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Abstract 

Since the first topological phase transition was proposed by Kosterlitz and Thouless in 1973, 

it has opened a new era in condensed-matter physics and expanded physicists’ understanding 

in material classification. In the meantime, due to the progress on the sample preparation, 

graphene has attracted great attentions because it has some fascinating phenomena such as the 

exhibition of Dirac degeneracies. As the spin-orbit coupling is considered, graphene becomes 

the first feasible platform to study spintronics in a real two-dimensional material. Aside from 

that, inspired by Haldane’s influential model, quantum spin Hall effects, which exist one-way 

reflection-free transports along the truncated boundaries for both spin degree of freedom, was 

predicted in graphene if only taking intrinsic spin-orbit coupling into account. Having been 

significantly successful, the development of topological quantum matters prompts the 

exploration of topological phenomena within other physical systems. Particularly in photonics, 

several exciting results have been discovered like photonic counterpart of topological insulators 

or Weyl semimetals. However, for elastic solids, its complexity in theoretical analysis and 

experimental realisation slows down the exploration of corresponding topological nature. Here, 

from discrete spring-mass systems to continuous elastic solids, we analytically and numerically 

discuss the possibility of achieving topological phases. Originating from time-reversal 

symmetry breaking via applying external fields, a unidirectional and backscattering-immune 

edge state arises owing to the topological protection. Also, the proposed arguments are verified 

by numerical calculation of practical mechanical crystals and elastic composites. We believe 

these studies pave the way for the future researches in topological elasticity. 

On the other hand, in the past decades, the requirement of Hermiticity for a Hamiltonian 
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has been renewed by another discipline called parity-time (PT) symmetry. PT symmetry, which 

is a weaker restriction than Hermicity, allows real eigenvalues in a non-Hermitian Hamiltonian. 

However, it is challenging to introduce the PT condition into quantum mechanical systems. An 

alternative setup consisting of two coupled gain/loss optical channels was studied because of 

the similar mathematical expression between quantum and optic systems under paraxial 

approximation. In addition, at certain scenarios, PT symmetric phase experiences spontaneous 

symmetry breaking, resulting in the emergence of exceptional points that possesses infinite 

group velocity. Note that the group velocity for a non-Hermitian system is no longer stands for 

the energy flow, since it is invalid for the law of energy conservation in an open system. In this 

thesis, we consider an acoustic metamaterial made of periodically arranged spinning cylinders. 

By virtue of the rotational Doppler effects, the dispersion relation near the rotating velocity of 

rods is significantly influenced by the rotation. The frequency shifts cause a PT symmetric 

Hamiltonian so that, at specific points, the spontaneous PT symmetry breaking emerges and 

exceptional points arise. Lastly a possible setup is discussed for the future experimental 

realisation.  
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Chapter 1  Introduction 

1-1: Background and Motivation 

Over the past decades, the progress of topological nature in matter, such as quantum Hall effect 

and Z2 topological insulators, has attracted substantial attention because it opens a window for 

the study of this unprecedent material phase [1-3]. Amongst all the fascinating phenomena, 

topological protection, a reflection-immune property against impurity or disorder in matters, is 

a main feature occurring in this type of materials. This special scattering-immunity states of 

electronic waves are probably the most impressive discovery in topological matters because it 

was observed in superconductors. For finding the fundamental concepts in topological nature, 

the theoretical study shows that time-reversal (TR) symmetry breaking plays an essential role 

to open a non-trivial energy gap, which is a fundamental condition bringing about the 

topologically protected edge states. The requirement of breaking TR symmetry can be realised 

by applying an external magnetic field or using the materials with strong intrinsic spin-orbit 

couplings.  

On the other hand, the breakthrough of graphene preparation in 2004 has provided an 

elegant approach to realise this material. Graphene, which is a practical material with purely 

two-dimensional (2D) structure, possesses an interesting aspect that its low-energy 

approximation has the form as the same as massless Dirac equation [4]. This similarity gives 

rise to many of unusual properties for the electrons in graphene. One of them is that, despite 

governed by the same relativistic equation, the Dirac fermion in graphene with moving speed 

is much slower than the speed of light [4]. Additionally, the discovery of flat edge state in the 

band diagram of graphene initiates the study of its topological nature. Electrons with certain 
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energy will accumulate on the edges because of the zero group velocity of flat edge states [4]. 

If we further consider the intrinsic spin-orbit coupling inside the carbon atoms, topologically 

non-trivial gap can be lifted so that flat edge states can be converted into crossing ones. This is 

the fundamental idea of topological insulator first proposed by Kane and Mele in 2005 [5-6]. 

Recently, the rapid development of topological properties in condensed matter also 

arouse great interest in unveiling topological phenomena in other physical systems. In 2008, S. 

Raghu et. al [7-8] and Z. Wang et. al [9] simultaneously proposed the optical analogue of 

quantum Hall effect achieved theoretically by a gyromagnetic photonic crystal. Afterwards, Z. 

Wang and his colleagues at MIT research groups have realised topologically protected one-

way edge states in experiments [10]. Also, for the photonic analogue of topological insulators, 

two approaches were proposed via employing photonic crystals composed of metamaterials 

[11] and coupled helical waveguides [12]. Nevertheless, only few researches focused on the 

analogues of classically vibrating systems, such as pressure acoustics [ 13 ] as well as 

mechanical oscillations [14-15]. Especially for elastic waves, it is challenging to achieve 

physics with topological nature due to its complexity caused by modes coupling. Owing to the 

rich of undiscovered topological physics in mechanical and elastic crystals, I decide to choose 

this subject as new physics and potential uses of elastic solids remains to be revealed. 

In addition to the research of topological phenomena in classical regime, in this thesis 

two topics are included: spin-Hall effects and parity-time (PT) symmetric systems. Spin-Hall 

effects are phenomena of spin-orbit coupling leading to transverse spin currents caused by 

electrical currents and vice versa [16]. Despite its short history originating from the first 

experimental observation, spin-Hall effects are already prevailing in the field of spintronics as 

fundamental techniques of a spin-current receiver or generator. Apart from the triumph in 

electronic systems, recently physicists have realised a well-known phenomenon in optics 



 

3 

 

named Imbert-Fedorov shift, which is the photonic counterpart of spin-Hall effect [17]. Next, 

PT symmetric physics, which is firstly proposed by C. Bender [18] in 1998, generates real 

energy eigenvalues without the requirement of Hermitian Hamiltonian. This astonishing 

conclusion challenges a textbook hypothesis proposed by P. A. M. Dirac in which the operator 

of any observable must be Hermitian. Since then, the exploration of systems with PT symmetry 

becomes a significant topic in quantum mechanics [19], and it has extended to optical regime 

[20]. Consequently, inspired by this intriguing effect, in the following contents we will make 

the extension of studies to classical vibration, such as acoustic systems. 

1-2: Overview of Thesis 

In this thesis, the main body includes four chapters. Firstly, fundamental information in chapter 

two paves the way for the studies presented in the subsequent contents. Particularly, the 

condensed-matter theory described by the perspectives of topology, the crystals affected by 

spin-orbit coupling, as well as PT symmetric physics are outlined. Based on the previous 

discussion, mechanical crystals consisting of mass beads and springs are developed in chapter 

three with the discovery of topological chiral edge states and the elastic version of spin-Hall 

effect. Chapter four puts the focus of the subject on elastic solids with the theoretical prediction 

of a topologically non-trivial phase for pure shear waves and 2D elastic topological insulators. 

In chapter five, with the rotational Doppler effects in acoustics, non-dispersive materials will 

be transformed into dispersive ones in terms of the spinning velocity. Furthermore, a sonic 

crystal made of spinning cylinders can lead to pairs of exception rings (ERs) owing to the 

nature of an open system. The concluding chapter of the thesis provides a review of all 

proposed results and the outlook of potential subjects. 
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Chapter 2  Literature Reviews 

2-1: Berry Phase 

2-1.1: Brief Mathematical Review for Topology 

Before the physics of this chapter, we briefly introduce an essential mathematical theorem 

called “Gauss-Bonnet theorem”, which combines the geometry and topology. The description 

of Gauss-Bonnet theorem is:  

“If one takes the integral of Gaussian curvature over a closed surface, this integration divided 

by 2 defines a topological index called Euler characteristic/index which is equal to 2 2g . 

[21]” 

Here g means genus: the number of holes in an object. The equivalent mathematical expression 

of above description is given by 

1
2 2

2 s
d g


    s                                            (2-1) 

where  is Euler characteristic and   is Gaussian curvature. Taking a sphere as an example, 

since there is no hole in it, the Euler index equals 2, matching the result of 

  1 2 22 4 2R R      . For a torus, according to Eq. (2-1), simply we know Euler 

characteristic is zero. In addition to Gauss-Bonnet Theorem, there is a relevant theorem called 

“hairy ball theorem” that can be considered as the visualising version of Gauss-Bonnet theorem. 

As shown in Fig. 2.1, if one considers that tangent vector fields continuously distribute on a 

closed surface. For a sphere, regardless of the arrangement, there exist two singularities that 
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correspond to the result of Euler characteristic; for a torus, the field distribution covers all the 

surface smoothly without having a singular point. In other words, hairy-ball theorem directly 

connects the number of singularities in a closed surface with Euler characteristic in topology. 

In the next section, a concept in physics referred as Berry phase is discussed. Due to the same 

mathematical expressions, Berry mechanism shows a one-to-one correspondence to Euler 

characteristic, which links physics with topology. 

 

Fig. 2.1: Hairy-ball theorem.  Tangent vector fields distributed on distinct closed surfaces. (a) Two 
singularities are clearly shown on the top and bottom of the sphere. The number of singularities is exactly equal 
to Euler characteristics (b) There exist no singular points on a torus, matching the result given by Gauss-Bonnet 
theorem. [22] 

2-1.2: Basic Concepts of Berry Phase 

We begin by Schrödinger equation which can be written as 

ˆ
ti H                                                       (2-2) 

and its general time-dependent solution is 

   
0

exp exp
t

n n

i
i t dt t n                                             (2-3) 

n is the eigenvalue of Hamiltonian, namely, ˆ
nH n n . The second exponential term is a 

time-evolution solution and the first one is usually neglected because the initial phase can be 
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set as zero. However, in 1984, M. Berry pointed out that this phase is crucial if a closed path is 

taken adiabatically in parametric space [23]. Here we emphasise the meaning of ‘adiabatically’, 

that is, the parameter changes gradually in the system. Thus, energy transition of distinct states 

will not occur in the course of varying operation. Its literal use is not identical to the one in 

thermodynamics in which denotes there is no energy exchange during the process. In a closed 

loop, this phase term  n t can be presented as [23] 

     n c s
t d d      Ω s     ,                                     (2-4) 

where 

     n i n n     ,                                          (2-5) 

     n i n n   Ω     .                                      (2-6) 

Here  n t is usually called Berry flux, Berry phase or geometric phase, whilst  nΩ   is 

Berry curvature or Berry field and  n   is Berry connection. Note that, as Eq. (2-4) has the 

same formalism as Eq. (2-1), one can intuitively expect that Berry phase divided by 2 could 

also result in an index. This index is referred as Chern number, which is the interpretation of 

quantum Hall effect. We will see it in the upcoming content. Additionally, because of the 

formal similarity between the expression of Berry phase and magnetic flux in electromagnetism, 

it is evident that Berry curvature  nΩ  is a gauge invariant but  n  is a gauge dependent. 

To verify, as scalar quantity     can be introduced subsequently which satisfies the relation 

of gauge transformation      n n  R      such that the geometrical phase n  

accumulated along the path is eliminated and the wave function in Eq. (2-3) will not be changed. 
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This helps to simplify the problem by choosing a proper     in different systems. 

Furthermore, one can define a gauge field tensor evaluated from the Berry connection as: [23] 

             n n
v un n n n n

i      

      
     

       

 
     
     

           (2-7) 

Comparing the tensor form n
  and vector form nΩ  of Berry curvature, they are related to 

each other by  n
n  

  Ω , where   is Levi-Civita symbol. In addition to the tensor 

and vector forms, Berry curvature can also be rewritten as a summation of eigenstates by means 

of the identity  i i n mn H m n m      : [23] 

 
 2

v vn

m n n m

n H m m H n n H m m H n
i  


 

    
 


                   (2-8) 

where i
i    and  ,i u v . Eq. (2-8) has a significant advantage in the use of numerical 

simulation because it is independent from the gauge choice of wave functions. If there are three 

components in the parameter space, Berry curvature can be viewed as the magnetic field in 

electromagnetism, e.g.        12 1 2 2 1
n n n n

z         . To clarify the mathematical 

form of Berry mechanism, a comparison of formalism between Berry mechanism and the 

magnetic field is shown in the following table: 

 Berry mechanism Magnetic field 

Connection/Vector 

potential 
     n i n n      A  

Curvature/Magnetic Field      n i n n   Ω      B A  

Phase/Magnetic flux    n nt d  s
Ω s   t d  B s

B s  
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Gauge transformation      n n  R        A A  

Gauge invariant quantity  nΩ   B 

Dirac Monopole*    22 t Ω 

  

22r


r
B  

Table I: Comparison between Magnetic Fields and Berry Mechanism. This table compares vector 

potentials, magnetic fields, and magnetic flux with Berry mechanism. Considering Berry connection as the 

vector potential, Berry curvature and phase have one-to-one correspondence to magnetic field and magnetic 

flux. In addition, due to the same formalism, Berry curvature is a gauge independent quantity like magnetic 

field. They also share the same field distribution while a monopole is considered. 

 

Fig. 2.2: Poincaré Sphere.  A polarisation sphere depicts two circular polarisations on north and south pole, 
and linear polarisations around the equator. Circling a closed red curve on Poincaré sphere, the area of the 
geodesic triangle defines a solid angle and its magnitude divided by 2 can deduce the geometric phase. [24] 

Berry phase is a universal phenomenon that has different physical meanings in distinct 

systems. Apart from the interpretation in solid-state physics, which will be discussed in next 

section, it is worth noting that there is another effect caused by Berry phase in polarised optics. 

If one considers a cycle change of light polarisations, this process is accompanied by a phase 

                                                 
*Dirac monopole, sometimes called “magnetic monopole”, is a hypothetical particle proposed by P. A. M. Dirac 

for creating the duality of Maxwell equations. According his definition, Dirac monopole has a single, isolated 

magnet, which can exist only with either north pole or south pole. 
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shift determined by the geometry of the cycle as indicated on the Poincaré sphere shown in Fig. 

2.2. The main result considers a light beam that returns to its initial polarised state via two 

intermediate polarisations. In 1956, S. Pancharatnam proved that, in such circumstance, the 

phase is not equal to its original value rather than an increase by solid 2 , where solid  denotes 

the solid angle given by geodesic triangle whose vertices are three polarised states on Poincaré 

sphere [24]. This additional phase was later confirmed by M. Berry himself as the first proposal 

of geometric phase right after he published his remarkable work in 1984 [23]. Simply put, in 

polarised optics, the physical meaning of Berry phase is the extra phase term of a loop of 

polarised state change. Nowadays, the geometric phase in optical regime is also called 

Pancharatnam-Berry phase to honour Pancharatnam’s prevision decades ago. 

2-1.3: Berry Phase and Chern Number in Crystalline Solids 

After an overview of Berry phase, a periodic potential system, which is widely used for 

analysing crystalline solids, will be discussed in this section. With an external field, we 

consider a single electron propagating in periodic potential circumstance and affected by an 

external vector potential  tA . Its Hamiltonian therefore yields 

   
2ˆˆ

2

e
H V

m


 

p A
r                                                   (2-9) 

where    V V r a r is the periodic condition with lattice constant a. The states of this 

category of Hamiltonian (2-9) satisfy the boundary condition      expn ni   r a q a r  in 

accordance with Bloch theorem. If the eigenstates are transferred into Bloch function  u r

using      expn nu i   r q r r , the Hamiltonian reads  
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     
2ˆˆ

2n n n nH u V u u
m


 

   
  

p q
r q


,                               (2-10) 

where  e q k A  and the Bloch states  nu r satisfy the periodic boundary condition 

   n nu u r a r .                                                  (2-11) 

The boundary condition given by Eq. (2-11) make sure all eigenstates are in the same Hilbert 

space. One can regard the momentum within the Brillouin zone as parametric space, while nu  

is the eigenfunction of the Hamiltonian. Consequently, if a one-dimensional (1D) system is 

considered as Bloch waves in momentum (q) space, according to Eq. (2-4), Berry phase is 

   a
n n n

a

i u u d






   qq q q ,                                      (2-12) 

where n in crystalline solid is referred to the Zak phase [22]. For higher dimensional cases, 

Eq. (2-12) can be generalised as 

   n n nBZ
i u u d    qq q q ,                                     (2-13) 

in which the subscript “BZ” represents the first Brillouin zone. 

In Zak’s paper [25], there are three unique features of a single electron moving in 

crystalline solid. Firstly, in Berry’s original work, the parametric space must be applied from 

additional physical quantities, e.g. magnetic fields. Yet, the parametric space is indeed the 

momentum space which is provided by the periodic potential system itself. In other words, any 

parameter/field implemented externally is dispensable. Secondly, since Brillouin zone can be 

taken as a torus, taking Berry curvature integration over the entire Brillouin zone naturally 

happens in a closed surface. Hence, even in a 1D parametric space, a non-zero Berry phase can 
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be obtained. Finally, Bloch states are equipped with symmetry properties in the Brillouin zone 

and, as a consequence of the symmetry, Berry phase divided by 2  becomes quantised 

numbers that imply a one-to-one correspondence to the topology. 

In condensed-matter theory, Berry phase plays a significant role in many phenomena. 

Amongst all the applications of Berry phase, there is a crucial one that can explain the quantised 

particle transport and anomalous velocity in solids [ 26 ]. Hamiltonian (2-9) satisfies

   ˆ ˆH t H t T   in a system under a slowly varying time evolution, such as the low-frequency 

alternating voltage source. Under this slowly varying condition, the time-dependant 

Hamiltonian still retains the translational symmetry of the solids. Thus, the instantaneous states 

retain Bloch wave expression  ,i
ne u tq r q and the Hamiltonian becomes  ˆ ,H tq . From this 

description, the wavevector and time are two independent coordinates of a parametric space, 

i.e.  , tR q . Therefore, the 1D adiabatic transverse current induced by varying external field 

is given by [26] 

 
1

2
n

H qtBZ
n

j dq


    ,                                             (2-14) 

where n means the band index beneath Fermi energy. Eq. (2-14) shows that an induced 

transverse current comes from Berry curvature rather than the gradient of the energy. It is worth 

noting that, before geometric phase was proposed, Eq. (2-14) had been independently obtained 

by D. Thouless et. al. [24]. In their ground-breaking article, the conductance in quantum Hall 

effect can be linked to a universal constant multiplied by the topological integer [27] 

2 2
21

2H nBZ
n n

e e
G d k n n C

h i h
       k k                            (2-15) 
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where e is electron charge, h is Planck constant, and C is called TKNN number. Soon after that, 

the connection between Berry phase and TKNN number was built. Additionally, as TKNN 

number   1 22n BZ
C d k n n     k k  is mathematically identical to the expression of Chern 

number/invariant in topology, another beautiful connection between math and physics is 

discovered. To this day, in condensed-matter theory Berry phase and TKNN nu are unified 

under the same framework of Chern number description which is an integer to categorise the 

topology of geometry in mathematics. As a result, all the matters with non-zero Chern numbers 

are referred as topological materials. 

Next, for anomalous velocity, since the translational symmetry is not broken by the 

vector potential A, q remains a good quantum number and its time differentiation gives rise to 

a constant of motion, i.e. 0q ( ˆ ˆ[ , ] 0ih H  q q q  ). Therefore, the equation of motion reads 

 ek E  . Thus, using the relation     q k  and  t e     E k , one finds [26] 

     n
n n

e
v


  


k

k E Ω k
k 

,                                       (2-16) 

where E denotes applied fields and 

     n i u u   k kΩ k k k .                                       (2-17) 

As denoted in Eq. (2-16) and (2-17), besides the normal band contribution, an additional term 

also contributes the velocity to  nv k . This velocity induced by the second term of Eq. (2-16), 

which is called anomalous velocity, is transverse to direction of applied electric fields and leads 

to the Hall current. All in all, the pivotal physical meaning of transverse Hall currents is the 

contribution of Berry curvature. 
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Lastly, we present a brief discussion: how universal spatial inversion/parity (P) and TR 

symmetries influence Berry curvature/phase [26]. According to Eq. (2-16), this velocity 

formula must be unchanged under TR and P symmetry if there are no external fields in the 

system. Due to the TR symmetry, vn and k flip sign but the electric field E remain the same 

because it is a polar(true) vector; under P symmetry, vn, k and E all change sign. Hence, under 

the TR-symmetry, Berry curvature given by Eq. (2-17) requires    n n  Ω k Ω k ; for 

spatial inversion symmetry, Berry curvature should be an even function, i.e. 

   n n  Ω k Ω k . As a crystal with both symmetries, Berry curvature vanishes over the 

whole Brillouin zone. However, there are many essential physical systems breaking either TR 

symmetry or P symmetry, e.g. ferromagnetic materials. For these systems, it is necessary to 

adopt Berry mechanism to explicitly interpret its physical phenomena. 

2-1.4: Bulk-Edge Correspondence 

In the previous section, we have stated the role of Berry phase in condensed-matter physics. In 

all above discussions, Eq. (2-15) demonstrates an intimate relationship between Hall 

conductance and Chern(TKNN) number (Berry phase divided by 2). Here, we focus on the 

meaning of Chern number and introduce a crucial theorem referred as bulk-edge 

correspondence that connects Chern numbers calculated from bands with the number of edge 

states. The description of bulk-edge correspondence is: 

“There exist gapless edge states within the bandgap, if and only if a bulk topological index of 

a gapped system is non-trivial(non-zero). The number of gapless edge states is equivalent to 

the difference between upper and lower Chern number summation, where upper(lower) bands 

are defined as the bands higher(lower) than the chosen gap.” [28] 
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Bulk-edge correspondence gives two essential concepts. Firstly, this theorem explains that, 

even though the material is a bulk insulator, edge states arise while the boundaries are made, 

namely, insulator inside but conductor along the boundaries. It can be regarded as a bridge 

linking Chern number and the emergence of gapless edge states. Consequently, to ensure 

whether the material is topologically nontrivial or not, firstly, one must find Chern number of 

the bulk band structure. Secondly, it also states the method of calculating the number of edge 

states. As depicted in Fig. 2.3, if the summations of upper and lower bands are given, the 

difference between them determines an integer indicating the number of edge states. With bulk-

edge correspondence, we are in a position to study topological properties and the edge states 

in the following content. 

 

Fig. 2.3: Bulk-edge Correspondence.  A schematic plot for bulk-edge correspondence. The blue shaded 
areas stand for bulk region. By adding up all the Chern numbers higher and lower than the chosen 
bandgap, their difference defines topological feature of the gap and the number of gapless edge states. 

2-2: Graphene and Topological Insulator 

2-2.1: Tight-Binding Description of Graphene  

A. Geim and K. S. Novoselov proposed a straightforward but efficient approach for the 

fabrication of graphene in 2004 [29]. Ever since, the study of graphene, especially for its 

electronic properties, has attracted considerable interest to this practical 2D material. Due to 
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the C3 symmetric geometry, a semi-metal graphene exhibits point degeneracies at K points 

around the first Brillouin zone. In the vicinity of these degeneracies, the behaviour of electrons 

governed by the formula is as the same as massless Dirac equation [4]. These special point 

degeneracies, therefore, are referred as Dirac points. Additionally, for graphene terminated 

with zigzag or bearded edges illustrated in Fig. 2.4a, one can find flat edge states connected to 

every K point. It makes charge accumulation on the boundary because of zero group velocity. 

In the following paragraph, we will introduce detailed information regarding aforementioned 

properties. 

 

Fig. 2.4: The geometry of graphene.  (a) The illustration of two distinct truncations of a graphene nano-
ribbon (b) R indicates the bonds to three nearest atoms and a shows lattice vectors. Red and cyan dots 
represent A and B sublattice atoms, respectively. 

Let us begin by tight-binding Hamiltonian of graphene. As shown in Fig. 2.4b, the nearest 

neighbours vectors give  1 ˆ ˆ3 2a R x y ,  2 ˆ ˆ3 2a  R x y , 3 ˆaR y  and lattice 

constant vectors are 1 ˆ3aa x  and  2 ˆ ˆ3 3 2a a x y . Considering the nearest-neighbour 

hopping, the tight-binding Hamiltonian can be written as [4] 

 †

,
. .i ji j

H t c c h c   ,                                             (2-18) 
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where t  is the hopping parameter, †
ic ( ic ) is creation (annihilation) operator at position i, and 

 means electrons interact only with their nearest neighbours. Applying Wannier functions 

 1/2 expi k
k

c N c i     k R  and substituting it into Eq. (2-18), we obtain 

 31 2† . .ii i
k k

k

H t a b e e e h c           k Rk R k R
,                             (2-19) 

which can be further simplified through introducing pseudo-spin degree of freedom, so we 

rewrite it as 

 31 2† . .
2

ii i
k k

k

t
H a b e e e h c  



            k Rk R k R
,                      (2-20) 

where x yi     , i  are Pauli matrices. For simplicity, one can define a vector d such that 

   d tf  k k ,    31 2 ii if e e e     k Rk R k Rk   , where  

       1 2 32 cos cos cosxd d d t           k k k k R k R k R ,      (2-21) 

       1 2 32 sin sin sinyd d d i t           k k k k R k R k R ,      (2-22) 

and Hamiltonian becomes †
k kk

H a b  
  d σ . Let   †

k kk
H H a b  

 k  with 

   H  k d k σ . If we operate Hamiltonian twice, the energy spectrum in terms of k is given 

by [4] 

   2 2 3 3
3 2 cos 3 4 cos cos

2 2x y x x yd d t k a k a k a 

                 
k ,    (2-23) 
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Note that Eq. (2-23) vanishes at K/K’ points    , 4 3 ,0x yk k a   or other points after 60-

degree rotation around  point as shown in Fig. 2.5, so that the degeneracies of bands are 

confirmed. Furthermore, we consider a small amount quantity of k space near K points. By 

taking cosine in a second-order expansion, Eq. (2-23) becomes 

  2 23

2 x yta k k v        k k .                                   (2-24) 

Eq. (2-24) indicates an energy spectrum of massless Dirac fermion. Comparing Eq. (2-24) with 

(2-23), d vectors near Dirac points are expressed as 

3

2x x

ta
d k   , 

3

2y y

ta
d k  ,                                         (2-25) 

where   stands for the two valleys points K and K’. Moreover, the Hamiltonian at K and K’ 

point are respectively defined as 

   x x y yH v k k      k .                                         (2-26) 

For a more general description, we add the z component of Pauli matrix into Eq. (2-26) as [4] 

   x x y y eff zH v k k m      k .                                       (2-27) 

The term eff zm   appears provided that the inversion symmetry of the 2D material is broken, 

e.g. MoS2. This effective mass term lifts a spin-independent gap, then the graphene becomes a 

trivial insulator as Fermi level locates in the gap. In short, different sub-lattices break the 

inversion symmetry which gives rise to a topologically trivial material.  
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Fig. 2.5: First Brillouin zone of graphene.   is the centre of Brillouin zone. K and K’ label two kinds of high 
symmetry points (valleys) around Brillouin vertices. 

2-2.2: Flat Edge States in Graphene Nano-Ribbon (GNR)  

In the previous section, an infinite 2D graphene is discussed based on the content in [4]. Since 

the lattice is invariant under lattice translations ( ,  x x a y y a    ), the reciprocal lattice 

vectors are good quantum numbers, which give [ , ] [ , ] 0x yk H k H  . Besides, kx and ky 

commute with each other so that energy eigenvalue can be expressed as  ,n x yk k . However, 

to have an “edge state”, at least a boundary must exist. Hence, for a graphene nano-ribbon 

(GNR) with a finite width along y direction but infinite length along x direction, the lattice shift 

in real space can be transform into kx but ky cannot. Thus, energy eigenvalue can no longer be 

represented as  ,n x yk k , yet the energy in terms of kx can still be defined. In this section, 

numerical calculations are used for finding edge states in the distinct types of GNRs.  

 Firstly, a zigzag lattice arrangement is shown in Fig. 2.6, one can follow Eq. (2-18) and 

get tight-binding Hamiltonian [4] 

        †

,
, , , 1 1, . .A B B Bm n

H t c m n c m n c m n c m n h c         . (2-28) 
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Employing Fourier decomposition for Eq. (2-28) results in 

        † , , , 1 , . .
2

ika
A B B B

n

dk
H t c k n c k n c k n e c k n h c


        .  (2-29) 

Using one-particle approximation 0 0 1 , and insert it into Eq. (2-29) we have 

  
  

1 , , , , , , , , 1
2

                      1 , , , , , , 1 , ,

ika

n

ika

dk
H t e a k n b k n a k n b k n

e b k n a k n b k n a k n




    

    


,        (2-30) 

where  †, , , 0Aa k n c k n . We assume the wave function is a linear superposition of a and b 

state such that      , , , , , ,
n

k k n a k n k n b k n    . Since Schrödinger equation in 

momentum space is written as      H k k k   , one can apply the identity

, , , , 0a k n b k n  , and then obtain 

          
      

1 , , , , 1 , ,

                             + 1 , , , , , , 1

ika

n

ika

H k k e k n a k n k n a k n

e k n b k n k n b k n

 

 

    

   


.         (2-31) 

Comparing with    k k  , we have equations for site A and B 

         22 cos 2 , , 1 ,ikat e ka k n k n k k n         ,                  (2-32) 

         22 cos 2 , , 1 ,ikat e ka k n k n k k n         .                  (2-33) 
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Fig. 2.6: Labelling approach for zigzag graphene nanoribbon.  Along x direction the length of ribbon goes 
to infinite as well as a finite width in the transverse direction. 

Note that two equations derived from its Hermitian conjugate are neglected because it is 

unnecessary to utilise these formulae for the following discussion. Expanding Eq. (2-32) and 

(2-33) as the matrix form, it can be expressed as  

1 1

1 1

2 2

2 2 2 2

0 2 0 0 0

2 0 0 0 0 0

0 0 2 0 0 0

0 2 0 0
N N N N

ts

ts t

t ts

ts

  
  
  



       
               
        
              

 

     

,            (2-34) 

where  cos 2s ka  and the phase term is neglected since they will not affect the energy band 

structure. By solving Eq. (2-34), Fig. 2.7a shows the 1D projected band structure, where the 

projected band structure depicts a sideview from its 2D bulk band structure, i.e. 

   ,x y xH k k H k . Evidently, there is a flat band at zero energy between two Dirac points. 

Furthermore, to verify whether it is an edge state or just a trivial bulk band, Fig. 2.7b illustrates 

probability density along y direction. Two peaks are observed on both ends; hence the existence 

of edge states is proved. 
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Fig. 2.7: Edge states of graphene. (a) Band diagram of graphene nanoribbon with zigzag termination 
for t = a = 1. (b) Flat edge state is shown in the centre of tight-binding band structure. 

2-2.3: Rashba and Dresselhaus Spin-Orbit Coupling 

Spin-orbit interaction is one of the major features in quantum mechanics. Due to the relativistic 

effect, even in absence of an external magnetic field, the electrons moving in the electric field 

generated from nucleus experience a magnetic field in their reference frame. This field 

interacting with the spin magnets of electrons results in the coupling between spins and orbital 

fields, namely, spin-orbit coupling. In quantum mechanics, as a charged particle with 

momentum p moving in a magnetic field B gives rise to Zeeman effect B σ B . Based on the 

relation c   B E v , the Hamiltonian caused from SOC is given by 

   2
SOC BH mc  σ E p , which is the origin of fine structure in early quantum mechanical 

history. 

In the above discussion, SOC exists in any atoms and its properties are independent of 

the spatial symmetry. However, in crystals, besides nuclei’s electric field, there is an additional 

source originated by the gradient of the crystalline potential V E  which generates a SOC 

term    2 VSOC BH mc   σ p . Since such SOC Hamiltonian preserves under TR 

operation, the momentum operator p must be odd that implies a possibility of linear momentum 

term in this type of SOC [30]. In 1955, G. Dresselhaus [31] firstly pointed out that, the material 

(a) (b) 
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without spatial inversion symmetry such as zinc-blende III–V semiconductor GaAs, its SOC 

term near Γ point exhibits an expression distinguished from the SOC in atoms. Especially, by 

applying the external strain along the [001] direction, the SOC Hamiltonian is written as 

 D D x x y yH p p    ,                                             (2-35) 

where D  denotes Dresselhaus SOC coefficient. In addition to central inversion symmetry 

breaking, in certain cases inversion symmetry can also be broken. For example, the quantum 

well breaks spatial inversion symmetry in the growth direction. Y. A. Bychkov and E. I. Rashba 

[32] proposed that such potential discontinuity at interface generates electric field Ez, causing 

a SOC closed to  point written by 

   R R x y y xH p p       σ z p ,                                  (2-36) 

where R  denotes the Rashba SOC coefficient. In graphene, as it preserves central inversion 

symmetry, the strength of Dresselhaus SOC is negligible. On the contrary, Rashba effect 

dominates the SOC in graphene because the potential rapidly changes within an atomically thin 

distance. With the existence of strong Rashba SOC, recently scientists have experimentally 

observed the spin-Hall effect in a suspended graphene monolayer [16]. For other monolayer 

materials with central symmetry breaking like MoS2, their SOC terms can be just simply 

viewed as the combination of both effects. 

 In addition, both Dresselhaus and Rashba SOC have spin locking effect with the linear 

momenta p. Followed by definition of spin expectation s   σ , where   denotes the 
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eigenfunction defined by Hamiltonian, Fig. 2.8 depicts the spin textures* for both types of SOC 

and their combination. Fig. 2.8a illustrates a spin texture for Rashba SOC that spin vectors are 

always perpendicular to the momentum. This unique spin-lock feature is the fingerprint of 

Rashba SOC. Also, the spin texture of Dresselhaus SOC are shown in Fig. 2.8b. The spin 

vectors are parallel to kx and ky axis but align in different directions. Fig. 2.8c adds the equal 

magnitude of both SOCs together, making all spin vectors be parallel in [110] direction. It is 

worth noting that both SOC formalisms are based on the 2D plane waves. When it comes to 

the realistic system, one should be careful to apply these formulas since inversion symmetry 

breaking not only generates an extra electric field Ez, but also makes electron wavefunctions 

distort, which causes the invalidity of plane-wave approximations. But still, Dresselhaus and 

Rashba SOC are good approximations that help us study the underlying physics in spintronics. 

 
Fig. 2.8: Spin locking effect for Dresselhaus and Rashba SOC. (a) Spin textures for (a) Rashba and (b) 
Dresselhaus SOC around a k circle. (c) The addition of both SOC terms. 

2-2.4: Haldane Model 

Before presenting Haldane model in detail, it is crucial to review the knowledge of quantum 

Hall effect in 1985. As introduced in chapter one, K. von Klitzing discovered quantum Hall 

                                                 

* The distribution of spin vectors in materials can generate different structures based on the interactions, such as 

SOC. These structures are so-called spin texture, which is useful to recognise distinct physics in spintronics. 
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effect [1]. The experiment was achieved under strong external magnetic field and extremely 

low-temperature environment. The external field is crucial because it is the source of 

anomalous velocity which generates Hall current in bulk materials. Nevertheless, in 1988, F. 

D. M. Haldane claimed that it is essential to break TR symmetry for the quantum Hall effect 

[33] yet the application of magnetic field is just one of the methods to satisfy this condition. 

As a result, it is likely that a system in the absence of the net magnetic amplitude can still 

contain quantised Hall conductance. He proposed a solvable tight-binding model, which 

exhibits no net magnetic field, expressed as [33] 

 † † †
Haldane 1 2, ,

1 . .ij iiv

i j i j eff i ii j i j i
H t c c t e c c m c c h c       ,              (2-37) 

where  means the next nearest neighbours, t is the hopping parameter between atoms, m 

in the third term is the same as in Eq. (2-27), and  sgn 1ijv    R r , where R  and r  are 

unit vectors along two bonds (see Fig. 2.9a). Although the total magnitude is zero, one can 

assume, in principle, a complex phase ijiv
e

  is realised by applying staggered magnetic field 

which is positive near the centre of each hexagon lattice and negative around the edge 

( 0effm  ). In the same manner, we consider a graphene with the infinite lattice. Its Hamiltonian 

can be written as 

11 12
0

21 22
Haldane x x y y z z

H H
H H I H H H

H H
  

 
     
 

.                      (2-38) 

Each component in HaldaneH  is given by 

   0 11 22 22 2 cos cos ii
H H H t      k r ,                          (2-39) 

   21 1Re cosx ii
H H t    k R ,                                  (2-40) 
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   21 1Im siny ii
H H t    k R ,                                  (2-41) 

   11 22 22 2 sin sinz ii
H H H t      k r .                          (2-42) 

in which i = 1, 2, 3. It is straightforward to calculate the energy eigenvalue of (2-38) that is 

2 2 2
0 x y zH H H H     . At K and K’ points, 0x yH H  , but 0zH  . Thus, in between 

two bands, there is a gap whose width is equal to 

22 6 3 sinzH t      ,                                          (2-43) 

 
Fig. 2.9: Haldane model.  By setting the hopping parameter t = 1 and t2 = 0.1, (a) Haldane model indicating 
nearest-neighbour bonds (black solid lines) and next-nearest-neighbour bonds (dashed lines). Red and blue 
points, respectively, mark the A and B sub-lattice sites. Arrows for next-nearest-neighbour bonds indicate the 
directions of positive phase hopping. The dot and cross illustrate the direction of staggered magnetic fields. (b) 
Phase diagram of the Haldane model and this figure assumes that t2 is positive. The solid line indicates a 
topological phase transition boundary. Inside the enclosed region, topological edge states arise due to non-zero 
Chern number. Correspondingly, (c) the projected band structure calculated by Haldane model [33] with the 
chosen parameters m = 0 and  = /2 as marked in (b). The green shaded area shows the topologically non-
trivial gap and there are a pair of edge states within the gap. 

where the signs define upper and lower energy band at K point. Since      at two Dirac 

points, the opposite sign for K
zH  and 'K

zH  results in energy band inversion. Therefore, TR 

symmetry has been broken in this model, but the net magnetic field remains zero. This band 

flips for K and K’ point provide an opportunity to turn a flat edge state (if exists) becomes the 

gapless one within the bulk bandgap. Moreover, we calculate Chern number to check its 

topological order by using the method mentioned in section 2.1. As shown in Fig. 2.9b, 



 

26 

 

effective mass m can be set as 0m  , and then 23 3 sinK
z effH m t    and

23 3 sinK
z effH m t    . In the Haldane model, 23 3 sineffm t   gives a topological phase 

transition curve. As long as 23 3 sineffm t  , the system keeps its topological phase, 

otherwise the system converts into a topologically trivial case. With the parameter m = 0 and 

 = /2, Fig. 2.9c illustrates a pair of gapless edge states within a topological bandgap. 

2-2.5: Kane-Mele Model 

Although Haldane indicated an unusual property via a simple staggered magnetic field model, 

it was quite hard to achieve his model, because in that time arranging stagger magnetic fields 

was a challenging task. Despite that, inspired by Haldane’s work, Kane and Mele gave a 

possible picture realised by the nature of spin-orbit coupling in graphene in 2005 [5-6]. They 

proposed a Hamiltonian expressed as [6] 

   † † † †
KM 1

, ,,

ˆ1
i

i j eff i i SO ij i z j R i ij j
z

i j i i ji j

H t c c m c c i v c s c i c c           s d ,     (2-44) 

where 1 2zs    are spin along z  components, effm  is the strength of the effective mass term, 

SO is the spin-orbit coupling hopping parameter, the fourth term is the contribution of the 

Rashba spin-coupling, and other parameters are same as Eq. (2-37). For brevity, by setting 

Rashba parameter R  equals to zero, one can find that Kane-Mele (KM) model is a special 

case of Haldane model combining 2   , so HKM is written as 

 
 

Haldane

Haldane

0 2 0

0 0 2KM

H H
H

H H

 
 






  
         

.                (2-45) 
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Therefore, KM model is a 4 4N N  matrix with a spin-up element in the up-left block and a 

spin-down one in the bottom-right block. Since both Hamiltonians are complex conjugates, in 

the following, only spin-up Hamiltonian is discussed. Keeping 0R  , we deduce the low-

energy spin-dependent Hamiltonian in momentum space 

SO SO z z zH S   ,                                                  (2-46) 

where 3 3SO SO  , 1z   . For spin-up case 1zS  , substituting Eq. (2-46) into Eq. (2-27), 

and then we have [6] 

     x x y y eff SO zH v k k m       k ,                              (2-47) 

     x x y y eff SO zH v k k m       k .                             (2-48) 

As argued in section 2-2.3, if 
eff SOm   , the topological phase transition occurs and graphene 

becomes a topological insulator. Using the same procedure in section 2-2.3, we have the spin-

dependant Hamiltonian 

2 1 3

1 2 3

3 2 1 3

3 1 2

3

eff

eff

eff

eff

m P P P

P P m t P

H P t m P P P

P P P m t

P t









 
   
  
   
  

                  (2-49) 

where 1    standing for spin-up and down;  1 2 cos 3 2P t ka ,  2 2 sin 3SOP ka  and

 3 2 sin 3 2SOP ka . In Fig. 2.10a, solved from Hamiltonian (2-49), gapless edge states in 

the topologically non-trivial bandgap are shown. The corresponding Chern numbers of bands 

are equal to the ones given by Haldane’s zero-net-magnetic-field model. Interestingly, the TR 
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symmetry is broken by intrinsic spin-orbit coupling separately for each spin. But if taking the 

both spin degree of freedom into account, TR symmetry in the system is preserved. In other 

words, in the Chern insulator point of view, the summation of topological order for every band 

is zero. The spin Chern number, however, is defined as C C C    , which gives an integer 

two. Consequently, a quantised conductance for electronic transport in graphene is collected. 

In Fig. 2.10b-c, the system with Rashba SOC and staggered energy terms is considered. As 

illustrated, two distinct topological phases are presented as the magnitudes of R  and v  

change. For the cases with non-zero R  and effm , the interpretation of spin Chern number 

difference is no longer valid since the Hamiltonian is not a block-diagonal form anymore. To 

distinguish its topological phases, another topological invariant is needed for a system 

exhibiting symmetry-protected edge states such as topological insulators. 

 To clarify the relation between edge states with distinct Z2 invariants, we consider the 

edge states in a semi-infinite graphene sheet (one boundary only). In Fig. 2.11, for brevity, we 

take only one spin degree of freedom as an example. Correspondingly, there exists one edge 

 
Fig. 2.10: Kane-Mele Model. 

 (a) KM model in the absence of Rashba and effective mass term, indicating two degenerate pairs of edge state 
with parameter so /t = 0.03. The inset illustrates a graphene nanoribbon truncated with zigzag boundaries. In 
the presence of the Rashba and on-site staggered energy terms, as their magnitudes change, the system may 
experience a topological phase transition from (b) non-trivial bandgap with v/t = 0.1 to (c) trivial bandgap 
withv/t = 0.4, which demonstrate a phase transition that cannot be explained by Chern number interpretation. 
The SOC parameters for both (b) and (c) cases are given by so/t = 0.06, R/t = 0.05. The inset between (b) and 
(c) shows that, inside the quantum spin Hall region, there exist topological insulating phases. Above figures 
have been reproduced from ref. [5-6] 
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state because it is a single boundary system. Due to the bulk band inversion highlighted by 

green and blue triangles, it results in two different edge state connections leading to the 

discrepancy of Z2 topological index. When electrons hit a defect or impurity, at the same Fermi 

energy point, there is a backscattering mode (kx → –kx) for the electronic transport in a Z2 = 

0 system, which stands for a topologically trivial scenario. On the contrary, as non-reflecting 

modes are supported at the point–kx, electrons “bypass” the disorder in the Z2 = 1 system, 

which leads a topologically protected transport. 

Before ending this section, we want to briefly review the discovery of the topological 

insulating phase to emphasise its importance in condensed-matter physics. Due to the result of 

quantum Hall effect, theoretical physicists once thought that the application of magnetic fields 

 
Fig. 2.11: Edge States with Distinct Z2 index. 

 The green and blue areas illustrate bulk regions, the red lines and arrows represent edge states, the cyan cross 
is a defect, and the purple lines highlight the single boundary of a semi-infinite graphene sheet. The left figure 
indicates a topologically trivial electronic transport since it supports backscattering mode while propagating 
electrons hit a defect. Yet, the right figure shows a quite different scenario that electrons propagate around the 
defect without backscattering because no modes supports reflection. 
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is inevitable. Yet, after Haldane’s influential model, even thought it was impractical to have 

staggered magnetic fields in that time, the concept of applying magnetic fields has been 

replaced with the one of breaking TR symmetry. Ever since, theoretical physicists considered 

this rule as a sufficient condition to have topological/quantised electronic transports until the 

proposal of KM model. In KM model, the topologically protected transport is actually 

guaranteed by TR symmetry. In other words, when TR symmetry is broken, KM model turns 

into a trivial insulator. With this entirely opposite conclusion, KM model became another 

conceptual revolution in the history of condensed-matter theory. Additionally, as stated in the 

previous paragraph, Chern number interpretation could not fully explain the transition between 

trivial and topological insulating phase. Thus, in the next section, we will discuss a new index 

called Z2 topological invariant. 

2-3: Z2 Topological Invariant 

2-3.1: Z2 Invariant in the KM Model 

As mentioned at the end of the previous section, the method of total Chern numbers 

fails to define the result demonstrated by KM model. Although it seems that the interpretation 

of spin Chern number can explain the topological transport in KM model without staggered 

and Rashba terms, a new topological order is required to have a generalised description of this 

novel topological materials. To build a rigorous theory, C. Kane and E. Mele proposed a new 

type of topological order so-called “Z2 invariant” that is distinguished from the conventional 

Chern numbers which can also be referred as “Z invariant”, where “Z” means integer as the 

definition in mathematics. Z2 invariants describe a simple set containing two elements [0,1]. If 

the Z2 number of a system is zero/one, it carries a topologically trivial/non-trivial insulating 

phase. Subsequently, the case with non-trivial Z2 invariant will be discussed. 



 

31 

 

In fact, the first example of Z2 topological materials in the history of physics is KM 

model. In ref. [6], a matrix    ˆ
ij i jb u u k Θ k  is defined, where Θ̂  is the TR operator and 

   i
i iu e   k rk k  is the periodic part of Bloch waves (Bloch wavepacket). It can be 

readily proved that ijb  is an anti-symmetric matrix, i.e. ij jib b  . As an anti-symmetric matrix, 

it yields   [ ]ijP pf bk  whilst define Pfaffian of, and then the Z2 invariant of this system can 

be decided by solving the zeros of  P k in half Brillouin zone (HBZ). As demonstrated in [6], 

zeros of Pfaffian are illustrated in two types as depicted in Fig. 2.12. In Fig. 2.12a, if the zeros 

discretely distribute in HBZ, the Z2 number is the parity of the number of zeros enclosed within 

the path C; if the zeros occur along a continuous line instead of points as shown in Fig. 2.12b, 

in this case the Z2 index are given by the half times of the sign change along the loop C. 

Combining both cases, the Z2 index can thus be written as [6] 

 2

1
ln mod 2

2 C
Z d P k i

i



     kk ,                              (2-50) 

where C is the boundary of HBZ and   is added to avoid the divergence of integration. 

 

Fig. 2.12: The zeros of P(k) in the topological insulating phase.  It emerges at points k for (a) 0
eff

m   and 

on the loop for (b) 0
eff

m  . Above figures have been reproduced from ref. [6]. 
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2-3.2: Kramers Theorem 

Prior to introducing the meaning of Z2 topological invariant, a simple but extremely essential 

theorem named after Hans Kramers [34] needs to be discussed. In quantum mechanics, 

Kramers theorem states that, if a half-integer-spin system is invariant under TR operation, there 

are at least a pair of doubly degenerate states. Normally these two degenerate states are called 

Kramers pair; there are always demonstrated as a match a pair. A straightforward proof is given 

as follows. 

 The system is invariant under TR operation, in other words, the TR operator Θ̂  

commutes with the Hamiltonian. Thus, the eigenstates u  have the same energy as ˆ uΘ . 

Besides, since the TR operator is anti-unitary, the relation ˆ ˆu v v uΘ Θ  holds for an anti-

unitary operator and 2ˆ ˆ ˆ ˆ ˆ 0u u u u u u u u    Θ Θ Θ Θ Θ . As a result, eigenstates u  

and ˆ uΘ  are orthogonal and have the identical energy, i.e. they are degenerate states. In the 

next section, we will show that the relation between Kramers theorem and Z2 topological index. 

2-3.3: Time-Reversal Polarisation and Z2 Invariant 

To clarify the physical meaning of Z2 invariant, L. Fu and C. Kane proposed a perspective 

called “time-reversal polarisation (TRP)” that connects the abstract Z2 concept with an 

imaginable picture. Firstly, let us review the quantum theory for modern (electric charge) 

polarisation. Considering a periodic system, the corresponding Bloch function for nth band is 

   i
n ne u  k rk k . Thus, one can define Wannier functions in terms of the lattice R as  

 ( )1
,

2 nn d e u


    k rk kRR .                                    (2-51) 
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Note that Wannier function is not unique, since it depends on the choice of gauge for  nu k . 

In ref. [35], the authors gave an instruction of choosing a unitary transformation to optimise 

the localization of Wannier functions. However, here we only consider the total polarisation 

which is insensitive to the choice of the gauge. For occupied bands at R = 0, the polarisation is 

defined by the sum over all the centres of Wannier functions, which yields 

1
0, 0, ( )

2n

P n n d


   r k k                                  (2-52) 

where ( )k  is the Berry connection as previously stated. To put it simply, in the following 

only a 1D Brillouin zone is considered and the theory can be readily extended to higher 

dimensions. If we introduce a parametric space t, the Hamiltonian of systems H(t) changes 

while t adiabatically evolves. The change of polarisation P  is thus given by 

2 1
2 1

1
( ) ( ) ( ) ( )

2 c c
P t P t dkA k dkA k


        ,                              (2-53) 

where the loop c1(2) is from   to   for certain t1(2). According to the Stoke’s theorem, Eq. 

(2-53) can be rewritten as 

 2 1

1
( ) ( ) ,

2 S
P t P t dtdk t k


   Ω ,                                    (2-54) 

where Ω  is Berry curvature and S represents the surface spanned by parameter t and 

wavevector k. For periodic cases H(t+T) = H(t), Eq. (2-54) gives the integral throughout the 

whole torus with respect to t and k, and it defines a Berry phase as expressed in (2-4). 

Nevertheless, as the P and TR symmetry are both preserved, the Berry curvature is equal to 

zero so that the change of polarisation vanishes in this scenario. 
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 With the definition of charge polarisations, it enables the analysis of Z2 index by 

extending the similar perspectives. In section 2.2.4, Kramer theorem indicates that there must 

exist two-fold degeneracy, provided that the system is invariant under TR operation. In this 

case we assume there is no extra degeneracy except those guaranteed by Kramer theorem. 

Therefore, the 2N eigenstates are split into N pairs that satisfy [35] 

,

, ,
ˆk niI II

k n k nu e u
   Θ ,                                             (2-55) 

,

, ,
ˆk niII I

k n k nu e u 
  Θ ,                                             (2-56) 

where 1n N  . Note that Eq. (2-55) and (2-56) imply that the same labelling eigenstates are 

distinct in k  region such that the Brillouin zone must be cut into half during the analysis. This 

explains, in the previous section, only half Brillouin boundaries are considered in Z2 number 

calculation. Plugging Eq. (2-55) and (2-56) into Eq. (2-53), the partial polarisations labelled by 

,s I II  read 1(2 ) ( )sP dkA k



 


   with , ,( )s s s

k n k k n
n

k i u u  . To keep the polarisation 

invariant, one should separate the positive and negative k regions that leads to 

1

0
(2 ) ( ) ( )I I IP dk k k


         .                                    (2-57) 

Also, given by Eq. (2-54), the Berry connection obeys the gauge condition 

,( ) ( )I II
k k n

n

k k      .                                          (2-58) 

Thus, Eq. (2-58) becomes 

 1
, 0,0

(2 ) ( )I
n n

n

P dk k


        
  ,                                 (2-59) 
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where ( ) ( ) ( )I IIk k k    . Based on ref. [35], L. Fu and C. Kane suggested that the time-

reversed wave functions can be linked to the second term of Eq. (2-59). This time-reversed 

function is written as 

, ,
ˆ

mn k m k nw u u Θ .                                                  (2-60) 

At points k = 0 and  , wij is an anti-symmetric matrix composed of the direct product of 

several 2×2 matrices with only ,k nie   and ,k nie   on its off-diagonal terms. Moreover. as an 

anti-symmetric matrix, wij can be categorised by its Pfaffian. With Eq. (2-60), one could prove 

that the second term of (2-59) is connected to (2-60) via the equation [35] 

 
   , 0,

Pf[ ]
exp

Pf[ 0 ] n n
n

w
i

w 


    

 
 .                                    (2-61) 

Thus, the second term of (2-59) leads to 

 
 

1

0

Pf[ ]
(2 ) ( ) ln

Pf[ 0 ]
I w

P dk k i
w

 
 

      
    

  ,                                (2-62) 

In the same manner, another partial polarisation PII can be obtained. By following the identical 

definition, the TRP is the difference 

 
 

01

0

Pf[ ]
(2 ) ( ) ( ) 2 ln

Pf[ 0 ]

w
dk k dk k i

w






 



        
    

   .                       (2-63) 

Comparing Eq. (2-63) with (2-50), the TRP has the similar mathematical expression as Z2 

number so that this may indicate the equivalence of TRP and Z2 invariant. Eq. (2-63) can be 

rewritten associated with mnw  as 
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 
 

1

0

Pf[ ]
(2 ) Tr 2ln

Pf[ 0 ]k

w
i dk w w

w

 
  

               
 ,                          (2-64) 

or further simplified as 

   
 
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    


.                      (2-65) 

Since the value of    Pf[ ] det[ ]w w  must be ±1, a simpler expression of TRP yields  

   
 

 
 

det[ 0 ] det[ ]
1

Pf[ 0 ] Pf[ ]

w w

w w




  .                                         (2-66) 

Eq. (2-63) to (2-66) are the main results which can be used for connecting Z2 indices with TRP. 

To verify it, one can regard parametric space t as time and the function mnw  is invariant under 

TR operation at certain points, e.g. 0 or   for the current case. 

With the aid of the above discussion, we can argue that the evolution of the Hamiltonian 

around the cycle can be regarded as the change of the TRP, and half circle of that cycle results 

in a Z2 index, which causes a Z2 spin pump from a topologically non-trivial case. The meaning 

of this index can be linked to the shift in the Wannier centres during a period. Fig. 2.13a 

illustrates the centres of Wannier orbitals as a function in terms of time. At three time-reversal 

invariant points t=0, T/2, and T, TR symmetry guarantees that Wannier states are formed as a 

time-reversed pairs. However, for a topologically non-trivial case shown in Fig. 2.13b, Wannier 

states remain time-reversal pairs but switch partners from t=0 to T/2. During this process, the 

TRP evolves along the difference between the positions of TR Wannier states, leading to non-
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trivial topological states. In other words, Z2 invariant can be regarded as a “switch” that tells 

us whether the topological insulating phase has been turned on or not. 

 
Fig. 2.13: Two evolution types of TRP.  Horizontal direction represents parametric axis, say time axis. The 
vertical axis is considered as Wannier orbits or 1D atomic chains along boundaries. Yellow and cyan arrows 
respectively demonstrate the evolution of two spin degrees of freedom. (a) Trivial electronic transport: The 
evolution of electrons returns its initial states. No spin current occurs under this situation, (b) Non-trivial 
electronic transport: electrons switch partner at every TRIM which causes opposite propagation for two distinct 
spin currents. [35] 

While Wannier state evolves from t = T/2 to T, there is another switch making the TRP 

revisits to its original state. Nevertheless, At the open boundaries, the system will not revisit 

its initial state but it ends up moving to the next Wannier orbit owing to the crossing at t=T/2. 

To link the topological characteristic with this unusual evolution at boundaries from t=0 to T/2, 

we consider the change in the TRP ( )P t  yielding [35] 

 ( 2) (0) mod 2P T P    .                                           (2-67) 

The difference above is gauge-dependent and it gives a Z2 topological characteristics which is 

evaluated by the wave functions , ( )k nu t  mapping onto the torus spanned by two parameters 

k and t. From Eq. (2-67), this difference is written as  
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   
 

4

1

det[ ]
1

Pf[ ]
i

i i

w

w





 

 .                                              (2-68) 

Here i  are the “time-reversal invariant momenta” (TRIM), i.e. TR symmetry is preserved at 

these points. In 2D case, there exist 4 TRIMs in a Brillouin zone as shown in Fig. 2.14a. For 

3D cases, 8 TRIMs emerge to categorise three distinct faces surrounded by 4 TRIMs as shown 

in Fig. 2.14b. Each face defines a Z2 index so three indices  1 2 3v v v  are obtained. Apart from 

them, the product of all 8 indices defines an additional Z2 index v0 so that we obtain a set of Z2 

indices  0 1 2 3;v v v v that classify topological insulating phase in three dimensions. In the next 

section, a detailed discussion of 3D topological insulators will be given. 

 

Fig. 2.14: Schematic figures of TRIMsdistributing on the (a) 2D and (b) 3D Brillouin zone. 

2-3.4: Z2 Invariant in Three Dimensions and Fu-Kane-Mele (FKM) Model 

The content in the previous section can be intuitively extended to three-dimensional (3D) cases 

[36]. In any 3D periodic system, its TRIM   can be generally expressed by their linear 

combination of reciprocal lattice vectors bi as  
1 2 3

3

1
2n n n i ii

n


Γ b , where 0,1in  . Thus, the 

TRPs associated with TRIM are given by [36] 
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   
1 2 3 1 2 3 1 2 3

det Pfn n n n n n n n nw w        Γ Γ .                              (2-69) 

Here the unitary matrix    ˆ
mn m nw u u k Θ k . At 

1 2 3n n nk Γ , mn nmw w , so the Pfaffian 

 Pf w  is defined. Note that a wavevector-dependent gauge transformation will change the sign 

of any product of two i . However, the product of four i , which encloses to a surface shown 

in Fig. 2.14a, is gauge invariant. This product describes the difference of TRP owing to the 

change of the flux defining the Z2 invariant in 2D from two parameters 1 0   to 2 0  . As 

stated previously, above discussion determines the existence of gapless chiral edge states. In 

3D, 8 TRIMs are demonstrated in association with primitive reciprocal lattice 

 
1 2 3

3

1

2n n n i i
i

n


Γ b  , which can be visualised as 8 vertices of a cube in Fig. 2.14b. Each face 

can be regarded as a 2D Brillouin zone, leading to three indices  1 2 3v v v  for corresponding 

directions. Apart from that, the product of all 8 indices characterises another index, and we 

have four Z2 topological indices  0 1 2 3;v v v v . Four Z2 indices  0 1 2 3;v v v v  are defined by [36] 

0

1 2 3
0,1

( 1)
j
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n n n

n


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   ,                                                 (2-70) 

1 2 3
0,1, 1

( 1) i

j i i

v
n n n

n n


  

   .                                              (2-71) 

0v  refers to the strong topological Z2 index whereas iv  is the weak topological Z2 indices. The 

values of these Z2 indices categorise the system into strong topological insulators, weak 

topological insulators, and trivial insulators [36]. For 0 1v  , the system is a strong topological 

insulator which possesses Dirac edge states along any momentum direction so that these edge 

states are the most robust ones; for 0 0v  , it turns out two possibilities: one is a weak 
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topological insulator that can be regarded as a multiple stack of 2D topological insulator sheets, 

and another one is a trivial insulator without the exhibition of topologically protected edge 

states. 

 As an example, Fu et. al. [36] proposed 3D topological insulators known as FKM model, 

which considers diamonds with non-negligible spin-orbit coupling, whose Hamiltonian is 

 † † 1 2
2

, ,

8 SO
i j i ij ij j

i j i j

H t c c i c c
a


     s d d .                                (2-72) 

 The first term is the nearest-neighbour (NN) hopping and the second one is the next-nearest-

neighbour (NNN) hopping with intrinsic spin-orbit coupling. a is the lattice constant and 1,2
ijd  

are NN vectors traversed between atom location i and j. By solving the above Hamiltonian, one 

can obtain its band structures with and without SOC term in Fig. 2.15a. Without perturbed NN 

hopping parameters, there exists a four-fold degeneracy at X point, while with perturbation, 

 

Fig. 2.15: Bulk band structure of 3D topological insulators. 

 (a) The band structure emulated by Eq. (2-72) with parameters t = 1 and 0.125
SO

  . The uppercase letters 

below it represent high symmetry points of a diamond structure. The dashed line illustrates the energy split due 

to 
1

t  = 0.4. (b) The phase diagram in accordance with 
1

t  (111) and 
2

t (111 ). The shaded area highlights 

the strong topological insulating phase. Above figures have been reproduced from ref. [36] 
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the degeneracy is gapped that topologically non-trivial edge states may emerge at material 

boundaries. Fig. 2.15b depicts the phase diagrams of strong and weak topological insulating 

phases for various perturbations on hopping parameters. In (111)  and (1 1 1)  direction, a 

positively perturbed hopping parameter gives rise to strong topological phases, while weak 

topological phases result from a negative perturbation. 

 
Fig. 2.16: Projected band structures of 3D topological insulators. With the same parameter in Fig. 2.15, for 
a slab with an 111-truncated face, Figure (a) to (d) show four distinct topological phases in Fig. 2.15b. With 
the zero strong Z2 index, the states in (a) and (b) give an even number of gapless edge states, which respectively 
correspond to trivial and weak topological insulators; With the non-zero strong Z2 index, there are an odd 
number of edge states crossing within the bandgap. The inset is the surface Brillouin zone projected on 111 
direction. Above figures have been reproduced from ref. [36] 

 The projected band structures solved from Hamiltonian (2-72) further prove the 

previous statements in Fig. 2.15a. For all figures in Fig. 2.16a-d, they are calculated along high 

symmetry lines and four TRIMs with the cases 0 0,1v  . With the zero strong Z2 index, an 

evident full bandgap, which leads to a trivial insulator, can be viewed in Fig. 2.16a. While in 

Fig. 2.16b, an even number of Dirac cones at TRIMs in Fig. 2.16b show the emergence of weak 

topological insulators. In addition, as shown in Fig. 2.16c-d, for the case 0 1v   strong 
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topological insulating phases guarantee an odd number of edge-state crossing at TRIMs. 

Although this simple diamond model gives a nice pedagogic example for 3D topological 

insulators, it is unlikely to find the topological insulating phase in real diamond due to its 

extremely weak spin-orbit interaction. Yet, crystals with similar structures such as Bismuth 

provide a great candidate to realise 3D topological insulators. In fact, the semiconducting alloy 

Bi1-xSbx has been experimentally verified that it possesses strong topological insulating phases 

[37]. 

2-4: Parity-Time Symmetric Physics 

2-4.1: Parity and Time-Reversal Symmetry 

In 1998, Bender and Boettcher challenged the textbook aspects in their remarkable work that 

the realness of energy eigenvalues must arise from a Hermitian Hamiltonian. They proposed 

that quantum mechanical systems with a non-Hermitian Hamiltonian can actually have a set of 

eigenstates with real eigenvalues [18]. Ever since, novel quantum mechanical systems have 

been constructed based on such Hamiltonians. To give an overview, here we begin by 

introducing some fundamental concepts for parity (P), time-reversal (TR), and their 

combination PT symmetries. The PT symmetry of the Hamiltonian means that it commutes 

with the parity operator (spatial inversion) and Π̂  the time-reversal operator Θ̂ , i.e. 

ˆˆ ˆ, 0  H ΠΘ . The action of the parity operator Π̂  causes the change of sign of all coordinates 

 r r . As a result, three unit vectors pass from a right coordinate system to a left one, polar 

vectors change their direction to the opposite  r r , p p , E E , while axial vectors 

do not change B B . Here, r is the spatial coordinate, p is the momentum, and E and B are 

electric and magnetic fields. Since the expected value of a physical quantity operator in 
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quantum mechanics corresponds to its classical magnitude, the classical momentum and 

coordinate change their signs under spatial inversion. This means that p  and r  should also 

change their signs. Therefore, the momentum and coordinate operators are transformed under 

spatial inversion by the rule ˆ ˆˆ ˆ  Π rΠ r  and ˆ ˆˆ ˆ  Π pΠ p , where r̂  and p̂  are the coordinate 

and momentum operators. Accordingly, the angular momentum operator Ĵ  remains 

unchanged under spatial inversion: ˆ ˆ ˆ ˆ Π JΠ J  

In addition, the normalisation of the wave function should be preserved under spatial 

inversion, and therefore the parity operator is unitary ˆˆ ˆ Π Π 1 . Since the double application 

of the parity operation returns the system to the initial state, the only discrepancy shows in the 

wave functions is a phase factor    2ˆ , ,it e t Π r r . Since the parity of the wave function 

should be an observable, the spatial inversion operator fulfils the condition of Hermiticity. The 

only phase factor for which the spatial inversion operator is unitary and Hermitian, i.e. ˆ ˆ Π Π , 

thus    2ˆ , ,t t Π r r . Assuming that the wave function is scalar and take linear unitary 

operator Π̂  into account, we obtain that    ˆ , ,t t  Π r r . If the Hamiltonian of a system 

can be represented in the form of a polynomial in momentum and coordinate operators and 

   ˆ ˆ, , , ,t t   Π H p r Π H p r . As the system does not change after the inversion of 

coordinates, we have the Π̂ -invariant condition    , , , ,t t  H p r H p r .  

The action of the time reversal operator Θ̂  means the change t t   in all equations and 

time dependences of physical quantities. As a result, all physical quantities linearly dependent 

on the time derivative change their sign under time reversal p p , J J , whereas the 

time-independent physical quantities do not change  r r . Acting the operator onto the 

displacement, momentum, and angular momentum, we obtain the rules for transformations of 
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operators under time reversal: +ˆ ˆˆ ˆΘ rΘ r ; +ˆ ˆˆ ˆ Θ pΘ p  ; +ˆ ˆˆ ˆ Θ JΘ J . Time reversal preserves 

the normalisation of the wave function. It has been well-known that the double action of the 

time reversal operation returns the system to the states depending on the types of particles, i.e. 

   2ˆ , ,t t  Θ r r . If the wave function is a scalar and we take an antilinear and antiunitary 

operator Θ̂  into account, the time reversal rule for the wave function:    *ˆ , ,t t  Θ r r  is 

obtained. Similarly, for parity operator we find    *ˆ ˆ, , , ,t t  Θ H p r Θ H p r . In the same 

manner, if the Hamiltonian of a system is invariant under time-reversal operation, i.e. 

   *, , , ,t t H p r H p r . By combining conditions caused from P and T operators, we obtain 

the transformation of the Hamiltonian under the combined action of Π̂  and Θ̂ : 

   *ˆ ˆˆ ˆ( ) , , ( ) , ,t t  ΠΘ H p r ΠΘ H p r . Therefore, a Hamiltonian is PT symmetric if [18] 

   *, , , ,t t H p r H p r .                                            (2-73) 

For Hamiltonians possessing the form 2ˆ ˆ ˆ2 ( )m V H p r  where m is the mass and V is the 

potential energy of the system, the PT-symmetry condition (2-62) reduces the requirement to 

   *V V r r .                                                   (2-74) 

2-4.2: PT Symmetric System in Quantum Mechanics 

We are now in the position to discuss Bender’s remarkable contribution of rewriting one 

fundamental assumption in quantum mechanics. Inspired by the work indicating the real and 

positive spectrum of the Hamiltonian 2 3H p ix  , Bender and Boettcher generalise the 

studies to a 1D Hamiltonian which extends the case into the complex plane. Remarkably, they 

enlarge the playground from the self-adjoint Hamiltonian to non-Hermitian problems whose 

eigenvalue spectra remains its positive realness. In other words, the Hermiticity is sufficient to 
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assure real eigenvalues and orthonormality of eigenstates, whereas it is not a necessary 

condition. The new class of Hamiltonians allows every entry of matrix to contain complex 

numbers so long as the Hamiltonians commute with PT symmetry, i.e. [ , ] 0H ΠΘ . Replacing 

Hermiticity with PT symmetric condition, one can construct non-Hermitian Hamiltonians such 

as the one proposed by Bender which is [18] 

2 ( )NH p ix  ,                                                    (2-75) 

 
Fig. 2.17: Energy levels of the Hamiltonian (2-75). There are three regions of the energy spectra: Firstly, 
when N ≥ 2 the spectrum consists of positive and real value. The lower bound of this region, N = 2, is exactly 
the simple harmonic oscillator whose energy levels equal En = 2n+1. Next, while 1 < N < 2, there exist a finite 
number of real positive but an infinite number of complex eigenvalues. As N reduces from 2 down to 1, the 
number of real eigenvalues decreases. Below a critical magnitude N ≤ 1.42207, only the ground-state energy 
shows realness in eigenvalues. Finally, as N reaches 1, even the ground-state energy diverges, and there is no 
real eigenvalue for N ≤ 1. Above figures have been reproduced from ref. [18]. 

where N is an arbitrary real number. Apparently, Eq. (2-75) reduces to Bessis’s case when 

3N  and to simple harmonic oscillator potential while 2N  . As shown in Fig. 2.17, for the 

cases 2N  , their spectra are discretely distributed and consist of an infinite number of real 

and positive eigenvalues. A spontaneous PT symmetry breaking emerges at 2N  . While 
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1 2N  , only finite number of real eigenvalues but infinite pairs of complex conjugates exist. 

Besides, when 1.42207N  , only the ground-state energy keeps the property of positive 

realness and it diverges as N approaches to 1+. For 1N  , there exists no real eigenvalues. 

 In addition to the numerical results illustrated in Fig. 2.17 for various N values. Here a 

proof followed by Bender [19] describes an argument that: if PT symmetry is unbroken for a 

Hamiltonian, its spectrum must be real. Provided that the Hamiltonian of a system commutes 

with the combined PT operator, quantum mechanics tells us that the eigenstates  of a 

Hamiltonian H and PT operator share the same eigenstates, namely 

H E  , PT    .                                      (2-76) 

Next, by left multiply PT operator on the second equation of (2-76), as P and TR commute with 

each other and 2 2P T 1   (spinless), the relation      holds so that the eigenvalue 

  can be expressed as a phase factor exp( )i  . As stated most of quantum mechanics 

textbooks, eigenstates are gauge-dependent, that is, one can replace the original eigenstate   

with an arbitrary phase ie    without loss of generality. By taking the phase / 2   , the 

eigenvalue problem of PT operators becomes 

PT   .                                                     (2-77) 

Next, we left multiply PT operator on the first equation of (2-77). After simple calculation, one 

readily shows that E E    and thus the eigenvalue E must be real if preserved under 

PT operation. Note that the above proof proposed by Bender is not rigorous since 2T  is actually 

equal to minus one for a half-integer spinful system and it does not explain the emergence of a 

PT symmetry breaking transition. In 2001, Dorey et. al. rigorously showed that the eigen-
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spectrum of (2-75) is real and positive within the region 2N   [18]. Since the proof is barely 

relevant to this thesis, we will not discuss it in the later sections. 

2-4.3: PT Symmetric System in Optics and Acoustics 

In the previous paragraph, a non-Hermitian quantum mechanical system can give rise 

to real spectra provided that its Hamiltonian is invariant under the simultaneous operation of 

parity and time-reversal symmetry. Moreover, the change of certain parameters may give rise 

to PT symmetry phase transition from one real solution to one complex-conjugate pair. 

Nevertheless, the critical requirement for a precisely balanced potential energy *( ) ( )V V r r  

makes experimental realisation nearly impossible in a quantum mechanical system. 

Interestingly, there is an alternative way that the optical waveguide with the paraxial 

approximation gives a formally equivalent expression of 1D Schrödinger equation. Hence, a 

few years after the first PT paper, Guo et. al. [38] proposed an optical realisation governed by 

the equivalent time-dependent Schrödinger equation yielding 

  2
0 0 02 ( )z xi E n k E k n x E     ,                                       (2-78) 

where 0k  denotes the vacuum wavenumber and ( )n x  is the perturbation from the ambient 

refractive index 0n . Also, the propagation along z direction can be regarded as a temporal 

evolution of the wavefunctions and the term 0 ( )k n x  mimics the potential energy in quantum 

mechanics. Under the condition given by (2-74), one has *( ) ( )n x n x   to assure the invariant 

of PT symmetry. To satisfy the condition, two single-mode waveguides made of gain and loss 

dielectrics with r in n in   can be placed adjacently for having coupled modes. To further 
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simplify Eq. (2-78), generally the solution for each waveguide has the form 

 ( , , ) , exp( )E x y z Af x y i z , and then a set of coupled-mode equations can be written as 

1 1 1
*

2 2 2
z

A A
i

A A

 
 

     
       

     
,                                           (2-79) 

where 𝜅 is the coupling coefficient whose value is determined by the overlap integral of the 

optical fields E1 and E2 based on the distance between waveguides. The eigenvalues of Eq. (2-

79) are given by 

2
21 2 1 2

2 2zk
             

   
.                                  (2-80) 

The above equation shows that if *
2 1  , spontaneous PT symmetry breaking takes place as 

  or  1Im   changes. When  1Im  , which implies the coupling strength dominates the 

gain parameters, zk  is real so that the propagating mode arises in both waveguide channels 

without dissipation. Interestingly, as shown in Fig. 2.18b while the eigenmodes evolve, if a 

 

Fig. 2.18: Schematic figure of coupled gain-loss 
waveguides. 

(a) Optical field through coupled waveguide pair, 
with incident source wave at one end of left 
waveguide for the left strip and right guide in right 
strip. (b) Lossless waveguides combined gain and 
loss waveguide. A PT waveguide, with gain(loss) 
marked in red(green), shows wave propagation 
with the similar feature as (a) but varying intensity 
Under this circumstance, coupling strength 
dominates the PT symmetric system i.e. 

 
1

Im  . (c) PT waveguides with broken PT 

symmetry. Waves propagate only in gain channel 
regardless of energy injected from which 
waveguides. The orange curves represent the total 
optical power. It implies the magnitude of gain/loss 

is stronger than coupling strength (  
1

Im  ). 

Above figures have been reproduced from ref. [39]. 
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source is placed at one port, the total strength of electric fields “bounces” between two channels 

as a function of z because the non-Hermitian Hamiltonian leads to the consequence of non-

orthonormality of the associated fields given by    1

1 2 1, 1, exp( sin (Im( ) / ))A A i     . As 

1Im( ) / 1   , the field pattern is changed. Since zk  is now a complex value and the 

corresponding eigen-fields are    1

1 2 1, 1, exp( cosh (Im( ) / ))A A i     , the gained waveguide 

1Im( ) 0   dominates the propagation. That is to say, in this PT symmetry breaking phase, in 

the course of the field evolution the wave is independently amplified in gained channel but 

attenuated in dissipated one. Last, when the ratio 1Im( ) /   is unitary, a transition which 

connects two real solutions and a complex conjugate pair, occurs as shown in Fig. 2.18c. One 

can find a detailed discussion regarding this transition in the next section. 

 

Fig. 2.19: Schematic picture of the acoustic PT channel. The entire system is made of three gain regions 
(red), three loss regions (green), and five passive regions in between. The incident acoustic wave is ejected 
from left and the transmission and reflection are illustrated. This PT-symmetric system is especially designed 
for reflection-less acoustic wave propagation from left. The insets show two normalised amplitude of the 
pressure field pumping from the left (up-left inset) and right (down-right inset) at the exceptional point. Above 
figures have been reproduced from ref. [40] 

 On the other hand, after the remarkable success of PT symmetric optics, the search of 

other physical counterparts is intuitively anticipated. Pressure acoustics, which possesses 

similarity corresponding to 2D electromagnetic waves, becomes the first candidate that may 
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achieve PT symmetric physics. The governed equation for pressure acoustics in homogenous 

media is given by 

2 2

2

1
0

d P
P

dz B




  ,                                               (2-81) 

where P denotes the pressure,   is the mass density, and B is the bulk modulus. To obtain the 

conservation of PT symmetry, the gain/loss media are both required. With regard to a dissipated 

material, the bulk modulus has a negative imaginary part as one defines the time convention 

exp( )i t . However, the lack of acoustic gain media in nature makes the realisation of PT 

symmetric acoustics experimentally challenging. In 2014, X. Zhu et. al. proposed a possible 

realisation by means of feedback systems using the active sound-controlling equipment [40]. 

As shown in Fig. 2.19, the PT acoustic system contains six blocks made of staggered gain and 

loss portions, thus there are five passive regions between them. Considering the region outside 

the PT setup, the sound wave can be decomposed into left and right propagating solutions: 

( ) ( )R L ikz L R ikz
f bP e P e  , where the sign L(R) stands for the waves at the left (right) outside of PT 

area, k is the wavevector, and Pf(b) is the amplitude of forward(back-forward) propagating mode. 

Thus, one can define the scattering matrix of the entire PT setup which yields [40] 

( )
R L L

Rf f f
L R R

Lb b b

t rP P P
S k

r tP P P

      
       
      

,                                    (2-82) 

where rL(R) and t respectively represents the (left)right reflection and transmission coefficient. 

As mentioned in 2-4.1, applying PT operation on the system, Eq. (2-82) becomes

* * * *( )
T TL R R L

f b f bP P S k P P        and then we have a condition for PT symmetric acoustic 

scattering matrix written by 
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1 *( ) ( )S k S k  ,                                                    (2-83) 

or an equivalent condition is 

2* 1L Rr r t  , 1L RR R T  ,                                        (2-84) 

with 
2

( ) ( )L R L RR r  and 
2

T t . With the condition of Eq. (2-83) and (2-84), the construction 

of scattering can be done based on transfer matrix method. Based on Eq. (2-84), since 

transmittance T is a real number, the product of two reflections  * L Ri
L R L Rr r e R R   must be 

a real number either, which implies the phase difference L R  must equal 0 or . Therefore, 

the connection between left and right phase is expressed as 

L R  , if T > 1 

L R    , if T < 1 

which infers a transition at T = 1. Another intriguing phenomenon arising from PT symmetric 

physics is one-way transport. Note that the unidirectional propagation mentioned here has 

different mechanisms in comparison with topological cases, which exist at boundaries and does 

not need any gain/loss medium. As depicted in Fig. 2.20a-b, the phase and the amplitude of 

reflected and transmitted waves travelling through PT area are calculated, respectively. In Fig. 

2.20a, as indicated before, the left reflection has a  phase jump at the frequency around 6k Hz, 

and both have a ± /2 phase difference with the transmission. This phase discontinuity makes 

the delay time d d    go to infinite so that, to be physical, the related amplitude must 

approach to zero at that frequency point as shown in Fig. 2.20b. In the view of phase transition, 

the left reflection singular point, which is a transition point between PT unbroken and broken 
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phase, is named as the exceptional point. Note that exceptional points differ from degeneracy 

points even though degenerate modes occur in both cases. Generally, excluding the case of 

accidental degeneracies, degeneracies in real frequency diagrams are stabilised by certain 

symmetries in parametric space, such as Dirac points we mentioned. Yet, in the case of 

exceptional points, there exist no degeneracies if one only takes real spectrum into account. 

Even though we broaden the concept to complex frequency, at exceptional points they are 

defective modes, making the phase rigidity approach to zero [41]. The formalism of phase 

rigidity will be discussed in the Sec. 2-4.4. 

 
Fig. 2.20: Spectra and EPs in PT acoustics. Phases (a) and amplitude (b) of left-reflected, right-reflected, and 
transmitted waves of the proposed acoustic PT-symmetric system. At critical frequency 6k Hz, the existence of a EP 
is shown with the absolute value of eigenvalues in (c) and complex plane in (d), respectively. Above figures have 
been reproduced from ref. [40] 

To give a clear explanation, by solving eigenvalue problem of scattering matrix, the 

absolute values of eigenvalues illustrated in Fig. 2.20c-d evidently show the emergence of 

exceptional points located at the singular frequency. Besides, while T is equal to one, Eq. (2-

84) indicates that one of the reflections should vanish, which also matches the reflected 
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singularity. Consequently, the frequency possessing transmission T =1 is the PT symmetry 

transition for an acoustic system. In the next section, a further discussion of exceptional points 

will be given. 

2-4.4: Exceptional Points and Rings 

So far, we have stated that the exceptional point is a transition point connecting broken and 

unbroken PT symmetric phases. In fact, it is possible to find exceptional points in any non-

Hermitian Hamiltonian with an imaginary part difference. Furthermore, in the field of photonic 

crystals, B. Zhen. et. al. [42] broadened this perspective which can spawn a ring of exceptional 

points out of a Dirac degeneracy at  point. In the following content, a brief introduction for 

non-PT symmetric exceptional points and the exceptional ring will be shown.  

To study exceptional points in a non-PT symmetric system, we start with considering a 

two-by-two Hamiltonian written by 

a ib d
H

d a ic

 
   

,                                                 (2-85) 

where all the parameters are real and Hamiltonian is a PT symmetric type as c b  implying 

the use of gain and loss material. After simple derivation, Eq. (2-85) can be split into two terms  

0H H , in which    0 2 diag ,H i b c b c    and 

 
 

2

2

a i b c d
H

d a i b c

  
     

.                                   (2-86) 

Eq. (2-86) is exactly a PT-symmetric Hamiltonian. As a result, unbalanced imaginary parts of 

diagonal terms make the research of exceptional points possible even in non-PT symmetric 

systems. Since the implement of balanced gain/loss materials is challenging in experiments, 

the extending concept of the imaginary part difference provides more possibilities in the study 
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of exceptional points. Amongst all the intriguing phenomena, the high-order exceptional point 

has attracted considerable attention because it can only be generated by the coalescence of two 

lower-order exceptional EPs. As an example, in the next section we will have an overview of 

the work proposed by K. Ding et. al. [ 43 ] who experimentally realised the high-order 

exceptional points in multiple coupled acoustic cavities. 

 
Fig. 2.21: Experimental setup and phase diagram of high-order EPs. (a) A photograph of four coupled 
acoustic cavity resonators. In inset, a schematic plot of the system. (b) Phase diagram in terms of Δω and t. The 
grey, blue, and green regions stand for classes I, II, and III EP formation patterns, respectively. The region of 
varying classes is separated into three by solid red and yellow lines. The red line labels the coalescence of three 
EPs and the solid yellow one labels the coalescence of two EPs. The white dashed line, which divide sub-
classes “a” and “b” into distinct topological nature, indicates the state inversion. Above figures have been 
reproduced from ref. [43] 

 As shown in Fig. 2.21a, a lossy four-state system consists of four coupled acoustic 

cavities is implemented. In such system, there are three classes of EPs that are governed by the 

Hamiltonian [43] 

2 1

2 2

1 1

1 2

0

0

0

0

i t

i t
H

t i

t i

 
 

 
 

  
   
  
   

,                              (2-87) 

where,  and t respectively represents the intrapair and the interpair coupling strength and the 

loss difference is introduced by adding extra absorption in cavity B and D. The corresponding 

eigenfrequencies is expressed by 
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0 0 1 2

1
4

2j i        ,                                        (2-88) 

where 1, 2,3, 4j  , 0 1 2( ) 2    , 0 1 2( ) 2    , and 

2 2 2 2
1 4 4t       ,                                          (2-89) 

2 2 2 2 2 2
2 4 4t         ,                                     (2-90) 

with 1 2      and 1 2  . Four states are arranged in the following sequence: 

1: ( , )j    , 2 : ( , )j    , 3 : ( , )j    , and 4 : ( , )j    , where the first (second) sign 

indicates the choice of the sign in Eq. (2-88). With Eq. (2-88) to (2-90), one can further classify 

the type and the order of EPs via observing the amount of merging EPs. As illustrated in Fig. 

2.21b, for class I, two EPs are fairly separated, which means the EPs independently caused 

from each pair of coupled cavities. By decreasing the value 2  , the system transfers to 

class II when 2   reaches one. The line plot in Fig. 2.21b shows that the upper and the 

lower eigenfrequency branches merge and split into two EPs. If one manipulates the parameter 

backward (i.e. increase from 2 1   ), two EPs coalesce to a high-order one at the special 

point 2 1   . Keeping decreasing 2   to 0.758, the system meets the third class such 

that three EPs merge into a higher-order one. We will discuss the order of high-order EPs in 

the next paragraph. 

 Mathematically, the order of an EP represents the ratio of the number of Riemann 

surfaces crossing and how many circles the EP makes the state back to its origin. For example, 

if the order is 1/2, the state evolves two circles back to its starting point on a one-crossing 

Riemann surface pair. To determine the order of a specific EP, one way is to evaluate the phase 

rigidity of two states because its value vanishes where the EPs stand. The phase rigidity is 

defined as 
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1R R
j j jr  


   ,                                                     (2-91) 

where R
j denotes normalised eigenvector of a non-Hermitian Hamiltonian, which yields 

R
jR

j
L R
j j




 
 ,                                                  (2-92) 

 
Fig. 2.22: Phase rigidity and Riemann surface. (a) Phase rigidity of the eigenstates as functions of loss. At 
certain point ΔΓ = Γ0 three eigenstates coalesce to a high-order EP. (b) Log-log plot of phase rigidity with 
respect to |ΔΓ − ΔΓCS| for the EP shown in (a), and the calculated result fairly fits the solid line with a 3/4 slope. 
The inset gives a closed loop on the complex-ΔΓ plane, where the EP is enclosed by the loop. (c) Eigenstate 
trajectories for the loop with direction (U → V → W → X → U) in the inset. Four cycles are made with three 
intersections, resulting in a power law with the order 3/4. (d) The 3D figure of the real and imaginary part of 
frequency versus complex-ΔΓ plane. At EP four Riemann sheets crossing creates a high-order EP. Above 
figures have been reproduced from ref. [43] 

with ( )R L
j calculated by right(left) eigenvalue problems. Fig. 2.22 shows the plot of phase 

rigidity for one high-order EP as discussed in the previous paragraph. As depicted in Fig. 2.22a-

b, three EP states merge together and the related phase rigidity is proportional to the power law 

3/4

CS  ; in Fig. 2.22c, around the EP, a state evolves four cycles to return its initial states, 

and during the evolution, a three-time intersection implies s = 3/4. To give a more visualising 

demonstration, Fig. 2.22d illustrates two 3D plots that four intersect Riemann sheets make the 

evolution take four circles to its origin, and three crossing lines arise from these sheets around 

the EP. Consequently, through observing Riemann surfaces, one can visually define the order 

of EPs. 
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Fig. 2.23: A ring of EPs. (a) Band structure of a 2D photonic crystal composed of drilling air holes in a 
dielectric matrix. An accidental Dirac degeneracy arouses from adjusting geometry parameter between a 
quadrupole band and two dipole bands. The bottom panel depicts a linear cone as expected as a Dirac 
degeneracy. (b) The real parts of the eigenvalues of an open-boundary photonic slab. A ring of exceptional 
points deformed from the Dirac degeneracy is shown in the yellow shaded region. 3D band structure further 
verifies the appearance of the exceptional ring. (c) The imaginary parts of the eigenvalues in association with 
real part plot, which has an ellipsoid closed surface in 3D dispersion plot. Throughout this figure, the parameters 
are given as follows: a = 336 nm, r = 109 nm, and refraction index n = 2.02 for Si3N4. Above figures have been 
reproduced from ref. [42] 

Aside from high-order exceptional points, generating exceptional rings out of a Dirac 

degeneracy at  was proposed [44]. The mode of Dirac cone at  point is made of one 

quadrupole and two dipole states. With an open boundary, classical electromagnetism has 

shown that only dipole moments will radiate the energy to the background instead of other 

multi-pole modes. As a result, by means of the radiation loss, an exceptional ring arises from 

the imaginary part difference [42]. Fig. 2.23a illustrates the band structure in a photonic crystal 

consisting of air holes and a dielectric background with a square lattice. Around Brillouin zone 

centre, an accidental Dirac degeneracy can be achieved via tuning geometry parameters. By 

numerical calculation, Fig. 2.23b-c respectively shows the real and imaginary parts of 

eigenvalues based on the structure of photonic crystal slab. The real part of band diagram 

clearly depicts a ring of exceptional points at frequency equals 0.597; the imaginary part forms 
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a closed ellipse shape associated with the area of the exceptional ring. 

2-5: Chapter Summary 

Throughout chapter two, firstly we have introduced the key concepts of topological physics 

and the up-to-date progress in graphene and topological insulators. In this review, some crucial 

mathematical tools are outlined to pave the way for subsequent discussions. Starting with a 

single-particle Schrödinger equation, the physical expressions of Berry mechanism were 

deduced. After briefly introducing the development of graphene in the absence of SOC, Rashba 

and Dresselhaus SOC terms are reviewed. Next, based on graphene’s honeycomb structure, an 

essential physical system called Haldane model was discussed, which shows the properties of 

reflection-immune one-way edge states in the absence of net magnetic fields. Afterwards, a 

revolutionary concept proposed by Kane and Mele extends the idea from the symmetry-

breaking to the symmetry-protected edge excitations. Since the Chern number description is 

not valid for symmetry-protected systems, a new topological index so-called Z2 was 

investigated. Subsequently, topological insulators in 3D were discussed. 

  Secondly, the real eigenvalues and the emergence of spontaneous symmetry breaking 

were analysed in a PT symmetric system. For non-Hermitian but PT symmetric Hamiltonian, 

the realness of eigenvalues has been proved theoretically and verified experimentally in an 

equivalent optical system. In addition to the realisation in optics, PT symmetric phenomena 

have also been theoretically analysed and experimentally achieved in an acoustic setup made 

of channels filled with gain/loss inclusions. Furthermore, if we lose the restriction of balanced 

gain-loss magnitudes, passive PT symmetric systems, which only need the difference of 

imaginary terms, have attracted great interest owing to the feasibility in lower scale fabrication. 

In sec. 2-4.4, taking four coupled acoustic cavities as an example, the high-order exceptional 
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point resulted from the coalesces of a few low-order exceptional points were investigated. Also 

in photonic crystals, the emergence of the radiation loss in an open-boundary system spawns 

an exceptional ring out of a Dirac cone at Brillouin centre. With this exceptional ring, one can 

obtain the effects caused by single exceptional point along every direction. 

 As below, Table II summarises certain results related to contents in following chapters, 

including the conditions to achieve and the key features/outcomes in the aforementioned 

physical systems. In the beginning of every subsequent chapter, we will point out which system 

is about to be discussed to help readers catch up with the major concepts. 

 Topic Key feature Condition 

A  Graphene and Dirac 
point 

 
Graphene’s geometry and the 

zoomed-in figure of a Dirac point.  

1. Preserve P symmetry 
2. Preserve TR symmetry 
3. Preserve C3 symmetry 

B Chern insulators  
 

Topological edge states (spinless) 

1. Break TR symmetry  
2. Non-zero Chern number 

C 

Dresselhaus SOC 

 
Spin texture projection on xy plane 

Break central symmetry 

Rashba SOC 

 
Spin texture projection on xy plane 

Break spatial symmetry 

D Kane-Mele Model 
(topological insulator)  

Topological edge states (spinful) 

1. Preserve TR symmetry 
2. Non-zero Z2 invariant 



 

60 

 

E PT symmetric System 
 

Exceptional points as a transition 
b/w real and complex eigenvalues 

The coupling between equal 
gain and loss channels. 

Table II: Summary of the main results and their conditions in this chapter. Part A provides the conditions of 
creating Dirac degeneracies. Part B demonstrates topological edge states in Chern insulators, such as Haldane 
model. Part C indicates two kinds of SOC via breaking different symmetries. Part D gives a schematic diagram 
of topological insulators, i.e. KM model. The red(cyan) arrows denote spin-up(down) currents propagating 
along boundaries. Part E shows a PT symmetric system and the emergence of exceptional points. 
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Chapter 3  Novel Phenomena in Normal Spring-

Mass Systems 

Note: The contents of this chapter have been published in the following papers and some of the 

text form from these papers are used in this chapter: 

I. New Journal of Physics, 17, 073031 (2015) [14] 

II. New Journal of Physics, 18, 113014 (2016) [45] 

 

In chapter two we have simply outlined the topological characteristics and spin-orbit 

interaction in graphene. In this chapter, two interesting results observed in quantum mechanical 

regime are presented in a classical spring-mass system. Firstly, although the topological 

phenomenon was firstly studied in the electronic systems, we demonstrate a mechanical version 

of quantum Hall effect via the verification of Chern numbers and topological edge states, which 

is unprecedented in classically vibrating systems [14]. Next, through pre-stretching springs, we 

present the effective SOC despite of the fact that SOC is a relativistic effect in quantum 

mechanics. In addition, in the presence of effective SOC, the mechanical counterpart of SHE 

arises in mechanical systems [45]. In what follows, the contents in Sec. 3-1, 3-2, and 3-3 are 

related to Part A, B, and C in Table II, respectively. We will discussion these novel results in 

detail.  

3-1: Mechanical Graphene 

In this section, a possible model for the realisation of mechanical edge states is given. The 

geometry of the model made by a series of honeycomb-arranged particles with mass M and 

springs with elastic constant K is shown in Fig. 3.1a. Every mass bead is considered as a rigid 
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body, and the mass of springs is omitted. By defining a  to be the distance between a pair of 

particles (A and B), the lattice constant is thus 1 2| | | | 3a a a , where the bases are 1 ˆ3aa x  

and  2 ˆ ˆ3 3 2a a x y . The centre of the mn unit cell is located at 1 2mn m n r a a . The basics 

of the reciprocal lattices are  1 2ˆ ˆ ˆ2 3 3 , 4 3a a   b x y b y . Three vectors connecting 

the particle A to its nearest neighbours are 

 

 

 

 

1 1 2

2 1 2

3 1 2

1 3 1ˆ ˆ ˆ
3 2 2

1 3 1ˆ ˆ ˆ2
3 2 2
1ˆ ˆ2
3

a

a

a

   

     

   

R a a x y

R a a x y

R a a y

 

We denote the small displacements, which implies quadratic or higher terms can be neglected, 

around the A and B as ξ  and η, the dynamical distance between them as '  R R u , and then 

2 2 ˆ| ' | | | 2 | | | |      R R R u u R R u . The variation of the spring length is 

ˆ
R  R u ,                                                                    (3-1) 

and hence the Lagrangian of the system is denoted as 

 

 

      

2 2

,

2 2 2

1 2 1, 3 , 1
,

2

ˆ ˆ ˆ   
2

mn mn
m n

mn mn mn m n mn m n
m n

M
L

K
 

 

                  





ξ η

R ξ η R ξ η R ξ η

 
 

Substituting above Lagrangian into Euler-Lagrange equation, a set of equations of motion is 

given by 

     1 1 2 2 1, 3 3 , 1
ˆ ˆ ˆ ˆ ˆ ˆ

mn mn mn mn m n mn m nM K  
           ξ R R ξ η R R ξ η R R ξ η ,     (3-2) 

     1 1 2 2 1, 3 3 , 1
ˆ ˆ ˆ ˆ ˆ ˆ

mn mn mn mn m n mn m nM K  
           η R R η ξ R R η ξ R R η ξ .     (3-3) 
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Fig. 3.1: Mechanical graphene.(a) Top view of zoomed-in plot and (b) mechanical graphene strip made of 
soft springs and rigid particles. ai and Ri denotes lattice constants and nearest vectors, respectively. (c) The 3D 
band structure of mechanical graphene, where the mass and elastic constant equals to 10g and 4N/m, 
respectively. Two flat bands on top and bottom are clearly seen. (d) a zoomed-in figure of Dirac cone in the 
vicinity of a certain K point. 

So far, we have obtained the equations of motion for particles arranged as honeycomb lattice. 

To solve for the propagating normal-mode, one can assume

,m n i t m n i t
mn mnp s e p s e   ξ ξ η η , where 1 2,  i ip e s e  k a k a . Substituting above equations 

into Eq. (3-2) and (3-3), we have an eigenvalue problem 2Hx x , in which 

   

   

   

   

* *

* * *

2
0

3 3
3 2 0 1 1

4 4

3 1
0 3 2 1 1 4

4 4

3 3
1 1 3 2 0

4 4

3 1
1 1 4 0 3 2

4 4

p p

p p s

p p

p p s



 
    

 
 

     
 
 
    

 
 
     
 

H ,       (3-4) 

where 2
0 K M   is the characteristic frequency of the system. By solving eigenvalue problem 

given by Hamiltonian (3-4), one can obtain four solutions, two of them are 0 and 03 , others 

give dispersion relation 
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      0 1 2 1 2

3 1
3 2 cos cos cos

2 2
          k a k a k a a .               (3-5) 

The band structure plotted by Eq. (3-4) is shown in Fig. 3.1c. There are four bands in Fig. 3.1c. 

In addition to the zero-frequency plane, the top one is also the flat bulk state. It implies that all 

particles vibrate locally at the frequency 03 . Besides, six linear degeneracies are seen in the 

vicinity of K points around the whole Brillouin zone. Expanding Eq. (3-5) to second order at 

one K point  4 3 3 ,0a , it shows that  0 1 4a    k  is a linear function with respect 

to k vector. Fig. 3.1d indicates the zoomed-in plot near K point. These degeneracies, which 

referred as Dirac points, provide the chance to have topological edge states known in quantum 

Hall states and topological insulator. In the following contents, topological nature of edge states 

will be discussed. 

Prior to going further for phononic edge states, an approach of analysing band structure 

needs to be further discussed. In Fig. 3.1b, our system, which likes a long ribbon, has an infinite 

length along x direction, but a finite width constructed out of N unit cells in y direction. Thus, 

as this semi-infinite geometry gives periodicity only in the x axis, we employ Fourier expansion 

of displacement ξ  and η  as well as time convention  exp i t , and then the dispersion 

equation is expressed as 

     12 2
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆi
ne   


          
k aξ R R ξ η R R ξ η R R ξ η ,            (3-6) 

     12 2
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆi
ne  


          
k aη R R η ξ R R η ξ R R η ξ .             (3-7) 

where  ,k nξ  and  ,k nη have been expressed as ξ  and η  for briefness. Moreover, above 

equations can be rewritten as an eigenvalue problem 2
B H x x  as well, where

(1) (1) (1) (1)
1 4[ , , , , ]T

x y x y N    x  , is the eigenvector of displacements at A and B, and Hamiltonian 
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   

H



    (3-8) 

The 1D projected band structure of a spring-mass mechanical graphene ribbon is shown in Fig. 

3.2. Firstly, as the same as graphene with zigzag truncation, the similar flat edge state between 

two Dirac points is observed in the energy spectrum. Due to the existence of the flat band, at 

the corresponding frequency the particles located on the edge vibrate locally and propagate no 

energy forward. Apart from zigzag edge case, band diagram calculated from bearded truncation 

shown in Fig. 3.2b also gives a flat band throughout the whole k space. It is worth noting that 

these edge states differ from conventional bearded flat edge ones in real graphene, which only 

exhibits in the region between K points. In addition, for both cases there are two edge states 

that can be found between either 1st and 2nd band or 3rd and 4th band in Fig. 3.2a-b. These states 

derived from Hamiltonian with both types of boundary were recently proposed and observed 

by Y. Plotnik et. al. in the case referred ‘photonic graphene’, and the detail explanation of this 

effect has been elaborated in ref. [20]. Furthermore, even being a counterpart of novel photonic 

edge states, it is evident to see that the band spectrum of phononic results is much clearer than 

photonic one [46], representing it may be simpler to observe experimentally. Fig. 3.2c-d 

illustrate the amplitudes at points A and B along a certain transverse cross-section (N = 20) of 

mechanical graphene ribbons. As predicted by band spectrum, the peaks indicate that the 

vibration of particles is highly confined on the corresponding boundary. 
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Fig. 3.2: Edge states of mechanical graphene. A mechanical graphene consists of springs with elastic constant 
K = 4N/m and mass particles with M = 10g. (a) The 1D band diagram calculated from zigzag spring-mass 
ribbon. (b) 1D band diagram for bearded edges. (c) The absolute value of amplitudes for zigzag edge states, 
the green dashed line corresponds to the top edge state and the red circles are to the opposite one. (d) Its absolute 
value of amplitudes of Fig. 3.2b for both edge states. In this figure, all the parameters are the same as the Fig. 
3.1. 

3-2: Topological Mechanical Waves 

In the previous section, we have discussed edge states in the gapless system by searching the 

existence of Dirac points. Since it is well-known that degeneracies are intimately relevant to 

symmetries in the system, it will open bandgaps through breaking them. As a result, we aim to 

discuss two approaches to lift a gap from Dirac points in this section. For the bulk band diagram, 

their outcomes are physically identical except a small deviation of eigen-frequency in 

momentum space. However, in the view of the projected band structure, it helps us distinguish 

the major discrepancies between the gaps lifted by breaking different symmetries. In what 

follows, the symmetries: spatial and TR symmetry, are taken as examples. 

I. Breaking Spatial Symmetry via AB sublattices: Topologically Trivial Case 
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If we consider two particles with distinct mass magnitudes (AB sublattice) in a honeycomb 

unit cell, the governed equations are expressed as 

     1 1 1 2 2 1, 3 3 , 1
ˆ ˆ ˆ ˆ ˆ ˆ

mn mn mn mn m n mn m nM K  
           ξ R R ξ η R R ξ η R R ξ η ,

     2 1 1 2 2 1, 3 3 , 1
ˆ ˆ ˆ ˆ ˆ ˆ

mn mn mn mn m n mn m nM K  
           η R R η ξ R R η ξ R R η ξ , 

where M1 and M2 denote the mass for particle A and B, respectively. Apparently, introducing 

two distinct mass particles breaks inversion symmetry ( r r ) so that the degeneracies 

stabilised by it will be lifted. Correspondingly, the projected band structures are depicted in 

Fig. 3.3. The middle gap arises but there are no crossing edge states between edge states. 

Consequently, despite edge states inheriting from the Dirac points, the entire system turns out 

to become a conventional gapped one, which provides no topological interests. 

 
Fig. 3.3: Projected frequency bands for a mass-spring ribbon (P breaking). The parameters are given as 
follows: M1 = 12g, M2 = 10g, K = 4N/m, and M = M1–M2. Despite the emergence of bandgap between 2nd 
and 3rd bands, there exist no gapless edge states indicating a topologically trivial case. 

II. Breaking TR Symmetry via Magnetic Fields: Topologically Nontrivial Case 

Aside from spatial symmetry breaking, applying the magnetic field gives rise to TR symmetry 

breaking which lifts a gap from degeneracies guaranteed by it. In the similar manner to lattice 

quantum-Hall-effect edge states, we assume every particle has a charge Q and apply a constant 

and uniform magnetic field B along the z direction of spring-mass ribbon. For simplicity, here 

we assume Coulomb interaction makes no contribution to the motion. As a result, we have the 
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Lagrangian of the system in the presence of magnetic fields 

      

2 2

, ,

2 2 2

1 2 1, 3 , 1
,

( ) ( )
2 2

ˆ ˆ ˆ   
2

mn mn A mn mn B mn mn
m n m n

mn mn mn m n mn m n
m n

M M
L Q

C
 

              

                  

 



ξ η A r ξ ξ A r η η

R ξ η R ξ η R ξ η

  
.      (3-9) 

Here 2 22, 2A mn B mn   r r R r r R , is the original positions between the two spherical 

objects in the mn cell, and A is the vector potential, that is B A . Through using the Euler-

Lagrange equations, in the same manner we obtain two equations of motion as 

     1 1 2 2 1, 3 3 , 1
ˆ ˆ ˆ ˆ ˆ ˆ         

mn mn

mn mn mn m n mn m n

M Q

C  

  

          

ξ B ξ

R R ξ η R R ξ η R R ξ η

 
,     (3-10)

 

     1 1 2 2 , 1, 3 3 , , 1
ˆ ˆ ˆ ˆ ˆ ˆ         

mn mn

mn mn m n m n m n m n

M Q

C  

  

          

η B η

R R η ξ R R η ξ R R η ξ

 
.    (3-11)

 

As far as above is concerned, by Fourier decomposition we find 

     2 2 *
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ
c ni p   

            ξ z ξ R R ξ η R R ξ η R R ξ η ,       (3-12) 

     2 2
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ
c ni p   

            η z η R R η ξ R R η ξ R R η ξ ,       (3-13) 

in which c QB M   is the cyclotron frequency. Further simplification gives us an eigenvalue 

problem M H x x , where 2 2
02 ,  4M c ci      H U W W H I , I is an identity matrix, 

and 

4 4

0 1

1 0 1

1
N N

 
   
  

U


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The band structures illustrated in Fig. 3.4a-c are given by solving above eigenvalue equations 

with zigzag truncations. Beginning by zero magnetic fields, Fig. 3.4a shows the projected band 

structure as demonstrated in Fig. 3.2. With different strengths of the magnetic field (from 0, 20, 

to 80 T), non-trivial band gaps are lifted because of TR symmetry breaking. As B = 20 T, three 

sets of edge states arise between bands. Note that the middle flat edge states are now changed 

into the ones with non-zero group velocity so that the oscillation of objects carrying energy 

propagates only in one way on the edge with topological protection. 

 
Fig. 3.4: Projected frequency bands for a mass-spring ribbon (TR breaking). The parameters are given 
as follows: M = 1g, K = 4N/m, and Q=1mC. The plots for topological edge state with zigzag (a-c) and bearded 
(d-f) truncation. Spawning from (a) zigzag and (d) bearded truncated spring-mass strips, as the magnitudes of 
magnetic field increase from 20 to 80 T, topological band gaps are lifted, which turn the middle bandgap into 
a trivial one after the critical point B = 75 T. 

In the meantime, as predicted, other edge states also show a linearly cross band pattern, 

so that the nearly constant group velocities are found. Yet, when the external field strength 

reaches to around 75 T, the second and third band touch each other that eliminates their 

topological phases, and then edge states between them vanish because of the topological 

transition. If we keep raising the strength of magnetic fields up to 80 T, in Fig. 3.4c the middle 

gap reopens while it has been converted into a trivial one. In other words, as seen in Fig. 3.4c, 

there exist no topological edge states within the second and third band. Fig. 3.4d-f illustrates 
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the case of bearded boundary truncation. Despite the identical bulk band region to zigzag 

truncation, the feature of bearded edge states is apparently distinct due to the change of 

boundary geometry.  

All in all, for generating topologically protected edge states, it is necessary to have edge 

states in a gapless system (mother system) by looking up the existence of Dirac degeneracies. 

Next step, one needs to break TR symmetry via applying external or synthetic fields to open 

topological non-trivial gaps (daughter system). At some points in parametric space, say 

magnetic fields, additional topological transitions might happen, which eliminates/creates the 

topological order and trivialises/non-trivialises certain bandgaps. Similar logic is applicable to 

any kinds of periodic systems with band diagrams. 

 
Fig. 3.5: Chern number calculation for bands. The bold black numbers indicate Chern number for each band 
while the magnetic field equals (a) 20 T and (b) 80 T. The yellow shaded areas highlight the topologically non-
trivial bandgaps. 

So far, we have thoroughly demonstrated the mechanical edge states in a spring-mass 

system. To further investigate the topological order of edge states, we have numerically 

evaluated Chern number for each band. Following the concepts in chapter two, the formula of 

Chern number is expressed as   21 2n nBZ
C d  k Ω , where n i n n   k kΩ  is the Berry 

curvature for the nth band, and BZ means that the integration is taken throughout the first 

Brillouin zone. In Fig. 3.5a, the result shows that, at B = 20 Tesla, Chern numbers from bottom 
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to top band are given as[1,0,0, 1] . It shows edge states in bands are topologically protected in 

association with net Chern number 2C  . When B reaches 75 Tesla, as we mentioned 

before, a topological transition occurs, and therefore, in Fig. 3.5b the Chern number for bands 

become [1, 1,1, 1]  . The system now exhibits topologically non-trivial phase difference 

2C   within 1st – 2nd and 3rd – 4th band because of the topological transition, but in the 

central gap, the topological order now vanishes so no edge states exist. The numerical result 

matches the consequence shown in Fig. 3.4. 

 
Fig. 3.6: Snapshots of edge states in a spring-mass strip for B = 20 T. Snapshots of edge states at the 
boundary truncated by (a) zigzag and (b) bearded type. The motion of particles follows the red-green-yellow-
white colour sequence and the cyan dots are the original position of particles. The same colour represents the 
position of particles at the same time. 

On the other hand, Fig. 3.6 shows the snapshots of propagating eigenmodes for three 

edge states at the zigzag and bearded truncation via marking particles in different colours. It is 

evident to see that three edge states within different gaps are localised at one of the edges. With 
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the time order marked in a red-green-yellow-white colour sequence, in Fig. 3.6a, the first edge 

state expresses a counter-clockwise rotation for all the particles. The second one, however, 

presents fairly linear movement caused from the superposition of right and left-handed motions. 

Due to this mixed polarisation, its corresponding frequency is reasonably higher than previous 

one. For the third one, this anti-symmetric edge state gives rise to the highest operating 

frequency in the band diagram. In Fig. 3.6b, the cases with bearded boundary shows the similar 

feature comparing with zigzag-truncated systems except the modes in the middle bandgap, 

which has no linear vibration rather than two chiral modes distributed at different mass points. 

Despite the validity of theoretical prediction, it is still impractical to realise our model 

because of the Coulomb force and extremely high external fields. In general, Coulomb force 

between two charge objects is much stronger than Lorentz force, so that it is unlikely to avoid 

the dominant of electric forces in the proposed model. Additionally, reaching magnetic fields 

to tens Tesla is a nearly impossible condition in the experiment. To overcome these drawbacks, 

next section we will provide another feasible system, which gives the strong enough effective 

magnetic field and gets rid of the complexity caused by Coulomb forces. 

III. Breaking TR Symmetry via Coriolis Force: Topologically Nontrivial Case. 

In classical mechanics, objects moving in a non-inertial reference frame experiences inertial 

forces resulting in corrections to the equation of motion. Especially, for the coordinate system 

moving in uniformly rotational manner, two kinds of additional loads applying on objects are 

known as Centrifugal force and Coriolis force. Let us first account for a particle doing simple 

harmonic oscillation on a rotating round plate with the constant angular velocity W, its 

Lagrangian in terms of r and v can be expressed as [47] 

   22 2

2 2 2

M K M
L v r M      W r v W r . 
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The first two terms denote normal simple harmonic oscillation, the third resulting in a 

correction term of elastic potential energy is the centrifugal force, and the fourth indicates the 

Coriolis force. Defining that a factor   2 A W r  as a counterpart of Landau gauge in 

quantum physics, Lagrangian can be rewritten as 

 2

2 2 2
2 2

K MWM
L v r M


   A v . 

Comparing with the Lagrangian of the simple harmonic oscillation for a charged particle in 

constant magnetic fields, i.e. 2 22 2L Mv kx Q   A v , it is clear to see that the Lagrangian 

of rotating reference frame can be analogous to the 2D system applied by a constant magnetic 

field along the normal direction with the corrected elastic constant and relevant “charge” Q = 

2M. Back to our case, according to above discussion, we can write down the Lagrangian of the 

system in rotational circumstance 

 

      
    

2 2
0 0

, ,

2 2 2

1 2 1, 3 , 1
,

2 2

0 0
,

( ) ( )
2

ˆ ˆ ˆ   
2

   ( ) ( )
2

mn mn A mn mn B mn mn
m n m n

mn mn mn m n mn m n
m n

A mn B mn
m n

M
L M

K

M

 

             

                  

       

 





ξ η W r r ξ ξ W r r η η

R ξ η R ξ η R ξ η

W r r ξ W r r η

  

,    (3-14) 

Here 0r  is the radius of round plate. Since the centrifugal term of Lagrangian only gives rise 

to a correction of equilibrium position, it will be neglected in the following paragraph and 

elaborate its influence later. In the same manner, two equations of motion are written as 

     2 2 *
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ2 ni p   
            ξ W ξ R R ξ η R R ξ η R R ξ η ,     (3-15) 

     2 2
0 1 1 2 2 3 3 1

ˆ ˆ ˆ ˆ ˆ ˆ2 ni p   
            η W η R R η ξ R R η ξ R R η ξ .     (3-16) 
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Comparing with Eq. (3-11) and (3-12), we find that angular velocity in here is linked to 

cyclotron frequency with the relation 2W c . As stated, to open a significantly large 

bandgap, it is necessary to increase the magnitude of magnetic fields over tens of Tesla. 

However, only tens rad/s angular frequency, which can be readily achieved in the practical 

situation, is required to have the same behaviour in a spring-mass ribbon. Besides, avoiding 

from strong applied field and any presented electric charge, it is no need to consider the 

complexity caused from Coulomb interactions. Consequently, using the concept of moving on 

rotational coordinate makes the system more feasible in comparison with the same 

phenomenon by applying a constant magnetic field. Next, the equilibrium position correction 

is included in discussion, under the approximation 2C MW , corrected equations of motion 

are given by 

     
2

2 *
0 1 1 2 2 3 3 1

2

ˆ ˆ ˆ ˆ ˆ ˆA A A
mn mn n mn

i

p

 

 

  

            

ξ W ξ

R R ξ η d R R ξ η d R R ξ η d
, 

     
2

2
0 1 1 2 2 3 3 1

2

ˆ ˆ ˆ ˆ ˆ ˆB B B
mn mn n mn

i

p

 

 

  

            

η W η

R R η ξ d R R η ξ d R R η ξ d
. 

where 

 
2

, ,
02

0

2

3
A B A B
mn mn


 d r r .                                               (3-17) 

Let us consider a practical case possessed large enough non-trivial gaps. Assume that a mass-

spring ribbon with characteristic frequency 0  = 20Hz located on a r0 = 1m round plate and 

,
0

A B
mnr r . For angular velocity W = 2 rad/s, the correction derived by Eq. (3-17) is about 

0.0067, which is much smaller than displacements of edge states. Hence, as long as the angular 
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velocity is much less than characteristic frequency, the influence of equilibrium position can 

be omitted. Even high angular speed applied, one can still set all particles at corrected positions 

in advance since geometric parameters must be known before fabrication. When round plate 

starts rotating, all objects thus move back to the right places and system becomes our original 

design. 

In Fig. 3.7a, a scheme plot of mechanical graphene ribbon on a rotating frame is illustrated. 

The band structure, therefore, can be obtained by solving the eigenvalue Eq. (3-15) and (3-16). 

For the numerical calculation afterwards, we choose K = 4 N/m and M = 10g. Fig. 3.7b to e 

show the band structures for four angular velocities of the rotating frame as W = 1, 4, 

W 3 / 8c K M , and 15 Hz, respectively. At the lowest rotating speed W = 1 Hz, interestingly, 

the top and bottom bands evolve from the originally flat bands in the inertial frame into the 

ones with finite bandwidth. All three bandgaps are topologically nontrivial because of non-

zero Chern number difference arising from TR symmetry breaking, so that there exist 

topologically protected edge states within each bandgap, as shown in Fig. 3.7b-e.  

Fig. 3.7: Gapless edge states in mechanical graphene (zigzag). The mass and elastic constant are given as 
follows: M = 10g and K = 4 N/m. (a) A schematic diagram of the non-inertial system. The inset presents the 
projected band structure in the absence of rotation. With all edge states marked in red, 1D projected band 
structure for a mechanical ribbon end with zigzag boundary applied constantly angular velocity (b) W = 1, (c) 
W = 4, (d) W = Wc, and (e) W = 15 Hertz. Note that wavevector kx here sticks on rotating frame rather than 
fixed frame.  
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 As the angular velocity increases to 4 Hz, the band gaps broaden and the dispersion of 

the edge states become more linear. When the angular velocity reaches to Wc ~12.247 Hz, the 

topological transition occurs since the 2nd and 3rd band touch each other. When the angular 

velocity further increases, the gap reopens but is now converted into a trivial one, which does 

not contain any edge states due to the band crossing, as shown in Fig. 3.7d. Fig. 3.8a-d show 

the bearded edge states under different speeds of rotation. Similarly, the bearded edge states 

exist in every band gap as the angular velocity is less than Wc. Due to band inversion, 

topological phase transition occurs at 2nd and 3rd band after reaching to the critical angular 

frequency.  

 
Fig. 3.8: Gapless edge states in mechanical graphene (breaded). Band diagram in one dimension for a mass-
spring ribbon end with bearded boundary applied constantly angular velocity at (a) W = 1, (b) W = 4, (c) W = 
Wc, and (d) W = 15 Hertz. The inset in the middle of figure presents the projected band structure in the absence 
of rotation. All the edge states are marked in red and the parameters are identical to Fig. 3.7. 

In conclusion of this section, we have proposed a mechanical graphene - a honeycomb 

lattice plane consisting of rigid bodies and soft springs. When placed in a rotating frame, 
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mechanical graphene generates non-trivial frequency gaps that leads to topological one-way 

edge states. Due to the simplicity of the system, these topological vibrational modes induced 

by Coriolis forces can be experimentally observed at low-frequency cases. 

3-3: Effective Spin-Orbit Coupling in Mechanical 

Graphene 

In this section, the effective spin-orbit coupling (SOC) in mechanical graphene will be 

discussed. In atomic physics, SOC is an interaction between a particle’s motion and spin, which 

accounts for the physical origin of the fine structure in early quantum mechanics development. 

In condensed matter physics, SOC plays very important role in understanding various 

interesting phenomena and generating diverse applications. One of the examples is that a strong 

spin-orbit interaction in ferromagnetic materials is able to generate a significant intrinsic 

magnetic field that gives rise to the anomalous Hall states. In the regime of semiconductors, 

SOC can be categorised into a generic symmetry-independent type, which exists in every 

material system, and a symmetry-dependent type such as Rashba and Dresselhaus SOC. More 

recently, the latter type has drawn enormous attention as they lead to interesting phenomena in 

spintronics such as spin-Hall effect for weak interaction [16], anomalous Hall effect [48] and 

anomalous spin-Hall effect [49] for strongly coupled systems. 

Inspired by the progress of SOC related physics in electronic regime, effective SOC has 

been found in a variety of other physical systems including optics and acoustics. For example, 

in photonics, by defining the left (right) circular polarisation of light as spin up (down) state, 

the spin-Hall effect of light [50-52] has been proposed to describe a relative lateral shift 

between the two spin polarisation states as light undergoes refraction or reflection at an 

interface between two different dielectric media. In addition, an effective intrinsic SOC realised 
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by metamaterial structures has been put forward to mimic the KM model in graphene [11] and 

to realise 2D photonic topological insulators [5]. In phononics, similar spin-dependent splitting 

effects are also theoretically predicted for elastic waves are travelling through an interface [53]. 

Besides, the SOC concept has been theoretically predicted [54] and experimentally [55] 

verified for polaritons that exist in a quantum well embedded in a microcavity. Furthermore, 

due to the fact TE and TM polarisations of photons are coupled inside microcavities [56], the 

dispersion diagram of a cavity-photonic crystal exhibits a Dresselhaus SOC at the K point [57].  

The physics occurring in photonic systems can be intuitively linked to classical vibrating 

systems. A similar analysis of modes can be applied on the elastic waves or classical vibration 

since they naturally consist of longitudinal and transverse components. In subsequent content, 

we will introduce a mechanical graphene possessing longitudinal-transverse (LT) splitting 

which gives rise to an effective intrinsic Dresselhaus type SOC. The proposed system opens 

new perspectives towards manipulation of mechanical waves in artificial mechanical 

metamaterials. Moreover, amongst all intriguing phenomena induced by spin-orbit interaction, 

the spin-Hall effect is arguably the most important one owing to its potential to future spintronic 

devices. Spin-Hall effects is a transverse spin current driven by the electronic current, which 

could be caused by either intrinsic [58-59] or extrinsic SOC [60]. We will also propose an 

analogue of spin-Hall effect based on an effective SOC of classical vibration. In what follows, 

we demonstrate a spin-wavevector correlated propagation for classical vibrations in a 

mechanical graphene, i.e. elastic spin-Hall effect (ESHE). Here we emphasise that this effect 

has a different physical mechanism in comparison to spin Hall effect of phonons [53], which 

describes the lateral displacements as a wave packet passes through an interface between two 

different elastic materials. In addition, we propose an equivalent system for elastic waves, 
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which is made up of two isotropic elastic solids. The observed phonon dispersion and spin 

texture verify that they have the same signature of Dresselhaus SOC. 

In order to introduce the ESHE, we first define “spin” as an in-plane rotation for the centre 

of mass of a rigid body, i.e. spin up/down for x±iy, which is also referred to “chiral phonons” 

in the recent literature [61]. In this section, we begin by discussing the spin-orbit interaction in 

a mechanical graphene. The system consists of a series of honeycomb-arranged rigid body 

spheres with mass M, and massless springs with longitudinal elastic constant KL and transverse 

one KT, as shown in Fig. 3.9a. Throughout this section, we assume that all the springs have 

good linearity and restrict ourselves to taking only in-plane vibrations into consideration. The 

distance between two NN mass points (A and B) is a and the lattice translation vectors are 

expressed as 1 2mn m n r a a , where 1 ˆ3aa x  ,  2 ˆ ˆ3 2a a x y .  

 

Fig. 3.9: Mechanical 
Graphene with transverse 
elastic constants. (a) A part 
of the mechanical graphene 
made by soft springs and 
rigid particles. (b) A 
schematic sketch of the 
allowed and prohibited 
vibrating mode transfer. 
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The transverse elasticity arises from stretching of the springs, that is to say, the NN distance a 

at equilibrium is longer than the natural length of the spring [62]. The three longitudinal and 

transverse unit vectors that connect between the nearest neighbours are 

 1
ˆ ˆ ˆ3 2 L x y ,  2

ˆ ˆ ˆ3 2  L x y , 3
ˆ ˆ L y , 

 1
ˆ ˆ ˆ3 2  T x y ,  2

ˆ ˆ ˆ3 2  T x y , 3
ˆ ˆT x . 

By setting the displacements of the A and B as ξ and η, respectively, the variation in length 

parallel and perpendicular to the spring orientation can be denoted as  ˆ
i mn mn L ξ η  and 

 ˆ
i mn mn T ξ η . Fig. 3.9b shows that vibrating mode transfer between the nearest neighbour 

only occurs between modes of the same vibration direction, whereas that between 

perpendicular vibration directions is prohibited. Following the preceding description, the 

equation of motions for mechanical graphene is governed by 

     
     

1 1 2 2 1, 3 3 , 1

1 1 2 2 1, 3 3 , 1

ˆ ˆ ˆ ˆ ˆ ˆM

ˆ ˆ ˆ ˆ ˆ ˆ            

mn L mn mn mn m n mn m n

T mn mn mn m n mn m n

K

K

 

 

           
          

ξ L L ξ η L L ξ η L L ξ η

TT ξ η T T ξ η T T ξ η


,    (3-13a) 

     
     

1 1 2 2 1, 3 3 , 1

1 1 2 2 1, 3 3 , 1

ˆ ˆ ˆ ˆ ˆ ˆM

ˆ ˆ ˆ ˆ ˆ ˆ             

mn L mn mn mn m n mn m n

T mn mn mn m n mn m n

K

K

 

 

           
          

η L L η ξ L L η ξ L L η ξ

TT η ξ T T η ξ T T η ξ


.    (3-13b) 

As studied previously [14], there exist four bands in the case KL >> KT ; two nearly flat bands 

of transverse modes at zero frequency and 03 , and two bands for longitudinal modes. On 

the other hand, for a system with KL slightly different from KT, the energy of longitudinal (L) 

and transverse (T) are only slightly different, which implies an energy splitting because of the 

LT discrepancy. To prove this argument, by setting KL = 4N/m, and M =10g, we plot the 
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frequency dispersions around the irreducible Brillouin zone in Fig. 3.8a-c for KT = KL/8, KL/3 

and 7KL/8. Note that even though the magnitude 7KL/8 might be unrealistically large, it helps 

on a clear explanation of SOC. The band structure for KT = KL/8 gives a Dirac degeneracy at K 

point with non-flat first and fourth bands, which is consistent with the result shown in ref. [62]. 

The gap at M between the 2nd and 3rd band closes at KT = KL/3 and it is observed that the 

dispersion is linear along direction   to M but parabolic along M to K. This type of dispersion 

can give rise to the trigonal warp effect [63], i.e. there exist three extra Dirac cones in the 

vicinity of K and K’ points. These additional Dirac points are located at the high symmetry line 

M  because of the three-fold symmetry. At KT = 7KL/8, band diagram illustrates a very 

similar splitting pattern to the bilayer graphene [64] or the graphene sheet including Rashba 

spin-orbit interaction [65].  

To identify the nature of this SOC, by altering the original basis to circular bi-polarisation 

basis , , ,
T

A A B B          with ( )A B   representing spinors [ ( ) ( )] / 2x x y yi     at A and B 

lattice, Eq. (3-13) are rewritten to the Bloch Hamiltonian form as  

   

   

3 3
0 1 1

2 2

3 3
0 1 1

2 2

3
. . . . 0

3
. . . . 0

K K K s p i
s p s p

M M M

K K s p i K
s p s p

M M M

K
h c hc

M
K

h c hc
M

   
      

  
             
 
 
 
 
  

H ,  (3-14) 

where    1 2, ,   2,  and 2i i
L T L Tp e s e K K K K K K       k a k a . In Eq. (3-14), if we 

turn off K , which implies no LT coupling, the Hamiltonian expresses the feature as exactly 

the same as the graphene with a non-zero bias energy. As K  is not equal to zero, the splitting 



 

82 

 

of phonon dispersion emerges as shown in Fig. 3.10a-c. To confirm this splitting is caused 

from an effective SOC, we further plot the spin texture of the second band in the vicinity of K 

point in Fig. 3.10d-f. Note the spin texture depicted in Fig. 3.10 is a 3D spin-vector projection 

onto kx-ky plane, i.e. taking kx and ky  components from the expectational value of spin operators 

, ,x y x y
 s σ . It is shown that, regardless of the magnitude of KT, all the spin textures 

show similar characteristics to that of Dresselhaus SOC, which originally results from the 

inversion symmetry breaking in semiconductors as stated in Sec. 2-2.3. In the vicinity of K 

point , 1x yk a  , for a large transverse elastic constant one can derive a low-energy 

approximation of spin-orbit term in equation (3-14) that matches Dresselhaus SOC near K point 

as  

 3

4D z x x y y

K
H s s

M
  

  ,                                            (3-15) 

 

Fig. 3.10: Phonon dispersion and 
spin texture. (a)-(c) The phonon 
dispersion for KT = KL/8, KL/3, and 
7KL/8 (M = 10g and KL = 4 N/m). 
The insets are projected spin texture 
around   point. (d)-(f) are 
projected spin textures of the third 
band for corresponding transverse 
elastic constants in the vicinity of K 
point. The length of arrows in spin 
textures indicates the strength of 
effective magnetic fields. 
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where z  is the valley degree of freedom and sx,y represent the Pauli matrix for spins. As the 

rotation motion of the mass describes spin polarisation in mechanical graphene, there exists an 

effective Dresselhaus field in the system. In this analogue system, the length of arrows can be 

regarded as the strength of in-plane effective magnetic fields, which is a similar way as the real 

spins being aligned by real magnetic fields. The insets in Fig. 3.10a-c indicate the 

corresponding spin textures at   point. All three spin textures demonstrate nearly identical 

patterns indicating the robustness of the effective magnetic field against the change of KT at   

point. In contrast, in the vicinity of K(K’) points, the effective magnetic fields become weaker 

as KT decreases in Fig. 3.10d-f. This feature significantly affects the propagation of spin waves 

at the K(K’) points, which will be discussed in more details in the next section. 

3-4: Mechanic Spin-Hall Effect 

To figure out how the “spin current” evolves in a mechanical graphene, we assume that the 

initial condition is a Gaussian pulse source in real space as depicted in Fig. 3.11. After applying 

the Gaussian source given in Fig. 3.11, with time step t  = 10 ms, Fig. 3.12a-c illustrate the 

evolution of spin fields in real space around several high symmetry points ( , K, and K’) after 

100 time-step iterations. While the wavevector k is chosen around   point, the corresponding 

Stokes’ parameter c I I    , where I is the intensity for two spins, is shown in figure. It is 

evident to see that the splitting for the four spin polarisations (spin-up in red and spin-down in 

blue colours) propagates radially in different directions because of the conservation of spin 

angular momentum. The field distribution shows a four-domain pattern as that of optical spin-

Hall effect [54-55]. Fig. 3.12b and c show the ESHE at K and K’ point, respectively. There are 

two spin polarisations in real space propagating in opposite direction, and it gives rise to a 

reverse splitting of circular polarisation due to the field inversion at K and K’ point. 
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As discussed, the transverse mode could be supported so long as the springs are stretched. 

Based on the result in ref. [62], one can define a factor   as the ratio between the spring’s 

natural length and NN distance. The transverse elastic constant can be expressed as 

 

Fig. 3.11: A schematic sketch of the initial 
displacement distribution. A Gaussian pulse 

    2 2 2 2

0 0
exp expA t i t        r R k r  

is applied to the middle of the system, where it has 
a spatial deviation   = 6a and time deviation   

= 25 ms. All the displacements are along x 
direction and the length of arrows denotes the 
corresponding displacements in the Gaussian 
pulse. 

(1 )T LK K                                                        (3-16). 

Despite the minimum value of   can reach to zero in principle, its magnitude is roughly limited 

within the region from 0.2 to 1 so as to keep the linearity of a spring. As such, the large 

transverse constant in the preceding discussion, KT = 7KL/8, requires an impractical system 

with the NN distance almost ten times to the original length of the spring. For a more practical 

system with a reasonable ratio   = 1/3, the corresponding KT is given by 2KL/3. Fig. 3.12d-f 

demonstrate the ESHE field pattern for   = 1/3 at  , K, and K’ point after 100 time-step 

iterations. Fig. 3.12d exhibits similar spin propagation as that in the Fig. 3.12a for KT = 7KL/8. 

In fact, we discover that the ESHE at point is not sensitive to the variation of  parameter. 

It is consistent with the preceding argument for the robustness against the alteration of KT at 

point. Even for   further increased to 1/2, our simulation shows that the ESHE remains its 
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four-domain spin-wave-splitting property and radial propagation. However, Fig. 3.12e-f 

indicate that the ESHE at K and K’ point are distinct from Fig. 3.12b-c, but they still fulfil the 

feature of field inversion. Yet, as shown in Fig. 3.10d-e, the effective fields are weaker for 

small transverse elastic constant. For such weak field strength, it cannot give rise to an obvious 

splitting for two spin waves, such that the spin waves are mixed in Fig. 3.12e-f. 

 

 
Fig. 3.12: Elastic spin Hall effect.(a)-(c) ESHE for KT = 7KL/8 N/m in real space while the wavevector k is 
chosen around  , K and K’ point. There are four spin polarisations in (a), two in (b) and (c) propagates 
separately in distinct orientations. Also (b) and (c) shows a clear inverted field pattern. (d)-(f): ESHE for KT = 
2KL/3 N/m at  , K and K’ point. It is clear to observer the existence of splitting of spin-envelope propagation. 
Despite the compliance of field inversion, (e) and (f) show a mixed spin field pattern since the violation of 
Dresselhaus SOC. Note that for observing a clear evolution for K and K’ points, we increase the number of 
lattices in the system to 35×35 and add the time step up to 150 in Fig. 4(e) and (f). 
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 Besides spring-mass systems, here we propose another equivalent elastic crystal system 

for realising ESHE. The crystal is made by two isotropic elastic solids. In order to establish the 

equivalence between the mass-spring system and the elastic crystal, we first deduce the 

classical Hamiltonian for Eq. (3-13) in terms of the wave vector k as  

               

     

2 2 2 2

2 2 2 23 3
+

2 2 2 2

   1 1 ,         (3 16)
2 2

L L T T
A B A BL T

A B A B

L T
A B B A A B B A

K
H L L

K
T T

M M
K

p s L L L L p s T T
K

T T   

                  

              

   
   

       
 

where ( )
( )

L T
A B  and ( )( )A BL T are the canonical momentum and displacement for L and T at A or 

B lattice, respectively. Eq. (3-16) shows that the local vibration for each mass point can be 

regarded as a simple harmonic oscillator in the presence of an elastic potential 2(3 2)Ku . 

Besides, the negative coupling term represents the energy transfer from one oscillator to 

another. The coupling coefficient plays the role of the hopping parameter of nearest neighbours 

in the tight-binding description. For the sake of simplicity, one can neglect the energy of local 

simple harmonic oscillators since it only provides a bias and does not affect the main feature 

of phonon dispersion. In the basis of creation and annihilation operators, the Hamiltonian of a 

mechanical graphene reads 

† † †
, , , , 1, , , , 1

† † †
, , , , 1, , , , 1

h.c.

      h.c.

L L mn L mn L mn L m n L mn L m n

T T mn T mn T mn T m n T mn T m n

H t a b a b a b

t a b a b a b

 

 

      
     




,                       (3-17) 

where the hopping parameter ( ) ( ) 3L T L Tt   for L and T was introduced. Based on Eq. (3-17), 

we can extend the ESHE to elastic waves propagating inside a phononic crystal made by 

embedding tungsten carbide (  = 13800 kg/m3, cl = 6655 m/s, ct = 3980 m/s) rods in an 

aluminium (   = 2690 kg/m3, cl = 6420 m/s, ct = 3040 m/s) background. The dispersive 
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relations in Fig. 3.13 are numerically calculated by COMSOL Multiphysics 5.1, a commercial 

package using the finite-element method. In Fig. 3.13a, with filling factor equals to 0.4, there 

is a large band gap for xy mode between the third and fourth band. Through removing rods in 

honeycomb lattice, a phononic graphene with periodic arrangement of cavities results in extra 

bands in the bandgap. For those bands generated from cavity modes, the tight-binding 

description is applicable since every mode is sufficiently localised in a cavity [66]. To find the 

counterpart of classical vibration, we only take p-orbital into account because its vibrating 

direction corresponds to the motion of mechanical oscillators. Also, the hopping of the tightly 

confined state to its neighbour does not introduce the change of polarisation from L to T and 

vice versa. In accordance with above description, the corresponding equation is naturally 

identical to Eq. (3-17). The cavity mode in the band gap is plotted in Fig. 3.13b. Its appearance 

matches the case KL ~ KT in mechanical graphene. To further verify its feature of SOC, Fig. 

3.13c illustrates the pseudospin texture derived from equation (3-17) at K point in accordance 

with the fitting central frequency 0  = 3322.7 and two hopping parameters tL = 3.96, tT = 3.24 

in the unit of Hertz, which gives similar spin distribution to that of spring-mass system. An 

advantage of cavity-phononic crystals to the spring-mass systems is that they can provide very 

close L and T elastic constants. Consequently, an effective SOC theory in Sec. 3-3 can be 

utilised and we predict that ESHE at K(K’) point is available for such cavity-phononic crystals. 

As a conclusion to Sec. 3-3 and 3-4, the effective spin-orbit coupling in mechanical 

graphene has been studied. We show that the band structure exhibits a Dresselhaus type of 

SOC caused by LT splitting. Under the condition of KL ~ KT, the elastic SHE caused from SOC 

leads to interesting spin texture that shows up in the field distribution evolution in time. The 

numerical result verifies the existence of elastic SHE at   and K(K’) point, which also fits the 

result given in spintronics and photonics. Surprisingly, in practical condition KL >> KT, elastic 
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SHE still appears in spite of imperfect field inversion at K(K’) point. In the final part, we 

introduce a cavity-phononic crystal that is equivalent to the proposed spring mass system. 

 

Fig. 3.13: The cavity-phononic crystal.(a) The phononic band structure for tungsten carbide rods embedded 
in an aluminium background with the lattice constant = 1 m. (b) Cavity-phononic crystal shows the dispersion 
being similar to Fig. 3.10c. The inset demonstrates the geometry of a unit cell. (c) Spin texture of Dresselhaus 
SOC around K point. The orientation discrepancy from Fig. 3.10c is caused by the choice of primitive 
translation vectors. 

3-5: Chapter Summary 

Throughout this chapter we have demonstrated mechanical graphene providing novel 

properties in classical vibrations. As illustrated by projected band structures, localised edge 

states were found between every bulk frequency bands. When TR symmetry is broken by 

external fields, such as magnetic fields or Coriolis forces induced from rotating frame, the 

topological phase transition and the one-way edge state can be observed. The Chern number 

calculation was made to prove the existence of topologically non-trivial bandgap as the 

difference of Chern number for certain bandgap is not zero. In addition, in the next part of this 

chapter the effective Dresselhaus type SOC resulted from stretch springs revealed in the 

description of chiral polarisation of vibration was shown by deducing analytical expressions 

and emulating spin textures. Exploiting nature from effective SOC terms, we have numerically 

demonstrated the ESHE under the scenarios of wavevectors k = 0 as well as 4 3a . Despite 

the extreme condition of realising ESHE at K point, the same phenomenon exhibits in cavity-

elastic crystals owing to the nature of LT coupling in elastic solids. 
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Chapter 4  Topological Elasticity 

Phononic crystals (PC) are artificial media consisting of periodic elastic composites that are 

capable of manipulating the propagation of acoustic or elastic waves, whereas the coupling 

between the longitudinal and transverse (shear) waves in elastic solids significantly 

complicates the investigation of PC. However, in a 2D system, shear wave field vibrating in 

the z direction is decoupled from the in-plane mixed waves so that one can separately study 

them. In this chapter, firstly we introduce topological phenomena for shear waves via 

embedding magneto-elastic material into solid background. The result can be regarded as the 

shear-wave analogue of quantum Hall effect, which have not been proposed in any literature 

yet. Additionally, the in-plane mode provides a possibility of achieving phononic topological 

insulating phase. Provided that two Lamé coefficients have the relationship as    , the 

longitudinal (L) and transverse (T) are degenerate, leading to topologically non-trivial phases 

in this in-plane solid mechanical modes. To the best of our knowledge, this is the first proposal 

of phononic topological insulators. In what follows, the contents in Sec. 4-2 and 4-3 are related 

to Part B and D in Table II, respectively. 

4-1: Introduce to Elastic Waves 

Prior to discussing the main text of this chapter, a brief review of classic elastodynamics is 

introduced in this section [67]. Consider a force acts on the solids, the shape and volume are 

changed, which is so-called deformation. For a point in this solid, its position is denoted by a 

position vector  1 2 3, ,x x xr  where    1 2 3, , , ,x x x x y z . If we define that r is the position 

before deformation and r  is the one after deformation. Thus, the displacement vector in solids 

is expressed as   r r u  or 
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i i iu x x  .                                                          (4-1) 

It is evident that when deformation happens, the distant between points are altered as well. 

Thus, one can consider an infinitesimal distant between two positions ds and ds , the former 

gives a length before acting force, and the latter presents the one after deformation, namely, 

2 2 2
1 2 3ds dx dx dx    and 2 2 2

1 2 3ds dx dx dx      . According to equation (4-1), we have 

i i idx dx du   . In following sections, the Einstein convention is applied so that 2
ids dx  and 

 2

i ids du dx   . Besides, as we already knew i
i k

k

u
du dx

x





, the relation of deformation 

yields 

2 2 2 ik i kds ds u dx dx   ,                                                  (4-2) 

where 
1

2
i k l l

ik
k i i k

u u u u
u

x x x x

    
       

. As we are interested in the linearised cases, the second-

order small quantities are omitted here. iku  , which is called “strain tensor”, reads 

1

2
i k

ik
k i

u u
u

x x

  
    

.                                                   (4-3) 

It is worth to mention two properties regarding strain tensors. Firstly, one can readily find that 

the strain tensor is a symmetric tensor, namely ik kiu u . Secondly, by the definition (4-3), the 

strain tensor is a dimensionless parameter. After the brief discussion of strain tensors, to further 

study elastic waves in solids, an essential physical quantity called “stress tensor” ik  should 

be introduced. Consider a thermal equilibrium system, which means that there is no 

deformation caused by temperature or external field in the system, one can only take an 
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infinitesimal volume into account. The total force is dVF , where F is the force acting on unit 

volume. However, based on Newton’s third law of motion, these forces cancel each other in 

the volume except the one on the surfaces. For the total forces of every unit, they are equal to 

the forces acting on surfaces of volume only. Above discussion shows that a quantity can be 

introduced in accordance with Gauss’ theorem in vector analysis so that 

ik
i ik k

k

F dV ds dV
x

 
 

   , or  

ik
i

k

F
x





.                                                           (4-4) 

When equilibrium condition is applied, the total forces must be zero, and we have equilibrium 

equation 

0ik

kx





.                                                           (4-5) 

Regarding the indices of the stress tensor, the first index represents the direction of stress tensor, 

another is which surface the force acts on. For example, xx means the stress tensor along x 

direction on the x surfaces (normal stress tensor), the tangential tensors along y and z direction 

are yx and zx (tangential stress tensor or shear tensor), respectively. Note that normal stress 

tensors cause the change of volume, this means the acoustic waves in fluid belong a special 

case of elastic waves. In addition, shear tensors give rise to the change of shapes but maintain 

the constant volume of solids. 

Now we can further discuss the deformation with a slight deviation in equilibrium. 

Intuitively, consider the work caused by forces, one obtains where ik
i

k

WdV u dV
x

 


   is 
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work in a small volume. By employing integration by parts, and then 

ik ikWdV u   


 i

ik
k

u
dV

x

 


 . 

The first term can be neglected since we assume no existence of stress tensor on the infinitely 

far surface. Due to the symmetric nature of strain tensors, above equation is denoted as 

1

2
i k

ik ik ik
k i

u u
WdV dV u dV

x x
    

  
       

    or 

ik ikW u   .                                                       (4-6) 

Moreover, according to the first law of thermodynamic and the definition of free energy 

F U TS  , we have ik ikdF SdT u   . Therefore, another common and useful formula for 

stress tensors is presented as 

ik
ik T

F

u


 
   

.                                                         (4-7) 

Since we have already known that the free energy is a function of strain tensor, one can expand 

it to quadratic term as 

2 2
0 2 ll ikF F u u

    ,                                                   (4-8) 

where   and   are so-called Lamé constants or Lamé coefficients and the constant 0F  is the 

free energy before deformation. Note that the linear term must be vanished because the free 

energy is a scalar. Meanwhile, for the sake of simplicity, we also set 0F  is zero in the following 

paragraph. Plugging equation (4-8) into (4-7), we get 
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2ik ik ll iku u     .                                                  (4-9) 

In general, under the condition of isotropic compression ( ik ikp  , where p is pressure), 

equation (4-9) can be rewritten as 

2
2 1

2 3ll ik ik ll

B
F u u u     

 
,                                          (4-10) 

where B is referred to bulk modulus and its relation of Lamé constant is 

2
B

D
   ,                                                       (4-11) 

where D is the dimension of the system. Now, by substituting equation (4-9) into (4-7), for 3D 

stress tensors we have 

1
2

3ik ik ll ik ik llB u u u       
 

.                                       (4-12) 

It is essential for equation (4-12) that can be regarded as the constitutive relation between 

displacement field and electric field, namely D E. Furthermore, normally in fluid the shear 

waves are relatively small, thus equation (4-12) reduces to ik ik ll ikB u p    , thus 

llu p B . This formula is the well-known Hooke’s law. 

 In the study of elastodynamics in an isotropic elastic solid, one can simply substitute 

2
i iF u  in Eq. (4-4). Since only 2D cases  0z   are discussed in the subsequent 

contents, Eq. (4-4) can be further simplified into two decoupled equations yielding 

   2
i i i iu u                 u u .                      (4-13a) 
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2
z zu u      .                                             (4-13b) 

where ˆ ˆx x y ye e     , ˆ ˆx x y ye u e u  u , and ,i x y . It is worth noting that, in Eq. (4-13b), 

the z-orientation shear modes are governed by a standard wave equation in 2D elastic solids. 

The mixed xy waves, however, result from the Eq. (4-13a) whose modes are coupled with 

longitudinal and transverse components. This discrepancy between two elastic waves enables 

the specific manipulation through engineering the structures and materials. 

4-2: Topological Shear Modes 

In Chapter three, a discrete system like spring-mass composites has been discussed. Apart 

from the topological mechanics, classical vibration in a continuum can also possess topological 

nature under certain circumstance. The recent progress on topological photonic [9-10] has 

inspired researchers to explore similar phenomena for other classical waves in a continuum. 

Following the realisation of topologically nontrivial systems in photonics, research groups 

around the world have extended this concept to pressure acoustics [13]. In general, the 

generation of topological edge states is achieved through TR symmetry breaking for opening a 

topologically non-trivial band gap. According to the bulk-edge correspondence principle, 

topologically protected edge states are present at the boundary. To break TR symmetry in 

photonics, a feasible way is to utilise the magneto-optical effect in materials such as yttrium-

aluminium-garnet (YAG) since photons are uncharged particles that do not directly interact 

with the magnetic field. On the other hand, if the spin waves and elastic waves operate at close 

frequencies, the coupling between them results in a new excitation mode. Under a suitable 

physical condition, the linear coupling between magnetisation and strain give rise to non-

reciprocity for elastic waves in the crystalline ferrites. Based on the theory proposed by Kittel 

[68] and Schlömann [69], the Faraday effect for transverse elastic waves [70] was achieved in 
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early 1960s. Since then, YAG has been considered as one of the best candidates for realising 

the transverse acoustic Faraday rotation because of its low-loss property [71]. 

In addition, phononic crystals (PC) are artificial media composing of periodic elastic 

composites that can manipulate the propagation of acoustic or elastic waves, whereas the 

coupling between the longitudinal and transverse (shear) waves in elastic solids significantly 

complicates the investigation of PC. However, in a 2D system, shear wave field vibrating in 

the z direction is decoupled from the in-plane mixed waves. Interestingly, the propagating 

behaviour of pure shear waves is governed by the same wave equations as that of the TM mode 

(electric fields along z direction) of electromagnetic wave and the pressure wave in acoustics. 

Therefore, if a 2D PC is constructed using the aforementioned non-reciprocal materials such 

as YAG under a uniform magnetic field, topological shear edge states are expected to be present 

in this system.  

In this section, we demonstrate the topological edge states of shear waves through 

magnon-phonon interaction in a finite thickness 2D lattice phononic crystal as shown in Fig. 

4.1. This finite thickness 2D PC is made of lossless YAG rods embedded in the epoxy 

background, in which each rod exhibit magneto-elastic (ME) effect so as to break the TR 

symmetry. In the absence of magnetic fields, the PC possesses Dirac cones at the K and K’ 

points in the k space. By applying a uniform magnetic field in the z direction, these 

degeneracies are lifted to form a topologically non-trivial gap. Due to the non-trivial gap, a 

backscattering-immune one-way shear wave propagating around disorders is numerically 

discovered. Furthermore, since the finite thickness PC is made of two realistic materials, the 

corresponding experimental realisation could be readily implemented.  
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Fig. 4.1: A 2D gyromagnetic phononic crystal. The schematic diagram of a PC made by a finite thickness 
2D triangular-lattice arranged YAG rods (yellow) embedded in epoxy background (light blue). The external 
field H is applied in the z direction. 

We start with a description of the ME effect in bulk YAG. Under a uniform field 

0ˆHH z  applied along the crystal axis and a major axis of ellipsoid in ref. [71], the five coupled 

linear equations governing the dynamics of the coupled system (in SI unit) in terms of the small 

displacement u, magnetisation mx and my are given as follows: 

     2
0x r y z y y z y y ym g H D m b u u M h N m          ,                      (4-14a) 

     2
0y r x z x x z x x xm g H D m b u u M h N m          ,                      (4-14b) 

      2
44 12 44x x x s z xu c u c c b M m        u ,                       (4-14c) 

     2
44 12 44y y y s z yu c u c c b M m        u ,                       (4-14d) 

       2
44 12 44z z z s x x y yu c u c c b M m m          u .             (4-14e) 
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where   cij, b, m, gr and Ms are mass density, elastic moduli, ME constant, magnetisation, 

electron gyromagnetic ratio, and saturation magnetisation, respectively. h represents the 

internal in-plane field [71]. D is the “exchange field” term, which is negligible for most 

materials if k < 107 m-1 [72]. In equations (4-14), the shape of YAG has been set as a thin rod, 

which means that its demagnetisation factors satisfy Nz=0 and Nx=Ny=1/2 [73]. From literature 

[71] it is reasonable to assume that the z component magnetisation mz~Ms and mx,y<< Ms. The 

elastic stiffness matrix of a bulk YAG can be further simplified as  

11 12 13

12 22 13

13 13 33

44 45

45 55

66

c c c

c c c

c c c

c ic

ic c

c

 
 
 
 
  
 
 
  

,                                    (4-15) 

where 11 22 33 2c c c      , 12 13c c   , 66c  , 
 

 

2

45 2 2
02

s

s

b M
c

M H

 

  


 
, 

  
 

2 2
0

44 55 2 2
0

2

2

s s

s

b M M H
c c

M H




  


  

 
. Note that, as the H0 flips sign, saturated magnetisation 

Ms also flips its sign because it is induced by the external magnetic field. This leads to a sign 

change for c45 as the direction of applied fields changes. 

For the ideal 2D PC system, as all quantities are independent of the z variable, i.e., 

( ) 0z  , and the elastic wave can be decoupled to the in-plane and out-of-plane term [74]: 

   66 66 12 662i i i iu c u c c c                 u u ,                (4-16a) 

     44 45ˆz z zu c u i c u              z .                            (4-16b) 
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The index i = x,y, u = [ux ,uy] ¸and   is the gradient operator with respect to x and y. As Eq. 

(4-16a) describes the longitudinal and transverse elastic waves, they are referred to as “mixed 

waves” in PCs. Apart from mixed waves, Eq. (4-16b) involving only the out-of-plane 

component uz is the master equation for the “pure shear wave”. Defining a new set of 

parameters   , 441 c   , 45c   , and 441 zc u  , Eq. (4-16b) is perfectly mapped onto a 

non-relativistic 2D Schrödinger equation [9,13],  

   2
0effi r V r 

       
A ,                                    (4-17a) 

where 

 44 45ˆ1 2eff c c A z ,                                              (4-17b) 

       2 2 2 2
44 44 45 44 44ln 1 1 ln 4 ln 1 2 2V c c c c c  

            .   (4-17c) 

Induced by the external magnetic field, Aeff can be regarded as an effective vector potential for 

elastic waves. In other words, although applying magnetic field cannot directly affect shear 

waves in conventional solids, the off-diagonal terms of stiffness matrix in ferrimagnetic 

materials give rise to an effectively magnetic response via ME interaction. In the 2D spinless 

electronic system, the vector potential resulted from a strong magnetic field gives rise to 

quantised energy levels so that electrons are able to occupy a number of discretised levels only. 

This results in the quantised electronic transport is an essential concept of integer quantum Hall 

effect. Hence, owing to the same configuration of the wave equation, similar phenomena are 

expected in our elastic PC model. 
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Fig. 4.2: Bulk band diagrams and gapless edge states (2D).(a) Band structure of pure shear mode in a 

triangular lattice with filling fraction f equals 0.64 (r = 0.42a). The shaded rectangle area highlights the 

topological band gap. Red solid and blue dashed lines correspond to the system with and without magnetic 

field Hz = 100 G, respectively. The Chern numbers are labelled for each band. (b) The solid line coloured in 

red and green expresses edge states in the upper and lower boundary, respectively. Other grey areas are made 

of a number of bulk bands. The material parameters: YAG ( = 4550 kg/m3, cl = 8600 m/s, ct = 4960 m/s), 

Epoxy ( = 1190 kg/m3, cl = 2830 m/s, ct = 1160 m/s). 

Fig. 4.2 illustrates the band structure of pure shear waves. The PC consists of YAG rods 

( = 4550 kg/m3, cl = 8600 m/s, ct = 4960 m/s) of radius r = 0.42a embedded in epoxy 

background (= 1190 kg/m3, cl = 2830 m/s, ct = 1160 m/s), in which a is the lattice constant. 

Others material parameters are gr = 1.759×1011 s-T-1, b = 4.2×105 Pa, and 4Ms = 680 G. 

Throughout the paper the frequency is normalised to a dimensionless one by multiplying a 

factor 2πa/ c, where c is the average shear velocity 44c  . Here the bar represents the average 

defined by (1 )a bx fx f x   , where f denotes the filling fraction. In accordance with these 

parameters, we numerically calculate the band structure of pure shear waves from Eq. (4-15) 

by COMSOL Multiphysics 5.1. As depicted in the Fig. 4.2a, the red solid and blue dashed lines 

represent the band diagrams with and without external magnetic fields. Note that even though 

there is no isolated Dirac point, a non-trivial bandgap is lifted via applying a uniform magnetic 

field Hz = 100 G. From Eq. (4-15) we calculate the values of c44 and c45 to be 78.8 GPa and 

31.5 GPa, respectively. Due to the TR symmetry breaking, the degeneracies are lifted and a 

topologically non-trivial gap with a width   = 0.06 is created.  
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To verify the presence of nontrivial topological orders, we evaluate the Chern number for 

the nth band as   21 2n nBZ
C d  k Ω , where    n n

n z zi u u   k kΩ k k  is the Berry 

curvature and the integration is carried throughout the first Brillouin zone. The Chern numbers 

for the two bands split by TR symmetry breaking are ±1 (black number labelled in Fig. 4.2a). 

According to the principle of bulk-edge correspondence, a truncated PC exhibits topologically 

protected shear edge states in association with a net change of Chern number 2C  . We 

further investigate the existence of shear edge states appearing in a band gap. In Fig. 4.2b, the 

projected band structure for a 20×1 supercell is calculated, and two edge states can be seen 

within the bandgap. The boundary conditions of supercells are respectively set as periodic and 

fixed in the x and y directions. 

In practical, the thickness of a slab must be finite and mixing between longitudinal and 

transverse waves is inevitable. To further verify the validity of the proposed model, in what 

follows the simulation for a practical system is implemented. With a finite thickness h = 0.6a, 

we assume a PC possessing geometry and material parameters as the same as the preceding 2D 

case. Although most of bands are mixed between the longitudinal and transverse states, two 

bands of pure shear waves emerge in the mixed states bandgap ranged from 0.22 to 0.55. In 

Fig. 4.3a, we observe that the Dirac point is located around the frequency 0.485 at K point. In 

Fig. 4.3b and c, it is clear to see that two degenerate eigenmodes are pure shear waves since 

the direction of vibrations is along z direction, which further proves the existence of Dirac 

points of pure shears in the bandgap of mixed waves. In Fig. 4.3c, the edge states can also be 

found within the bandgap between frequencies 0.476 and 0.484, where colours represent the 

same meaning as mentioned in pure shear models.  



 

101 

 

 

Fig. 4.3: Bulk band diagrams and gapless edge states (Finite Thickness). (a) Band structures with the same 
geometry as Fig. 4.2 except a finite thickness h = 0.6a. Red solid and blue dashed lines illustrate the system 
with and without applied magnetic field Hz = 100 G, respectively. (b-c), the arrows and the field slices at the 
Dirac degeneracy show the modes fairly vibrate along the z direction. (d) Projected band structure calculated 
by a 20×1 supercell arranged in triangular lattices. A set of unidirectional shear edge state (red and green 
curves) located between two bulk bands (blue regions). The edge eigenstates in the red and green boxes stand 
for the edge states at the top and bottom boundary, respectively. 

In addition, one of the most essential features of topologically edge states is the robustness 

against disorders. In Fig. 4.4, we model a finite thickness 2D triangular lattice slab with an 

absorption layer at the bottom to demonstrate the field distributions of shear edge states. As 

shown in Fig. 4.4a-b, for a dc magnetic field applied in z and opposite directions, it is evident 

that the unidirectional shear wave modes excited by a z-oscillating source at the frequency of 

0.489. Note that the chosen frequency is slightly higher than the gap range given by Fig. 4.4 

due to the change of boundary condition in x axis. Our simulation shows that the centre of gap 

blue shifts but the gap width remains the same as before. Moreover, as shown in Fig. 4.4c, one 

can see the wave conformably bends around a sharp corner without being reflected or scattered, 

as protected by the nontrivial topology. Also, practically the influence of material loss should 

be considered. Here the damping factor  of YAG can be calculated from the linewidth H  

given in [73]. By adding the dissipation term  = 7.4×10-2 Hz, there is no difference between 

lossless and lossy system even including the loss of YAG. To see how dissipation affects the 

edge states, we numerically increase the damping factor up to 7.4×104 Hz. In Fig. 4.4d, with 

this value of damping factor, the chiral edge states still exist, and their amplitude has no notable 
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change as the dissipation term  is sufficiently small in comparison with the operating 

frequency. Regarding the confinement of edge states, topological edge modes exponentially 

decay along the direction of truncated boundary and its decay rate depends on how large the 

gap is. In this case, with a comparatively small topological bandgap, the decay rate of shear 

waves is slower than the topological mechanical waves showing in the chapter 3, in spite of 

the fairly confined appearance of edge states shown in Fig. 4.4. 

 

Fig. 4.4: One-way transport of shear modes. Unidirectional shear edge states in a finite PC with an applied 
dc magnetic field in (a) +z and (b) –z direction. A finite PC system surrounded by three fixed-constraint 
boundaries and an absorption layer at the bottom. (c) The robustness of shear edge states against a sharp corner. 
Topological protection ensures that no backscattering occurs in such system. All the edge states are excited by 
a point source at frequency 0.489. (d) The energy loss of YAG is considered in this field pattern. All the figures 
are calculated by using COMSOL. 

4-3: Elastic Topological Insulators 

In this section, we will investigate the topological nature in the in-plane mode of 2D elastic 

periodic composites. Based on (4-13a), by defining two effective spinors of elastic waves 

  2x yu u iu   , Eq. (4-13a) is rewritten on this basis as 
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,                     (4-18a) 
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u i u
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  

 

                    

                   


.                     (4-18b) 

Now consider a particular case:   , Eq. (4-18) can be further simplified to 

 z
u u i u           ,                                     (4-19a) 

 z
u u i u          .                                     (4-19b) 

The physical meaning of this assumption is that the equivalence of longitudinal and transverse 

sound velocity results in the duality between LT components, which can be one-to-one 

mapping the electromagnetic duality in photonic topological insulators [11]. Note that the 

criterion     gives rise to infinite Poisson’s ratio while the material is homogenous. Yet, 

with the aid of metamaterials, one can achieve such extreme condition within certain frequency 

region. Further studies for these matters will be introduced in the later content. 

Here we consider a phononic meta-crystal with honeycomb lattice made of cylinders 

( a = 19300 kg/m3 and a = 1.612×1011 Pa) embedded in a background ( b = 2690 kg/m3 and 

b = 2.486×1010 Pa). Through employing Bloch theorem, the displacement field expresses as

 expu u i
      GG

k G r . Also, periodically arranged material parameters are 

decomposed by reciprocal lattice G, which read  exp i   GG
G r , 
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 exp i   GG
G r  with   2

. .

1
exp

u c
i d r

A
   G G r ,   2

. .

1
exp

u c
i d r

A
   G G r . A 

is the area of a unit cell and sub-index represents taking integration over the entire unit cell. 

Substituting all the expressions above into Eq. (4-19), we obtain 

     
     

2

             

x x x x y y y y

x x y y y y x x

u k G k G k G k G u

i k G k G k G k G u

  



 
    


 

        
        




k G G G G G GG

G G GG

         (4-20a) 

     
     

2

               

x x x x y y y y

x x y y y y x x

u k G k G k G k G u

i k G k G k G k G u

  



 
    


 

        
         




k G G G G G GG

G G GG

        (4-20b) 

To analyse the modes in the vicinity of the K and K’ points, we truncate the plane waves basis 

for the first three reciprocal lattice components G0, G1, and G2, which are respectively equal to 

 0 1 2

3 3 3 3
0,0 ,  , ,  ,

2 2 2 2

K K K K
G G G

   
          

   
, 

with 4 3K a . These three plane wave components give three equal-length reciprocal 

vectors originating from K point, and each of them rotates 120 degrees about the K point (K = 

[K,0]). For K’ point (K = [-K, 0]), three truncated reciprocal lattice vectors are 

 0 1 2

3 3 3 3
0,0 ,  , ,  ,

2 2 2 2

K K K K
G G G

   
        

   
, 

Combining Eq. (4-20) for two spinors one obtains a general eigenvalue problem  

2 i

i


 

 

      
            

k

γ α βu u

γ α βu u
                                   (4-21) 

where 0 1 2[ , , ]Tu u u   u . Around K point we expand Eq. (4-21) to first-order perturbation 

x xk K k   and y yk k . After neglecting second-order and higher small quantities, we have 
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0 1 1

1 0 1

1 1 0

  
  
  

 
   
  

γ ,                                                  (4-22a) 
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      

     

 

  

 

       
   
           
   
      
      
 

 
 
 
  
 
 
 
  

α

,              (4-22b) 

2
1 1

1

1 1 1 2 1 2
3

1 1 3 1 2 1
2

1 1 1 2 1

1 1
3

   + 1
2

1

x

y

K K k

K k

  

 

    
        
        
 
  
  

β

 ,              (4-22c) 

Applying the unitary transformation ˆ ˆˆ ˆ, ; ,U U 
 0 0  with 2 21,1,1;1, , ;1, , 3      and

 exp 2 3i  , further simplified expressions read 

 0 1 3 3   γ I ,                                                (4-23a) 

2
1 1

1

1 1
3 3 3

1 1
2 2

1 1

1 1
9

   + 1
4

1

x

y

i i
K K k

K k

  

 

   
         

      
  

 
 
  

β

,                  (4-23b) 
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        
  
    
    

              
       
  

      
  

α

.(4-23c) 

where †ˆ ˆU UO O . Finally, by eliminating the two singlets and keeping the two doublets, two 

Dirac Hamiltonian associated with an effective intrinsic SOC term near the K point are given 

by 

 
 PnTI

D x x y y zd d

d dD x x y y z

v k k

v k k

    


    

 

 

     
    
      

u u

u u
      (4-24a) 

In the same manner, for K’ point Dirac Hamiltonian reads 

 
 PnTI

D x x y y zd d

d dD x x y y z

v k k

v k k

    


    

 

 

      
    
       

u u

u u
   (4-24b) 

where  

     2 2

PnTI 0 1 2

K
K

K


  


    

     0 1 0 12K K           

   0 1Dv K K     
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  13 2K    

Eq. (4-24) together presents a 4×4 low-energy effective Hamiltonian 

 ˆ
D z x x y y z z zH v k k s         ,                                    (4-25) 

where z  and zs  denotes the valley and spin index, respectively. Eq. (4-25) is equivalent to 

the KM model for 2D topological insulators so that the proposed system can be regarded as the 

elastic counterpart of it. 

 
Fig. 4.5: Topologically non-trivial bandgap and gapless edge states. (a) Band diagram of elastic topological 
insulators consisting of special inclusions (a = 19300 kg/m3 and a = 1.612×1011 Pa) embedded in a 
background (b = 2690 kg/m3 and b = 2.486×1010 Pa). Every band is doubly degenerate due to longitudinal-
transverse (LT) duality. A red shaded region is highlighted for the topological non-trivial bandgap. (b) Four 
edge states within the topological band gap. Each pair represents topologically one-way transports for a spin 
pair. Both figures are numerically calculated by using COMSOL multiphysics.  

 According to the given material parameters, in Fig. 4.5a the band structure of the 

phononic meta-crystal for two distinct conditions are investigated. If we force the second term 

of the Eq. (4-19) vanishes, the band diagram plotted by solid lines exhibit a Dirac degeneracy 

around K(K’) points. As stated in chapter three, a Dirac point carries a topological charge as it 

is a singular point of Berry curvatures. With the intrinsic SOC term, which is the second term 

of Eq. (4-19), a topological non-trivial bandgap is lifted between the 2nd and 3rd band. 

Exploiting FEM numerical calculation performed by COMSOL 5.1a, Fig. 4.5b demonstrates 

the gapless edge states of two chiral phonons (spinors) for a 30×1 supercell. The boundary 
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condition follows Dirichlet condition on truncated edge and Floquet-Bloch condition along x 

direction, respectively. Although phononic systems are bosonic, which in general does not obey 

Kramers theorem, in here Kramers theorem can be applied such that linear combination of two 

phonon polarisations creates an effectively spinful system. Therefore, two chiral edge states in 

Fig. 4.5b must be degenerate at TRIMs as formerly discussed in chapter two.  

 
Fig. 4.6: TR Symmetry-protected edge states. Three kinds of defects calculated by COMSOL multiphysics: 
(a) a block for a sharp corner, (b) random distribution of geometry, and (c) a cavity by removing an area of 
cylinders. For all type of disorders, topological protection guarantees the backscattering-immune propagation 
along the boundary. Note that here only spin-up polarised source is used. 

 To confirm the robustness against disorders, in Fig. 4.6 we plot several cases that 

exhibit the reflection-free unidirectional spin wave propagation guaranteed by TR symmetry 

in the system. Here we consider spin-up cases only because, for spin-down, the phenomena are 

the same except the propagating direction. From Fig. 4.6a-c, three types of defects are 

numerically demonstrated. In Fig. 4.6a, from a point source to right spin waves propagate 

around a sharp corner created by a fixed block without any backscattering. In Fig. 4.6b, by 

introducing randomness to the distribution of cylinders, we construct an area of disorders but 

still, spin waves bypass this random area without any occurrence of reflection. At last, we 
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remove a few cylinders to form a cavity. Generally, as operating frequency is chosen within 

the bandgap, localised modes arise like the cavity-phononic crystal we perform in Chapter three. 

However, due to the topological protection, spin waves circling around the cavity generate no 

cavity mode. All three type defects show that symmetry-protected edge states take place as 

long as TR symmetry retains. 

 
Fig. 4.7: Elastic metamaterials.(a) A schematic draw for elastic metamaterials. Within a unit cell, a soft 
inclusion embedded in the hard background creates an effective dispersive medium. (b) The plot of low-
frequency band diagram and effective material parameters show a resonance feature of elastic metamaterials.  
[75] 

 Despite the exotic properties described above, to fabricate elastic solids with criterion 

    or zero bulk modulus in 2D, it takes extra attention since, physically, such material 

cannot be found in nature. Yet, artificial composites called metamaterials provide the chance 

of accomplishing negative elastic moduli. The design of elastic metamaterials has been 

revealed in this reference [75]. Here a brief discussion is given. As shown in Fig. 4.7a, consider 

a soft inclusion, such as water, rubber, or acrylics, embedded in a hard background, normally, 

metals. Under long-wavelength limit, this composite is equivalent to a spring-mass network 

with characteristic frequencies, which can be considered as a multi-pole dispersive material 

that leads to zero bulk modulus. In Fig. 4.7b, effectively we can have zero bulk modulus at a 

certain frequency that, in principle, makes the elastic topological insulators possible. 

Nevertheless, there is a flaw in the previous band diagram calculation. For dispersive media, 
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direct FEM emulation by COMSOL needs to be corrected because formally the wave equation 

cannot be discretised as an eigenvalue problem of frequency. To clarify this part, an alternative 

numerical calculation of band structure proposed in ref. [76] will be implemented. Additionally, 

since the LT duality is no longer valid for any frequency point, Z2 topological index must be 

further calculated to verify the occurrence of topological nature in the future. 

4-4: Chapter Summary 

Throughout this chapter, firstly we demonstrated the emergence of topological shear wave in 

a 2D PC with finite thickness. For such elastic composites, the mixed modes, in general, are 

coupled with the vibration in z direction. However, by choosing proper geometry and material 

parameters, we obtained the Dirac degeneracies of pure shear waves found in a gap of mixed 

modes, leading to a topologically non-trivial gap as the uniform magnetic field is applied. Since 

our proposed system is made by two realistic materials, it is feasible to experimentally observe 

these topological shear edge states. In our design, the operating frequency of 0.489 corresponds 

to a PC lattice constant of about 6.67 m , which is feasible to fabricate by using current 

nanofabrication technology. 

In the second part, we discussed the topological nature of in-plane elastic waves. 

Assuming a zero-index bulk modulus, the elastic version of topological insulators arises from 

the LT duality. Our deduction analytically proved that the effective KM model can be achieved 

near the Brillouin zone vertices K and K’. Numerically, the band diagram of a unit cell and a 

30x1 supercell were presented for the verification of topological bandgap and gapless edge 

states in between. To examine its topological protection properties, three kinds of defects were 

applied but none of them can lead to any reflection so long as the TR symmetry is preserved. 

Due to the use of zero-index bulk modulus, we introduced metamaterials to achieve it at certain 
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frequency region. Yet as a dispersive case, the numerical calculation of band structure should 

be corrected, for which we aim to investigate in the future. 
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Chapter 5  Rotation Induced PT Symmetric 

Acoustics 

As mentioned in Sec. 2-4, non-Hermitian physics with PT symmetry possesses many intriguing 

phenomena. In this chapter, distinguished from the conventional gain-loss combination, we 

propose a novel approach to realise PT symmetric physics via the rotations. In what follows, 

we prove that a metamaterial consisting of spinning cylinders leads to interesting type of 

dispersion, i.e. folded band, in extremely low-frequency region. Within these folded bands, 

there exist complex solutions representing the occurrence of PT broken phase. In addition, at 

every PT phase transition point, a set of exceptional points forms rings in 3D band diagram 

that generate an extraordinary effect called pairs of exceptional rings. In what follows, the 

content in Sec. 5-3 is related to Part E in Table II. 

5-1: Introduction 

As previously stated, the acoustic waves can be regarded as a special case of elasticity. Yet, in 

comparison with elastic waves, sonic waves are closer to our daily life so that the related studies 

and applications are ubiquitous in practical. In this section, a brief introduction of sound is 

presented via the perspectives of fluid mechanics [77]. In fluid mechanics, considering an 

incompressible fluid, the continuity equation 0t    v  must hold in accordance with 

conservation of mass. Also, based on Newton’s second law, we have the momentum (Euler) 

equation   1
t p    v v v .  

 With regard to the sound waves, it is a kind of the alternative and small volume change 

in fluid. Therefore, the additions of small-quantity perturbations on incompressible fluids lead 
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to the governed equation of acoustic waves. Three variables are expressed as 0  v v v , 

0p p p   and 0    . Substituting them into the continuity and the momentum equation, 

by neglecting second-order small magnitudes, we obtain 

0 0t     v , 

1
0 0t p   v . 

As the motions in ideal fluid is an adiabatic process, the relation 2
0p c    connecting pressure, 

density and fluid velocity holds. Combining two equations above with the identity 2
0p c   , 

the pressure wave equation yields 

2
2

0 0 0

1 1
t p p

c 
      , 

where the factor 2
0 0c  is usually called “bulk modulus” with the notation 0B . The above 

pressure wave equation shows the identical mathematical expression as 2D shear waves stated 

in the previous chapter, as well as the TE(TM) modes in electromagnetism while replacing 

(  ) with 0  and  (  ) with 1
0B . Consequently, the concepts of metamaterials for 

electromagnetic waves can be intuitively extended to sound waves by the proper structure 

engineering. 

On the other hand, over the past decades, metamaterials, which could manipulate waves 

by the design of certain structures, have achieved many novel phenomena such as double 

negative material indices [78], subwavelength imaging [79], invisibility cloaking [80], and 

classical analogue of electromagnetically induced transparency [81]. Specifically, for sonic 

waves modulation, there are several ways to implement acoustic metamaterials. To realise the 



 

114 

 

negative bulk modulus, the structures is made of periodically arranged Helmholtz resonators 

[82]. In addition, negative mass density is observed in a composite is composed of heavy metal 

beads coated by soft rubbers [83-84]. Lastly, A set of silicone rubber spheres suspended in 

water has been theoretically proposed that can bring about double negative material indices 

[85]. In addition to preceding methods, Censor et. al. [86] pointed out the sound waves is 

scattered even though the material of spinning inclusion and background are identical. This 

result implies that rotation will transform the material properties into the one distinguished 

from its origin. Inspired by that, in the subsequent contents, we will prove non-dispersive media 

could be changed into dispersive ones while the scatterer rotates. This rotation-induced 

dispersion enables us to accomplish acoustic metamaterials without fabricating any complex 

structure. 

In this chapter, we demonstrate pairs of ERs in a PT symmetric acoustic metamaterial 

distinguished from the conventional gain-loss combination. To achieve it, we introduce a 

periodic array of spinning cylinders in a water matrix. Induced by the rotation, effective 

dispersive media arise under long-wavelength approximation. Around the magnitude of 

angular velocity, we show that the Hamiltonian of proposed model exhibits two ERs in the 

vicinity of   point. Most interestingly, the imaginary term of each pair of ERs forms a novel 

torus in momentum space. To examine the order of EPs, phase rigidity is applied and the results 

present a ring of 1/2 order singularities around every k direction. We further demonstrate an 

additional pair of ERs, which shares the same mechanism as others, at higher frequency region. 

5-2: Rotation Induced Dispersion 

We begin by considering a 2D periodic composite made by an array of parallel, inviscid fluid 

cylinders immersed in water background ( 0 =1000 kg/m3, c0 =1490 m/s). The lattice constant 
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a = 0.1 m and the radius of cylinders rs = 0.15a. As indicated in Fig. 5.1a, each cylinder rotates 

about its symmetric z axis in a constant angular velocity W = 3000 rad/s. Although it is difficult 

to implement, particularly we assume that filling fluid is also water to demonstrate the influence 

between dispersion and rotation. In the later part, a realistic case will be discussed. Fig. 5.1 

depicts the schematic plot of a rotation-induced acoustic metamaterial. Nevertheless, whereas 

Fig. 5.1a illustrates a square lattice of cylinders, the lattice type is insignificant because only 

the homogenised bulk material is implemented. In polar coordinates, the pressure acoustic 

wave equation inside the inclusions with a constantly rotating speed W is given by [86] 

2 1 2 2 2 0r r mp r p r m p p       ,                                          (5-1) 

where p is the pressure wave, m is the angular index, and the rotating wavevector 

 2 2 2 24Wm M c    . The frequency correction  WM i m   is due to the rotational 

Doppler effect [87] that causes frequency shifts of waves propagating from static to rotating 

media. The solutions of (5-1) generate a complete set composed of Bessel and Hankel functions 

that enable the analysis by employing multiple scattering theory *  (MST). To match the 

boundary conditions, we further calculate the radial and azimuthal displacement ru  and u  

denoted as 

2 2 2 2 2 2(2W ) 3 W ( 4W )( W )r ru M p imM p r M M            ,            (5-2a) 

2 2 2 2 2 23 W (2 ) ( 4W )( W )ru M p im M p r M M              .            (5-2b) 

                                                 
* Multiple scattering theory is the mathematical algorithm for calculating wave propagation via a collection of 

waves scattered by many objects. It is applicable to several physical systems, such as porous media in acoustics, 

sunlight scattered by many water droplets (cloud) in the sky, or high-frequency electromagnetic waves scattering 

from a solid crystal. 
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After applying boundary conditions bac incp p as well as 2
0bac rp u   , the Mie 

scattering coefficients is 

0 0 0 0

0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
m m m s m s s m m s m s
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where, 
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M M
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
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 

.                (5-4) 

 

Fig. 5.1: A schematic plot and low-frequency dispersion. (a) A 2D periodic structure consisting of a water-
cylinder array in water background ( = 1000 kg/m3 and c =1490 m/s). Each cylinder is parallel to z axis with 
a constant angular velocity W. (b) The band diagrams for acoustic metamaterials by using MST and EMT. 
Both results fairly match each other. Second and third band are folded within the frequency region W/c0 = [1, 
3], and [3.99, 4.06] as illustrated in the inset. 

As depicted in Fig. 5.1b, by using both MST as well as the effective material theory (EMT) 

[88], we plot the band diagrams for acoustic metamaterials via scanning the real frequencies 

and wavevectors. When the eigenfrequency is much higher than angular frequency, it shows a 

scatterer-free band structure which is the same as the case without rotation. However, as the 

eigenfrequencies are approaching the angular frequency W, around the long-wavelength region 

the dispersion relation dramatically changes into several folding and resonance bands owing to 
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the gain resulted from the centrifugal force. Especially the turning points between these folding 

bands, we will show that there exist some complex solutions by constructing an effective 

Hamiltonian around the low-frequency area. 

 We further deduce effective material indices inside the scatterers and the method of 

homogenisation. To calculate the effective density and bulk modulus, a necessary term 

 1m mD D  is  

0 0
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0 0 0 0
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.                     (5-5) 

With Eq. (5-5), we can derive the effective bulk modulus and the mass density in the subsequent 

contents. Firstly, for effective bulk modulus, we only need to take the angular index 0m   into 

account. Based on the EMT [88], the effective bulk modulus is given by 
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.                               (5-6) 

Although Eq. (5-6) has given the analytic form of effective bulk modulus, we do further 

approximation under the condition 0 0 0 1sk r k r   so as to clarity the influence of the rotation 

in material properties. Focusing on the R.H.S. of Eq. (5-6), it can be rewritten as 
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.       (5-7) 

As long as the approximate condition 0 0 0 1sk r k r   holds, we have 
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Also, while 0 0 0, 0sk r k r  , 2 2
0 0 0ln( ) 0sk r k r  . It causes that the denominator is dominated by the 

term 
2 2
0 0 0

2

ln( )sk r k r
 so that the R.H.S. can be approximately expressed as 
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In the same manner, we will have the expression of L.H.S. 
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Combining with Eq. (5-8) and (5-9), a clearer form of effective bulk modulus is 
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0 0

1 1
0 0

e sB B B B
f

B B

   

 

 
 ,                                           (5-10) 

where 2
0( / )sf r r  is the filling ratio and the bulk modulus inside every scatterer denotes 

2
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With the aid of Eq. (5-10) and (5-11), the influence of rotation is now separated from the 

background. Note that Eq. (5-11) is deduced under the condition 0 1sk r  . It means 0 1 / sk r
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or 0 10k   as 0.15sr a  and a = 0.1. Therefore, a reasonable choice of a frequency region 

could be 0 3k  and this region will be considered in the subsequent contents. 

 Before we start to calculate its expression, it is helpful to look the value of function

0 0

0 0 0

( )

( )
s

s s

J r

r J r


 


. In the Fig. 5.2a, it is evident to see that, in the region 0 3k  , the value nearly 

equals -0.5.  

 

Fig. 5.2: The approximate values:The numerical calculation between [0, 3]c   for the magnitude of (a) 

0 0 0 0 0
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Thus, Eq. (5-11) is simplified to  
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Consequently, we can conclude that the effective bulk modulus for each scatterer has a resonant 

form given by 
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Additionally, by taking only the angular index 1m   into account. The effective mass density 

can be denoted as 
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In the same manner, one can do further approximation 0 0 0, 1sk r k r   and the R.H.S. of Eq. (5-

13) is expressed as 
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Similarly, the approximate condition 0 0 0, 1sk r k r   holds, we have 
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Next the R.H.S. can be approximately expressed as 
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and the L.H.S. is 
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Combining with Eq. (5-15) and (5-16), a clearer form of effective mass density is 
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the mass density of the scatterers denotes 
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Expanding Eq. (5-18) we get 
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In Fig. 5.2b, the function 1 1 1
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 in the region 0 3k   is nearly equal to one. Therefore, 

Eq. (5-19) surprisingly becomes a neat expression as 
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We thus have the form of mass density, which is given by 
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In the same manner for 1m   , we get another mass density 
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Similarly, in Fig. 5.2c the function 1 1 1
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 in the region 0 3k   is nearly equal to 1 as 

well. Eq. (5-21) becomes 
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We thus have the form of mass density, which is given by 
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The discrepancy of two densities is due to the fact non-reciprocity results from spinning 

cylinders. Eq. (5-12), (5-21), and (5-22) demonstrate a frequency-independent material can be 

turned into a dispersive medium while the rods are spinning. After homogenising by (5-10) and 

(5-17), the effective material parameters are denoted as 
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with 



 

123 

 

2
0 0 0B c , 0

1 (1 )
s

B
a f f

B
   , 0

2 3
s

B
a f

B
 , 

0 0
1

0 0

( )

( )
s s

s s

f
b

f

   
   
  


  

, 
 1

2
0 0

(1 ) (1 )

( )
s

s s

f f b
b

f


   

  


  
, 

3
0 0

(1 )

( )
s

s s

f
b

f


   




  
. 

It is worth noting that, for static inclusions, 1 1
1 0a B B  and 0 1b   are average bulk modulus 

and mass density whose expressions are consistent with ref. [88]. In addition, if one transforms 

the density terms of (5-23) into Cartesian coordinates, it results in an anisotropic density tensor 

written by 
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,                                 (5-24) 

which formally coincide with the electromagnetic waves affected by ferrimagnetic materials, 

such as yttrium iron garnet (YIG) [73].  

5-3: Pairs of Exceptional Rings 

Once the expressions of dispersive media are decided, we can thus formulate the effective 

Hamiltonian by means of defining auxiliary variables [76] 
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To make a symmetric Hamiltonian, auxiliary fields can be further reformulated by further 

defining: c B  , W W c , v v , p p c , 0 3 2b b Λ Λ ,  1 2c a a  , and
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 2
1 2Wc a a  . We can obtain an eigenvalue problem 0

ˆ( / )c x Hx  whose the 

eigenvector equals [ , , , , ]T p  x v Λ    and its Hamiltonian reads 
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.(5-25) 

The off-diagonal terms in the above Hamiltonian consisting of bi coefficients retain its 

Hermiticity because, as stated in (5-23), they can be considered as an analogue to the 

electromagnetic response in ferrites after applying static magnetic field. Yet, ai coefficients 

conduct the non-Hermitian parts and they are relevant to the effective bulk modulus which 

possesses the effect of anti-resonance*. To reveal the underlying physics of the anti-resonance 

and non-Hermitian system, we review displacements expressed in (5-2). In the absence of 

                                                 

* Anti-resonance is a unique resonant effect which has an inverse phase jump in comparison with (normal) 

resonance. Generally, the anti-resonance effect originates from two coupled oscillators as destructive interference 

occurs under certain circumstances. A sole oscillator possessing anti-resonance is considered to be impossible due 

to the rule of causality. However, the anti-resonance feature has been observed in the presence of active materials 

because the rule of causality is valid only for passive media. 
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rotation, the azimuthal displacement u  vanishes when the index m=0 is considered. This 

corresponds to the fact that, around low-frequency, the eigenmode of the pressure wave is 

nearly acting as the isotropic oscillation along the radial direction. However, with a constant 

angular frequency W, the isotropic pressure distribution causes not only the displacement in 

radial direction but the one in azimuthal orientation. In other words, while rotation is introduced, 

both displacements ru  and u  are naturally coupled because of the Coriolis force. 

Additionally, the existence of centrifugal force generates an effective gain and loss as the 

cylinder rotates. During the compressional process, pressure waves propagate against the 

outward force caused by the centrifugal effect, which can be regarded as an effective loss. On 

the contrary, in the time of the dilation, the centrifugal force benefits this process so that it can 

be considered as the gain medium. As a result, with effective gain/loss terms from centrifugal 

effect and coupling from Coriolis effect, a PT symmetric system is physically expected. 

 

Fig. 5.3: Transmittance 

spectrum.The transmittance 

spectrum within the region 

[0,3]. The green circles 

highlight the Fano resonance 

peaks around the 

frequencies W  and 

2 W . 

Next, if one regards ru  and u  as two “oscillators”, the coupling between them would 

give rise to the anti-resonance characteristic, which has been proposed in other systems such 

as RLC circuits [73], coupled mechanics [89], and cavity QEDs [90]. In addition, this coupling 
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between two resonators leads to the phenomenon called “Fano resonance” that shows distinct 

resonant shapes comparing with conventional type of resonances [91]. In Fig. 5.3, we plot the 

transmittance spectrum illustrating Fano resonant peaks around frequency W  and 2W . 

As stated in the literature [92], under certain circumstance it is possible for two coupled 

resonators to have anti-resonance. Thus, the rise of Fano mechanism can be considered as 

another angle of the generation of this unconventional asymmetric line shape. For the reason 

of non-Hermiticity, in accordance with the definition of bulk modulus B V P V    , the 

radial displacement ru  inside scatterers caused by the pressure from background directly 

contributes to the change of volume, yet u  plays no role to it. This makes acoustic 

metamaterials become an open system. Thus, an anti-Hermitian, or even asymmetric 

Hamiltonian originating from an open system is theoretically anticipated [93]. 

On the other hand, by testing commutation relation of PT operator, we further discuss in 

this section whether this acoustic metamaterial is PT symmetric or not, where P stands for 

parity symmetry flipping sign in real space (e.g.,  r r ) and T stands for time-reversal 

symmetry flipping sign in time ( t t ). It should be noted that P does not account for 3D 

inversion. If so, the system will break PT symmetry. At the first glance, it seems that the 

effective Hamiltonian (5-25) is a non-PT symmetric system, since the matrix is formally 

asymmetric. On the contrary, this acoustic metamaterial preserves under PT symmetric 

operation. As a uniform rotating velocity 0 ˆWrev , W changes sign under T operation but 

remains the same under P operation, i.e. W( , ) W( , )t t   r r . Apparently, the Hamiltonian 

(5-25) violates the commutator with either P or T operation. However, under the PT symmetric 

condition *( , , ) ( , , )H t H t  p r p r  [39], it commutes with PT operator and leads to EPs while 

PT phase is broken. 
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Fig. 5.4: A pair of ERs.(a) The real parts of a pair of exceptional rings calculated by the effective Hamiltonian. 
In the upper panel, the lowest band is similar to plasmonic dispersion exhibiting a resonant flat band. For second 
and third bands, the eigen-solutions predict the occurrence of band folding, matching the numerical results 
from MST. Apart from that, the red and green arrows indicate a pair of exceptional rings (ERs) where both the 
real and the imaginary parts are degenerate. 3D plots in lower panel give a clearer view of ER pair highlighted 
by red and green circles. (b) Two balanced imaginary parts are shown that implies a system with PT symmetry. 
In the lower panel, a torus of imaginary parts in the momentum space corresponds to the ER pair in (a). (c) 
Following the black arrows, the change band structure is given by tuning the radius from 0.1a to 0.25a. The 
ER pair only moves in k -  space as the radius increases. 

 Fig. 5.4a-b respectively show the real and imaginary part of eigen-frequencies resulted 

from solving Eq. (5-25). In Fig. 5.4a, the folding bands are connected between two ERs 

appearing around (| |, ) (0.030, 0.024) k  and (0.094, 0.039)  between the second and third 

bands. Fig. 5.4b shows an exotic donut-like imaginary distribution about the Brillouin zone 

centre. Within the PT broken region, the equivalent plus and minus imaginary parts provide 

another evidence of the existence of PT symmetry. Besides, when geometric parameters are 

tuned, the emergence of ER pairs exhibit the robustness against structure variances, since they 

are not spawned from the accidental Dirac degeneracy [42]. In Fig. 5.4c, we gradually increase 

the radius of cylinders from 0.1a to 0.25a. The ER pairs remain regardless of the change of 

radius. Note that if the radius increases up to 0.3a, the lowest region turns into a band gap. This 

stop band emerges because all propagating wavevectors k are purely imaginary higher than 

this filling fraction. 
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Fig. 5.5: Phase rigidity. (a) Phase rigidities of the states as a function of wavevectors for the first band (red), 
the second band (blue), and third band (green). Dips arising from the position of ERs are clearly shown. (b) 
The inset shows a log-log plot of phase rigidity versus |k − k0| for the exceptional points that indicate the order 
of EPs. 

In addition, to clarify the order of singularity for ERs, a quantity rjk called “phase rigidity” 

for all bands is defined as 
1R R

jk jk jkr u u


   , where R
jku  denotes the normalised right 

eigenstates [43]. Quantitative analysis provided by phase rigidity clarifies the mixing of two 

states near an exceptional point (EP). The magnitude of phase rigidity approaches zero near 

EPs in association with a power-law behaviour. For a normal-order (lowest-order) EP, it is 

well-known that the power order of the phase rigidity is 1/2; otherwise it is a high-order EP. 

Physically, a high-order EP results from the coalescence of several lower-order EPs. However, 

in our system the coalescence occurs only when the rotation vanishes. Owing to this conflict, 

it is unlikely for the proposed model to generate high-order ERs. To calculate the order, in Fig. 

5.5a we plot the phase rigidity of all bands along the Brillouin boundary X . Phase rigidities 

of the second and third bands merge and rapidly decrease to zero at 0.030k  as the phase 

rigidity for the states on the third and fourth bands merge and vanish at 0.094k . Fig. 5.5b 

illustrates the phase rigidity with log-log scale, and a slope of 1/2 is clearly shown. 
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Fig. 5.6: Another pair of ERs. (a) An additional pair of exceptional rings located around W/c0 ~ 4 and (b) its 
imaginary parts via scanning the complex frequency plane of Eq. (5-28). 

If we take the region beyond the long-wavelength restriction into account, there exists 

additional ER pairs for high frequencies. Although above Hamiltonian is no longer valid in 

such region, one can have the dispersion relation expressed by 

2
2 2

( )
e e

e e eB

  
 

 

 

 


  
k ,                                                  (5-28) 

where all the parameters have analytical forms given by the effective indices in ref. [75] rather 

than Eq. (5-23). As shown in Fig. 5.6a, after finding complex solution of Eq. (5-28), there is 

an extra ER pair near the real frequency 0 4c  . As shown in Fig. 5.6b, an additional 

imaginary torus is illustrated. Despite the invalidity of long-wavelength limit, PT symmetry in 

the system retains so that a pair of symmetric imaginary part about k plane occurs which implies 

the mechanism of this ER pair is the same as preceding contents. 

5-4: Chapter Summary 

 In summary, the pairs of ERs in acoustic metamaterials made by spinning rods has been 

studied. Resulting from anti-resonance in an open system, the asymmetric Hamiltonian leads 
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to interesting folded bands, and the complex dispersion relation exhibits multiple ERs between 

these bands around low-frequency region. Due to the fact W ( , ) W ( , )r t r t    , we construct 

P and TR symmetry operator and theoretically prove the Hamiltonian is PT symmetric. The 

corresponding eigenfrequency possessing a pair of balanced imaginary parts provides a solid 

evidence of a PT symmetric system. To verify the singularity of ERs, phase rigidity is 

introduced. Our result shows every ER has the lowest order 1/2 and unlikely merges into high-

order ERs because of the resonance. Surprisingly, up to higher frequencies, extra pair of ERs 

is found even beyond the long-wavelength limit. In the final part, we introduce a feasible 

material and a possible experimental setup is proposed.
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Chapter 6  Conclusion and Future Work 

6-1: Conclusion 

In summary, after outlining some essential background concepts, we theoretically proposed a 

mechanical crystal with honeycomb lattice that can possess topologically one-way edge states. 

The equations of motion are presented, and its band diagram shows, at K and K’ points, several 

special degeneracies so-called Dirac points for mechanically vibrating modes. Likewise, as an 

infinitely long zigzag-edge strip with the identical geometry is taken into consideration, three 

types of edge states are found between energy bands. Furthermore, if the system is placed on a 

rotating frame, in the presence of Coriolis forces, TR symmetry will be broken, and then 

topologically non-trivial bandgaps are lifted. Within the non-trivial bandgap, topologically 

protected edge states can be observed in the projected band structure. On the other hand, if one 

initially stretches every spring with the same length, the pre-tension springs enables the 

mechanical crystals performs not only the original longitudinal but also transverse vibrations. 

After low-energy expansion around K points, the presence of transverse components can be 

considered as the effective Dresselhaus SOC term. By this extra contribution, spin-dependent 

wave-packet propagation is driven so that the elastic counterpart of spin-Hall effect is therefore 

observed. 

 In chapter four, we focused on the topological physics in periodically arranged elastic 

composites. Due to the decoupling of out-of-plane and in-plane modes in 2D elastic solids, we 

can be separately taken their phenomena into consideration. The out-of-plane modes, which is 

normally named as the pure shear modes, are mathematically equivalent to pressure acoustics 

and TE/TM electromagnetic fields since they are all governed by the same Helmholtz equation. 
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Therefore, by using ferrimagnetic rods as inclusions, we are able to generate topologically one-

way transport of pure shear modes in elastic crystals. Apart from that, as the in-plane elastic 

modes are formed by coupled longitudinal and transverse components, the effective SOC terms 

emerge so long as one defines “spinor” as   2x yu iu    . Moreover, through setting a 

zero-value bulk modulus, which implies    , two coupled elastic equations have the 

exactly same form in comparison with the 2D photonic topological insulators. Based on that, 

an elastic version of topological insulators is theoretically expected. 

 As presented in chapter three, rotation plays essential role in topological phenomena in 

classically vibrating waves. In chapter five we look further into the effect caused by rotation. 

Owing to the rotational Doppler effects, the frequencies across static and moving boundary are 

no longer the same. As a result, reconsidering the boundary condition originated from 

displacement continuity 1 2u u , the spinning non-dispersive material effectively transforms 

itself into a frequency-dependent one with respect to the angular velocity we apply. This 

rotation-induced-dispersive effect provides alternative approaches to realise acoustic 

metamaterials. Most interestingly, around the low-frequency region, effective medium theory 

shows there exists pairs of ERs with the unprecedented donut-like imaginary distribution. For 

the experimental realisation, we suggested a binary system made of spinning steel cylinders 

and water background that can be readily implemented in modern technology. 

6-2: Future Work 

In the future study, we plan to practically achieve theoretical predictions as proposed in 

preceding chapters. Firstly, the recent progress about effective SOC in mechanical systems [94] 

enable us to experimentally verify elastic spin-Hall effects. As shown in Fig. 6.1, every mass 

sphere hung by a string from top is properly connected by pre-tension springs in order to create 
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transverse components. By arranging the identical setup periodically, we can thus fabricate a 

mechanical graphene sample. Secondly, based on the results of realising 2D elastic topological 

insulator in Sec. 4-3. By setting    , 2D elastic topological insulators are anticipated. To 

experimentally verify it, the key step is to build up an effective bulk modulus whose has zero 

value around certain frequencies. Elastic metamaterials are applied in accordance with the 

results in ref. [75]. By means of filling soft matters like silicon rubbers in the porous structure, 

it is feasible to obtain zero-index bulk moduli on account of induced resonance. 

 
Fig. 6.1: A mechanical Benzene. The left figure demonstrates the experimental setup. The right figure is a 
snapshot while measuring the displacements of the pendula. [94] 

Thirdly, we discuss the experimental realisation of the ER pairs. As stated in ref. [95-

96], the shear waves are not negligible as the impedance contrast between inclusion and 

background is relatively small. Therefore, owing to its considerable contrast to background 

fluid, steel ( 7670   kg/m3, 6010c m/s) is a suitable candidate since we can treat the inclusion 

as fluid without loss of any generality. To implement Hamiltonian (5-25), it requires spinning 

steel rods which can be achieved by well-controlled electric motors. A suitable rotating speed 

range for our case roughly equals 3k-4k rad/s or 28k-38k rpm and it is commercially 
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supportable. Concerning the output power of motors, the lattice constant and the cylinder 

diameter is respectively set as 5 cm and 3 cm so as to construct lighter steel rods. The estimated 

wavelength in water is about 2 m as the angular velocity is set by 5k rad/s. At this structure 

scale, it is applicable for a 10×3×1 m3 water tank to contain the entire acoustic metamaterial 

sample. In addition to the experimental realisation, the theoretical study regarding the physics 

within the PT broken region is still unclear. Unlike the conventional PT symmetric system, 

which is made of gain/loss coupled waveguides [97], the rotational PT symmetric effect arises 

from the occurrence of the centrifugal force. While the PT symmetry is broken, no enhanced 

transmitted wave is observed and that is different from the PT systems in optics. To study the 

phenomenon, we will apply the FDTD algorithm to see the instantaneous field pattern. Since 

the solutions in the broken PT region are complex conjugate pair of frequencies, a time-

dependent algorithm can greatly help us reveal the underlying gain mechanism. 

 Apart from the practical observation discussed previously, here we suggest other 

possible studies of topological phenomena in classical vibration. Recent studies of phase 

modulations in elastic thin plates have provided a good platform to generate topologically one-

way transport. Based on the Peierls substitutions, which replaces the hopping parameters by 

multiplying a phase factor, one can consider the system applied effectively by the uniform 

magnetic field via properly designing the structure of connections. However, normally the 

adjustment causes not only the change of phase factors but also the amplitude while the wave 

propagates through. This randomness of amplitudes will break topological phases such that it 

needs experiences regarding the structure engineering. In addition, the calculation of Chern 

numbers, which defines the topological order in the system, is tricky even though the formula 

has been long known for decades. The difficulty comes from the numerical calculation of 

eigenstates. Owing to the eigenfunction is gauge-dependent, every calculated eigenmode is 
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accompanied by an arbitrary phase so that it leads incorrect Chern numbers. To solve this 

problem, researchers proposed a replacement named “Wilson loops” whose expression is 

robust against the influence of random phases [98]. As my previous researches are highly 

linked to it, I have written a few programmes of Wilson loop calculation. 

 On the other hand, one of the main topics in topological physics is the search for Weyl 

[99] and Dirac points [100], but they have not yet been discovered in 3D elastic crystals. To 

find the topologically non-trivial degeneracies, the knowledge of group theory is required. 

Based on the group theory, a symmetry-protected degeneracy is guaranteed by the irreducible 

representation of little groups at certain high-symmetry points or lines. In accordance with the 

symmetry in real space, all these degeneracies can be sorted by its type of symmetry including 

universal symmetries (parity or time-reversal symmetry), point groups (symmorphic space 

group), and non-symmorphic space groups. Since the total number of space groups is 230, it is 

tedious but worth to categorise all the space groups in elastic crystals. Once the classification 

is built, it will make the search for Weyl or Dirac points become a straightforward task. 

Moreover, while considering non-symmorphic space groups, higher dimensional irreducible 

representations are generated that enables us to study the degeneracies beyond Weyl and Dirac 

points. Recent literature has shown that, in electronic crystals, there exist topologically non-

trivial quasi-particles possessing the mathematic form distinguished from Weyl and Dirac 

equations. I believe similar phenomena can be observed in photonic and elastic crystals because 

both cases have plenty of degree of freedoms.  

 In addition to the topological elasticity, the topological mechanics is another thriving 

branch of topological physics. My studies have revealed that a periodic structure composed of 

simple springs and mass beads can achieve intriguing phenomena like topological mechanical 

edge states and the elastic spin-Hall effect. Other researchers have also shown the mechanical 
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crystals are capable of spawning mechanical Weyl points or topological insulating phases. For 

future works, I would like to introduce nonlinearity via replacing the linear springs with Kerr-

type nonlinear ones. Since the Kerr nonlinearity can be related to the boson interaction in the 

quantum optics, it makes the mechanical crystal be equivalent to the strongly correlated 

electronic system, which is the origin of fractional quantum Hall states, and in the same manner, 

2D topological mechanical solitons are intuitively expected. Unfortunately, it is unlikely to 

have commercial software that can emulate the nonlinear problems. Therefore, to solve 

problems, I plan to programme an iterating algorithm to look into the physics in nonlinear 

topological mechanics.
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