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Summary

1. Tuberculosis (TB) is an important and widespread disease of wildlife, livestock and

humans world-wide, but long-term empirical datasets describing this condition are rare. A

population of meerkats (Suricata suricatta) in South Africa’s Kalahari Desert have been diag-

nosed with Mycobacterium suricattae, a novel strain of TB, causing fatal disease in this

group-living species.

2. This study aimed to find characteristics associated with clinical TB in meerkats. These

characteristics could subsequently be used to identify ‘at-risk’ animals within a population,

and target these individuals for control measures.

3. We conducted a retrospective study based on a unique, long-term life-history dataset of

over 2000 individually identified animals covering a 14-year period after the first confirmatory

diagnosis of TB in this population in 2001. Individual- and group-level risk factors were anal-

ysed using time-dependent Cox regression to examine their potential influence on the time to

development of end-stage TB.

4. Cases of disease involved 144 individuals in 27 of 73 social groups, across 12 of 14 years

(an incidence rate of 3�78 cases/100 study years). At the individual level, increasing age had

the greatest effect on risk of disease with a hazard ratio of 4�70 (95% CI: 1�92–11�53,
P < 0�01) for meerkats aged 24–48 months, and a hazard ratio of 9�36 (3�34–26�25,
P < 0�001) for animals aged over 48 months (both age categories compared with animals

aged below 24 months). Previous group history of TB increased the hazard by a factor of

4�29 (2�00–9�17, P < 0�01), and an interaction was found between this variable and age. At a

group level, immigrations of new group members in the previous year increased hazard by a

factor of 3�00 (1�23–7�34, P = 0�016). There was weaker evidence of an environmental effect

with a hazard ratio for a low rainfall (<200 mm) year of 2�28 (0�91–5�72, P = 0�079).
5. Our findings identify potential individual characteristics on which to base targeted control

measures such as vaccination. Additional data on the dynamics of the infection status of indi-

viduals and how this changes over time would complement these findings by enhancing

understanding of disease progression and transmission, and thus the implications of potential

management measures.
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Introduction

Heterogeneity in disease susceptibility influences transmis-

sion routes and frequencies within a population (Dwyer,

Elkinton & Buonaccorsi 1997; Barlow 2000; McCallum,

Barlow & Hone 2001). An understanding of the magni-

tude and distribution of these differences represents an

important component of our ability to predict the dynam-

ics of disease, and so may allow us to intervene and

reduce infection transmission. This study asks whether

factors such as sex, age and social characteristics influence

the likelihood that an individual will develop the clinical*Correspondence author. E-mail: spatterson@rvc.ac.uk
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disease tuberculosis (TB) in a population of meerkats

(Suricata suricatta).

Tuberculosis is a chronic disease of humans, livestock

and wildlife which has public health, economic and con-

servation importance (Gortazar & Cowan 2013). Caused

by members of the Mycobacterium Tuberculosis Complex

(MTC), it is known to affect a wide range of wild

mammal species including buffalo (Syncerus caffer), lion

(Panthera leo) and wild boar (Sus scrofa) (De Garine-

Wichatitsky et al. 2013). Evidence from badgers (Meles

meles) suggests that individuals become increasingly infec-

tious as disease progresses (Gallagher 1998; Corner 2006)

and the extent to which lesions shed bacteria varies with

disease stage (Gavier-Widen et al. 2001). Individuals with

clinical disease are therefore likely to be the most infec-

tious animals in the population, and their characteristics

carry important epidemiological information as to where

transmission is likely to be occurring.

Tuberculosis was first diagnosed in a long-term study

population of meerkats in the Northern Cape of South

Africa in 2001 (Drewe et al. 2009a), and cases have been

recorded in 12 of the following 14 years. The social beha-

viours of meerkats are implicated in spread of infection

within their population (Drewe et al. 2011). In each meer-

kat group, a dominant female and a dominant male pro-

duce over 80% of offspring reared (Clutton-Brock et al.

1999) with pup care being shared by all group members

(Doolan & Macdonald 1997; Clutton-Brock et al. 2001).

Our study uses long-term data collected from a wild pop-

ulation of meerkats in the southern Kalahari (Clutton-

Brock et al. 1998). The animals live freely in stable, mixed

sex, hierarchical groups of up to 40 individuals (Hodge

et al. 2008) with typically 15–20 groups being observed at

any one time period. Individuals were uniquely identified,

through both subcutaneous microchips, and the regular

application of patterns of hair dye, and their birth dates

were known. Meerkats were habituated to human contact,

allowing for close observation and collection of data on

their behaviours, life history and changes in bodyweight.

A novel member of the MTC, Mycobacterium suricattae,

has been identified in meerkats showing clinical signs of

TB (Parsons et al. 2013). The pathology of TB in meerkats

has been described (Drewe et al. 2009a), with grossly

enlarged lymph nodes (chiefly the submandibular and

medial retropharyngeal) being characteristic of the disease.

Drewe et al. (2009a) found evidence of the presence of

mycobacteria either by histology or culture in 100% of 52

meerkats showing submandibular swelling, suggesting this

sign is pathognomonic for TB in this species. Transmission

is believed to occur by bite wounds and the respiratory

route, with aggressive behaviours, and allo-grooming iden-

tified as particularly high-risk activities (Drewe 2010).

Aggressive interactions between individuals maintain the

dominance hierarchy (Kutsukake & Clutton-Brock 2006a),

with submissive behaviours such as grooming reinforcing

social position (Kutsukake & Clutton-Brock 2006b; Mad-

den et al. 2011). Interactions between individuals in

different groups tend to be aggressive, either involving

roving males, or whole group encounters (Young, Spong

& Clutton-Brock 2007; Drewe, Madden & Pearce 2009b).

Haematogenous spread leads to disseminated infection,

with the spleen, liver, lung and head lymph nodes the

most common sites of detection (Drewe et al. 2009a).

Management policy at the study site is to euthanase meer-

kats at the point at which a swollen lymph node bursts.

This is in an attempt to limit onward transmission to

other meerkats being studied as habituation of individuals

is costly in terms of time. Prior to the implementation of

this policy in the 1990s, diseased individuals within the

population all died naturally within less than 6 months of

the observation of a lymph node swelling. TB is believed

to be endemic in the population due to the regularity and

frequency of disease incidence.

In this paper, we identify factors that affect the risk that

wild meerkats will develop clinical signs of TB. We ini-

tially look at the distribution of cases and the incidence

within the population. We then ask whether factors such

as age, sex and dominance status affect the length of time

an individual takes to become a case. Finally, we analyse

the factors that were associated with an infected group

developing its first case of disease. The results are likely to

aid understanding of the epidemiology of TB in this, and

potentially other, social living wild animal host species, as

well as informing the management of this difficult disease.

Materials and methods

ethics statement

Data collection at the Kuruman River Reserve was carried out

under ethics approval from the University of Pretoria’s ethics

committee, and with the permission of the Northern Cape

Department of Environment and Nature Conservation. The study

design was additionally approved by the Royal Veterinary Col-

lege’s research committee (authorisation PPH_01355).

study population

All data were collected from a free-ranging, naturally regulated

population of approximately 250 (at any one time) free-living

meerkats at the Kuruman River Reserve (26°580S, 21°490E) in the

Northern Cape of South Africa. Animals that were alive and

recorded in the Kalahari Meerkat Project’s long-term dataset at

any point between 1 January 2002 and 30 June 2015 (the study

cut-off point) were included in the analysis totalling over 2000

individuals. Meerkats were free to enter or leave the studied

social groups throughout the study period, and new social groups

were formed from group splits and recruitment of new wild

groups while others moved out of the area or died out.

data collection

Habituated groups were visited at least once every week during

the study period, and each meerkat was visually checked for signs

of disease from a distance of less than a metre. All life-history

© 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 86, 442–450

Risk of tuberculosis in wild meerkats 443



data were collected according to previously described project pro-

tocols (Clutton-Brock et al. 1999). Dominance was determined

through observation of submission behaviours and dominance

assertions during routine data collection sessions, a dominant

male and dominant female being identified in each group (Young,

Spong & Clutton-Brock 2007; Spong et al. 2008; Kutsukake &

Clutton-Brock 2010). Group compositions were recorded every

2–3 days (Mares et al. 2014), and information was extracted for

occurrence of immigrations and numbers of adult subordinate

males within a group. The latter number was used as a proxy for

the magnitude of roving behaviour (temporary inter-group move-

ments of males) as these animals are the most likely individuals

to engage in prospecting behaviour for mating opportunities

(Mares et al. 2014). Data were recorded in a customised Micro-

soft Access database. A record was kept detailing all signs of

overt illness observed in individual meerkats throughout the

study period. This included information on which animals were

showing visual signs of TB, the most common of which was visi-

bly enlarged submandibular and medial retropharyngeal lymph

nodes. Animals with pronounced submandibular swellings were

euthanased using an overdose of intravenous sodium pentobarbi-

tone injected under gaseous anaesthesia, at the point at which the

enlarged lymph nodes burst. Rainfall data were collected using a

permanent onsite rain gauge (Bell et al. 2014; Huchard et al.

2014), with additional meteorological information obtained from

NASA’s GES DISC (Goddard Earth Sciences Data and Informa-

tion Services Center) Giovanni online data system (Acker & Lep-

toukh 2007). Data were extracted and manipulated in Microsoft

Excel to create records for each individual in the study. The

resulting dataset was imported into ‘R’ version 3.2.3 (R Core

Team, 2013) for statistical analysis.

study design

This was a retrospective study of pre-existing records. The case

definition was that an individual must have been euthanased due

to advanced signs of TB, and there must have been a record of a

persistently enlarged submandibular lymph node prior to

euthanasia. Animals were assigned a binary TB status with 1

being a case. Individuals entered the study at birth, and the final

dates were either the point at which the animal left the study

population (either through loss to follow-up, euthanasia or

another known cause of death) or the study end point (30 June

2015). A binary variable was created, ‘Previous TB in group’ and

an individual was given a status of 1 if it was alive and a member

of a social group at any point after the first TB euthanasia

occurred in that group. Individuals’ records were broken down

into 3-month periods to allow the explanatory variables to

change over time. The year and the individual’s age were calcu-

lated on the first day of each time period.

In analysis of the effects of group characteristics on the risk of

visual signs of disease, groups were either recorded as showing a

previous history of TB (if any TB-related death was ever known

to have occurred within the group), or as having no previous his-

tory. For both levels of analysis, time was expressed in days,

reflecting the regularity at which the animals were observed.

data analysis

Univariable analysis was initially performed on all recorded

explanatory variables using time-dependent Cox regression (Cox

& Oakes 1984; Van Dijk et al. 2008) for both the individual ani-

mal and the group analyses using the Survival package in R

(Therneau & Grambsch 2000).

For the individual animal analysis, the Cox model utilised data

on the time until an individual became a case, while being able to

take account of left and right censored information, and the

influence that the explanatory variables had on the probability of

survival beyond a particular time. Similarly, for the group-level

analysis, the model used the time until the first individual case

was observed within the group. Subsequently, a multivariable

analysis was carried out including all terms for which P < 0�2 in

the univariable analysis, in a forward-stepwise process and testing

the significance of changes to the model using analysis of

deviance for a Cox model (Therneau & Grambsch 2000). Individ-

uals are free to move between social groups, and so were not nec-

essarily born in the group at which they were being observed. In

order to account for the potential influence of natal group, a

gamma frailty term was included for this random effect (Hou-

gaard 1995). Explanatory variables included for individuals were

age, year of birth, previous cases of TB within the social group,

sex and dominance status. Calendar year was categorised into

three time periods (2002–2005, 2006–2010 and 2011–2015) to

maximise sample size and age was expressed in whole years.

Group size was grouped (<10, 11–20, 21–30 and >30) based on

the distribution of the data, and rainfall was expressed as above

or below the median level (200 mm). For the group-level analysis,

the variables included were the average group size, the year

(grouped as for the individuals), number of adult subordinate

males in the group (categorised as 0–4, 5–9 and >9), rainfall,

presence of dominance changes and occurrence of immigration

events. Dominance change refers to whether the group experi-

enced a change in the dominant male and/or female during that

time period, while ‘6-month’ and ‘12-month’ dominant changes

refer to this occurring in the preceding 6 or 12 months respec-

tively. Similarly, immigration refers to whether animals immi-

grated into that group during the described time periods. Eligible

rovers were defined as subordinate males aged over 1 year, and

the number given for the previous 12 months is the highest num-

ber eligible at any point during this time. Possible first-order

interactions between these variables were explored and included

where appropriate, and the validity of the proportional hazards

assumption was tested using Schoenfeld residuals (Grambsch &

Therneau 1994).

Results

A total of 2388 meerkats were followed during the 13�5-
year study period, each individual making a median contri-

bution of 455 days (range: <1 day to 4468 days). These

individuals belonged to 73 different social groups, and 307

meerkats had been recorded as dominant animals at some

point (median dominance duration 293 days, range: 1–
3835 days). The median number of animals in each group

over the total time period was 15 (range: 1–46). The sex of

2091 (87�6%) of the 2388 study animals was known; of

these, 1165 (55�7%) were male. In total, 144 individuals

(6�03% of all animals studied) met the case definition for

TB, giving an incidence rate of 3�78 cases per 100 animal-

years studied. These TB cases were found in 27 social

groups (37�0% of all groups followed), during 12 of the 14
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study years (see Fig. 1). Individuals aged under 2 years

contributed 2536 years (70�6%) to the total analysis period

(see Fig. 2). Figures 2(a) and (b) show that the greatest

number of TB-related deaths occurred in animals aged

1–3 years, while Figs 2(c) and (d) show that the risk of

euthanasia actually continues to increase beyond this age

but is masked by a smaller population at risk.

Median annual rainfall was 262 mm (range 115–
473 mm), with annual peaks in 2006 and 2011 (Fig. 3).

Despite a clear pattern in the environmental conditions

across the year, there is no reflection of this in the inci-

dence of euthanasia (Fig. 3). Numbers of non-habituated

groups in the area were unknown, and in the absence of

this information, changes in mean group size were

adopted as a proxy for changes in the true, local popula-

tion size. Despite peaking during times of highest rainfall,

both the total study population and the mean size of each

study group dropped following years with peak rainfall.

The highest numbers of meerkats being euthanased due to

TB occurred in 2007 and 2012. Monthly rainfall varied at

the study site throughout the year, with June, July and

August being the driest months in all years. Despite this

clear seasonal variation in rainfall, no relationship

between monthly rainfall and incidence of euthanasias

due to TB was evident (P = 0�5).
Despite there being no sex bias in individual risk of

TB, when the first case in each group was examined,

males were found to be disproportionally represented; the

index case was male in 18 (75%) of the groups that

became diseased. A distinct individual first case was noted

in 24 groups, while the remainder had two or more con-

temporaneous cases. In 13 cases (54%), the index was a

subordinate adult male, a dominant male on four occa-

sions (17%) and a sub-adult male in a single case (4%).

Dominant females were the first case on four occasions

(17%) and subordinate adult females in two cases (8%).

univariable analysis

At the individual animal level, effects on the hazard of

euthanasia associated with TB cases were found for age

(P < 0�001) and a prior case in the social group

(P < 0�01) when considering 1901 animals of known sex

and birthdate (Table 1). Calendar year (P = 0�09) was

also included in the subsequent multivariable analysis.

At the group level, there was strong evidence that one

or more immigrations into the group within the previous

12 months (P = 0�01) and low rainfall (<200 mm per year,

P = 0�05) increased the hazard ratio for a group becoming

diseased. Along with these variables, Year (P = 0�13) was
carried forward to the multivariable model.

multivariable analysis

The multivariable model (Table 2) revealed a hazard ratio

of TB in 2006–2010 of 2�86 (95% CI: 0�47–17�54,
P < 0�001), and a hazard ratio of 0�38 (0�02–6�80,
P < 0�001) in 2011–2015, compared with 2002–2005. The
variance for the frailty term (natal group) was 1�11
(P < 0�001). A history of TB in the group increased the

hazard by a factor of 4�29 (2�00–9�17, P < 0�01). Com-

pared to the youngest individuals, age increased the haz-

ard by a factor of 4�70 (1�92–11�53, P < 0�01) for 2- to

4-year olds, and 9�36 (3�34–26�25, P < 0�001) for the over

4-year olds. There was an interaction between previous

TB history and age (P < 0�0001).
At the group level, there was strong evidence that

immigration into the group in the previous 12 months

increased the hazard by a factor of 3�00 (1�23–7�34,
P = 0�016), and some evidence that more than 200 mm

rainfall over that year was protective, with a hazard ratio

of 0�44 (0�17–1�10, P = 0�079). The proportional hazards

assumption was met, and no interactions were observed

in this analysis.

Discussion

Around 6% of individuals in our study population are

known to have died as a result of TB. The age of an indi-

vidual and the individual’s social group’s TB history were

the main factors affecting the risk that individual meer-

kats in our study population would die from TB. There

was little evidence of any consistent sex differences in risk,

although males were more often the first animal in a

group to display visual signs of TB. Research in other

species such as badgers and deer suggests that these indi-

viduals showing advanced disease are the most likely to

become increasingly infectious (Gallagher 1998; Lugton

et al. 1998; Gallagher & Clifton-Hadley 2000; Corner,

Murphy & Gormley 2011; Delahay et al. 2013). Identify-

ing these individuals may offer the opportunity to target

individuals for disease control measures (e.g. vaccination

or culling) before they become infectious, and so reduce

disease transmission. A better understanding of which

Fig. 1. Annual meerkat tuberculosis (TB) case rate at the study

site. Total annual rainfall per calendar year (2002–2014) at the

Kalahari Meerkat Project is displayed alongside the mean group

size, the total number of meerkats in the study population that

year and the number of euthanasias performed in animals meet-

ing the criteria for advanced TB disease.

© 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of

Animal Ecology, 86, 442–450

Risk of tuberculosis in wild meerkats 445



animals are most likely to show advanced stages of dis-

ease will also improve our knowledge of the important

role of individuals within the population’s transmission

dynamics. It is possible that these transmission routes also

include other species in the same environment, although

no studies have been done to investigate this.

Despite suggestions that in female-dominated social sys-

tems, such as in meerkats, testosterone-linked immuno-

suppression may lead to a predominance of females

among diseased animals (Smyth & Drea 2015), there is no

evidence found here for sex bias in rates of disease. Simi-

lar findings are reported in African buffalo with TB (Ren-

wick, White & Bengis 2007), despite males, through

physiological and behavioural differences, often having a

greater predilection for contracting infections (Cross et al.

2009). The outcome of interest in the present study was

disease rather than infection, and the possibility exists

that males could have higher infection rates than females,

but with infected females progressing to clinical disease

due to sex-linked immunosuppression. Female meerkats

have previously been shown to have increased androgen

levels, linked to an immunocompromised state (Smyth

et al. 2016). Alternatively, infected males may be more

likely to be lost to follow-up before they develop signs.

Both Wilkinson et al. (2000) and Tomlinson et al. (2013b)

found evidence that infected female badgers have longer

survival times than males, and Jackson (1995) reported a

greater infection risk in male possums (Trichosurus

vulpecula) with TB.

In meerkats, sexually mature males periodically leave

their social group to rove for potential mates at other

groups, and this behaviour may play an important role in

introducing infection to a social group (Drewe, Madden

& Pearce 2009b; Drewe et al. 2011). This study found that

75% of the time, the first case of disease observed within

a group was a male animal, increasing the evidence for

their role in disease introduction. Females tend not to

move between groups, rather staying with their natal

group, or forming splinter groups with coalitions of males

(Doolan & Macdonald 1996; Mares et al. 2014). In a pre-

vious study, no evidence was found for a link between

eviction and disease in female meerkats (Drewe 2010). It

seems that the role of males in transferring infection

between groups may be attributable to their behavioural

movements, rather than them being more disposed to

developing disease.

We found age to be an important factor in determining

the likelihood of disease. This is not surprising as older

animals would have had longer potential exposure time

and incubation period (interval between infection and

clinical signs). The median latent period (interval between

infection and infectiousness) for TB in meerkats has been

Fig. 2. The relationship between meerkat age and risk of euthanasia due to tuberculosis (TB). (a) and (b) show the total number of

males and females that reached each age category, the population at risk, in red, and the points show the number of animals euthanased

at each age. (c) and (d) show the total number of animals that contributed to each age category in red, for both males and females, and

the points indicate the incidence of TB euthanasias in each category. While the number of TB-related deaths decreases with age, the inci-

dence rate can be seen to increase.
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estimated at just over 12 months (Drewe et al. 2011), sug-

gesting animals younger than 1 year are unlikely to show

clinical signs of this disease. In the present study, how-

ever, 20 deaths were recorded in animals aged less than a

year of age. These may be indicative of particularly high

infection pressure within these groups, as overall incidence

was low in this age group; only 1�3 cases occurred per 100

study years in animals aged less than 1 year. The popula-

tion at risk declined sharply (see Fig. 2) in early life.

Exposure is more likely to occur as these individuals age,

and socially interact, than in their early life in the burrow.

Age effects are common findings in TB studies of other

species, for example in ferrets (Mustela furo) (Lugton

et al. 1997) and badgers (Delahay et al. 2013).

Within this hierarchical society, dominance comes at a

high cost to the individual (Clutton-Brock et al. 2010),

and yet dominance did not affect an animal’s chances of

being euthanased owing to TB. This lack of effect is per-

haps surprising as dominant individuals have the greatest

amount of social interaction of all meerkats (Madden

et al. 2011). However, Drewe (2010) showed that the

specific type and direction of interactions must be consid-

ered when quantifying disease risk, making the recipients

of aggression most likely to become infected. Progression

of infection must also be considered; opportunity to

become infected is not enough alone to determine disease

progression. Social disturbances within the group, particu-

larly those that involve an increase in aggressive interac-

tions such as occur during changeovers in dominant

individuals, may be expected to increase the chance of

transmission. However, no relationship with disease was

observed.

A previous history of TB in the same group predicted

the incidence of TB-related deaths within individuals. Sim-

ilar effects have been found in cattle and badgers; recent

history of TB within a cattle herd is a risk factor for a new

breakdown (Skuce, Allen & Mcdowell 2012) and recur-

rence of TB (Karolemeas et al. 2011). In badgers, as here,

a greater risk of an individual being infected has been

noted when there was a previous history of TB within the

social group (Vicente et al. 2007; Tomlinson et al. 2013a).

The frailty term in the model showed that there was

important variation between groups, and this is likely to

be in part due to TB history within the group. Over half

of the groups studied had never had a case of TB. After

the index case, further cases were documented for up to

3 years, although it is uncertain as to whether these were

related or were the result of reinfection. Were repeat cases

found to have been as a result of the index case, then they

may be either individuals infected at the same point as the

index but slower to develop into cases, or as a result of

spread from infected individuals, or via contamination of

shared environments such as sleeping burrows.

The incidence of TB-related deaths was higher between

the years 2006–2010 than in the other two time periods

covered by our study, and although it is unclear why,

environmental factors such as rainfall may play a role.

Individual peaks in 2007 and 2012 both came after a year

of high rainfall, although no statistical association with

rainfall was found. Males more frequently move between

groups during times of increased rainfall (Mares et al.

2014) and more inter-group roving might lead to greater

transmission of infection. There was weak evidence that

low rainfall (below 200 mm) was a risk factor for a group

developing disease for the first time, with a hazard ratio

at these times of 2�28 (0�91–5�72, P = 0�079), and this may

be associated with reduced foraging success. A reduction

in food availability would likely have implications for

immune function. No correlation between body condition

score and measured TB infection status was found in a

study that examined 258 different meerkats (581 sampling

events) from 2005 to 2008 (Drewe 2009). Body condition

and weight appear to vary more with age, food availabil-

ity and pregnancy status.

No group size effect was noted, and having more adults

of roving age did not make a group more likely to

develop clinical disease. A similar lack of group size effect

(a)

(b)

Fig. 3. Annual and monthly rainfall. Monthly rainfall and eutha-

nasia figures at the study site using data from 2002 to 2014.

(a) Monthly rainfall figures for each year across the study period

showing a consistent annual pattern; each year is represented by

a different coloured line; (b) The number of meerkats euthanased

due to tuberculosis by month, showing no pattern throughout the

year.
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was noted in badgers (Gallagher 1998). Larger meerkat

groups are no more likely to come into contact with other

groups and only receive a small increase in the number of

roving males visiting compared to smaller groups (Drewe,

Madden & Pearce 2009b). The lack of effect is likely to

be due to there being little or no increase in contacts with

individuals from outside the group. Immigration into the

group is a definite example of such contacts, and here an

effect was seen. Immigrants will almost always be males

(Mares et al. 2014), and a history of immigration in the

past 12 months increased the hazard by a factor of 3�00
(1�23–7�34, P = 0�016). The evidence for an effect of

immigrants in the previous 3 or 6 months was weaker

and this suggests that a longer latent period is applicable.

Table 1. Univariable analysis of individual- and group-level risk

factors. Results of a univariable analysis of data collected from

1901 individuals in 73 social groups at the Kalahari Meerkat Pro-

ject from 2002 to 2015, using time-dependent Cox regression.

Hazards were calculated for the likelihood of an individual meer-

kat being euthanased due to advanced tuberculosis (TB), and for

an uninfected group to show its first case, using 3-month time

intervals

Variable

Hazard

ratio

95% Confidence

interval

Wald test

P value

Individual risk

Year

2002–2005 baseline 0�09
2006–2010 3�30 0�52–20�82
2011–2015 0�55 0�04–8�14

Sex

Female 0�35
Male 1�18 0�84–1�66

Previous group TB

No <0�0001
Yes 3�98 2�60–6�10

Dominant status

Never 0�42
Ever 0�86 0�59–1�25

Age (years)

<1 <0�0001
1 3�30 1�92–5�68
2 3�73 2�09–6�66
3 4�75 2�50–9�04
4 5�66 2�61–12�27
5 3�72 1�09–12�62
6+ 2�66 0�91–7�84

Group risk

Dominance change

No 0�86
Yes 1�09 0�40–2�98

6-month dominance change

No 0�42
Yes 0�68 0�26–1�74

12-month dominance change

No 0�27
Yes 0�62 0�27–1�45

Group size

<10 0�66
11–20 1�25 0�45–3�46
21–30 0�91 0�24–3�49
>31 0�45 0�05–3�60

Rainfall

<200 mm 0�05
>200 mm 0�39 0�15–1�00

Immigration

No 0�19
Yes 2�09 0�70–6�26

6-month immigration

No 0�11
Yes 2�23 0�84–5�96

12-month immigration

No 0�01
Yes 3�13 1�29–7�58

Number of eligible rovers

0–4 0�83
5–9 1�03 0�41–2�59
10+ 0�58 0�15–2�18

(continued)

Table 1. (continued)

Variable

Hazard

ratio

95% Confidence

interval

Wald test

P value

Number of eligible rovers in the preceding 12 months

0–4 0�79
5–9 1�42 0�52–3�88
10+ 1�15 0�39–3�41

Year

2002–2005 0�13
2006–2010 1�32 0�35–4�93
2011–2015 2�69 0�82–8�82

Table 2. Multivariable analysis of individual- and group-level

risk factors. Results of a multivariable analysis of data collected

from 1901 individuals in 73 social groups at the Kalahari Meer-

kat Project between 2002 and 2015, using time-dependent Cox

regression. Hazards were calculated for the likelihood of an indi-

vidual meerkat being euthanased due to advanced tuberculosis

(TB), and for an uninfected group to show its first case, using

3-month time intervals

Variable

Hazard

ratio

95% Confidence

interval P value

Individual risk

Year

2002–2005 baseline

2006–2010 2�86 0�47–17�54 <0�001
2011–2015 0�38 0�02–6�80 <0�001

Previous group TB

No

Yes 4�29 2�00–9�17 <0�01
Age (years)

<2
2–4 4�70 1�92–11�53 <0�01
4+ 9�36 3�34–26�25 <0�001

Variance of frailty term for Natal group = 1�111, P < 0�001
Group risk

12-month immigration

No 0�016
Yes 3�00 1�23–7�34

Rainfall

<200 mm 0�079
>200 mm 0�44 0�17–1�1
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As this study focused on clinical cases with a prescrip-

tive case definition, case rates will be an underestimate of

the true infection level in the population. Many animals

will have been infected without showing clinical signs, or

were lost to follow-up before these were recognised. A

study of risk factors for infection would require the imple-

mentation of long-term surveillance. Not only would this

identify which animals are initially becoming infected but

it would also allow for increased understanding of why

some infected animals develop clinical disease, and others

appear not to do so. Cases identified in this study are

likely to be a good match for the study question, which

was to identify those animals with advanced disease.

While poor sensitivity is a common feature of TB tests,

and the visual case definition used here is likely to have

an even lower value than most, the case definition used is

highly specific. Given that groups are visited so regularly,

the time measurements in the analysis are a reliable basis

for the analysis.

In conclusion, our analysis of this long-term dataset

has shown that although disease due to TB does occur in

younger animals, it is older animals that are at greater

risk. Intra-group transmission appears to be a major bar-

rier to spread, as has been seen in other species, and once

TB is active within a group then the likelihood of others

developing the disease rises steeply. Numbers of cases

vary between years, and it has been suggested that this

may have connections with local rainfall, or availability

of susceptible animals. The importance of previous group

history for individual risk makes factors influencing a

group’s TB status, such as immigration, very influential.

This study has presented evidence for clustering and

found that there are both group-level and individual-level

risk factors for developing disease. This has implications

for control of TB in wild meerkats. These may include

targeting vaccinations of groups that experience immigra-

tions, or culling of older animals in diseased groups soon

after an initial case. Our findings are similar to those

reported in other species such as badgers, and therefore

support applicability of these results to aid the manage-

ment of TB in a broader range of species. Additional data

on the infection status of individuals and how this

changes over time would have applications to our under-

standing of transmission and disease progression.
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