubated
in the presence or absence of 50 µg E1-like protein with or without the addition of
50 µg of the E2-like protein in 200 µl reaction buffer (20 mM Tris-HCl pH 8, 150
mM NaCl, 5% glycerol, 5 mM MgCl2, 1 mM dithiothreitol) for 20 min at 60 °C (or
60 min at 45 °C) in the presence or absence of 3.3 mM ATP. For the full E1/E2/srfp
(E3) cascade assays 50 µg Ubq-GG, 10 µg E1-like protein, 10 µg E2-like
protein, 50 µg srfp (E3-like) ubiquitylation cascade protein and 30 µg of the S.
solfataricus Mre11/Rad50 substrate were incubated in 200 µl reaction buffer (20
mM Tris-HCl pH 8, 150 mM NaCl, 5% glycerol, 5 mM MgCl2, 1 mM dithio-
threitol) for 60 min at 60 °C in the presence or absence of 2.5 mM ATP (with
addition of fresh ATP at 15, 30 and 45 min). For the auto-ubiquitylation assays
shown in Fig. 1 only the E1-like enzyme or a combination of the E1-like and E2-
like enzymes were added to the reaction. For the ubiquitylation of the S. solfataricus
Mre11/Rad50 reactions the srfp (E3-like) protein was also added to reconstitute the
full ubiquitylation cascade. Negative control reactions omitting one of each of the
three ubiquitylation enzymes were prepared alongside the cascade reaction con-
taining all three components. Products were analysed by SDS-PAGE, followed by
Coomassie staining or Western analysis, or tandem mass-spectrometry. Primary
antibodies (either custom polyclonal rabbit antibody raised against the C. sub-
terraneum ubiquitin protein or S. acidocaldarius Rad50 protein (Covalab) were
used at 1:1000 dilution or a commercial anti-6X-histidine mouse antibody (BD
Pharmigen Catalogue No. 552565) was used at 1:200 dilution in 1 X TBST.
Horseradish peroxidase (HRP)-conjugated secondary antibodies (either Thermo
Fisher Scientific anti-mouse [Cat No. 32430] used at 1:1000 dilution or Thermo
Fisher Scientific anti-rabbit [Cat No. A16110] used at 1:10,000 dilution) were
incubated at R/T for 1 h in 1 X TBST and bands were detected using an Amersham
ECL Western blotting kit.

Rpn11/JAMM deconjugation of ubiquitin modified lysines. Following the ubi-
quitylation of 30 µg S. solfataricus Mre11/Rad50 substrate using N-terminally His6-
tagged UBQ-GG and the E1-like, E2-like and srfp (E3-like) components (carried
out as described above), the ubiquitylated Rad50 products were transferred to an
ATP-free reaction buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 5% glycerol, 5
mM MgCl2, 1 mM DTT) via Ni-NTA IMAC. 250 µl of nickel-agarose slurry
(Qiagen) was washed three times in 500 µl reaction buffer and then applied to the
ubiquitylation reaction and incubated at room temperature with agitation for 15
min. The beads were then washed once in reaction buffer without ATP plus 15 mM
imidazole and twice in 500 µl reaction buffer without ATP or imidazole. Following
re-suspension of the Ni-agarose bound products in 300 µl reaction buffer, 50 µg N-
terminally His6-tagged Rpn11 was added and the reaction incubated at 60 °C for
15 min. The products were washed three times in 500 µl reaction buffer and the
products eluted with 150 µl reaction buffer plus 500 mM imidazole. The products
were analysed by SDS-PAGE and visualised by Coomassie staining or alternatively
transferred to nitrocellulose membranes by western blot probed with either anti-
ubiquitin or anti-histidine antibodies.

Rpn11/JAMM cleavage of a ubiquitin-(sf)GFP fusion. 50 µg superfolder-(sf)GFP
(Sandia Biotech) or 50 µg 1xUbq-(sf)GFP (an N-terminal fusion of the
C. subterraneum ubiquitin moiety joined via the C-terminal di-glycine motif to the
N-terminus of the (sf)-GFP) was incubated with 50 µg Rpn11 in 150 µl reaction
buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 5% glycerol, 5 mM MgCl2, 1 mM
dithiothreitol) for 15 min at 60 °C. The products were analysed by SDS-PAGE and
visualised by Coomassie staining.

Size-exclusion chromatography. Physical interaction between the E1-like and
E2-like proteins was examined by size-exclusion chromatography using an ana-
lytical Superdex S200 HR 10/300 column (GE Healthcare). The E1/E2 complex was
formed at 60 °C, before the gel filtration analysis by mixing together 250 μg of each
protein in a final volume of 500 μl gel filtration buffer (20 mM Tris [pH 8.0], 300
mM NaCl, 5% glycerol, 1 mM DTT). Reactions were subsequently spun at 16,000 g
in a benchtop centrifuge for 5 min to remove any precipitated material, before
loading onto the size exclusion chromatography column. 0.5 ml fractions were

collected and resolved by SDS-PAGE, on 15% polyacrylamide gels. The proteins
were visualised with Coomassie stain.

GeLC-mass spectrometry and MS data analyses. The C. subterraneum E1 and
E2 bands and the S. acidocaldarius Mre11/Rad50 1D gel bands were excised and
transferred into a 96-well PCR plate. The gel bands were cut in half and then each
half was cut into 1 mm2 pieces. The two halves were then destained and half the gel
pieces were reduced (DTT) and alkylated (iodoacetamide) and half were not
reduced and alkylated. The reason for not reducing and alkylating the samples was
because the procedure may have interfered with the potential TVGG at cysteine
residues. The samples were then subjected to enzymatic digestion with trypsin
overnight at 37 °C. A similar procedure was followed for the Rpn11-cleaved ubi-
quitin bands except that both gel pieces were reduced and alkylated and chymo-
trypsin replaced trypsin. After digestion, the supernatant was pipetted into a
sample vial and loaded onto an autosampler for automated LC-MS/MS analysis.

All LC-MS/MS experiments were performed using a nanoAcquity UPLC
(Waters Corp., Milford, MA) system and an LTQ Orbitrap Velos hybrid ion trap
mass spectrometer (Thermo Scientific, Waltham, MA). Separation of peptides was
performed by reverse-phase chromatography using a Waters reverse-phase nano
column (BEH C18, 75 mm i.d. × 250 mm, 1.7 mm particle size) at flow rate of 300
nL/min. Peptides were initially loaded onto a pre-column (Waters UPLC Trap
Symmetry C18, 180 mm i.d × 20 mm, 5 mm particle size) from the nanoAcquity
sample manager with 0.1% formic acid for 5 min at a flow rate of 5 mL/min. After
this period, the column valve was switched to allow the elution of peptides from the
pre-column onto the analytical column. Solvent A was water + 0.1% formic acid
and solvent B was acetonitrile + 0.1% formic acid. The linear gradient employed
was 5–40% B in 60 min.

The LC eluant was sprayed into the mass spectrometer by means of a New
Objective nanospray source. All m/z values of eluting ions were measured in the
Orbitrap Velos mass analyser, set at a resolution of 30,000. Data dependent scans
(Top 20) were employed to automatically isolate and generate fragment ions by
collision-induced dissociation in the linear ion trap, resulting in the generation of
MS/MS spectra. Ions with charge states of 2+ and above were selected for
fragmentation.

Post-run, the data was processed using Protein Discoverer (version 1.4.,
ThermoFisher). Briefly, all MS/MS data were converted to mgf files and the files
were then submitted to the Mascot search algorithm (Matrix Science, London UK)
and searched against a custom database containing the sequences of the C.
subterraneum E1, E2, Ubq-FL (full length pro-ubiquitin including the
CGEPIRRAA propeptide) and UBQ-GG (mature ubiquitin ending with the
di-glycine motif) and the S. acidocaldarius Mre11/Rad50 proteins along with a
number of contaminant sequences such as keratins and the digestion enzymes. The
search settings employed were a fixed modification of carbamidomethyl and
variable modifications of oxidation (M), deamidation (N/Q) and the ubiquitin
modification TVGG (C/K). The peptide and fragment mass tolerances were set to
25 ppm and 0.8 Da, respectively. A significance threshold value of p< 0.05 and a
peptide cut-off score of 20 were also applied.

Structural modelling. Amino-acid sequences of the C. subterraneum E1-like,
E2-like and srfp (E3-like) ubiquitylation enzymes were submitted to the
I-TASSER35–37 server for folding prediction by homology (see Supplementary
Information for additional information and confidence scores). PHYRE2 (Protein
Homology/analogY Recognition Engine V 2.0) searches46 (see Supplementary
Information) were also performed to identify eukaryotic structural homologues of
the C. subterraneum E1-like, E2-like and srfp (E3-like) with 99.8–100% confidence
(this is a confidence score that is representative of the probability (ranging from 0
to 100%) that the matching sequences between the input and template is a true
homology).

Identification of gene clusters. All archaeal assemblies and proteomes were
downloaded from NCBI (Feb-2017). For those assemblies lacking of protein
annotations, proteins were predicted using prodigal (version 2.6.3, default para-
meters). A representative subset of proteomes were assigned to existing archaea-
specific clusters of orthologous genes (arCOGs) Makarova et al., 201556 and new
arCOGs were created using proteins without any assignment as described pre-
viously in Spang et al. 201526. ArCOGs containing putative E1, E2, E3, Ub and
JAB- proteins were selected, and aligned individually using mafft-linsi (version
7.271, default parameters)57. Note that this selection is not exhaustive and there
could be other proteins belonging to the ubiquitin machinery assigned to different
arCOGs, especially in the case of E3. It is also not specific, as some other related
proteins families could be included in this orthologous groups (for example, the
arCOG containing E1 proteins also include other ThiF proteins). These alignments
were used to identify putative-ubiquitin-related proteins from all the proteomes
downloaded from NCBI (psiblast -evalue 1e-6, version 2.2.30+). For each taxa,
clusters were identified if there were hits to different UB-related proteins (E1, E2,
E3, Ub or JAB) in close proximity (less than 5 proteins away). InterPro-domains
were assigned to proteins within the selected clusters (InterProScan—pathways—
goterms—iprlookup, version 5.22–61.0). C-terminal ubiquitin-like (UBL) domains
were also identified by CD-search analysis online through https://www.ncbi.nlm.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01162-7 ARTICLE

NATURE COMMUNICATIONS |8:  1120 |DOI: 10.1038/s41467-017-01162-7 |www.nature.com/naturecommunications 13

https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
www.nature.com/naturecommunications
www.nature.com/naturecommunications


nih.gov/Structure/bwrpsb/bwrpsb.cgi with default parameters, or by the PHYRE2
protein fold recognition server (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?
id=index)46. Clusters were drawn using genoPlotR in R (version 3.2.2)58 and
prepared in Adobe Illustrator.

Phylogenetic analysis of E1-like protein homologues. The sequence selection
from Zaremba-Niedzwiedzka et al.28 (based on Burroughs et al.38) was used as a
backbone to distinguish between E1-like families. E1-like candidates within the
clusters were identified based on the presence of the IPR000594 InterPro domains
and added to the backbone. Sequences were aligned using mafft-linsi (--reorder)57

and a quick phylogeny was inferred using FastTree (-lg)59. This phylogeny was
used to manually remove repeated sequences and long-branches. The remaining
sequences were aligned and trimmed (232 sites) using maft-linsi (--reorder)57 and
trimAl (version 1.4.rev15, --gappyout)60 respectively. Iqtree61 was used to test the
evolutionary models and reconstruct the phylogeny (version 1.5.3, -m TESTNEW
–mset LG –madd LG + C20,LG + C30, LG + C40,LG + C50, LG + C60 –bb 1000).
The model selected by iqtree was LG + R8.

Phylogenetic analysis of E2-like protein homologues. Proteins containing the
InterPro domain IPR000608 were downloaded from UniProt. In order to reduce
the amount of data, sequences with more than 90% of identity were removed in the
case of bacterial, viral, eukaryotic and metagenomes sequences and, in the case of
the eukaryotic sequences, just the ones marked as “reviewed” were considered.
Sequences were aligned using mafft-linsi (--reorder)57 and a quick phylogeny was
inferred using FastTree (-lg)59. This phylogeny and alignment were used to
manually remove repeated sequences, long-branches and more distant homo-
logous. The remaining sequences were aligned using maft-linsi (--reorder)57.
Ambiguous aligned-sites at the ends were manually removed and the resulting
alignment was further trimmed using trimAl (--gappyout)60 (141 sites). Iqtree61

was used to test the evolutionary models and reconstruct the phylogeny
(-m TESTNEW –mset LG –madd LG + C20,LG + C30, LG + C40,LG + C50, LG +
C60 –bb 1000). The model selected by iqtree was LG + R6.

Data availability. The data that support the findings of this study are included in
this published article (and its Supplementary Information files) or available from
the corresponding author upon reasonable request.

Received: 18 April 2017 Accepted: 22 August 2017

References
1. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet.

30, 405–439 (1996).
2. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67,

425–479 (1998).
3. Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81,

203–229 (2012).
4. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by

ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180
(2006).

5. Jackson, S. P. & Durocher, D. Regulation of DNA damage responses by
ubiquitin and SUMO. Mol. Cell. 49, 795–807 (2013).

6. Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. Annu. Rev.
Biochem. 82, 387–414 (2013).

7. van der Veen, A. G. & Ploegh, H. L. Ubiquitin-like proteins. Annu. Rev.
Biochem. 81, 323–357 (2012).

8. Muratani, M. & Tansey, W. P. How the ubiquitin-proteasome system controls
transcription. Nat. Rev. Mol. Cell Biol. 4, 192–201 (2003).

9. Koonin, E. V. The origin of introns and their role in eukaryogenesis: a
compromise solution to the introns-early versus introns-late debate? Biol.
Direct. 1, 22 (2006).

10. Zuin, A., Isasa, M. & Crosas, B. Ubiquitin signaling: extreme conservation as a
source of diversity. Cells 3, 690–701 (2014).

11. Grau-Bove, X., Sebe-Pedros, A. & Ruiz-Trillo, I. The eukaryotic ancestor had a
complex ubiquitin signaling system of archaeal origin. Mol. Biol. Evol. 32,
726–739 (2015).

12. Burroughs, A. M., Iyer, L. M. & Aravind, L. Structure and evolution of ubiquitin
and ubiquitin-related domains. Methods Mol. Biol. 832, 15–63 (2012).

13. Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation
systems. Nat. Cell Biol. 2, E153–E157 (2000).

14. Michelle, C. et al. What was the set of ubiquitin and ubiquitin-like conjugating
enzymes in the eukaryote common ancestor? J. Mol. Evol. 68, 616–628 (2009).

15. Vierstra, R. D. The expanding universe of ubiquitin and ubiquitin-like
modifiers. Plant. Physiol. 160, 2–14 (2012).

16. Burroughs, A. M., Iyer, L. M. & Aravind, L. The natural history of ubiquitin and
ubiquitin-related domains. Front. Biosci. 17, 1433–1460 (2012).

17. Lorenz, S. et al. Macromolecular juggling by ubiquitylation enzymes. BMC Biol.
11, 65 (2013).

18. Stewart, M. D. et al. E2 enzymes: more than just middle men. Cell. Res. 26,
423–440 (2016).

19. Ardley, H. C. & Robinson, P. A. E3 ubiquitin ligases. Essays Biochem. 41, 15–30
(2005).

20. Berndsen, C. E. & Wolberger, C. New insights into ubiquitin E3 ligase
mechanism. Nat. Struct. Mol. Biol. 21, 301–307 (2014).

21. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev.
Biochem. 78, 399–434 (2009).

22. Metzger, M. B. et al. RING-type E3 ligases: master manipulators of E2
ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta
1843, 47–60 (2014).

23. Scheffner, M. & Kumar, S. Mammalian HECT ubiquitin-protein ligases:
biological and pathophysiological aspects. Biochim. Biophys. Acta 1843, 61–74
(2014).

24. Spratt, D. E., Walden, H. & Shaw, G. S. RBR E3 ubiquitin ligases: new
structures, new insights, new questions. Biochem. J. 458, 421–437
(2014).

25. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein
modifier systems revealed by the genome of a novel archaeal group. Nucleic
Acids Res. 39, 3204–3223 (2011).

26. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and
eukaryotes. Nature 521, 173–179 (2015).

27. Koonin, E. V. & Yutin, N. The dispersed archaeal eukaryome and the complex
archaeal ancestor of eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016188
(2014).

28. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of
eukaryotic cellular complexity. Nature 541, 353–358 (2017).

29. Humbard, M. A. et al. Ubiquitin-like small archaeal modifier proteins (SAMPs)
in Haloferax volcanii. Nature 463, 54–60 (2010).

30. Anjum, R. S. et al. Involvement of a eukaryotic-like ubiquitin-related modifier
in the proteasome pathway of the archaeon sulfolobus acidocaldarius. Nat.
Commun. 6, 8163 (2015).

31. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458,
422–429 (2009).

32. Iyer, L. M., Burroughs, A. M. & Aravind, L. The prokaryotic antecedents of the
ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp
domains. Genome Biol. 7, R60 (2006).

33. Streich, F. C. Jr. & Lima, C. D. Structural and functional insights to ubiquitin-
like protein conjugation. Annu. Rev. Biophys. 43, 357–379 (2014).

34. Komander, D., Clague, M. J. & Urbe, S. Breaking the chains: structure and
function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10, 550–563 (2009).

35. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC
Bioinformatics 9, 40 (2008).

36. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for
automated protein structure and function prediction. Nat. Protoc. 5, 725–738
(2010).

37. Yang, J. et al. The I-TASSER suite: protein structure and function prediction.
Nat. Methods 12, 7–8 (2015).

38. Burroughs, A. M., Iyer, L. M. & Aravind, L. Natural history of the E1-like
superfamily: implication for adenylation, sulfur transfer, and ubiquitin
conjugation. Proteins 75, 895–910 (2009).

39. Olsen, S. K. & Lima, C. D. Structure of a ubiquitin E1-E2 complex: insights to
E1-E2 thioester transfer. Mol. Cell 49, 884–896 (2013).

40. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nat. Rev.
Mol. Cell Biol. 10, 755–764 (2009).

41. Winn, P. J. et al. Determinants of functionality in the ubiquitin conjugating
enzyme family. Structure 12, 1563–1574 (2004).

42. Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: Structures,
chemistry, and mechanism. Chem. Rev. http://dx.doi.org/10.1021/acs.
chemrev.6b00737 (2017).

43. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin
activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

44. Papaleo, E. et al. Loop 7 of E2 enzymes: an ancestral conserved functional motif
involved in the E2-mediated steps of the ubiquitination cascade. PLoS ONE 7,
e40786 (2012).

45. Zheng, N. et al. Structure of a c-Cbl-UbcH7 complex: RING domain function
in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

46. Kelley, L. A. et al. The Phyre2 web portal for protein modeling, prediction and
analysis. Nat. Protoc. 10, 845–858 (2015).

47. Xu, Z. et al. Interactions between the quality control ubiquitin ligase CHIP and
ubiquitin conjugating enzymes. BMC Struct. Biol. 8, 26 (2008).

48. Zhang, M. et al. Chaperoned ubiquitylation--crystal structures of the CHIP U
box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20,
525–538 (2005).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01162-7

14 NATURE COMMUNICATIONS |8:  1120 |DOI: 10.1038/s41467-017-01162-7 |www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://dx.doi.org/10.1021/acs.chemrev.6b00737
http://dx.doi.org/10.1021/acs.chemrev.6b00737
www.nature.com/naturecommunications


49. Mace, P. D. et al. Structures of the cIAP2 RING domain reveal conformational
changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol.
Chem. 283, 31633–31640 (2008).

50. Kleiger, G. & Mayor, T. Perilous journey: a tour of the ubiquitin-proteasome
system. Trends Cell Biol. 24, 352–359 (2014).

51. Pruneda, J. N. et al. Structure of an E3:E2~Ub complex reveals an allosteric
mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).

52. Kulathu, Y. & Komander, D. Atypical ubiquitylation - the unexplored world of
polyubiquitin beyond Lys48 and Lys63 linkages. Nat. Rev. Mol. Cell Biol. 13,
508–523 (2012).

53. Hepowit, N. L. et al. Archaeal JAB1/MPN/MOV34 metalloenzyme
(HvJAMM1) cleaves ubiquitin-like small archaeal modifier proteins (SAMPs)
from protein-conjugates. Mol. Microbiol. 86, 971–987 (2012).

54. Lauinger, L. et al. Thiolutin is a zinc chelator that inhibits the Rpn11 and other
JAMM metalloproteases. Nat. Chem. Biol. 13, 709–714 (2017).

55. Koonin, E. V. Archaeal ancestors of eukaryotes: not so elusive any more. BMC
Biol. 13, 84 (2015).

56. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Archaeal clusters of orthologous
genes (arCOGs): an update and application for analysis of shared features
between thermococcales, methanococcales, and methanobacteriales. Life (Basel)
5, 818–840 (2015).

57. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol. Biol. Evol. 30,
772–780 (2013).

58. Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and
genome visualization in R. Bioinformatics 26, 2334–2335 (2010).

59. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-
likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

60. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics 25, 1972–1973 (2009).

61. Nguyen, L. T. et al. IQ-TREE: a fast and effective stochastic algorithm for
estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274
(2015).

Acknowledgements
This work was supported by an Isaac Newton Trust Research Grant (Trinity College and
Department of Biochemistry, Cambridge) and start-up funds from the Division of
Biomedical and Life Sciences (Lancaster University) to N.P.R. A.C. and H.A. were
BIOL387 undergraduate project students from the Division of Biomedical and Life
Sciences, Lancaster University (Summer 2017). The work was also supported by grants of

the Swedish Research Council (VR grant 621-2009-4813), the European Research
Council (ERC Starting grant 310039-PUZZLE_CELL) and the Swedish Foundation for
Strategic Research (SSF-FFL5) to T.J.G.E.

Author contributions
N.P.R. designed the study and drafted the manuscript. R.H.J., J.A.H., M.J.D. and N.P.R.
collected and analysed the biochemical and proteomic data. R.H.J. and N.P.R. performed
the structural predictions. J.A.H. and M.J.D. collected the mass-spectrometry data sets.
A.E. and H.A. assisted during the generation and purification of the mutant ubiquitin,
E2-like and srfp (E3-like) proteins. E.F.C. and T.J.G.E. analysed the genomic data and
performed phylogenetic analyses. R.H.J., E.F.C., T.J.G.E. and N.P.R. discussed the find-
ings and contributed to writing the manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01162-7.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01162-7 ARTICLE

NATURE COMMUNICATIONS |8:  1120 |DOI: 10.1038/s41467-017-01162-7 |www.nature.com/naturecommunications 15

http://dx.doi.org/10.1038/s41467-017-01162-7
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Functional reconstruction of a eukaryotic-like E1/�E2/(RING) E3 ubiquitylation cascade from an uncultured archaeon
	Results
	Cleavage of the C. subterraneum pro-ubiquitin by Rpn11
	Structural conservation of the archaeal / eukaryotic enzymes
	Reconstitution of the E1/E2/(RING)E3 ubiquitylation cascade
	Ubiquitin chain linkages arising from the enzymatic cascade
	Rpn11 deconjugation of C. subterraneum ubiquitin linkages

	Discussion
	Methods
	Protein expression and purification
	Pro-ubiquitin cleavage with the Rpn11 JAMM metalloprotease
	Ubiquitylation reactions
	Rpn11/JAMM deconjugation of ubiquitin modified lysines
	Rpn11/JAMM cleavage of a ubiquitin-(sf)GFP fusion
	Size-exclusion chromatography
	GeLC-mass spectrometry and MS data analyses
	Structural modelling
	Identification of gene clusters
	Phylogenetic analysis of E1-like protein homologues
	Phylogenetic analysis of E2-like protein homologues
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




