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ABSTRACT

Modern deep learning methods have de-facto become the default tool for image classifica-

tion. However, application of deep learning to surface shape classification is burdened by

the limitations of the existing methods, in particular, by the lack of invariance to different

transformations of input data.

This thesis proposes two novel frameworks for learning a multi-layer representation

of surface shape features, namely the view-based and the surface-based compositional

hierarchical frameworks. The representation learned by these frameworks is a hierarchical

vocabulary of surface shape features, termed parts. Parts of the first layer are pre-defined,

while parts of the subsequent layers, describing spatial relations of subparts, are learned

from the training data. Both frameworks exploit the learning algorithms which comprise

clustering of statistical maps representing the statistics of co-occurrences of parts in the

training data.

The view-based framework describes spatial relations between subparts in the camera-

based reference frame. The key stage of the learning algorithm on this framework is

part selection which forms the vocabulary based on multi-objective optimization, taking

into account different importance measures of parts. The experiments show that this

framework enables efficient category recognition on a large-scale dataset of depth images.

The main idea of the surface-based framework is the exploitation of part-based intrinsic

reference frames, which are computed for parts of lower layers and inherited by parts of

the subsequent layers. During learning spatial relations between subparts are described

in these reference frames. During inference a part is detected in the input data when its

congruent subparts are found at certain positions and orientations in each other’s reference



frames, regardless of their positions and orientations in the camera-based reference frame.

Since rigid body transformations do not change positions and orientations of parts in

intrinsic reference frames, this approach enables efficient recognition of shapes from unseen

poses. Experiments with the surface-based frameworks show that it exhibits a large

discriminative power and achieves a greater robustness to rigid body transformations

than advanced CNN-based methods.
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CHAPTER 1

INTRODUCTION

1.1 Background

One of the problems which have been intensively studied by the computer vision com-

munity over a long time is object categorization, in which objects in images are grouped

into categories for some specific purpose. A very large number of object categorization

methods using different visual aspects of objects, such as size, shape, color, texture, and

motion are proposed in the literature.

1.1.1 Challenges of Object Categorization

Object categorization is a very difficult task due to several reasons. The first reason is

that usually there is large intra-category variability, i.e. objects of the same category

may exhibit dramatically different geometric and photometric properties. Intra-category

variability of shape is particularly large for non-rigid (deformable) objects, for example,

objects with articulated parts. On the other hand, inter-category variability may be very

small, since objects of different categories may have very similar shape and appearance,

making them almost indistinguishable from certain viewpoints.

The second reason is that every single object may appear in images in an astronom-

ically large number of ways due to a large range of its possible relative positions and

1



orientations relative to a camera. The most difficult scenario is object categorization un-

der the generic viewpoint assumption [1], according to which objects are not assumed to

be in a certain position and orientation relative to a camera.

The third reason is that the number of existing objects and object categories is large.

There exist different estimates which vary depending on the estimation methodology.

For instance, according to Biederman’s [2] estimation, there exist approximately ∼30,000

geometrically distinguishable objects which can be classified into approximately ∼3,000

categories.

The fourth reason is that there exists a number of difficulties related to the imaging

process. Camera settings and illumination conditions, under which objects are captured,

may vary significantly; moreover, all image acquisition methods impose different image

degradations, such as noise, image blurring, etc. Additional challenges come from the fact

that in real world cluttered scenes objects may partially occlude each other.

However, despite all these challenges, human vision systems deal with the massively

complicated problem of object categorization seemingly effortlessly, accommodating a

very large number of object categories and performing very fast [3] and robust category

recognition. In contrast, for the computer vision community object categorization is still

an open research topic attracting considerable attention, as evidenced by a large number

of papers dedicated to this topic appearing annually in the mainstream journals and

conferences.

1.1.2 Category Representation

There are two fundamental questions which have to be addressed when designing a com-

puter vision system for object categorization. The first question relates to a type of

representation, i.e. how category models should be efficiently represented in memory.

There are several desired properties of a category representation, for instance, its general-

ization capabilities, geometric and photometric invariance, scalability, moderate storage

demands, ability to facilitate fast inference and matching, etc. Generalization is the prop-
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erty of a category representation meaning that description of categories should be general

enough to enable correct category recognition for novel objects, i.e. those objects that

were not used when developing the representation. Scalability means the ability of an ob-

ject categorization system to handle a growing amount of data, and its sublinear growth

when the number of categories increases. An invariance is a property of a computer

vision system meaning that the output of this system remains unchanged or changes in-

significantly under certain transformations of the input data, e.g. illumination changes,

viewpoint changes, shape deformations, etc. It is hard to develop a representation having

all these properties simultaneously, however, for some specific task settings some of these

properties may become more important than the other ones.

The second fundamental question is how the representation should be acquired. In

some of the recent computer vision papers (e.g. [4, 5, 6]) different approaches for develop-

ing a category representation are broadly classified into two large classes. The first class

of approaches assumes category modelling based on handcrafted image or shape features,

for instance, histograms, shape signatures, filter banks, co-occurrence matrices, etc. Ap-

proaches of the second class performs multi-layer learning (also termed deep learning) of

image and shape features, and use these learned features for category modeling1.

A huge amount of handcrafted features exploiting different visual aspects of objects,

such as 2D contour shape, 3D surface shape, colour, texture, and motion, have been pro-

posed in the literature. SIFT [7], HOG [8], spin images [9] and HKS [10] are examples of

very popular hand-crafted features. Some of the handcrafted image features, for instance,

SIFT, and some of its modifications (e.g. PCA-SIFT [11], GLOH [12]) have become

particularly widely used, since they combine a large discriminative power and an invari-

ance to different types of geometric and photometric transformations of the input data,

such as in-plane rotations, changes of scale, illumination changes and (up to a certain

extent) out-plane rotations [7, 12]. Another example is HKS which is the popularly em-

ployed handcrafted surface shape descriptor invariant to rigid body transformations and

1Note, that such a splitting is not very strict anyways, as there exist approaches that to some extent
involve both handcrafting and multi-layer learning. More details will be discussed in Chapters 2 and 3
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to isometric deformations of shapes. Such a combination of useful properties makes these

handcrafted features applicable for a large range of computer vision and shape analysis

tasks, including object categorization, detection, tracking, image referencing, shape re-

trieval, etc. The object categorization systems based on handcrafted image features have

been dominant over a long period, however, their progress substantially slowed down in

2010-2012 [13]. The introduction of the large scale category recognition challenges, for

instance, the annual ILSVRC1 challenge [14] based on ImageNet [15], demonstrated that

it is very difficult or impossible to achieve further rapid progress purely with hand-crafted

image features.

Another common way of acquiring category representations, which has become par-

ticularly popular in the last few years, assumes multi-layer learning (also termed deep

learning) of image or shape features from a training set. The key idea behind deep

learning is the existence of multiple abstraction layers, where features of higher layers are

defined in terms of features of the previous layers, thus enabling the description of category

models using multiple levels of features of increasing complexity. Broadly speaking, the

paradigm of deep learning suggests that a complicated object or category model should

be described in terms of the less complicated models, which, in turn, can be represented

in terms of even simpler models, and so on, while features at the lowest abstraction layer

should encode primitive image features (e.g. edge segments or textons [16]). Thereby, the

existence of multiple abstraction layers helps to bridge a large semantic gap between prim-

itive image features and complicated object or category models, by recursively expressing

different mid-level visual cues at multiple hierarchical levels.

1.1.3 Categorization Methods Based on Artificial Neural Net-
works

Most of the recent advances in the area of deep learning methods for object categorization

deal with artificial neural networks (ANNs), for instance, convolutional neural networks

1Imagenet Large Scale Visual Recognition Challenge
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(CNNs), deep belief networks (DBNs), autoencoders, etc. CNNs are the most widely used

in computer vision type of ANNs, since this architecture is particularly well-adapted for

feature learning from the image domain, and for classification from images. Each CNN

contains a number of convolutional layers each of which comprises a set of feature maps

that respond to certain structures in input images. A feature map can be considered as

a stencil which is being convolved with an input image. Convolutional layers are usually

interspersed with pooling layers purposed to simplify the information in the output of

convolutional layers. Pooling can be described as a form of non-linear downsampling,

e.g. by replacing 3 × 3 node regions with a single node on the next layer. The purpose

of pooling layers is to progressively reduce the spatial resolution of the representation by

reducing the number of parameters and computations in higher layers of a CNN. Nodes of

convolutional and pooling layers take input values only from a certain local neighbourhood

of a square form, termed receptive field, so that these nodes respond only to local image

structures, located within the receptive field. In contrast, higher layers of CNNs are fully

connected, i.e. they take inputs from the whole image domain, thus responding to certain

spatial configurations of features in the whole image. Thereby CNNs combine the power

of local and global feature representations.

The discriminative power of modern ANN-based methods has been thoroughly demon-

strated in the literature. In fact, these methods outperform the methods based on hand-

crafted image features by a large margin [17], especially for large-scale category recogni-

tion [15]. However, despite the outstanding performance, CNN-based architectures have

certain limitations. For instance, they are not very robust to different types of transfor-

mations such as viewpoint changes and, especially, in-plane rotations. That means the

recognition ability of CNN-base methods goes down significantly when testing objects

are orientated (w.r.t. a camera) differently than objects from the training set. For in-

stance, one of the experiments, described in Chapter 6 of this thesis, shows that the CNN

of Krizhevsky et al. [17] working with depth images achieves 81.2% category recogni-

tion accuracy on a certain dataset in the scenario when testing and training objects are
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approximately aligned. However, if the testing objects are rotated in plane only by 30

degrees (thus becoming unaligned with the training objects), the recognition accuracy

of the system falls to 29.3%, while if the testing objects are rotated by 60 degrees, the

recognition accuracy goes down to 13.7%1.

There are several fundamental reasons for such a behavior, one of the most important

of which is that the convolution operations, which are applied on multiple layers of CNNs,

are in general case not rotationally-invariant2. This is why objects rotated by a certain

angle start producing dramatically different responses to feature maps, thus activating

different features on multiple hierarchical layers. The commonly taken way of addressing

this issue is augmenting the training dataset by rotating the training images/models

multiple times; thus increasing the training set by at least one or two orders of magnitude

which is very computationally expensive for large datasets. Effectively, this means that

each shape and appearance feature is learned at multiple orientations, and the ability

of CNN-based systems to recognize an object at a certain orientation depends on the

presence of similar objects under similar orientation in the training set3.

1.1.4 Deep Learning Methods for 3D Shape Analysis

The recent advent of reliable and cheap depth sensors, such as Microsoft Kinect and

PrimeSence Carmine, and a rapid growth of 3D shape models repositories (e.g. Google

Warehouse) increased the interest in 3D shape analysis problems, such as object cate-

gorization based on surface shape features, 3D shape retrieval, etc. However, a much

smaller number of ANN-based methods working with 3D data (e.g. depth images, trian-

gulated mesh models or point clouds) have been proposed in the literature, compared to

1Note that these numbers may vary significantly for different CNN architectures and different datasets.
Also note that there exist some techniques (e.g. colorization of the depth channel), mitigating this
problem and making CNNs slightly more robust to different geometric transformations. More details will
be presented in Chapter 6

2Except for the case when filter kernels are chosen to be rotationally invariant, e.g. the Gaussian
kernels

3Note, that the similar problems appear also in other types of ANNs, for instance in convolutional
deep belief networks, which also require augmenting the training set by rotating objects multiple times
[18].
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the number of ANN-based methods for 2D data (i.e. RGB or grayscale images).

Apparently, the reason for this is that CNNs, which are the main type of ANNs used

in computer vision, are specially designed to learn features from the 2D image domain,

i.e. a rectangular or square area in the 2D Euclidean space, regularly sampled by a pixel

grid. Consequently, it is a very natural idea to apply CNN-based systems for classification

from RGB or grayscale images, i.e. the type of data such systems are designed for. On the

other hand, the direct application of CNNs to different surface shape analysis problems is

not straightforward since surfaces typically represent non-Euclidean manifolds, on which

there is no shift invariance, and therefore convolution does not exist in a classical sense

[19, 20, 21].

Due to this problem, most of the deep learning approaches to 3D shape analysis

problems use different types of mapping of surface shapes to the 2D Euclidean domain,

i.e. onto the image plane, and apply CNNs after that, as illustrated in Figure 1.1. Some

authors [22] use computer graphics techniques to render images from 3D models, and apply

the CNN for classifying these rendered images. Sinha et al. [21] use parameterization of

3D surface models to produce multi-channel images of a special type, called geometry

images, and apply the CNN to classify these images, while Shi et al. [23] proposed to

use the projective geometry to render panoramic images, and apply the CNN classifier to

them. Many authors, e.g. [24, 25]), use depth images, representing partial views of 3D

shape models, and process these depth images by CNNs in the same ways as if they were

ordinary grayscale images. However, the disadvantage of such an approach is that rich

surface geometry information can not be efficiently utilized in this case. Consequently,

some authors (e.g. [13, 26]) propose the methods involving colorization of depth images,

i.e. converting them to multi-channel images, where channels encode different geometric

characteristics of a surface (e.g. surface normals, horizontal disparity, etc.) and then

apply CNNs to classify colorized images. In general, the CNN-based approaches working

with colorized depth images achieve substantially better results than the approaches using

raw depth images.
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Figure 1.1: Pipeline of many approaches to surface shape analysis using deep learning

Broadly speaking, all presented approaches do not apply deep learning in the data

domain, i.e. on manifolds embedded in Euclidean 3D space, but rather map the input

data to the 2D Euclidean domain, where CNNs can be efficiently used, and apply CNNs in

this domain. Apparently, there are several disadvantages of such approaches. First, any

of these mappings induce certain errors. Second, since CNNs are specially designed for

the 2D domain, they are not based on any special design principles that would facilitate

efficient exploitation of very rich surface geometry information. This is evidenced by

the fact that the colorization techniques, by only incorporating very simple geometric

features to the CNN input substantially improve the categorization results [26]. This

may be an indication that CNNs cannot automatically efficiently learn such features from

raw depth data and, presumably, the colorization techniques only mitigate, but not fully

solve this problem. Third, due to a non rotationally invariant nature of CNNs (discussed

in Subsection 1.1.3) any system exploiting them assumes that each input shape model

should be presented in the training set at multiple orientations, otherwise it will be very

likely to fail at recognizing objects from radically novel viewing angles and/or in-plane

rotations.

There are several recently proposed frameworks [18, 4] for 3D shape analysis, which

perform voxelization of 3D shapes, computing 3D occupancy grids, and then apply 3D

convolutional neural networks or 3D convolutional deep belief networks in the 3D Eu-
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clidean domain. However, these approaches have severe limitations, such as very low

spatial resolution of voxel grids (e.g. 30 × 30 × 30 voxels in [18]), and lack of an invari-

ance to different types of data transformations, such as rigid body transformations and

isometric deformations of non-rigid objects [21]. There are very few attempts [20, 27] to

adapt the CNNs to learn features in the data domain, i.e. directly from surfaces, but these

methods are limited since they can only learn local shape features, therefore they can not

utilize the power of CNNs to automatically learn hierarchical features of increasing size.

1.1.5 Compositional Hierarchical Systems

Except for the methods based on ANNs, there are other types of multi-layer frameworks

proposed in the computer vision literature. For instance, there exists a class of deep

learning method referred as compositional hierarchies. Many compositional hierarchical

methods [28, 29, 30, 31, 32, 33, 34] appeared between 2005-2010, i.e. when the methods

based on handcrafted features were still dominantly employed, while ANNs were not yet

demonstrating outstanding results. This situation encouraged the researchers to investi-

gate different types of multi-layer frameworks that are not based on ANNs. Note, that

some of the compositional hierarchical methods were further developed between 2013-2016

[35, 36, 37, 38, 39, 40], i.e. in the period of dominance of ANN-based methods.

Broadly speaking, most of the compositional hierarchical frameworks are based on

similar principles which are sometimes referred as principles of hierarchical composition-

ality. There are theoretical papers proposing a mathematical formulation of hierarchical

compositionality, and a formal description of these principles [28, 41]. However, in this

introductory chapter I give only a high-level explanation of the main principles of hierar-

chical compositionality by demonstrating some relevant examples. The main reason for

such a choice is that most of these ideas are formulated and implemented quite differently

by the different authors.

The hierarchical compositionality assumes the existence of very simple and easily de-

tectable image features at the first layer. Features of all the subsequent layers represent
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Figure 1.2: An example of a compositional part, comprising three subparts. a) Three
subparts are composed into a compositional part. Distributions of possible relative posi-
tions of subparts are parameterized by Gaussian distributions. b) Resulting compositional
part.

compositions or compositional parts, meaning that each of them is composed of two or

more subparts, i.e. features from the previous layer. The most important characteris-

tic of a compositional part is the description of relative positions of its subparts. This

description is represented by a distribution (rather than by a single offset vector) mak-

ing compositional parts non-rigid, i.e. tolerating some variance in relative positions of

subparts. An example illustrating how a compositional part may be composed of three

subparts is shown in Figure 1.2.

One of the most important principles of hierarchical compositionality is reusability

(also termed part-sharing or shareability) of compositional parts, meaning that the same

compositional part may be used to describe objects of different categories. In fact, many

compositional parts represent some shape or appearance features that are not specific to

a particular object category and therefore, they can be used to describe multiple object

categories. Part reusability is a very important property since it makes the representation

more compact, facilitates scalability of the representation, and speeds up the inference

process by reducing the number of matching operations [42].

Another principle of hierarchical compositionality is termed executive-summary [41].

This and/or similar principles are differently formulated by different authors, however,

the meaning is that a state of each compositional parts is only described coarsely (as a
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short summary) while a more detailed description is kept in the states of its subparts.

For instance, a state of a high-level part, representing a human category model may

be a short summary of the following type: “Subpart (e.g. representing a body), and

subpart (head) in a certain relative position1 from the body, and two subparts (arms)

in certain relative positions from the body, and two subparts (legs) in certain relative

positions from the body”. According to the executive-summary principle, such a non-

detailed description is sufficient for each compositional part across all layers, since more

details can be extracted from the states of subparts. For instance, the state of the subpart

representing a human head may involve a similarly structured description, for example:

“Subpart (e.g. representing a nose), and two subparts (eyes) at certain relative positions

from the nose, and subpart (mouth) at a certain relative position from the nose, etc.” In

turn, the states of each of these subparts contain similarly structured descriptions. At the

second layer of the hierarchy compositional parts are also described in a similar manner,

but they are composed of the primitive parts of the first layer.

The next principle of hierarchical compositionality is the existence of certain switch-

ing variables (often referred as OR-nodes) on different hierarchical layers, showing the

alternative configurations. For example, a human body may be quite differently shaped,

arms may be straight or bent, a mouth can be open or closed, etc. Obviously, since

compositional parts are non-rigid, certain shape variations may be represented by a single

compositional part. However, in some cases, shape variations may be too large to be

modeled by a single compositional part. This means that a state of a compositional part

should also include an indication, that certain subparts may be represented by several dif-

ferent parts from the previous layer. Taking this into account, the description of a state

of a compositional part representing a human model may look as follows: “
[
subpart (e.g.

representing slim body) OR subpart (fit body) OR subpart (another body type)
]
, and[

subpart (bald head) OR subpart (head with a hat)
]

at a certain relative position from

the body, and, etc.”. Figure 1.3 shows an example how alternative subparts representing

1Remember that relative positions of subparts are described by distributions, not by single vectors
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Figure 1.3: An example illustrating how OR-nodes may used to encode alternative con-
figurations of subparts. a) There are two subparts representing different body models,
and two subparts representing different head models. b) Resulting compositional parts.

different body models and different head models are composed into a single compositional

part of the next layer via OR-nodes.

In general, a non-rigid nature of compositional parts, the executive summary princi-

ple and the existence of switching variables are purposed to increase the generalization

capability of compositional hierarchical systems, especially when dealing with object cate-

gories having a large shape and appearance variability, for instance, categories of non-rigid

objects with articulated subparts.

Right after presenting these examples, which I used to illustrate some of the principles,

it is very important to make clear that actually a part-to-subpart decomposition in the

existing compositional hierarchical systems does not necessarily coincide with semantic

parts of objects. In contrast, such a decomposition may be done by a compositional

hierarchical system very differently from how humans would mentally do it [2]. For

instance, in real compositional hierarchical systems the part-to-subpart decomposition of

a human model may be done very differently from the examples I just presented.

In fact, there exists a very large number of possible ways how to recursively decom-

pose a complicated shape to subparts, as well as a very large number of possible ways of

composing simpler shape features to more complicated ones1. Therefore, in order to re-

1Note that different compositional hierarchical systems go both ways either by recursively decomposing
complex parts into simpler subparts, or starting with primitive features learn more and more complex
compositions. More details will be presented in Chapter 2
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duce this ambiguity, each compositional hierarchical system has a certain set of grammar

rules, also termed composition rules, or binding rules dictating how exactly the composi-

tions/decompositions should be performed.

So far we considered five principles of hierarchical compositionality which are: (i) the

non-rigid nature of compositional parts, (ii) part reusability, (iii) the executive-summary,

(iv) the existence of switching variables, and (v) the existence of composition rules. How-

ever, it is important to mention, that despite a certain conceptual similarity of the ex-

isting compositional hierarchical frameworks, they formulate and implement the afore-

mentioned principles in very different ways. These frameworks are designed for different

purposes such as object categorization, recognition of letters and digits, image parsing

and/or segmentation face representation, multi-view object detection, pose estimation,

etc. They use different types of primitive features at the lowest level, different com-

position/decomposition rules and different ways of describing spatial relations between

subparts. These frameworks also substantially differ on the level of the mathematical

formulation, and on the level of implementation, data structures, etc.1

Note that most of the compositional hierarchical systems are designed for 2D images

and there exist only very few systems working with 3D data (e.g. [43]). However, these

systems work only with a limited number of shapes (e.g. cars, hand-made objects) and,

according to the best of my knowledge, there are no compositional hierarchical methods

for 3D data that are sufficiently well generalizable to be applied to datasets comprising

large numbers of object categories. Also note that the problem of the geometric invariance

of compositional hierarchical systems attracted relatively little attention so far. Only a

few authors [44, 45, 39] addressed the problem of rotational invariance of compositional

hierarchical systems, however, these systems have mainly been applied to specific types

of data, e.g. images of handwritten digits.2.

The rest of the introductory chapter is organized as follows. Section 1.2 describes

1Also, according to the best of my knowledge, there is no software, such as libraries, toolboxes, etc.
commonly used across multiple compositional hierarchical systems, therefore, compositional hierarchical
systems are typically developed from scratch independently from each other.

2More details will be provided in Chapter 2

13



the motivation of the research work presented in this thesis. Section 1.3 specifies the

research goals of this thesis. Section 1.4 describes the main hypotheses, challenges, and

contributions of this thesis, while Section 1.5 presents the definitions and the notations

which are used in the subsequent chapters of the thesis. Finally, Section 1.6 outlines the

structure of the remainder of the thesis.

1.2 Motivation

We can make several important conclusions from the previous section. Regarding neural

networks the following conclusions can be made. First, despite the outstanding perfor-

mance of CNNs, which are the main type of ANNs used in computer vision, they cannot

extrapolate their description of geometric relationships of features to radically novel view-

points and, in particular, to novel in-plane rotations. Second, there exists a much smaller

number of ANN-based methods for 3D data, than for 2D data, since there are certain

problems in applying CNNs in other domains than in the 2D Euclidean domain. Third,

the ANN-based methods specially designed for these domains have strong limitations, for

instance, low spatial resolution, lack of invariance to different data transformations, etc.

Several conclusions can also be made about compositional hierarchical systems. First,

these systems are currently not at the level of performance of ANN-based methods, how-

ever, they have some interesting theoretical properties reported by different authors. Sec-

ond, the principles of hierarchical compositionality are quite flexible, and can be easily

complemented by some additional principles. Finally, we notice that most of the com-

positional hierarchical systems have been designed for the 2D domain and there have

been only few attempts to develop 3D compositional hierarchical systems, however, these

system have severe limitations.

Many researchers, e.g. Hinton [46], Biederman [2] and others, have pointed out that

human visual systems are very good at mental extrapolations, such that after seeing a new

shape once people can recognize it from a different viewpoint and/or in-plane rotation.
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The necessity of an object and category representation which is as invariant as possible to

geometric transformations is advocated in the classical computer vision literature [2, 47].

These facts suggest that the deep learning area may potentially largely benefit from

introducing special principles that would facilitate robustness of deep learning methods

to different types of data transformations.

Since there are only few deep learning methods specially designed for 3D data and

these methods have severe limitations, it is necessary to develop a novel deep learning

system which would be robust to transformations of different types, in particular, to

in-plane rotations and view changes. On the other hand, since convolution operations,

which are applied on multiple layers of CNNs are not rotationally-invariant by definition,

we assume, that such a deep learning method should be based on another mathematical

ground. Thus arise two theoretically and practically interesting questions i.e. (i) whether

it is possible to develop a deep learning architecture working with 3D data that would

be substantially more robust (compared to CNN-based systems) to in-plane rotations

and view changes, and (ii) on which theoretical principles such an architecture can be

developed.

We assume that the principles of hierarchical compositionality provide such an op-

portunity. However, since there are only very few compositional hierarchical methods

for 3D data (also having strong limitations), it is necessary first to transfer the ideas of

hierarchical compositionality to the 3D domain, and develop a deep learning framework

for surface shape features based on these principles. After that it is necessary to propose

some new principles, that would facilitate the geometric invariance of this system, and to

modify the framework according to these principles.

1.3 Research Goals of this Thesis

There are two main research goals of this thesis.

The first goal is to transfer the existing principles of hierarchical compositionality
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to the 3D domain, by developing a novel framework for multi-layer learning of surface

shape features based on these principles. The focus of this work should be in the domain

change from 2D to 3D, therefore, we do not aim to introduce novel principles, as long as

they are not needed for the domain change. The developed framework should be applied

to object categorization on the Washington RGB-D dataset [48], on which many modern

deep learning methods have been tested, and thereby compared to other methods.

The second goal is to revise and complement the principles of hierarchical compo-

sitionality by introducing special principles facilitating robustness to view changes and

in-plane rotations. Then another framework for multi-layer learning of surface shape fea-

tures should be developed on the basis of the revised principles. Our target is to develop a

framework having a large discriminative power and facilitating greater robustness to view

changes and in-plane rotations than advanced CNN-based methods. To confirm these

properties a novel framework should be applied to object categorization in two scenarios,

namely (i) when training and testing objects are aligned, and (ii) when recognition from

novel (unseen) views and in-plane rotations is performed. A comparison with advanced

CNN-based approaches in these experimental settings should be performed.

1.4 Hypotheses, Challenges and Contributions

There are two main hypotheses of this thesis.

• The principles of hierarchical compositionality can be used as a basis for a novel

deep learning framework capable of learning surface shape features which would

enable efficient category recognition on a large dataset of depth images comprising

multiple object categories.

• The principles of hierarchical compositionality, after being revised and comple-

mented, may serve as a basis for a deep learning framework capable of learning

surface shape features demonstrating a large discriminative power and a greater

robustness to view changes and in-plane rotations than CNN-based approaches.
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There are two main challenges of this work.

• The first challenge is that the properties of 2D data, for which most of the existing

compositional hierarchical systems were developed, are radically different from the

properties of 3D data, therefore, a significant work has to be done for adaptation of

the principles of hierarchical compositionality to the 3D domain. Consequently, most

of the ingredients of a 3D compositional hierarchical system (e.g. composition rules,

part selection methods, etc.) should be defined differently than in 2D compositional

hierarchical systems.

• The second challenge is the need to develop a novel complicated deep learning

system from scratch, due to absence of the special software (e.g. libraries, tooboxes)

implementing the standard functionality of compositional hierarchical systems. Note

that the competing ANN-based methods are to a large extent based on the existing

mature software, for instance, Caffe [49], Torch [50], Theano [51], providing a very

rich functionality for artificial neural networks and supporting massively parallel

computations on GPUs.

Major contributions of this PhD thesis include:

• Development of the novel deep learning framework for surface shape features based

on the principles of hierarchical compositionality. At the time when this system was

finished (by the end of 2014), its result on the Washington dataset [48] (80.4%) was

very close to the state-of-the-art level (which was around 81%). Later, however,

the performance of this system has been surpassed by more recent ANN-based ap-

proaches, which achieved substantially better results (e.g. [26, 52]) on this dataset.

• Development of the novel deep learning framework for surface shape features, based

on the principles of hierarchical compositionality, and on the novel principle of hier-

archical part-based reference frames. Surface shape features learned by this frame-

work demonstrate a large discriminative power, and substantially greater robustness
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to in-plane rotations compared to the advanced ANN-based systems, and slightly

greater robustness to large viewpoint changes (around 45-60 degrees).

Minor contributions of this PhD thesis include:

• The thesis proposes a novel protocol for evaluating the robustness of computer vision

methods to view changes and in-plane rotations. According to this protocol training

and testing objects are first aligned, and then the camera position is gradually

changed to produce novel views and in-plane rotations. The methods are then

compared in category recognition from the unseen views.

• The novel dataset comprising 20 categories of rigid and 52 categories of deformable

objects is proposed. Objects in the dataset are manually aligned, and the depth

images representing the front view of each objects are rendered.

• The thesis proposes to use the advanced affinity measures for histograms (namely

the EMD and Quadratic-chi) within SVM for classification of histograms of com-

positional parts. In particular, we demonstrated how to build a cross-bin similarity

matrix using the measure of geometric similarity of compositional parts.

1.5 Definitions and Notations

In this section I explain the terms and the notation used in the following chapters of this

thesis. Note, that some of the details vary for both the compositional hierarchies proposed

in this thesis, i.e. the view based and the surface based ones. That is why in this section

a general description of the terms is provided, while more details for each hierarchy are

specified (if necessary) in the corresponding chapters.

The representation of surface shape features proposed in this thesis is called a composi-

tional hierarchical shape vocabulary. This representation contains several layers (denoted

Ln, where (n> 1)), each of which represents a tuple1 of parts, i.e. surface shape models.

1finite ordered list of elements
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A tuple of a layer Ln is termed shape vocabulary of the layer Ln and denoted S(Ln). The

notation | S(Ln) | is used to denote number of parts in the vocabulary of the layer Ln.

Parts from the vocabulary of the first layer L1 represent pre-defined shape features.

These parts are atomic, i.e. they are not assumed to be composed of any simpler elements.

In this work I made a choice to use planar surface patches as parts of the layer L1, however,

in general, there is no obstacle for choosing other types of atomic parts. In contrast to the

atomic parts of the layer L1, parts of each subsequent layer Ln, (n> 2) are compositions

of subparts (i.e. parts of the previous layer Ln−1) statistically learned from the training

data. Note, that in this thesis I will use the term parts for both atomic parts of the first

layer and compositional parts of the subsequent layers. I use the notation P n
i to denote

i-th part of the layer Ln.

Spatial configuration ∆sp is a parameterized distribution of possible relative positions

and (for the surface based compositional hierarchy only) relative orientations of a subpart

w.r.t. another subpart of a compositional part. Note, that the actual type of parametriza-

tion is chosen differently for both the compositional hierarchies presented in this thesis,

that is why more details will be provided in the corresponding chapters.

Assume, we have k parts in the vocabulary of the layer Ln, (n> 1), i.e., | S(Ln) |= k.

Also assume we learned t spatial configurations of Ln parts from the training data, and

we denote the l-th spatial configuration as ∆sp
l , where 1 ≤ l ≤ t. Then a doublet πn+1

i of

the layer Ln+1 (n> 1) is defined as follows:

πn+1
i =

(
P n
c , (P

n
j ,∆

sp
l )
)
, 1 ≤ j ≤ k, 1 ≤ l ≤ t, 1 ≤ c ≤ k (1.1)

i.e., doublet is a compositional part, comprising two subparts, namely the central subpart

P n
c and another subpart P n

j accompanied by the description of its relative position1 ∆sp
l

w.r.t. the central subpart P n
c .

After defining a doublet, we can formally define a compositional part, comprising any

number of subparts. Part P n+1
i of the layer Ln+1 may be defined using the following part

1and relative orientation, in case of a surface based compositional hierarchy
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equation:

P n+1
i =

(
P n
c , (P n

j1
,∆sp

l1
), (P n

j2
,∆sp

l2
), ... , (P n

jm ,∆
sp
lm

)
)
, 1 ≤ c ≤ k, (1.2)

where m is the number of subparts, while all indices j are natural numbers from the

interval 1 ≤ j ≤ k, all indices l are natural numbers from the interval 1 ≤ l ≤ t.

This equation means that each part P n+1
i comprises the central subpart P n

c and m other

subparts P n
j with descriptions ∆sp

l of their relative positions with respect to the central

subpart.

A part realization, or part activation (denoted R) is an instance of a vocabulary part

found in the input data, e.g. in a range image. Intuitively, it can be illustrated using

the following example. Assume there is a segment (centered in the point ρ) of a range

image. If a surface patch represented by this segment approximately fits a shape model,

represented by a vocabulary part P n
i , then we say that there is a realization (or activation)

Rk of the part P n
i in the point ρ, or, in other words, that part P n

i is activated in the point

ρ. This segment of the range image is then termed support region for the part realization

Rk.

Learning of a layer Ln, (n> 2) is a process of filling the vocabulary S(Ln) of this layer

by compositional parts representing the most statistically representative configurations

of parts of the previous layer Ln−1. Inference is a process of matching of the vocabulary

parts against the input data, i.e. inference can be understood as a search of parts real-

izations in the input data. Both learning and inference procedures for a layer Ln, (n> 2)

are performed within a local neighborhood (termed receptive field, F) around each part

realization of the previous layer Ln−1. Receptive fields at higher layers of the hierarchy

span larger surface areas, than at lower layers.

Composition rules (denoted B), also called binding rules, is the set of syntactic rules

under which subparts are composed into parts of the next layer. Composition rules should

address the following questions: (Q1) which parts are allowed and not allowed be com-

posed into parts of the next layer, (Q2) what is the minimal and maximal number of
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subparts a compositional part can contain, (Q3) what is the range of possible spatial

relations between subparts allowing composing them into a part of the next layer. Com-

position rules may either remain the same for all vocabulary parts at all layers of the

compositional hierarchy, or be changed depending on the layer of the hierarchy and the

type of shape represented by a vocabulary part.

1.5.1 Invariance

An invariance is a property of a system (or a function) meaning that the output of this

system (or a function) remains unchanged or changes insignificantly under transforma-

tions of certain types applied to the input data. The term invariance may be used to

describe a computer vision system, meaning that the output of this system, for example,

the predicted object category labels, remain the same or almost the same under different

transformations of the input data. This term can also be used to characterize a shape or

appearance descriptor, i.e. a function that typically outputs a multi-dimensional vector

describing certain properties of a shape or an image. An invariance of a descriptor means

that the resulting multi-dimensional vector remains unchanged under certain transforma-

tions of the input data.

Several types of an invariance are considered in the computer vision literature, for

instance, photometric invariance, i.e. invariance w.r.t. changes of lighting conditions,

brightness or contrast changes, etc., and geometric invariance, for example, invariance

to view changes, rotational or scale invariance. To explain different types of geometric

invariance let us assume that the input objects are in fixed positions, i.e. they are not

moved and not rotated, while the camera is changing its position with respect to the

object such that camera’s optical axis is always pointing to the object centre of mass.

In this case the camera position can be specified by three parameters: distance from the

camera to the object centre of mass, azimuth and elevation, as shown in Figure 1.4. We

say that camera’s azimuth, and elevation define a view. For each particular view the

camera can also be rotated around its optical axis resulting in in-plane rotations of the
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objects in the images. Examples of images captured under different camera elevations,

azimuths and rotations are shown in Figure 1.5.

Figure 1.4: Azimuth, elevation and distance define position of camera relative to an
object’s gravity centre

The rotational invariance of a system (or function) means that its output remains

the same under in-plane rotations in range from 0 to 360◦. Similarly, scale invariance

means the output remains unchanged under changes of the distance from the camera to

the object, resulting in changes of the objects sizes in images. Translational invariance

means that the output remains the same when objects are shifted (translated) in the

plane parallel to the image plane1.

Generally, the view invariance of a vision system means that its output remains un-

changed or changes insignificantly under changes of view, i.e. changes of azimuth and

elevation. It is, however, a bit more tricky to define view invariance of shape or appear-

ance descriptors, since certain view changes affect visibility of their support regions 2.

What is actually quite often meant by a view invariance of a descriptor is that its out-

put (i.e. a multidimensional vector) remains unchanged or changes insignificantly under

1Provided that all these transformations do not substantially change visibility of input objects, e.g.
when objects are partially or fully moved outside the camera frame, or outside the range of a depth
sensor, etc.

2Support region of a descriptor is the segment of the input data using which this descriptor is computed
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Figure 1.5: Views of the object captured with different a) camera elevations b) azimuths
c) in-plane rotations

those view changes that do not affect visibility of its support region [53, 2]1.

For example, if a shape descriptor has a support region on a side of a cylinder (Figure 1.6

(a)), its support region remains visible under transformations shown in Figure 1.6 (c)-(e),

but not in Figure 1.6 (b).

Figure 1.6: Illustration for view invariance

Another type of geometric invariance, which is quite often discussed in the computer

vision and shape analysis literature is invariance to the deformations of non-rigid shapes.

In particular, there exists a large class of shape descriptors that is invariant to the isomet-

ric deformations of shapes, i.e. those deformations that do not change geodesic distances

between points on a surface. Isometrically invariant shape descriptors are particularly

important for the analysis of deformable objects with articulated parts.

1This is termed by Besl as an invariance when visible [53]
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1.6 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 overviews the literature on 2D

representations. It includes an overview of handcrafted image features and deep learning

methods, including a detailed overview of compositional hierarchical methods. Chapter

3 describes the literature on features used in 3D shape analysis. This chapter has a

similar structure, i.e. it starts from the overview of the handcrafted shape features,

and then describes the deep learning methods used for 3D shape analysis. Chapter 4

describes common principles of both the compositional hierarchical systems described in

this thesis, and provides a high-level description of the learning and inference pipelines.

Chapter 5 describes the view-based compositional hierarchical system and the experiments

on object categorization using this system, while Chapter 6 describes the surface-based

compositional hierarchical system and the results of its experimental evaluation.
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CHAPTER 2

LITERATURE REVIEW: REPRESENTATION OF
2D IMAGES

This chapter overviews the existing features for 2D images, i.e. RGB, grayscale or binary

images, and the object categorization approaches exploiting these features, and analyses

properties of these features and approaches. The approaches to object categorization

can be broadly classified into two large classes, namely the approaches mainly exploiting

handcrafted image features, and deep learning approaches. In this chapter I follow this

classification and partition the literature review correspondingly. Section 2.1 is dedicated

to the most popularly employed handcrafted image features, their properties, and the

methods exploiting these features. Section 2.2 is dedicated to deep learning methods,

especially the methods based on ANNs. Section 2.3 is dedicated to compositional hierar-

chical systems, which can be considered as a sub-class of deep learning methods, however,

since they are the main subject of research of this thesis, the related literature is reviewed

in the separate section.

2.1 Handcrafted Image Features

This section overviews several types of hand-designed image features described in the lit-

erature, such as local image descriptors, global image descriptors, and texture descriptors.

It is also shown that the computer vision systems using ensembles of different handcrafted
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image features usually achieve better performance compared to the ones using features of

a single type.

2.1.1 Local Image Descriptors

Local image descriptors are often used to describe local neighborhoods of image inter-

est points, e.g. Harris points [54] or saliency points [55]. Each local image descriptor

represents a vector in a multi-dimensional space characterizing the local image structure

in a neighborhood of an interest point. Methods based on handcrafted local image de-

scriptors have been intensively used for different computer vision tasks, such as instance

and category recognition [56, 57, 58, 59], localization [60], texture recognition [61], object

tracking [62], image registration [63] and many other tasks. There exists a large number

of discriminative local descriptors proposed in the literature, for instance, SIFT [7], SURF

[64], PCA-SIFT [11], GLOH [12], etc.

There are several desired properties making local image descriptors suitable for differ-

ent image processing and computer vision tasks, for instance, their discriminative power,

robustness to various types of image degradations, invariance to different photometric

and geometric transformations, compactness, and computational efficiency. For example,

the scale-invariant feature transform (SIFT) which is one of the most intensively used

local image descriptors, is proved to be (i) very discriminative, (ii) robust to noise and

image blurring, (iii) invariant to in-plane rotations, (iv) to a certain extent invariant to

scale and viewpoint changes, (v) robust to illumination changes [7, 12, 54, 65].

Let us now briefly consider the key principles on which local descriptors can be built to

achieve the aforementioned properties. For example, SIFT descriptor represents a block-

wise histogram of image gradients extracted from a neighborhood of an image interest

point. There are several techniques employed when building this histogram. First, the

most appropriate scale for each interest point is found by convolving the original image

with Gaussian filters with increasing parameter σ, and searching for the extrema of the

Difference of Gaussian (DoG). This technique helps to achieve a certain degree of scale
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invariance. Second, once the appropriate scale is found, the dominant gradient orienta-

tion in the neighborhood is computed. Histograms of gradients are then made relative

to this dominant orientation, thus providing rotational invariance of the descriptor. A

neighborhood of an image interest point is split into 16 bins, and the histograms of gra-

dients are built for each bin and then stitched together into the single 128-dimensional

vector, having a large discriminative power. There are multiple papers proposing further

improvements of SIFT, for instance, PCA-SIFT [11], GLOH [12], etc.

There exist different types of object categorization approaches based on handcrafted

local image descriptors. Some approaches, commonly referred as “bag-of-feature” or “bag-

of-words (BoW)” [66, 67], completely disregard information about positions of local fea-

tures in images and spatial relations between them. BoW methods usually store a large

collection (termed visual vocabulary) of clustered local image features and discriminative

image patches which are often termed visual words. Given such a visual vocabulary each

object category can be represented by a sparse histogram showing occurrence counts of

visual words in images depicting objects of this category. There are several severe draw-

backs of such methods, for instance, that (i) spatial context is not considered, i.e. only

occurrences of visual words in an image do matter in this case, while the information

about their positions and spatial relations between them is disregarded, (ii) a large num-

ber of matching operations is required, as each detected image feature usually has to be

matched against each visual word, (iii) visual words represent local features only, while

the description of different mid-level and high-level visual cues is missing.

There exists, however, a number of more powerful object categorization approaches

based on local image features going beyond näıve BoW strategy. The authors of these

approaches introduce additional frameworks or data structures for modeling spatial dis-

tributions of local images descriptors, and/or spatial relations between them [68, 69, 56,

57, 70, 58]. These frameworks are usually purposed to provide a certain description of

the global structure, i.e. a model of possible valid configurations of local descriptors in

images representing object categories. For instance, the Implicit Shape Model, proposed
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by Leibe et al. [56] starts with the learning of a vocabulary of visual words (termed

codebook) and then learns the shape models specifying where in objects the visual words

can appear consistently with each other.

2.1.2 Global Image Descriptors and Texture Descriptors

Except for local image descriptors, we have discussed in the previous subsection, there

exists a number of global image features which describe either an image as whole or

a large image segment. The simplest global descriptors represent greyscale or colour

histograms of raw pixel data [71, 72]. There are global descriptors that exploit different

geometric characteristics of objects, for instance, area, perimeter, and compactness or

other characteristics, such as moments [73].

One of the most popularly employed global descriptors is called Histogram of Oriented

Gradients (HoG) [8]. In this method either the entire image domain or a large image

segment representing a region of interest is partitioned into several sub-regions; then

orientational histograms of image gradients are computed for each sub-region separately

and then stitched together into a single descriptor. This descriptor is quite discriminative

and to some extent robust to occlusions and illumination changes [74, 75].

There exists a large class of handcrafted image descriptors dealing with texture of

objects. A huge number of texture descriptors are proposed in the image processing and

computer vision literature. There are texture descriptors based on statistics of the first

order (e.g., moments, entropy), statistics of the second order (e.g. based on co-occurrence

matrices); there are also texture descriptors exploiting signal processing methods (filter

banks, Fourier or wavelet transforms etc.), geometrical methods (e.g. Voronoi Diagrams),

fractals and many other methods and techniques [76, 77, 78]. One of the widely used tex-

ture descriptors is called Local Binary Patterns (LBP). LBPs enable scale and rotationally

invariant texture descriptors which have been utilized for many different computer vision

tasks, e.g. object categorization, face detection and recognition, etc. [79, 80, 81].

Note that handcrafted image features of different types are often used in ensembles for
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solving different computer vision tasks. For instance, Wang et al. [75] combined HOG and

LBP for objects detection with the handling of occlusions, while Zhang et al. [82] used

the same combination of features for object localization. Lisin et al. [83] used a collection

of different local and global features for object category recognition. It has been shown

that ensembles of different handcrafted features often achieve better results compared to

the results obtained using only a single type of image feature.

2.1.3 Limitations of the Handcrafted Image Features

In general, handcrafting of image features requires good domain expertise, creativity, and

solid engineering and practical skills. In the previous two subsections it is demonstrated

that there exists a huge number of hand-designed image features of various types. These

features address different visual aspects of objects, such as shape, colour, and texture.

They are built on absolutely different heuristics and exploit different mathematical tools.

And yet the existing handcrafted image features are quite far from perfection.

It has been noted that the progress of the methods based on handcrafted image features

substantially slowed down around 2010-2012 [13]. The apparent reason for this is that

in general the complexity and the variability of image structures is too large to be fully

captured by handcrafted image features of any type and handcrafted object or category

models. The number of existing objects and object categories is very large, while every

single object may appear in images in near-infinite number of ways due to a variability

of possible relative positions and orientations of this object relative to a camera, changes

of illumination, articulations (for non-rigid objects), occlusions, etc. All these reasons

explain that the overall complexity of the object categorization problem is enormously

large and, therefore, it is very hard to manually design image features that are sufficiently

well generalized to work in multiple different scenarios.

The introduction of the large-scale object categorization datasets [15] and challenges

[14] made it quite difficult to achieve further rapid progress with handcrafted image fea-

tures and hand-designed frameworks exploiting them.
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2.2 Deep Learning in Computer Vision

While the progress of the methods exploiting handcrafted image features substantially

slowed down in 2010-2012, deep learning methods became the most popularly employed

tool for a large variety of computer vision tasks. Deep learning is a subfield of machine

learning represented by a number of approaches that learn a multiple layer representation

of the input data, i.e. a hierarchy of features, where high-level abstractions are defined in

terms of lower-level ones and relations between them. The main reason for the tremendous

success of the deep learning methods in computer vision is that these methods successfully

bridge a large semantic gap between local features and global high-level abstractions by

statistically learning the mid-level cues representing structural dependencies of features

on multiple processing layers. Inference in deep learning methods is also performed on

multiple hierarchical levels which help to gradually restrict an otherwise computationally

prohibitive search space. For instance, in CNNs inference is represented as a sequence of

convolution and pooling operations which are done on multiple processing layers.

The work of Krizhevsky et al. [17], published in 2012 demonstrated that their CNN-

based framework (called AlexNet) outperformed the existing methods based on hand-

crafted features by a large margin in the large-scale object category recognition problem

[15]. This publication is sometimes considered to be one of the most important milestones,

which ultimately changed the main focus of attention of the computer vision community

from methods based on handcrafted features to deep learning methods.

2.2.1 Biological Motivation

The concept of deep learning is supported by findings about biological vision systems,

showing that the seemingly effortless performance and speed [3] of biological vision systems

becomes possible due to their hierarchical multi-layer architecture. A large number of

papers dedicated to the biological visual systems describe a hierarchical organization

and functional mechanisms of primates vision systems, for instance, [84, 85, 86, 87, 88,

30



89]. Kruger et al. provide a good review [90] of the related literature, describe the

functional principles and structures that underlie the primate visual cortex and summarize

the principles that may be used in computer vision systems. Some of their findings can

be described as follows:

• A large part of the primate neocortex (up to 55 percent) deals with the vision

pipeline which has a hierarchical organization comprising six layers;

• Neurons in the lower layers respond to primitive features (e.g. edge orientation,

disparity, motion) over small local regions of visual space, termed receptive field.

The information about activations of these neurons is then passed to neurons of the

higher layers which respond to more complex features;

• Receptive fields cover larger and larger regions of the visual space for the higher

layers;

• Visual system of primates contains separate, though having multiple inter-dependencies,

channels that process different types of visual information such as colour, contour,

motion, texture, and 3D shape information.

The organization of biological vision systems exhibits several computational advan-

tages. Since the layers are built on top of each other, there exists shareability (reusability)

of the elements of the lower layers, which is a very important block facilitating generaliza-

tion capabilities of vision systems. The existence of separate channels for different visual

aspects (such as colour, texture, motion, etc.) leads to a more compact representation and

helps to avoid a combinatorial explosion of an integrated representation. The existence

of separate channels also facilitates the ability of robust inference when the information

from some channels is missing.
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2.2.2 Artificial Neural Networks

Despite the recent increase in popularity of the deep learning methods, they first appeared

a long time ago, for instance, Fukushima’s Neocognitron [91] was proposed in the 1980s.

Currently artificial neural networks represent an extremely fast-growing area, such that

many new publications on ANNs appear every month. That is why there exists a large

number of variations of ANN-based architectures and many of them are branched from

a few original parent architectures. The existence of multiple software tools, such as

Caffe [49], Torch [50] and Theano [51] providing a very rich functionality for artificial

neural networks and supporting massively parallel computations on GPUs facilitates rapid

development of new systems thus causing very fast progress in the field.

The existing ANN-based methods can be split into two large categories: supervised

and unsupervised. The unsupervised methods are represented by autoencoders, restricted

Boltzmann machines (RBMs), and deep belief networks (DBNs), while supervised meth-

ods are represented by the convolutional neural networks (CNNs) and recurrent neural

networks (RNNs).

Autoencoders [92, 93, 94] are unsupervised neural networks which have input and

output layers with the same number of nodes, and several hidden layers between them.

The main purpose of autoencoders is to reconstruct the high-dimensional input data using

low-dimensional codes, which are computed in the central hidden layer of the network.

Autoencoders can be used for dimensionality reduction, image denoising [93] and for other

tasks. In 2012 Le et al. [94] proposed a 9-layer autoencoder interchanging three times the

local filtering, pooling, and local contrast normalization. Although their architecture was

trained in an unsupervised manner on unlabeled images, and therefore the features were

not tuned for category label prediction, the authors applied the features to the object

categorization problem and reported nearly 70% accuracy improvement over the previous

state-of-the-art methods based on handcrafted image features (namely 15.8% vs. the

previous best result [95] demonstrating 9.3 % accuracy).

Restricted Boltzmann machines (RBMs) [96] are generative stochastic artificial neural
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networks that learn a probability distribution of the input variables. RBMs comprise a

layer of visible (binary or real-valued) units and a layer of binary hidden units with no

intra-layer unit connections. A deep belief network is a generative neural network with

multiple layers of hidden units. Units of the adjacent layers are fully connected, but there

are no connections between units of the same layer. That is why DBNs are often considered

as stacks of restricted Boltzmann machines where each subnetwork’s hidden layer is used

as a visible layer for the next layer. Deep belief nets became particularly popular after

Hinton’s publication [97] in which he proposed a fast greedy learning algorithm, in which

the layers are learned sequentially from the lowest to highest and using the previous layers

activations as inputs for the next layer. In addition, another algorithm for fine-tuning

of a DBN can be applied in order to increase its discriminative power. One of the most

attractive properties of the DBN-based architectures is that, since they are generative

models, they can be used to generate new samples for the learned distributions, i.e. they

can be applied not only for recognizing images but also for generating them. For instance,

a DBN trained on a dataset of images of handwritten digits can be used to generate images

looking as plausible handwritten digits [98]. Lee et al. [99] proposed a convolutional

deep belief network which, in contrast to standard DBNs, has a property of translational

invariance (which is achieved by using convolutional operations) and allows applying

DBNs to images of large size, by exploiting max-pooling layers which are purposed to

downsample the representation at higher layers. Different architectures based on DBNs

are also used in 3D shape analysis, which will be discussed in Chapter 3.

The most commonly used in computer vision type of ANNs is convolutional neural

networks. Convolutional neural networks have been applied for many computer vision

applications, such as object detection and segmentation [13], object categorization [17,

100, 101, 102], object localization [100], scene classification [103], fusion of 2D features

and surface features [6], etc.

CNNs typically comprise several interchanged convolutional and pooling layers, fol-

lowed by two or three fully connected layers taking input weights from the whole image
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domain. One of the most influential CNN-based architectures is AlexNet of Krizhevsky et

al. [17], which is also implemented in different software libraries, such as CaffeNet [49] and

Theano [51], and from there serves as a basis for many other recent CNN-based methods

[13, 26, 100, 102]. AlexNet comprizes five convolutional layers, most of which are followed

by max-pooling layers. The first convolutional layer contains 3×224×224 neurons, which

are activated by the pixel values of an input 224 × 224 RGB image. If input images are

larger than 224 × 224, they have to be downsampled and/or cropped before undergoing

AlexNet. The first convolutional layer has relatively large receptive fields of size 11× 11

nodes and 4 nodes distances (called strides) between the neighbouring receptive fields1.

Higher layers of AlexNet are represented by three fully connected layers with 4096 units

each, and the output softmax layer comprising 1,000 units2. The output of the softmax

layer is a set of 1,000 positive numbers which sum up to 1 and can be considered as a

probability distribution of the predicted category labels.

Many subsequent papers from different authors proposed modifications of different

parameters of this architecture. Zeiler and Fergus [101] used smaller receptive fields at the

first convolutional layer 7× 7 and decreased strides to 2 nodes. Simonyan and Zisserman

[100] further decreased the receptive field at the first convolutional layer to the size 3× 3

nodes and made 1-node strides (thus creating receptive fields centered in each node) and

studied an influence of the depth of the network, i.e. the number of convolutional and

pooling layers.

Some authors use CNNs pre-trained on ImageNet for object categorization on other

datasets. There are two main ways how this can be done. The first way does not assume

re-training of a CNN; it involves only inference of features from different layers from

novel images and then the usage of linear SVM or other classifier for recognition. The

experiments show that the features learned by CNNs on ImageNet are general enough to

be successfully used for object categorization on other datasets3. For instance, Schwarz

1Receptive fields in this case are partially overlapped, tiling the input image.
2Corresponding to the number of object categories in the ILSVRC challenge [14].
3Except of the features of the higher fully connected layers and the softmax layer, which are very

category and data-specific.
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[102] used the features extracted from the CNN pre-trained on ImageNet for categorization

of the Washington RGB-D dataset [48] and achieved the state-of-the-art results. Another

commonly used technique is fine-tuning of the system in which the lower layers are taken

from a pre-trained network without changes, while the higher layers of the network are

re-trained on a new dataset. This approach is commonly used because it is much faster to

re-train only higher layers and because the features of lower layers learned from ImageNet

are proved [104] to be sufficiently general, i.e. not specific to particular datasets or object

categories.

2.3 Compositional Hierarchical Architectures

In this Section the literature on hierarchical compositionality and existing 2D compo-

sitional hierarchical systems is reviewed. Most of the existing compositional hierarchi-

cal architectures are built on the set of common design principles (outlined in Section

1.1.5). They usually have primitive image features at the lowest level, more complex

compositional parts representing structural dependencies of subparts at the middle lev-

els, and abstracted object or image models at the top levels. Compositional parts are

usually non-rigid, i.e. they tolerate some variance of relative positions of subpart. De-

scription of the lower layer parts is commonly more precise, while parts of the higher

layers are described more coarsely. Many authors report common properties of the com-

positional hierarchical systems, such as reusability of parts across different objects and

categories [105, 106, 35, 36, 31, 107, 108, 42] and sublinear growth with the number of

images/categories used for training [109, 35, 107, 42].

Having emphasized that most of the compositional hierarchical architectures are com-

mon in spirit, as they mainly follow similar general principles, it has to be pointed out

that most of them substantially differ from each other in mathematical formulation, rep-

resentation, architecture and the actual mathematical means used in the learning and/or

inference phases. That is why it is very hard or impossible to present a commonly ac-
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cepted mathematical theory employed across multiple compositional hierarchical systems.

In fact, different researchers and research groups often introduce different terminology and

notation, propose different mathematical formulations of the problem and set up their

own compositional hierarchical systems. It should also be mentioned that there are no

software engines, such as toolboxes or libraries, commonly used across different compo-

sitional hierarchical systems, therefore these systems are usually developed from scratch

independently from each other.

These are the reasons why the following literature review mainly focuses on a com-

parison of different compositional hierarchical systems on a conceptual level, and on the

level of the most important design principles and properties of these systems, having in

mind that actual mathematical formulations and solutions are often very different any-

ways. The rest of this Section is organized as follows. Subsection 2.3.1 describes the

theoretical work in the area of hierarchical compositionality and related areas, Section

2.3.2 describes computer vision systems based on stochastic grammar formulated as And-

Or graphs. Though these systems are not usually considered as compositional hierarchical

ones, they are closely related. Section 2.3.3 compares existing compositional hierarchical

systems based on different criteria, while Section 2.3.4 analyses the level of experimental

evaluation of the existing compositional hierarchical systems.

2.3.1 Theoretical Work on Hierarchical Compositionality

There exist several theoretical works describing the principles of hierarchical composition-

ality and closely related topics. Geman, et al. [28] propose a mathematical formulation

for hierarchical compositionality. They justify the approach where objects are represented

by a hierarchical library of compositional parts statistically learned from the training set.

The authors show the importance of statistical learning of the mid-level features (e.g.,

arcs, junctions) which are in turn used as building blocks for higher level parts. Compo-

sition rules are defined as a set of syntactic rules under which subparts are composed to

form parts of the next layer. Recursive application of the composition rules should lead to
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a set of recognizable shapes. The authors suggest that the redundancy of a representation,

i.e. the possibility to have multiple explanations for the same data may be a good idea

since the existence of multiple explanations provides higher chances of finding the correct

solution through several alternative inference paths. The authors also show connection

of their vocabulary learning approach with the Rissanen’s Minimal Description Length

(MDL) principle [110].

Theoretical works of Potter [44] and Huang [45] propose making a scale and rotation

invariant compositional hierarchical system by introducing relative coordinate systems

(in contrast to the image-based “absolute” coordinate system). However, they demon-

strate the performance of their methods only for handwritten digit and letter recognition

systems, while the complexity of real-world images (and 3D structures) is substantially

larger; that is why introducing relative coordinate systems for real world images may

be a very difficult task. The recent work of Mete Ozay et al. [39] proposed another

way of achieving of scale and rotational invariance by defining a shape manifold within a

hierarchical compositional system.

The recent work of Yuille [41] published in 2016 summarizes the main principles of

hierarchical compositionality and the properties of the existing compositional hierarchical

systems. He provides a complexity analysis of the learning and inference phases in com-

positional models and analyzes the applicability of compositional hierarchical systems to

parallel computing. This work of Yuille is interesting from the theoretical point of view,

however, it is primarily focused on summary and performance analysis of the existing hier-

archical compositional frameworks, and its purpose is not to propose novel compositional

hierarchical frameworks.

The theoretical work of Guo et al. [111] formulates a measure of importance for 2D

object shape parts. The importance of each local part is measured based on its contribu-

tion to the perception and recognition of the global object shape. The authors compute

a measure of global shape reconstructability given local contour fragments. Even though

the results of this work are not used in this thesis directly, we study and experimentally
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evaluate different measures of part importance which are employed in the part selection

procedure where decisions about promoting the compositions to the higher layers are

made (see Chapter 5 for more details).

2.3.2 And-Or Trees

In this subsection the computer vision architectures based on And-Or Trees (AOT), also

referred to as And-Or graphs) are discussed, since they are closely related to the compo-

sitional hierarchical architectures. The term And-Or Tree was first introduced in 1984

by Pearl [112] in the area of AI, however, a number of computer vision algorithms based

on AOTs were developed much later (since 2006) by H. Chen et al. [113], Y. Chen et

al. [114], S. C. Zhu and D. Mumford [115], L. Lin et al. [116, 117], Z. Xu et al. [32],

Z. Si et al. [35], Y. Lu et al [118], Li et al. [119], W. Hu et al. [43], Wu et al. [120].

AOT is a stochastic image grammar that provides reconfigurable templates for represent-

ing valid configurations of image features. And-nodes represent compositions of subparts

with certain spatial relations, while Or-nodes serve as switching variables that choose

between multiple possible sub-configurations of objects. Thus And-Or trees are capable

of describing different spatial configurations of models with a large shape or appearance

variability. Methods based on And-Or trees have been applied to different computer vision

tasks including object categorization, tracking, detection, segmentation and object/image

parsing. In some works, e.g. [116] it is shown that And-Or trees can represent generative

models, stochastic sampling from which enables generation of new category instances.

Many compositional hierarchical methods do not use And-Or Trees directly, but follow

similar principles or use similar data structures for hierarchical representation (e.g. similar

tree-based structures are used by Zhu et al. [33, 121]). The compositional hierarchical

systems proposed in this thesis uses OR-nodes as a switching variable between different

spatial arrangements of subparts forming similar shapes on each layer, except the first

one. More details are presented in Chapters 4, 5, and 6.
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2.3.3 Existing Hierarchical Compositional Systems

In this subsection we compare different compositional hierarchical and related architec-

tures based on different criteria.

Application of the compositional hierarchical systems. Compositional hierar-

chical systems have been used for many different computer vision tasks, such as object

categorization [122, 105, 31, 30, 123, 124, 107, 117, 125, 126, 127, 36, 108, 42, 38], object

detection [105, 128, 114, 34, 108, 35, 119, 42, 120], localization [109], recognition of letters

and digits [44, 45, 106], image parsing and/or segmentation [115, 114, 33, 118, 37], face

representation [32], domain adaptation [37], multi-view object detection and pose estima-

tion [121, 38]. In general, the large variety of the problems addressed by the compositional

hierarchical systems explains a vast range of possible design choices.

Generative and discriminative models. Most of the compositional hierarchical

frameworks are generative models [105, 106, 116, 35, 125, 31, 42, 36]. Many authors

advocate unsupervised learning of the shape vocabularies [129, 31, 130, 33, 121, 30, 35,

42, 37], while there are some approaches adding discriminative parts to the vocabulary

[40].

First layer features. There exists a very large number of choices for the first layer

features in compositional hierarchical models. Invariant discriminative local descriptors

(mainly SIFT) are used as the first layer of some frameworks [125, 105, 126]. Small edge

segments (edglets) are the most common choice, made in [87, 131, 128, 132, 31, 123, 30,

33, 36, 107, 42, 37]. Kokkinos and Yuille use two types of the first layer features, namely

edge and ridge segments [109]. Hu et al. use edge segments and voxels [43]. Ommer et al.

exploit a codebook of quantized local feature histograms built from salient image regions

(Harris keypoints) [122, 108]. Small image patches are used by [133, 29, 129, 127]. Lin et

al. [117] have a set of generalized geometric primitives such as circle, ellipse, rectangle,

triangle, etc. at the first layer. Huang et al. [130] define a relatively large filter bank at

the first layer. Finally, Si et al. use four types of atomic features: edge, flatness, texture,

and colour features [35].
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Number of layers. There exist several shallow hierarchical architectures involving

two or three layers [87, 126, 105, 125]. However, most of the compositional hierarchies

contain more than three layers.

Bottom-up vs top-down learning and inference. The most common learn-

ing/inference method is bottom-up [31, 129, 34, 121, 36, 42], starting from the detection

of atomic features in the data and then proceeding through multiple layers towards high-

level abstractions. There are top-down methods, e.g. [127, 134, 108, 109], performing

recursive decomposition of complicated shapes into subparts. Some authors combine both

top-down and bottom-up phases [30, 114, 33, 117, 123, 37], sometimes iterating between

bottom-up and top-down phases several times.

The problem of the geometrical invariance of compositional hierarchical systems

attracted relatively little attention so far. Several authors addressed the problem of

rotational invariance of compositional hierarchies [44, 45, 37, 39]. Some authors [129,

126, 34] demonstrated a certain robustness of their systems to viewpoint changes, while

[121, 38] evaluated their systems on multiple views of objects and demonstrated part-

sharing across different views of the same objects. Ozay et al. [39] used shape manifolds

to achieve scale and rotational invariance of the compositional hierarchy. Another way

of achieving robustness to scale changes proposed in the literature is to downsample

the testing images several times before they undergo the inference procedure, and then

perform inference at several discrete scales [42].

Several authors show relations of their vocabulary-forming rules to Rissanen’s MDL

principle [28, 32, 36].

2.3.4 Experimental Evaluation of Compositional Hierarchical
Systems

In this subsection of the reported properties of the existing compositional hierarchical

systems are outlined.

Compositional hierarchical methods have been evaluated on a large number of datasets.
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For instance, LHI animal faces dataset containing 2200 images of 20 categories was used

by [117]. The Weizmann horse dataset comprising 328 images is employed by [114, 33,

121, 35]. Methods [35, 33, 121] use the Pascal VOC 2007 dataset containing 9,963 images.

Caltech 101, comprising 101 categories and more than 50 images per category, is the most

popular dataset used for evaluation of the compositional hierarchical methods used by

[130, 33, 135, 117, 134, 124, 42]. However, we have to mention that the Pascal VOC 2007

and the Caltech 101 datasets are often used partially, i.e. only subsets of images are used

for training. The UIUC car dataset includes 1050 training images and is used by [109].

The dataset of handwritten digits MNIST, comprising 60,000 images, is used in [130].

Geman et al. [106] use a small dataset of 458 car license plate images. [107, 109] perform

experiments on ETH dataset. Ommer et al. [122] take 700 images, while Sudderth et al.

evaluate their method on a dataset of 16 categories comprising 30 objects per category.

Savarese et al. [126] work with images from 10 categories. Fidler et al. [31] use 3200

training images.

The researchers report multiple properties of compositional hierarchical systems, and

these properties typically vary depending on the purpose of a system and the design

decisions made. Reusability of parts across different objects and categories is reported

by [131, 105, 106, 35, 36, 31, 107, 42]. Part sharing between different views of the same

object is reported by [121, 38]. Sublinear growth with the number of images/categories

used for training (also termed scalability) is shown by [131, 107, 109, 35, 42]. Most of

the methods perform batch learning on a full training set, while some methods [131, 107]

use sequential learning of categories such that new parts are included in the vocabulary

only in case new training examples cannot be expressed by the existing vocabulary parts.

Compactness of the representation is reported by [35, 31].

Fast inference, achieved by efficient indexing schemes, is highlighted in [31, 135, 36].

It is worth mentioning, that the idea of using indexing to reduce the number of matching

operations during inference is not novel and has been employed in computer vision for a

long time [136, 137]. However, compositional hierarchical architectures allow implementa-
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tion of very efficient indexing schemes, which gradually and coherently restrict the search

space on multiple hierarchical layers.

There are several conclusions which can be made. First, the compositional hierarchical

methods have been evaluated on relatively small datasets which are at least three orders

of magnitude smaller than the current state-of-the-art datasets, e.g. ImageNet [15]. Sec-

ond, according to the best of our knowledge, there are no papers presenting the results

of direct experimental comparison of compositional hierarchical systems against modern

state-of-the-art ANN-based systems. In general, it is obvious that currently the compo-

sitional hierarchical methods are not at the level of performance of modern ANN-based

methods in the object categorization task. It is also quite hard to compare (on basis

of the literature review) many other properties of compositional hierarchies against the

corresponding properties of ANN-based architectures. For instance, such properties as

scalability, inference time, storage demands, etc., should rather be compared when both

systems are evaluated on datasets of a comparable size, however, the literature review

does not provide enough information for such a comparison.
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CHAPTER 3

LITERATURE REVIEW: REPRESENTATION OF
3D SHAPE

There is no universally accepted way of representing 3D data. The most common data

types for representing surfaces are depth images, point clouds, and triangulated mesh

models, while 3D occupancy grids [138] are used to represent the volumetric data. Note,

that other ways of representing 3D data may be used for some specific purpose, for

instance, octrees and kd-trees are often used within different computational algorithms to

speedup computations and for other purposes [139, 140]. This chapter reviews the main

types of 3D shape features proposed for the object categorization and for the related

problems, for example, 3D shape retrieval. Note that the volumetric representation is

much less frequently used than the surface representation, that in why this chapter is

mainly dedicated to surface shape features.

Handcrafted shape features have been dominant in 3D shape analysis for a long time,

and only very recently (approximately since 2015) the situation started changing as a

number of novel deep learning frameworks, specially designed for 3D data, appeared.

However, in contrast to the 2D domain where the deep learning methods already demon-

strated their superiority over the methods based on handcrafted image features in most

of the mainstream challenges (e.g. the annual ILSVRC challenge [14]), the situation in

the 3D domain is quite different. On the one hand, a very large number of proposed

handcrafted surface shape descriptors demonstrate many useful properties, such as a dis-
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criminative power and an invariance to rigid body transformations, scale changes and to

isometric deformations of shapes. On the other hand, the deep learning methods for 3D

shape analysis are still quite far from perfection and they have severe limitations, which

will be analyzed in this chapter.

It is also worth mentioning, that in contrast to the 2D domain, where very large

datasets [15] comprising millions of RGB images are used for training and evaluation of

the state-of-the-art methods, much smaller datasets are used in the 3D shape analysis

for these purposes. For example, the ModelNet [18] dataset of rigid objects, which is

very popularly employed for evaluation of the 3D deep learning methods, contains around

10,000 models split into 40 categories. The existing datasets of deformable objects are

even smaller, for example, SHREC’15 dataset [141] comprises 1200 models split into 60

categories. As for the datasets of depth images, the Washington RGB-D dataset [48]

comprising 300 objects1 split into 51 categories is still very intensively used. That means,

currently in the 3D domain it is not yet possible to run the experiments of the same scale,

as it is done in the 2D domain.

The rest of the chapter is organized as follows. Section 3.1 is dedicated to handcrafted

shape features, namely local and global descriptors, while Section 3.2 describes the deep

learning methods used in 3D shape analysis.

3.1 Handcrafted Shape Features

Handcrafting of shape descriptors is a very application-dependent and data-dependent

process, that is why the required properties of the shape descriptors may vary substan-

tially. The most commonly addressed properties of shape descriptors are their discrimina-

tive power, robustness to data degradations, invariance to rigid body transformations, i.e.

translations and rotations, scale invariance and an invariance to isometric deformations

of shapes.

1However, it has many views for each object
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A huge number of handcrafted shape descriptors have been proposed, and these de-

scriptors are based on very different heuristics and exploit non-similar mathematical tools.

Different authors propose multiple ways of classifying the existing shape descriptors, for

example, splitting them into local and global shape descriptors, view-based and model-

based once, extrinsic and intrinsic ones, etc.1 To organize this section I used a splitting

into local and global shape descriptors, however, before going to the corresponding sub-

sections I shortly explain what is meant by the other terms.

The view-based descriptors (e.g. [142]) are those that measure certain shape charac-

teristics relative to a position of a camera, for example, encoding statistics of orientations

of surface normals relative to a viewpoint direction. The Histogram of Oriented Nor-

mal Vectors (HONV) proposed by Tang et al. [142] assumes that each surface normal

~n originating at a point ρ increases a score of a histogram bin, chosen according to the

position of ρ and orientation of ~n relative to the camera-based reference frame. Though

such descriptors are usually quite easy to compute, and they can be effectively used in

some applications, their general drawback is that they are much less robust to viewpoint

changes and camera in-plane rotations than the model-based descriptors (e.g. [143, 144]),

which are computed using the shape model properties only (e.g. geometric or statistical

properties), and do not depend on the model’s position relative to a camera.

In the literature, the surface shape descriptors are quite often split into intrinsic and

extrinsic ones2. Surfaces typically represent 2D manifolds embedded in the 3D Euclidean

space. The intrinsic descriptors depend on manifold properties only and do not depend

on how this manifold is embedded in the 3D space, while the extrinsic descriptors depend

on embedding of the manifold to the 3D Euclidean space. For example, the intrinsic de-

scriptors may be based on geodesic distances between points on a manifold [145], as these

distances remain unchanged both for rigid body transformations and isometric deforma-

tions of a shape, making these descriptors useful for different shape analysis applications,

1Obviously, due to a very large variability of the existing shape descriptors any type of splitting is not
precise anyways, as some descriptors may be assigned to both classes or to neither of them.

2These terms originally came from the differential geometry of surfaces
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Figure 3.1: Intrinsic properties, e.g. geodesic distances between points on a manifold are
independent of embedding of the manifold in the 3D space. In contrast, the extrinsic
properties, e.g. principal curvatures k1 and k2 depend on the actual type of embedding

including analysis of deformable shapes. To illustrate this, let us consider the example

shown in Figure 3.1. Assume, we have a manifold and a set of points defined on it. When

we change the embedding of this manifold in the 3D space, the intrinsic characteristics,

for instance, pairwise geodesic distances between points remain unchanged, while the

extrinsic properties, e.g. principal curvatures k1 and k2 are being changed1.

3.1.1 Local Shape Descriptors

Early approaches for 3D shape analysis did not exploit any specially designed local shape

descriptors, instead they mainly used local geometrical surface characteristics, for exam-

ple, taken from the differential geometry of surfaces. For instance, Medioni and Nevatia

[146] used principal curvatures and Gaussian curvature for surface description, Vemuri et

al. [147] used principal curvatures as well, while Besl et al. [53] exploited a relatively large

number of geometrical surface characteristics, for instance, mean and Gaussian curvatures,

principal curvatures and other characteristics based on surface partial derivatives and on

the coefficients of the first and second fundamental forms of a surface. Though some of

1Note, however, that the Gaussian curvature K = k1k2 which is a product of the two principal
curvatures k1 and k2, neither of which is an intrinsic surface property, is an intrinsic property. In the
illustrated example, Gaussian curvature K = 0 for any type of embedding.
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these characteristics (e.g. principal curvatures) are still successfully employed within the

recent state-of-the-art methods [21] the approaches based only on them did not have a

sufficient discriminative power, that is why a large number of more discriminative shape

descriptors have been proposed in the next decades.

In general, local shape descriptors are purposed to assign to a given point on a shape

a number or a multi-dimensional vector representing local shape properties around this

point. Some approaches involve computation of shape descriptors for each point of a

shape, while other approaches search for special characteristic points (also termed key-

points) on a shape, and compute the shape descriptors only in neighborhoods of these

points. Some of the keypoint detection algorithms used in shape analysis extend the cor-

responding 2D algorithms, for example, Harris-3D [148] or 2.5D SIFT [149], while most

of the algorithms are specifically developed for the 3D domain, for instance, the algo-

rithms exploiting local curvature maxima [150], eigenvalues of the covariance matrix of

the neighboring points [151], spectra of the Laplace-Beltrami operator [152], etc.

As for the local shape descriptors themselves, few of them also represent adaptations

of the successful 2D descriptors to the 3D domain, for instance, depth-SIFT [153] or

SURF [154], however, it is much more common to design specific descriptors for the 3D

shape domain. All local shape descriptors, designed for the 3D domain, can be broadly

split into several groups according to the mathematical tools they employ, for instance,

to histogram-based, signature-based, and transform-based, kernel-based and other types

of descriptors.

The first group of the local shape descriptors is histogram-based descriptors. Many

local shape descriptors represent histograms of surface points1 in a local neighbourhood.

Johnson and Herbert [9, 155] introduced the two-dimensional histograms, called spin

images, describing surface locations around a given point ρ on a surface. The support

region of a spin image at this point is a cylinder of a pre-defined radius and height centered

in ρ such that the axis of the cylinder is aligned with the surface normal ~n at the point ρ.

1Remember that surfaces are typically represented by point clouds or depth images, both of which
basically represent a set of points on a surface
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This support region is divided linearly into radial and vertical segments, thus forming a

two-dimensional histogram. The score of each bin is computed by counting the points that

fall within this bin. Since the input data may be represented by an irregular point cloud,

each point included in the corresponding bin is weighted by the inverse of that points

density estimate. Spin images have been employed in multiple applications, and have

been for a long time considered to be a benchmark against which many other descriptors

(e.g. [156, 157, 158, 159, 160, 161]) were compared. Different variations of spin images

have been proposed to improve their discriminative power and robustness to geometric

transformations such as scale and viewpoint changes [162, 163].

Rusu et al. proposed descriptors called Point Feature Histograms [143, 164] charac-

terizing the local surface geometry around a given point ρ, by encoding both positions of

points on a surface around ρ and orientations of surface normals at these points. Another

key difference from the spin images is that local reference frames (LRFs) based on the

Darboux frame1 are defined for each point to partition the neighborhood of this point

to histogram bins. In general, usage of local reference frames helps to align the underly-

ing data making the descriptors invariant to rigid body transformations, such that those

surfaces that differ from each other only by translation and rotation are characterized

by the same descriptor values. Zhong et al. [144] also use a histogram of points in a

local neighborhood of a given surface point, but they define the histogram bins using a

LRF made of eigenvectors of the covariance matrix of the neighboring points. Kokkinos

et al. [165] proposed a histogram-based descriptor called Intrinsic Shape Context (ISC)

representing a local histogram defined on an intrinsic local polar coordinate system. ISC

is not designed for any particular surface characteristic, instead, it can be applied to any

scalar or vector field representing a local geometric property of a shape. Other examples

of histogram-based local shape descriptors are [157, 166, 167, 161].

The second group of local shape descriptors is signature-based descriptors. In con-

trast to the histogram-based descriptors which aggregate certain geometric measures over

1Darboux frame represents a surface normal at a given point and two directions of principal curvatures
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all points from the local neighborhood of a keypoint ρ, the signature-based descriptors

compute geometric measures individually for each point of a subset of the neighborhood.

There are different ways how a subset can be obtained. For instance, Stein and Medioni

[168] define geodesic circles around a keypoint ρ and compute the signature encoding

angular distances between the surface normal at the point ρ, and surface normals of all

points on the geodesic circle. Sun et al. [169] also defined geodesic circles around a

point ρ and then project these geodesic circles to a tangent plane of a surface at the ρ,

thus obtaining curved lines on a tangent plane, which they call points fingerprint descrip-

tor. Castellani et al. [159] defined a spiral pathway around the keypoint ρ and build

a signature extracting different surface characteristics (e.g. principal curvatures) for all

points along this pathway. Other examples of signature-based local shape descriptors are

[156, 158, 160].

The third large group of local shape descriptors is transformation-based ones. These

descriptors transform the local shape neighborhood of a keypoint from the spatial domain

to other domains, for instance, to the spectral domain, and then compute shape descrip-

tors by encoding the information in the transformed domain. For example, Hu and Hua

[152] applied the Laplace-Beltrami operator to local surface patches and built a discrim-

inative descriptor for shape matching and retrieval using the spectrum of this operator.

Properties of the Laplace-Beltrami operator made this descriptor invariant both to rigid

body transformations, and to isometric deformations of the shape. Knopp et al. [170]

proposed voxelization of a mesh model and applied Haar wavelet transform to voxelized

3D images. Then the responses to the wavelet transform are used to define a LRF and

build the descriptor. Another example of transformation-based descriptors is Optimal

Spectral Descriptor proposed by Litman and Bronstein [171].

The next class of local shape descriptors is kernel-based ones. Bo et al. [172] intro-

duce kernel descriptors for shape analysis, proposing three types of kernel-based descrip-

tors for depth images and point clouds, namely size kernel descriptor, kernel PCA descrip-

tor, and spin kernel descriptor. Sun et al. [10] proposed a Heat Kernel Signature (HKS)
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descriptor based on a physical model of heat diffusion on a manifold, which is described by

the heat equation. As the heat kernel represents a fundamental solution to the heat equa-

tion, the authors defined a diagonal heat kernel ht(ρ, ρ), also called autodiffusivity function,

which can be physically interpreted as an amount of heat remaining at the point ρ after

time t. The heat kernel signature is defined as HKS(ρ) = (ht1(ρ, ρ), ht2(ρ, ρ), ..., htn(ρ, ρ)),

where ti shows different diffusion times and n is a number of time samples. HKS has be-

come a very popular descriptor for many applications, because it is fully intrinsic, and

therefore invariant to both rigid body transformations and to isometric shape deforma-

tions, it is dense, i.e. can be computed at each point on a shape, scale invariant (in the

modification proposed by Bronstein et al. [173]), robust to noise and computationally ef-

ficient. Another example of the very popularly employed kernel-based descriptor is Wave

Kernel Signature (WKS) proposed by Aubry et al. [174] which is based on the physical

model of a quantum particle on a manifold described by the Schrodinger equation.

There exists a relatively large class of intrinsic isometrically invariant shape descriptors

which are based on geodesic distances between points on a surface. Such approaches

involve defining a set of points on a surface, measuring pairwise geodesic distances between

these points (for example, using the fast marching algorithm [175]), and creating a geodesic

distance matrix (GDM) based on these distances. Various descriptors computed from

GDM have been proposed, for instance, the histogram comprising all matrix elements,

largest singular values of GDM, largest eigenvalues of GDM, singular value decomposition

of GDM, and many other descriptors [145, 176, 177, 178, 179]. Note, however, that the

GDM-based descriptors can be both local, i.e. when geodesic distances of points located

within a certain neighborhood are computed, and global, where the points used for GDM

computation are distributed across the whole shape1.

Concluding the subsection on the local shape descriptors we have to emphasize that

this overview is quite far from covering all existing descriptors because in general, the

handcrafted shape features is not the subject of the research of this thesis. A more detailed

1Having mentioned that, we will not describe GDM-based descriptors again in the next subsection
dedicated to the global shape descriptors.
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overview of local shape descriptors is presented in [180], while a very thorough overview

of shape features (both local and global) applicable for non-rigid 3D shape analysis can

be found in [181].

From the presented examples of the local shape descriptors, we can make several

important conclusions. First of all, though some successful descriptors used for 2D image

analysis have been adapted for the 3D domain, it is much more common to design special

descriptors for this domain, since such descriptors are purposed to exploit a very rich

surface geometry information. Second, the necessity of geometrically invariant shape

descriptors has been widely emphasized by many authors. The first principle way of

achieving invariance is to build the descriptors on top of the invariant shape characteristics

[169, 145, 176, 177, 10, 173, 174, 165, 179], while the second way is to define a data-driven

local reference frame (or at least one local axes) for aligning the data before computing

shape descriptors [168, 155, 169, 157, 158, 143, 144, 167, 160, 166, 170].

3.1.2 Global Shape Descriptors

In contrast to the local shape descriptors describing the local shape properties, the global

descriptors describe the entire 3D object, therefore such descriptors are much less suit-

able for recognition of a partially visible object, which is an important task in computer

vision. Global descriptors are therefore more commonly used in 3D shape retrieval, than

in computer vision, that is why in this we provide only a very short overview of those

methods and recommend the surveys of 3D shape retrieval methods [182, 181, 183] for

further reading.

Simplest global shape features address different geometric and statistical characteristic

of shapes, such as the volume to surface ratio, statistical moments [184, 185]. Corney et

al. [186] introduce convex-hull based indices, for example, the ratio of the object surface

area and the surface area of its convex hull, the ratio of the convex hull volume and the

object volume, etc. Elad et al. [187] used statistical moments as global shape features.

Histogram based descriptors are quite popularly employed in shape analysis. Fang et
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al. [188] propose a global shape descriptor called Temperature Distributor (TD), repre-

senting a one-dimensional histogram. This histogram is computed in several steps. At the

first step, a unit heat is applied to a point on a surface. Then the diffusion, driven by the

heat equation is computed and the distribution of surface point temperatures is measured

after a fixed diffusion time. Then this procedure is repeated for each surface point, and

the average temperature distribution is encoded by the TD descriptor. Later Fang and

his colleagues [189] proposed a Heat Shape Descriptor (HeatSD) describing probability

distribution of HKS on a given shape, representing a two-dimensional histogram aggre-

gating values of HKS descriptors at multiple time scales. For instance, if each HKS has n

time samples, and the number of histogram bins is nb then the HeatSD will represent the

n×nb histogram. Therefore, in contrast to the TD, the HeatSD is a multi-scale descriptor,

providing a local-to-global description a shape. Both these descriptors are fully intrinsic

and therefore invariant to rigid body transformations and to isometric deformations of

shape.

Signature-based methods are also quite commonly employed as global shape descrip-

tors. Osada’s Shape Distributions [190] is a method for computing shape signatures for

arbitrary 3D models, in which random points on a surface are first defined, and then

different measures based on distance, angle, area and volume between those points are

computed. Li et al. [191] use Monte Carlo sampling to extract distinctive shape signatures

from 3D models.

Transform-based method are represented by Fourier-based descriptors [192], Kazh-

dan’s Spherical Harmonic Descriptor [193], 3D Zernike moments [194], wavelet-based de-

scriptors [195], and the descriptors based on the Laplace-Beltrami operator, for example,

using the spectrum (eigenvalues) of this operator [196], and shape embedding using eigen-

values and eigenfunctions of the Laplace-Beltrami operator [197].

Tabia et al. [198] proposed a Covariance Descriptor for 3D shape retrieval, which

exploits covariance matrices of local shape features. An interesting branch of global shape

descriptors approaches involves estimation of object skeletons or medial axes [199, 200];
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the matching is then done by establishing the correspondence between the skeletons.

3.2 ANN-based Methods for 3D Shape Analysis

It is shown in Chapter 2, that the convolutional neural networks achieve a break-through

performance in object categorization from 2D images as well as in other problems such

as object detection, segmentation, etc., and therefore have de facto become a default tool

for solving many problems. Such results are possible not only because CNNs successfully

learn structural dependencies of features on multiple hierarchical layers, thus bridging

a semantic gap between low-level image features and high-level abstractions (object or

category models) but also because CNNs are specially adapted for learning and inference

from the image domain, which represents a rectangular or square area in the 2D Euclidean

space, regularly sampled by a pixel grid.

Many important design principles on which the CNNs are based assume the existence

of the domain of the type. For instance, this domain is naturally partitioned to the

evenly spaced local receptive fields of a square form in which convolution operations are

applied. Convolutional layers are usually coupled with pooling layers which are purposed

to simplify outputs of convolutional layers by reducing the spatial resolution, typically

by replacing each square region (e.g. 2×2 nodes) on the previous layers by a single node

on the next layer. After several convolutional and pooling layers the output, which by

this time has a low spatial resolution, is transferred to one or more fully connected layers,

whose nodes take input values from the whole image domain, and therefore purposed to

respond to the global image structures.

It has been pointed out that direct application of classical CNN architectures and

similar methods for 3D shape analysis is a difficult task due to multiple reasons. First

of all, surfaces shapes typically represent non-Euclidean manifolds embedded in the 3D

Euclidean space, on which there is no shift invariance, and therefore convolution does not

exist in a classical sense [19, 21]. There is a number of other problems, for example, how to
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partition a manifold to evenly spaced receptive fields, and how to re-define pooling layers

in absence of a regular sampling, which is naturally provided by a pixel grid in 2D image

domain, but maybe not easy to define for non-regular surface shapes. Generally, due to

these difficulties the adaptation of the CNNs to the surface shape analysis requires re-

defining of many important ingredients of this architecture. Consequently, there is still no

consensus on how these problems should be solved, that is why the researchers nowadays

follow dramatically different ways, each of which, however, has certain limitations.

3.2.1 Mapping from Manifolds to the 2D Euclidean Domain

All the approaches described in this subsection do not apply deep learning methods in the

input data domain, i.e. on surface manifolds, but rather exploit different ways of mapping

the input data to the 2D Euclidean domain, where CNNs and similar architectures are

very efficient, and solve the problem in this domain. There are multiple ways how this

mapping can be done, for instance, using the computer graphics rendering techniques [22],

projective geometry [23, 201], parameterization of a surface shape [21], etc.

Su et al. exploit the Phong shading model [202] to render grayscale images depicting

each input 3D shape model from multiple viewpoints. Then they use these images as

an input for the CNN, also introducing a special layer (termed view-pooling) which takes

input weights from multiple views thus performing a multi-view category recognition. Shi

et al. [23] use the projective geometry, i.e. they define a cylinder projection around the

object’s principal axis, to compute a panoramic image of this object, and then apply CNN

to the panoramic images. They also introduce a special layer, termed row-wise pooling

layer making the representation invariant to rotations about the principle axes (though

not invariant to rotations about two other axes)1.

Another way of mapping surface shapes to the 2D domain is to produce depth images

representing partial views of objects. Depth images can be computed using projective

1It should be mentioned that principle axis are quite often unstable [182, 203], especially for non-rigid
shape models with articulated parts, that is why the methods using object alignment by PCA may be
unstable for certain types of the input data.
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geometry, or captured by special depth sensors, such as Kinect of PrimeSense Carmine.

Zhu et al. and Feng et al. [25, 204] use depth images as an input for the autoencoders,

while Socher et al. [24] apply the architecture combining the CNN and the Recurrent

Neural Network (RNN) to learn the category representation from depth images. In these

cases, the depth images are processed by the deep learning algorithm in the same way as

if they were ordinary grayscale images, i.e. no special techniques purposed to exploit the

surface geometry are introduced. A general problem of such approaches is that in this

case a very rich surface geometry information can not be very fully and efficiently utilized.

In an attempt to mitigate this problem, several authors proposed colorization of depth

images, i.e. a conversion of a depth image to a multi-dimensional image (usually three-

dimensional one), where each channel encodes certain geometric characteristics of a shape.

For instance, Girshick et al. [13] proposed HHA colorization, in which the horizontal

disparity, the height above ground and the angle with gravity are computed. Shwartz et al.

[102] colorized the depth images by computing the distances of each point from the object’s

center, and then applying different color palettes to convert these distances to RGB values.

[205] Bo et al. propose colorization of depth images using x, y and z components of surface

normals at each point, while Eitel et al. [26] normalize depth values to the range from

zero to 255 and then use the jet colormap to convert the normalized depth values to RGB

values. All these colorization techniques lead to a sufficient improvements of the object

categorization accuracy relatively to the processing of raw depth data by CNNs.

Another way of mapping surfaces to the 2D Euclidean domain is to use surface pa-

rameterization. Sinha et al. [21] applied two types of surface parameterization, namely

authalic and conformal ones, to associate each point on a manifold to the corresponding

point in the 2D image domain. They compute certain surface characteristics for each

point on a manifold, i.e. HKS for deformable objects, and the principal curvatures for the

rigid ones, and use the chosen surface parameterization to project these characteristics

from a manifold to the 2D image of a special type, called geometry image. After that

CNNs are used to classify these geometry images.
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In general, all the approaches presented in this subsection have several disadvantages.

Firstly, all presented mappings from one domain to another, i.e. rendering, projective

geometry and surface parameterization, unavoidably induce certain errors. Secondly,

since CNNs are specially designed for the 2D domain, they are not based on any special

design principles that would facilitate efficient exploitation of a very rich surface geometry

information. This is evidenced by the fact that the colorization techniques, by only

incorporating very simple geometric features to the CNN input substantially improve

the object categorization results. This may indicate that CNNs cannot automatically

efficiently learn such features from the raw depth data, and, presumably, the proposed

colorization techniques only mitigate, but not fully solve this problem. Thirdly, due to

a non-invariant nature of standard CNNs (discussed in Subsection 1.1.3), any system

exploiting them generally assumes that each input shape model should be presented in

the training set at multiple orientations (i.e. rotated multiple times around all three axis,

which is very computationally inefficient), otherwise the CNN-based systems will be be

very likely to fail to recognize objects from radically new viewing angles and in-plane

rotations.

3.2.2 ANNs in the 3D Euclidean Domain

Except for the deep learning methods that map surfaces to the 2D Euclidean domain

there exist a few recently proposed (in 2015-2016) methods working in the 3D Euclidean

domain. They first perform transformation of surfaces to the 3D domain, by voxelization

of the input data i.e. computing the 3D occupancy grids for each input shape, and then

applying the deep learning methods on these grids.

Wu et al. [18] proposed a representation (called 3D ShapeNet) of a probability distribu-

tion of binary variables on a 3D occupancy grid (of size 30×30×30) using a convolutional

deep belief network. Binary variables take the value 1 when a voxel intersects the surface,

and the value 0 to represent the empty space. The representation, they proposed is gen-

erative, and therefore can be successfully applied not only for object category recognition
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but also for shape completion given a partial view of the data.

Maturana [4] proposed supervised discriminatively trained 3D convolutional neural

network (called VoxNet) taking 3D occupancy grids (of size 32 × 32 × 32) as the input.

In contrast to 3D ShapeNet, VoxNet employ different types of occupancy grids, i.e. the

binary grid and the density grid which are used to differentiate the empty and the un-

known space. VoxNet outperforms the 3D ShapeNet on the ModelNet dataset [18] for

object categorization, yet providing a much more compact representation and performing

much faster learning and inference. Garcia et al. [5] also proposed a supervised 3D convo-

lutional neural network (called PointNet) using 3D density occupancy grids, counting the

number of data points of an input point cloud that reside in each voxel. They substan-

tially increased the spatial resolution (60× 60× 60 voxels). Sedaghat and Thomas Brox

[206] further developed the idea of 3D convolutional networks working on 3D voxel grids,

proposing the ORION architecture, which is ORIentation-boosted vOxel Net. Their main

contribution is that they changed the CNN’s cost function by adding the term measuring

loss on orientation to enforce the system to output not only category labels but also object

orientations.

The idea of extending CNNs from the 2D square image domain to the 3D cube voxel

grid to categorize 3D shapes looks very promising, and apparently, the methods following

this path will be further developed in the nearest future. However, the methods proposed

so far have substantial drawbacks, such as a very low spatial resolution, and lack of

invariance to different types of transformations. The first drawback is explained by the

third extra dimension, leading to larger memory demands (compared to the 2D images)

and larger computational overhead. As for the invariance, these architectures are not

invariant to rotations1, which can be only compensated by augmenting the training data,

i.e. representing each training model at multiple orientations. Another drawback, pointed

out by [21] is that these methods are not well suited for recognition of deformable objects,

and they often fail to recognize isometric deformations of shapes, for instance, deformation

1Due to the same reasons as 2D CNNs, i.e. mainly because the convolution operation is not rotationally
invariant
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of a standing person to a sitting one. This happens because the volumetric occupancy

grid for both of these human poses will be radically different, while the 3D CNNs do not

have any special mechanism for exploitation of the intrinsic shape properties that remain

unchanged under the transformations of this type.

In conclusion, we should stress that these methods are yet not at the level of perfor-

mance of the methods using mapping of surface shapes to the 2D domain (e.g. [22, 21]),

discussed in the subsection 3.2.1.

3.2.3 CNNs based methods on manifolds and other methods

There exists another branch of deep learning methods proposed by Masci and his col-

leagues [19, 20, 27] that attempt to apply CNNs directly on non-Euclidean manifolds,

without mapping the data to the 2D or 3D Euclidean space. The authors re-define the

most important of the CNN’s ingredients to make this architecture applicable to the

non-Euclidean domain. They defined a notion of geodesic convolution which can be un-

derstood as ”correlation with surface template”, and build the convolutional layers using

this notion. In [20] the geodesic convolution is defined on basis of the patch operator [165],

while [27] defines it using vertex frequency analysis framework [207]. Also the authors

re-defined pooling layers introducing the angular max-pooling layer working on a local

polar-coordinate reference frame. However, the main restriction of their architecture is

that it learns only local shape descriptors, therefore the power of CNNs to automatically

learn hierarchical features of increasing size (spanning the whole input image at the top

fully connected layers) is not fully utilized by their architecture.

A few more ways of applying deep learning methods for 3D shape analysis have been

proposed. Bruna et al. [208] proposed a spectral CNN, in which convolutional layers are

applied in the Fourier domain. Fang et al. [189] proposed a 3d deep shape descriptor which

is learned using an autoencoder. Their method can be described as follows. At the first

stage they compute HKS local descriptors for each point on a shape and then use them

to compute a HeatSD global descriptor (described in Section 3.1.2) for this shape. After

58



HeatSD histograms are computed for each shape of the dataset, the deep shape descriptor

is learned from them using a neural network, with a cost function minimizing the intra-

category variance and maximizing inter-category margin. That means the processing

pipeline looks as follows: shape models → local handcrafted shape descriptors (HKS) →

global handcrafted shape descriptor (HeatSD)→ neural network→ deep shape descriptor.

Since their method is based on intrinsic descriptors, the deep shape descriptor is invariant

to isometric transformations and rigid body transformations.

3.2.4 Compositional Hierarchical Methods for 3D Data

There are very few 3D systems that are to some extent similar to our work, and they are

not closely related to the approach presented in this thesis. Hu and Zhu [43] proposed

the AND-OR tree-based representation of surface shape features and contour features for

learning car templates. They use the learned templates for simultaneous object detection,

localization and pose estimation. They applied their method only to car detection in

images.

Wessel and Klein [209] presented a framework for decomposing of 3D objects into

sections which can be represented by planes, spheres, cylinders cones and tori. They

introduced a probabilistic framework modeling the spatial arrangements between these

shape primitives. However, their method deals with the simplest shapes (mainly hand-

made objects) and hence is not suitable for general multi-class category detection.

59



CHAPTER 4

DESCRIPTION OF THE APPROACH

Both the compositional hierarchical frameworks proposed in this thesis, i.e. the view-

based framework, presented in Chapter 5 and the surface-based one, described in Chapter

6, have many similarities, for example, they have shared design principles and similar

learning and inference pipelines. The main purpose of this chapter is to describe the

common design principles behind both compositional hierarchies and to provide a high-

level description of the learning and inference algorithms, while the next two chapters

will specify the details for each hierarchy, and present the results of their experimental

evaluation.

Note that a high-level description of our system looks very similar to the description of

the compositional hierarchical system of Fidler et al. [42], from which we borrowed some

ideas, for example vocabulary learning based on clustering of statistical maps. However,

since their system is designed for 2D contour features, while our frameworks works with

3D data, both these frameworks are very different on the level of details. Nevertheless,

it is important to emphasize that the descriptions provided in Section 4.2 are to a large

extent similar to the work of Fidler et al. [42].

This chapter is organized as follows. Section 4.1 describes the most important design

principles of the frameworks proposed in this thesis, while Section 4.2 provides a high-level

description of the learning and inference algorithms used in both frameworks.
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4.1 Design Principles

4.1.1 Separate Representation for Surface Shapes

This thesis advocates the approach assuming that surface shape representation should be

based on different principles than the representation(s) of other visual modalities, such

as 2D contour shape, colour and texture, and, therefore, it should be developed sepa-

rately. The main argument for such a choice is that, in general, a representation specially

developed for a certain modality can much more efficiently exploit specific properties of

this modality, that is why it may be more efficient than the unified representation for

different modalities. For instance, a representation of surface shape features may have

many advantages by intensively using very rich surface geometry information.

In general, there is no consensus point of view to this question. As shown in Chapter

3, the handcrafted 3D shape descriptors are mainly built on different principles than the

2D image descriptors, since they exploit various surface characteristics, such as surface

normals, principal curvatures, geodesic distances between points on a surface, etc. In

other words, most of the 3D shape descriptors are specially designed for the 3D domain

and exploit properties and characteristics of this domain. On the other hand, many

deep learning methods use the same representation and the same learning and inference

algorithms for different visual modalities, for example, there exist multiple CNN-based

systems, which are applied to RGB-D images, thus processing the surface shape and the

appearance features within the same framework. There are, however, several deep learning

approaches specially designed for 3D shape features (e.g. 3DCNNs, geodesic CNNs).

In the previous chapters (Sections 1.1.4 and 3.2) it was pointed that the CNN-based

systems working with the RGB-D data cannot efficiently process raw depth data since

these systems are not based on any special principles that would facilitate efficient ex-

ploitation of surface geometry. That is why a deep representation specially developed for

surface shape modality should to a certain extend bridge this gap.
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4.1.2 Properties of parts

Parts of the first layer. In this thesis the planar surface patches of a certain size

are used as the first layer features, since they are very simple (primitive) and allow easy

detection tests from different types of input data, such as depth images, point clouds and

triangulated mesh models. In general, the choice of the first layer features is a very difficult

problem. The literature review shows that a large variety of the first layer features have

been used in different deep learning systems. Some authors use very simple features (e.g.

edge segments), while others exploit the advanced hand-crafted descriptors (e.g. SIFT of

HKS) at the lowest layers of their deep learning systems. In this thesis I advocate the

approach where no hand-crafted features are used at any stage, and all low-level, mid-level

and high-level shape features are statistically learned from the training data. Therefore,

the first layer vocabulary should contain only the simplest features, which are later used

as building blocks for more complex features on the subsequent layers. Planar surface

patches are both very simple and easily detectable in input data, therefore they are used

at the first layer of both compositional hierarchies.

Generalization capability of parts. The key property of each vocabulary part is

that it is purposed to represent a range of shapes with similar geometric properties rather

than a single particular shape. This property facilitates a certain generalization, in which

similar surface shapes are represented by a single vocabulary part. For the atomic parts of

the first layer, which represent planar surface patches, such a generalization is achieved by

tolerating some deviations from the planarity, i.e. each “nearly planar” surface patch of a

certain size is represented by a vocabulary part of the layer L1. For compositional parts

of layers Ln, (n> 2), the generalization is achieved by the way how compositions are built,

i.e. a range of possible relative positions of subparts is described using the parameterized

distributions, which make all compositional parts tolerating a certain degree of shape

variability. In this case each vocabulary part represents a shape model generalizing over

a range of similar shapes, thus enabling recognition of novel shapes from within this

range. Additionally, such a flexibility is purposed to make the representation more robust
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to data degradations and distortions (e.g. caused by the projection).

4.1.3 Redundancy of the Representation

The key property of both representations proposed in this thesis is their redundancy, in

which we allow: (i) the existence of part realizations with strongly overlapped support

regions, (ii) the existence of activations of multiple vocabulary parts in the same data

point. It is sometimes not possible to reliably infer certain structures or estimate local

reference frames at the lower layers of the hierarchy, where receptive fields are small and

therefore different properties of the input data (sampling, quantization) as well as data

degradations (e.g. noise) may have significant influence. That is why in some locations

inference may fail or produce the wrong output; the local reference frames may also be

estimated wrongly. The proposed approach to tackling this problem is to allow the infer-

ence algorithm to produce multiple hypotheses (i.e. realizations of two or three different

vocabulary parts at the same point) in a case of uncertainty, each of which is confirmed

or rejected during inference of the next layers. Having multiple part realizations with

strongly overlapped support regions helps to compensate for failures of the inference pro-

cedure in the nearby locations. The obvious drawback of the redundancy is an additional

computational overhead, caused by the increasing amount of part realizations, however,

the experiments presented in this thesis shows that redundancy can significantly increase

the object categorization rate, since it increases the chances to find the correct solution

through multiple alternative inference paths.

4.2 Learning and Inference Algorithms

This section provides an overview of the learning and inference algorithms used in both

the compositional hierarchical frameworks presented in this thesis, i.e. of the view-based

(Chapter 5) and the surface-based (Chapter 6) frameworks.
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4.2.1 Learning and Inference Algorithms for Multiple Layers

This subsection outlines the algorithm for learning of the hierarchical compositional shape

vocabulary of all layers Ln, (n> 2) from a training dataset, and the algorithm for infer-

ence of parts of all layers Ln, (n> 1) from a given dataset1. For describing steps of the

algorithms the following notation is used:

V erbal description :
[
input1, input2, ..., inputl

]
→
[
output1, output2, ...outputm

]
,

meaning that this step takes l input arguments and produces m outputs. If there is only

one input argument or only one output then the brackets are not used. The learning algo-

rithm is presented in Algorithm 1, while the inference algorithm is described in Algorithm

2.

Algorithm 1: Vocabulary learning algorithm for multiple layers

Data: Training dataset T
Pre-defined vocabulary of the first layer S(L1)
A set of composition rules B

Result: Vocabulary {S(Ln)}2≤n≤N of layers from L2 to LN

1 Pre-process the training dataset: T → Tp ;

2 Perform inference of L1 parts:
[
Tp, S(L1)

]
→ TS(L1);

3 for n = 2 to N do
4 Learn vocabulary of the layer Ln :

[
TS(Ln−1),B

]
→ S(Ln);

5 Perform inference of the layer Ln:
[
TS(Ln−1), S(Ln),B

]
→ TS(Ln);

6 Perform pooling: TS(Ln) → TS(Ln);

7 end

Both presented algorithms have three inputs. The first input is a dataset T , which

is a tuple (of length k) of 3D shape models, represented as depth images, point clouds

or triangulated mesh models. We denote i-th shape model as T (i). The second input is

a shape vocabulary. The learning algorithm takes only a pre-defined vocabulary of the

first layer, while the inference algorithm takes the vocabulary of all layers as an input.

The third parameter taken by both algorithms is a pre-defined set of composition rules

1which may be a testing set, where only inference of all layers if required
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Algorithm 2: Algorithm for inference of multiple layers

Data: Dataset T
Vocabulary {S(Ln)}1≤n≤N of layers from L1 to LN
A set of composition rules B

Result: The dataset represented in terms the shape vocabulary {TS(Ln)}1≤n≤N

1 Pre-process the dataset: T → Tp ;

2 Perform inference of L1 parts:
[
Tp, S(L1)

]
→ TS(L1);

3 for n = 2 to N do
4 Perform inference of the layer Ln:

[
TS(Ln−1), S(Ln),B

]
→ TS(Ln);

5 Perform pooling: TS(Ln) → TS(Ln) (optional);

6 end

B as an input. The composition rules define legitimate bindings of subparts into parts

of the next layer. Actually, the choice of the first layer vocabulary and the choice of

composition rules eventually define the set of shapes which are learnable and recognizable

by a compositional hierarchical system.

The described learning algorithm comprises five sub-algorithms, while the inference

algorithm consists of four sub-algorithms, as visualized in Figure 4.1. Note, that four out

of five sub-algorithms of both algorithms are equivalent.

Figure 4.1: Scheme of the learning and inference algorithms. a) Learning of multiple
layers (Algorithm 1). b) Inference of multiple layers (Algorithm 2). Both algorithms
comprise 4 equivalent sub-algorithms.
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Both learning and inference algorithms first perform pre-processing of the input data.

The pre-processed dataset is denoted as Tp, while the i-th pre-processed shape model

is denoted as Tp(i). After pre-processing of the input data both algorithms perform

inference of the first layer parts from the pre-processed data. To denote the results of

the inference procedure of a layer Ln, (n> 1) we use the notation TS(Ln), meaning ”the

dataset T expressed in terms of the shape vocabulary S(Ln)”. More precisely, TS(Ln) is a

list of length k, where i-th element of this list is a set of part realizations of the layer Ln

found in i-th shape model.

After inference of the first layer parts, the learning algorithm (Algorithm 1) performs

three steps for each subsequent layer: it learns the vocabulary of this layer, infers the

learned vocabulary from the training data, and performs pooling. In contrast, the infer-

ence algorithm (Algorithm 2) performs only inference and pooling for each subsequent

layer.

Note, that the pre-processing algorithm (blocks 1 in Figure 4.1), the algorithm for

inference of the first layer parts (blocks 2), the algorithm for inference of a single layer

(block 4) and the pooling algorithm (blocks 5) are different for both compositional hierar-

chies, therefore, they will be described in details in the corresponding chapters. However,

the learning algorithm for a single layer (block 4), has the same pipeline for both compo-

sitional hierarchies, that is why this pipeline is presented in the next subsections in order

to avoid repetition in the next two chapters.

4.2.2 Vocabulary Learning Pipeline for a Single Layer

In Subsection 4.2.1 the outlines of the learning and inference algorithms for multiple layers

were presented. This subsection describes the vocabulary learning procedure for a single

layer Ln, (n> 2), i.e. actually, this subsection expands the line 4 of Algorithm 1. The

high-level overview of the learning algorithm for a single layer is presented in Algorithm

3.

The vocabulary learning algorithm for a single layer Ln, (n> 2) involves several steps.
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Algorithm 3: Vocabulary learning algorithm for a single layer Ln, (n> 2)

Data: Training set TS(Ln−1) represented in terms of the vocabulary S(Ln−1)
Set of composition rules B

Result: Vocabulary S(Ln) of the layer Ln

1 Collect statistical maps using co-occurrence statistics:
[
TS(Ln−1),B

]
→ {Mn−1

i,j }i,j
;

2 Find and parameterize clusters in statistical maps: {Mn−1
i,j }i,j → {∆

sp
t }t ;

3 Form a set D(Ln) of doublets of the layer Ln: {∆sp
t }t → D(Ln);

4 Perform inference of doublets from the training set:[
TS(Ln−1),D(Ln),B

]
→ TD(Ln);

5 Form a set of candidate parts C(Ln) of the layer Ln: TD(Ln) → C(Ln);
6 Perform part selection: C(Ln) → S(Ln)

At the first step, the statistics of co-occurrences of the Ln−1 part realizations in the training

data is collected and represented in a form of statistical maps. Statistical maps are built

for each pair of parts of the previous layer, i.e. if | S(Ln−1) |= x, then x2 statistical

maps are built when learning the layer Ln. A statistical map Mn−1
i,j is a function that

approximates the probability to observe activations of the part P n−1
j at a certain relative

position1 from activations of the part P n−1
i . After statistical maps are built on basis

of the co-occurrence statistics, they are clustered such that cluster centres represent the

most frequently observed (in the training data) spatial configurations of part realizations

of the layer Ln−1. After that, these clusters are parameterized, and a set of parameterized

distributions is {∆sp
t }t is built. Note that this set contains the parameterized distributions

obtained from clustering of all statistical maps {Mn−1
i,j }i,j.

Each parameterized distribution allows making a doublet of the layer Ln. For instance,

if a parameterized distribution ∆sp
m is received from clustering of the statistical mapMi,j,

the resulting doublet will be πnm =
(
P n−1
i , (P n−1

j ,∆sp
m)
)
. This notation means that the

doublet, πnm contains the central subpart P n−1
i and the subpart P n−1

j at the relative

position described by the distribution ∆sp
m from the central subparts. When a set of

doublets D(Ln) is complete, doublets are inferred from the training data. After that, the

statistics of co-activations of doublets within the same receptive field are collected, and

1and certain relative orientation in case of the surface-based compositional hierarchy
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the most frequently observed co-activations of doublets are used to form a set of candidate

parts C(Ln) of the layer Ln. The set of candidate parts is typically very large, that is

why it is compressed by the part selection procedure, in which only some of the candidate

parts, chosen according different importance measures, are finally included to the S(Ln).

Part selection concludes the learning procedure, and the selected subset S(Ln) ⊆ C(Ln)

forms the vocabulary of the layer Ln, which is the output of the algorithm.
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CHAPTER 5

A VIEW-BASED COMPOSITIONAL HIERARCHY

5.1 Introduction

This chapter describes the view-based hierarchical compositional representation of surface

shapes and the framework for learning and inference of the view-based compositional

hierarchical shape vocabulary. The chapter also presents the results of the experimental

evaluation of this framework.

In Chapter 4 we provided a high-level description of the learning and inference pipelines

used in both the compositional hierarchies proposed in this thesis, i.e. the view-based

compositional hierarchy presented in this chapter and the surface-based one, described

in Chapter 6. However, most of the details, for instance, the description of the sub-

algorithms and the equations, were not presented there, since these details are different

for both compositional hierarchies. This chapter provides a detailed description of all

algorithms of the view-based compositional hierarchical framework.

Note that some of the algorithms presented in this chapter are to a certain extent

similar to the algorithms used in the compositional hierarchical system of Fidler et al.

[42], from which we borrowed some ideas. The major similarity is that Fidler et. al also

use vocabulary learning based on clustering of statistical maps, and two-pass learning

for each layer, i.e. in the first pass they learn doublets, and then build the vocabulary

using the statistics of co-activations of doublets. However, except for these similarities,
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our algorithms are different from the algorithms of Fidler et. al. Also notice that since

their system is designed for 2D contour features, while our frameworks works with 3D

data, even conceptually similar algorithms would differ on the level of details1. Figure 5.1

shows some parts of different layers of the view-based hierarchy.

Figure 5.1: Several part of different layers of the view-based hierarchy

5.1.1 Camera-Based Reference Frame

The main property of the view-based representation is that each vocabulary part rep-

resents a shape model of a certain orientation relative to the camera-based reference

frame. The camera-based reference frame is defined as illustrated in Figure 5.2. The Z

axis, which is the camera’s optical axis, points from the camera origin through the centre

of the image plane towards the scene. Axes X and Y (up-vector) are parallel to the coor-

1Also note that we did not use any program codes of Fidler et al. and the system presented in this
chapter has been developed from scratch
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dinate axes of the image based reference frame. The origin of the image based reference

frame is in the centre of the image.

Figure 5.2: Camera based frame of reference (black) and image frame of reference (blue)

5.1.2 Description of the Input Data

The view-based compositional hierarchical system learns the vocabulary from a dataset

of range images. All experiments described in this chapter were performed using the

Washington RGB-D dataset [48]. The dataset comprises RGB and range images of 300

objects split into 51 categories. Multiple views (around 200) of each object are presented

in the dataset. The input images are segmented, i.e. masks separating objects from the

background are provided for each image. Some models from the Washington RGB-D

dataset are shown in Figure 5.3.

Notice, that since this thesis proposes a representation of surface shape features, we

use only the depth channel and do not use the RGB data.

The rest of the chapter is organized as follows. Section 5.2 outlines the pre-processing

of the input data, while Section 5.3 describes the first layer of the compositional hierarchy,

and explains how to infer the first layer parts from the pre-processed input data. Section

5.4 introduces the composition rules that are used on different layers of the compositional

hierarchy. Section 5.5 describes all steps of the vocabulary learning procedure for a single

layer Ln, (n� 2), except for the part selection step, which is discussed in a separate section
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Figure 5.3: Some shape models from the Washington RGB-D dataset. Picture source:
the author’s website https://rgbd-dataset.cs.washington.edu/

(Section 5.6). Section 5.7 describes inference from a single layer Ln, (n> 2), while Section

6.9 describes the pooling algorithm. Section 5.9 presents our approach to object cate-

gorization from range images based on the compositional hierarchical shape vocabulary.

Finally, Section 5.10 presents the result of experimental evaluation of the system.

5.2 Pre-Processing of the Input Data

Before undergoing learning and inference the input data needs pre-processing due to the

following reasons. First, it is necessary to minimize the influence of noise and other data

degradations, which are unavoidable during the image acquisition process. Second, since

depth images typically represent shapes under a certain projection1, the reconstruction

of the original shapes is required. Note, that since the properties of the data, such

as sampling, quantization, level of noise, type of projection, camera settings, etc., vary

significantly across different datasets, there are no universally suitable procedures and

parameters for pre-processing. That is why this section describes only the most frequently

1typically the perspective projection

72



required pre-processing steps and recommends the suitable parameters1.

Assume the input data is represented by a list of range images T . At the first stage

we pre-smooth each input image I = T (i), (i ∈ N) with a two-dimensional Gaussian

kernel Kσ, i.e. compute Iσ = Kσ ∗I, where the parameter σ is chosen from the range from

0.5 to 2.0 depending on the noise level. If the input data is presented as a set of RGB-D

images of textureless objects, the pre-smoothing of the depth channel can be done in a

more sophisticated way, using the guided image filtering [210], where different filtering

kernels for different locations of the depth image are used. These kernels are computed

using the corresponding areas of the RGB image (which serves as the guidance image)

in order to facilitate smoothing within flat regions and prevent smoothing across image

edges. The parameter of the guided image filter rg should be chosen from the range from

4 to 8, while the parameter εg can be from the range from 0.22 to 0.42.

On the second stage we convert each pre-smoothed image Iσ to a point cloud P , i.e. for

each pixel ρ = (x, y) ∈ Ω from the image domain Ω ⊂ Z2 we compute the corresponding

3D point p = (px, py, pz)
T . This pre-processing step is done to minimize influence of the

projection and to enable the learning and inference algorithm to deal with the original 3D

shape not distorted by the projection. If the image size is w× h pixels, and the camera’s

horizontal and vertical fields of view and are FoVh and FoVv, then this conversion can be

done using the following equations:

px = 2 Iσ(ρ)

(
x

w
− 0.5

)
tan

(
FoVh

2

)
, (5.1)

py = 2 Iσ(ρ)

(
y

h
− 0.5

)
tan

(
FoVv

2

)
, (5.2)

pz = Iσ(ρ). (5.3)

After this conversion, each resulting point cloud P is included to the pre-processed

dataset Tp. Note, that after pre-processing both learning and inference algorithms do not

1having emphasized, that some additional or alternative pre-processing steps and parameters may be
needed.
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deal with depth images any more, and all subsequent computations are performed using

these point clouds.

5.3 First Layer

In Chapter 4 we explained the decision to use small planar surface patches as the vocabu-

lary parts of the first layer of both view-based and surface-based compositional hierarchies.

Since in the view-based compositional hierarchy each part should represent a shape model

of a certain orientations relative to the camera-based reference frame, the vocabulary of

the first layer should comprise differently orientated planar surface patches.

5.3.1 Form of the First Layer Parts

It is important to make a decision about the form of the planar surface patches repre-

senting the first layer parts, i.e. decide whether they should be circular, square or having

some other forms.

We considered two alternative ways of defining the form of the planar surface patches,

representing the L1 parts, and each of these ways has its own pros and cons. The first

way is to define the L1 vocabulary such that all parts represent differently orientated

equally sized (in 3D space) planar surface patches. However, in this case the orthographic

projections of these surface patches on the XY plane will have different forms and cover

different areas. This can make the inference procedure more complicated, since in this case

different vocabulary parts will have differently sized support regions on the XY plane.

The second way is to define a set of differently orientated surface patches of different sizes,

such that their orthographic projections on the XY plane are equally sized, and therefore

cover equal areas, which can make the learning and inference procedures substantially

easier. On this basis we decided to follow the second path and define the L1 parts such

that their orthographic projections on the XY plane are squares of the same size. Note,

that such an approach is very similar to the CNN-based methods applied to depth images,

74



in which the image domain is tiled by the equally sized receptive fields of the square form.

5.3.2 Quantization of Surface Orientations

The next important task is to quantize orientations of planar surface patches to form the

L1 vocabulary. To this end we define nb × nb = n2
b orientational bins, meaning that the

vocabulary of the first layer contains n2
b parts. Notice, that for the experiments presented

in this chapter we used nb = 9, i.e. we defined 9 × 9 orientational bins. This number

was chosen experimentally targeting to maximize the category recognition accuracy on

the given dataset1.

Assume we have a planar patch with the surface normal N of the unit length, while i

and j are unit vectors pointing in the directions of the X and Y axes of the camera-based

reference frame. Algorithm 4 describes how to compute the index of the vocabulary part

partID, ranged from 1 to n2
b , given the surface normal N . Figure 5.4 and 5.5 visualize

the main steps of this algorithm. We project N to the XZ and Y Z planes, obtaining

vectors Nxz and Nyz. Then the angles angleX and angleY between these vectors and

the vector −Z (opposite to the viewing direction) are computed (Figure 5.4 (b) and (c)).

Then each of these angles is assigned to one of nb orientational bins binX and binY (as

shown in Figure 5.5), and finally partID is computed using indices binX and binY .

Note, that if the absolute values of either angleX or angleY are larger than a pre-

defined threshold range the patch is not assigned to any bin, i.e. there are no inferred

realizations of L1 parts at this point. This is done because in this case surface becomes

poorly visible (since it is “almost parallel” to the viewing direction), and therefore it

becomes very hard or impossible to reliably estimate the surface properties, for instance

to perform the planarity test or to compute a surface normal. Therefore, this parameter

is data-dependent, and should be selected taking into account the question whether the

surface properties (in particular, the planarity, and the orientation of surface normals)

can be reliably estimated. For the experiments presented in this chapter we used the

1Also the settings with 5× 5, 7× 7, and 11× 11 orientational bins were evaluated
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Algorithm 4: Compute the part id of a given planar surface patch

Data: Planar surface patch with normal of the unit length N
Threshold value range
Number of orientational bins nb

Result: The index partId of the bin the surface patch belongs to

1 angleX = 90◦ − arccos(NT i);
2 angleY = 90◦ − arccos(NT j);
3 if | angleX |< range and | angleY |< range then

4 binX = round
(
nb angleX

2 range

)
+ ceil(nb

2
);

5 binY = round
(
nb angleY

2 range

)
+ ceil(nb

2
);

6 partId = nb binX + binY ;

7 else
8 partId = 0;
9 end

value range = 70◦.

Figure 5.4: Illustration for the Algorithm 4. a) Surface normal translated to the origin of
the camera-based reference frame, b) angleX, c) angleY

5.3.3 Inference of the First Layer

In this subsection the inference of the first layer parts from the input point cloud is

described. In Subsection 5.3.1 we decided to define the first layer parts such that their

orthographic projections on the XY plane are equally sized squares. This choice makes

the inference procedure straightforward, since all L1 parts have the same support regions

on the XY plane in this case.
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Figure 5.5: Illustration for the Algorithm 4. a) angleX is assigned to one of 9 orientational
bins (bin 3) b) angleY is assigned to the bin 3 as well

Assume the support region (on the XY plane) of each first layer part is a square with

side 2r. Then to perform inference of a first layer part from a point cloud, the following

three main steps should be performed: (i) extract points of the point cloud that belong

to a support region, (ii) perform the planarity test of these points, (iii) if planarity is

confirmed, compute the surface normal and assign it to one of the 81 bins according to

its orientation, as shown in Algorithm 4.

The full algorithm for inference of the first layer parts is presented in Algorithm 5.

The input data for this algorithm comprises a list of m point clouds Tp representing range

scans of the objects, while the output TS(L1) is the list (of length m) of sets, each of which

contains all part realizations of the layer L1 detected in the corresponding point cloud.

We use one of the following two ways of performing planarity tests given a set of points

Λ. If the input data is not very noisy, we perform least squares fitting which works well

in most of the cases, otherwise we apply the classical RANSAC algorithm [211]. We do

not provide formulas for both of these methods in this thesis, since the list squares fitting

is described in many textbooks, while application of RANSAC to plane fitting in depth

images and point clouds is a commonly used technique, also described in many sources

[212, 213].
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Algorithm 5: Inference of the L1 parts

Data: List of m point clouds Tp
Vocabulary of first layer S(L1)

Result: Input data represented in terms of the vocabulary of the first layer TS(L1)

1 for j = 1 to m do // for each point cloud

2 Pj = Tp(j);
3 Q = ∅;
4 foreach (px, py, pz) ∈ Pj do // for each point

5 find a set Λ ⊂ Pj with coordinates x ∈ [px − r, px + r] and
y ∈ [py − r, py + r];

6 perform planarity test for the set Λ;
7 if planarity is confirmed then
8 compute surface normal N for this plane;
9 compute partId (Algorithm 4);

10 create a realization R:
11 R.layer = 1; R.id = partId; R.coord = (px, py, pz);
12 include R to the set Q;

13 end

14 end
15 TS(L1)(j) = Q
16 end

5.4 Composition Rules

A set of composition rules is one of the most important ingredients of each compositional

hierarchical system, since the composition rules dictate legitimate bindings of subparts,

and therefore define which configurations of subparts may or may not appear on different

layers. Thus the set of the first layer features and the set of composition rules eventu-

ally define a range of learnable and recognizable shapes. In this section the full set of

composition rules (denoted B) for the view-based compositional hierarchy is formulated.

Note, that composition rules only define whether or not subparts in a certain spatial

configuration are eligible for compositing, while this eligibility does not guarantee that

these subparts will be composed in the learning and/or inference phases. Therefore, the

eligibility of certain spatial configurations of subparts for compositing should be considered

as a necessary but not sufficient condition for making compositions.

Let us start from considering the example shown in Figure 5.6(a). It shows a point
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cloud P (blue points) representing a planar surface patch of the rectangular shape. As-

sume the support regions of the first layer parts on the XY plane are squares of size 2r,

as shown in 5.6(b). Note, that the average distance between nearby points of the point

cloud is significantly smaller than r, therefore the inference algorithm of the first layer

parts (Algorithm 5) will produce realizations of L1 parts with strongly overlapped sup-

port regions1. For the given example, it will produce realizations of the first layer parts

in each point of the point cloud. In this situation, it becomes important to define the

rules specifying which configurations of L1 part realizations are eligible for compositing

on the next layer and these rules should mainly be purposed to avoid the combinatorial

explosion.

Figure 5.6: Composition rule for the layer L2. a) A point cloud representing the planar
surface patch, b) size support region of the L1 parts, c) part realizations located within
the red circles are eligible for composing with the central part realization (shown by the
red dot).

The proposed composition rules can be described as follows:

1. Each part of the layer Ln, (n> 2) should be composed of three subparts, i.e. the

central subpart and two other subparts, located on different sides from the central

subpart,

2. Subparts should be composed using the following rule: On the even layers of the

hierarchy (e.g. L2, L4) subparts adjacent in the X direction should be composed,

while on the odd layers subparts adjacent in the Y direction are composed,

1Remember, that the existence of part realizations with the overlapped support regions is an important
property of the proposed compositional hierarchical system, as was explained in Section 4.1.3
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3. Offsets and overlaps between the support regions of subparts in XY plane should

be minimized,

4. The existence of empty subparts (empty cells) indicating the absence of surface

in the area adjacent to the central subpart is permitted,

5. Each compositional part can contain only one empty subpart. That means each

part of the layer Ln, (n> 2) must contain a non-empty central subpart, and either

two other non-empty subparts or one non-empty and one empty subpart.

Since these rules require some explanation, let us consider the example shown in Figure

5.6(c). It shows how the composition rules are applied when composing the parts of the

layer L1 to parts of the layer L2. Since L2 is the even layer, we search subparts on the

left and the right side from the central subpart, i.e. on different sides from the central

subpart in the direction of the X axes. Note, that for the odd layers the subparts on the

top and on the bottom from the central subpart, i.e. in the direction of Y axes, should

be considered. Subparts should be located approximately at the distance δ = 2r from the

central subpart1 since this distance minimizes overlaps between the support regions and

prevents the existence of large gaps between them. Thus δ defines the preferable offset

between the subparts. If the central subpart has coordinates (x, y), then the preferable

positions of other subparts will be (x− δ, y) and (x+ δ, y). However, since it may happen

that there are no part realizations exactly at the preferable positions, relatively small

circular neighbourhoods around preferable positions should be considered. Radii of these

neighbourhoods are computed as 0.25τ , where τ is the smallest dimension of the support

region of the central subpart (0.5r in the given example)2. These neighbourhoods are

shown as red circles in Figure 5.6(c), and the realizations located in these neighbourhoods

are eligible for composing with the central subpart on the next layer.

1distances are measured in XY plane
2The choice of this parameters depends on the density of an input point cloud. The parameter should

be approximately chosen such that at least several data points (ideally around 3 - 5 points) lie within the
circle. This is purposed to provide the inference algorithm with several alternative options.
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Figure 5.7 shows some examples of L2 parts that are learned under the set of compo-

sition rules presented above, while Figure 5.8 depicts examples of L3 parts of composed

under the same set of rules.

Figure 5.7: Parts of the layer L2 learned under composition rules B. Empty cells are
shown with red crosses

Figure 5.8: Parts of the layer L3 learned under composition rules B. Empty cells are
shown with red dots

5.4.1 Empty subparts

An empty cell is an abstraction used in the view-based compositional hierarchy to indicate

the absence of surface in a certain location. Suppose there is a point cloud representing a

planar surface of a circular form, as shown in Figure 5.9(a). As in the example described

in the previous chapter, the inference algorithm will produce L1 part realizations with

strongly overlapped support regions in the XY plane. Assume, the size of these support

regions is 2r, as shown as a red square in Figure 5.9(b). Also assume there is a part

realization Ri located in the point A with coordinates (x, y), and the goal is to define

the part realizations eligible for composing with Ri on the next layer. To this end the

preferable offset δ = 2r, and the preferable positions of the subparts (x−δ, y) and (x+δ, y)

are defined, in the same way as it was shown in the previous example. However, as we

can see from Figure 5.9(a) there is no surface in the neighbourhood of the point (x− δ, y).

In such situations, the subpart located in the point A (central subpart) and the subparts

located in the neighbourhood of the point (x+δ, y) can still be composed to a L2 part, but
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description of this part must contain a certain indication, showing the absence of surface

around the point (x− δ, y). Empty subparts serve as indicators of that type.

Figure 5.9: (a) Point cloud of the circular planar surface, (b) Size of the support region
of L1 parts in the XY plane, (c) Examples of L3 parts comprising L2 parts with empty
cells

It is important to emphasize that empty subparts show the absence of surface, but

not the absence of part realizations in a certain area. For instance, if a surface exists

in a certain in a certain area, i.e. there are some points of the input point clouds, but

there are no part realizations in this area, then the empty subparts are not used.

When processing the point clouds of single objects, the absence of surface can be

verified by checking the existence of points in a neighbourhood. However, when processing

point clouds of scenes, by the absence of surface we actually mean “the absence of surface

within a certain range of depths”. That mean another surface may exist in the background,

but if its relative depth w.r.t. the central subpart is larger than a pre-defined threshold,

this is interpreted as the absence of surface, and empty subparts can be used in such

cases.

5.5 Vocabulary Learning

This section details the vocabulary learning algorithm described for a single layer Ln, (n> 2).

A high-level description of this algorithm was provided in Section 4.2.2, while the purpose

of this section is to provide a detailed description of each step.
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Figure 5.10: Parts with empty subparts typically appear in the locations where the surface
ends of occludes itself

5.5.1 Collecting Co-Occurrence Statistics

The first step of learning the shape vocabulary S(Ln) for a single layer Ln, (n> 2) is

collecting the statistics of co-occurrences of part realizations of the previous layer Ln−1

and representing this statistics in the form of statistical maps.

Statistical map Mn
i,j : Z3 → N is a function showing how many times realizations

of the part P n
j are observed in the training data at the certain relative position w.r.t.

realizations of the part P n
i . For instance, the equation Mn

i,j(x, y, z) = 15 means that

realizations of the part P n
j appeared 15 times at the relative position st(x, y, z) relative to

realizations of the part P n
i . Since the statistical maps are discrete functions, the parameter

st should be used to define the discretization. Typically, we make statistical maps of size

25× 25× 25, in which case st should be computed such that all relative coordinates are

mapped to the integers from the range [-12, 12]. Note, that each statistical map only

depicts co-occurrence statistics of spatial configurations that are eligible for composing

under set of composition rules B.

When learning the vocabulary of the layer Ln the statistical maps for each pair of

parts from the previous layer Ln−1 should be built, thus if | S(Ln−1) |= m then m2

statistical maps should be built. Note, however, that most of the statistical maps remain

empty during learning since many shapes never co-occur in real-world objects. Algorithm
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6 describes the process of building statistical maps.

Algorithm 6: Collecting co-occurrence statistics and building statistical maps

Data: Training set TS(Ln−1) of the length k represented in terms of the
vocabulary S(Ln−1)
Set of composition rules B
Size of the vocabulary of the layer Ln−1: | S(Ln−1) |= m
Parameter for discretization of statistical maps st

Result: A set of statistical maps {Mn−1
i,j }1≤ i,j≤m

1 Make all statistical maps {Mn−1
i,j }1≤ i,j≤m empty;

2 for j = 1 to k do // for each training model

3 Q = TS(Ln−1)(j) ; // set of Ln−1 realizations

4 foreach R ∈ Q do // for each part realization

5 find a set Λ ⊂ Q of part realizations eligible for composing with R under a
set of composition rules B ;

6 foreach K ∈ Λ do // for each realization

7 (x, y, z) = K.coord−R.coord ; // relative position

8 x = round( x
st

);

9 y = round( y
st

);

10 z = round( z
st

);

11 Mn−1
R.Id,K.Id(x, y, z) =Mn−1

R.Id,K.Id(x, y, z) + 1;

12 end

13 end

14 end

5.5.2 Clustering of Statistical Maps and Parameterization of
Clusters

After co-occurrence statistics is collected and statistical maps are built, we cluster each

statistical map and fit the data in each cluster with the multivariate Gaussian distribution.

Since the co-occurrence statistics are collected only for spatial configurations eligible for

composing under the set of composition rules B, statistical maps contain well separated

clusters in the statistical maps, therefore the choice of a clustering algorithm does not

make difference, and we use a very simple clustering algorithms, namely the weighted

version of the k-means algorithms [214].

When clusters in statistical maps are found, we parameterize each cluster using max-

imum likelihood estimation (MLE), i.e. we estimate three-dimensional vector µ and 3×3
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covariance matrix Σ for each cluster. Figure 5.11(a) shows the parameterized statistical

map M1
41,41.

Figure 5.11: (a) Parameterized statistical mapM1
41,41(x, y, z) depicting co-occurrences of

realizations of the part P 1
41 (b) Doublets formed from this statistical map

After parameterizing statistical maps we form a tuple of doublets D(Ln) of the layer

Ln. Each parameterized cluster in each statistical map results in a doublet. For instance,

as the parameterized statistical map M1
41,41 shown in Figure 5.11(a) has two clusters,

it will result in two doublets, shown in Figure 5.11(b) namely π2
1 = (P 1

41, (P
1
41,∆

sp
1 )),

and π2
2 = (P 1

41, (P
1
41,∆

sp
2 )), where ∆sp is a description of spatial relation of subparts, i.e.

∆sp
1 = (µ1,Σ1), and ∆sp

2 = (µ2,Σ2). If there are t parameterized clusters in all statistical

maps, then the same number of doublets of the layer Ln will be formed, and therefore the

length of the tuple D(Ln) will be equal to t.

The tuple of doublets D(Ln) learned so far does not yet represent the vocabulary of

the layer Ln. To complete learning of the layer Ln it is necessary to collect the statistics

showing how different doublets co-occur in the training data and build more complex

configurations of subparts on basis of this statistics. Let us consider the example shown

in Figure 5.11(b) once again. After clustering the statistical map and parameterizing the

clusters we obtained two doublets π2
1 and π2

2 both having the central subpart P 1
41 and

another subpart P 1
41 located on the left and on the right from the central part correspond-

ingly.
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Note, however, that it is not always the case, that these two doublets are activated

simultaneously at the same data point. Activation of one of these doublets (say π2
1) in

a data point ρ tells us about surface properties around this point (central subpart) and

on the left side from it, but it does not provide any information about the surface on the

right side from ρ. Surface on the right side from ρ may have different properties, therefore

different doublets may in principle be activated simultaneously with π2
1 in ρ.

This suggests that the next stage of the learning process should involve collecting of

the statistics of co-activations of doublets in the training data and compose doublets into

more complex parts based on these statistics. This can be done in three steps: (i) perform

inference of doublets from the training data (ii) measure frequencies of co-activations of

different doublets in the training data, (iii) form the set of candidate parts C(Ln) of the

layer Ln using frequently co-activated pairs of doublets. In the following subsubsections

we provide more details about these steps.

5.5.3 Inference of Doublets from the Training Data

Assume the set of doublets D(Ln) contains a doublet πni = (P n−1
c , (P n−1

j ,∆sp
i )), which

includes the central subpart P n−1
c , another subpart P n−1

j and the description ∆sp
i =

(µi,Σi) of the distribution of possible relative positions of P n−1
j w.r.t. P n−1

c . Also assume

a realization of the part P n−1
c is located in the point ρc, while a realization of the part P n−1

j

is located at the relative position δ = (x, y, z)T w.r.t. ρc. We say, that the doublet πni is

activated in the point ρc if and only if δ belongs to the distribution described by ∆sp
i .

To test whether or not δ belongs to the given Gaussian distribution we use Mahalanobis

distance [215]:

dM(δ, µi) =
√

(δ − µi)TΣ−1
i (δ − µi) (5.4)

If dM(δ, µi) is less than the threshold value (usually taken as 3.0, since “nearly all”

values of the Gaussian distribution lie within three standard deviations from the mean),

then we say that πni is activated in the point ρc. The Equation 5.4 describes the activation
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test which is the key part of the inference procedure. The algorithm for inference of

doublets from the training data is described in Algorithm 7.

Algorithm 7: Inference of doublets of the layer Ln, (n> 2)

Data: Training data TS(Ln−1) represented in terms of the vocabulary S(Ln−1)
Set of composition rules: B
Doublets of the layer Ln : D(Ln)

Result: Training data TD(Ln) represented in terms of the doublets D(Ln)

1 TD(Ln) is empty;
2 for j = 1 to k do // for each model

3 Q = TS(Ln−1)(j) ; // set of Ln−1 realizations

4 DD is empty ; // set of Ln doublets activations

5 foreach R ∈ Q do // for each part realization

6 find a set Λ ⊆ Q of part realizations eligible for composing with R under a
set of composition rules B;

7 find all doublets Ds(Ln) ⊆ D(Ln) having the central subpart P n−1
R.id ;

8 foreach K ∈ Λ do
9 find all doublets Dss(Ln) ⊆ Ds(Ln) having the non-central subpart

P n−1
K.id ;

10 if Dss(Ln) 6= ∅ then
11 δ = K.coord−R.coord ; // relative coordinates

12 foreach πncur = (P n−1
R.id , (P

n−1
K.id ,∆

sp
cur)) ∈ Dss(Ln) do

13 Perform activation test to check if δ fits the distribution ∆sp
cur;

14 if activation test is successful then
15 RR.id = cur ; // create a realization of doublet πncur
16 RR.coord = R.coord;
17 include RR to the set DD;

18 end

19 end

20 end

21 end

22 end
23 TD(Ln)(j) = DD
24 end

5.5.4 Co-activations of Doublets

After inference of doublets of the layer Ln from the training data is complete, we obtain

activations of doublets in different data points. Obviously, some of the data points do not

contain any activations, because the local surface structure in the neighborhood of such
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points does not fit any templates represented by the set of doublets D(Ln). On the other

hand, in some of the data points two or more doublets may be activated, i.e. there are

co-activations of doublets in some points. In general, our goal is to learn the statistics of

co-activations and form a set of candidate parts C(Ln) using these statistics.

There exist several possible cases depending on how many doublets are simultaneously

activated in the same data point and what are the properties of these doublets. Assume

there is a data point ρ and a part realization of the part P n−1
c (of the previous layer Ln−1)

activated in this point. The following items describe all possible cases:

1. If there are no doublets of the layer Ln activated in the point ρ then, obviously,

there are no activations of candidate parts in this point.

2. If two doublets are activated in the data point ρ, for example, doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j )), and these doublets describe surface in the opposite direc-

tions from ρ (e.g. on the left and on the right sides from ρ), then we say that there

is an activation of a candidate part (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

k ,∆sp
j )) residing in the

point ρ (see the illustration in Figure 5.12 (a)).

3. If there are more than two doublets activated in the point ρ, for example, m ≥ 1

doublets describing surface on one side from ρ, and k ≥ 1 doublets describing

the surface of the other side from ρ, where max(k,m) > 1, then we say there

are activations of m × k candidate parts in the point ρ. Let us consider the ex-

ample when m = 2 (doublets (P n−1
c , (P n−1

l ,∆sp
i )) and (P n−1

c , (P n−1
k ,∆sp

j ))) and

k = 1 (doublet (P n−1
c , (P n−1

b ,∆sp
a ))). Then we have m × k = 2 × 1 = 2 activa-

tions of two candidate parts in the point ρ, i.e. (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

b ,∆sp
a )) and

(P n−1
c , (P n−1

k ,∆sp
j ), (P n−1

b ,∆sp
a )) (see the illustration in Figure 5.12 (b)).

4. If there is only one doublet (P n−1
c , (P n−1

l ,∆sp
i )) activated in the point ρ, then we

need to perform an extra check to figure out whether or not surface in the direction

opposite to the one described by ∆sp
i exists. For instance, let us assume, that a
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doublet describes a surface on the left side from ρ. Then we should check whether

or not surface on the right side from the central subpart exists1.

• If the surface exists, then there are no candidate parts of the layer Ln residing

in the point ρ (see the illustration in Figure 5.12 (c)).

• If the surface does not exist, then there is a candidate part (P n−1
c , (P n−1

l ∆sp
i ))

in the point ρ2 (see the illustration in Figure 5.12 (d)).

5. If there are m doublets activated in the point ρ, where m > 1, and all these doublets

describe surface in the same directions from ρ then we have to check the existence of

surface in the opposite direction. If surface exists there, then there are no candidate

parts of the layer Ln in the point ρ. If there is no surface there, then there are m

candidate parts with empty cells, formed as shown in the previous item.

Forming a set of candidate parts

So far we have identified which candidate parts reside in different points of the input

data. Some data points contain no activations of candidate parts, while other data points

may have one or more activations. Obviously, many candidate parts, representing regular

surfaces, are activated in multiple data points, while other candidate parts, representing

rare surfaces, are activated only in one or few data points.

To complete forming the set C(Ln) of candidate parts of the layer Ln we have to

measure frequencies νi for each candidate part Cn
i , showing the number of occurrences of

activations of this candidate part in the training data. Then we define a small threshold

value tr (usually tr = 1 + log(m), where m is a number of training models) and include

all candidate parts with the frequency larger than this value to the set of candidate parts

C(Ln). This thresholding is done to avoid including very rarely observed parts to the set

1The test for the existence or the absence of surface has been described in the end Subsection 5.4.1)
2Remember, that if a vocabulary contains only one subpart, this implicitly indicates the existence of

an empty subpart in the opposite direction. If, yes, than this part has a realization in a point ρ, otherwise,
there are no realizations of the layer Ln residing in the point ρ
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Figure 5.12: Illustration for different co-activation cases

of candidate parts. We assume, that if a candidate part appears only once or few times in

the training data, then it is not statistically relevant anyways, and it should not undergo

the part selection process. After the set of candidate parts is formed, we start the part

selection procedure, that selects a vocabulary of the layer Ln from the set of candidate

parts, i.e. if searches for S(Ln) ⊆ C(Ln).

5.6 Part Selection Problem

Part selection is the key stage of the learning procedure. At this stage, we select a subset

S(Ln) ⊆ C(Ln) from the set of candidate parts and form the vocabulary of the layer Ln.

There are several main reasons for doing part selection:

• A set of candidate parts is typically very large. For example, when performing
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vocabulary learning from the large Washington dataset [48], a number of candidate

parts of the layers L2 becomes close to | C(L2) | ≈ 2.5 ∗ 104, and this number grows

rapidly for each subsequent layer, this is why a certain compression is required.

• There are many candidate parts representing surfaces geometrically similar to each

other. On this basis certain grouping (e.g. clustering) techniques can be applied,

such that only one representative part from each group is included in S(Ln). Such

a grouping is purposed to facilitate generalization where a set of similar shapes is

represented by a single part.

• Importance of candidate parts varies for different tasks, such as surface reconstruc-

tion, localization or discrimination of object categories. For instance, many fre-

quently occurring parts represent planar surface patches or surface patches of low

curvature. They are important for surface reconstruction, but usually not very dis-

criminative, as they are activated in objects of many categories. On the other hand,

some candidate parts may represent category-specific surfaces, i.e. those surfaces

which appear in objects of a certain category only. These parts have a very large

discriminative power, and therefore should be included in the vocabulary according

to this criterion. Another example is that some surface structures, e.g. corners

are usually well-localized in images, therefore these are significant cues for object

localization, though these parts may be less important for other tasks.

These reasons suggest that part selection should have multiple objectives, i.e. (i)

compression to reduce the number of parts included in the vocabulary, (ii) generalization,

in which parts representing surfaces with similar geometric properties are grouped into a

single node (e.g. cluster), and (iii) specific importance measures which may be different for

different tasks (e.g. reconstruction, localization, and object category recognition) should

be taken into account.

There are several ways how the part selection problem can be solved. One of the ways

is to formulate and solve a multi-objective optimization problem. In this approach, the
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cost function, comprising two or more terms is formulated, where each term represents

a certain condition. For instance, the cost function may contain one or more data terms

encoding similarity between parts and/or importance measures for candidate parts and

the regularization term restricting the size of the vocabulary. The main advantage of

such approaches is that they usually assume a simple and explicit formulation of the

problem without any hidden constraints and assumptions. On the other hand, there are

several drawbacks of this approach. First, the cost function should have one or more

parameters assigning weights to each term, showing how influential this term is, and is

not a trivial task to find an optimal set of weights. Second, the resulting solution of

the multi-objective optimization problem represents a certain trade-off between several

terms, therefore it may not be optimal from the point of view of each particular task (e.g.,

surface reconstruction or object category recognition).

The alternative to the multi-objective optimization problem is the “divide and con-

quer” strategy, in which the whole part selection problem is split into several simpler

sub-problems, each of which takes into account only one or two criteria. Then each sub-

problem is solved separately, i.e. a certain set of parts representing the solutions for this

subproblem is found, and after that, the solutions of all subproblems are merged into

a single vocabulary S(Ln). In this thesis we investigate both ways of performing part

selection.

Since this is a large section, it is worth describing how the remainder of this section

is organized. Subsection 5.6.1 introduces a measure of geometric similarity of candidate

parts, while Subsection 5.6.2 introduces different measures of importance for candidate

parts. In Subsection 5.6.3 we formulate the part selection as multi-objective optimization

problem, and finally in Subsection 5.6.4 we use “divide and conquer” strategy and perform

part selection separately according to each criterion.
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5.6.1 Distance Between Parts

Before formally formulating and solving the part selection problem, it is important to

define a measure of geometric similarity of candidate parts. The similarity measure of

two candidate parts Cn
i and Cn

j is denoted dv(C
n
i , C

n
j ). It approximates the volume be-

tween surfaces, representing mean reconstructions of these two parts, given that these

parts are centered in the same point. Mean reconstruction of a part is the configuration

of its subparts in which they are located exactly at the relative positions defined by the

parameters µ of the corresponding Gaussian distributions. Remember, that the distri-

bution of possible relative positions of each subpart of a part is defined by the Gaussian

distribution ∆sp
k = (µk,Σk), so the mean reconstruction of a part means that each subpart

of this part is located exactly at the relative positions µk w.r.t. the central subpart.

Figure 5.13: Distance between two candidate parts: (a) The mean reconstruction of a
part, (b) The mean reconstruction of another part, (c) Both parts with aligned centres,
(d) Volume between two surfaces

This similarity measure is illustrated using the example shown in Figure 5.13. Assume

we measure the distance between two candidate parts C2
202 and C2

53 (learned from the
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Washington dataset), whose mean reconstructions are shown in Figure 5.13(a) and (b).

Once the surfaces representing the mean reconstructions of these parts are recovered, they

should be located such that their central subparts are placed at the same point (Figure

5.13(c)). Then the volume between these two surfaces, shown in Figure 5.13(d) is used as

a similarity measure dv(C
2
202, C

2
53) for these two candidate parts.

If we measure dv(C
n
i , C

n
i ), then obviously, the volume is equal to zero. If parts represent

different surfaces, or the same surfaces of different orientations, then the volume becomes

larger than zero. If at least one part contain an empty cell, then the following three cases

should be taken into account:

Case 1. If one part contains the empty cell, while another part does not, these parts

are always considered to be non-similar, and dv is set to the infinity.

Case 2. If both parts contain empty cells at the same side from the central subpart,

then the distance is computed in a normal way, as a volume between two surfaces.

Case 3. If two parts contain empty cells on different sides from the central subparts,

then these parts are considered to be non-similar, and dv is set to the infinity.

Note, that the proposed similarity measure may be applied both to measure the sim-

ilarity between candidate parts and vocabulary parts. Also note, that for computational

reasons, (e.g. when minimizing the energy functions described in Subsection 5.6.3) we

replace infinite distances between candidate parts by a very large constant.

5.6.2 Importance Measures of Candidate Parts

In the previous subsection the measure of geometric similarity between candidate parts

was introduced. In addition to that, the part selection procedures requires defining dif-

ferent importance measures for candidate parts, and this subsection describes several

measures of importance for candidate parts.
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Discriminativeness of Candidate Parts

Since one of the primary goals of this thesis is object category recognition, discriminative-

ness is the most substantial importance measures for candidate parts. This importance

measure is based on the distribution of realizations of a candidate part across object cat-

egories. For instance, if a candidate part is activated in objects of one category only, this

part is considered to be very discriminative (category-specific), while if a candidate part

appears in objects of many categories, it is much less discriminative, and therefore less

helpful for object categorization.

Discriminativeness of each candidate part is measured in two steps. First, the his-

togram showing the occurrence counts of part realizations in objects of different categories

are built. After normalization, these histograms approximate probabilities of categories

given a candidate part. Figure 5.14 depicts normalized histograms for three candidate

parts learned from the Washington dataset, containing 51 object categories. Second, the

histogram entropy He, which serves as a measure of part discriminativeness, is computed

from the histogram of each candidate part using the Equation 5.5:

He = −
n∑
i=1

bi log(bi), (5.5)

where bi is the i-th bin of the histogram approximating probability of object category

i given the part, and n is a number of object categories in the dataset. In the case of

bi = 0 for some i, the value of the corresponding summand 0 log(0) is taken to be 0, which

is consistent with the limit:

lim
p→0+

p log(p) = 0.

Parts with lower entropy are more discriminative, than parts with higher entropy. Figure

5.14 (a) shows the histogram for the candidate part, which is activated in objects of many

categories. Such a distribution of part realizations across object categories leads to high

values of histogram entropy He. On the other hand, Figure 5.14 (c) depicts a histogram

for the candidate which has high probabilities of some categories given a part. Such a
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distribution leads to lows value of histogram entropy He.

Figure 5.14: Histogram for candidate parts with: a) high entropy, b) moderate entropy,
c) low entropy.

Coverage of Candidate Parts

Each part represents a surface of a certain area, which can be assumed to be proportional

to the average number of data points, i.e. pixels in range images or points in point clouds,

spanned by realizations of this part. The following importance measures for a candidate

part approximate the overall surface area represented by all realizations of this part, by

counting the number of data points spanned by these realizations.

Coverage (denoted Cover(Cn
i )) of the candidate part Cn

i is the number of data points

in the whole training set, spanned by all realizations of this part. Conditional coverage

Cover(Cn
i | Y) of the candidate part Cn

i given a set of parts Y is the number of data

points in the training set, spanned by all realizations of the part Cn
i , excluding those data

points that are spanned by realizations of all parts from the set Y .

Figure 5.15 illustrates these definitions. Assume we have two candidate parts C2
1 and

C2
2 . Figure 5.15 (b) shows projections of the surfaces modeled by these candidate parts

on the XY plane. Also assume the training set contains only one surface represented by

the point cloud (with blue points) shown in Figure 5.15 (a) and (c). Figure 5.15 (a) shows

that the candidate part C2
1 (red) is activated in two locations on this surface. Since all

realizations of this candidate part span the area in which 27 points of the point cloud are

located, coverage of this candidate part is equal to 27, i.e. Cover(C2
1) = 27. The second
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candidate part Cover(C2
2) (green) has only one part realization on this surface, as shown

in Figure 5.15 (c). This part realization spans the area in which 14 points of the point

cloud reside, therefore Cover(C2
2) = 14.

Now assume Y = {C2
2}, and compute the conditional coverage Cover(C2

1 | Y). Overall,

realizations of the part C2
1 span 27 points, however, 8 of these points are also spanned

by the realization of the part C2
2 from Y , therefore Cover(C2

1 | Y) = 19. Similarly if

Y = {C2
1}, then Cover(C2

2 | Y) = 6.

Figure 5.15: Explanation for coverage and conditional coverage. a) area spanned by
realizations of the candidate part C2

1 , b) projections of the candidate parts C
2
1 and C2

2 on
the X-Y plane, c) area spanned by realizations the candidate parts C2

1 and C2
2

5.6.3 Part Selection as a Multi-Objective Optimization Problem

One of the approaches to the part selection problem is to formulate and solve a multi-

objective optimization problem. We define a cost function (also termed an energy func-

tion) E and formulate the part selection problem as an energy minimization problem.

At the first stage we defined a relatively simple energy function comprising two terms.

The first term, called similarity term measures average distance between selected parts

and the candidate part which has not been selected, thus measuring the reconstruction

error, i.e. how well the set of candidate parts can be is represented by the vocabulary.

The second term penalizes vocabularies with large cardinality, i.e. it restricts the number

of parts to be included in the vocabulary. Thus the cost E function takes the following

form:
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E(S(Ln)) =
∑

Cn
i ∈C(Ln)

dv(C
n
i , C

′(Cn
i )) νi + α |S(Ln)| (5.6)

where νi is the number of occurrences of activations of the candidate part Cn
i in

the training data, dv(·, ·) is a distance function that quantifies the geometric similarity

between two parts (described in Section 5.6.1), and C ′(Cn
i ) is the part in S(Ln) that is

closest to Cn
i , according to this similarity measure. Also α ∈ R+ is a meta-parameter

that regulates the trade-off between the precision of the representation and the number

of selected parts.

The objective is to find the vocabulary S(Ln) ⊆ C(Ln) that minimizes the cost function

described by Equation 5.6, i.e. the resulting vocabulary should be found by solving the

following equation:

S(Ln) = arg min
S(Ln)⊆C(Ln)

E(S(Ln)) (5.7)

We solve this problem using a greedy algorithm, which includes candidate parts in

the vocabulary one after another, on each iteration searching for the candidate part Cn
i ∈

C(Ln) leading to the smallest value of E(S(Ln) ∪ Cn
i ) and including this part to the

vocabulary S(Ln). The algorithm stops when there are no more candidate parts in C(Ln)

which, being included in the vocabulary, would lead to the further decrease in the cost

function E. Note that this algorithm is not guaranteed to find a globally optimal solution,

however, it is a useful strategy for finding reasonably good feasible solutions to the given

problem1.

The vocabulary S(Ln) obtained by minimizing this cost function has the following

properties:

1. Parts with large number of activations in the training data stand higher chances to

1In Section 5.10 we will show that the results, achieved using the vocabularies selected by the presented
greedy algorithm, do not substantially differ from the results achieved by other part selection methods
(described in the next Subsections) and from the results achieved by other methods tested on the same
dataset.
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be included in the vocabulary, than parts with small number of activations,

2. Discriminativeness of candidate parts is not taken into account,

3. As parts representing corners, edges or other surfaces of high curvature are usually

much less frequently observed in the training data, these surface types become poorly

represented in the vocabulary.

To fix the problems described in the items (2) and (3) we incorporate the measure of

the part discriminativeness (histogram entropy He) into the cost function by introducing

the additional data term purposed to stimulate selection of discriminative parts to the

vocabulary. The cost function comprising three terms looks as follows:

E(S(Ln)) =
∑

Cn
i ∈C(Ln)

dv(C
n
i , C

′(Cn
i )) νi + α |S(Ln)| + β

∑
Cn

j ∈S(Ln)

He(C
n
j ) (5.8)

where He(C
n
j ) is histogram entropy (introduced in Equation 5.5) of the candidate part

Cn
j and β ∈ R+ is a meta-parameter showing importance of the third term relatively to

the first and the second one. Results for both part selection strategies are presented in

Section 5.10.

5.6.4 Divide and Conquer Strategy for Part Selection

The idea of formulation of the part selection problem as multi-objective optimization has

some substantial drawbacks, the most important of which is that the resulting solution

represents a certain trade-off between several terms, therefore it usually becomes not

optimal for particular tasks (e.g. object categorization). Especially, this problem becomes

acute when two data terms of the cost function contradict to each other, for instance, if

a candidate part has a low number of occurrences νi, but high discriminativeness (low

entropy He). In such cases it becomes quite unlikely that this part will be included in the

vocabulary, despite its usefulness for object categorization.
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As an alternative to the multi-objective optimization, it is possible to apply a ”divide

and conquer” strategy, i.e. to separately find several subsets of parts, representing so-

lutions for different sub-problems, and then merge these subsets to a single vocabulary.

For instance, we can apply MDL-based part selection to find the minimal set of parts

Λr(Ln) ⊆ C(Ln) required for surface reconstruction, and the simple optimization function

for selecting a set of the most discriminative parts Λd(Ln) ⊆ C(Ln), and finally obtain the

vocabulary by merging these two sets S(Ln) = Λr(Ln) ∪ Λd(Ln).

MDL-Based Part Selection

Rissanen’s Minimal Description Length (MDL) principle [110] has been quite commonly

employed in the context of compositional hierarchies [28, 32, 36]. In the approach pre-

sented in this subsection we solve the part selection problem based on similar ideas. We

search for the minimal subset of candidate parts which is required to explain the training

data in terms of the shape vocabulary. Coverage (presented in Subsection 5.6.2) is used

as a measure of the explanatory power of each part. In our approach the approximate

solution for this problem is found using a greedy algorithm, similar to the algorithm used

by Fidler et al. [31, 107, 42].

The algorithm for part selection is presented in Algorithm 8. In the beginning, the part

with the largest coverage is selected from the set of candidate parts C(Ln) (assume this is

a part Cn
i ). Then this part is excluded from the set C(Ln) and included in the vocabulary

Λr(Ln). After that, all parts that are similar to Cn
i according to the similarity measure dv

are excluded from the set of candidate parts C(Ln). This step is done to prevent including

many parts representing similar surfaces in the vocabulary. After that, the same procedure

is performed on each iteration: we search for the part with the largest conditional coverage

given the vocabulary Λr(Ln), include this part in the vocabulary Λr(Ln) and exclude it

(together with the similar parts) from the set of candidate parts C(Ln). In other words,

on each iteration we search for a part with the largest explanatory power and include this

part in the vocabulary. The explanatory power is measured as a conditional coverage, i.e.
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the amount of data points that can be explained by each candidate part, and can not be

explained by the parts previously included in the vocabulary. Note, that the conditional

coverage of the non-selected candidate parts may decrease when new parts are included

in the vocabulary, that is why conditional coverage of all parts from the set C(Ln) has to

be re-computed after each iteration.

Algorithm 8: MDL-based part selection algorithm

Data: Set of candidate parts C(Ln),
Pre-defined similarity threshold Ts,
Pre-defined coverage threshold Tc.

Result: The vocabulary Λr(Ln).

1 Λr(Ln) = ∅;
2 Find the part Cn

i ∈ C(Ln) with the largest Cover(Cn
i );

3 Exclude the part Cn
i from the set C(Ln) and include it in Λr(Ln);

4 Find the set of parts Υ = {Cn
j }j such that dv(C

n
i , C

n
j ) < Ts;

5 Exclude parts that belong to Υ from the set C(Ln);
6 repeat
7 Find the part Cn

k ∈ C(Ln) with the largest Coverage(Cn
k |Λr(Ln));

8 Exclude Cn
k from C(Ln), and include it in the Λr(Ln);

9 Find the set of parts Υ = {Cn
l }l such that dv(C

n
k , C

n
l ) < Ts;

10 Exclude parts that belong to Υ from the set C(Ln);

11 until largest Coverage(Cn
m|S(Ln)) > Tc;

Note that, strictly speaking, surface area is not proportional to the number of points

of the point cloud, due to varying density of point clouds. For instance, surfaces that

are perpendicular to the viewing direction, are represented by a much more dense point

cloud than those surfaces that are “almost parallel” to the viewing direction. Therefore,

coverage and conditional coverage (introduced in Subsection 5.6.2 and used in Algorithm

8) of parts representing surfaces that are “almost perpendicular” to the viewing direction

is typically much larger than coverage and conditional coverage of parts representing

surfaces that are “almost parallel” to the viewing direction.

Now we have to highlight that this is not a problem, and the presented algorithm

still works properly and includes in the vocabulary parts representing differently orien-

tated surfaces. The algorithm starts with parts having the largest coverage, i.e. typically

parts representing surfaces that are “almost perpendicular” to the viewing direction, and
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includes them in the vocabulary. Once parts with large coverage are included, the al-

gorithm proceeds to parts with smaller coverage and includes them in the vocabulary

as well. That means the varying density of point clouds affects only the order in which

the algorithm includes parts in the vocabulary, but ultimately does not prevent including

parts representing all orientations in the vocabulary.

Entropy-based Part Selection

The objective of the entropy-based part selection is to select a set of the most discrimina-

tive parts. In this case, the simplest possible way of part selection would be to measure

the histogram entropy He (introduced in Subsection 5.6.2) for each candidate parts, then

define a certain threshold TH and finally include all parts with entropy He ≤ TH in the vo-

cabulary. However, this approach would result in the selection of many parts representing

similar surfaces in the vocabulary. That means the part selection procedure should take

into account similarities between candidate parts to prevent selection of parts representing

similar surfaces.

Our strategy for selecting the set of discriminative parts can be described as follows.

At the first stage we find the subset Λdd(Ln) ⊆ C(Ln), such that all parts from the set

Λdd(Ln) have histogram entropy lower than the pre-defined threshold TH . After that

Λdd(Ln) contains only discriminative parts, many of which, however, represent surfaces

which are similar to each other. To reduce a size of the vocabulary and to facilitate better

generalization we should find a subset Λd(Ln) ⊆ Λdd(Ln) such that (i) Λd(Ln) sufficiently

well represents the set Λdd(Ln), and (ii) the cardinality of Λd(Ln) is rather small. To

satisfy both constraints we define the following cost function:

E(Λd(Ln)) =
∑

Cn
i ∈Λdd(Ln)

dv(C
n
i , C

′(Cn
i )) + γ |Λd| (5.9)

where C ′(Cn
i ) is the part in Λd(Ln) that is closest to Cn

i , according to the similarity

measure dv. Also γ ∈ R+ is a meta-parameter that regulates the trade-off between the
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precision of the representation and the number of selected parts. Note, that the important

difference of Equation 5.9 from Equation 5.6 is that number of parts activations (νi) in

the training set is not taken into account in Equation 5.9. The reason for this is that we

find that these two conditions (frequency and discriminativeness) usually contradict to

each other, i.e. very discriminative candidate parts are usually non-frequently observed

in the training data. That’s why occurrence counts of part realizations in the training

data are not taken into account in this energy function.

We find the set Λd(Ln) ⊆ Λdd(Ln) minimizing the cost function E(Λd(Ln)) using the

same greedy algorithm as the one described in Subsection 5.6.3. After sets Λd(Ln) and

Λr(Ln) are found they are merged to a single shape vocabulary S(Ln) = Λr(Ln)∪Λd(Ln).

Results for both part selection strategy are presented in Section 5.10.

Part selection is the last step of the learning procedure and the resulting vocabulary

S(Ln) of the layer Ln represents the output of the learning algorithm.

5.7 Inference of a Single Layer

In this section the inference procedure for a single layer Ln, (n> 2) is described. The goal

of inference is to match the input data against the vocabulary in order to find realizations

of vocabulary parts in the data.

This algorithm proceeds in two steps. First, inference of doublets from the input data

is done, exactly as was described in Algorithm 7. Second, when activations of doublets of

the layer Ln in the training data are found, the co-activations of doublets each data point

are analyzed and the inference of parts is performed based on this analysis.

There are five possible scenarios, which are described below. Notice, that these sce-

narios are very similar to the cases described in Section 5.5.4, that is why the same Figure

(Figure 5.12) may be used for illustration.

1. If there are no doublets of the layer Ln activated in a point ρ then, there are no

part realizations of the layer Ln in this point.
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2. If two doublets are activated in the point ρ, for example, doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j )), and these doublets describe surface in the opposite direc-

tions from ρ (e.g. on the left and on the right sides), then we check if the vocabulary

contains a part (P n−1
c , (P n−1

k ,∆sp
j ), (P n−1

l ,∆sp
i )). If yes, then there is a realization

of this part in the point ρ, otherwise there are no part realizations of the layer Ln

in this point (see the illustration in Figure 5.12 (a)).

3. If there are more than two doublets activated in the point ρ, for example, m ≥ 1 dou-

blets describing surface on one side from ρ, and k ≥ 1 doublets describing the surface

on the other side from ρ, where max(k,m) > 1, then we form m× k parts as shown

in Item 2. Let us consider the example when m = 2 (doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j ))) and k = 1 (doublet (P n−1

c , (P n−1
b ,∆sp

a ))). Then we have to

form m× k = 2× 1 parts from these doublets, i.e. (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

b ,∆sp
a ))

and (P n−1
c , (P n−1

k ,∆sp
j ), (P n−1

b ,∆sp
a )). Then for each of these parts we check if it

belongs to the vocabulary, and, if yes, then it has a realization in the point ρ (see

the illustration in Figure 5.12 (b)).

4. If there is only one doublet (P n−1
c , (P n−1

l ,∆sp
i )) activated in a point ρ, then we need

to perform an extra check to figure out whether or not surface in the direction

opposite to the one described by ∆sp
i exists. For instance, let us assume that a

doublet describes a surface on the left side from ρ. Then we should check whether

or not surface on the right side from ρ exists.

• If the surface exists, then there are no part realizations of the layer Ln residing

in the point ρ (see the illustration in Figure 5.12 (c)).

• If the surface does not exist, then we check if a part (P n−1
c , (P n−1

l ,∆sp
i )) exists

in the vocabulary1 If so, then this part has a realization in a point ρ, other-

wise, there are no realizations of the layer Ln residing in the point ρ (see the

illustration in Figure 5.12 (d)).
1Remember, that if a vocabulary contains only one subpart, this implicitly indicates the existence of

an empty subpart in the opposite direction.
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5. If there are m doublets activated in the point ρ, where m > 1, and all these doublets

describe surface in the same directions from ρ then we have to check the existence

of surface in the opposite direction. If the surface exists there, then there are no

part realizations of the layer Ln in the point ρ. If there is no surface there, then

we form m parts with empty cells, check if these parts exist in the vocabulary and

infer realizations of these part accordingly.

5.8 Pooling

Pooling is the form of non-linear downsampling, purposed to progressively reduce the

spatial resolution of the representation by reducing the number of part realizations in

order to speed-up computations in higher layers. Notice that pooling is an optional

procedure, meaning that the presented system works without it, however, in this case

the computations on higher layers become several times slower. The difference between

inference time with and without pooling becomes especially large on higher layers. For

instance, as will be shown in Subsection 5.10.1, inference of the layer L5 with pooling

takes approximately 5-10 minutes, while without pooling this time exceeds two hours.

Note, that all experiments presented in Section 5.10 were performed with pooling,

otherwise the computational time would be too large (up to several days for each experi-

ment)1. That is why we did not evaluate the performance of the system without pooling

on the Washington dataset. We assume, that computations without pooling could lead

to better results, since pooling removes many part realizations, some of which may carry

a certain discriminative information.

Our pooling algorithm can be described as follows. After inference of every other layer

(i.e. L3, L5) we tile the support region of the object in the XY plane by non-overlapping

equally-sized squares. For the layer L3 the size of these squares should be chosen such

1Notice, that in order to perform an experiment on the Washington dataset, one has to split the dataset
into the training and testing set 10 times, and therefore 10 times perform learning of the vocabulary,
inference and categorization
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that each region contains 3× 3 pixels of the original depth image, while for the layer L5

the squares become 3 times larger. Then we extract all part realizations located within

each square region. After that, we measure the number of occurrences of realizations of

each part in the region. Assume there is a square region, in which four realizations of the

part P n
i , two realizations of the part P n

j and one realization of the part P n
k are located.

Then the pooling algorithm will delete all realizations of parts P n
j and P n

k , and 3 out of

4 realizations of the part P n
i . Only one part realization of P n

i should be left, namely, the

realization which is the closest to the centre of the square region1. If two or more parts

have equal number of realizations in a support region, e.g. if both parts P n
i and P n

j have

4 part realizations in the region, while the part P n
k has only three realizations, then we

should leave one realization of P n
i and one realization of P n

j in the region, and delete all

remaining realizations.

5.9 Object Categorization from Range Images

In this section the approach for object categorization from range images is described.

Subsection 5.9.1 presents the Histograms of Compositional Parts (HoCP) which serve

as a category descriptor, while Subsection 5.9.2 describes classification of HoCPs by the

Support Vector Machines (SVMs) with four different types of kernels.

5.9.1 Histogram of Compositional Parts

The descriptors used for category recognition in this thesis are Histograms of Composi-

tional Parts (HoCP), which are block-wise histograms showing occurrence counts of part

realizations in point clouds. Similar category descriptors for 2D images, showing occur-

rence counts of part realizations in images, were used by Tabernik et al. [216]. In this

subsection the process of building histograms of compositional parts is presented.

Assume there is a depth image I representing a range scan of an object. During

1If there are two or more realizations at the same distance from the centre, the choice is made randomly
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pre-processing (Section 5.2) this image is converted to the point cloud P , and then the

inference procedure (described in Section 5.7) is performed subsequently for all layers

Ln (n ∈ [1,N ]) starting from the layer L1. After that, the histograms of compositional

parts are built as shown in Figure 5.16. The rectangular region Ω of the XY plane

containing the point cloud P is partitioned into 4 (2 × 2) and 9 (3 × 3) sub-regions of

equal size, and the histograms are built for each sub-region. We denote the histogram

for the i-th sub-region as Hi, where i ∈ [1, 14], i.e. the histogram H1 shows occurrence

counts of part realizations in the whole region Ω, the histograms from H2 to H5 show

occurrence counts of part realizations in different 2×2 sub-regions of Ω, and the remaining

histograms from H6 to H14 correspond to the partitioning of Ω into 3 × 3 sub-regions.

As each histogram Hi depicts the number of occurrences of part realizations of all layers

from L1 to LN , its length can be computed using the following equation:

| Hi |=
N∑
n=1

| S(Ln) | (5.10)

Figure 5.16: Histogram of Compositional Parts

After all histograms Hi are built, each of these is normalized in the following way.

As it shows occurrence counts for part realizations of different layers (from 1 to N ), the

normalization is done for each layer separately. That means, for each n from 1 to N
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we extract bins Ψn ⊂ Hi, showing occurrence counts of part realizations of the layer

Ln, sum up all values in these bins (assume the sum is equal to S), and, if S > 0,

divide the values in bins Ψn by S, thus performing layer-wise normalization. Such a

normalization is important for the EMD and Quadratic-Chi affinity measures, where

cross-bin dependencies are taken into account. See Subsection 5.9.2 for more details.

When all 14 histograms are built and normalized, they are concatenated into a sin-

gle Histogram of Compositional Parts, which therefore has length computed using the

equation:

N = | HoCP |= 14 | Hi | (5.11)

These descriptors are classified using Support Vector Machines with different types of

kernels which are considered in the next subsection.

5.9.2 Classification of HoCP by SVM

After histograms of compositional parts are built, they are used as descriptors for category

recognition. For classification we use the Support Vector Machine (SVM) classifier, since it

achieves outstanding performance in numerous applications, and therefore it is one of the

most popularly employed classifiers in our days. It was originally invented by Vapnik and

Chervonenkis in 1963, but modified to its current form (with soft margin) by Cortes and

Vapnik in 1995 [217]. SVM requires defining kernels, i.e. similarity functions over pairs

of data points. We use four types of kernels for classifying HoCPs: Gaussian kernels,

χ2 kernels, Quadratic-chi [218] kernels, and Earth Mover’s Distance (EMD) [219][220]

kernels.

Gaussian and χ2 kernels represent bin-by-bin similarity measures which are very com-

monly employed in SVMs, moreover, these kernels are implemented in standard packages

for SVM, such as LibSVM [221], therefore the detailed description of these kernels is

not provided in this thesis. However, usage of two other similarity measures, namely

Quadratic-chi and EMD, within the SVM framework is much less straightforward, be-
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cause (i) these similarity measures require defining cross-bin distance matrices, (ii) these

measures are not guaranteed to produce positive semi-definite (PSD) kernel matrices. In

the following subsections we shortly describe the Quadratic-chi and EMD affinity mea-

sures, show how to define a cross-bin distance matrix A, describe the kernelization trick

enabling both affinity measures to produce PSD kernel matrices, and present our approach

for parameter selection.

Earth Mover’s Distance

The Earth Mover’s Distance (EMD), invented by Rubner et al. [219][220], is the affinity

measure showing the distance between two distributions (e.g. histograms) over a certain

domain. Informally, these distributions can be understood as two different ways of piling

up a certain amount of dirt over this domain and the EMD is the minimal amount of

work that must be performed to transform one pile into the other. The amount of work

is calculated as the amount of dirt moved times the distance by which it is moved. For

computing the EMD distance between two bounded histograms, e.g. B and Q, comprising

N bins (B,Q ∈ [0, 1]N , where N is computed by Equation 5.11) it is necessary to define

a cross-bin similarity matrix A, i.e. a non-negative bounded symmetric matrix (A ∈

[0, U ]N × [0, U ]N and ∀i,j Aii ≤ Aij) whose elements Aij denote distance between bins

i and j of these histograms, i.e. the distances by which dirt is moved when transferred

from one bin to another. U here is a very large constant (0 � U < ∞), used for bins

maximally distant from each other.

In Subsection 5.9.1, where HoCPs are described, it is shown that these histograms

contain bins representing occurrence counts of part realizations of different layers (from

1 to N ) of the hierarchy located in different sub-regions (14 sub-regions) of the input

image. Therefore, the matrix A can be defined in the following way:

• Aii = 0 ∀ i;

• If bins i and j represent parts from different sub-regions of the image, then Aij = U ,
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Figure 5.17: Illustration of the Earth Mover’s Distance measure. a) EMD is the amount
of dirt moved times the distance by which it is moved, b) Distances between bins are
stored in the matrix A

i.e. we consider bins from different sub-regions to be non-similar;

• If bins i and j represent parts of different layers from the same sub-region of the

image, then Aij = U , i.e. we don’t take into account similarities of parts of different

layers and such parts are assumed to be always non-similar to each other;

• If bins i and j represent parts (e.g. parts P n
k and P n

k ) of the same layer from the

same sub-region of the image, then Aij = dv(P
n
k , P

n
m), where dv is the parts similarity

measure introduced in Section 5.6.1. In case dv(P
n
k , P

n
m) = ∞ (which may happen

for the parts with empty cells), this value is replaced by the constant U .

This means that cross-region bins, and bins representing parts of different layers are

considered to be non-similar, while in other cases similarity of bins depends on geometric

similarity of the corresponding vocabulary parts.

Quadratic-Chi distance measure

Despite the fact that the EMD affinity measure takes into account cross-bin relations, it

has one substantial drawback, which may become crucial when classifying histograms of

compositional parts. This drawback is that the EMD is proportional to the amount of
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mass moved from one bin to another, that is why the bins with large amount of mass (i.e.

with higher values of Bi and Qi) become more influential than the bins with a smaller

amount of mass. This means that the EMD of two histograms is mainly affected by

differences between large bins of these histograms rather than by differences of smaller

bins. However, in HoCPs differences between small bins are sometimes very important, as

many discriminative parts are non-frequent, therefore the number of occurrences of these

parts in objects is rather small, and consequently the corresponding bins of the HoCPs

always take small values. Actually, these small bins are quite often even more important

for category recognition than large bins representing occurrence counts of very frequent

but non-discriminative parts.

That explains the necessity of an affinity measure in which differences between small

bins become as important as differences between large bins. An affinity measure of this

type is a Quadratic-Chi [218] distance measure. This measure combines both properties

that are important for classification of HoCP i.e. it reduces the effect of differences caused

by bins with large values, and takes cross-bin relationships into account. The Quadratic-

Chi histogram distance is computed by the following equation:

QCA
m(B,Q) =

√√√√∑
ij

(
(Bi −Qi)

(
∑

c(Bc +Qc)Aci)m

)(
(Bj −Qj)

(
∑

c(Bc +Qc)Acj)m

)
Aij, (5.12)

where 0 ≤ m < 1 is a normalization parameter. The Quadratic-Chi affinity measure

also requires defining a matrix Aij for cross-bin similarities and we define this matrix in

the same way as for EMD. Our experiments (Section 5.10) show that the Quadratic-chi

distance measure achieves the best results in classifying histograms of compositional parts.

Kernelization of EMD

One of the constraints of the SVMs is that each affinity measure that is used in this

classifier must produce a positive semi-definite (PSD) kernel matrix. A symmetric n× n

real matrix M is positive semi-definite if the scalar s = zTMz is non-negative for each
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non-zero column vector z of length n. A large number of efficient affinity measures

(including EMD) are not guaranteed to produce a PSD kernel matrix. Zamolotskikh et

al. [222] discuss several methods how to produce a PSD kernel from the EMD. We use

one of the methods proposed in this paper, i.e. apply the transformation K(Q,B) =

exp(−EMD(Q,B)
h

), where Q and B are two HoCPs, and the h is the parameter (parameter

selection is discussed in the next subsection).

Parameter selection

Support Vector machine requires defining several parameters (usually one or two). For

instance, for the linear SVM one parameter C has to be defined, the SVM with Gaussian

Kernels requires defining two parameters C and γ, while the SVM with Quadratic-Chi

kernels requires defining parameters C and m (normalization parameter). We use 5-fold

cross-validation to perform the grid search of the best set of parameters. Notice, that

the parameter selection is a very time-consuming procedure, since the model has to be

re-trained for each set of parameters. That is why a 5-fold cross-validation is a reasonable

choice, although 10-fold can lead to more precise parameter selection.

Since doing a complete grid search with small step is time-consuming, we use a coarse

grid search (with large step) at the first stage. After identifying a better region on the

grid, a finer grid search inside that region is performed.

5.10 Evaluation

Table 5.1 presents the results in object categorization achieved by different methods on the

Washington dataset. We use the standard evaluation protocol proposed by the authors

of the dataset [48], according to which the dataset is split into the training and testing

sets 10 times, and the average object categorization accuracy is computed. Similar to

many other authors, we used only 20% of the dataset for training and testing, i.e. we

were taking every fifth image of each object.

112



At the first stages we evaluated our method without empty subparts using HoCPs as

category descriptors, and SVM with χ2 kernels for classification. First we trained the

layers L2-L5 of the hierarchy using the part selection method described by Equation 5.6.

We performed a grid search to find the optimal parameter value α. The best accuracy

we could achieve was 77.8 ± 2.4% using parts of the layers L1-L5. Since this method

includes only frequently occurring candidate parts in the vocabulary (i.e. parts with the

large value of ν) the discriminative power of this method is not very large. That means,

a large number of occurrences of a candidate part does not imply the large discriminative

power of this part.

Table 5.1: Results of different methods on Washington RGB-D dataset (depth channel)
(*) - Methods pre-trained on ImageNet.

Method Result, %

Random Forest [48] 66.8 ± 2.5

CNN-RNN [24] (2012) 78.9 ± 3.8

Hierarchical Matching Pursuit [205] 81.2 ± 2.3

CNN [26] raw depth data 80.1 ± 2.6

CNN [26] Colorization using surface normals (*) 84.7 ± 2.3

CNN [26] HHA colorization (*) 83.0 ± 2.7

CNN [26] Colorization using jet colormap (*) 83.8 ± 2.7

MM-LRF-ELM1 [223] 82.8 ± 2.1

Semi-Supervised CNN [224] 82.6 ± 2.3

Convolutional Fisher Kernel [52] 85.8 ± 2.3

Our approach (χ2-distance, layers 1-5, Eq. 5.6 for part selection 77.8 ± 2.4

Our approach (χ2-distance, layers 1-5, Eq. 5.8 for part selection 78.1 ± 2.6

Our approach (χ2-distance, layers 1-5, MDL) 78.4 ± 2.0

Our approach (QC-distance, layers 1-5, MDL) 79.3 ± 2.3

Our approach (QC-distance, layers 1-5, MDL+Entropy) 80.1 ± 2.2

1Multi-Modal Local Receptive Field Extreme Learning Machine
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Continuation of Table 5.1

Method Result

Our approach (QC-distance, layers 1-5, MDL+Entropy, Empty subparts) 80.4 ± 2.4

Figure 5.18: Beeswarm plots illustrating performance of different settings. Horizontal
red line shows a mean value, while vertical lines show the standard deviation. a) χ2-
distance, layers 1-5, Eq. 5.6 for part selection, b) χ2-distance, layers 1-5, Eq. 5.8 for part
selection, c) χ2-distance, layers 1-5, MDL-based part selection, d) QC-distance, layers 1-5,
MDL-based part selection

On the next stage we evaluated the part selection method described by Equation

5.8. The grid search is done for two parameters α and β providing trade-off between

different terms of the cost function. Although this part selection method led to slightly

better results, namely 78.1 ± 2.6%, the improvement over the previous part selection

method was very small. Apparently, the reason for this is that two conditions of the

cost function, namely frequency of candidate parts, and their discriminativeness, often

contradict each other, i.e. many frequently occurring parts are not discriminative, and

vice versa. The attempt to find a trade-off between these two conditions did not lead to

substantial improvement of the overall classification result.

Then we proceed to the MDL-based part selection method described in Section 5.6.4.

This part selection improved the categorization result to 78.4 ± 2.0.% In contrast to

114



two previous part selection strategies, this method can select non-frequent parts, and

presumably, this is the reason for the improvement of the results.

After that, we evaluate different kernels for SVM. It turns out, that EMD kernels

do not provide any improvement over the χ2 kernels, apparently because they mainly

count differences between large bins, as was explained in Section 5.9. On the other hand,

Quadratic-Chi kernels, for which the difference between small bins is more important,

improved the results compared to χ2 kernels (79.3 ± 2.3%).

On the next step we separately selected two sub-vocabularies, namely the MDL-based

one, and the entropy-based one, computed using Equation 5.9, and then merged them to

a single vocabulary. This merged vocabulary substantially improved the results (80.1 ±

2.2%), with Quadratic-chi kernels). This shows that the best strategy for part selection

is to separately select sub-vocabularies according to each condition and merge them after

that, instead of trying to find a trade-off between different terms of a cost function. For

these experimental settings we also evaluated the results achieved by different kernels,

and by using parts of different layers, as presented in Figure 5.19. Note that this Figure

shows the results achieved using parts of L1, then parts of L1 and L2, parts of L1, L2, L3,

etc.

Figure 5.19: Object categorization results using parts of different layers from L1 to L5

selected using MDL-based and Entropy-based algorithms. SVM with χ2, Quadratic-Chi
and EMD kernels is used
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Also, we present the similar plot showing difference between MDL-based part selection

and the MDL+Entropy, where χ2 kernels are used for classification (Figure 5.20). We see

that the difference between both methods becomes larger on higher layers.

Figure 5.20: Object categorization results using parts of different layers from L1 to L5.
MDL and MDL+Entropy methods are compared. SVM with χ2 kernels are used for
classification of HoCPs

Since we introduced empty subparts in the last phase of this work, we evaluated them

in a separate experiment. We used the same settings i.e. parts from the layers L1-L5, the

MDL-based and the entropy-based part selection, and Quadratic-chi kernels for SVM.

However, empty subpart led to only a very small improvement of the results (80.4 ±

2.4%).

5.10.1 Computational Resources and Timing

For the experiments presented in this Section we used the computer with the AMD

FX(tm)-8300 eight-core processor and 16GB of the main memory. All algorithms are

implemented in Matlab, and most of them are parallelized, i.e. all eight cores are used for

most of the computations. In such settings learning of a single layer takes from approxi-

mately 25-30 minutes to 2.5 hours, depending on the employed part selection procedure.

The slowest way of part selection is the MDL-based one, since the conditional coverage
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has to be re-computed after each iteration, which requires going through the whole train-

ing set. On the other hand, other part selection methods are substantially faster, since

they do not require such re-computations on each iteration. The inference of a single

layer takes 5-10 minutes for each layer. However if the pooling is switched off, the in-

ference time goes up very rapidly for higher layers, exceeding two hours for the layer 5.

The cross-validation for the parameter selection takes 1-1.5 hours. SVM classification

typically takes 2-10 minutes, depending on the used kernels and parameters.

5.10.2 Absence of OR-Nodes

In this subsection we explain why the concept of the presented view-based compositional

hierarchical framework does not contain OR-nodes. The main reason for this is that

parts are included in the vocabulary based on multiple criteria. For instance, some parts

may be included in the vocabulary by the MDL-based algorithm, while other parts may

be selected by the entropy-based algorithm. Given that parts are selected according to

different criteria, there is no point in grouping them into OR-nodes, according to a single

criterion, e.g. based on their geometric similarity. For instance, if two parts represent

geometrically similar surfaces, but only one of them have a large discriminative power,

there is no reason for grouping them into a single node (or cluster).

Notice, that in the surface-based hierarchy, presented in the next chapter, parts are

selected in the vocabulary only according to a single criterion, namely the frequency of

their occurring in the training data. In this framework geometrically similar parts are

grouped into OR-nodes, and the most frequently occurring part within each OR-node

becomes its representative part. More details will be explained in the next chapter.

5.11 Conclusion

In this chapter we described the novel compositional hierarchical framework for learning

of surface shape features. We described the design principles behind this framework and
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all ingredients of the system, i.e. the reference frame, the vocabulary representation, the

composition rules, empty subparts, etc. We also provided the detailed description of each

step of the learning and inference algorithms, including pre-processing of the input data,

inference of the first layer, collecting of the co-occurrence statistics, clustering of statistical

maps and forming doublets, inference of doublets from the training data, part selection,

and pooling.

The most difficult learning stage is the part selection. We proposed several importance

measures and evaluated different approaches to part selection, i.e. minimization of a multi-

objective cost function and the divide-and-conquer approach which assumes that different

sub-algorithms should perform part selection based on different criteria, and then the

results of these sub-algorithms should be merged. Our experiments show that the divide-

and-conquer approach leads to substantially better results in object categorization.

Additionally, we explained how to build HoPS, serving as a category descriptor, and

how to apply SVM with different kernels for classifying these descriptors. The framework

demonstrated sufficiently good results on the Washington RGB-D dataset, and these

results were close to state-of-the-art level on this dataset at the time the framework was

finished.

This work presented in this section solves the first research goal of this thesis, i.e.

it successfully transfers the ideas of hierarchical compositionality to the domain of sur-

face shape features. Additionally, this work confirms the first hypothesis of this thesis,

i.e. it shows that the principles of hierarchical compositionality can be used as a basis

for the framework capable of learning surface shape features facilitate efficient category

recognition from a large dataset.
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CHAPTER 6

A SURFACE-BASED COMPOSITIONAL
HIERARCHY

In this chapter, a surface-based compositional hierarchical representation is described.

As was shown in Chapter 5, the view-based compositional hierarchy and the category

recognition system based on it achieve good results for object categorization in the scenario

when objects in the training set are approximately in the same positions and orientations

w.r.t. to the camera as objects of the testing set. However, this framework does not

facilitate the property of geometric invariance, and it is in general case not able (by design)

to recognize known shapes at unseen poses. The reason for this is that in the view-based

hierarchy each vocabulary part represents a surface shape model of a certain orientation,

and there is no mechanism for extrapolating these models to perform recognition from

novel views and in-plane rotations2. One of the ways of solving this problem is augmenting

the training data by presenting each training model under multiple orientations, however,

this is computationally inefficient.

There are several advantages of having orientation-independent parts. The first ad-

vantage is that these parts can be recognized from the unseen poses, and this property

should facilitate robustness of this system to rigid body transformations. The second

2This is mainly affected by quantization of surface orientations at the first layer, described in Sub-
section 5.3.2. For instance, if a “known” surface is rotated, its surface normals change their orientation
in the camera-based reference frame, and they are likely to be assigned to another orientational bin,
that’s why L1 part realizations change their part IDs. Once this happens, inference of higher layer part
realizations becomes impossible (unless the “orientated” surface was presented in the training set as well)
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advantage is a much greater compactness of the vocabulary. When vocabulary parts are

orientation-independent, it is sufficient to represent each surface shape by a single vocab-

ulary part, while in the view-based hierarchy each surface shape has to be encoded by

multiple vocabulary parts representing this surface under different orientations.

Figure 6.1: Examples of parts of different layers of the surface-based hierarchy

The rest of this chapter is organized as follows. Section 6.1 describes the main de-

sign principles on which the surface-based hierarchy is built. Section 6.2 describes pre-

processing of input data, while Section 6.3 describes the first layer and shows inference of

the first layer from the pre-processed input data. Section 6.4 introduces the composition

rules that are used on different layers of the compositional hierarchy. Sections 6.5, 6.6, and

6.7 describe all steps of the vocabulary learning procedure for a single layer Ln, (n> 2).

The most difficult step of the vocabulary learning procedure is clustering of statistical

maps, this is why it is presented in a separate section (Section 6.6). Section 6.8 describes

inference of a single layer Ln, (n> 2), while Section 6.9 outlines the pooling procedure.

Section 6.10 presents the results of experimental evaluation of the system. Section 6.11

concludes the chapter.
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6.1 Design Principles

In this section the main design principles of the surface-based compositional hierarchy are

described.

6.1.1 Part-Based Reference Frames

In contrast to the view-based framework (described in Chapter 5), where each vocabulary

part represents a surface shape model of a certain orientation, in the surface-based frame-

work vocabulary parts represent orientation-independent shape models. Technically, this

means that in the view-based hierarchy the information about surface orientation is en-

coded in vocabulary parts, while each part realizationR carries only the part ID (R.id) and

the information about the position of this part realization in the data (R.coord = (x, y, z)).

In contrast, in the surface-based compositional hierarchy the information about the ori-

entation is kept in part realizations, i.e. each part realization R contains not only R.id

and R.coord but also the field R.orient. Note that, in contrast to the view-based system,

where the orientations are quantized, in the surface-based system the orientations of part

realizations are represented in the continuous space.

The L1 vocabulary of the surface-based hierarchy contains only one part representing

a small disk-shaped planar surface patch. Since it is not possible to uniquely define a

full reference frame (three axes) for a disk-shaped planar surface patch, orientations of L1

part realizations can only be described by surface normals. As for the part realizations

of the subsequent layers Ln, (n> 2), each of them has its own reference frame, in which

the positions and the orientations of the subparts are described. Reference frames of part

realizations represent right-handed coordinate systems with three axes.

Quaternions

Orientations of the L1 part realizations are represented by surface normals, while orienta-

tions of realizations of higher layers are represented by reference frames comprising three
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axes. Since both these types of parts realizations undergo the same learning and inference

algorithms, it would be very convenient to have a unified representation of orientations

for both cases, i.e. regardless of how many axes are specified.

Fortunately, there exists a convenient mathematical tool called quaternions which pro-

vide such functionality. Quaternions are the 4-dimensional vector used for representing

orientations1 and rotations of objects in 3D space. There exist other mathematical tools

for representing orientations as well, for example, Euler angles and 3× 3 rotation matri-

ces. However, in general, quaternions have certain advantages over other tools, since they

are compact, numerically stable, computationally efficient (e.g. very simple to compose),

and therefore, they avoid different problems which appear in other representations, for

example the gimbal lock property of Euler angles, and the non-compactness (leading to

computational inefficiency) of rotation matrices. Due to these reasons we use quater-

nions as a unified tool for representing both orientations and rotations of parts and part

realizations.

6.1.2 Learning and Inference from Triangulated Mesh Models

In contrast to the view-based hierarchy, which performs learning and inference from depth

images, representing partial views of objects, the surface-based hierarchy does not have

this restriction, and it can learn and infer the vocabulary both from partial views and

from full object models. It is very convenient to unify the format of the input data on the

pre-processing step, i.e. before the input data undergoes learning and inference. That is

why during pre-processing the input data is converted to triangulated mesh models which

can be conveniently used for representing both full shape models and partial views.

Since triangulated mesh models are used as input data, the learning and inference

algorithms presented in this chapter are to a certain extent based on low-level functionality

for mesh processing, for instance, for computing geodesic distances on meshes. In general,

1they can be used both for representing orientation of a single vector and orientation of a full reference
frame

122



the functionality for mesh processing is quite complicated and mathematically involved

[225]; in addition, most of mesh processing algorithms are typically based on multiple low-

level sub-algorithms. Moreover, mesh processing algorithms1 are typically sensitive to the

quality of meshes (e.g. size of triangles) and to different mesh degradations, therefore,

the correct handling of multiple specific cases is often required. Generally, the overall

complexity of the low-level mesh processing functionality makes it impossible to provide

a detailed step-by-step description of all mesh processing algorithms employed in this

chapter, which is why we often provide only high-level descriptions.

Note, the low-level mesh processing functionality of the surface-based compositional

hierarchical framework is to a large extent based on Gabriel Peyre’s mesh processing

toolboxes [226], for example the General Toolbox, the Graph Toolbox, and the Fast

Marching Toolbox. However, a certain number of the mesh processing functions required

for the framework have either been implemented from scratch, or obtained by modifying

the functionality provided in the standard toolboxes.

The following functionality have been implements from scratch:

• A function for checking how many times a given ray r intersects a given mesh,

• A function for computing a geodesic circle, centered in a given point on a mesh,

• A function for regularly sampling points on a surface of a given triangle,

• A function computing pariwise geodesic distances between points on a mesh,

• A function for computing areas of all triangles of a mesh,

• A function for triangulating a depth image (more details will be presented in Section

6.2.)

The function meshFlipFaces from the toolbox has been modified such that it flips the

surface normals pointing inside the object (more details will be presented in Section 6.2.)

1For example, the fast marching algorithm which approximately computes geodesic distances on
meshes
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Also, several utility functions (e.g. for computing adjacency matrices for vertices and

faces) have been modified to work with sparse matrices, since it is very costly (in terms

of memory) to use full matrices for meshes with large (more than five or six thousand)

number of vertices.

6.2 Pre-Processing of the Input Data

Pre-processing of the input data involves several steps. If the input dataset T is repre-

sented by depth images, then these images have to be pre-smoothed at the first stage. We

pre-smooth each input image I = T (i), (i ∈ N) using the Gaussian filter of the guided

image filter [210] as shown in Section 5.2. After that each pre-smoothed depth image Iσ

has to be converted to the triangulated mesh model.

The triangulated mesh model is a pair (V, F ) where V is a list of vertices, and F is a

list of faces. The list of vertices V can be obtained from the pre-smoothed depth image

Iσ by taking each pixel ρ = (x, y) ∈ Ω from the image domain Ω ⊂ Z2 and computing the

corresponding 3D point using the Equations 5.1, 5.2, 5.3 1. The list of faces is computed

such that the points obtained from neighbouring pixels of a depth image are connected

to each other using the following rule. Each four points ρ1, ρ2, ρ3, ρ4 obtained from the

neighboring pixels with coordinates (x, y), (x+ 1, y), (x+ 1, y+ 1), (x, y+ 1) should form

two faces, namely the faces (ρ1, ρ2, ρ3) and (ρ2, ρ3, ρ4).

After triangulated mesh models are computed2, these models undergo several more

pre-processing steps, in which regularly sampled points on each face are defined and

surface normals for each of these points are computed. These computations are performed

in several steps: (i) surface normals for each face fi ∈ F are computed (these normals

are termed face normals) (ii) orientations of face normals are checked and, if necessary,

reversed, (iii) vertex normals for each vertex vj ∈ V are computed as the average of

1Note, that in this case the coordinates of vertices will be described in the camera-cantered reference
frame defined in Section 5.1.1.

2Or if the input data is initially represented by a dataset of triangulated mesh models
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the face normals of the faces adjacent to the vertex vj, (iv) regularly sampled points on

each face are defined, and (v) normals for these points are computed from the vertex

normals using the barycentric coordinates. Next, more details about each of these steps

are provided.

At the first step, surface normals for each face of the triangular mesh are computed

using the cross product rule. Assume, there is a face fi connecting points A ∈ V , B ∈ V

and C ∈ V . We compute the vectors ~u1 = B − A and ~u2 = C − A, normalize both these

vectors, and then compute the surface normal Ni as a cross product of ~u1 and ~u2.

The next step is to check the orientations of face normals to make sure they point out-

side the object1. If the input data was initially represented by range images (representing

partial views of objects), face normals should be reversed only if their Z component is

positive. However, if the input data was initially represented by the triangulated mesh

models of full 3D objects, then the more complex normal orientation test should be per-

formed. This test comprises tracing of a ray originating from the point ρc = A+B+C
2

(middle point of each face) and pointing to the direction of a face normal Ni. The goal is

of this tracing is to check how many times this ray intersects the surface, represented by

the mesh (V, F ). If there is an even number of intersections (e.g. 0, 2, 4 intersections),

then the orientation of Ni is computed correctly, otherwise, the normal Ni should be

reversed.

After face normals are computed and their orientations are checked, we compute nor-

mals for each vertex vi ∈ V by averaging all face normals of the faces adjacent to vi (as

shown in Figure 6.2(a)), i.e. compute Nx = 1
n

n∑
j=1

Nj, where Nx is the vertex normal of

the vertex vi, n is the number of faces adjacent to this vertex, while Nj are face normals

of these faces. When vertex normals are computed, we define a regular point grid on

each face (as illustrated in Figure 6.2(b)). A set of points on a face fk is denoted P(fk).

Finally, for each of these points, we compute the point normal using barycentric coordi-

nates. Assume there is a point D on a face connecting the vertices A ∈ V , B ∈ V and

1Some surface normals computed using the cross-product rule point inside the volume.
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C ∈ V , vertex normals at these points are NA, NB and NC , and our goal is to compute

the normal ND at the point D (Figure 6.2(c)). This is done using barycentric coordinates

(Equation 6.1):

ND = w1 NA + w2 NB + w3 NC , (6.1)

where weights wi are computed using the ratio of areas (denoted S) of the correspond-

ing triangles, i.e. w1 =
S(�BCD)
S(�ABC)

, w2 =
S(�ACD)
S(�ABC)

and w3 =
S(�ABD)
S(�ABC)

. Note, that since these

weights sum up to 1, w3 can also be computed as w3 = 1− w1 − w2.

In general, for computation of the area of a triangle with sides of length a, b and c,

we use Heron’s formula (Equation 6.2):

S(�) =
√

p(p− a)(p− b)(p− c), (6.2)

where p is a semi-perimeter, i.e. p = a+b+c
2

.

Figure 6.2: Illustration for different pre-processing steps: a) Vertex normalNx is computed
as an average of the face normals of the adjacent faces (N1, N2, N3, N4), b) Points sampled
on a face, c) Illustration for barycentric coordinates.

6.3 First Layer

In Chapter 4 the decision to use small planar surface patches as L1 parts for both the

view-based and the surface-based compositional hierarchies was explained. Since in the

surface-based compositional hierarchy each part represents an orientation-independent
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shape model, the first layer L1 of this hierarchy contains only one part representing a

small disk-shaped planar surface patch.

6.3.1 Inference of the First Layer

This subsection describes inference of the first layer from a pre-processed dataset of tri-

angulated mesh models Tp. Since there is only one planar part in the L1 vocabulary, the

main step during inference is the planarity test. We define a geodesic circle1 around each

data point ρ on a surface, extract a set of surface points that lies within this circle and

perform the planarity test for this set of points. If planarity is confirmed then we have

a realization R of a part P 1
1 at the point ρ. The realization R should have the follow-

ing characteristics: part ID R.id = 1, position R.coord = ρ.coord and the orientation

R.orient = ρ.N defined by the surface normal2 at the point ρ. The inference procedure

is described in Algorithm 9. The radius of all first layer parts is assumed to be equal to

r. The algorithm for defining a geodesic circle centered at the given point ρ is described

in Subsection 6.3.2.

6.3.2 Defining a Geodesic Circle

The procedure of defining a geodesic circle centered in a given surface point is called during

learning and inference on multiple hierarchical layers, therefore the algorithm described

in this subsection will be also used in the next sections.

Assume there is a point ρc ∈ P(fi) that lie on a face fi ∈ F of the triangulated mesh

model (V, F ), and our task is to define the geodesic circle of radius r around this point.

There are multiple possible scenarios, which are reflected in Figure 6.3. Figure 6.3(a)

shows the simplest scenario, where the geodesic circle covers only the area within one

triangular face. In this case, the geodesic circle will comprise only the points {ρj}j ⊆ P(fi)

1Geodesic circle is a set of points on a two-dimensional manifold whose geodesic distances from a fixed
point (circle centre) is a constant

2Remember that surface normals for each data point were computed on the pre-processing step de-
scribed in Section 6.2.
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Algorithm 9: Inference of the first layer

Data: List of m triangulated mesh models Tp
Vocabulary of first layer S(L1) (planar surface patch of radius r)

Result: Input data represented in terms of the vocabulary of the first layer TS(L1)

1 for j = 1 to m do // for each mesh

2 (Fj, Vj) = Tp(j);
3 Q = ∅;
4 foreach fi ∈ Fj do // for each face

5 foreach ρ ∈ P(fi) do // for each point on a face

6 find a set of surface points Λ that belong to a geodesic circle of radius
r centered at the point ρ;

7 perform the planarity test for the set Λ;
8 if planarity is confirmed then
9 create a realization R: R.orient = ρ.N ;

10 R.id = 1;
11 R.coord = ρ.coord;
12 include R to the set Q;

13 end

14 end

15 end
16 TS(L1)(j) = Q
17 end

such that dE(ρc, ρj) ≤ r, where dE is the Euclidean distance between two points1. Figure

6.3(b) shows a more difficult case where the geodesic circle spans several faces adjacent to

fi. In this case, we use a similar algorithm, i.e. we first extract all points from the face fi

and from all faces adjacent to fi and use the Euclidean distances to approximately define

which of these points lie within a geodesic circle.

The most difficult situation is shown in Figure 6.3(c) where the geodesic circle spans a

large number of faces, i.e. when the area of a geodesic circle is much larger than the area

of the face fi. In this case, for defining geodesic circles we use the algorithm based on the

Fast Marching Algorithm (FMA). The FMA [175] is a numerical algorithm for computing

geodesic distances from the set of starting vertices on a mesh (or from a single vertex)

to all other vertices. Note, that the FMA is closely related to the Dijkstra’s algorithm

[227] that finds shortest paths on graphs by explicitly traversing vertices of this graph. In

1That means in this case geodesic distances are approximated by the Euclidean distances

128



Figure 6.3: Illustration for geodesic circles: a) The geodesic circle spans the area within a
single triangle, b) The geodesic circle spans the area covering several neighboring triangles
c) The geodesic circle covers a large number of triangles.

contrast, the FMA works substantially faster since it searches for the approximate solution

using a gradient descent of the distance function, and typically converges in a relatively

small number of iterations. Once geodesic distances from fi to other mesh vertices are

computed using the FMA, a geodesic circle is defined by thresholding these distances, i.e.

selecting only the vertices with geodesic distances smaller than r.

6.4 Composition Rules

In general, the composition rules of the surface-based compositional hierarchy are very

similar to the rules used in the view-based hierarchy described in Chapter 5. There are,

however, three differences between them. First, is that in the surface based-hierarchy the

preferable positions of the subparts are defined using the axes of a local reference frame

(LRF), not the global one as in the view-based hierarchy. Second, the offsets between

subparts are measured by geodesic distances between them, not the Euclidean distance

in the XY plane. Third, there are no empty subparts in the surface-based compositional

hierarchy.

Figure 6.4 illustrates the main difference between the composition rules of the view-

based and the surface-based hierarchies. In the view-based compositional hierarchy (Fig-

ure 6.4(a)) part realizations adjacent in the directions of the X (on the layers L2, L4,
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etc.) and Y (L3, L5, etc.) axes are composed. That means the X and Y axes of the

global reference frame are used to specify the preferable positions (shown by red circles)

of subparts. In principle, in the surface-based compositional hierarchy (Figure 6.4(b)) a

very similar strategy is used, however, we use the LRF to compute preferable positions of

the subparts.

Figure 6.4: Comparison of the composition rules of the view-based and the surface-based
compositional hierarchies a) In the view-based compositional hierarchy subparts adjacent
in the directions of the X and Y axes are composed b) In the surface-based hierarchy
subparts adjacent in the direction of the principal curvatures are composed.

Now we consider where the LRF should be taken from. As was mentioned in Subsection

6.1.1, there are two types of part realizations: realizations having only a surface normal,

and realizations having a full reference frame. If a part realization R has a full reference

frame, than this reference frame should be used to compute positions of part realizations

eligible for composing with R. However, if the realization R has only a surface normal,

then the reference frame has to be estimated. To this end, we define the receptive field F ,

i.e. a geodesic disk centered in R of the radius 3 r (where r is a radius of the support region

of R). Then the reference frame for this receptive field is estimated using the principal

curvatures (as shown in Subsection 6.4.1), and after that, this estimated reference frame

is used for defining the positions of part realizations eligible for composing with R. Note,

that the direction of the largest principal curvature always corresponds to the X axes of

the LRF.

There are two special cases, in which it becomes impossible to define the directions
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of principal curvatures, i.e. when the geodesic circle F represents the planar surface

patch or umbilic surface1. In these cases, the axes of the LRF are defined randomly,

more specifically, we first randomly generate a unit vector in the tangent plane and then

compute another vector in the tangent plane orthogonal to it.

Except for the reference frames, there is another important difference between com-

position rules of the view-based and the surface-based systems. In the view-based system

the preferable offsets between subparts are defined by Euclidean distances in the XY

plane. In contrast in the surface based hierarchy the offsets are measured using geodesic

distances. However, since computation of geodesic distances of a triangulated mesh is a

computationally expensive operation, we use the following approximation. If the receptive

field represents the surface of low curvature (i.e. a surface close to the planar surface),

then geodesic distances are approximated by the Euclidean distances, computed in 3D

space. However, if the receptive field represent the surface of high curvature, we have to

use the FMA for computing geodesic distances.

6.4.1 Local Reference Frame

This subsection describes the computation of the local reference frame for a given receptive

field. Assume there is a receptive field F representing a geodesic circle centered at the

point ρc on a surface. The surface normal at the point ρc is Nc. Also assume there is a

set of surface points Λ = P(F) located within the receptive field F .

For computation of the Darboux frame we use our modification of the algorithm pro-

posed by Gabriel Taubin [228]. Taubin proposed to use eigenvectors of the 3-dimensional

curvature tensor Mρ at the point ρ as an estimate of the Darboux frame. The curvature

tensor can be computed using the Equation 6.3:

Mρ =
∑
ρi∈Λ

wi kci Tci T
T
ci , (6.3)

1For example, a surface patch on a sphere
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where Tci is a tangent vector, computed as a normalized projection of the vector

(ρi− ρc) onto the tangent plane of the surface F at the point ρc, kci is the approximation

of the directional curvature k(Tci), while wi is a weight of each point ρi, which can be

made inversely proportional to that point’s density estimate. The normalized tangent

vectors Tci can be computed using the Equation 6.4:

Tci =
(I −NcN

T
c )(ρc − ρi)

‖(I −NcNT
c )(ρc − ρi)‖

, (6.4)

where I is a 3 × 3 identity matrix, while the approximation kci of the directional

curvature k(Tci) is computed using the Equation 6.5:

kci =
2NT

c (ρi − ρc)
‖ρc − ρi‖2

. (6.5)

The original method of Taubin has a substantial drawback when it is applied to tri-

angulated mesh models. This drawback is that the method uses the positions of surface

points ρi ∈ Λ, and does not consider the orientations of surface normals in these points.

Consequently, this algorithm fails to correctly compute the principal curvatures in the

case if the receptive field F is located only within a single face of the mesh. Let us con-

sider the example shown in Figure 6.5 (a), in which the receptive field F (shown as a red

circle) spans only surface points within a single face. In this case all points ρi ∈ Λ will be

located within the same plane, which makes the computation of the principal curvatures

impossible.

Figure 6.5: Computation of the curvature tensor using surface points and surface normals:
a) Only surface points are used b) Surface normals at these points are employed
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A better idea would be to use the surface normals in each point ρi ∈ Λ to compute

directional curvatures, since these normals are interpolated within each face on the pre-

processing step, and therefore, they will provide a more robust estimation of principal

curvatures. We propose Equation 6.6, which is theoretically equivalent to Equation 6.5

however, in practice it leads to much more robust results since surface normals (in contrast

to surface points) are interpolated on the pre-processing step. The proposed equation

looks as follows:

kci =

√
2 (1−NT

c Ni)

‖ρc − ρi‖
, (6.6)

where Ni is a surface normal at the point ρi. Note, that vectors Ni and Nc must be

normalized before computing kci.

After the curvature tensor Mρ at the point ρ is computed, the Darboux frame, com-

prising the surface normal at the point ρ and two principal directions T1 and T2, can

be estimated using eigenvectors of this tensor, while the principal curvatures k1 and k2

can be computed from the eigenvalues of Mρ using very simple linear equations shown in

[228].

6.5 Vocabulary Learning

This section describes different steps of the algorithm for vocabulary learning of a single

layer Ln, (n > 1). A high-level description of this algorithm was presented in Section

4.2.2, while in this section we provide more details on each step.

6.5.1 Collecting of Co-occurrence Statistics

The first step of learning the shape vocabulary S(Ln) of a single layer Ln, (n> 2) is

collecting the statistics of co-occurrences of part realizations of the previous layer Ln−1

and representing these statistics in the form of statistical maps.
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Statistical map Mn
i,j : Z7 → N is a function showing how many times realiza-

tions of the part P n
j are observed in the training data at the certain relative position

and relative orientation w.r.t. realizations of the part P n
i . For instance, the equation

Mn
i,j(x, y, z, q1, q2, q3, q4) = 25 means that realizations of the part P n

j appeared 25 times

at the relative position defined by the arguments x,y, and z and the relative orientation

defined by the arguments q1, q2, q3, and q4 with respect to realizations of the part P n
i .

Note, that the statistical maps are discrete functions, while relative positions and

relative orientations (described by quaternions) are continuous variables. That is why,

before including the relative positions and orientations in a statistical map, they should

be re-scaled (using the parameters st and sq) and then rounded to the closest integer.

Remember that when learning the vocabulary of the layer Ln the statistical maps for

each pair of parts from the previous layer Ln−1 should be built, thus if | S(Ln−1) |= m

then m2 statistical maps should be built. However, most of the statistical maps remain

empty during learning since many shapes never co-occur in real-world objects. Algorithm

10 describes the process of building the statistical maps.

Note that in this algorithm (as well as in some of the following algorithms) we have a

step described as “Define the LRF R centered in R.coords”. What is actually meant by

that was explained in Section 6.4, however we have to make it absolutely clear. If the part

realization R has a reference frame, then R = R.orient, i.e. we take a reference frame of

this realization. However, if the part realization R does not have a reference frame (in

case if it has only a surface normal), then the reference frame R is estimated using the

curvature tensor of the receptive field, as was shown in Subsection 6.4.1.

6.5.2 Transformation from Global to Local Reference Frame

In Algorithm 10 we converted the position of each part realization K ∈ Λ from the global

coordinate system to the LRF and computed the quaternion qk = (q1, q2, q3, q4) describing

the orientation of K in this LRF. In this subsection we present the equations for these

computations. There are two main scenarios: (i) when orientations of part realizations
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Algorithm 10: Collecting co-occurrence statistics and building statistical maps

Data: Training set TS(Ln−1) of the length m represented in terms of the
vocabulary S(Ln−1)
Set of composition rules B
Size of the vocabulary of the layer Ln−1: | S(Ln−1) |= m
Discretization parameters st and sq

Result: A set of statistical maps {Mn−1
i,j }1≤ i,j≤m

1 Make all statistical maps {Mn−1
i,j }1≤ i,j≤m empty;

2 for j = 1 to m do // for each training model

3 Q = TS(Ln−1)(j) ; // set of Ln−1 realizations

4 foreach R ∈ Q do // for each part realization

5 Define the LRF R centered in R.coords;
6 Find a set Λ ⊂ Q of part realizations eligible for composing with R under

a set of composition rules B;
7 foreach K ∈ Λ do // for each realization

8 compute position (x, y, z) of K in the LRF R;
9 compute orientation q = (q1, q2, q3, q4) of K in the LRF R;

10 x = round( x
st

);

11 y = round( y
st

);

12 z = round( z
st

);

13 for k = 1 to 4 do // for each quaternion value

14 qk = round( qk
sq

);

15 end
16 Mn−1

R.id,K.id(x, y, z, q1, q2, q3, q4) =Mn−1
R.id,K.id(x, y, z, q1, q2, q3, q4) + 1;

17 end

18 end

19 end

are represented only by surface normals, and (ii) when orientations of part realizations

are represented by full local reference frames.

For the first case let us consider the example shown in Figure 6.6(a). Assume there

are two part realizations R and K with positions pr = (xr, yr, zr)
T and pk = (xk, yk, zk)

T

in the global reference frame. The orientations of these part realizations in the global

reference frame are described by the vectors Nr and Nk. Assume we defined the receptive

field F , centered at the point pr. Then we have to compute the (LRF) R for this receptive

field. This LRF (shown in Figure 6.6(a) by blue axes) comprises the axes X ′, Y ′ and Z ′,

where the unit vector X ′ has the coordinates (X ′x, X
′
y, X

′
z) in the global reference frame,

the unit vector Y ′ has the coordinates (Y ′x, Y
′
y , Y

′
z ), while the unit vector Z ′ = Nr has the

135



coordinates (Z ′
x, Z

′
y, Z

′
z). Our task is to compute the position of the point pk in this LRF,

and the quaternion describing the orientation of Nk in this LRF. Assume all normals and

axes have a unit length.

Figure 6.6: Transformation from the global to local reference frame. a) Transformation
of part realizations having only one axis, b) Transformation of part realizations having
full reference frame.

Since the transformation from one reference frame to another one is a standard proce-

dure described in many textbooks, we do not provide detailed explanations (for example,

for the homogeneous coordinates); instead, we only show the main equations. We de-

fine a 4× 4 transformation matrix MRT , which can be computed from the corresponding

translation and the rotation matrices MT and MR, i.e.

MRT = M−1
R MT , (6.7)

where

MT =




1 0 0 −xr

0 1 0 −yr

0 0 1 −zr

0 0 0 1



; MR =




X ′
x Y ′

x Z ′
x 0

X ′
y Y ′

y Z ′
y 0

X ′
z Y ′

z Z ′
z 0

0 0 0 1



. (6.8)

After the transformation matrix MTR is computed using Equation 6.7, the point

pk = (xk, yk, zk) should be converted to the homogeneous coordinates by adding the 4-th
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dimension, i.e. the point becomes represented by a vector Hk = (xk, yk, zk, 1)T . After

that, this 4-dimensional vector is multiplied with the matrix M: H ′k = MTRHk. Finally,

the 4-th dimension is removed from the point H ′k, and the resulting 3-dimensional point

p′k represents the coordinates of the point pk in the LRF.

The next task is to represent the orientation of the normal Nk in the LRF. To this

end we have to project the unit vector Nk to the unit vectors X ′, Y ′ and Z ′, i.e., in fact,

to compute the dot product of Nk with the vectors X ′, Y ′ and Z ′. After that, we get a

vector N ′k representing Nk in the LRF.

N ′k = (Nk ·X ′, Nk · Y ′, Nk · Z ′) (6.9)

Finally, we have to compute the quaternion representing the orientation of N ′k in the

LRF. Note, that Nr is represented by the vector N ′r = (0, 0, 1) in this LRF, therefore the

quaternion q can be computed in the following steps:

• compute the cross product: (q1, q2, q3) = N ′k ×N ′r,

• compute the dot product: q4 = N ′k ·N ′r,

• The resulting quaternion is q = (q1, q2, q3, q4). 1

Let us now consider the more difficult case, where orientations of both part realizations

R and K are represented by the full reference frames, as shown in Figure 6.6(b). Assume,

there are two part realizations R and K located at the points pr = (xr, yr, zr)
T and

pk = (xk, yk, zk)
T (coordinates are given in the global reference frame). Each of these

part realizations has its own reference frame, i.e. RR (X”, Y ”, Z”) and RK (X ′, Y ′, Z ′)

correspondingly. For the algorithm 10 we have to find the position of K in the reference

frame RR, and the quaternion q describing the orientation of RK relative to RR.

1Notice, that this algorithm does not work correctly only when N ′
k ≈ −N ′

r. However, since this situa-
tion is impossible for the experimental settings, presented in this thesis, the described way of computing
qk works in all situations. The way of handling the situation when N ′

k ≈ −N ′
r is to choose another

rotational axis (other than N ′
k ×N ′

r).
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As for the position of pk in the LRF RR, it is computed exactly in the same way, as

it was done in the previous case, i.e. by defining the translation and rotation matrices,

composing them to a single transformation matrix MRT , and using this matrix for com-

puting coordinates of a point in the LRF. The quaternion q showing the orientation of

RK relative to RR is computed in the following way.

First, we define a 3× 3 rotational matrix called the directional cosine matrix (DCM).

This matrix is computed as shown in the Equation 6.10:

MDCM =


X” · Z ′ Y ” · Z ′ Z” · Z ′

X” ·X ′ Y ” ·X ′ Z” ·X ′

X” · Y ′ Y ” · Y ′ Z” · Y ′

 . (6.10)

Once the DCM is computed, the quaternion q can be computed from this matrix.

There are several equivalent ways of doing that. One of the ways is described by the

following equations:

q4 =
√

1 +MDCM(1, 1) +MDCM(2, 2) +MDCM(3, 3); (6.11)

q1 =
MDCM(2, 3)−MDCM(3, 2)

2 q4

; (6.12)

q2 =
MDCM(3, 1)−MDCM(1, 3))

2 q4

; (6.13)

q3 =
MDCM(1, 2)−MDCM(2, 1))

2 q4

; (6.14)

Note, that in order to avoid numerical inaccuracy (e.g. when the denominator is close

to zero) other ways can be used. We exploit Jay St. Pierre’s Quaternion Toolbox1 for this

operation, where he first computes the trace of the DCM and then chooses one of three

equivalent ways of computing the quaternion based on the trace value. This approach

helps to avoid numerical inaccuracies. Note, that the quaternion q should be normalized

1The Quaternion Toolbox is available for downloading at the Mathworks website
(https://uk.mathworks.com/matlabcentral/fileexchange/1176-quaternion-toolbox), although, according
to the best of my knowledge, there is no scientific paper, describing this Toolbox
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after being computed.

6.6 Clustering of the Statistical Maps

In contrast to the view-based compositional hierarchical system where clusters in statis-

tical maps are always well-separated, clustering of statistical maps in the surface-based

system represents a much more difficult problem. The main reason for this is that the in-

formation in statistical maps of the surface-based system is much richer, and therefore,

poor separability of clusters happens very often. This can be understood considering

the example of L2 vocabulary learning. In the view-based hierarchy the first layer vo-

cabulary comprises 81 parts, representing differently orientated planar surface patches,

therefore when learning L2, we form 81 × 81 statistical maps reflecting the statistics of

co-occurrences of these patches. On the other hand, the surface-based hierarchy contains

only one part of the first layer, therefore, when learning the layer L2 we will have only

one statistical map. Broadly speaking, this single statistical map contains approximately

the same information as 81× 81 statistical maps of the view-based hierarchy.

We use the weighted agglomerative hierarchical clustering with average linkage func-

tion for clustering of the statistical maps in the surface-based system. There are two

main reasons for the choice of the agglomerative hierarchical clustering in preference of

other methods of clustering. First, agglomerative hierarchical clustering is very flexible

since various distance metrics and linkage functions can be used within this method (more

details will be discussed in Subsection 6.6.1). Second, agglomerative hierarchical cluster-

ing results in a dendrogram, i.e. a tree-like diagram illustrating the arrangement of the

clusters. This structure can be very conveniently used for cluster separability analysis,

and for the selection of the optimal number of clusters.

In the following subsections we describe the agglomerative hierarchical clustering and

the linkage functions (Subsection 6.6.1), introduce the distance function for entries of

statistical maps (Subsection 6.6.3), and present our approach for computing the opti-
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mal number of clusters (Subsection 6.6.4), and describe parameterization of clusters in

Subsection 6.6.5.

6.6.1 Agglomerative Hierarchical Clustering

Agglomerative hierarchical clustering is represented by a number of algorithms which start

by placing each input element in its own cluster, and proceed by repeatedly merging the

closest (according to the chosen distance measure) pair of clusters until all clusters are

merged into a single cluster.

The main difference between multiple agglomerative hierarchical clustering algorithms

lies in a way of computing distances between clusters, i.e. employed linkage functions that

map pairs of clusters to non-negative real numbers. Formally, a linkage function can be

defined as L : {(X1,X2, d, w) | d, w overX1 ∪ X2} → R+, where X1 and X2 are clusters,

and w are weights of each input elements and d are distances between input elements

[214].

There are several popularly employed linkage functions, for instance, complete linkage

Lc = max{ d(x, y) : x ∈ X1, y ∈ X2 }, where distance between clusters is assumed to

be equal the maximal distance between points from both clusters, and single linkage

Ls = min{ d(x, y) : x ∈ X1, y ∈ X2 }, where distance between two clusters is assumed

to be represented by the smallest distance between points from both clusters. However,

results of both of these linkage functions are unaffected by changes of element weights,

which makes them not suitable for weighted clustering.

Average linkage is one of the most popular linkage functions. It computes distance

between clusters as the average distance between all elements in these clusters, as shown

in Equation 6.15:

La =
1

|X1| · |X2|
∑
x∈X1

∑
y∈X2

d(x, y). (6.15)

In contrast to complete linkage and single linkage, the average linkage function can

be made weight-sensitive [214], in which case it takes the form presented in the Equation
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6.16:

Law =

∑
x∈X1

∑
y∈X2

d(x, y)w(x)w(y)

w(X1)w(X2)
(6.16)

where w(Xi) is the weight of the cluster Xi, which is computed as a sum of weights of

all points in this cluster the using the Equation 6.17:

w(X ) =
∑
x∈X

w(x) (6.17)

6.6.2 Input Data for Clustering

After describing the average linkage function we show how to apply this function to clus-

tering of the statistical maps. The weighted average linkage function shown in Equation

6.16 requires specifying the list of input entries, weights of these entries, and pairwise

distances between them. Note, that while the entries and their weights can be obtained

directly from the statistical maps, defining distances between these entries is a more

difficult task discussed in Subsection 6.6.3.

Assume, there is a statistical mapMn−1
i,j with m non-zero values. Each non-zero value

of this map will be considered as an entry Bk, (k ∈ [1,m]) which is characterized by the

position pk = (x, y, z)T , the orientation qk = (q1, q2, q3, q4)T , and the weight wk showing

the number of occurrences of realizations of the part P n−1
j at the relative position pk

and relative orientation qk from realizations of the part P n−1
i . For example, if there is a

non-zero value of the statistical map Mn−1
i,j (xs, ys, zs, qs1, qs2, qs3, qs4) = a, where (a > 0),

then we can get the entry Bk characterized by position pk = st (xs, ys, zs)
T , orientation

qk = sq (qs1, qs2, qs3, qs4)T and the weight wk = a.

After defining the input entries and their weights, we have to specify distances d(Bk, Bl)

between each pair of entries Bk and Bl, (k, l ∈ [1,m]).
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6.6.3 Pairwise Distance Between Entries

As entries represent translations and orientations, their similarity measure should com-

prise both of them. We use a distance measure which is closely related to the measure

proposed by Kuffner et al. [229]. This measure represents a weighted sum of the Euclidean

distance between two points and the orientational distance between two quaternions. The

distance dER(Bh, Bk) between two entries Bh and Bk, representing positions ph and pk

and orientations qh and qk, is defined using Equation 6.18:

dER(Bh, Bk) = dE(ph, pk) + α dR(qh, qk), (6.18)

where dE(·, ·) is the Euclidean distance between positions and dR(·, ·) is a rotational

distance between quaternions qh and qk. The rotational distance is defined using Equation

6.19:

dR(qh, qk) =
√

1− | qh qk |. (6.19)

If the quaternions qh and qk are equal, then dR(qh, qk) = 0, while if the quaternions qh

and qk represent opposite orientations, then dR(qh, qk) = 1. The parameter α in Equation

6.18 is chosen to make put the rotational and translational distances within each receptive

field approximately to the same range. Since qh always produces values in range [0, 1],

while translational distances can be in the range [0, 2 r], where r is the radius of the

receptive field. That is why the weighting parameter α can be made α = 2 r in order to

make both distance measures produce the same range of values.

Note, that all quaternions must be normalized before computing dR. The norm of a

quaternion | q | is found using Equation 6.20:

| q |=

√√√√ 4∑
i=1

q2
i (6.20)
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6.6.4 Optimal Number of Clusters

In the previous subsection we introduced everything needed for performing agglomerative

hierarchical clustering using the weighted average linkage function (described by Equa-

tion 6.16) i.e. the input entries, their weights, and distances between them. This allows

computing the dendrogram, showing arrangements of clusters. An example of the den-

drogram for the layer L2 is shown in Figure 6.7(a), while a possible result of clustering

using the dendrogram is shown in 6.7(b) 1.

Figure 6.7: Illustration for clustering of statistical a map: a) Dendrogram b) Resulting
clusters. The figure shows the central subpart (on the right) and other subparts, in the
positions of cluster centres (on the left)

After the dendrogram is built, the decision about the optimal number of clusters should

be made. Making different numbers of clusters from a dendrogram can be understood

as cutting off a dendrogram at different distance levels (i.e. along the vertical axis). If

the dendrogram presented in Figure 6.7(a) is cut at distance 0.05, we will have a single

cluster, at the level 0.03 - two clusters, 0.01 - three clusters, etc. Since the optimal number

of clusters is unknown, we have to use certain criteria to compute this number.

Our first choice was the Davies – Bouldin index [230] (DBI), which is defined using the

Equation 6.21:

1Note, that this dendrogram has been computed from the statistical map collected from a very small
dataset (6 models), while if the vocabulary is learned from a large dataset, the dendrograms typically
link a much larger numbers of input entries (sometimes 3 or 4 thousand entries).
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DB =
1

n

n∑
i=1

max
i6=j

(
σi + σj

dER(ci, cj)

)
, (6.21)

where σi is the average distance of entries of the cluster Xi to the centroid ci of this

cluster, while dER(ci, cj) is the distance between centroids ci and cj of clusters Xi and Xj,

i.e.

ci =

∑
x∈Xi

xw(x)

w(Xi)
(6.22)

where w(Xi) is defined in Equation 6.17, while

σi =

∑
x∈Xi

der(x, ci)w(x)

w(Xi)
(6.23)

Davies and Bouldin [230] proposed to measure this index for clusterings with different

numbers of clusters, and define the optimal number of clusters as the one minimizing

the DBI. Note, however, that there are two degenerate cases which may appear when

using the DBI. First, when each input entry is placed in its own cluster, in which case all

σi become equal to zero, end the DBI becomes equal to zero as well. Second, when all

input entries are placed to a single cluster, then distances d(ci, cj) become undefined. To

avoid these problems we introduce an additional constraint specifying the maximal size

of clusters (typically 0.25r where r is a radius of the receptive field).

The examples of distributions within some clusters are shown in Figure 6.8.

6.6.5 Parameterization of Clusters

We parameterize each cluster with two parametric distributions, namely the 3-dimensional

Gaussian representing the variance in position, and the 4-dimensional Bingham distribu-

tion representing the variance of the orientations. The Bingham distribution [231] is an

antipodally symmetric probability distribution on the n-dimensional sphere. In our case

n = 4, since quaternions are 4-dimensional vectors. The Bingham distribution over unit
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Figure 6.8: Examples of distributions within clusters. Circles on the left side of each
picture show the central subparts. Circles on the right from the central subpart show
other subparts in the positions of cluster centres. Bold red vectors show the average
orientation of this cluster. Blue thin vectors show positions and orientations of non-empty
entries of the statistical map, which were assigned to the cluster.

quaternions has been used by multiple authors [232, 233, 234], that is why we do not

provide many details about it. The Bingham distribution has four parameters, namely

qa which is a unit vector, equal to the average quaternion (see Equation 6.24), M q is an

orthogonal orientation matrix, Zq is a diagonal concentration matrix, and the parameter

F q.

Therefore, in contrast to the view-based hierarchy, where each cluster is represented by

two parameters µi and Σ of the Gaussian distribution (i.e. ∆sp
i = (µi,Σi)) in the surface-

based hierarchy a cluster description looks as follows: ∆sp
i = (µi,Σi, q

a
i ,M

q
i , Z

q
i , F

q
i ). This

description comprises 32 float numbers altogether.

Note, that for estimating the parameters of the Bingham distribution we used the
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functionality from the Sebastian Riedel’s Bingham Toolbox for Matlab [234]1. Also notice,

that averaging of quaternions can not be done using the arithmetic mean. Assume there

are n quaternions qj, where j ∈ [1, n]. Then the average quaternion qa can be found as

the eigenvector, corresponding to the largest eigenvalue of the 4×4 matrix defined by the

Equation 6.24 [235]:

qa =
1

n

n∑
j=1

qj q
T
j ; (6.24)

6.7 Vocabulary Learning (continuation)

6.7.1 Inference of Doublets from the Training Data

After the statistical maps are clustered, we create a set of doublets D(Ln) from these

clusters, such that each cluster from each statistical map is used to create a doublet.

For instance, a cluster ∆sp from the statistical map Mn−1
ij should result in a doublet

(P n−1
i , (P n−1

j ,∆sp)). After a set of doublets is formed, we have to infer doublets from the

training data. Inference of doublets from the training data is described in Algorithm 11.

Note, that the activation test actually comprises two tests, namely the test showing if

the position of a part realization belongs to a given Gaussian distribution and the test

showing if the orientation of this realization belongs to the Bingham distribution. The

activation test is successful only if both these conditions are fulfilled.

Notice that doublets of the layers Ln, (n > 2) inherit the reference frames from their

central subparts. As for the doublets of the L2, they receive the reference frame, computed

from the curvature tensor of the receptive field as shown in Section 6.4.

1According to the best of my knowledge, there is no separate paper describing the toolbox itself, that
is why I cite the related paper where the author (Dr. Riedel) applies the Bingham mixture model for
parameterizing unit quaternions.
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Algorithm 11: Inference of doublets of the layer Ln, (n> 2)

Data: Training dataset TS(Ln−1) of the length m represented in terms of the
vocabulary S(Ln−1)
Set of composition rules: B
Doublets of the layer Ln : D(Ln)

Result: Training data TD(Ln) represented in terms of the doublets D(Ln)

1 TD(Ln) is empty;
2 for j = 1 to k do // for each model

3 Q = TS(Ln−1)(j) ; // set of Ln−1 realizations

4 DD is empty ; // set of Ln doublets activations

5 foreach R ∈ Q do // for each part realization

6 Define the LRF R centered in R.coords;
7 find a set Λ ⊆ Q of part realizations eligible for compositing with R under

a set of composition rules B;
8 find all doublets Ds(Ln) ⊆ D(Ln) having the central subpart P n−1

R.id ;
9 foreach K ∈ Λ do

10 find all doublets Dss(Ln) ⊆ Ds(Ln) having the non-central subpart
P n−1
K.id ;

11 if Dss(Ln) 6= ∅ then
12 compute position pk of K in the LRF R;
13 compute orientation qk of K in the LRF R;
14 foreach πncur = (P n−1

R.id , (P
n−1
K.id ,∆

sp
cur)) ∈ Dss(Ln) do

15 Perform activation test to check if pk and qk fits the
distribution ∆sp

cur;
16 if activation test is successful then
17 RR.id = cur ; // create a realization of doublet πncur
18 RR.coord = R.coord;
19 RR.orient = R;
20 include RR to the set DD;

21 end

22 end

23 end

24 end

25 end
26 TD(Ln)(j) = DD
27 end

6.7.2 Co-activations of Doublets

After inference of doublets of the layer Ln from the training data is complete, we obtain

activations of doublets in different data points. The next step is to form a set of candidate

parts C(Ln) using the statistics of co-activations of doublets in the training data. There
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exist several possible cases depending on how many doublets are simultaneously activated

in the same data point. Assume there is a data point ρ and a part realization of the part

P n−1
c (of the previous layer Ln−1) activated in this point. The following items describe all

possible cases:

1. If there are no doublets of the layer Ln activated at the point ρ then there are no

activations of candidate parts of the layer Ln in this point.

2. If there are m doublets activated at the point ρ, where m ≥ 1, and all these doublets

describe surface in the same directions from the point ρ then there are no candidate

parts of the layer Ln at the point ρ.

3. If two doublets are activated in the data point ρ, for example, doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j )), and these doublets describe surface in the opposite direc-

tions from the central subpart, then we say that there is an activation of a candidate

part (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

k ,∆sp
j )) residing at the point ρ.

4. If there are more than two doublets activated at the point ρ, for example, m ≥

1 doublets describing surface on one side from the point ρ, and k ≥ 1 doublets

describing the surface of the other side from the point ρ, where max(k,m) > 1, then

we say there are activations of m×k candidate parts at the point ρ. Let us consider

the example when m = 2 (doublets (P n−1
c , (P n−1

l ,∆sp
i )) and (P n−1

c , (P n−1
k ,∆sp

j )))

and k = 1 (doublet (P n−1
c , (P n−1

b ,∆sp
a ))). Then we have m × k = 2 × 1 = 2

activations of candidate parts at the point ρ, i.e. (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

b ,∆sp
a ))

and (P n−1
c , (P n−1

k ,∆sp
j ), (P n−1

b ,∆sp
a )).

Forming a Set of Candidate Parts

So far we identified which candidate parts reside in different points of the input data.

Some data points contain no activations of candidate parts, while other data points may

have one or more activations. To form the set C(Ln) of candidate parts of the layer Ln
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we have to measure frequencies νi for each candidate part Cn
i , showing the number of

occurrences of activations of this candidate part in the training data. Then we define

a small threshold value tr (usually tr = 1 + log(m), where m is a number of training

models) and include all candidate parts with the frequency larger than this value to the

set of candidate parts C(Ln). This thresholding is done to avoid including very rarely

observed parts to the set of candidate parts. After the set of candidate parts is formed,

we start the part selection procedure, that selects a vocabulary of the layer Ln from the

set of candidate parts, i.e. if searches for S(Ln) ⊆ C(Ln).

6.7.3 Part Selection (Grouping by OR-Nodes)

In Section 5.6 it was explained that part selection is the key stage of the learning procedure,

since at this stage we form the vocabulary of the layer Ln by selecting some candidate parts

S(Ln) ⊆ C(Ln). It should be pointed that the part selection problem is substantially easier

in the surface-based compositional hierarchy than in the view-based hierarchy, due to a

much smaller (typically by at least two orders of magnitude) number of candidate parts1.

The main reason for this is that parts in the surface-based hierarchy are orientation-

independent, therefore, it is sufficient to represent each surface shape by a single part,

while in the view-based hierarchy each surface shape should be represented by multiple

orientation-dependent parts.

Since the number of candidate parts is much smaller, we can afford including almost

all of them in the vocabulary, i.e. there is no need to look for a certain trade-off between

importance of candidate parts and the cardinality of the vocabulary. The only procedure

we perform on the part selection step is grouping of the candidate parts into clusters

(termed OR-nodes), such that each OR-node represents a set of geometrically similar

parts. Before making the OR-nodes we first measure the pairwise distances showing

geometric similarity of candidate parts. We use the volumetric distance dv described

1For instance, on the second layer of the view-based compositional hierarchy we have approximately
2.5 ∗ 104, while in the surface-based hierarchy this number is around 102.
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in Section 5.6.1, i.e. dv(C
n
i , C

n
j ) between candidate parts Cn

i and Cn
j approximates the

volume between two surfaces, representing mean reconstructions of these parts, given

that they are centered in the same point and their reference frames are aligned. After

measuring pairwise distances between candidate parts we use Algorithm 12 for grouping

parts into OR-nodes.

Algorithm 12: Algorithm for making OR-nodes

Data: Set of candidate parts C(Ln),
Pre-defined similarity threshold Ts,
Pre-defined frequency threshold Tν .

Result: The vocabulary S(Ln).

1 S(Ln) = ∅;
2 repeat
3 Find the part Cn

i ∈ C(Ln) with the largest frequency ν;
4 Find the set of parts Υ = {Cn

j }j such that dv(C
n
i , C

n
j ) < Ts;

5 Exclude all parts that belong to Υ from the set C(Ln);
6 Include all parts from Υ in S(Ln);
7 Make links from all parts from Υ to the part Cn

i ;

8 until max (ν(C(Ln))) ≥ Tν ;

The presented algorithm not only includes parts in the vocabulary but also establish

links between them. These links point from a group of geometrically similar parts to the

part with the largest (within a group) frequency ν, which is considered as a representative

part for this group. These links are used on the inference step.

6.8 Inference of a Single Layer

In this section the inference procedure for a single layer Ln, (n> 2) is described. The goal

of inference is to match the input data against the vocabulary in order to find realizations

of vocabulary parts in the data. The inference algorithm proceeds in two steps. First,

inference of doublets from the input data is done, exactly as was described in Algorithm

11. Second, when activations of doublets of the layer Ln in the training data are found,

the co-activations of doublets each data point are analyzed and the inference of parts is

performed based on this analysis. There are four possible scenarios:
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1. If there are no doublets of the layer Ln activated at the point ρ then there are no

part realizations of the layer Ln in this point.

2. If there are m doublets activated at the point ρ, where m ≥ 1, and all these doublets

describe surface in the same directions from the point ρ then there are no part

realizations of the layer Ln at the point ρ.

3. If two doublets are activated in the data point ρ, for example, doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j )), and these doublets describe surface in the opposite direc-

tions from the central subpart, then we should check if the part (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

k ,∆sp
j ))

exists in the vocabulary. It yes, then there is a realization of this part residing at

the point ρ.

4. If there are more than two doublets activated in the point ρ, for example, m ≥ 1 dou-

blets describing surface on one side from ρ, and k ≥ 1 doublets describing the surface

on the other side from ρ, where max(k,m) > 1, then we form m× k parts as shown

in Item 2. Let us consider the example when m = 2 (doublets (P n−1
c , (P n−1

l ,∆sp
i ))

and (P n−1
c , (P n−1

k ,∆sp
j ))) and k = 1 (doublet (P n−1

c , (P n−1
b ,∆sp

a ))). Then we have to

form m× k = 2× 1 parts from these doublets, i.e. (P n−1
c , (P n−1

l ,∆sp
i ), (P n−1

b ,∆sp
a ))

and (P n−1
c , (P n−1

k ,∆sp
j ), (P n−1

b ,∆sp
a )). Then for each of these parts we check if it

belongs to the vocabulary, and, if yes, then it has a realization in the point ρ.

Notice that part realizations of the layers Ln, (n > 2) inherit the reference frames

from their central subparts. As for the part realizations of L2, they receive the reference

frame, computed from the curvature tensor of the receptive field as shown in Section 6.4.

After part realizations are inferred from the training data, they are replaced by the

realizations of the representative parts of the corresponding OR-node. In Section we

explained that there are links from each vocabulary part to the representative part of its

OR-node. Then, after inference of each part realization, we follow these links and replace

the realization of this part by the realization (having the same position and orientation)

of the representative part of this OR-node. This is done to avoid overgrowing of the
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vocabulary of the next layers, by making sure that a range of similar surfaces is represented

by a single vocabulary part.

6.9 Pooling

The pooling procedure is defined in a very similar way as in the view-based compositional

hierarchy. The only difference is that we perform pooling separately for each face fk ∈ F

of the triangulated mesh. We first extract the regularly sampled points of this face P(fk),

then partition the face to non-overlapping regions approximatelly of size 3× 3 points for

the layer L3 (9×9 points for L5, etc.) and then perform pooling for each of this regions, as

was described in Section . Notice that pooling is an optional procedure, and the presented

system works without it, however, in this case the computations on higher layers become

several times slower.

6.10 Evaluation

In this section we present the results of the experimental evaluation of the surface-based

compositional hierarchical framework. One of the research goals of this thesis was to

develop a system for multi-layer learning of surface shape features having both large dis-

criminative power and the greater robustness to view changes and in-plane rotations than

CNN-based methods. To evaluate the discriminative power we should use the settings in

which training and testing objects are aligned, while to evaluate the robustness we should

perform recognition from novel (unseen) views and in-plane rotations.

The remainder of this section is organized as follows: Subsection 6.10.1 presents the

evaluation methodology, Subsection 6.10.2 presents the dataset used for evaluation, Sub-

section 6.10.3 describes the CNN-based methods against which we compare our results,

while Subsection 6.10.4 presents the results of the experiments, which are compared to

the results achieved by the CNN-based methods.
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6.10.1 Evaluation Methodology

The widely used protocol for evaluating the discriminative power of computer vision

methods is based on the Washington RGB-D dataset [48]. However, this protocol is not

suitable for evaluating geometric invariance of computer vision systems due to several

reasons. First, this protocol assumes that training objects are approximately in the same

range of positions and orientations relative to the camera as testing objects. That means

no recognition from radically novel viewpoints and/or in-plane rotations is involved. Sec-

ond, the Washington dataset represents only rigid objects, mainly having relatively simple

surface shapes, for example, banana, orange, can, tomato, etc. This dataset does not con-

tain deformable shape models with articulated parts, for example, models of animals,

human models, etc.

Because of these limitations, in this thesis we propose a novel protocol for evaluating

both the discriminative power and the geometrical invariance of computer vision methods.

There are two key principles which are involved in this protocol. First, the dataset

used for learning and inference should be mainly formed of complicated shape models,

i.e. deformable shapes with articulated parts. Second, the number of objects per

category should be rather small, such that only some deformations of non-rigid objects

are represented in the training set. In this scenario, those methods which are better in

recognition of unseen deformations of objects (e.g. deformations of a standing person to

a sitting one, etc.) should be in a more favorable position. Third, training and testing

objects should not be aligned, i.e. category recognition is should be done from novel

viewpoints and in-plane rotations. In general, this protocol is much more difficult

than the protocol based on the Washington [48], and only the methods demonstrating both

the large discriminative power and the robustness to different geometric transformations

can achieve high performance in these settings.

In our experiments the shape models of the input dataset are first approximately

aligned both within categories and across categories. For example, in the category of frying

pans all handles should be pointing in the same direction (alignment within categories),
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and the handles of objects of other categories (e.g. mugs) should be pointing in the same

direction as well (alignment across categories). In general, object alignment is not an easy

task, especially in the case of deformable objects (e.g. category of snakes), and it is very

hard (or impossible) to define the rules for aligning them. We align the dataset manually,

however, it should be stressed, that the alignment of deformable objects can sometimes

be done only very roughly.

After the alignment is done, depth images representing front views1 of each object are

produced. After that, we perform two types of experiments. In the first experiment we

perform leave-one-out cross-validation to partition the data into the training and testing

sets. In this experiment use the front view images both for learning and recognition, i.e.

in this case learning and recognition are done from the same view (though from different

objects).

In the second experiment we use 5-fold cross-validation to partition the input data to

the training and testing sets. We use the front view images for training, while the recog-

nition is done from novel (unseen) views, which are obtained by changing the camera’s

azimuth and elevations by 15◦, 30◦, 45◦ and 60◦ relative to the front view, and from novel

in-plane rotations obtained by rotating the camera around its optical axis by 15◦, 30◦,

45◦ and 60◦. Methods demonstrating better results in recognition from novel views and

in-plane rotations are considered to be more robust to these geometric transformations.

6.10.2 DataSet

As was mentioned in Chapter 3, according to the best of our knowledge, there are no

large datasets of deformable objects. The largest dataset, we are aware of, is SHREC’15

dataset [141] comprising 1200 models split into 60 categories (20 models per category).

Other datasets are substantially smaller, for example, SHREC’11[236, 181] comprises

600 models split into 30 categories, while the Watertight dataset [237] 400 objects split

1By the front view we mean the view which makes the largest portion of objects’ surface visible
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into 20 categories1. There exist other datasets of non-rigid objects, such as the McGill

benchmark [238] and other datasets, however, these datasets are very small, typically com-

prising few categories and a small number of models per category. Note, that SHREC’11

and SHREC’15 have many repetitions, and actually, SHREC’15 can be considered as an

extension of SHREC’11.

We analyzed the existing datasets and composed a single dataset using models from

SHREC’15, SHREC’11 and the Watertight dataset. We removed the repeating categories

and the categories which we found non-interesting for shape analysis, for instance, a cat-

egory of paper sheets. We also included 15 categories of rigid objects from the PaCMan

dataset of rigid objects (20 objects per category). Totally we obtained the dataset com-

prising 72 object categories (20 objects per category, 1440 models altogether), including

52 categories of deformable objects (mainly models of animals, insects, etc.), and 20 cate-

gories of rigid objects. Figure 6.9 shows 8 examples of deformable object categories. The

dataset is available at 2

Figure 6.9: Examples of deformable object categories.

6.10.3 Methods for Comparison

We compare our method against CNN-RNN [24] (implementation is downloaded from

the author’s website) and the CaffeNet [49] open-source version of AlexNet [17]. We use

1Though some categories in this dataset represent rigid objects
2https://drive.google.com/open?id=0BzGi8qyZ5m6VWUZvNmdOQVlhd00
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the CNN-RNN of Socher et al. [24] as a baseline method to study the basic properties

of CNNs, i.e. how well it learns from a small amount of data (without pre-training on

large-scale datasets), and how invariant it is to different geometric transformations. It

may be worth mentioning that this architecture has two different pipelines for the RGB

and for the depth channel, that is why for our experiments we switch off the RGB pipeline

and evaluate only the discriminative power and the invariance of features learned from

the depth channel.

As for AlexNet, we chose it in order to compare our method against the state-of the-

art architecture. It has been shown that AlexNet (pre-trained on ImageNet [15]) has a

very rich set of image features, which are proved to be useful not only for recognition

on ImageNet but also for other tasks, including category recognition from depth images.

For instance, Schwarz et al. [102] extracted the features of this CNN, applied them to

categorization of the Washington RGB-D dataset [48] and demonstrated state-of-the-art

results.

We decided to follow a similar way, extracting features of different layers from AlexNet

and applying them to recognition on our dataset (using linear SVM for classification, sim-

ilarly to [102]). We evaluated features from the last convolutional layer (conv5), the last

pooling layer (pool5), the first fully connected layer (fc6), and the second fully connected

layer (fc7). We also tested features from other layers, but they demonstrated substantially

worse performance, that is why they are not presented in this thesis.

It has been shown in the literature [13, 102, 26], that colorization of depth images

significantly improves the results of CNNs. We used the colorization by surface normals

(SN colorization), which was shown to achieve the best result in similar settings [26]. In

addition to that, we propose our own way of colorization, in which two principal curvatures

and the mean curvature (PC colorization) are used to form a 3-channel RGB image from

the depth image1. Figure 6.10 shows examples of a depth image colorized using surface

1According to the best of our knowledge, nobody used this technique for colorizing depth channels,
though Sinha et al. [21] used principal curvatures to convert parameterized 3D models to geometry
images.
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normals and principal curvatures.

Figure 6.10: Depth image colorized by a) surface normals, b) Principal curvatures

6.10.4 Evaluation Results

In this section the results of experimental evaluations of the surface-based compositional

hierarchy are presented.

Category Recognition from the Front View

For this experiment we used leave-one-out cross-validation to split the models into training

and testing sets. We used the same category descriptor (i.e. HoCP, described in Chapter

5), and the SVM with χ2 kernels for classification. Note, however, that in one of the

experiments we use another type of HoCP, i.e. a radial HoCP, which partition the domain

as shown in Figure 6.11. Although, the radial HoCP is less discriminative, it leads to the

full rotational invariance.

As for our approach, we used several different settings. First, we used only L1 features,

which are quantized into 5×5, 7×7, and 9×9 orientational bins (using the Algorithm 4

from Section 5.3.2). Then, we subsequently included features from the next layers (though

without quantization of orientations), and demonstrated that the best results are achieved

with 9×9 quantization of the first layer features, and features from layers L2 - L4. Note,
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Figure 6.11: Illustration for the radial HoCP. a) The first section of HoCP covers the
whole shape, b) Next two sections of HoCP, c) Next three sections of HoPC

that addition of the next layer L5 slightly decreases the recognition accuracy. Table 6.1

shows the results achieved by different methods on our dataset.

Table 6.1: Results achieved by different methods on the new dataset. Leave-one-out cross
validation is used.

Method Result

CNN-RNN (raw depth data) [24] 75.6 ± 4.8

AlexNet(conv5) raw depth data 82.0 ± 2.6

AlexNet(pool5) raw depth data 87.1 ± 3.5

AlexNet (fc6) raw depth data 84.2 ± 3.8

AlexNet(pool5+fc6) raw depth data 86.7 ± 3.8

AlexNet(fc7) raw depth data 79.2 ± 5.0

AlexNet(pool5) PC colorization 90.4 ± 3.8

AlexNet(fc6) PC colorization 91.0 ± 3.2

AlexNet(fc6+pool5) PC colorization 91.1 ± 3.7

AlexNet(fc7) PC colorization 89.0 ± 3.7

AlexNet(fc6) SN colorization [205] 92.05 ± 2.6

AlexNet(pool5) SN colorization 91.9 ± 2.8

AlexNet(fc7) SN colorization 91.9 ± 2.4
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Continuation of Table 6.1

Method Result

AlexNet(pool5+fc6) SN colorization 92.4 ± 2.6

View-based system, layers 1-5, Quadratic-chi kernels, 9× 9 bins 86.6 ± 4.3

Our approach (L1 features, 5×5 orientations) 81.4 ± 4.2

Our approach (L1 features, 7×7 orientations) 83.4 ± 4.1

Our approach (L1 features, 9×9 orientations) 84.2 ± 3.6

Our approach (L1 features, 9×9 orientations, + L2) 89.0 ± 2.6

Our approach (L1 features, 9×9 orientations, + L2 + L3) 90.1 ± 2.5

Our approach (L1 features, 9×9 orientations, + L2 + L3 + L4) 91.4 ± 3.3

Our approach (L1 features, 7×7 orientations, + L2 + L3 + L4) 91.1 ± 3.7

Our approach (L1 features, 9×9 orientations, + L2 + L3 + L4 + L5) 90.4 ± 4.0

Several conclusions can be made from this table. First, we reconfirmed the results

of previous works, stating that colorization of the depth channel substantially improved

the results of the CNN-based architecture. As expected, the SN colorization led to the

best object categorization accuracy. We also demonstrated the usefulness of our method

for colorization of depth images using the principal curvatures and the mean curvature,

which also led to good results.

As for our method, it has shown good results, which are almost at the level of the

advanced CNN-based architecture. Note, that our method significantly outperformed

both CNNs working with raw depth images, and was only beaten (by a small 1% margin)

by the CNN classifying colorized depth images. Also note, that our system was trained

only on a small dataset, while AlexNet was pre-trained on the large-scale dataset, and

therefore contains a very rich set of features. That is why we can consider the achieved

results as a confirmation of the large discriminative power of our method.

Additionally, we provide the result of evaluation of the view-based system (described

in Chapter 5) on the same dataset. The following settings were used: 9× 9 orientational
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bins at the first layer, layers L1 - L5 were used, MDL + entropy-based part selection,

empty cells are switched on, pooling is switched on. Figure 6.12 illustrates the beeswarm

plot showing how the accuracy fluctuates across 20 iterations.

Figure 6.12: Beeswarm plot illustrating the accuracy of the view-based system on the new
dataset.

Category Recognition from Novel Views and in-Plane Rotations

In this experiment we evaluate geometric invariance of different methods, using the

methodology described in Subsection 6.10.1, in which we use the front views of train-

ing objects for learning (both vocabulary learning, and category learning), while testing

is done from the novel views and in-plane rotations which are obtained by changing the

camera’s azimuth and elevation, and by rotating the camera about its optical axis. In

contrast to the previous experiments, where leave-one-out cross-validation was used, in

this experiment we use 5-fold cross validation, mainly because it is less computationally

expensive.
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We used four different settings of our method. First, we used 9×9 quantization of

orientations of L1 parts. However, though this quantization proved to be useful for

recognition from the front view, it makes the performance of the system worse, when

performing recognition from novel views and in-plane rotations. Let us call these set-

tings of the system the front view mode. Additionally we used another mode (termed

invariant mode), where no quantization of orientations is done. Unfortunately, this op-

tion decreases the recognition accuracy from the front view (approximately by 3%), but

it substantially increases the robustness to different transformations. In the third mode

of our system, termed invariant mode with parameter tuning, we improved the in-

variant mode, in particular, we performed a grid search of the parameter regulating the

size of the OR-nodes to maximize the recognition accuracy on this dataset. Additionally

we switched off pooling after L3, substantially increasing the number of part realizations

on a surface. The fourth mode involves uses radial HoCP, making our system fully

rotationally invariant.

Results of the comparison of our method (in different modes) with CNN-RNN and

AlexNet (in different settings) for out-plane rotations are shown in Figure 6.13. In Figure

6.14 we re-scaled the results by assuming that the performance of each method from the

front view is equal to 1. This plot demonstrates how rapidly the performance of each

method goes down for different view changes, relative to the performance of this method

from the front view. Note that both these plot show average values taken by changing of

camera azimuth and elevation.

Similarly structured results for different in-plane rotations are shown in Figure 6.15,

while the re-scaled results for the in-plane rotations are shown in Figure 6.16.

First, our methods demonstrated the greater robustness to all transformations than

both CNNs working with raw depth images. Second, our method (in any of its modes)

achieves much greater robustness to in-plane rotation than both CNN. In one of the modes

(with radial HoCPs) our method becomes fully rotationally-invariant. Third, our method

(in the invariant mode with parameter tuning) achieves greater robustness (in relative
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Figure 6.13: Performance of different methods under changes of view

values) to large changes of view (45-60 degrees) than AlexNet, though the margin is not

large. However, for small changes of view (15-30 degrees) AlexNet performs better than

our methods both in relative and absolute values.

6.11 Conclusion

This chapter presents the surface-based compositional hierarchical framework that is

based on the principles of hierarchical compositionality and of the principle of intrin-

sic part-based reference frames. We described the design principles of this framework and

all ingredients of the system, namely the local reference frames, the composition rules,

OR-nodes, etc. We also provided the detailed description of each step of the learning

and inference algorithms, including pre-processing of the input data, inference of the first

layer, collecting of the co-occurrence statistics, clustering of statistical maps and forming
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Figure 6.14: Relative performance of different methods under changes of view. Recogni-
tion performance of each method from the front view is assumed to be 1.0

doublets, inference of doublets from the training data, making OR-Nodes, and pooling.

The the most difficult part of this research work is related to orientations of part

realizations and the local reference frames. We specify how LRFs should be computed,

how to handle the situations where it is not possible to compute them, how to describe

spatial relations of LRFs, and how they are inherited by part realizations of higher layers.

Another difficult problem is the clustering algorithm for statistical maps since these maps

contain a very rich information, and clusters are not always well-separated, especially on

the lower layers.

The work presented in this chapter addressed the second research goal of this the-

sis. We complemented the principles of hierarchical compositionality by the principle of

part-based reference frames and developed a novel system on basis of these principles. Re-

sults of the experimental evaluation demonstrated that the goals we mainly achieved. In
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Figure 6.15: Performance of different methods under in-plane rotations

recognition from the front view, our framework demonstrated the accuracy nearly at the

level of the state-of-the-art CNN pre-trained on ImageNet. Our framework outperforms

the competing CNNs in recognition from unseen in-plane rotations by a large margin.

As for the changes of view, the achieved results were not very conclusive. Our system

outperformed both CNN working with raw depth data. It also demonstrated a greater

robustness (in relative values) than CNNs for the large view changes (45-60 degrees).

However, for small view changes AlexNet classifying colorized depth images shows the

greater robustness than our method.
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Figure 6.16: Relative performance of different methods under in-plane rotations. Recog-
nition result of each method without in-plane rotation is assumed to be 1.0
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis we addressed the complicated problem of object categorization based on

surface shape features. We identified that one of the main problems of deep learning

methods applied to 3D shape analysis is the lack of robustness to different geometric

transformations. We proposed two novel frameworks for multi-layer learning of surface

shape features based on the principles of hierarchical compositionality. The main purpose

of the first framework was to transfer the principles of hierarchical compositionality to the

domain of surface shape analysis. The second framework was purposed to enable learning

of surface shape features having a large discriminative power and a greater robustness to

rigid body transformations than the features learned by state-of-the-art CNNs.

7.1 Conclusions

The following conclusions can be made from this work:

• We transferred the principles of hierarchical compositionality to the domain of sur-

face shape analysis by developing a novel framework for multi-layer learning of

surface shape features. This thesis also demonstrates that this framework enables

efficient category recognition from the large-scale Washington RGB-D dataset.

• We demonstrated that the usage of the Quadratic-chi affinity measure within SVM

can significantly improve results of classification of HoCPs.
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• We demonstrated that the principles of hierarchical compositionality, complemented

by the principle of intrinsic part-based reference frames, enable development of a

multi-layer framework capable of learning surface shape features of large discrim-

inative power and a greater robustness to in-plane rotations compared to features

learned by the state-of-the-art CNN-based architecture (AlexNet).

• We demonstrated that this framework has a greater robustness to changes of view,

than CNN-based architectures working with raw depth images. However, our ex-

periments show that the colorization of depth images substantially increases the

robustness of AlexNet to view changes. That is why, our framework demonstrated

a greater robustness than AlexNet only for large changes of view, and only according

to one of the measures (i.e. the ratio of the recognition accuracy from the unseen

view and the recognition accuracy from the front view).

7.2 Summary

Chapter 1 is the introduction to this thesis. We presented the background, the motiva-

tion, the main research goals of the thesis, as well as the hypotheses and contributions of

this thesis.

Chapter 2 is dedicated to the representation of 2D images. We first describe the

domain of handcrafted image features and the methods exploiting them and have demon-

strated that the handcrafted features having large discriminative power and robust to

different transformations have been very popularly employed. Then, we introduce the

concept of deep learning and described the main types of ANNs. Finally, we described

the theoretical work on hierarchical compositionality and made an overview of the existing

compositional hierarchical methods. We pointed that compositional hierarchical methods

have not been compared with modern CNN-based method in the mainstream challenges

for object categorization, however, these systems have some interesting theoretical prop-

erties.
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Chapter 3 is dedicated to surface shape analysis. It outlines the handcrafted shape

features and demonstrates that some of these features are invariant to different geomet-

ric transformations, including rigid body transformations and isometric deformations of

shapes. Then, this chapter describes recent deep learning methods used for shape analysis

and outlines their limitations. The main conclusion from this chapter is that the appli-

cation of deep learning methods to surface shape analysis problems is burdened by the

limitations of the existing methods, e.g. lack of invariance to different geometric trans-

formations. On the other hand, we emphasize that the situation is changing very rapidly

since the number of deep learning methods specially designed for the 3D domain grows

rapidly.

Chapter 4 provides a high-level description of the learning and inference algorithms

used in the view-based and the surface-based compositional hierarchies.

Chapter 5 describes the view-based compositional hierarchy providing the detailed

description of the learning and inference algorithms. The key stage of the learning algo-

rithms is the part selection. The chapter proposes several importance measures and eval-

uates different approaches to part selection, i.e. minimization of different multi-objective

cost functions and the divide-and-conquer approaches which assume that different sub-

algorithms should perform part selection based on different criteria, and then the results

should be merged. Our experiments show that the divide-and-conquer approaches lead to

substantially better results in object categorization. This chapter also describes a novel

way of classifying the category descriptors (HoCP), using EMD and Quadratic-chi kernels

for SVM. This chapter confirms the first hypothesis of this thesis.

Chapter 6 is dedicated to the surface-based framework. It introduces the principle of

intrinsic hierarchical reference frames and describes all steps of the learning and inference

procedures. There are two most difficult theoretical questions described in this chapter.

The first question relates to local reference frames. We specify how to compute LRFs,

how to describe spatial relations between them, and how they are inherited by part

realizations of higher layers. The second question is related to clustering algorithm for
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statistical maps, which is a difficult problem since statistical maps contain very rich

information about relative positions and relative orientations. Additionally, this chapter

proposes a novel protocol for evaluating the robustness of computer vision methods to

geometric transformations. The results of experimental evaluation of the surface-based

hierarchy show that it has a large discriminative power and a greater robustness to in-

plane rotations than CNN-based methods. As for the view changes, the hierarchy can

be considered (according to the relative performance) to be more robust for large view

changes (around 45-60 degrees), while the CNN-based method is more robust to small

view-changes.

7.3 Future Work

From our point of view, the proposed surface-based compositional hierarchy has a large

potential to be further developed and applied to various computer vision and shape anal-

ysis tasks. So far we demonstrated the usefulness of this framework for object category

recognition from range images, representing partial views of objects. In the experimental

settings described in this thesis we perform learning of surface shape features from a set of

range images and then use these learned features for category recognition from the same

type of input data.

One of the promising directions of the future work is to extend our system to enable

vocabulary learning from full 3D shape models. Such an extension would require intro-

ducing another set of composition rules for higher layers of the hierarchy, and change local

reference frames from the surface-based to volumetric ones, for instance, computed using

the principal component analysis (PCA). Our assumption is that features learned from a

dataset of full shape models may be successfully applied to the 3D shape retrieval task.

An interesting direction of the future work is to conduct the research on object and

category descriptors exploiting the proposed compositional hierarchical shape vocabulary.

Actually, in this thesis we exploit only one type of category descriptors, namely the
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Histogram of Compositional Parts (HoCP). It may be, however, a very promising direction

of work to study other types of category descriptors and to compare their performance

against the performance of HoCPs. It is also a scientifically interesting question whether

or not the features learned by our framework may be used within the existing global object

and category descriptors (e.g. the Covariance descriptor [198] or other global descriptors

presented in Chapter 6).

Another possible direction of the future work is to apply this framework to object

detection in cluttered scenes. Since objects in cluttered scenes may have arbitrary posi-

tions and orientations relative to a camera, the robustness of an object detection system

to in-plane and out-plane rotations becomes one of the most important properties. In

such settings the surface-based compositional hierarchy, proposed in this thesis, may be

beneficial. It is also important to conduct the research on category recognition under

occlusions, and to figure out whether the proposed compositional hierarchical system is

robust in object/category recognition under occlusions.

Additionally learning of 3D shape models representing closed surfaces may open the

opportunities for designing a system for making predictions of the hidden (e.g. occluded

or self-occluded) parts of the objects. This property may be interesting for robotics

scenarios, for example for robot grasping, where the hidden (occluded) part of the object

should be reconstructed for grasp planning.
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mesh processing. CRC press, 2010.
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