
SegNet: A Deep Convolutional Encoder-Decoder
Architecture for Image Segmentation
Vijay Badrinarayanan, Alex Kendall , and Roberto Cipolla, Senior Member, IEEE

Abstract—We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation

termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed

by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the

VGG16 network [1]. The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature

maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input

feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to

perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then

convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2]

and also with the well known DeepLab-LargeFOV [3], DeconvNet [4] architectures. This comparison reveals the memory versus

accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding

applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also

significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using

stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and

SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with

competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe

implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/.

Index Terms—Deep convolutional neural networks, semantic pixel-wise segmentation, indoor scenes, road scenes, encoder, decoder,

pooling, upsampling

Ç

1 INTRODUCTION

SEMANTIC segmentation has a wide array of applications
ranging from scene understanding, inferring support-

relationships among objects to autonomous driving. Early
methods that relied on low-level vision cues have fast been
superseded by popular machine learning algorithms. In par-
ticular, deep learning has seen huge success lately in hand-
written digit recognition, speech, categorising whole images
and detecting objects in images [5]. Now there is an active
interest for semantic pixel-wise labelling [2], [3], [4],[6], [7],
[8], [9], [10], [11], [12], [13], [14], [15]. However, some of these
recent approaches have tried to directly adopt deep architec-
tures designed for category prediction to pixel-wise labelling
[6]. The results, although very encouraging, appear coarse
[3]. This is primarily because max pooling and sub-sampling
reduce feature map resolution. Our motivation to design
SegNet arises from this need to map low resolution features
to input resolution for pixel-wise classification. This map-
ping must produce features which are useful for accurate
boundary localization.

Our architecture, SegNet, is designed to be an efficient
architecture for pixel-wise semantic segmentation. It is pri-
marily motivated by road scene understanding applications
which require the ability to model appearance (road, build-
ing), shape (cars, pedestrians) and understand the spatial-
relationship (context) between different classes such as road
and side-walk. In typical road scenes, the majority of the
pixels belong to large classes such as road, building and
hence the network must produce smooth segmentations.
The engine must also have the ability to delineate objects
based on their shape despite their small size. Hence it is
important to retain boundary information in the extracted
image representation. From a computational perspective, it
is necessary for the network to be efficient in terms of both
memory and computation time during inference. The ability
to train end-to-end in order to jointly optimise all the
weights in the network using an efficient weight update
technique such as stochastic gradient descent (SGD) [16] is
an additional benefit since it is more easily repeatable. The
design of SegNet arose from a need to match these criteria.

The encoder network in SegNet is topologically identical
to the convolutional layers in VGG16 [1]. We remove the
fully connected layers of VGG16 which makes the SegNet
encoder network significantly smaller and easier to train
than many other recent architectures [2], [4], [10], [17]. The
key component of SegNet is the decoder network which
consists of a hierarchy of decoders one corresponding to
each encoder. Of these, the appropriate decoders use the

� The authors are with the Machine Intelligence Lab, Department of
Engineering, University of Cambridge, Cambridge CB2 1TN, United
Kingdom. E-mail: {vb292, agk34, cipolla}@eng.cam.ac.uk.

Manuscript received 7 Dec. 2015; revised 25 Aug. 2016; accepted 18 Dec.
2016. Date of publication 1 Jan. 2017; date of current version 10 Nov. 2017.
Recommended for acceptance by T. Brox.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2016.2644615

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017 2481

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/146486481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-3297-7495
https://orcid.org/0000-0002-3297-7495
https://orcid.org/0000-0002-3297-7495
https://orcid.org/0000-0002-3297-7495
https://orcid.org/0000-0002-3297-7495
http://mi.eng.cam.ac.uk/projects/segnet/
mailto:

max-pooling indices received from the corresponding
encoder to perform non-linear upsampling of their input
feature maps. This idea was inspired from an architecture
designed for unsupervised feature learning [18]. Reusing
max-pooling indices in the decoding process has several
practical advantages; (i) it improves boundary delineation,
(ii) it reduces the number of parameters enabling end-to-
end training, and (iii) this form of upsampling can be incor-
porated into any encoder-decoder architecture such as [2],
[9] with only a little modification.

One of the main contributions of this paper is our analy-
sis of the SegNet decoding technique and the widely used
Fully Convolutional Network (FCN) [2]. This is in order to
convey the practical trade-offs involved in designing seg-
mentation architectures. Most recent deep architectures for
segmentation have identical encoder networks, i.e, VGG16,
but differ in the form of the decoder network, training and
inference. Another common feature is they have trainable
parameters in the order of hundreds of millions and thus
encounter difficulties in performing end-to-end training [4].
The difficulty of training these networks has led to multi-
stage training [2], appending networks to a pre-trained
architecture such as FCN [9], use of supporting aids such as
region proposals for inference [4], disjoint training of classi-
fication and segmentation networks [17] and use of addi-
tional training data for pre-training [10], [19] or for full
training [9]. In addition, performance boosting post-proc-
essing techniques [3] have also been popular. Although all
these factors improve performance on challenging bench-
marks [20], it is unfortunately difficult from their quantita-
tive results to disentangle the key design factors necessary
to achieve good performance. We therefore analysed the

decoding process used in some of these approaches [2], [4]
and reveal their pros and cons.

We evaluate the performance of SegNet on two scene
segmentation tasks, CamVid road scene segmentation [21]
and SUN RGB-D indoor scene segmentation [22]. Pascal
VOC12 [20] has been the benchmark challenge for segmen-
tation over the years. However, the majority of this task has
one or two foreground classes surrounded by a highly var-
ied background. This implicitly favours techniques used for
detection as shown by the recent work on a decoupled clas-
sification-segmentation network [17] where the classifica-
tion network can be trained with a large set of weakly
labelled data and the independent segmentation network
performance is improved. The method of [3] also use the
feature maps of the classification network with an indepen-
dent CRF post-processing technique to perform segmenta-
tion. The performance can also be boosted by the use
additional inference aids such as region proposals [4], [23].
Therefore, it is different from scene understanding where
the idea is to exploit co-occurrences of objects and other spa-
tial-context to perform robust segmentation. To demon-
strate the efficacy of SegNet, we present a real-time online
demo of road scene segmentation into 11 classes of interest
for autonomous driving (see link in Fig. 1). Some example
test results produced on randomly sampled road scene
images from Google and indoor test scenes from the SUN
RGB-D dataset [22] are shown in Fig. 1.

The remainder of the paper is organized as follows. In
Section 2 we review related recent literature. We describe
the SegNet architecture and its analysis in Section 3. In
Section 4 we evaluate the performance of SegNet on out-
door and indoor scene datasets. This is followed by a

Fig. 1. SegNet predictions on road scenes and indoor scenes. To try our system yourself, please see our online web demo at http://mi.eng.cam.ac.uk/
projects/segnet/.

2482 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

http://mi.eng.cam.ac.uk/projects/segnet/
http://mi.eng.cam.ac.uk/projects/segnet/

general discussion regarding our approach with pointers to
future work in Section 5. We conclude in Section 6.

2 LITERATURE REVIEW

Semantic pixel-wise segmentation is an active topic of
research, fuelled by challenging datasets [20], [21], [22], [24],
[25]. Before the arrival of deep networks, the best performing
methods mostly relied on hand engineered features classify-
ing pixels independently. Typically, a patch is fed into a clas-
sifier, e.g., Random Forest [26], [27] or Boosting [28], [29] to
predict the class probabilities of the center pixel. Features
based on appearance [26] or SfM and appearance [27], [28],
[29] have been explored for the CamVid road scene under-
standing test [21]. These per-pixel noisy predictions (often
called unary terms) from the classifiers are then smoothed by
using a pair-wise or higher order CRF [28], [29] to improve
the accuracy. More recent approaches have aimed to pro-
duce high quality unaries by trying to predict the labels for
all the pixels in a patch as opposed to only the center pixel.
This improves the results of Random Forest based unaries
[30] but thin structured classes are classified poorly. Dense
depth maps computed from the CamVid video have also
been used as input for classification using Random Forests
[31]. Another approach argues for the use of a combination
of popular hand designed features and spatio-temporal
super-pixelization to obtain higher accuracy [32]. The best
performing technique on the CamVid test [29] addresses the
imbalance among label frequencies by combining object
detection outputs with classifier predictions in a CRF frame-
work. The result of all these techniques indicate the need for
improved features for classification.

Indoor RGBD pixel-wise semantic segmentation has also
gained popularity since the release of the NYU dataset [24].
This dataset showed the usefulness of the depth channel to
improve segmentation. Their approach used features such
as RGB-SIFT, depth-SIFT and pixel location as input to a
neural network classifier to predict pixel unaries. The noisy
unaries are then smoothed using a CRF. Improvements
were made using a richer feature set including LBP and
region segmentation to obtain higher accuracy [33] followed
by a CRF. In more recent work [24], both class segmentation
and support relationships are inferred together using a com-
bination of RGB and depth based cues. Another approach
focuses on real-time joint reconstruction and semantic seg-
mentation, where Random Forests are used as the classifier
[34]. Gupta et al. [35] use boundary detection and hierarchi-
cal grouping before performing category segmentation.
The common attribute in all these approaches is the use of
hand engineered features for classification of either RGB or
RGBD images.

The success of deep convolutional neural networks for
object classification has more recently led researchers to
exploit their feature learning capabilities for structured pre-
diction problems such as segmentation. There have also
been attempts to apply networks designed for object catego-
rization to segmentation, particularly by replicating the
deepest layer features in blocks to match image dimensions
[6], [36], [37], [38]. However, the resulting classification is
blocky [37]. Another approach using recurrent neural net-
works [39] merges several low resolution predictions to cre-
ate input image resolution predictions. These techniques

are already an improvement over hand engineered features
[6] but their ability to delineate boundaries is poor.

Newer deep architectures [2], [4], [9], [12], [17] particu-
larly designed for segmentation have advanced the state-of-
the-art by learning to decode or map low resolution image
representations to pixel-wise predictions. The encoder net-
work which produces these low resolution representations
in all of these architectures is the VGG16 classification net-
work [1] which has 13 convolutional layers and three fully
connected layers. This encoder network weights are typi-
cally pre-trained on the large ImageNet object classification
dataset [40]. The decoder network varies between these
architectures and is the part which is responsible for pro-
ducing multi-dimensional features for each pixel for
classification.

Each decoder in the Fully Convolutional Network archi-
tecture [2] learns to upsample its input feature map(s) and
combines them with the corresponding encoder feature
map to produce the input to the next decoder. It is an archi-
tecture which has a large number of trainable parameters in
the encoder network (134 M) but a very small decoder net-
work (0.5 M). The overall large size of this network makes it
hard to train end-to-end on a relevant task. Therefore, the
authors use a stage-wise training process. Here each
decoder in the decoder network is progressively added to
an existing trained network. The network is grown until no
further increase in performance is observed. This growth is
stopped after three decoders thus ignoring high resolution
feature maps can certainly lead to loss of edge information
[4]. Apart from training related issues, the need to reuse the
encoder feature maps in the decoder makes it memory
intensive in test time. We study this network in more detail
as it the core of other recent architectures [9], [10].

The predictive performance of FCN has been improved
further by appending the FCN with a recurrent neural net-
work (RNN) [9] and fine-tuning them on large datasets [20],
[41]. The RNN layers mimic the sharp boundary delineation
capabilities of CRFs while exploiting the feature representa-
tion power of FCN’s. They show a significant improvement
over FCN-8 but also show that this difference is reduced
when more training data is used to train FCN-8. The main
advantage of the CRF-RNN is revealed when it is jointly
trained with an architecture such as the FCN-8. The fact that
joint training helps is also shown in other recent results [42],
[43]. Interestingly, the deconvolutional network [4] per-
forms significantly better than FCN although at the cost of a
more complex training and inference. This however raises
the question as to whether the perceived advantage of the
CRF-RNN would be reduced as the core feed-forward seg-
mentation engine is made better. In any case, the CRF-RNN
network can be appended to any deep segmentation archi-
tecture including SegNet.

Multi-scale deep architectures are also being pursued
[12], [43]. They come in two flavours, (i) those which use
input images at a few scales and corresponding deep fea-
ture extraction networks, and (ii) those which combine fea-
ture maps from different layers of a single deep architecture
[10], [44]. The common idea is to use features extracted at
multiple scales to provide both local and global context [45]
and the using feature maps of the early encoding layers
retain more high frequency detail leading to sharper class

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2483

boundaries. Some of these architectures are difficult to train
due to their parameter size [12]. Thus a multi-stage training
process is employed along with data augmentation. The
inference is also expensive with multiple convolutional
pathways for feature extraction. Others [43] append a CRF
to their multi-scale network and jointly train them. How-
ever, these are not feed-forward at test time and require
optimization to determine the MAP labels.

Several of the recently proposed deep architectures for
segmentation are not feed-forward in inference time [3], [4],
[17]. They require either MAP inference over a CRF [42],
[43] or aids such as region proposals [4] for inference. We
believe the perceived performance increase obtained by
using a CRF is due to the lack of good decoding techniques
in their core feed-forward segmentation engine. SegNet on
the other hand uses decoders to obtain features for accurate
pixel-wise classification.

The recently proposed Deconvolutional Network [4] and
its semi-supervised variant the Decoupled network [17] use
the max locations of the encoder feature maps (pooling indi-
ces) to perform non-linear upsampling in the decoder net-
work. The authors of these architectures, independently of
SegNet (first submitted to CVPR 2015 [11]), proposed this
idea of decoding in the decoder network. However, their
encoder network consists of the fully connected layers from
the VGG-16 network which consists of about 90 percent of
the parameters of their entire network. This makes training
of their network very difficult and thus require additional
aids such as the use of region proposals to enable training.
Moreover, during inference these proposals are used and
this increases inference time significantly. From a bench-
marking point of view, this also makes it difficult to evalu-
ate the performance of their architecture (encoder-decoder
network) without other aids. In this work we discard the
fully connected layers of the VGG16 encoder network which
enables us to train the network using the relevant training
set using SGD optimization. Another recent method [3]
shows the benefit of reducing the number of parameters sig-
nificantly without sacrificing performance, reducing mem-
ory consumption and improving inference time.

Ourworkwas inspired by the unsupervised feature learn-
ing architecture proposed by Ranzato et al. [18]. The key
learningmodule is an encoder-decoder network. An encoder
consists of convolution with a filter bank, element-wise tanh
non-linearity, max-pooling and sub-sampling to obtain the

feature maps. For each sample, the indices of the max loca-
tions computed during pooling are stored and passed to the
decoder. The decoder upsamples the feature maps by using
the stored pooled indices. It convolves this upsampled map
using a trainable decoder filter bank to reconstruct the input
image. This architecture was used for unsupervised pre-
training for classification. A somewhat similar decoding
technique is used for visualizing trained convolutional net-
works [46] for classification. The architecture of Ranzato
et al. mainly focused on layer-wise feature learning using
small input patches. This was extended by Kavukcuoglu
et al. [47] to accept full image sizes as input to learn hierarchi-
cal encoders. Both these approaches however did not
attempt to use deep encoder-decoder networks for unsuper-
vised feature training as they discarded the decoders after
each encoder training. Here, SegNet differs from these archi-
tectures as the deep encoder-decoder network is trained
jointly for a supervised learning task and hence the decoders
are an integral part of the network in test time.

Other applications where pixel wise predictions are
made using deep networks are image super-resolution [48]
and depth map prediction from a single image [49]. The
authors in [49] discuss the need for learning to upsample
from low resolution feature maps which is the central topic
of this paper.

3 ARCHITECTURE

SegNet has an encoder network and a corresponding
decoder network, followed by a final pixelwise classification
layer. This architecture is illustrated in Fig. 2. The encoder
network consists of 13 convolutional layers which corre-
spond to the first 13 convolutional layers in the VGG16 net-
work [1] designed for object classification. We can therefore
initialize the training process from weights trained for clas-
sification on large datasets [40]. We can also discard the
fully connected layers in favour of retaining higher resolu-
tion feature maps at the deepest encoder output. This also
reduces the number of parameters in the SegNet encoder
network significantly (from 134 to 14.7 M) as compared to
other recent architectures [2], [4] (see. Table 6). Each encoder
layer has a corresponding decoder layer and hence the
decoder network has 13 layers. The final decoder output is
fed to a multi-class soft-max classifier to produce class prob-
abilities for each pixel independently.

Fig. 2. An illustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input
using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to den-
sify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.

2484 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

Each encoder in the encoder network performs convolu-
tion with a filter bank to produce a set of feature maps.
These are then batch normalized [50], [51]). Then an ele-
ment-wise rectified-linear non-linearity (ReLU) maxð0; xÞ is
applied. Following that, max-pooling with a 2� 2 window
and stride 2 (non-overlapping window) is performed and
the resulting output is sub-sampled by a factor of 2. Max-
pooling is used to achieve translation invariance over small
spatial shifts in the input image. Sub-sampling results in a
large input image context (spatial window) for each pixel in
the feature map. While several layers of max-pooling and
sub-sampling can achieve more translation invariance for
robust classification correspondingly there is a loss of spa-
tial resolution of the feature maps. The increasingly lossy
(boundary detail) image representation is not beneficial for
segmentation where boundary delineation is vital. There-
fore, it is necessary to capture and store boundary informa-
tion in the encoder feature maps before sub-sampling is
performed. If memory during inference is not constrained,
then all the encoder feature maps (after sub-sampling) can
be stored. This is usually not the case in practical applica-
tions and hence we propose a more efficient way to store
this information. It involves storing only the max-pooling
indices, i.e, the locations of the maximum feature value in
each pooling window is memorized for each encoder fea-
ture map. In principle, this can be done using 2 bits for each
2� 2 pooling window and is thus much more efficient to
store as compared to memorizing feature map(s) in float
precision. As we show later in this work, this lower memory
storage results in a slight loss of accuracy but is still suitable
for practical applications.

The appropriate decoder in the decoder network upsam-
ples its input feature map(s) using the memorized max-
pooling indices from the corresponding encoder feature
map(s). This step produces sparse feature map(s). This Seg-
Net decoding technique is illustrated in Fig. 3. These feature
maps are then convolved with a trainable decoder filter
bank to produce dense feature maps. A batch normalization
step is then applied to each of these maps. Note that the
decoder corresponding to the first encoder (closest to the
input image) produces a multi-channel feature map,
although its encoder input has three channels (RGB). This is
unlike the other decoders in the network which produce
feature maps with the same number of size and channels as

their encoder inputs. The high dimensional feature repre-
sentation at the output of the final decoder is fed to a train-
able soft-max classifier. This soft-max classifies each pixel
independently. The output of the soft-max classifier is a K
channel image of probabilities where K is the number of
classes. The predicted segmentation corresponds to the class
with maximum probability at each pixel.

We add here that two other architectures, DeconvNet
[52] and U-Net [15] share a similar architecture to SegNet
but with some differences. DeconvNet has a much larger
parameterization, needs more computational resources and
is harder to train end-to-end (Table 6), primarily due to the
use of fully connected layers (albeit in a convolutional man-
ner) We report several comparisons with DeconvNet later
in the paper Section 4.

As compared to SegNet, U-Net [15] (proposed for the
medical imaging community) does not reuse pooling indi-
ces but instead transfers the entire feature map (at the cost
of more memory) to the corresponding decoders and con-
catenates them to upsampled (via deconvolution) decoder
feature maps. There is no conv5 and max-pool five block in
U-Net as in the VGG net architecture. SegNet, on the other
hand, uses all of the pre-trained convolutional layer weights
from VGG net as pre-trained weights.

3.1 Decoder Variants

Many segmentation architectures [2], [3], [4] share the same
encoder network and they only vary in the form of their
decoder network. Of these we choose to compare the Seg-
Net decoding technique with the widely used Fully Convo-
lutional Network decoding technique [2], [9].

In order to analyse SegNet and compare its performance
with FCN (decoder variants) we use a smaller version of
SegNet, termed SegNet-Basic,1 which has four encoders and
four decoders. All the encoders in SegNet-Basic perform
max-pooling and sub-sampling and the corresponding
decoders upsample its input using the received max-pool-
ing indices. Batch normalization is used after each convolu-
tional layer in both the encoder and decoder network. No
biases are used after convolutions and no ReLU non-linear-
ity is present in the decoder network. Further, a constant

Fig. 3. An illustration of SegNet and FCN [2] decoders. a; b; c; d correspond to values in a feature map. SegNet uses the max pooling indices to
upsample (without learning) the feature map(s) and convolves with a trainable decoder filter bank. FCN upsamples by learning to deconvolve the
input feature map and adds the corresponding encoder feature map to produce the decoder output. This feature map is the output of the max-pooling
layer (includes sub-sampling) in the corresponding encoder. Note that there are no trainable decoder filters in FCN.

1. SegNet-Basic was earlier termed SegNet in a archival version of
this paper [11].

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2485

kernel size of 7� 7 over all the encoder and decoder layers
is chosen to provide a wide context for smooth labelling,
i.e., a pixel in the deepest layer feature map (layer 4) can be
traced back to a context window in the input image of
106� 106 pixels. This small size of SegNet-Basic allows us
to explore many different variants (decoders) and train
them in reasonable time. Similarly we create FCN-Basic, a
comparable version of FCN for our analysis which shares
the same encoder network as SegNet-Basic but with the
FCN decoding technique (see Fig. 3) used in all its decoders.

On the left in Fig. 3 is the decoding technique used by
SegNet (also SegNet-Basic), where there is no learning
involved in the upsampling step. However, the upsampled
maps are convolved with trainable multi-channel decoder
filters to densify its sparse inputs. Each decoder filter has
the same number of channels as the number of upsampled
feature maps. A smaller variant is one where the decoder fil-
ters are single channel, i.e they only convolve their corre-
sponding upsampled feature map. This variant (SegNet-
Basic-SingleChannelDecoder) reduces the number of trainable
parameters and inference time significantly.

On the right in Fig. 3 is the FCN (also FCN-Basic) decod-
ing technique. The important design element of the FCN
model is dimensionality reduction step of the encoder fea-
ture maps. This compresses the encoder feature maps which
are then used in the corresponding decoders. Dimensional-
ity reduction of the encoder feature maps, say of 64 chan-
nels, is performed by convolving them with 1� 1� 64�K
trainable filters, where K is the number of classes. The com-
pressed K channel final encoder layer feature maps are the
input to the decoder network. In a decoder of this network,
upsampling is performed by inverse convolution using a
fixed or trainable multi-channel upsampling kernel. We set the
kernel size to 8� 8. This manner of upsampling is also
termed as deconvolution. Note that, in comparison, SegNet
the multi-channel convolution using trainable decoder fil-
ters is performed after upsampling to densifying feature
maps. The upsampled feature map in FCN has K channels.
It is then added element-wise to the corresponding resolu-
tion encoder feature map to produce the output decoder
feature map. The upsampling kernels are initialized using
bilinear interpolation weights [2].

The FCN decoder model requires storing encoder fea-
ture maps during inference. This can be memory intensive
for embedded applications; for, e.g., storing 64 feature
maps of the first layer of FCN-Basic at 180� 240 resolution
in 32 bit floating point precision takes 11 MB. This can be
made smaller using dimensionality reduction to the 11 fea-
ture maps which requires � 1.9 MB storage. SegNet on the
other hand requires almost negligible storage cost for the
pooling indices (.17 MB if stored using 2 bits per 2� 2
pooling window). We can also create a variant of the FCN-
Basic model which discards the encoder feature map addi-
tion step and only learns the upsampling kernels (FCN-
Basic-NoAddition).

In addition to the above variants, we study upsampling
using fixed bilinear interpolation weights which therefore
requires no learning for upsampling (Bilinear-Interpolation).
At the other extreme, we can add 64 encoder feature maps
at each layer to the corresponding output feature maps
from the SegNet decoder to create a more memory intensive

variant of SegNet (SegNet-Basic-EncoderAddition). Here both
the pooling indices for upsampling are used, followed by a
convolution step to densify its sparse input. This is then
added element-wise to the corresponding encoder feature
maps to produce a decoders output.

Another and more memory intensive FCN-Basic variant
(FCN-Basic-NoDimReduction) is where there is no dimen-
sionality reduction performed for the encoder feature maps.
This implies that unlike FCN-Basic the final encoder feature
map is not compressed to K channels before passing it to
the decoder network. Therefore, the number of channels at
the end of each decoder is the same as the corresponding
encoder (i.e 64).

We also tried other generic variants where feature maps
are simply upsampled by replication [6], or by using a fixed
(and sparse) array of indices for upsampling. These per-
formed quite poorly in comparison to the above variants. A
variant without max-pooling and sub-sampling in the
encoder network (decoders are redundant) consumes more
memory, takes longer to converge and performs poorly.
Finally, please note that to encourage reproduction of our
results we release the Caffe implementation of all the
variants.2

3.2 Training

We use the CamVid road scenes dataset to benchmark the
performance of the decoder variants. This dataset is small,
consisting of 367 training and 233 testing RGB images (day
and dusk scenes) at 360� 480 resolution. The challenge is to
segment 11 classes such as road, building, cars, pedestrians,
signs, poles, side-walk etc. We perform local contrast nor-
malization [53] to the RGB input.

The encoder and decoder weights were all initialized
using the technique described in He et al. [54]. To train all
the variants we use stochastic gradient descent with a fixed
learning rate of 0.1 and momentum of 0.9 [16] using our
Caffe implementation of SegNet-Basic [55]. We train the
variants until the training loss converges. Before each
epoch, the training set is shuffled and each mini-batch (12
images) is then picked in order thus ensuring that each
image is used only once in an epoch. We select the model
which performs highest on a validation dataset.

We use the cross-entropy loss [2] as the objective func-
tion for training the network. The loss is summed up over
all the pixels in a mini-batch. When there is large variation
in the number of pixels in each class in the training set
(e.g. road, sky and building pixels dominate the CamVid
dataset) then there is a need to weight the loss differently
based on the true class. This is termed class balancing. We
use median frequency balancing [12] where the weight
assigned to a class in the loss function is the ratio of the
median of class frequencies computed on the entire train-
ing set divided by the class frequency. This implies that
larger classes in the training set have a weight smaller
than 1 and the weights of the smallest classes are the high-
est. We also experimented with training the different var-
iants without class balancing or equivalently using natural
frequency balancing.

2. See http://mi.eng.cam.ac.uk/projects/segnet/ for our SegNet code
andweb demo.

2486 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

http://mi.eng.cam.ac.uk/projects/segnet/

3.3 Analysis

To compare the quantitative performance of the different
decoder variants, we use three commonly used perfor-
mance measures: global accuracy (G) which measures the
percentage of pixels correctly classified in the dataset, class
average accuracy (C) is the mean of the predictive accuracy
over all classes and mean intersection over union (mIoU)
over all classes as used in the Pascal VOC12 challenge [20].
The mIoU metric is a more stringent metric than class aver-
age accuracy since it penalizes false positive predictions.
However, mIoU metric is not optimized for directly through
the class balanced cross-entropy loss.

The mIoU metric otherwise known as the Jacard Index is
most commonly used in benchmarking. However, Csurka
et al. [56] note that this metric does not always correspond
to human qualitative judgements (ranks) of good quality
segmentation. They show with examples that mIoU favours
region smoothness and does not evaluate boundary accu-
racy, a point also alluded to recently by the authors of FCN
[57]. Hence they propose to complement the mIoU metric
with a boundary measure based on the Berkeley contour
matching score commonly used to evaluate unsupervised
image segmentation quality [58]. Csurka et al. [56] simply
extend this to semantic segmentation and show that the
measure of semantic contour accuracy used in conjunction
with the mIoU metric agrees more with human ranking of
segmentation outputs.

The key idea in computing a semantic contour score is to
evaluate the F1-measure [58] which involves computing the
precision and recall values between the predicted and
ground truth class boundary given a pixel tolerance dis-
tance. We used a value of 0.75 percent of the image diagonal
as the tolerance distance. The F1-measure for each class that
is present in the ground truth test image is averaged to pro-
duce an image F1-measure. Then we compute the whole
test set average, denoted the boundary F1-measure (BF) by
average the image F1 measures.

We test each architectural variant after each 1,000 itera-
tions of optimization on the CamVid validation set until the
training loss converges. With a training mini-batch size of
12 this corresponds to testing approximately every 33
epochs (passes) through the training set. We select the itera-
tion wherein the global accuracy is highest amongst the
evaluations on the validation set. We report all the three
measures of performance at this point on the held-out Cam-
Vid test set. Although we use class balancing while training
the variants, it is still important to achieve high global accu-
racy to result in an overall smooth segmentation. Another
reason is that the contribution of segmentation towards
autonomous driving is mainly for delineating classes such
as roads, buildings, side-walk, sky. These classes dominate
the majority of the pixels in an image and a high global
accuracy corresponds to good segmentation of these impor-
tant classes. We also observed that reporting the numerical
performance when class average is highest can often corre-
spond to low global accuracy indicating a perceptually
noisy segmentation output.

In Table 1 we report the numerical results of our analysis.
We also show the size of the trainable parameters and the
highest resolution feature map or pooling indices storage
memory, i.e, of the first layer feature maps after max-pool-
ing and sub-sampling. We show the average time for one
forward pass with our Caffe implementation, averaged
over 50 measurements using a 360� 480 input on an NVI-
DIA Titan GPU with cuDNN v3 acceleration. We note that
the upsampling layers in the SegNet variants are not opti-
mised using cuDNN acceleration. We show the results for
both testing and training for all the variants at the selected
iteration. The results are also tabulated without class balanc-
ing (natural frequency) for training and testing accuracies.
Below we analyse the results with class balancing.

From the Table 1, we see that bilinear interpolation based
upsampling without any learning performs the worst based
on all the measures of accuracy. All the other methods

TABLE 1
Comparison of Decoder Variants

Median frequency balancing Natural frequency balancing

Storage Infer
Test Train Test Train

Variant Params (M) multiplier time (ms) G C mIoU BF G C mIoU G C mIoU BF G C mIoU

Fixed upsampling

Bilinear-Interpolation 0.625 0 24.2 77.9 61.1 43.3 20.83 89.1 90.2 82.7 82.7 52.5 43.8 23.08 93.5 74.1 59.9

Upsampling using max-pooling indices

SegNet-Basic 1.425 1 52.6 82.7 62.0 47.7 35.78 94.7 96. 2 92.7 84.0 54.6 46.3 36.67 96.1 83.9 73.3

SegNet-Basic-EncoderAddition 1.425 64 53.0 83.4 63.6 48.5 35.92 94.3 95.8 92.0 84.2 56.5 47.7 36.27 95.3 80.9 68.9

SegNet-Basic-SingleChannelDecoder 0.625 1 33.1 81.2 60.7 46.1 31.62 93.2 94.8 90.3 83.5 53.9 45.2 32.45 92.6 68.4 52.8

Learning to upsample (bilinear initialisation)

FCN-Basic 0.65 11 24.2 81.7 62.4 47.3 38.11 92.8 93.6 88.1 83.9 55.6 45.0 37.33 92.0 66.8 50.7

FCN-Basic-NoAddition 0.65 n/a 23.8 80.5 58.6 44.1 31.96 92.5 93.0 87.2 82.3 53.9 44.2 29.43 93.1 72.8 57.6

FCN-Basic-NoDimReduction 1.625 64 44.8 84.1 63.4 50.1 37.37 95.1 96.5 93.2 83.5 57.3 47.0 37.13 97.2 91.7 84.8

FCN-Basic-NoAddition-NoDimReduction 1.625 0 43.9 80.5 61.6 45.9 30.47 92.5 94.6 89.9 83.7 54.8 45.5 33.17 95.0 80.2 67.8

We quantify the performance using global (G), class average (C), mean of intersection over union (mIoU) and a semantic contour measure (BF). The testing and
training accuracies are shown as percentages for both natural frequency and median frequency balanced training loss function. SegNet-Basic performs at the
same level as FCN-Basic but requires only storing max-pooling indices and is therefore more memory efficient during inference. Note that the theoretical memory
requirement reported is based only on the size of the first layer encoder feature map. FCN-Basic, SegNet-Basic, SegNet-Basic-EncoderAddition all have high BF
scores indicating the need to use information in encoder feature maps for better class contour delineation. Networks with larger decoders and those using the
encoder feature maps in full perform best, although they are least efficient in terms of inference time and memory.

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2487

which either use learning for upsampling (FCN-Basic and
variants) or learning decoder filters after upsampling (Seg-
Net-Basic and its variants) perform significantly better. This
emphasizes the need to learn decoders for segmentation.
This is also supported by experimental evidence gathered
by other authors when comparing FCN with SegNet-type
decoding techniques [4].

When we compare SegNet-Basic and FCN-Basic we see
that both perform equally well on this test over all the meas-
ures of accuracy. The difference is that SegNet uses less
memory during inference since it only stores max-pooling
indices. On the other hand FCN-Basic stores encoder feature
maps in full which consumes much more memory (11 times
more). SegNet-Basic has a decoder with 64 feature maps in
each decoder layer. In comparison FCN-Basic, which uses
dimensionality reduction, has fewer (11) feature maps in
each decoder layer. This reduces the number of convolu-
tions in the decoder network and hence FCN-Basic is faster
during inference (forward pass). From another perspective,
the decoder network in SegNet-Basic makes it overall a
larger network than FCN-Basic. This endows it with more
flexibility and hence achieves higher training accuracy than
FCN-Basic for the same number of iterations. Overall we
see that SegNet-Basic has an advantage over FCN-Basic
when inference time memory is constrained but where
inference time can be compromised to some extent.

SegNet-Basic is most similar to FCN-Basic-NoAddition
in terms of their decoders, although the decoder of SegNet
is larger. Both learn to produce dense feature maps, either
directly by learning to perform deconvolution as in FCN-
Basic-NoAddition or by first upsampling and then convolv-
ing with trained decoder filters. The performance of Seg-
Net-Basic is superior, in part due to its larger decoder size.
The accuracy of FCN-Basic-NoAddition is also lower as
compared to FCN-Basic. This shows that it is vital to capture
the information present in the encoder feature maps for bet-
ter performance. In particular, note the large drop in the BF
measure between these two variants. This can also explain
the part of the reason why SegNet-Basic outperforms FCN-
Basic-NoAddition.

The size of the FCN-Basic-NoAddition-NoDimReduction
model is slightly larger than SegNet-Basic since the final
encoder feature maps are not compressed to match the
number of classes K. This makes it a fair comparison in
terms of the size of the model. The performance of this FCN
variant is poorer than SegNet-Basic in test but also its train-
ing accuracy is lower for the same number of training
epochs. This shows that using a larger decoder is not
enough but it is also important to capture encoder feature
map information to learn better, particular the fine grained
contour information (notice the drop in the BF measure).
Here it is also interesting to see that SegNet-Basic has a com-
petitive training accuracy when compared to larger models
such FCN-Basic-NoDimReduction.

Another interesting comparison between FCN-Basic-
NoAddition and SegNet-Basic-SingleChannelDecoder shows
that usingmax-pooling indices for upsampling and an overall
larger decoder leads to better performance. This also lends
evidence to SegNet being a good architecture for segmenta-
tion, particularly when there is a need to find a compromise
between storage cost, accuracy versus inference time. In the

best case, when both memory and inference time is not con-
strained, larger models such as FCN-Basic-NoDimReduction
and SegNet-EncoderAddition are both more accurate than
the other variants. Particularly, discarding dimensionality
reduction in the FCN-Basic model leads to the best perfor-
mance amongst the FCN-Basic variants with a high BF score.
This once again emphasizes the trade-off involved between
memory and accuracy in segmentation architectures.

The last two columns of Table 1 show the result when no
class balancing is used (natural frequency). Here, we can
observe that without weighting the results are poorer for all
the variants, particularly for class average accuracy and
mIoU metric. The global accuracy is the highest without
weighting since the majority of the scene is dominated by
sky, road and building pixels. Apart from this all the infer-
ence from the comparative analysis of variants holds true
for natural frequency balancing too, including the trends for
the BF measure. SegNet-Basic performs as well as FCN-
Basic and is better than the larger FCN-Basic-NoAddition-
NoDimReduction. The bigger but less efficient models
FCN-Basic-NoDimReduction and SegNet-EncoderAddition
perform better than the other variants.

We can now summarize the above analysis with the fol-
lowing general points.

1) The best performance is achieved when encoder fea-
ture maps are stored in full. This is reflected in the
semantic contour delineationmetric (BF)most clearly.

2) When memory during inference is constrained,
then compressed forms of encoder feature maps
(dimensionality reduction, max-pooling indices) can
be stored and used with an appropriate decoder
(e.g., SegNet type) to improve performance.

3) Larger decoders increase performance for a given
encoder network.

4 BENCHMARKING

Wequantify the performance of SegNet on two scene segmen-
tation benchmarks using our Caffe implementation.3 The first
task is road scene segmentation which is of current practical
interest for various autonomous driving related problems.
The second task is indoor scene segmentation which is of
immediate interest to several augmented reality (AR) applica-
tions. The input RGB images for both taskswere 360� 480.

We benchmarked SegNet against several other well
adopted deep architectures for segmentation such as FCN
[2], DeepLab-LargFOV [3] and DeconvNet [4]. Our objective
was to understand the performance of these architectures
when trained end-to-end on the same datasets. To enable
end-to-end training we added batch normalization [50]
layers after each convolutional layer. For DeepLab-Large-
FOV, we changed the max pooling 3 stride to 1 to achieve a
final predictive resolution of 45� 60. We restricted the fea-
ture size in the fully connnected layers of DeconvNet to
1,024 so as to enable training with the same batch size as
other models. Here note that the authors of DeepLab-
LargeFOV [3] have also reported little loss in performance
by reducing the size of the fully connected layers.

3. Our web demo and Caffe implementation is available for evalua-
tion at http://mi.eng.cam.ac.uk/projects/segnet/

2488 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

http://mi.eng.cam.ac.uk/projects/segnet/

In order to perform a controlled benchmark we used the
same SGD solver [16] with a fixed learning rate of 10�3 and
momentum of 0.9. The optimization was performed for
more than 100 epochs through the dataset until no further
performance increase was observed. Dropout of 0.5 was
added to the end of deeper convolutional layers in all mod-
els to prevent overfitting (see http://mi.eng.cam.ac.uk/
projects/segnet/tutorial.html for example caffe prototxt).
For the road scenes which have 11 classes we used a mini-
batch size of 5 and for indoor scenes with 37 classes we
used a mini-batch size of 4.

4.1 Road Scene Segmentation

A number of road scene datasets are available for semantic
parsing [21], [25], [59], [60]. Of these we choose to bench-
mark SegNet using the CamVid dataset [21] as it contains
video sequences. This enables us to compare our proposed
architecture with those which use motion and structure [27],
[28], [29] and video segments [32]. We also combine [21],
[25], [59], [60] to form an ensemble of 3433 images to train
SegNet for an additional benchmark. For a web demo (see
footnote 3) of road scene segmentation, we include the Cam-
Vid test set to this larger dataset. Here, we would like to
note that another recent and independent segmentation
benchmark on road scenes has been performed for SegNet
and the other competing architectures used in this paper
[61]. However, the benchmark was not controlled, meaning
that each architecture was trained with a separate recipe
with varying input resolutions and sometimes with a vali-
dation set included. Therefore, we believe our more con-
trolled benchmark can be used to complement their efforts.

The qualitative comparisons of SegNet predictions with
other deep architectures can be seen in Fig. 4. The qualita-
tive results show the ability of the proposed architecture to
segment smaller classes in road scenes while producing a
smooth segmentation of the overall scene. Indeed, under
the controlled benchmark setting, SegNet shows superior
performance as compared to some of the larger models.
DeepLab-LargeFOV is the most efficient model and with
CRF post-processing can produce competitive results
although smaller classes are lost. FCN with learnt deconvo-
lution is clearly better than with fixed bilinear upsampling.
DeconvNet is the largest model and the most inefficient to
train. Its predictions do not retain small classes.

We also use this benchmark to first compare SegNet with
several non deep-learning methods including Random For-
ests [26], Boosting [26], [28] in combination with CRF based
methods [29]. This was done to give the user a perspective
of the improvements in accuracy that has been achieved
using deep networks compared to classical feature engi-
neering based techniques.

The results in Table 2 show SegNet-Basic, SegNet obtain
competitive results when compared with methods which
use CRFs. This shows the ability of the deep architecture to
extract meaningful features from the input image and map
it to accurate and smooth class segment labels. The most
interesting result here is the large performance improve-
ment in class average and mIOU metrics that is obtained
when a large training dataset, obtained by combining [21],
[25], [59], [60], is used to train SegNet. Correspondingly, the
qualitative results of SegNet (see Fig. 4) are clearly superior

to the rest of the methods. It is able to segment both small
and large classes well. We remark here that we used median
frequency class balancing [49] in training SegNet-Basic and
SegNet. In addition, there is an overall smooth quality of
segmentation much like what is typically obtained with
CRF post-processing. Although the fact that results improve
with larger training sets is not surprising, the percentage
improvement obtained using pre-trained encoder network
and this training set indicates that this architecture can
potentially be deployed for practical applications. Our ran-
dom testing on urban and highway images from the internet
(see Fig. 1) demonstrates that SegNet can absorb a large
training set and generalize well to unseen images. It also
indicates the contribution of the prior (CRF) can be lessened
when sufficient amount of training data is made available.

In Table 3 we compare SegNet’s performance with now
widely adopted fully convolutional architectures for seg-
mentation. As compared to the experiment in Table 2, we
did not use any class blancing for training any of the deep
architectures including SegNet. This is because we found it
difficult to train larger models such as DeconvNet with
median frequency balancing. We benchmark performance
at 40 K, 80 K and > 80 K iterations which given the mini-
batch size and training set size approximately corresponds
to 50, 100 and > 100 epochs. For the last test point we also
report the maximum number of iterations (here atleast 150
epochs) beyond which we observed no accuracy improve-
ments or when over-fitting set in. We report the metrics at
three stages in the training phase to reveal how the metrics
varied with training time, particularly for larger networks.
This is important to understand if additional training
time is justified when set against accuracy increases. Note
also that for each evaluation we performed a complete run
through the dataset to obtain batch norm statistics and
then evaluated the test model with this statistic (see http://
mi.eng.cam.ac.uk/projects/segnet/tutorial.html for code.).
These evaluations are expensive to perform on large train-
ing sets and hence we only report metrics at three time
points in the training phase.

From Table 3 we immediately see that SegNet, Deconv-
Net achieve the highest scores in all the metrics as com-
pared to other models. DeconvNet has a higher boundary
delineation accuracy but SegNet is much more efficient as
compared to DeconvNet. This can be seen from the compute
statistics in Table 6. FCN, DeconvNet which have fully con-
nected layers (turned into convolutional layers) train much
more slowly and have comparable or higher forward-back-
ward pass time with reference to SegNet. Here we note also
that over-fitting was not an issue in training these larger
models, since at comparable iterations to SegNet their met-
rics showed an increasing trend.

For the FCN model learning the deconvolutional layers
as opposed to fixing them with bi-linear interpolation
weights improves performance particularly the BF score. It
also achieves higher metrics in a far lesser time. This fact
agrees with our earlier analysis in Section 3.3.

Surprisingly, DeepLab-LargeFOV which is trained to
predict labels at a resolution of 45� 60 produces competi-
tive performance given that it is the smallest model in terms
of parameterization and also has the fastest training time as
per Table 6. However, the boundary accuracy is poorer and

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2489

http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html

this is shared by the other architectures. DeconvNet’s BF
score is higher than the other networks when trained for a
very long time. Given our analysis in Section 3.3 and the
fact that it shares a SegNet type architecture.

The impact of dense CRF [62] post-processing can be
seen in the last time point for DeepLab-LargeFOV-den-
seCRF. Both global and mIoU improve but class average
diminshes. However a large improvement is obtained for
the BF score. Note here that the dense CRF hyperpara-
meters were obtained by an expensive grid-search

process on a subset of the training set since no validation
set was available.

4.2 SUN RGB-D Indoor Scenes

SUN RGB-D [22] is a very challenging and large dataset of
indoor scenes with 5,285 training and 5,050 testing images.
The images are captured by different sensors and hence
come in various resolutions. The task is to segment 37
indoor scene classes including wall, floor, ceiling, table,
chair, sofa etc. This task is made hard by the fact that object

Fig. 4. Results on CamVid day and dusk test samples. SegNet shows superior performance, particularly with its ability to delineate boundaries, as
compared to some of the larger models when all are trained in a controlled setting. DeepLab-LargeFOV is the most efficient model and with CRF
post-processing can produce competitive results although smaller classes are lost. FCN with learnt deconvolution is clearly better. DeconvNet is the
largest model with the longest training time, but its predictions loose small classes. Note that these results correspond to the model corresponding to
the highest mIoU accuracy in Table 3.

2490 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

classes come in various shapes, sizes and in different poses.
There are frequent partial occlusions since there are typi-
cally many different classes present in each of the test
images. These factors make this one of the hardest segmen-
tation challenges. We only use the RGB modality for our
training and testing. Using the depth modality would neces-
sitate architectural modifications/redesign [2]. Also the
quality of depth images from current cameras require care-
ful post-processing to fill-in missing measurements. They
may also require using fusion of many frames to robustly
extract features for segmentation. Therefore we believe
using depth for segmentation merits a separate body of
work which is not in the scope of this paper. We also note
that an earlier benchmark dataset NYUv2 [24] is included as
part of this dataset.

Road scene images have limited variation, both in terms
of the classes of interest and their spatial arrangements.
When captured from a moving vehicle where the camera
position is nearly always parallel to the road surface limit-
ing variability in view points. This makes it easier for deep
networks to learn to segment them robustly. In comparison,
images of indoor scenes are more complex since the view

points can vary a lot and there is less regularity in both the
number of classes present in a scene and their spatial
arrangement. Another difficulty is caused by the widely
varying sizes of the object classes in the scene. Some test
samples from the recent SUN RGB-D dataset [22] are shown
in Fig. 5. We observe some scenes with few large classes
and some others with dense clutter (bottom row and right).
The appearance (texture and shape) can also widely vary in
indoor scenes. Therefore, we believe this is the hardest chal-
lenge for segmentation architectures and methods in com-
puter vision. Other challenges, such as Pascal VOC12 [20]
salient object segmentation have occupied researchers more
[65], but we believe indoor scene segmentation is more chal-
lenging and has more current practical applications such as
in AR and robotics. To encourage more research in this
direction we compared well known deep architectures on
the large SUN RGB-D dataset.

The qualitative results of SegNet on samples of indoor
scenes of different types such as bedroom, living room, labo-
ratory, meeting room, bathroom are shown in Fig. 5. We see
that SegNet obtains reasonable predictions when the size of
the classes are large under different view points. This is

TABLE 2
Quantitative Comparisons of SegNet with Traditional Methods on the CamVid 11 Road Class Segmentation Problem [22]

Method

B
u
il
d
in
g

T
re
e

S
k
y

C
ar

S
ig
n
-S
y
m
b
o
l

R
o
ad

P
ed

es
tr
ia
n

F
en

ce

C
o
lu
m
n
-P
o
le

S
id
e-
w
al
k

B
ic
y
cl
is
t

C
la
ss

av
g
.

G
lo
b
al

av
g
.

m
Io
U

B
F

SfM+Appearance [28] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1 n/a�

Boosting [29] 61.9 67.3 91.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4 n/a�

Dense Depth Maps [32] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1 n/a�

Structured Random Forests [31] n/a 51.4 72.5 n/a�

Neural Decision Forests [64] n/a 56.1 82.1 n/a�

Local Label Descriptors [65] 80.7 61.5 88.8 16.4 n/a 98.0 1.09 0.05 4.13 12.4 0.07 36.3 73.6 n/a�

Super Parsing [33] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3 n/a�

SegNet (3.5K dataset training - 140K) 89.6 83.4 96.1 87.7 52.7 96.4 62.2 53.45 32.1 93.3 36.5 71.20 90.40 60.10 46.84

CRF based approaches

Boosting + pairwise CRF [29] 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8 n/a�

Boosting+Higher order [29] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8 n/a�

Boosting+Detectors+CRF [30] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8 n/a�

SegNet outperforms all the other methods, including those using depth, video and/or CRF’s on the majority of classes. In comparison with the CRF based methods
SegNet predictions are more accurate in 8 out of the 11 classes. It also shows a good � 10 percent improvement in class average accuracy when trained on a large
dataset of 3.5 K images. Particularly noteworthy are the significant improvements in accuracy for the smaller/thinner classes. * Note that we could not access pre-
dictions for older methods for computing the mIoU, BF metrics.

TABLE 3
Quantitative Comparison of Deep Networks for Semantic Segmentation on the CamVid Test Set When Trained

on a Corpus of 3,433 Road ScenesWithout Class Balancing

Network/Iterations 40 K 80 K > 80 K Max iter

G C mIoU BF G C mIoU BF G C mIoU BF

SegNet 88.81 59.93 50.02 35.78 89.68 69.82 57.18 42.08 90.40 71.20 60.10 46.84 140 K
DeepLab-LargeFOV[3] 85.95 60.41 50.18 26.25 87.76 62.57 53.34 32.04 88.20 62.53 53.88 32.77 140 K
DeepLab-LargeFOV-denseCRF[3] not computed 89.71 60.67 54.74 40.79 140 K
FCN 81.97 54.38 46.59 22.86 82.71 56.22 47.95 24.76 83.27 59.56 49.83 27.99 200 K
FCN (learnt deconv) [2] 83.21 56.05 48.68 27.40 83.71 59.64 50.80 31.01 83.14 64.21 51.96 33.18 160 K
DeconvNet [4] 85.26 46.40 39.69 27.36 85.19 54.08 43.74 29.33 89.58 70.24 59.77 52.23 260 K

When end-to-end training is performed with the same and fixed learning rate, smaller networks like SegNet learn to perform better in a shorter time. The BF score
which measures the accuracy of inter-class boundary delineation is significantly higher for SegNet, DeconvNet as compared to other competing models. Deconv-
Net matches the metrics for SegNet but at a much larger computational cost. Also see Table 2 for individual class accuracies for SegNet.

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2491

particularly interesting since the input modality is only RGB.
RGB images are also useful to segment thinner structures
such as the legs of chairs and tables, lamps which is difficult
to achieve using depth images from currently available sen-
sors. This can be seen from the results of SegNet, DeconvNet
in Fig. 5. It is also useful to segment decorative objects such
as paintings on the wall for AR tasks. However as compared
to outdoor scenes the segmentation quality is clearly more
noisy. The quality drops significantly when clutter is
increased (see the result sample in themiddle column).

The quantitative results in Table 4 show that all the deep
architectures share low mIoU and boundary metrics. The
global and class averages (correlates well with mIou) are
also small. SegNet outperforms all other methods in terms
of G,C, BF metrics and has a slightly lower mIoU than

DeepLab-LargeFOV. As a stand alone experiment we
trained SegNet with median frequency class balancing [66]
and the metrics were higher (see Table 4) and this agrees
with our analysis in Section 3.3. Interestingly, using the grid
search based optimal hyperparameters for the dense-CRF
worsened all except the BF score metric for DeepLab-Large-
FOV-denseCRF. More optimal settings could perhaps be
found but the grid search process was too expensive given
the large inference time for dense-CRFs.

One reason for the overall poor performance is the large
number of classes in this segmentation task, many of which
occupy a small part of the image and appear infrequently.
The accuracies reported in Table 5 clearly show that larger
classes have reasonable accuracy and smaller classes have
lower accuracies. This can be improved with larger sized

Fig. 5. Qualitative assessment of SegNet predictions on RGB indoor test scenes from the recently released SUN RGB-D dataset [23]. In this hard
challenge, SegNet predictions delineate inter class boundaries well for object classes in a variety of scenes and their view-points. Overall rhe seg-
mentation quality is better when object classes are reasonably sized but is very noisy when the scene is more cluttered. Note that often parts of an
image of a scene do not have ground truth labels and these are shown in black colour. These parts are not masked in the corresponding deep model
predictions that are shown. Note that these results correspond to the model corresponding to the highest mIoU accuracy in Table 4.

2492 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

datasets and class distribution aware training techniques.
Another reason for poor performance could lie in the inabil-
ity of these deep architectures (all are based on the VGG
architecture) to large variability in indoor scenes. This con-
jecture on our part is based on the fact that the smallest
model DeepLab-LargeFOV produces the best accuracy in
terms of mIoU and in comparison, larger parameterizations
in DeconvNet, FCN did not improve perfomance even with
much longer training (DeconvNet). This suggests there
could lie a common reason for poor performance across all
architectures. More controlled datasets [67] are needed to
verify this hypothesis.

5 DISCUSSION AND FUTURE WORK

Deep learning models have often achieved increasing suc-
cess due to the availability of massive datasets and expand-
ing model depth and parameterisation. However, in
practice factors like memory and computational time dur-
ing training and testing are important factors to consider
when choosing a model from a large bank of models. Train-
ing time becomes an important consideration particularly
when the performance gain is not commensurate with
increased training time as shown in our experiments. Test

time memory and computational load are important to
deploy models on specialised embedded devices, for exam-
ple, in AR applications. From an overall efficiency view-
point, we feel less attention has been paid to smaller and
more memory, time efficient models for real-time applica-
tions such as road scene understanding and AR. This was
the primary motivation behind the proposal of SegNet,
which is significantly smaller and faster than other compet-
ing architectures, but which we have shown to be efficient
for tasks such as road scene understanding.

Segmentation challenges such as Pascal [20] and MS-
COCO [41] are object segmentation challenges wherein a
few classes are present in any test image. Scene segmenta-
tion is more challenging due to the high variability of indoor
scenes and a need to segment a larger number of classes
simultaneously. The task of outdoor and indoor scene seg-
mentation are also more practically oriented with current
applications such as autonomous driving, robotics and AR.

The metrics we chose to benchmark various deep seg-
mentation architectures like the boundary F1-measure (BF)
was done to complement the existing metrics which are
more biased towards region accuracies. It is clear from our
experiments and other independent benchmarks [61] that
outdoor scene images captured from a moving car are easier

TABLE 4
Quantitative Comparison of Deep Architectures on the SUNRGB-D Dataset When Trained on a Corpus of 5,250 Indoor Scenes

Network/Iterations 80 K 140 K > 140 K Max iter

G C mIoU BF G C mIoU BF G C mIoU BF

SegNet 70.73 30.82 22.52 9.16 71.66 37.60 27.46 11.33 72.63 44.76 31.84 12.66 240 K
DeepLab-LargeFOV [3] 70.70 41.75 30.67 7.28 71.16 42.71 31.29 7.57 71.90 42.21 32.08 8.26 240 K
DeepLab-LargeFOV-denseCRF [3] not computed 66.96 33.06 24.13 9.41 240 K

FCN (learnt deconv) [2] 67.31 34.32 24.05 7.88 68.04 37.2 26.33 9.0 68.18 38.41 27.39 9.68 200 K
DeconvNet [4] 59.62 12.93 8.35 6.50 63.28 22.53 15.14 7.86 66.13 32.28 22.57 10.47 380 K

Note that only the RGB modality was used in these experiments. In this complex task with 37 classes all the architectures perform poorly, particularly because of
the smaller sized classes and skew in the class distribution. DeepLab-Large FOV, the smallest and most efficient model has a slightly higher mIoU but SegNet has
a better G,C,BF score. Also note that when SegNet was trained with median frequency class balancing it obtained 71.75, 44.85, 32.08, 14.06 (180 K) as the
metrics.

TABLE 5
Class Average Accuracies of SegNet Predictions for the 37 Indoor Scene Classes in the SUN RGB-D Benchmark Dataset

Wall Floor Cabinet Bed Chair Sofa Table Door Window Bookshelf Picture Counter Blinds
83.42 93.43 63.37 73.18 75.92 59.57 64.18 52.50 57.51 42.05 56.17 37.66 40.29

Desk Shelves Curtain Dresser Pillow Mirror Floor mat Clothes Ceiling Books Fridge TV Paper
11.92 11.45 66.56 52.73 43.80 26.30 0.00 34.31 74.11 53.77 29.85 33.76 22.73

Towel Shower curtain Box Whiteboard Person Night stand Toilet Sink Lamp Bathtub Bag
19.83 0.03 23.14 60.25 27.27 29.88 76.00 58.10 35.27 48.86 16.76

The performance correlates well with size of the classes in indoor scenes. Note that class average accuracy has a strong correlation with mIoU metric.

TABLE 6
A Comparison of Computational Time and Hardware Resources Required for Various Deep Architectures

Network Forward
pass(ms)

Backward
pass(ms)

GPU training
memory (MB)

GPU inference
memory (MB)

Model
size (MB)

SegNet 422.50 488.71 6803 1,052 117
DeepLab-LargeFOV [3] 110.06 160.73 5618 1,993 83
FCN (learnt deconv) [2] 317.09 484.11 9735 1,806 539
DeconvNet [4] 474.65 602.15 9731 1,872 877

The caffe time command was used to compute time requirement averaged over 10 iterations with mini batch size 1 and an image of 360� 480 resolu-
tion We used nvidia-smi unix command to compute memory consumption. For training memory computation we used a mini-batch of size 4 and for
inference memory the batch size was 1. Model size was the size of the caffe models on disk. SegNet is most memory efficient during inference model.

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2493

to segment and deep architectures perform robustly. We
hope our experiments will encourage researchers to engage
their attention towards the more challenging indoor scene
segmentation task.

An important choice we had to make when benchmark-
ing different deep architectures of varying parameterization
was the manner in which to train them. Many of these archi-
tectures have used a host of supporting techniques and
multi-stage training recipes to arrive at high accuracies on
datasets but this makes it difficult to gather evidence about
their true performance under time and memory constraints.
Instead we chose to perform a controlled benchmarking
where we used batch normalization to enable end-to-end
training with the same solver (SGD). However, we note that
this approach cannot entirely disentangle the effects of
model versus solver (optimization) in achieving a particular
result. This is mainly due to the fact that training these net-
works involves gradient back-propagation which is imper-
fect and the optimization is a non-convex problem in
extremely large dimensions. Acknowledging these short-
comings, our hope is that this controlled analysis comple-
ments other benchmarks [61] and reveals the practical
trade-offs involved in different well known architectures.

For the future, we would like to exploit our understand-
ing of segmentation architectures gathered from our analy-
sis to design more efficient architectures for real-time
applications. We are also interested in estimating the model
uncertainty for predictions from deep segmentation archi-
tectures [68], [69].

6 CONCLUSION

We presented SegNet, a deep convolutional network architec-
ture for semantic segmentation. The main motivation behind
SegNet was the need to design an efficient architecture for
road and indoor scene understanding which is efficient both
in terms of memory and computational time. We analysed
SegNet and compared it with other important variants to
reveal the practical trade-offs involved in designing architec-
tures for segmentation, particularly training time, memory
versus accuracy. Those architectures which store the encoder
network feature maps in full perform best but consume more
memory during inference time. SegNet on the other hand is
more efficient since it only stores the max-pooling indices of
the feature maps and uses them in its decoder network to
achieve good performance. On large andwell known datasets
SegNet performs competitively, achieving high scores for
road scene understanding. End-to-end learning of deep seg-
mentation architectures is a harder challenge and we hope to
seemore attention paid to this important problem.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv:1409.1556, 2014.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 3431–3440.

[3] C. Liang-Chieh, G. Papandreou, I. Kokkinos, K. Murphy, and
A. Yuille, “Semantic image segmentation with deep convolutional
nets and fully connected CRFs,” in Proc. Int. Conf. Learn. Represen-
tations, 2015.

[4] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1520–1528.

[5] C. Szegedy, et al., “Going deeper with convolutions,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[6] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hier-
archical features for scene labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1915–1929, Aug. 2013.

[7] N. Hft, H. Schulz, and S. Behnke, “Fast semantic segmentation of
RGB-D scenes with GPU-accelerated deep neural networks,” in
Proc. 37th German Conf. Advances Artif. Intell., 2014, pp. 80–85.

[8] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural
scenes and natural language with recursive neural networks,” in
Proc. 26th Int. Conf. Mach. Learn., 2011, pp. 129–136.

[9] S. Zheng, et al., “Conditional random fields as recurrent neural
networks,” inProc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1529–1537.

[10] W. Liu, A. Rabinovich, and A. C. Berg, “ParseNet: Looking wider
to see better,” arXiv preprint arXiv:1506.04579, 2015.

[11] V. Badrinarayanan, A. Handa, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling,” arXiv preprint arXiv:1505.07293, 2015.

[12] D. Eigen and R. Fergus, “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional archit-
ecture,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 2650–2658.

[13] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille,
“Weakly-and semi-supervised learning of a DCNN for semantic
image segmentation,” arXiv:1502.02734, 2015.

[14] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv:1511.07122, 2015.

[15] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Proc. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[16] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 19th Int. Conf. Comput. Statist., 2010, pp. 177–186.

[17] S. Hong, H. Noh, and B. Han, “Decoupled deep neural network
for semi-supervised semantic segmentation,” in Proc. 28th Int.
Conf. Neural Inf. Process. Syst., 2015, pp. 1495–1503.

[18] M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun,
“Unsupervised learning of invariant feature hierarchies with
applications to object recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2007, pp. 1–8.

[19] R. Mottaghi, et al., “The role of context for object detection and
semantic segmentation in the wild,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2014, pp. 891–898.

[20] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, 2015.

[21] G. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recog-
nit. Lett., vol. 30, no. 2, pp. 88–97, 2009.

[22] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D
scene understanding benchmark suite,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2015, pp. 567–576.

[23] C. L. Zitnick and P. Doll�ar, “Edge boxes: Locating object proposals
from edges,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 391–405.

[24] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmen-
tation and support inference from RGBD images,” in Proc. 12th
Eur. Conf. Comput. Vis., 2012, pp. 746–760.

[25] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autono-
mous driving? the KITTI vision benchmark suite,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3354–3361.

[26] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2008, pp. 1–8.

[27] G. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” in
Proc. 10th Eur. Conf. Comput. Vis., 2008, pp. 44–57.

[28] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr, “Combining
appearance and structure from motion features for road scene
understanding,” in Proc. British Mach. Vis. Conf., 2009.

[29] L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr,
“What, where and how many? combining object detectors and
CRFs,” in Proc. 11th Eur. Conf. Comput. Vis., 2010, pp. 424–437.

[30] P. Kontschieder, S. R. Bulo, H. Bischof, and M. Pelillo, “Structured
class-labels in random forests for semantic image labelling,” in
Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 2190–2197.

[31] C. Zhang, L. Wang, and R. Yang, “Semantic segmentation of
urban scenes using dense depth maps,” in Proc. 11th Eur. Conf.
Comput. Vis., 2010, pp. 708–721.

[32] J. Tighe and S. Lazebnik, “Superparsing,” Int. J. Comput. Vis.,
vol. 101, no. 2, pp. 329–349, 2013.

2494 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017

[33] X. Ren, L. Bo, and D. Fox, “RGB-(D) scene labeling: Features and
algorithms,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2012, pp. 2759–2766.

[34] A. Hermans, G. Floros, and B. Leibe, “Dense 3D semantic map-
ping of indoor scenes from RGB-D images,” in Proc. Int. Conf.
Robot. Autom., 2014, pp. 2631–2638.

[35] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization and
recognition of indoor scenes from RGB-D images,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2013, pp. 564–571.

[36] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Scene parsing
with multiscale feature learning, purity trees, and optimal
covers,” in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 575–582.

[37] D. Grangier, L. Bottou, and R. Collobert, “Deep convolutional net-
works for scene parsing,” in Proc. ICMLWorkshopDeep Learn., 2009.

[38] C. Gatta, A. Romero, and J. van de Weijer, “Unrolling loopy top-
down semantic feedback in convolutional deep networks,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 498–505.

[39] P. Pinheiro and R. Collobert, “Recurrent convolutional neural net-
works for scene labeling,” in Proc. 31st Int. Conf. Mach. Learn.,
2014, pp. 82–90.

[40] O. Russakovsky, et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, pp. 1–42, Apr. 2015.

[41] T.-Y. Lin, et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[42] A. G. Schwing and R. Urtasun, “Fully connected deep structured
networks,” arXiv:1503.02351, 2015.

[43] G. Lin, et al., “Efficient piecewise training of deep structured
models for semantic segmentation,” arXiv:1504.01013, 2015.

[44] B.Hariharan, P. Arbel�aez, R. Girshick, and J.Malik, “Hypercolumns
for object segmentation and fine-grained localization,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 447–456.

[45] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich, “Feedfor-
ward semantic segmentation with zoom-out features,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3376–3385.

[46] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus,
“Deconvolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2010, pp. 2528–2535.

[47] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun, “Learning convolutional feature hierarchies for
visual recognition,” in Proc. Advances Neural Inf. Process. Syst.,
2010, pp. 1090–1098.

[48] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convo-
lutional network for image super-resolution,” in Proc. 13th Eur.
Conf. Comput. Vis., 2014, pp. 184–199.

[49] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from
a single image using a multi-scale deep network,” in Proc. Advan-
ces Neural Inf. Process. Syst., 2014, pp. 2366–2374.

[50] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

[51] V. Badrinarayanan, B.Mishra, and R. Cipolla, “Understanding sym-
metries in deep networks,” arXiv preprint arXiv:1511.01029, 2015.

[52] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 1520–1528.

[53] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is
the best multi-stage architecture for object recognition?” in Proc.
IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 2146–2153.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classi-
fication,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[55] Y. Jia, et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[56] G. Csurka, D. Larlus, F. Perronnin, and F. Meylan, “What is a
good evaluation measure for semantic segmentation?” in Proc.
24th British Mach. Vis. Conf., 2013.

[57] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” 2016. [Online]. Available:
https://arxiv.org/pdf/1605.06211v1.pdf

[58] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect nat-
ural image boundaries using local brightness, color, and texture
cues,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5,
pp. 530–549, May 2004.

[59] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into
geometric and semantically consistent regions,” in Proc. IEEE 12th
Int. Conf. Comput. Vis., 2009, pp. 1–8.

[60] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman,
“LabelMe: A database and Web-based tool for image annotation,”
Int. J. Comput. Vis., vol. 77, no. 1–3, pp. 157–173, 2008.

[61] M. Cordts, et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2016.

[62] V. Koltun, “Efficient inference in fully connected CRFs with gauss-
ian edge potentials,” in Proc. Advances Neural Inf. Process. Syst., 2011.

[63] Bulo, S. Rota, and P. Kontschieder, “Neural decision forests for
semantic image labelling,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2014, pp. 81–88.

[64] Y. Yang, Z. Li, L. Zhang, C. Murphy, J. Ver Hoeve, and H. Jiang,
“Local label descriptor for example based semantic image label-
ing,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 361–375.

[65] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic image seg-
mentation via deep parsing network,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2015, pp. 1377–1385.

[66] D. Eigen and R. Fergus, “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional
architecture,” Proc. IEEE Int. Conf. Comput. Vis., 2015.

[67] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and
R. Cipolla, “SceneNet: Understanding real world indoor scenes
with synthetic data,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016.

[68] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approxima-
tion: Insights and applications,” in Proc. ICML Deep Learn. Work-
shop, 2015.

[69] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model uncertainty in deep convolutional encoder-decoder archi-
tectures for scene understanding,” arXiv:1511.02680, 2015.

Vijay Badrinarayanan received the PhD degree
from INRIA Rennes, France, in 2009. He was a
senior post-doctoral research associate in the
Machine Intelligence Laboratory, Department of
Engineering, University of Cambridge, United
Kingdom. He currently works as a principal engi-
neer, deep learning with Magic Leap, Inc., Moun-
tain View, California. His research interests
include probabilistic graphical models, deep
learning applied to image, and video based per-
ception problems.

Alex Kendall received the BEng (1st class
Hons.) degree from the University of Auckland,
New Zealand, in 2013. In 2014, he received the
Woolf Fisher Scholarship to study toward the
PhD degree at the University of Cambridge,
United Kingdom. He is a member of the Machine
Intelligence Laboratory and is interested in appli-
cations of deep learning for mobile robotics.

Roberto Cipolla received the BA degree in engi-
neering from the University of Cambridge, in
1984, the MSE degree in electrical engineering
from the University of Pennsylvania, in 1985, and
the DPhil degree in computer vision from the Uni-
versity of Oxford, in 1991. From 1991-92 he was
a Toshiba fellow and engineer in the Toshiba Cor-
poration Research and Development Centre,
Kawasaki, Japan. He joined the Department of
Engineering, University of Cambridge, in 1992 as
a lecturer and a fellow of Jesus College. He

became a reader in information engineering in 1997 and a professor in
2000. He became a fellow of the Royal Academy of Engineering
(FREng), in 2010. His research interests include computer vision and
robotics. He has authored 3 books, edited 9 volumes and co-authored
more than 300 papers. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BADRINARAYANAN ET AL.: SEGNET: A DEEP CONVOLUTIONAL ENCODER-DECODER ARCHITECTURE FOR IMAGE SEGMENTATION 2495

https://arxiv.org/pdf/1605.06211v1.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

