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ABSTRACT 

 

Tumour specific effector T-cells can be detected in the blood and tumours of patients 

with hepatocellular carcinoma (HCC) but fail to mount effective immune responses. 

Attempts to amplify anti-tumour immune responses using immunotherapy show 

promise, but are hampered by the presence of suppressive regulatory T-cells (Treg) 

that inhibit anti-tumour immune responses. Many different subsets of Treg have since 

been identified including regulatory T-cells expressing the surface marker CD8 

(CD8+Treg). A set of experiments was designed in an attempt to increase our 

understanding on how CD8+Treg may disrupt anti-tumour response and by what 

mechanisms they are induced. 

 

CD8+Treg was analysed by isolation of liver-derived T-cells from human HCC.  

Monocyte-derived dendritic cells (moDC) matured with tumour tissue conditioned 

medium were used to assess they potential to induce CD8+Treg.  

 

CD8+Treg infiltrating HCC demonstrated a suppressive phenotype. The co-culture of 

naïve CD8+ T-cells with tumour-conditioned moDC induces a population of 

CD8+Treg through an IDO dependent mechanism. This population of induced T-cells 

was able to suppress via the CD39-adenosine pathway.  

 

The findings of the mechanisms involved in the induction of CD8+Treg by DC and 

the involvement of CD39 in the suppressive capacity of these novel T-cells, may 

guide the development of future immunotherapeutic in HCC.  
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1 INTRODUCTION 
 

1.1 Introduction to hepatocellular carcinoma 
 

Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the 

world and is associated with one of the highest incidences of cancer related death 

globally. The prevalence of HCC varies widely in the world  (Figure 1-1), largely due 

to differences in exposure to risk factors, which includes chronic viral infection, 

metabolic disease and exposure to aflatoxin [1]. 

 

Although HCC is relatively rare in the western hemisphere with a prevalence of 4 

cases per 100,000 populations [2, 3]. It is the second most common cause of cancer-

related death worldwide and in 2012, 782,000 new cases were reported worldwide. 

Resulting in an estimated 746,000 liver cancer deaths globally [4]. In developed 

countries its incidence is expected to rise both in the United States and Europe [5]. 

This is likely to be a reflection of the increased prevalence of cirrhosis as a result of 

chronic infection with hepatitis C virus (HCV), non-alcoholic fatty liver disease 

(NAFLD) and alcoholic liver disease (ALD).  It is therefore likely to become a major 

health burden in the UK in the near future. 
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Figure 1-1 Global impact of hepatocelluar carcinoma.  

(A) Age-Standardised incidence rates of HCC in males per 100,000 populations. (B) 

The predicted Age-Standardised Incidence Rates of HCC in America per 100,000 

populations. (C) The predicted Age-Standardised Incidence Rates of HCC in Europe 

per 100,000 populations. Figure adapted from [4, 5]. 
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Current treatments for HCC are limited and 5-year survival for all stages combined 

has been reported as low as 10% and with a medium survival of 10 months following 

diagnosis [6, 7]. In addition, the mortality rates of patients with HCC remained poor 

in comparison to patients with other leading causes of cancer [8]. The main reason for 

the poor survival seen in patients with HCC is partly due to the late presentation in the 

majority of patients. In addition, the presence of underlying liver cirrhosis in a large 

proportion of patients with HCC often limits their treatment options. Lastly, for HCC 

patients the availability of certain treatments, in particular liver transplantation, is 

restricted by the lack of donor organs and limitation in health resources, both of which 

are particular hurdles in developing nations that have the highest incidence of HCC. 

 

1.2 Cancer surveillance 
 

In view of the poor prognosis, regular radiological assessment of at risk individuals is 

advocated by international guidelines with the aim of detecting early cancers 

amenable to potentially curative therapy [9-11]. Thus, patients with liver cirrhosis are 

recommended to undergo six-monthly liver ultrasound scans (USS) as part of cancer 

surveillance. Until recently, the use of the tumour marker alpha feto-protein (AFP) in 

combination with USS had been the modalities of choice used for the surveillance of 

HCC.  However, in recent guidelines published by the American Association for the 

Study of Liver Disease (AASLD) and European Association for the study of Liver 

Disease (EASL), the use of AFP is no longer recommended. This is due to the lack of 

evidence to demonstrate is effectiveness as a screening test [12, 13]. However, this 
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decision has remained controversial in the clinical world. Even more contentious, is 

the use of HCC surveillance in any form. Despite several studies suggesting possible 

improved tumour-related outcomes in patients receiving HCC surveillance, robust 

data supporting HCC surveillance remains limited. This is largely the result of 

difficulties in conducting large randomised controlled trials (RCTs) in the area of 

cancer surveillance. In HCC, only two RCTs have been conducted to evaluate the 

benefit of surveillance in patients with liver cirrhosis, both being subject to significant 

methodological flaws, poor compliance and high drop out rate [14, 15]. In addition, 

observational studies that had suggested the possible benefit of HCC surveillance are 

often heavily influenced by lead-time and length-time bias. Other indirect study 

methods such as cost-effectiveness analysis have supported the use of surveillance, 

but there remains much debate as to the optimal interval and method of HCC 

surveillance [16-21]. Despite the lack of clarity on the benefit of HCC surveillance in 

cirrhotic patients, it is likely we will continue with the current recommended practice 

until the development of more sensitive diagnostic techniques or well-conducted 

RCTs looking at the effectiveness of current screening methods.  

 

It has long been recognised that viral hepatitis can induce hepatocarcinogenesis 

independent of liver cirrhosis, a risk particularly noticeably in patients of east-Asian 

and Black-African origin [22]. Selected guidelines have reflected on this and 

suggested the use of surveillance in non-cirrhotic patients with chronic viral infection. 

The evidence supporting HCC surveillance in this selected group of patients are 

limited, especially on the background of increasing evidence suggesting the risk of 

HCC in non-cirrhotic patients with chronic viral infection may be lower than 
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previously predicted. [23-25].  Hence, surveillance in this group is arguably below the 

threshold at which cost-effectiveness is likely met.  

 

1.3 Treatment for Hepatocellular carcinoma 
 

The treatment options for patients with HCC is dependent on the size and number of 

tumours present, the degree of underlying liver impairment as a result of chronic liver 

disease and the overall health status of the patient. Different staging systems 

incorporating all of the above have been used to guide treatment for individual 

patients. One of the most commonly used staging systems has been the Barcelona 

Cancer Liver Centre (BCLC) staging score [26] (Figure 1-2). 
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Figure 1-2 The BCLC staging system for HCC 

(M, metastasis classification; N, node classification; PS, performance status; RFA, 

radiofrequency ablation; TACE, transarterial chemoembolization). Figure adapted 

from [13]. 

  

there are no data comparing its efficacy to transarterial
chemoembolization or to sorafenib treatment for those
with portal vein invasion. However, for patients who
have either failed transarterial chemoembolization or
who present with more advanced HCC, new data
indicates the efficacy of sorafenib (a multikinase inhib-
itor with activity against Raf-1, B-Raf, vascular endo-

thelial growth factor receptor 2, platelet-derived
growth factor receptor, c-Kit receptors, among other
kinases) in prolonging life.14,15 Sorafenib induces a
clinically relevant improvement in time to progression
and in survival The magnitude of the improvement in
survival compares with other established molecular tar-
geted therapies for other advanced cancers, and the

Fig. 1. Diagnostic algorithm for sus-
pected HCC. CT, computed tomography;
MDCT, multidetector CT; MRI, magnetic
resonance imaging; US, ultrasound.

Fig. 2. The BCLC staging system for HCC. M, metastasis classification; N, node classification; PS, performance status; RFA, radiofrequency
ablation; TACE, transarterial chemoembolization.

HEPATOLOGY, Vol. 53, No. 3, 2011 BRUIX AND SHERMAN 1021
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At present, surgery, either tumour resection or liver transplantation, is the main 

curative treatment for HCC. HCC differs from other solid organ cancers due to its 

occurrence on the background of chronic liver disease. Tumour resection is often 

contraindicated in patients with liver cirrhosis, due to the inability of the remnant non-

tumour bearing liver to regenerate or maintain sufficient liver function following 

surgery. Hence, tumour resection is feasible in only a limited number of patients [27, 

28].  

 

In patients with small tumours and no evidence of vascular invasion but advanced 

chronic liver disease (poor hepatic function) liver transplantation is the only curable 

option [29]. Selection criteria for transplantation are designed to include those 

patients for whom transplant will give a survival benefit and in whom there is little or 

no risk of tumour recurrence. Most transplant centres base selection of patients with 

HCC for transplantation on the Milan criteria (one tumour <5cm, or three tumours 

each <3cm), which uses tumour size and number rather than tumour biology to 

classify patients. Use of the Milan criteria is associated with survival rates after liver 

transplantation similar to those seen in patients with non-malignant disease [30]. 

Some argue that these criteria are too restrictive and result in some patients being 

denied transplantation who would benefit from the procedure [31]. As such, extended 

criteria such as the University of California San Francisco (UCSF) criteria have been 

developed (one tumour ≤6.5 cm, or two or three tumours each ≤4.5 cm in diameter 

with a total tumour diameter ≤8 cm). Early studies comparing the UCSF criteria and 

the Milan criteria showed that these criteria have similar 5-year survival rates (74% 

compared with 72%) [32]. In a more recent validation study, based on radiological 
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assessment of the size of the tumours, the 5-year survival rates were 82% in the group 

selected using the UCSF criteria and 80% in the group selected using the Milan 

criteria [33]. However, the use of criteria other than the Milan criteria remains highly 

controversial; the main concern being that the use of extended criteria will jeopardize 

the outcome of patients being transplanted for non-HCC disease, due to the limited 

availability of donor organs.  

 

The majority of patients with HCC are deemed incurable at the time of diagnosis. For 

patients with incurable but limited disease, radiofrequency ablation (RFA) is the 

treatment of choice [34, 35]. RFA involves the percutaneous insertion of a probe into 

the tumour that emits radio waves, which get converted to heat resulting in killing of 

local tumour cells. In patients with more extensive disease, transarterial 

chemoembolization (TACE) is beneficial for selected patients [36, 37]. TACE 

involves the intra-arterial infusion of a chemotherapeutic agent such as doxorubicin, 

followed by embolization of the blood vessels supplying the tumour with gelatine 

sponge or other embolic agents.  This leads to a combination of cytotoxic and 

ischaemic induced tumour cell death.  

 

Pharmacological therapy with tyrosine kinase receptor inhibitors has demonstrated 

efficacy in patients with advanced disease who are beyond both surgical and ablative 

treatment criteria. Sorafenib is an oral multi-kinase inhibitor that blocks cell surface 

tyrosine kinase receptors (e.g. vascular endothelial growth factor (VEGF) and 

platelet-derived growth factor (PDGF) receptors) and downstream intracellular 
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serine/threonine kinase signalling (e.g. Rapidly Accelerated Fibrosarcoma-1 (Raf-1)), 

resulting in inhibition of tumour cell proliferation and angiogenesis [38].  

 

The fore-mentioned curative and non-curative interventions have become the 

mainstay of treatments for patients with different stages of HCC, but the prognosis for 

the majority of patients remains poor despite the availability of multiple treatment 

options. Even in patients who have undergone curative surgical treatment, recurrent 

disease is not uncommon, in particular in those who undergo surgical resection with 

reported recurrence rates as high as 60% after five years [39]. Hence there is an 

urgent need to develop more effective treatments. One potential novel treatment 

involves the manipulation of the immune system to target cancer cells, so called 

‘immunotherapy’. However, to aid in the development of effective 

immunotherapeutic agents we must improve our understanding of tumour 

immunology. 

 

1.4 Immune response 
 

The immune system has evolved primarily to provide protection against invading 

pathogens.  It is a complex interacting network of different cell types and cytokines 

that under normal circumstances is able to recognise and destroy harmful foreign 

substances without causing damage to surrounding healthy cells.  

 

The immune system is commonly separated into two parts: innate and adaptive. The 

innate immune system is the first line of defence and deals non-specifically with 

potential harmful pathogens by a combination of physical barrier (i.e. skin epithelia), 
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secretory molecules (i.e. nasal secretion, tears, lactoferrin and lysozyme in saliva) and 

cellular components [40]. The cellular components of the innate immune system 

consist mainly of phagocytic immune cells including; macrophages, neutrophils, 

eosinophil and natural killer (NK) cells. These cells possess a number of pattern 

recognition receptors (PPR) for the detection of harmful pathogens by identifying 

structures called pathogen associated molecular patterns (PAMP) such as 

lipopolysaccharide (LPS), which are found on many pathogens.  

 

By contrast, the adaptive immune system acts specifically towards pathogens by 

recognising antigens via a various number of specialised immune cells [41]. Unlike 

the innate immune system, cellular components of the adaptive immune system 

require prior activation and differentiation towards a specific antigen. As a result, 

compared to the instant action of the innate immune system, the adaptive response 

will often take a few days prior to its effective function. However, following the first 

challenge by any particular pathogen, the adaptive system is able to generate memory 

against it, to ensure rapid response in subsequent engagement with the same 

pathogen. The adaptive immune response is mediated mainly by lymphocytes, which 

comprise primarily CD4+T-cells, CD8+T-cells and B-cells. Their activation and 

differentiation requires the aid of the innate immune system by providing addition 

stimulation signal and in particular though the process of antigen presentation [42]. 

The task of antigen processing and presentation is preformed mainly by the cellular 

components of the innate immune system and these cells are often termed antigen-

presenting cell (APC). The most important of the APC are dendritic cells (DC) and 

are often described as professional APC. However, immune cells from the adaptive 
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immune system and even non-immune cells such as liver stromal cells can also 

present antigens [43]. 

  

1.5 Dendritic cells 
 
 
DCs are constantly monitoring the periphery for antigens while in an immature state 

and on engagement with antigens is able to capture, process and present antigens via 

the major histocompatibility complex (MHC) molecules to other immune cells, in 

particular T-cells [44]. DC are produced from the bone marrow, but methods have 

been developed to produce DC in vitro from immature myeloid cells by using 

combinations of growth factors, such as granulocyte macrophage-colony stimulating 

factor (GM-CSF) and Flt3 ligand [45]. DC are powerful antigen presenting cell, but 

our consisted of many subsets, but the two predominate subsets are myeloid DCs, and 

plasmacytoid DC [46]. Each DC subsets has unique markers and are often confined to 

certain tissue compartment with distinct migration pathways. Importantly, each subset 

is able to generate specific phenotype under certain environment.  Leading to a 

different immune response. 

 

Following antigen capture, DC will undergo maturation in the presence of a danger 

signal, such as PAMP. DC maturation results in the increase in surface expression of 

MHC molecules, production of the pro-inflammatory cytokine interleukin-12 (IL-12) 

and the up-regulation in the expression of co-stimulatory molecules such as CD80 and 

CD86, which are all essential components required for the activation of T-cells. In 

addition, matured DC up-regulate the expression of the chemokine receptor CCR7 
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leading to the migration towards the local lymph nodes in response to CCL19 and 

CCL21 [47], where they are able to interact with naïve T-cells and present antigen in 

association with MHC molecules on DC to the T-cell receptor (TCR) on T-cells 

(Figure 1-3) [45]. The combination of high expression of MHC complex, co-

stimulatory molecules and pro-inflammatory cytokines results in the induction of 

naïve T-cells into functional antigen specific Th 1, Th 2, Th17 or CTL [48].   

 

In the absent of maturation, DC are ineffective in the activation of T-cells and can 

result in the generation of T-cell tolerance [49]. The ability of DC to induce tolerance 

against a wide range of harmless/self-antigens is essential and this is of special 

importance in the liver due to its need to process a wide array of harmless antigens 

derived from the gut.  

 

The importance of DCs can further be demonstrated by their ability to present a wide 

range of different antigens to different immune cell subsets. DCs are able to process 

and present endogenous antigens to CD8+T-cells via MHC class-I molecules and 

exogenous antigens via MHC class-II molecules to CD4+T-cells. This results in the 

activation of CD8+T-cells that are able to eliminate virally infected or damaged self-

cells and CD4+T-cells that respond to pathogens such as bacteria, fungi and parasites.  

In addition, DCs are able to cross present antigens by processing exogenous antigens 

into MHC-I molecules for presentation to CD8+T-cells [50]. 
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Figure 1-3: The activation of T-cells by antigen presentation DC 

Following antigen capture, DC are matured in the presence of PAMP resulting in an 

increase in the expression of the co-stimulatory molecules CD80/86 and MHC. 

Matured DCs present antigens to T-cells via the MHC molecules, which are 

recognized by the TCR on T-cells. In addition to antigen presentation, the activation 

of T-cells is dependent on the production of IL-12 and signaling via CD28 by 

CD80/86.  (PPR, Pattern recognition receptors; PAMP, pathogen associated 

molecular patterns; MHC, major histocompatibility complexes; TCR, T-cell receptor.)  
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1.6 Major histocompatibility complexes  
 
The major histocompatibility complexes (MHC), also known as human leukocyte 

antigen (HLA) in humans, are essential in antigen presentation. Antigens are 

processed prior to their presentation by MHC molecules. Due to the diversity of 

pathogens the MHC system has also evolved. Human possess multiple MHC class-I 

genes (HLA-A, B and C) and MHC class-II genes (HLA-DR, DP and DQ). Such 

assortment of MHC genes allows peptides to be presented in multiple combinations. 

In addition, in human there are many different alleles of each MHC gene. This 

provides further diversity in antigen presentation via MHC molecules [51].  

 

For antigen presentation to occur, antigens are presented via the MHC molecules. 

MHC class-I molecules are present on all nucleated cell. Antigens in the form of 

protein are transported into the cytoplasm of cells. The proteins are degraded into 

peptides by the proteasome and moved into the endoplasmic reticulum (ER), by 

transporter associated with antigen processing (TAP) proteins. MHC class-I 

molecules are made in the ER. The final step involves the packaging of peptides into 

MHC-I molecules before there are transported to the cells surface. MHC class-I 

molecules present peptides from intracellular pathogens such as viruses to CD8 T-

cells. On their recognition of foreign peptides, CD8+T-cells are able to kill such 

infected cells [52]. 

  

In contrast to MHC class-I molecules, MHC class-II molecules present longer 

peptides and are recognized by CD4+T-cells. They are present mainly on immune 

cells, but under certain situation other non-immune cells such as fibroblast and 
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stromal cells can also present antigen via the MHC class-II molecules [53, 54]. 

Peptides from extracellular proteins are taken up into cells via endocytosis, into 

vesicles called endosomes. Endosomes containing these peptides then combine with 

lysosomes. Following enzyme degradation, the end product peptides are packaged 

into the MHC class-II molecules.  This is followed by their release from the ER and is 

transported to the endocytic vesicles [52].  

 

1.7 Immune tolerance 
 

The immune system is essential in providing protection against harmful pathogens 

and this can be clearly demonstrated in patients with genetic associated 

immunodeficiency (i.e. severe combined immunodeficiency (SCID)) or acquired 

immunodeficiency (i.e. human immunodeficiency virus (HIV)). Here, the 

compromised immune response results in recurrent infection from both common and 

opportunistic pathogens and can result in death. Inversely, inappropriate activation of 

the immune system can lead to destruction of the host’s healthy cells and even organs, 

resulting in autoimmune diseases which can be debilitating and even life threatening. 

Hence, multiple mechanisms are employed to maintain the fine balance between 

immunity towards harmful pathogens and tolerance towards self-antigens. The 

avoidance of inappropriate or excessive immune responses involves multiple layers of 

control, commonly referred to as central and peripheral tolerance. In particular, the 

liver has been identified to play an important role in the maintenance of peripheral 

tolerance.  
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Central tolerance takes place during T-cell and B-cell development within the thymus 

and bone marrow respectively [55].  T-cells (not B-cells) first undergo positive 

selection in which cells that recognise self-MHC molecules are maintained. This is 

followed by negative selection in which cells that recognise self-antigens are 

removed. However, central tolerance is unable to remove all auto-reactive cells hence 

a backup system, referred to as peripheral tolerance, is required to protect from the 

remaining auto-reactive cells [56]. Peripheral tolerance employs multiple mechanisms 

to overcome auto-reactive immune cells.  Such mechanisms includes; suppressive 

immune cells and inhibitory signals and will be discussed in detail in later this 

chapter.  

 

1.8 The liver as an immune organ 
 
 
The liver is a unique organ well known for its functions in detoxification and 

metabolism, but the role of the liver as an immune organ is often overlooked [57]. 

The distinctive vasculature of the liver contributes enormously to its important 

functions, by receiving a blood supply from both the hepatic artery (20%) and the 

portal vein (80%) [58], resulting in the constant delivery of numerous antigens and 

immune active molecules such as LPS from the gut [59, 60]. The low flow rate in the 

liver blood vessels and the fenestration of the hepatic sinusoid endothelial cells 

(HSEC) aid in the capture of antigens by resident APC in the liver. However, despite 

constant bombardment from a wide array of antigens, the liver is able to prevent the 

inappropriate activation of the immune system towards harmless antigens [61]. 

Hence, the liver plays an essential role in both tolerances against harmless antigens, 

while maintaining the ability to respond to harmful pathogens.  
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The immune tolerance function of the liver can be demonstrated by its resistance to 

organ rejection following allogeneic liver transplantation, when compared to 

transplantation of other organs such as the heart and kidney [62]. Liver tolerance can 

also be demonstrated by the principle of oral tolerance, in which hypo-responsiveness 

can be initiated towards an orally ingested antigen as a result of antigen processing by 

the liver [63]. In comparison, if the same antigen was directly injected into the 

systemic circulation, it will result in an immune response. Unfortunately, the liver 

bias towards immune tolerance can be targeted by harmful pathogens, evidenced by 

the inability of the liver to destroy certain hepato-tropic pathogens such as HBV and 

HCV, resulting in chronic infection of the liver [64, 65].  

 

The importance of antigen processing has been recognised as the pivotal component 

in the ability of the liver to confer tolerance [66].  Resident and transient immune 

cells of the liver such as kupffer cells (liver resident macrophages) and DC contribute 

towards the major population of APC. However, the role of non-immune cells acting 

as APC within the liver has emerged over the recent years. This includes HSEC, 

hepatic stellate cells, cholangiocytes and hepatocytes [67].   

 

As already discussed, DC play an important role in orchestrating the immune 

response, in particular liver derived DC have been showed to play a central role in the 

generation of peripheral tolerance [68]. The tolerogenic nature of liver DC was first 

observed by their poor ability to stimulate allogeneic T-cells expansions when 

compared to DC isolated from the skin [69]. The ineffectiveness of liver DC to 
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stimulate T-cells has been suggested to be the result of their inability to produce pro-

inflammatory cytokines and the increased production of suppressive cytokines [70-

72]. In addition, the lower expression of MHC molecules and co-stimulatory 

molecules has also been suggested to be involved in liver DC tolerance [73].  

 

1.9 Inflammation & tumour initiation 
 
 
Classically the development of HCC follows a stepwise process over many decades. 

The initial insult (i.e. viral, metabolic, cholestasis) induces damage to the liver 

parenchyma through a number of mechanisms such as DNA damage, reactive oxygen 

species (ROS), endoplasmic reticulum (ER) stress and necrosis of injured 

hepatocytes. The damage to the liver parenchyma results in the activation of resident 

immune cells such as kupffer cells to release a wide array of cytokines/chemokines. 

This is followed by further recruitment and activation of immune cells to the site of 

injury [74-76]. If the on-going insult persists, chronic inflammation will follow, 

leading to the activation of pro-fibrogenic cells and accumulation of extracellular 

matrix resulting in progressive fibrosis and cirrhosis. The combination of continued 

damage by the original insult and persistent inflammation results in mutations, 

genomic instability, and epigenetic modifications leading to the development of liver 

tumours [76, 77] (Figure 1-4). 
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Figure 1-4: Natural history of hepatocellular carcinoma 

Following the initial damage to the liver (i.e. infection), if the insult persists it will 

result in chronic inflammation. Chronic inflammation will lead to liver fibrosis, 

cirrhosis and ultimately the development of hepatocellular carcinoma. HCC; 

hepatocellular carcinoma, HBV; hepatitis B virus, HCV; hepatitis C virus, NAFLD; 

non-alcoholic fatty liver disease. 

 
  

Normal'Liver' Liver'fibrosis' Liver'cirrhosis'

HCC'

Chronic'inflamma5on'

Infec5on8'HBV,'HCV'

Toxin8'Alcohol'

Metabolic8'NAFLD'



    Introduction   

 

 

20 

Following the initial formation of the tumour, chronic inflammation continues to 

drive tumour progression. The release of a wide range of cytokines and chemokines 

by tumour cells, tumour associated stromal cells and tumour infiltrating immune cells 

results in tumour growth. In particular, interleukin-6 (IL-6) has been identified to be a 

critical cytokine in HCC progression by promoting tumour cell growth [78-80]. 

Multiple roles have been described for IL-6, including its involvement in lymphocyte 

differentiation, cell proliferation, cell survival and inhibition of apoptosis [81]. It also 

plays an role in orchestrating metabolic and endocrine functions [82]. The importance 

of IL-6 in tumour development was first demonstrated in a murine model of HCC, in 

which animals deficient in IL-6 developed less HCC in response to the chemical 

carcinogen diethylnitrosamine (DEN) [83]. In addition, the male-bias for the 

development of HCC had often been contributed to the increased production of IL-6 

in males [83]. Further evidence supporting the important role of IL-6 derives from the 

association of high levels of circulating IL-6 with tumour progression and HCC risk 

factors, such as ALD, viral liver disease and obesity [84-87]. Other cytokines have 

also been linked with tumour progression, including IL-11 [88], Tumour Necrosis 

Factor alpha (TNF-α) [89], IL-1β [90] and IL-23 [91]. Similar to IL-6, these cytokines 

results in the activation of a number of transcription factors, such as signal transducer 

and activator of transcription-3 (STAT-3), nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-kB) and activator protein-1 (AP-1), resulting in tumour cell 

survival. In addition, chronic inflammation also plays an important role in tumour 

angiogenesis and metastatic disease. 
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Angiogenesis is the growth of new blood vessels and is an essential component in 

tumour growth, aided by chronic inflammation [77].  Angiogenesis is initiated by 

tumour hypoxia, resulting in the recruitment of pro-angiogenic immune cells such as 

tumour-associated macrophages (TAM), leading to the release of a wide array of pro-

angiogenic factors including vascular endothelial growth factor (VEGF), IL-8 and 

hypoxia-inducible factor 1-alpha (HIF-1α) [92]. Angiogenesis further aids tumour 

progression by allowing further infiltration of immune cells [93].  

 

The importance of inflammation in the development of metastatic disease can be 

demonstrated in experiments where, following depletion of tumour associated 

immune cells, the metastatic potential of tumours was dramatically decreased [94]. 

Each of the critical steps of tumour metastasis requires the support of immune factors, 

beginning with the release of tumour associated transforming growth factor beta 

(TGF-β), resulting in the modulation of cancer cells to invade though the epithelial 

linings/basal membranes, so called epithelial-mesenchymal transition (EMT) [95].  

Inflammation also aids in tumour cell metastases though the breakdown of extra-

cellular matrix (ECM) and an increase in vascular permeability by the release of 

matrix metalloproteinases (MMP) [96] and cytokines [97] respectively. Inflammatory 

cytokines also provide survival signals to tumour cells during their transit within 

blood vessels and chemokines provide the signals needed to direct tumour cells to 

metastatic sites [98].  
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1.10 Cancer immune surveillance 
 
 

As previously described, the immune system is well adapted to recognise and 

eliminate harmful pathogens, but it is increasingly acknowledged that it is also able to 

distinguish a wide range of tumour cells, with the potential to eliminate them, so 

called ‘cancer immune surveillance’.  

 

The concept of cancer immune surveillance was first supported by the observation 

that immune mediated elimination of tumours occurred following transplantation of 

tumour cells into immune competent mice. The existence of such a concept was 

further demonstrated in mice deficient in the recombination-activating gene (RAG) 

[99]. RAG is essential in the rearrangement of lymphocyte antigen receptors, its 

deficiency results in a complete lack of NK-cells, B-cells and T-cells. Furthermore, 

RAG-deficient mice develop spontaneous tumour when compared to wild type.  

 

In addition to the studies carried out in RAG deficient mice demonstrating the 

importance of lymphocytes in immune surveillance, further support for the role of 

lymphocytes arises from studies in mice lacking α/β T-cells or γ/δ T-cells. It was 

observed animals lacking these T-cells were more susceptible to chemically induced 

tumour and tumour implantation, when compared to wild type mice, indicating the 

importance of T-cell subsets in cancer immune surveillance [100].   

 

Further evidence to support the importance of tumour surveillance includes the 

detection of T-cells specific for tumour-associated antigens (TAA) [101].  The 
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association of increased TAA-specific T-cells with a better outcome in patients has 

been demonstrated in a wide range of malignancies [102, 103], whist an increased risk 

of malignancy associated with immune deficiency is seen in HIV infected patients 

and patients taking long term immune suppressants (i.e. solid organ transplantation 

and autoimmune conditions) [104]. Additional but indirect evidence for cancer 

immune surveillance has been demonstrated by reports of spontaneous tumour 

destruction accompanied by increased infiltration of activated immune cells that 

recognize TAA [104].  

 

Since its conception, multiple immune mechanisms have been suggested to be 

involved in cancer immune surveillance. NK and NK-T cells, components of the 

innate immune system, were initially recognized for their important role in direct 

tumour cell killing in-vivo [105]. Unlike other subset of lymphocytes such as T-cells 

and B-cells, NK cells function mainly by non-specific targeting of cells that lack 

MHC molecules, so called ‘missing self’ recognition. The importance of NK cells in 

immune surveillance was confirmed by demonstrating their ability to protect the host 

from tumour initiation and metastasis. In these experiments, mice that were depleted 

of both NK and NK-T cells were shown to be more susceptible to tumour 

development and metastases, when compared to control mice [106, 107]. Similarly, 

animals that are genetically modified to lack selected NK cell functions were more 

susceptible to tumour formation when compared to wild type animals [108]. Further 

support for the important role of NK cells stems from the observation that the 

activation of NK cell function thought the administration of inflammatory cytokines 

resulted in the elimination of implanted tumours in animal models and defective 
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cytolytic activity in NK cells increases the risk of tumours in humans [109]. In 

addition, NK cell infiltration correlates positively with disease prognosis in cancer 

patients [110, 111].  

 

The interferon (IFN) family are important cytokines of the immune system and are 

well known for their role in anti-viral responses [112]. Recent evidence has also 

demonstrated a role for IFNs in cancer immune surveillance. Three classes of IFN 

exists in humans, but it is mainly type-I IFNs (IFN-α and IFN-β) and type-II IFN 

(IFN-γ) that have been proposed to been involved in cancer immune surveillance, 

through their activation of immune cells (i.e. DC, NK cells and T-cells), anti-tumour 

proliferative effects and their inhibition of suppressive immune cells [113]. The 

importance of IFN-γ in tumour immunology was first recognized though the 

observation that endogenously secreted IFN-γ protected the host against chemical 

induced and transplanted tumours [114]. Subsequently, experiments demonstrated 

mice developed rapid growth of transplanted tumours following neutralization of 

IFN-γ [115]. Similarly, in a model of mice lacking sensitivity to either IFN-γ (IFN-γ 

growth receptor-deficient mice) or all classes of IFN, chemically induced tumours 

progressed more rapidly and with greater frequency [114]. Less evidence exists for 

the role of type-I IFN in cancer immune surveillance, however rapid tumour growth 

occurs following the neutralization of type-I IFN or in mice lacking the IFN-α 

receptor-1 subunit [116, 117]. 

 

In addition to IFN, the pore forming protein perforin has been implicated in cancer 

immune surveillance. Cytotoxic T-cells and NK cells can induce targeted cell death 
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either thought the granule exocytosis pathway or the death receptor pathway [118, 

119]. The granule exocytosis pathway involves the secretion of perforin, which 

disrupts the cell membrane of the targeted cell, allowing the transportation of serine 

proteinase (i.e. granzymes A and B) into cells resulting in apoptosis of targeted cells. 

The importance of perforin in cancer immune surveillance can be demonstrated in 

knockout animals lacking perforin, resulting in an increased susceptibility to 

chemically induced tumours [120].    

 

Collectively, evidence suggests that the innate and adaptive immune systems combine 

to detect and destroy cells with malignant potential as part of cancer immune 

surveillance. However, despite evidence demonstrating the existence of the ability of 

the immune system to detect and remove cancer cells, tumours still develop in 

immune competent individuals. The reason for tumour development despite cancer 

immune surveillance has been increasingly recognised to be the result of ‘immune 

editing’ [121, 122]. The concept of immune editing can be divided into three steps; 

elimination, equilibrium and escape. 

 

Immune elimination encompasses the concept of cancer immune surveillance in 

which the immune system is constantly seeking cells with malignant potential and 

actively removing them from the host. However, the constant elimination of mutated 

cells can sometimes lead to the selection of cells with reduced immunogenicity. This 

can result in the persistence of mutated cells, which can survive attacks by the host’s 

immune response. This mutated cell selection is commonly termed as ‘immune 

equilibrium’. This step can take many years and even decades, but with time, cells 
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that are resistant to immune destruction acquire multiple mechanisms to evade from 

the host’s immune system, resulting in uncontrolled tumour growth. This final step is 

termed ‘immune escape’.  

 

1.11 The suppressive tumour environment 
 
 

A number of different mechanisms have been discovered to allow for immune escape 

to take place, despite the present of a functioning immune system [123]. These 

include the down regulation of MHC molecules and TAA on tumour cells the 

disruption of antigen presentation by down regulation of co-stimulatory molecules 

and defects in TAA presentation [124-129], However, it has been increasingly 

recognised, that creation of a suppressive tumour microenvironment is achieved by 

the recruitment and induction of regulatory immune cells within the tumour 

environment, such as regulatory T-cells (Treg), myeloid derived suppressor cells 

(MDSC) and TAM, leading to immune escape [130-132]. In addition, a number of 

recently discovered inhibitory molecules such as programmed death receptor-1 ligand 

(PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) produced by both tumours 

associated immune cells and stromal cells also contribute to the maintenance of a 

suppressive tumour environment [133, 134] (Figure 1-5). 
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Figure 1-5 Overview of immune escape 

Multiple means have been recognised in which tumours use to evade immune 

response, these include; (1) Reduced expression of MHC molecule and TAA on 

tumour cells. (2) The production of chemokines by tumour and tumour associated 

stormal cells to recruit suppressive cells. (3) Reduced co-stimulatory molecule 

expression and interference of antigen processing. (4) Suppression of helper CD4+T-

cells. (5) Suppression of effector cells. (6) Activation of inhibitory receptors by its 

ligands such as PD-L1 on tumour cells, resulting in suppression of effector CD8+T-

cells. (7) The induction of Tregs and MDSC. MHC, major histocompatibility 

complex; TAA, tumour associated antigen; Tregs, regulatory T-cells; DC, dendritic 

cells; TAM, tumour associated macrophages; MDSC, myeloid derived suppressor 

cell; transforming growth factor beta; PD-L1, programme death-ligand-1; CTLA-4, 

cytotoxic T-lymphocyte antigen-4; IL-2, interleukin-2; TNF, tumour necrosis factors; 

IFN-γ, interferon-γ. Adopted from Li et al. [135]. 
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1.12 Regulatory immune cells & cancer 
 

Regulatory immune cells are crucial in the maintenance of immune tolerance and in 

the prevention of auto-reactive immune response [136], but in the context of cancer 

they can be hijacked to suppress beneficial anti-tumour immunity. A number of 

different subsets of regulatory immune cells had since been implicated in this process. 

 

CD4+ Regulatory T-cells 
 

Treg are critical in suppressing immune responses following their activation to 

eliminate pathogens, thereby allowing the restoration of immune homeostasis without 

autoimmunity [136].  The importance of Treg in peripheral tolerance can be seen in 

animals, in which mice depleted of Treg result in a wide variety of autoimmune 

disease [137, 138]. The majority of research conducted on Treg had so far has focused 

on regulatory T-cells expressing the surface marker CD4 (CD4+Treg). They have 

been observed to be present in a wide range of human tumours and their presence 

correlates negatively with survival [139]. Increased numbers of CD4+Treg have also 

been demonstrated in patients with HCC and have been associated with a poorer 

prognosis and recurrence following treatment [140-142]. CD4+Treg express high 

levels of the interleukin-2 receptor α subunit (CD25) and low levels of the IL-7 

receptor (CD127).  They are characterised by expression of the transcription factor 

forkhead box P3 (FOXP3) that is critical for their differentiation and functional 

survival [143, 144]. The importance of FOXP3 in CD4+Treg development can be 

emphasised in FOXP3 mutant scurfy mice lacking CD4+Treg, resulting in lethal 

autoimmune syndrome [145]. Similarly, a rare X-linked syndrome in humans linked 



    Introduction   

 

 

29 

to the mutation of the FOXP3 gene; IPEX (immunodysregulation polyendocrinopathy 

enteropathy X-linked syndrome) results in CD4+Treg dysfunction, resulting in a wide 

array of autoimmune diseases [146].  

 

The study of Treg has often been limited by the lack of specific marker. The surface 

expression of CD25 on T-cells had been used as a marker for Treg but its expression 

can also be found on newly activated effector T-cells [147]. Similarly, the reduced 

expression of CD127 can also be seen on effector T-cells [148, 149]. Currently, the 

expression of FOXP3 is being used as the gold standard marker for the identification 

of Treg. Once again, unlike in mice, FOXP3 expression in humans is not restricted to 

Treg alone and can be detected on effector T-cells [147, 148, 150]. Therefore, to be 

confident that T-cells with markers of Treg are bona fide suppressive T-cells, 

confirmation of their suppressive function is often required.  

 

The origin of CD4+Treg has been intensely debated over the past decade and 

increasingly evidence has suggested that they can occur both naturally or thought 

induction from non-Treg cells. Naturally occurring CD4+Treg are generated from the 

thymus and recruited into a wide range of organs though the action of multiple 

receptor molecules and ligands present on both immune cells and tissues. In particular 

chemokine receptors and their ligands have been recognised to play a pivotal role in 

Treg recruitment in both health and disease. Chemokine receptors are a family of G-

protein coupled receptors expressed on the surface of immune cells [151]. On binding 

its ligand, chemokine receptor activation leads to a range of cell activities including 

cell migration, differentiation and effector functions. 
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Studies involving CD4+Treg confirmed the importance of the chemokine receptors 

CCR4, CXCR3 and CCR10 in their migration [152-156].  In addition, the importance 

of chemokines in recruitment of CD4+Treg into tumours has been demonstrated by a 

number of studies, including CCR4 expressing CD4+Treg in ovarian, colorectal, 

gastric and breast cancer [157-159], CCR5 expressing CD4+Treg in pancreatic cancer 

[160] and more recently, CXCR3 expressing CD4+Treg in ovarian cancer [161].  

 

In addition to the recruitment of naturally occurring CD4+Treg, the induction of 

CD4+Treg from non-regulatory cells also plays a major role in their accumulation. A 

number of mechanisms in which CD4+Treg can be induced have been identified 

including the generation of CD4+Treg from non-Treg by suppressive soluble factors 

such as TGF-β and IL-10 and the generation of CD4+Treg by tolerogenic APC [162, 

163].  

 

Intensive research has been focused on unravelling the mechanisms by which 

CD4+Treg induce immune suppression. Both in-vivo and in-vitro experiments in 

humans and animals has suggested the involvement of multiple mechanisms which 

include; IL-2 consumption, release of inhibitory cytokines such as IL-10 and TGF-β, 

direct cytotoxic killing via the release of granzyme and perforin, the inhibition of 

effector immune cells via inhibitory molecules expressed on the surface of CD4+Treg 

and metabolic disruption of responder cells [136, 164]. However, controversies exist 

on many of the proposed mechanisms, due to failure in translating findings seen 

during in-vivo experiments with in-vitro studies[165-169]. 
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In addition to the ‘classical CD4+Treg’ defined by they expression of CD25 and 

FOXP3, other CD4+ regulatory T-cells subsets had been recognised. They differ from 

the classical CD4+Treg mainly by the absence of stable expression of FOXP3 and 

being solely derived from extra-thymic generation from non-Treg cells in the 

presence of cytokines such as IL-10 and IL-27.  These CD4+ regulatory T-cells 

include IL-10 and TGF-β expressing T regulatory cell type-1 (Tr1) and Th3 

regulatory CD4+T-cells [170-173].   

 

CD8+ Regulatory T-cells 
 

In recent years there has been increasing interest in another subset of Treg, beyond 

CD4+Treg, characterised by the expression of the surface marker CD8. Historically, 

regulatory CD8+T-cells were the first T-cell population identified to exhibit 

suppressive capacity [174-177]. The importance of regulatory CD8+T-cells was 

further emphasised in animal model of autoimmune myocarditis, in which mice 

lacking in CD8+T-cells developed more severe disease compared to wild type mice 

and in a similar study, mice with CD8+T-cell deficiency developed increased 

susceptibility to autoimmune arthritis following inoculation with an auto-reactive 

antigen [178-180]. However, due to the lack of reliable markers available at the time, 

research into CD8+Treg had taken a back seat until recently. Since the resurgence of 

research in regulatory T-cells, a number of different subsets of CD8+T-cells with 

regulatory functions have since been identified in both animal models and man.  

 

Qa-1-specific CD8+T-cells are the best-defined subset of regulatory CD8+T-cells so 

far [181], first described in murine studies of experimental allergic encephalomyelitis 
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(EAE), a model of human multiple sclerosis (MS).  Mice inoculated with the antigen 

myelin basic protein, were noted to become resistant to EAE, compared to mice 

inoculated in the presence of defective CD8+T-cells [182-185]. Additional studies 

confirmed the protection from EAE was related to a subset of regulatory CD8+T-cells, 

which recognize the non-classical MHC class 1b molecule; Qa-1. Qa-1-specific 

CD8+T-cells induce immune regulation by the direct cytotoxic killing of auto-reactive 

CD4+T-cells expressing Qa-1 [186, 187]. Human HLA-E restricted CD8+T-cells; a 

homolog of Qa-1 CD8+T-cell have since been discovered in humans. A defect in this 

subset is associated with targeting against auto-reactive myelin specific CD4+T-cell 

and have been linked in patients with active MS [185, 188-190]. 

 

In humans, CD8+CD28-T-cells have been identified as another subset of regulatory 

CD8+T-cells. CD8+CD28-T-cells are often further classified into FOXP3+ and 

FOXP3- subsets. The mechanisms in which CD8+CD28-FOXP3+ T-cells induce their 

suppressive capacity is believed to be though the inhibition of APC such as DC, either 

via the up regulation of the inhibitory receptors immunoglobulin-like transcript-3  

(ILT3) and immunoglobulin-like transcript-4 (ILT4) or the down regulation of the co-

stimulatory molecules CD80 and CD86 on APC [191, 192]. Unlike CD8+CD28-

FOXP3+ T-cells, CD8+CD28- lacking FOXP3 expressions appear to mediate immune 

suppression though the production of IL-10 [193]. 

 

Since the discovery of CD8+ regulatory T-cells, their involvement in animal and 

human diseases had been described, including, Grave’s disease [194], inflammatory 

bowel disease (IBD) [195], systemic lupus erythematosus (SLE) [196-198] and 
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rheumatoid arthritis [180, 199], as well as a wide range of human cancers, which 

includes gastro-intestinal, prostate, melanoma, lung and lymphoma. Importantly, the 

suppressive capacity of CD8+ Treg correlated with the clinical stage of the disease 

and patients overall survival, further supporting its role in the disruption of the cancer 

immune response [200-205]. Similarly, CD8+ Treg has also been detected in patients 

with chronic infections such as HIV and HCV [206-212]. The presence of CD8+ Treg 

was associated with poorer response to anti-viral treatment [213-216].  

 

More recently, CD8+ T-cells expressing the E-cadherin receptor (CD103) have been 

identified. This novel subset of cells was first identified as a subset of effector T-cells 

in the setting of renal transplant rejection and graft vs. host disease (GVHD). 

However, further work has since confirmed their immune regulatory property [217-

219]. 

 

A fourth subset of regulatory CD8+T-cells share many similarities with classical 

CD4+Treg and are commonly termed CD8+CD25high Treg. Expression of FOXP3 can 

be demonstrated on CD8+CD25high Treg and other molecules such as high surface 

expression of CD25, CD28, CD122, CD103, glucocorticoid-induced TNFR-related 

(GITR) protein, CTLA-4 and low surface expression of CD127 can also be detected 

[143, 220-225]. However, CD8+CD25high Treg have been suggested to differ from 

CD4+Treg by possessing greater suppressive capacity and more importantly they may 

have the potential to be redirected to effector cells by specific co-stimulatory signals 

[226-228]. However, similar to CD4+Treg there are currently no specific markers for 

the identification of CD8+CD25high Treg. Therefore, to be confident that T-cells 



    Introduction   

 

 

34 

expressing CD8+CD25high with other molecules expressing Treg markers are bona 

fide suppressive T-cells, confirmation of their suppressive function is often required. 

 

In man, CD8+CD25high Treg have been described to occur naturally within the thymus 

and share many common features with naturally occurring classical CD4+Treg [220]. 

In addition to naturally occurring CD8+CD25high Treg, a number of studies have 

demonstrated the ability to generate CD8+CD25high Treg in-vitro from CD8+CD25low 

T-cells, through the modulation by suppressive cytokines such as IL-10 and TGF-β 

[229, 230]. Also CD8+CD25high Treg can be generated by the chronic stimulation of 

TCR with artificial CD3 antibodies or though the direct stimulation by antigen 

derived from pathogens such as mycobacterium and salmonella [231, 232]. 

 

The detection of CD8+CD25high Treg has been associated with a wide range of animal 

and human diseases. Primates infected with the simian immunodeficiency virus 

(SIV), a retrovirus that resembles the HIV [233, 234], the level of CD8+CD25high 

appeared to correlate with high viral load. This suggests the possible role of 

CD8+CD25high Treg in supporting virus persistence, possibly through the inhibition of 

anti-viral immune response. In man, CD8+CD25high Treg have been recognised to be 

responsible for a suppressed immune response against a number of different micro-

organism pathogens including HIV, HCV and herpes viruses, resulting in chronic 

infection [210, 235-237]. At the other end of the spectrum, dysfunctional or reduced 

numbers of CD8+CD25high Treg, had been shown to play a pivotal role in the 

development of autoimmune diseases such as ankylosing spondylitis, SLE and MS 

[198, 222, 223, 238]. In cancer, CD8+CD25high Treg have been shown to infiltrate 
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human tumours, including colorectal, prostate cancers and more recently in HCC 

[203, 228, 239]. Similar to CD4+Treg, a number of mechanisms have been proposed 

to be involved in the suppressive function of CD8+CD25high Treg, which includes the 

production of suppressive cytokines, direct cell killing via cytolysis, metabolic 

disruption of effector immune cells, disruption of APC functions and inhibitory 

molecule directed suppression [240]. However, unlike CD4+Treg the understanding of 

CD8+CD25high Treg remains scarce.  

 
 
Myeloid derived suppressor cells 
 

Myeloid derived suppressor cells (MDSC) have been identified as an important 

population of suppressive immune cells. Importantly, is has been implicated in 

tumour induced immune suppression [241]. Similar to regulatory T-cell, MDSC 

appear to be consisted of a heterogeneous group of immature myeloid derived cells 

[242]. In healthy individual, these immature cells are rapidly differentiated into DC, 

macrophages and granulocytes. However, during time of illness such as infection and 

cancer, these immature cells are prevented to undergo maturation, resulting in the 

increase in MDSC. The transcription factor cytosine-cytosine-adenosine-adenosine-

thymidine (CCAAT)-enhancer protein b (C/EBPb) has been suggested as a marker of 

MDSC [243]. However, similar to the use of FOXP3 for Treg, C/EBPb can also be 

found in non-MDSC [244, 245].  Increased frequencies of MDSC have been reported 

in tumours and peripheral blood of cancer patients, including HCC, and have been 

associated with advanced clinical stage and disease progression [246-248]. Human 

MDSC are commonly classified into granulocytic MDSC (CD15+ LIN-), which share 

many phenotypic features to neutrophil granulocytes or monocytic MDSC 
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(CD14+HLA-DRlow/-), which closely related to monocytes. Both granulocytic and 

monocytic human MDSC expresses CD33, CD11b, and CD124 [130].  It was initially 

believed, MDSC were derived from immature monocytes, but emerging evidence 

suggests MDSC can be induced from mature monocytes although the mechanism 

remains unclear [249, 250]. Similarly, the mechanisms in which MDSC employ to 

mediate immune suppression remains uncertain but may include the induction of 

Treg, direct suppression of tumour specific innate and adaptive responses via 

intracellular production of arginase, nitric oxide and ROS [251]. ROS and in 

particular peroxynitrite a byproduct of ROS reaction, results in the disruption of 

antigen presentation via acting thought the modulation of TCR [252]. Nitric oxide on 

the other hand act via the inhibition of intracellular signaling such as Signal 

transducer and activator of transcription-5 (STAT-5), Janus kinase-3 (JAK-3) and 

MHC molecules, resulting in T-cell suppression [253]. Arginase results in the 

depletion of the non-essential amino acid L-arginine. This result in reduced 

expression of the CD3 ζ-chain, leading to a decrease in T-cell proliferation [254].  

 
Tumour associated macrophages 
 

TAMs have been detected in human solid organ tumours, including HCC and their 

presence is associated with a poor prognosis [255, 256]. TAMs are known to be 

derived from circulating monocytes, in which following they recruitment into the 

tumour by the chemokine CCL2 and differentiate into TAM, as a response to tumour 

derived factors such as colony-stimulating factor-1 (CSF-1)[257]. Macrophages are 

commonly separated into two distinct populations; M1 and M2. M1 macrophages are 

often referred to as the killer macrophages responsible for tissue damage and 
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inhibition of cell proliferation. In comparison, M2 macrophages are often referred to 

as tissue repair and growth promoting cells. [258, 259]. In this context, TAM 

possesses features of M2 macrophages. Many factors have been implicated in driving 

the differentiation of TAM towards a M2 phenotype [260]. These include a wide 

range of chemokines and cytokines such as CCL2, IL-10, IL-4 and IL-13. Tumour 

cells produce such factors and a wide array of tumour associated cells such as Treg, 

tumour stromal cells and TAM them self. In addition, certain tumour environmental 

factors such as hypoxia can also skew TAM differentiation towards a M2 phenotype. 

TAM support tumour genesis in many ways.  Firstly, it supports the progression of 

tumour growth by promoting angiogenesis and tumour invasion via the release of 

factors such as MMP and VEGF [261, 262]. Importantly, TAM can also suppress 

anti-tumour responses by the activation and recruitment of Treg hence promoting a 

suppressive environment that favours tumour growth [263, 264]. In addition, TAM 

are also important in aiding initiation of tumour genesis via the maintenance of 

chronic inflammation by the production of cytokines such as IL-6, IL-17 and IL-23 

[265].  Similar to MDSC, TAM can suppress immune response by the up-regulation 

of NO, arginase and ROS production [266]. The process of metastasis of tumour cells 

is also aided by TAM through the production of cytokines required in EMT 

(discussed previously) [267]. 

 

Tumour associated dendritic cells 
 

First discovered in 1868 as Langerhans cells of the skin, dendritic cells (DC) are 

specialists in antigen presentation and play an integral role in the mediation of host 

immunity. As already discussed, DCs play an important role in immunity and 
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tolerance, in which DC in the presence of danger signals such as PAMP become 

matured, resulting in effective presentation of antigens and activation of immune 

cells.  Inversely, DC lacking maturation are poor activators of immune cells and can 

lead to the generation of regulatory cells. The tolerogenic property of DC can be 

‘hijacked’ by tumour cells to aid in its progression.  

 

DCs play a major role in the anti-tumour immune response. This has been highlighted 

by studies demonstrating the presence of DC within the tumour or tumour margin and 

the possible association with better prognosis [268, 269]. Contradictorily, the 

infiltration of DCs within the tumour environment has also been implicated in 

immune escape. DCs isolated from either within the tumour or blood of cancer 

patients, including HCC, often express an immature/tolerogenic phenotype, with 

lower expression of co-stimulatory and MHC molecules [270-272]. In addition, 

tumour associated DC are often defective in their ability to produce pro-inflammatory 

cytokines [271] [273] and activate functional T-cells [271], resulting in an ineffective 

anti-tumour immune response. Further support for the detrimental effect of the 

tumour environment on DC differentiation and functions can be observed in 

experiments in which DC primed in conditioned medium from tumour cells resulted 

in an immature and dysfunctional phenotype [274, 275].   

 

In addition to the inability of tumour associated DC to induce an effective anti-tumour 

immune response, increasingly, studies have also identified the active role DC may 

have in the generation of a suppressive tumour environment, through the induction of 

suppressive immune cells including Treg and via the production of suppressive 

cytokines (i.e. IL-10, TGF-β) [276] and inhibitory molecules [277, 278].  
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A number of mechanisms have been proposed to be involved in the generation of 

tumour-associated tolerogenic DC, immune modulating factors, such as IL-10 [279], 

IL-6 [257], TGF [280] and VEGF [281] have all been implicated in tumour associated 

DC’s differentiation, maturation or function.  

 

Suppressive stromal cells 
 

Tumour associated stromal cells make up a large proportion of the tumour bulk and 

have been shown to play an important part in the initiation and progression of 

tumours though the production of a wide range of cytokines, chemokines and growth 

factors [282]. Increasing evidence has also suggested an immune suppressive role for 

stromal cells in orchestrating immune escape.  

 

Fibroblasts are activated cells, which in normal circumstances contribute to wound 

healing though the production of ECM and collagen. Unlike fibroblasts involved in 

wound healing, cancer associated fibroblast (CAF) are maintained in a activated state 

and aid in tumour progression by the constant production of growth factors [283, 

284], chemokine [285] and ECM [283] resulting in tumour proliferation, angiogenesis 

and further recruitment of tumour promoting immune cells. In addition CAF have 

been implicated in the induction of suppressive immune cells though their antigen 

presentation properties [53, 283, 286, 287].  

 

Hepatic stellate cells (HSC) play an important pathological role in the development of 

fibrosis and cirrhosis, increasing evidence has suggested their immune suppressive 
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potential. Similarly to CAF, HSC have been shown to directly suppress effector cell 

responses, probably through the expression of inhibitory receptor ligands such as PD-

L1 [288]. HSC can also induce the differentiation of MDSC and Treg through the 

production of suppressive cytokines and retinoid [289, 290].  

 

Mesenchymal stem cells (MSC) are multiple potent stromal cells, which have been 

defined as cells with the potential to differentiate into a wide array of cell types, 

including osteoblasts, chondrocytes and adipocytes, under specific conditions. MSC 

have been implicated in tumour initiation, but their immunological suppressive 

properties may also be involved in immune escape. MSC have been shown to 

suppress T-cell, B-cell and NK-cell differentiation and proliferation through the 

production of IL-10, TGF-β [291] and metabolic disruption by IDO [292]. The 

expression of PD-L1 on MSC has been implicated as another possible mechanism of 

lymphocyte suppression [293]. MSC have also been shown to affect the 

differentiation, maturation and activation of DC, resulting in inhibition of effector T-

cell stimulation [294, 295]. In addition, MSC have been demonstrated to induce the 

development of Treg directly or via the interaction of immature DC [296-298].  

 

1.13 Inhibitory receptors 
 
 

CTLA-4 is a glycoprotein expressed on T-cells and is homologous to the receptor 

CD28, sharing the same ligands (CD80 & CD86) that are essential for effector T-cell 

activation [299]. In health, CTLA-4 plays an important role in immune tolerance and 

this was emphasised by animal experiments in which CTLA-4 deficient mice exhibit 
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lethal lymphocyte proliferation and multi-organ lymphocyte infiltration [300, 301]. 

The precise mechanisms in which CTLA-4 exerts its immune inhibitory function 

remains unclear, but includes the inhibition of DC maturation and function, induction 

of tolerogenic DC and the restriction of CD28-CD80/CD86 signalling by either out 

completing CD28 in the binding of its ligands or through internalisation of the ligand 

by CTLA-4 expressing cells [302-307]. CTLA-4 has been detected in a wide array of 

suppressive immune cells [308] and tumours [309], hence it has been suggested to 

contribute enormously to tumour escape.  

 

The inhibitory receptor, PD-1, is expressed on a wide range of immune cells but 

predominately on T-cells. In response to its activation by its ligand PD-L1, T-cells 

undergo apoptosis and anergy, resulting in limitation of effector response [310].  In 

health, PD-1 provides an additional mechanism for the maintenance of immune 

tolerance. However, in the setting of tumour escape, PD-1 can act to terminate 

potential anti-tumour responses. In particular, the ligand for PD-1 is highly expressed 

on human HCC and importantly the level of expression has been associated with 

poorer prognosis [311-313]. Other inhibitory receptors implicated in T-cell 

dysfunction include T-cell immunoglobulin and mucin-domain-containing-molecule-

3 (TIM-3) and lymphocyte-activation gene-3 (LAG-3)[314].  

 

1.14 Current Immunotherapy 
 

With the ability of cancer cells to evade the anti-tumour immune response, the 

manipulation of the host’s immune system to overcome some of these mechanisms 

(immunotherapy) had been an attractive area of research. HCC is an excellent target 
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for immunotherapy, due to the important relationship of the immune system with 

HCC initiation and progression [315]. In addition, observation of spontaneous or 

artificially stimulated anti-tumour immune responses with better prognosis has 

offered further support to the potential of immunotherapy.  

 

Cytokine Therapy 
 
 

The aim of immunotherapy is to either overcome processes involved in immune 

escape or to enhance the host’s tumour immune response. The first generation of 

immunotherapy consisted of cytokine-based therapy. In particular, IFNγ has been 

tested in a number of studies in HBV and HCV infected patients with HCC as an 

adjuvant to other treatments. The precise anti-tumour mechanisms of IFN are unclear, 

but it is likely to be related to its immune modulating properties as previously 

discussed. Early studies of IFN demonstrated promising results with improvement in 

recurrence-free survival in cancer patients [316-318]. However, more recent studies 

failed to confirm the efficacy of IFN based adjuvant therapy [319]. A number of 

studies have also incorporated standard chemotherapy such as 5-fluorouracil and 

doxorubicin with IFN [320, 321]. However, most of these studies were limited by size 

and with the majority of these studies failing to demonstrate significant efficacy. In 

addition the tolerability of IFN has been suggested as a major obstacle for its use, 

especially in the setting of HCC treated by organ transplantation.  

 

Interleukin-2 (IL-2) plays an important role in differentiation of T-cells into effector 

cells and has been shown to have the potential to overcome the suppressive effect of 
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the tumour microenvironment. The few studies conducted in HCC patients treated 

with IL-2 have reported objective responses, but the interpretation of these results is 

difficult due to their small size and importantly the use of IL-2 has been associated 

with severe side effects [322, 323]. 

 

Monoclonal antibodies 
 
 

The ineffectiveness of the effector response seen in cancer has prompted the 

development of a number of potential immunotherapeutic strategies based on 

monoclonal antibodies (mAb) to stimulate T-cells, including mAb against CD137 

(also known as 4-1BB) and CD28, with the aim of providing additional co-

stimulatory signals required for T-cell activation [324-326]. Despite their potential to 

stimulate an anti-tumour response, severe toxicity has so far limited their 

development. More recently, CD134 (also known as OX40) a member of the TNF 

receptor superfamily has demonstrated early promise as a potential 

immunotherapeutic target. CD134 is expressed on both CD4+ and CD8+ T-cells and 

its activation induces T-cell proliferation [327]. Pre-clinical studies have 

demonstrated increases in tumour immunity following CD134 mAb treatment [328]. 

Early phase-1 clinical trials, using a mouse antibody targeted against human OX40 in 

patients with advanced cancer has been well tolerated, but further studies are needed 

to confirm its use as an future immunotherapeutic agent [328, 329].  

 

The discovery of the importance of a number of inhibitory molecules in the 

suppression of anti-tumour immune responses has offered an attractive target for 
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immunotherapy. Inhibition of such pathways by antagonistic mAb, commonly being 

referred to as checkpoint inhibitors, has shown early promise.  In particular, the 

importance of CTLA-4 has translated into approved therapy for melanoma and the 

licensing of a PD-1 inhibitor is expected in the near future. [330-334]. Importantly, a 

recent trial of CTLA-4 blockade with the mAb tremelimumab in patients with HCC 

demonstrated its safety with objective anti-tumour response [335]. Similarly, the 

administration of anti-PD-1 mAb has demonstrated antitumor effects in a murine 

model of HCC and currently a phase-1 dose escalation trial of PD-1 blockade with the 

mAb Nivolumab is underway in human HCC [336]. In addition, increasing evidence 

has also suggested the blocking of both receptors may have an additive anti-tumour 

effect in patients with melanoma [337]. 

 

Adoptive cell therapy – T cells 
 

Despite the presence of effector immune cells within the tumour environment, it is 

often the case they are rendered dysfunctional by the many immune evasive 

mechanisms already mentioned. In an attempt to overcome these issues, adoptive T-

cell transfer was developed which involves the transfer of ex-vivo generated and 

stimulated T-cells into cancer patients [338]. Although a number of different methods 

have been employed for the generation of adoptive T-cells, in general, T-cells are 

isolated from the blood or tumour of patients, followed by their expansion, priming to 

recognise TAA and activation, prior to re-infusion back into the patient. The majority 

of clinical trials using adoptive T-cell transfer in HCC patients have been small, but 

these trials have confirmed the feasibility and safety of this approach [339-341]. 

Despite the potential of such methods, immunotherapy based on adoptive transfer has 
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been limited, largely due to the inability to expand a sufficiently large number of ex-

vivo generated T-cells and the identification of suitable TAA. For example, a number 

of TAA have been identified to be present in varying degrees in human HCC, 

including AFP, melanoma-associated antigen (MAGE), synovial sarcoma X 

breakpoint (SSX), testis-specific protein on Y chromosome (TSPY), New York-

esophageal squamous cell carcinoma-1 (NY-ESO-1) and Glypican-3. [342-347]. 

However no single antigen has been proven to be present in all cases of HCC and, 

with the exception of AFP, the knowledge of T-cell reactivity against HCC tumour 

antigens is limited. 

 

Adoptive therapy- Dendritic cells 
 

DC are powerful APC which are important in the generation of immune responses 

against a wide range of antigens including those derived from tumours [348]. 

However, tumours often disrupt the functions of DC though multiple mechanisms and 

can even modulate DC to contribute to the generation of a suppressive tumour 

environment, through the induction of suppressive immune cells. Attempts have been 

made to overcome some of these problems via the ex-vivo generation of functional 

autologous DC that can recognise and generate a TAA specific effector response, so 

called ‘DC vaccines’.  

 

For more than a decade, numerous clinical trials have been conducted using DC 

vaccines against a wide range of cancers, with over 77 trials conducted between the 

years 2008 to 2012, with excellent safety profile [349]. The number of studies 
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involving HCC had also increased over the years (Table 1.1), but the total number of 

patients recruited has remained small.  

 

Table 1-1 Recent dendritic cell vaccine trials in hepatocellular carcinoma. 

Study Number 
of 
Patients 

Vaccine Antigen Adverse reaction 

Tada 2012[350] 5 GM-CSF–
IL-4 DCs 

Peptides No grade 3-4 

El Ansary 2013[351] 30 GM-CSF–
IL-4 DCs 

Tumour lysate No grade 3-4 

Palmer 2009[352] 17 GM-CSF–
IL-4 DCs  

Tumour lysate No grade 3-4 

Ladhams 2002[353] 2 GM-CSF–
IL-4 DCs 

Tumour lysate Non reported 

Iwashita 2003[354] 10 GM-CSF–
IL-4 DCs 

Tumour lysate Non reported 

Stift 2003[355] 2 (out of 
20 solid 
organ 
cancers) 

GM-CSF–
IL-4 DCs 

Tumour lysate No grade 3-4 

Mazzolini 2008[356] 9 (out of 
17 solid 
organ 
cancers) 

GM-CSF–
IL-4 DCs 

Transfected with an 
adenovirus 
encoding 
interleukin-12 
genes 

4 grade 3 
lymphopenia 

Lee 2005 [357] 31 GM-CSF–
IL-4 DCs 

Tumour lysate No grade 3-4 

Chi 2005[358] 14 GM-CSF–
IL-4 DCs 

N/A No grade 3-4 

GM-CSF, Granulocyte-macrophage colony-stimulating factor; IL-4, Interleukin-4; 

DC, dendritic cells.  
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The rapid development of DC vaccines has been put down to the ability to generate 

large quantities of DC, either through the differentiation of peripherally derived 

monocytes or CD34+ stem cells [359]. The production of DC vaccines involves 

loading DC with TAA, employing a variety of techniques. These include pulsing with 

recombinant proteins [360], peptides and tumour lysates [361], RNA transfection 

[362] and transfection with plasmid vectors encoding tumour associated antigens 

[363]. Furthermore, the antigens used in DC vaccine trials often differ between 

studies and at present there is no strong evidence to support the use of a particular 

type of antigen or loading method, but the targeting of multiple TAA such as by the 

use of tumour lysates may overcome some of the issues with tumour heterogeneity 

[352]. 

 

For DC to effectively stimulate T-cells, their appropriate maturation is essential. In 

early DC vaccine trials, common DC maturation cocktails consisted of pro-

inflammatory cytokines such as tumour necrosis factor alpha (TNF-α), interleukin-1β 

(IL-1β) and IL-6 [364]. However, research into improving the effectiveness of DC 

vaccines has demonstrated the activation of DC through the physiological pathway of 

PPR activation, such as toll-like receptors (TLR), may improve the efficacy of the 

vaccine [365, 366].  

 

Despite the intense research in DC vaccines, most studies have not demonstrated 

correlation between immune response and clinical impact [352, 367]. The reason for 

the failure of these studies to demonstrate a clinical response despite an adequate 

immune response is poorly understood, but may reflect our current lack of 



    Introduction   

 

 

48 

understanding on what is needed to produce the most effective DC vaccine. This is 

illustrated by the enormous variation in DC generation methods between vaccine 

trials.  In addition, the failure of recent DC trials emphasises the multiple mechanisms 

tumour cells employ to evade the immune system.  

 

1.15 Targeting the suppressive tumour environment 
 

The majority of previous trials on immunotherapy have focused on enhancing tumour 

immunity. However, as described previously, the tumour environment contributes 

significantly to the inhibition of anti-tumour immune responses. Hence, it is likely the 

suppressive tumour environment can counteract immunity enhancing treatment. The 

targeting of tumour-induced suppression either alone or in combination with 

immunotherapy enhancing tumour immunity may reverse the inhibition of anti-

tumour immune response. With our increasing understanding of the importance of the 

suppressive tumour microenvironment in the progression of cancer, a number of 

promising novel treatments targeting suppressive immune cells had emerged. The 

therapeutic potential of Treg depletion has been demonstrated in animal models. In 

which the depletion of Treg alone or combined with immunotherapy has been shown 

to enhance anti-tumour immunity [368-370]. In particular, early animal studies have 

demonstrated the enhancement of anti-tumour responses following Treg depletion 

through the targeting of CD25 with mAb [371, 372]. In humans, the use of Denileukin 

diftitox, a fusion protein of IL-2 and diphtheria toxin that targets CD25 expressing 

cells, leading to their killing, has been shown to reduce the level of circulating Treg in 

patients with melanoma, ovarian cancer and renal cell carcinoma [373-375]. 
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However, the persistence of Treg depletion with Denileukin diftitox was often 

transient due to its short half-life. More recently a humanized anti-CD25 mAb; 

Daclizumab has demonstrated promising results as a treatment for the depletion of 

Treg in breast cancer patients [376]. Currently, we are still awaiting further results on 

the effectiveness of CD25 targeted therapy, but a major obstacle in the targeting of 

this molecule exists due to the depletion of CD25 expressing effector T-cells.  

 

Another promising agent that has been investigated for the depletion of Treg is the 

alkylating agent cyclophosphamide. Cyclophosphamide is commonly used in a wide 

range of human malignancies and autoimmune diseases. In addition to its cytotoxic 

effect, cyclophosphamide may have potential immunomodulating effects.  This was 

first recognised by its ability to enhance vaccination responses in humans [377]. 

Evidence to support the Treg modulation properties of cyclophosphamide came from 

the selective depletion of CD4+Treg in mice following treatment [368, 378], where 

importantly, the administration of low dose cyclophosphamide delayed tumour 

growth and enhanced the efficacy of anti-tumour vaccination.  

 

In humans with metastatic solid tumours, a metronomic low dose cyclophosphamide 

regime reduced the numbers of Treg and was associated with reversal of suppression 

of both NK cell function and T-cell proliferation [379]. Importantly, a small pilot 

study in human HCC showed that low-dose cyclophosphamide reduced circulating 

Treg numbers [380]. More recently, the use of low dose cyclophosphamide was 

confirmed to specifically prevent the generation of CD8+CD25+Treg [381]. 
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Tumour infiltrating Treg can be induced from non-Treg cells or recruited into the 

tumour environment through the action of chemokines produced by tumour cells, 

tumour associated stromal cells or immune cells. The prevention of Treg migration 

into the tumour has provided an attractive therapeutic target and exploitation of an 

increased expression of the chemokine receptor CCR4 by Treg when compared to 

effector T-cells may provide such a target. The chemokines CCL17 and CCL22 are 

ligands for CCR4 and have been shown to be expressed at a high level in the tumour 

microenvironment, including human HCC. Early studies in the targeting of Treg 

migration in a model of ovarian cancer with the use of a mAb against the chemokine 

CCL22 was encouraging, with the demonstration of a decrease in CD4+Treg 

infiltration following treatment [126]. Similarly, the use of an anti-CCR4 mAb in 

tumour bearing mice resulted in reduction in Treg infiltration and tumour size [382]. 

Importantly, recent clinical trials using a humanized version of anti-CCR4 mAb in 

patients with haematological cancer resulted in anti-tumour activity [383, 384].  

However, due to the redundancy of the chemokine system, the blockade of just one 

ligand is likely to result in the trafficking of Treg via an alternative pathway. 

 

1.16 Immune Responses in Conventional Treatment 
 

Treatment options for incurable liver cancer depend on the tumour stage. For patients 

with incurable but limited disease, RFA is the treatment of choice whilst in patients 

with more extensive disease TACE is beneficial for selected patients [34-37]. The 

effectiveness of these treatments is down to their direct killing of tumour cells but 

evidence suggests that control of liver cancer can also be mediated indirectly by 

activation of anti-tumour immune responses during therapy.  
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 Evidence for the possible role of local ablative treatment in the activation of anti-

tumour immune response comes from studies showing changes in immune cell 

kinetics following treatment. The observation includes; enhanced NK cell activation, 

cytoxicity activity and IFN production [385], increased frequency of TAA specific T-

cells [386, 387] and increased DC maturation and function [387].   Importantly, in 

some of these studies the changes in immune response following ablative treatment 

was associated with better recurrence free survival, when compared with patients with 

a limited immune response.  

 

In addition to the possible effect of local ablative treatment on effector cell anti-

tumour responses, this form of therapy has also been suggested to contribute to the 

disruption of the suppressive tumour environment. A number of recent studies have 

observed changes in suppressive immune cells such as MDSC [388] and CD4+Treg 

[389, 390] following local ablative treatment and were associated with a positive 

outcome in patients with a reduction of suppressive immune cells.   

 

Further evidence supporting the enhancement of anti-tumour immune responses in 

patients undergoing local ablative treatment has been proposed to be related to the 

release of immune-activating molecules, such as heat shock protein and pro-

inflammatory cytokines such as IL-17 and VEGF, primarily as a result of tumour cell 

death, leading to an enhanced immune response directed against the remaining viable 

tumour cells [391-394]. 
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Despite evidence to suggest the possible involvement of ablative treatment in the 

enhancement of anti-tumour immune responses, the precise mechanisms of how anti-

tumour immune responses are enhanced following local ablative treatment remains 

unclear. Importantly, induced immune response seen post treatment is not adequate to 

prevent tumour progression. However, combining the tumour killing and immune 

related effect of ablative treatment with other forms of immunotherapy may offer a 

potential strategy to further boost this anti-tumour immune response. It is therefore 

critical that we further our understanding of the immune events that take place 

following ablative treatment to guide research into identifying the best target and 

timing for any potential adjuvant immunotherapeutic strategy.  
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1.17 Hypotheses 
 
 
 
Chapter 3 deals with the hypothesis that a novel subset of suppressive T-cells 

expressing the surface marker CD8 is presence within human HCC. Chapter 4 focus 

on the hypothesis that the tumour environment is able to induce suppressive CD8+T-

cells though the interaction with dendritic cells. Chapter 5 concerns the hypothesis 

that tumour infiltrating suppressive CD8 T-cells can modulates the activation of 

tumour effector T cells, leading to the suppression of anti-tumour immune responses 

and promoting tumour progression. Finally, chapter 6 looks at weather the standard 

ablative treatment against human HCC may have an immune-modulating role. 

 

1.18 Aim 
 

In recent years, enormous interest had been focused on understanding the different 

components involved in the generation of a suppressive tumour microenvironment, 

with the goal of identifying possible therapeutic targets. The aim of this project was to 

determine the role regulatory immune cells; in particular the novel regulatory T-cells 

CD8+CD25+Treg, had on human hepatocellular carcinoma. The objectives of the 

project are: 

 

What is the phenotype of tumour-infiltrating CD8+CD25+Treg?  

Phenotypic analysis of T-cells isolated from primary liver tumours, matched peripheral 

blood, and matched non-tumour tissue without in-vitro expansion to confirm the 

phenotype and frequency of CD8+CD25+Treg.  
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Where do CD8+CD25+Treg come from?  

Early studies suggest that CD8+CD25+Treg differentiation depend on specific co-

stimulatory signals provided by dendritic cells or specific cytokines. Here I investigate 

the signals required for CD8+CD25+Treg generation in human hepatocellular 

carcinoma.  

 

What is the function of tumour infiltrating CD8+CD25+Treg?  

The suppressive ability of CD8+CD25+Treg will be studied using assays optimised as 

part of this study. I will further define CD8+CD25+Treg function though they cytokine 

secretion profile.  

 

Do ablative treatment effect Treg? 

Efficacy of current immunotherapeutic strategies has been disappointing, but 

combining it with other treatment modalities may offer potential benefit. I will define 

the immune response in patients undergoing ablative treatment, in particular the effect 

on Treg numbers, phenotype and function. 
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2 Materials & Methods 
 

2.1 Human samples 
 

Matched tumour and tumour free distal liver tissue were obtained from patients 

undergoing either liver transplantation or resection at the University Hospital 

Birmingham. Tumour tissue was identified by its macroscopic appears and matched 

non-tumour tissues were obtained as distally as possible from the tumour. The weight 

of tissues was recorded prior to processing. Blood samples were taken from healthy 

donors, patients with hereditary haemachromatosis or HCC undergoing treatment. 

Blood samples were collected and placed into ethylenediaminetetraacetic acid 

(EDTA) bags or bottles. For protein isolation, 1cm2 cubes of liver tissue were snap 

frozen with liquid nitrogen and stored at -800C until processing. For 

immunohistochemistry and immunofluorescence staining, tissue sections were 

obtained from paraffin embedded and frozen tissue blocks. Written informed patient 

consent and ethical approval were obtained prior to collection of all samples. 

 

2.2 Mononuclear cells extraction from liver tissue 
 

Liver and tumour tissues were processed immediately on arrival to the lab. The 

tissues were first sliced into small cubes (<0.2cm2) and transferred to a gentleMACS 

C tube (Figure 2-1; mitenyi Biotec). This was followed by mechanical dissociation 

with the gentleMACS dissociator (Figure 2-1; Mitenyi Biotec) using the pre-set 

gentleMACS program (h_spleen_01). The dissociated materials were then passed 
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though a sterile fine mesh (John Staniar & Co Ltd UK) and washed twice with RPMI-

1640 1% GPS and pelleted in a centrifuge (800 x g, 5mins). The sediment was re-

suspended with RPMI-1640 1% GPS and separated over a Lympholyte®-H 

(Cedarlane) gradient at a 1:1 ratio and centrifuged for 30 minutes at 800 x g. After 

centrifugation, a well-defined mononuclear cell (MNC) layer interface appeared and 

was removed using a Pasteur pipette. The collected cells were washed twice with 

phosphate buffer saline (PBS) (Oxoid, UK) and pelleted in a centrifuge (800 x g, 

5mins). The MNC were re-suspended with MACS buffer (PBS, 0.5% FCS (Foetal 

Calf Serum), 2mM EDTA) and used for downstream experiments. The number and 

viability of cells were confirmed using trypan blue staining and manual 

haemocytometer counting. 
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Figure 2-1 Liver mononuclear cells extraction kits 

Human liver tissue dissociation was performed using the (A) gentleMACS dissociator 

and (B) gentleMACS C tubes. 

  

A 

B 
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2.3 Peripheral blood mononuclear cells extraction from whole blood 
 

Peripheral blood mononuclear cells (PBMC) were extracted from whole blood, by 

first centrifuging the blood for 30mins at 800 x g to create a buffy coat. The buffy 

coat interface was recovered using a Pasteur pipette and diluted 1:4 with autologous 

plasma. PBMC were then separated from the buffy coat by layering over a 

Lympholyte®-H (Cedarlane) gradient at a 1:1 ratio and centrifuged for 30mins at 800 

x g.  After centrifugation, the well-defined PBMC layer interface was removed using 

a Pasteur pipette. The collected cells were washed with PBS and centrifuged (800 x g, 

5mins) twice and re-suspended in MACS buffer for downstream experiments. The 

number and viability of cells was confirmed using trypan blue staining and manual 

haemocytmeter counting. 

  

2.4 Specific T-cell subsets isolation 
 

T-cells isolation by cell sorting  
 

To isolate specific T-cell subsets for functional assays, MNC isolated from tumour, 

matched tumour free tissues or peripheral blood samples were labelled with 

fluorescently conjugated antibodies raised against CD3, CD4, CD8, CD25 and CD127 

(detailed protocol in flow cytometry section). CD8+Treg 

(CD3+CD8+CD25highCD127low), CD4+Treg (CD3+CD4+CD25highCD127low) and 

responder T-cells (CD3+CD25-) were obtained by using a Mo-Flow XDP cell sorter 

(Beckman Coulter). Cells were sorted into a 1.5mL sterile eppendorf tubes containing 
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ice-cold RPMI-1640, 1% GPS and purity of cells isolated was confirmed to be >95% 

by flow cytometry. The sorted cells were centrifuged (350 x g, 10mins) and 

resuspended in RPMI-1640, 1% GPS for further downstream experiments. The 

number and viability of cells was confirmed using trypan blue staining and manual 

haemocytometer counting. 

 

Magnetic isolation of CD4+CD25+ and CD4+CD25- cells 
 

CD4+Treg and responder T-cells (CD4+CD25-) were isolated using a Dynal regulatory 

CD4+CD25+T-cells kit (Invitrogen). Prior to use, the desired volume of each type of 

beads was transferred to a polystyrene tube (BD falcon) and mixed with 1mL of 

MACS buffer. The beads were placed in a magnet for 1min and the supernatant was 

removed. The beads were removed from the magnet and resuspended with the same 

volume of MACS buffer as the initial volume of beads taken. The isolation of 

CD4+Treg was performed in three main steps. 

 

Step 1. Negative isolation of CD4+ T cells:  

 

Negative isolation of CD4+T-cells was performed by first depleting B cells, NK cells, 

monocytes, CD8+T-cells and red blood cells. PBMC obtained from patients or healthy 

donors were firstly extracted as previously described and re-suspended at a 

concentration of 2x108 per mL of MACS buffer. PBMC were indirectly labelled with 

an antibody mix against CD8, CD14, CD16, CD19, CD56, CD36, CD123, and 

Glycophorin A and then Depletion Dynabeads were added to capture the antibody 

bound cells. These labelled cells were then removed with a magnet.  
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Step 2. Positive isolation of CD4+CD25+ Treg cells:  

 

After negative isolation of the CD4+ cells, Dynabeads CD25 were added to positively 

isolate the CD4+CD25+T-cells. The bead-labelled CD4+CD25+T-cells were captured 

in a magnet. The supernatant containing the un-labelled CD4+CD25- cells (responder 

T-cells) were removed for later use. 

 

Step 3. Detachment of the isolated CD4+CD25+ Treg cells:  

 

After positive isolation of the CD4+CD25+ Treg, the cells were detached from the 

beads by adding DETACHaBEAD, which cleaves the magnetic particle from the 

CD25+ cells. The beads are removed with a magnet, leaving a pure population of 

CD4+CD25+ cells. The purity of cells was improved by repeating each magnet 

selection step twice.  

 

All washing steps were carried out using MACS buffer and cells were centrifuged at 

350 x g for 5mins. The volume of antibody and beads used was according to 

manufacturer instruction. 

 

Naïve CD8+ T-cells isolation  
 

Naïve CD8+ T-cells (CD8+CD45RA+) were extracted from PBMC by negative 

magnetic isolation using an EasySepTM Human Naïve CD8+ T-cell enrichment kit 

(StemCell technologies).  
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This was performed by depleting B-cells, NK cells, monocytes, CD4+ T-cells, 

memory T-cells and red blood cells. PBMC from healthy donors was firstly extracted 

as previously described and re-suspended at a concentration of 5x107 cells per mL of 

MACS buffer. PBMC were indirectly labelled with an antibody Mix against CD4, 

CD14, CD16, CD19, CD20, CD36, CD45RO, CD56, CD57, CD94, CD123, CD244, 

TCRγ/δ and glycophorin A and then paramagnetic beads were added to capture the 

antibody bound cells. These labelled cells were then removed with a magnet. To 

improve the purity of the naïve CD8+T-cells, the magnetic separation step was 

repeated a total of 5 times.  

 

For autologous CD14+ derived DC: naïve CD8+T-cells co-culture experiments, 

CD14+ monocytes were first isolated from PBMC (see section 0), followed by the 

isolation of naïve CD8+ T-cells from the non-CD14+ cells fraction. The naïve CD8+ T-

cells were kept in medium containing RPMI-1640 supplemented with 10% FCS, 1% 

GPS and 50IU/mL IL2 at a concentration of 5x106 cells per mL in a 48-well plate. 

The naïve CD8+ T-cells were used in co-culture experiments after the CD14+ cells 

had been differentiated into monocyte derived dendritic cells (moDC). The purity of 

naive CD8+T-cells was confirmed by flow cytometry immediately after isolation and 

following culture in IL-2.  

 

All washing steps were carried out using MACS buffer and cells were centrifuged at 

350 x g for 5mins. The volume of antibody and beads used was according to 

manufacturer’s instructions. 
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CD14+ monocytes isolation 
  

CD14+ monocytes were isolated from PBMC using a positive magnetic isolation kit. 

PBMC were re-suspeneded with 80µL of MACS buffer per 107 cells. CD14+ micro 

beads (Miltenyi Biotec) were added per 107 cells. The cells were applied over a 

primed LS column (Figure 2-2) (ferromagnetic spheres) that had been attached to a 

MACS separator (Figure 2-2) (magnetic field) and washed though with MACS buffer 

three times to obtain the unlabelled cells. The CD14+ micro beads labelled monocytes 

are retained in the column. To remove the CD14+ monocytes, the LS column was 

removed from the MACS separator and MACS buffer was added to the column and 

the cells were flushed out, releasing the previously attached CD14+ cells. To improve 

the purity of the CD14+ monocytes, the cells are passed though a new MACS 

column/separator and the separation procedure described above was repeated. The 

unlabelled cell fraction (CD14- PBMC) was used to isolate naïve CD8 T-cells for 

autologous co-culture experiments. The volume of antibody and beads used was 

according to manufacturer’s instructions. 
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Figure 2-2 CD14+ cells isolation kit 

(A) LS column (B) MACS separator 
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2.5 Tissue conditioned medium 
 

Approximately 1g of matched tumour and tumour free distal tissue was weighed and 

washed in RPMI-1640. The tissues were finely sliced into sections by scalpel. The 

sections were transferred to a T45 tissue culture flask (Corning) and incubated in 

RPMI-1640 supplemented with 1% GPS at 2mL per 0.1g of tissue for 24 hours at 

35oC, 5% CO2 (Figure 2-3). The tissue-conditioned medium was collected and 

centrifuged twice at 800 x g for 5mins to remove any tissue debris. The medium was 

passed though a 0.22µm sterile filter (Millipore) and aliquoted into 1.5mL cryovials 

(Corning) for storage at -80oC until use. 
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Figure 2-3 Generation of tissue conditioned medium 
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2.6 Immunohistochemistry & immunofluorescence 
 

Immunohistochemistry staining was carried out using formalin fixed, paraffin 

embedded sections. 5µm thick sections were cut from tissue blocks using a microtome 

and mounted onto X-tra® Adhesive Snowcoat slides (Surgipath). Slides were 

incubated at 60oC for 1 hour and stored at room temperature until use. 

 

Immunofluorescence staining was carried out using fresh liver tissue (1cm2 cubes), 

snap frozen in liquid nitrogen and stored at – 80oC until use. 5µm thick sections were 

cut using a cryostat (Bright OTF) and mounted on glass microscope slides (BDH UK) 

and fixed in acetone (Fisher Scientific), wrapped in foil and stored at -20oC until use. 

 

A full list of primary antibodies used for immunohistochemistry and 

immunofluorescence are summarised in (Table 2-1). 
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Table 2-1 Antibodies used for immunohistochemistry & immunofluorescence staining 
Antibody Clone Source Concentration 

CD8a 
Ms IgG2a 
 

OKT-8 eBioscience 10 µg/mL 

CD4 
Ms IgG1 

RPA-T4 BD Bioscience 10 µg/mL 

FOXP3 
Ms IgG1 

236/E7 Abcam 5 µg/mL 

FOXP3 
Rb IgG 

Polyclonal Abcam 1 µg/mL 

CD11c 
Ms IgG1 

F24 Abcam 10 µg/mL 

Mouse IgG2a 

isotype control 
DAK-GO5 DAKO Use at same 

concentration as 
primary antibody 

Mouse IgG1 
Isotype control 

DAK-GO1 DAKO Use at same 
concentration as 
primary antibody 

Rabbit polyclonal 
IgG 
 
Isotype control 

 

DAKO Use at same 
concentration as 
primary antibody 

Goat anti-mouse 
IgG2a Alexa Fluor 
488 
 

 Invitrogen 2 µg/mL 

Goat anti-mouse 
IgG1 Alexa Fluor 
488 
 

 Invitrogen 2 µg/mL 

Goat anti-rabbit 
IgG (H+L) Alexa 
Fluor 534 
 

 Invitrogen 2 µg/mL 

DAPI (4',6-
Diamidino-2-
Phenylindole, 
Dihydrochloride) 

 Invitrogen 300nM 
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Immunohistochemical staining  
 

Formalin fixed, paraffin embedded sections were deparaffinised with xylene 

(Surgipath) for 4 minutes, followed by dehydration with 100% ethanol (Fisher 

Scientific) for 4 minutes. Endogenous peroxidise activity was blocked with 0.3% 

hydrogen peroxide solution (30% H2O2 (Sigma-Aldrich) dissolved in ethanol (Fisher 

Scientific)) for 20 minutes followed by washing in PBS for 5 minutes. Antigen 

retrieval was carried out by pre-heating EDTA buffer (1mM EDTA (Abcam) in 

distilled H2O, with 0.1% Tween20 (Promega), adjusted to pH8) in a microwave at 

800 watts for 10 minutes, followed by heating the sections in EDTA buffer for a 

further 20 minutes. The sections were allowed to cool at room temperature and 

washed with PBS for a further 5 minutes. To block non-specific binding, the sections 

were blocked by incubation with normal horse serum (Vector Labs). To block 

endogenous biotin activity, sections were incubated in avidin solution for 20 minutes, 

followed by incubation in biotin solution for 20 minutes (Vector Labs). The sections 

were incubated with primary antibodies or isotype control diluted with normal horse 

serum, at room temperature for 60 minutes. The sections were washed 3 times in PBS, 

followed by incubation with biotinylated secondary antibody raised in an appropriate 

species (Vector Labs) for 30 minutes and washed 3 times with PBS. Staining was 

visualised using the immunoperoxidase technique with avidin-biotin peroxidase 

(VECTASTAIN®ABC) according to manufacturer’s instructions and incubated with 

the enzyme substrate Vector® NovaRED™ (Vector Labs) or ImmPACT DAB™ 

(Vector Labs) for 5 minutes, followed by washing in distilled H2O (dH2O) for 5 

minutes. The sections were counter stained with haematoxylin (Dako Ltd, UK) for 30 

seconds and washed in (dH2O) for 5 minutes. The sections were then dehydrated in 
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100% ethanol for 4 minutes and cleared in xylene for 4 minutes. The sections were 

mounted in DPX (Sigma-Aldrich) and allowed to dry over night. Images were 

analysed using a Zesis Axioscope microscope and Axiovision software (Carl Zeiss).   

 

For dual immunohistochemistry staining, the sections were washed 3 times in PBS 

following incubation with the first primary antibody and enzyme substrate. The 

blocking of non-specific binding and endogenous biotin binding was repeated as 

described previously. The sections were incubated with the second primary antibody 

or isotype control diluted with normal horse serum at room temperature for 60 

minutes and washed three times with PBS. The sections were once again incubated 

with biotinylated secondary antibody raised in the appropriate species (Vector Lab) 

for 30 minutes. The sections were incubated with VECTASTAIN®ABC followed by 

the second enzyme substrate (ImmPACT DAB with Nickel or Vector Blue, (Vector 

Labs)). The sections were counterstained, dehydrated, cleared and mounted as 

previously described. 

 

Immunofluorescent staining 
 

Acetones fixed frozen sections were left at room temperature for 30 minutes, followed 

by repeat fixation with acetone for 5 minutes.  The sections were washed in PBS and 

incubated with normal horse serum for 20 minutes to block non-specific binding. The 

sections were incubated with primary antibodies or isotype control diluted with 

normal horse serum at room temperature for 60 minutes. The sections were washed 3 

times in PBS, followed by incubation with fluorescent secondary antibody raised in 

the appropriate species (Table 2-1) for 30 minutes in the dark and washed 3 times 
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with PBS. The sections were counterstained with DAPI (Invitrogen) and washed with 

PBS. The sections were mounted in Immunomount (GeneTex) and allowed to dry 

over night whilst protected from light. The sections were analysed using a Zeiss LSM 

510 UV confocal microscope (Carl Zeiss). 

 

2.7 Flow cytometry 
 

The phenotype of different subsets of immune cells was assessed by multi-colour 

flow cytometry using a Cyan ADP flow cytometer and data analysed using Summit 

5.2 (Beckman Coulter).   

 

For surface staining, 1x106 cells were diluted in 100 µL MACS buffer and incubated 

with fluorescent antibodies or isotype controls (Table 2-2) for 30 minutes at 4oC then 

washed in MACS buffer followed by centrifugation at 800 x g for 5 minutes. Cells 

were re-suspended in 200µL of MACS buffer for flow cytometry analysis.  

 

For staining lymphocytes isolated from liver tissues, a live/dead cells marker (life 

technologies) was added into the antibody mix. 1x106 cells were diluted in 1mL of 

MACS buffer and incubated with1µL of live/dead marker for 15 minutes at 4oC then 

washed in MACS buffer followed by centrifugation at 800 x g for 5 minutes. Cells 

were re-suspended in 200µL of MACS buffer for flow cytometry analysis.  

 

For experiments that required absolute cell counts, 20µL of AccuCheck counting 

beads (Invitrogen) were added to the final sample and the final cell counts obtained 

using the formula below. 
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Absolute Count (cells/µL) = number of cells counted/Total number of beads 

counted x Number of AccuCheck Counting Beads Beads per µL 

 

For intracellular staining, the cells were first stained with surface antibodies or isotype 

controls followed by fixation and permabilsation using the BD cytofix/cytoperm kit 

(BD biosciences) according to manufacturer’s instructions. Cells were then stained 

with intracellular antibodies or isotype controls for 30 minutes at 4oC. For FOXP3 

staining, 10µL of goat serum was added with the antibody to reduce non-specific 

staining.  

 

For intracellular cytokine detection in T-cells, cells were stimulated prior to antibody 

staining. Cells were re-suspended in RPMI-1640 supplemented with 5% human serum 

(TCS Biosciences) at 107 cells/mL and stimulated with 20µL of CytoStim, a TCR 

MHC cross-linking antibody, per mL of cells suspension (Miltenyi Biotec) for 2 hours 

at 37oC, 5% CO2.	To	enhance	the	detection	of	intracellular	cytokines	1µg per mL	

of	brefeldin A (Sigma-Aldrich) was added into the stimulated cells to prevent protein 

trafficking before a further incubation for 4 hours.  Surface and intracellular staining 

was then carried out as described previously. A full list of monoclonal antibodies used 

for flow cytometry is summarised in (Table 2-2) 
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Mononuclear cells (MNCs) were identified on forward scatter (FSC) and side scatter 

(SSC). The MNC were gated against CD3 and Live/Dead marker (L/D) to identify 

viable T-cells. Viable CD3+T-cells were gated against CD8 and CD4 to identify 

CD3+CD8+ T-cells and CD3+CD4+ T-cells subsets. CD3+CD8+ T-cells are gated 

against CD25 and CD127 to identify CD8+Tregs (CD3+CD8+CD25highCD127lowcells). 

CD3+CD4+T-cells are gated against CD25 and CD127 to identify CD4+Tregs 

(CD3+CD4+CD25highCD127low cells). 

 

To identify the expression of marker of interest, the histogram regions for 

negative/positive populations were set.    The regions were set so that the negative 

population included 98.5% of events using a cocktail fluorochrome conjugated 

isotype matched control antibody.  

 

Table 2-2 Antibodies used for flow cytometry 

Antibody 
Isotype 

Clone Source Volume per 106 

cells 
CD3 V450 
Ms IgG1 

 

CD3 PE 
Ms IgG1 

 

UCHT1 
 
 
UCHT1 

BD bioscience 
 
 
BD bioscience 

5 µl 
 
 
5 µl 

CD4 V500  
Ms IgG1 

 

RPA-T4 BD bioscience 5 µl 

CD8 PE Cy7 
Ms IgG1 
 
CD8 PerCP-Cy5.5 
Ms IgG1 
 

RPA-T8 
 
 
SK1 

BD bioscience 
 
 
BD bioscience 

3 µl 
 
 
5 µl 

CD25 APC 
Ms IgG1 

M-A251 
 

BD bioscience 
 

5 µl 
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CD25 APC Cy7 
Ms IgG1 

 

 
M-A251 

 
BD bioscience 

 
5 µl 

CD127 FITC 
Ms IgG1 

 

HIL-7R-M21 BD bioscience 5 µl 

CD14 V500 
Ms IgG2a 

 

M5E2 BD bioscience 5 µl 

HLA DR APC 
Ms IgG2a 

 

G46-5 BD bioscience 5 µl 

HLA-ABC APC 
Ms IgG2a 

G46-2.6 
 

BD bioscience 5 µl 

 
CD80 PE 
Ms IgG1 

 
L307.4 

 
BD bioscience 

 
5 µl 

 
CD86 FITC 
Ms IgG1 

 
2331 (FUN-1) 

 
BD bioscience 

 
5 µl 

 
IL10 PE 
Rat IgG1 

 
JES3-9D7 

 
Miltenyi Biotec 

 
10 µl 

 
IFN APC 
Ms IgG1 

 
45-15 

 
Miltenyi Biotec 

 
10 µl 

IL12 APC 
Ms IgG1 

C11.5 BD bioscience 10 µl 

 
LAP (TGF-β1) PE 
Ms IgG1 

 
27232 

 
R&D Systems 

 
10 µl 

 
FOXP33 PE 
Ms IgG1 

 
236A/E7 

 
eBioscience 

 
10 µl 

 
CTLA-4 PE 
Gt IgG 

 
Sf 21 

 
R&D Systems 

 
5 µl 

 
CD39 PE 
Ms IgG1 

 
A1 

 
eBioscience 

 
5 µl 

 
GITR APC 
Ms IgG1 

 
109101 

 
R&D Systems 

 
10 µl 

 
CD73 PE 
Ms IgG1 

 
AD2 

 
BD bioscience 

 
5 µl 
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CD103 PE 
Ms IgG1 

 
Ber-ACT8 

 
BD bioscience 
 

 
5 µl 

 
CD28 PE 
Ms IgG1 

 
CD28.2 

 
BD bioscience 
 

 
5 µl 

 
Perforin PE  
Ms IgG2b 

 
G9 

 
BD bioscience 

 
10 µl 

 
Granzyme B PE 
Ms IgG1 

 
GB11 

 
BD bioscience 

 
10 µl 
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2.8 Proliferation & Suppression assay 
 
 
Responder T-cells (CD25-) was isolated from the PBMC of healthy donors as 

previously described. The responder cells were labelled with CellTrace™ violet cell 

proliferation kit (Figure 2-4; Invitrogen). 1.5x106 responder T-cells were re-

suspended in 1mL of MACS buffer and incubated with 1µL of CellTrace violet at 

room temperature for 20 minutes.   The cells were quenched with 5mL of ice-cold 

MACS buffer and incubated for a further 5 minutes on ice. Labelled cells were 

centrifuged at 350 x g 5 minutes and re-suspended in RPMI-1640 1% GPS. The 

number and viability of cells was confirmed using trypan blue staining and manual 

hemocytometer counting.  

 

Stimulation of responder T-cells to induce proliferation was initially preformed with 

CD3/CD28 Dynal beads (Invitrogen) and was subsequently carried out with 

CD3/CD28 activating beads (Treg inspector; Miltenyi Biotec). Responder T-cells 

were cultured in a 96 well round bottom plate (BD) in the presence of CD3/CD28 

activating beads (Treg inspector; Miltenyi Biotec) to induce T-cell proliferation at a 

1:1 bead to T-cell ratio. Different ratios of CD8+Treg or CD4+Treg were added with 

the responder T-cells before culture at 37oC, 5% CO2 for 3 days (Table 2-3). 

 

For allogeneic T-cell proliferation assays, moDC were co-cultured with 5x104 

CellTrace violet labelled responder T-cells at a 1:10 ratio and cultured in RPMI-1640, 

10% FCS, 1% GPS for 5 days. 
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Figure 2-4 CellTrace violet labelled responder T-cell 
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Table 2-3 Proliferation assay 

Number of responder T cells, regulatory T cells (Treg) and Treg Suppression 

Inspector beads per well. 

Ratio  

Responder cells: Treg 

Responder cells Tregs Treg suppression 

inspector beads 

1:0 5x104 - 5x104 

0:1 - 5x104 5x104 

1:1 5x104 5x104 10x104 

2:1 5x104 2.5x104 7.5x104 

4:1 5x104 1.25x104 6.25x104 

8:1 5x104 0.625x104 5.625x104 

Control 1:0 5x104 - 5x104 

Control 0:1 - 5x104 5x104 

Total cells/bead 3x105 3.57x105 6.57x105 

Total cells/beads per 1 assay 

(duplicates) 
6x105 5.1 x105 11.25 x105 
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Following 3 days of culture (5 days for allogeneic T-cell proliferation assay) flow 

cytometry was carried out to determine responder cell division.  In selected 

experiments, the ability of CD8+Treg to suppress responder T-cells was studied in the 

presence or absence of neutralising monoclonal antibodies/inhibitor against IL-10 

(5µg per mL, R&D; clone 23738), TGFβ (10µg per mL, R&D; polyclonoal) CTLA-4 

(10 µg per mL, Thermo Scientific: clone AS32), CD39 (10 µg per mL, Serotec; clone 

A1) and ARL67156 (Sigma). The requirement for cell-cell contact in suppression was 

studied by co-culturing CD8+Treg and responder T-cells in an 96-well culture plate. 

The cells were separated by the presence of a transwell insert (0.4µm pore size; 

Corning) (Figure 2-5).   
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Figure 2-5 Suppression assay preformed using transwell insert 

To determine the need of cell-to-cell contact in the suppressive function of Treg (red), 

responder T-cells (blue) were cultured with or without the presence of a transwell 

insert. 
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2.9 Generation of monocyte-derived Dendritic Cells  
 

CD14+ monocytes isolated from PBMC were incubated at 2x106 cells per mL of 

RPMI-1640 containing 1000IU/mL of both granulocyte-macrophage colony-

stimulating factor (GM-CSF; Peprotech) and interleukin-4 (IL-4; Peprotech) in 

RPMI-1640, 10% FCS, 1% GPS in a 24-well plate (BD). Cells were washed every 

second day by centrifugation at 300 x g for 10 minutes and discarding 50% of the 

medium before adding the same volume of fresh medium. The cells were incubated at 

35oC, 5%, CO2 for 7 days to induce differentiation of CD14+ monocytes to DC. DC 

phenotype was confirmed by demonstrating expression of HLA-DR and absence of 

CD14+ expression. 

 

2.10 Priming of Naïve CD8+T-cells with tissue conditioned medium 
 

Conditioned medium generated from HCC tumour and matched non-tumour tissues 

was used to prime CD8+T-cells. Naïve CD8+ T-cells (CD8+, CD45RA+) were isolated 

using a negative selection kit as previously described. Isolated naïve CD8+T-cells 

were cultured in RPMI-1640 only, tumour or matched non-tumour conditioned 

medium. Conditioned medium were diluted with different ratios of RPMI-1640, 10% 

FCS and incubated for 1, 3 and 5 days respectively. The phenotypes of primed 

CD8+T-cells were assessed by flow cytometry for surface expression of CD25, 

CD127 and intracellular staining for FOXP3. In selected experiments, CD3/CD28 

activation beads (Invitrogen) were added to induce T-cell proliferation.  
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2.11 Priming of Dendritic cells with tissue conditioned medium 
 

Conditioned medium generated from HCC tumour and matched non-tumour tissues 

were used to prime moDC. Following differentiation from PBMC derived CD14+ 

monocytes, moDC were washed in PBS and centrifuged twice (300 x g, 5 minutes). 

For the priming of moDC, tumour or matched non-tumour conditioned medium were 

diluted at a ratio of 1:5 with RPMI-1640, 10%, FCS and incubated with for 24 hours. 

The primed moDC were washed three times and centrifuged (300 x g, 5 minutes) 

prior to use in further experiments. In selected experiments, in addition to the tissue 

conditioned medium, neutralising antibodies against IL-10 (R&D), TGF (R&D), IL-6 

(R&D) and IL-6-receptor (R&D) were added to the culture at the start of moDC 

priming.  The phenotypes of moDC were assessed by flow cytometry for surface 

expression of HLA-DR, HLA-A/B/C, CD80 and CD86. Function of moDC was 

assessed by intracellular cytokine detection and allogeneic T-cell proliferation assay, 

as previously described, when, following culture in conditioned medium for 24 hours, 

the primed moDC were washed three times and centrifuged (300 x g, 5 minutes) 

before the presence of IL-10 and IL-12 was demonstrated by multi-colour flow 

cytometry (see Table 2-2 for antibodies). For allogeneic T-cell proliferation assays, 

CD3/CD28 activating beads were replaced with conditioned primed DC. MoDC and 

5x104 violet cellTrace labelled responder T-cells (CD25low) were cultured at a ratio 

1:10 for 5 days in a 96 well plate. Following incubation, the proliferation capacity of 

responder T-cells was analysed by flow cytometry. 

 

 



Materials & Methods 

 

 

82 

2.12 Co-culture of Naïve CD8 T-cells and moDC 
 

Naïve CD8+ T-cells (CD8+, CD45RA+) were isolated using a negative selection kit 

(StemCell Technologies) from PBMC obtained as previously described from whole 

blood. Naïve CD8+ T-cells were seeded at 2.5x105 per well in 96-well, round 

bottomed plates, in RPMI-1640 supplemented with 10% FCS and 1% GPS. moDC 

that had been primed with conditioned medium were added into the well at a 10:1 

ratio (T-cells:moDC) before incubation for 7 days in 35oC, 5% CO2 . Cells were 

centrifuged on day 2 and the medium exchanged with fresh RPMI-1640 supplemented 

with 10% FCS, 1% GPS and 1000IU/mL of IL2 (Peprotech). T-cell phenotype was 

assessed for the expression of CD3, CD8, CD25, CD127, FOXP3, CTLA-4 and CD39 

by flow cytometry. Function of CD8+T-cells following co-culture was assessed by 

intracellular cytokine staining or by suppression assay as previously described. In 

selected experiments the ability of moDC to induce CD8+Treg was studied in the 

presence and absence of neutralising antibodies or inhibitor against IL-10 (R&D), 

TGF (R&D), inducible nitric oxide synthase (iNOS) (Calbiochem), argainase (Sigma-

Aldrich), and indoleamine 2,3-dioxygenase (IDO) (Sigma-Aldrich).  

 

The requirement for cell-cell contact for the induction of CD8+Treg by moDC  was 

assessed by culturing moDC and CD8+Treg in a 96-well culture plates with the 

addition of a transwell insert (0.4µm pore size; Corning) to separate cells.   

 

 

 



Materials & Methods 

 

 

83 

2.13 Live cell imaging  
 

The interaction of conditioned medium primed or LPS stimulated moDC with CD8+ 

T-cells was assessed by the Cell IQ imager (ChipMan Technologies). Naive CD8+ T-

cells were first labelled with carboxyflurescein succinimidyl ester (CFSE 

)(Invitrogen) by incubating 1x106 cells with 2µL of CFSE dye in 1 mL of MACS 

buffer for 10 min at 37oC. 5 mL of ice-cold buffer was added to the cells before 

incubation for a further 5 minutes. The cells were washed three times in MACS buffer 

and centrifuged at 350 x g for 5 minutes. The CFSE labelled cells were re-suspended 

at 2.5x104 per mL in RPMI-1640 supplemented with 10% FCS, 1% GPS. The labelled 

cells were incubated with conditioned medium primed moDC at a 10:1 (T-

cells:moDC) ratio in a 24-well culture plate. The cells were cultured for 3 days at 

35oC, 5% CO2 within the cell-IQ incubator. Phase contrast and fluorescent images 

were taken at 5 minutes intervals after which a movie was generated from the images 

by the Cell IQ analyser software. The interaction time of moDC and CD8+T-cells 

were obtained manually by analysing each individual CD8 T-cell (fluorescently 

labelled) interaction with moDC (unlabelled cells) in a given field. The total time of 

each CD8+T-cell-moDC interaction can be obtained by counting the number of 

frames each individual CD8+T-cell remains in contact with a moDC. To obtain the 

overall interaction time, the contact time of 10 T-cells were counted in two separate 

fields and an average taken. Contact of each individual CD8+T-cell with a new moDC 

were counted as a new interactions. 
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2.14 Freezing of cells 
 
 
Cells were suspended in freezing medium (FCS plus 10% dimethyl sulfoxide 

(DMSO) (Sigma-Aldrich)), at a concentration of 1x107 cells per mL and transferred 

into a cryovials. The cells were placed in a CoolCell alcohol-free cell freezing 

container (Biocision) and transferred into a -80oC freezer for 48 hours after which 

cryovials are stored in liquid nitrogen until use. The cells were thawed by removal 

from liquid nitrogen, followed by immediate washing with warm RPMI-1640 and 

centrifuged at 300 x g for 5 minutes. The cells were re-suspended in RPMI-1640 

supplemented with 10 %FCS, 1% GPS and 50IU/mL IL2, overnight at a 

concentration of 5x106 per mL. Viability of cells were confirmed using trypan blue 

exclusion the following day and the cells were passed though a 70µM sterile filter to 

remove debris and aggregates prior to use.  

 

2.15 Cytokine array 
 
 
To investigate the composition of conditioned medium, a human cytokine array kit 

(R&D system) was used to quantify cytokines, chemokines and acute phase proteins. 

The analytes detected by the kit are displayed in (Table 2-4).  

 

Assays were performed according to manufacturer’s instructions.  Briefly, array 

membranes were first blocked with buffer provided for one hour. This was followed 

by the incubation of the membranes with the matched conditioned medium and 

antibody mix at 4oC overnight. The membranes were rinsed with wash buffer and 

incubated with streptavidin-horseradish peroxidase (R&D system) for 30 minutes at 
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room temperature. To develop the membrane, each array was first rinsed with wash 

buffer twice and incubated with the Chemi Reagent Mix for 1 minute. The 

membranes were then exposed with enhanced chemiluminescence detection film 

(Amersham,UK) and developed using a Kodak X–Omat 1000 processor (University 

of Birmingham). The pixel densities on the developed film were analyzed by image-J. 
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Table 2-4 Analytes measured by the human cytokine array Kit A 

C5a IL-1 alpha 

CD40 Ligand IL-1 beta 

G-CSF IL-1ra 

GM-CSF IL-2 

CXCL1/GRO alpha IL-4 

CCL1/I-309 IL-5 

ICAM-1 IL-6 

CXCL8/IL-8 IL-27 

IL-10 IL-32 alpha 

IL-12 p70 CXCL10/IP-10 

IL-13 CXCL11/I-TAC 

IL-16 CCL2/MCP-1 

IL-17 MIF 

IL-17E CCL3/MIP-1 alpha 

IL-23 CCL4/MIP-1 beta 

Serpin E1/PAI-1 TNF-alpha 

CCL5/RANTES TREM-1 

CXCL12/SDF-1  
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2.16 Protein extraction 
 

For the detection of IDO, protein was extracted from moDC. The cells of interest 

were centrifuged at 15000 x g in a 1.5 mL Eppendorf for 5 minutes to obtain a cell 

pellet. The cells were lysed by adding 125µL of lysis buffer (49.6µL CelLytic M; 

Sigma-Aldrich, 62.5µL completeULTRA [2x stock from 1 tablet in 5mL CelLytic 

M], 0.38µL DNase [10U/µL stock; Roche] and incubated at 40oC for 30 minutes. The 

cells were centrifuged at 15000 x g for 1 minute and the supernatant containing the 

protein was transferred to a new Eppendorf. The concentration of protein was 

determined by the bicinchoninic acid assay (BCA; Sigma-Aldrich) according to the 

manufacturer’s instructions and samples were stored at -80oC until use.  

 

2.17 Western Blot 
 

To prepare the protein lysate sample, 5µL of sodium dodecyl sulphate polyacrylamide 

gel electrophoresis (SDS PAGE) sample buffer (200mM Tris pH6.8, 20% glycerol, 

10% SDS, 0.05% bromophenol blue and 10 mM ß-mercaptoethanol) was added to 

20µL of protein lysate (protein concentration of 1mg/mL) in a 1.5 ml Eppendorf and 

heated at 100oC for 2 minutes and centrifuged at 15000 x g for one minute. The 

protein lysate was separated on 5-10% SDS polyacrylamide gel using the BioRad 

Mini Trans Blot Cell System (Biorad). Gels were by prepared (Table 2-5) by laying a 

stacking gel over a polymerized resolving gel between two glass plates and left to set. 

In the meantime, the gel apparatus was assembled and running buffer (30.3g Tris, 

144g glycine, 10g SDS in 1 liter of ddH2O) was then poured into the tank ensuring 

that the electrodes were fully covered. 20µL of each protein lysate sample was slowly 
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loaded onto each lane of the stacking gel. One line was reserved for a protein ladder 

(Amersham, GE Healthcare). Electrophoresis was performed at 200V for 30 minutes. 
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Table 2-5 Recipe for SDS-PAGE gels 

 Stacking gel (5%) Resolving gel (12%) 

ddH2O 6.8mL 3.3mL 

30% Acryamide mix 

(Biorad) 

1.7mL 4.0mL 

1.0M Trisma base pH 6.8 

(Sigma-Aldrich) 

1.25 mL  

1.5M Trisma base pH 6.8 

(Sigma-Aldrich) 

 2.5mL 

10% (w/v) SDS (Sigma-

Aldrich) 

0.1mL 0.1mL 

10% (w/v/) ammonium 

persulfate (Sigma-Aldrich) 

0.1mL 0.1mL 

N,N,N’,N’- 

tetramethylethylenediamine 

(TEMED) (Sigma-Aldrich) 

40 µL 40 µL 
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To develop the blot, the resolving gel containing the protein lysate samples was 

transferred onto a nitrocellulose membrane (Amersham, GE Healthcare). This was 

performed by placing the resolving gel onto the nitrocellulose membrane before the 

gel and the membrane were further sandwiched between transfer buffer (6.0g Tris, 

28.8g glycine, 400mL methanol, 1g SDS in 2 litres of ddH2O) soaked filter papers 

and sponges. The stacked gel was inserted into a transfer block. To transfer the 

protein from the gel to the membrane, the transfer block was submerged into a 

transfer tank filled with transfer buffer and ice packs. Protein transfer was performed 

at 100V for 60 minutes. The transfer of protein was confirmed by staining of the 

membrane with Ponceau Red  (0.1% Ponceau in 5% acetic acid; Sigma-Aldrich), 

which will reversibly stain protein bands on the membrane if transfer was successful. 

Once transfer had been confirmed, the membrane was washed for 5 minutes in water. 

 

The protein-coated membranes were blocked with 5% w/v non-fat milk (Marvel) in 

PBS/0.02% Tween 20 for 60 minutes at room temperature, followed by incubation 

with primary IDO antibodies (ab55305 Abcam; mouse anti-human monoclonal IgG2b 

5µg per mL) diluted in 5% w/v non-fat milk overnight at 4oC on a rocking platform.  

 

The membrane was washed three times with PBS-0.02% Tween 20 for five minutes, 

followed by incubation with a peroxidase-conjugated secondary antibody (P0161 

Dako; rabbit anti mouse polyclonal 0.28 µg per mL) in 5% w/v non-fat milk for 60 

minutes at room temperature on a rocking platform. The membrane was washed three 

times with PBS-0.02% Tween 20 for five minutes, followed by the final wash for 30 

minutes with PBS-0.02% Tween 20. Chemiluminescence reagent (ECL plus: 
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Amersham, GE Healthcare) was added to the membrane for 5 minutes and the 

membrane was then exposed with enhanced chemiluminescence detection film 

(Amersham, GE Healthcare) and developed using a Kodak X–Omat 1000 processor 

(University of Birmingham). To semi-quantify the concentration of the protein of 

interest, Image J (version 1.46, NIH, USA) was used to measure differences in band 

densities.  

 

2.18 Clinical study 
 
 
A clinical study was devised to assess the regulatory immune response in patients 

with HCC undergoing local ablative treatment. Serial blood samples were collected 

from patients with HCC under going TACE on the day before treatment, followed by 

3 days and 42 days after treatment. Blood samples were analysed to determine 

changes in regulatory T-cell subsets by flow cytometry as previously described. The 

function of regulatory T-cells was assessed by suppression assays before and after 

treatment. When possible, PBMC were frozen for later use for the measurement of 

tumour antigen-specific response by stimulating with overlapping peptide pools 

covering alpha-feto protein and glypican-3. The data were correlated with the 

patient’s cross sectional imaging 42 days after TACE treatment and clinical response 

to treatment was defined by the modified response evaluation criteria in solid tumours 

(mRecist) (Table 2-6). All patients gave written informed consent before entering the 

study, and the study protocol, approved by the local ethical committee, conformed to 

the ethical guidelines of the 1975 Declaration of Helsinki.  Protocol and ethics 

application was written as part of this work. Ethical approval was obtained at the local 

ethics committee meeting (REC reference number: 11/WM/0135).  
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Table 2-6 mRECIST for HCC 

The overall response of individual lesion after treatment was assessed using the 

modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria. The 

overall patient response is calculated by combining the assessment of target lesions, 

non-target lesions, and new lesions. [395] 

 
Complete response (CR) Disappearance of any intratumoral arterial 

enhancement in all target lesions 

Partial response (PR) At least a 30% decrease in the sum of 
diameters of viable (enhancement in the 
arterial phase) target lesions, taking as 
reference the baseline sum of the diameters 
of target lesions 

Stable disease (SD) Any cases that do not qualify for either 
partial response or progressive disease 

Progressive disease (PD) An increase of at least 20% in the sum of the 
diameters of viable (enhancing) target 
lesions, taking as reference the smallest sum 
of the diameters of viable (enhancing) target 
lesions recorded since treatment started 

 
 

Target lesions 
 

Non-target lesions 
 

New lesions 
 

Overall response 
 

 CR  CR  No  CR 
 CR  Incomplete response/SD  No  PR 
 PR  Non-PD  No  PR 
 SD  Non-PD  No  SD 
 PD  Any  Yes or no  PD 
 Any  PD  Yes or no  PD 
 Any  Any  Yes  PD 

 
CR; complete response , PR; partial response, SD; stable disease, PD; progressive 
disease. 
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2.19 Statistical analysis 
 
 

Data were analysed using the Mann Whitney U test when comparing differences 

between two unrelated groups, and two–way Analysis of variance (ANOVA) analysis 

followed by Bonferroni’s post test for comparison between more than two groups.  

 

Statistical analysis was performed and presented using the GraphPad Prism software 

version 5.0. A value of P≤0.05 is considered statistically significant. Asterisks were 

inserted into figures to indicate statistical significance and data are expressed as 

follows: *≤0.05, **≤0.01, ***≤0.001. 
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3 Regulatory T-cells infiltrate human HCC 
 

It is well recognised the immune system has the ability to recognise cancer cells. 

However, tumours also employ multiple mechanisms to avoid detection and 

elimination by the host’s immune response. The idea of manipulating the host’s 

immune system to tip the balance towards anti-tumour immune response has been the 

holy grail of tumour immunologists. An increase in our understanding of the tumour 

immune environment will hopefully provide us with the ammunition to develop such 

treatments. 

3.1 T-cells infiltrating hepatocellular carcinoma 
 

A number of groups have previously demonstrated the infiltration of immune cells 

into a wide array of human solid tumours, including human HCC [396]. To confirm 

the findings of these previous studies, immunohistochemistry staining was performed 

on HCC paraffin sections for the presence of T-cells by using antibodies raised 

against CD4 and CD8. The staining showed both infiltration of CD8+T-cells (          

Figure 3-1) and CD4+T-cells (          Figure 3-2) in HCC tumours and matched non-

tumour tissues. The distribution of T-cells was homogenous within tumour tissues, 

but when compared to matched non-tumour tissues, T-cells were confined mainly to 

the fibrotic bands with very few cells infiltrating the liver parenchyma. To confirm 

that CD8+T-cells and CD4+T-cells were equally distributed within tumours, dual 

immunohistochemistry staining was used to demonstrate both CD4 and CD8 

expression simultaneously. This confirmed that both subsets of T-cells are present in 

the same compartments within HCC tumours (Figure 3-5). 
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          Figure 3-1 CD8+T-cells in human HCC tumour and matched non-tumour tissue. 

Immunohistochemistry staining for CD8 expression in (A, C, D) human HCC 

and (B, D, E) matched non-tumour tissue. Images from 3 separate matched 

samples. 
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          Figure 3-2 CD4+T-cells in human HCC tumour and matched non-tumour tissue. 

          Immunohistochemistry staining for CD4 expression in (A, C, D) human HCC  

          and (B, D, E) matched non-tumour tissue. Images from 3 separate matched    

          samples. 
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    Figure 3-3 IgG1 isotype control staining in human HCC tumour and matched non-

tumour tissue. 

          IgG1 isotype control staining (A, C, D) human HCC and (B, D, E) matched  

          non-tumour tissue. Images from 3 separate matched samples 
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              Figure 3-4 IgG2a isotype control staining in human HCC tumour and matched 

non-tumour tissue. 

             IgG2a isotype control staining (A, C, D) human HCC and (B, D, E) matched  

             non-tumour tissue. Images from 3 separate matched samples. 
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Figure 3-5 CD8+T-cells & CD4+T-cells localisation in HCC tumour 

Dual immunohistochemistry staining for co-expression of CD8 (blue) & CD4 (red) in  

(A) human HCC. (B) Staining with isotype control. Representative images from 3 

samples. 
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3.2 FOXP3 positive cells infiltrating hepatocellular carcinoma 
 

Despite the infiltration of immune cells into the tumour microenvironment, this is 

often ineffective at disease control and the tumour continues to progress. One 

possibility for the inability of the immune system to destroy tumour cells may be due 

to the induction or recruitment of regulatory immune cells that are able to suppress 

the effector immune response, resulting in disease progression. Treg have been 

implicated in human diseases, including tumour immune escape. The identification of 

the master regulatory gene FOXP3 as an essential transcription factor found in both 

murine and human Tregs has boosted interest in research in regulatory immune cells. 

The availability of antibodies against FOXP3 has enabled this to be used as a 

surrogate marker for the demonstration of Tregs in a wide array of tissues.  By using 

immunohistochemistry, the presence of FOXP3 expression was confirmed within 

both tumour and matched non-tumour tissues (Figure 3-6). These FOXP3 positive-

cells are likely to represent Treg. Similarly to T-cells, FOXP3 positive cells were 

distributed homogenously within tumour tissues, but mainly confined to the fibrotic 

bands within matched non-tumour tissues.  
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Figure 3-6 Infiltration of FOXP3+cells in HCC tumour and matched non-tumour 

tissue. 

Immunohistochemistry staining for FOXP3 expression in (A, C, D) human HCC and 

(B, D, E) matched non-tumour tissue. Images from 3 separated matched samples.  
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3.3 CD8+FOXP3 positive cells infiltration in hepatocellular carcinoma 
 

The majority of studies on regulatory T-cells have focused mainly on CD4+Treg. 

However, there is increasing evidence to suggest regulatory T-cells expressing the 

surface marker CD8 may also play an important role in the pathogenesis of human 

diseases. Using FOXP3 as a marker of Treg, only one previous study had confirmed 

the presence of CD8+FOXP3+ Treg by immunohistochemistry [198]. To confirm this 

original study, CD8+FOXP3+ Treg in HCC were demonstrated by dual 

immunohistochemistry staining (Figure 3-7). To further appreciate the presence of 

these CD8+FOXP3+ expressing cell, immunofluorescence staining was performed on 

frozen HCC tissue sections to demonstrate CD8+ and FOXP3+ cells (Figure 3-7). 

Once again cells co-expressing both CD8 and FOXP3 can be detected within tumour 

tissue. It is this population of CD8+FOXP3+ cells that will be studied in greater detail 

in the latter sections of this thesis. 
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Figure 3-7 Infiltration of cells co-expressing CD8 & FOXP3 in HCC tissue. 

Immunohistochemistry staining for co-expression of CD8 (blue) and FOXP3 (red) in 

(A) human HCC tumour. (B) Staining with isotype control. Immunofluorescence 

staining on HCC was carried out on snap frozen acetone fixed tissues and analysed 

using confocal microscopy.  (C-F) Triple staining indicates that CD8 and FOXP3 are 

co-expressed on the same cells in HCC. Arrow indicating CD8 and FOXP3 co-

expressing cells. Representative staining from 3 samples.  
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3.4 Quantification of CD8+Treg infiltration within HCC 
 

Immuno-staining is an invaluable method for the assessment of immune cells, 

especially when the availability of tissues is limited, such as in the case of human 

tumours. However, analysis of staining data can often be subjective and is limited by 

the number of simultaneous markers you can detect on any one sample. The use of 

multi-colour flow cytometry has provided me with the tool to overcome some of these 

problems. Flow cytometric analysis allows the objective quantification of cells of 

interest, with the added benefit of analysing multiple markers on the same sample.  

Lastly, only a small number of cells are needed for meaningful analysis using flow 

cytometry.  

 

To further quantify the presence of CD8+Treg in fresh tumour and matched non-

tumour tissues, MNC were isolated from explanted or resected liver tissue and 

assessed by multiple-colour flow cytometry. The immediate isolation and processing 

of cells from tissue is essential to increase cell viability and limit changes on receptor 

expression such as CD25. The isolated MNC are labelled with the appropriate 

conjugated antibodies or isotype control and analysed by flow cytometry unfixed. 

CD8+Treg were identified as CD3+CD8+CD25highCD127low expressing cells, which 

we will refer to as CD8+Treg in the rest of this thesis and CD4+Treg as 

CD3+CD4+CD25highCD127low expressing cells. Dead cells and debris were excluded 

using a live/dead marker (Figure 3-8).  
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Figure 3-8 Representative flow cytometric gating strategy for CD8+Treg and 

CD4+Treg isolated from human HCC 

(A) Tumour derived mononuclear cells (MNCs) were identified on forward scatter 

(FSC) and side scatter (SSC). (B) The MNC were gated against CD3 and Live/Dead 

marker (L/D) to identify viable T-cells. (C) Viable CD3+T-cells were gated against 

CD8 and CD4 to identify CD3+CD8+ T-cells and CD3+CD4+ T-cells. (D) CD3+CD8+ 

T-cells are gated against CD25 and CD127 to identify CD8+Tregs 

(CD3+CD8+CD25highCD127lowcells). (E) CD3+CD4+T-cells are gated against CD25 

and CD127 to identify CD4+Tregs (CD3+CD4+CD25highCD127low cells). 
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A total of 28 patients provided matched tumour and non-tumour tissues for flow 

cytometric analysis. T-cells from multiple tumours consisted of a significantly higher 

proportion of CD8+Treg (2.47%±3.53), compared to matched non-tumour tissues 

(1.36%±2.42) (Figure 3-9). The percentage of CD4+Treg was also significantly higher 

within the tumour (6.38%±5.10), compared to matched non-tumour tissues 

(2.90%±2.92). The proportion of CD4+Treg appeared to be higher when compared to 

CD8+Treg, irrespective of tissue compartment.    
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Figure 3-9 The proportion of CD8+Treg & CD4+Treg in human HCC 

Representative dot plots of MNC isolated from matched tumour and non-tumour 

tissues. (A) Showing the percentage of CD8+Tregs in the tumour compared to (B) 

matched non-tumour tissue. (C) CD4+Tregs within the tumour and (D) matched non-

tumour tissue is shown as a comparison. (E) The percentage of CD8+Treg in HCC 

was compared to matched non-tumour tissue in consecutive matched samples. (F) The 

percentage of CD4+Treg in HCC tumour and matched non-tumour tissue are shown as 

a comparison. Data are shown for 28 matched samples, statistical significance was 

tested using two-tailed Wilcoxon matched pairs test. ***p<0.001 
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3.5 CD8+Treg infiltration in disease stage. 
 

A number of studies have suggested the infiltration of selected subsets of immune 

cells with the potential to use this as a predictor of disease prognosis and staging of 

disease [397]. To ascertain whether the percentage of CD8+Treg or CD4+Treg 

infiltration correlated with tumour volume or disease stage in human HCC, the total 

macroscopic tumour volume at the time of histological examination or the disease 

stage was plotted against the percentages of CD8+Treg or CD4+Treg tumour 

infiltration as measured by flow cytometry. No correlation between the percentages of 

tumour infiltrating CD8+Treg or CD4+Treg with total tumour volume was detected  

(Figure 3-10).  Patients were further classified according to their disease stage using 

the Barcelona Cancer Liver Clinic (BCLC) system (Figure 1-2). In total 9 patients had 

stage A disease and 19 patients had stage B disease. The disease stage did not 

correlate with Treg infiltration, with the percentage of tumour infiltrating CD8+Treg 

being comparable between both stage A disease (2.10%±4.47) and stage B disease 

(2.23%±3.60%). Similarly, no significant differences were seen in tumour infiltrating 

CD4+Treg percentages between stage A disease (6.46%±6.39%) and stage B disease 

(6.30%±5.14%)  (Figure 3-10).  
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Figure 3-10 Correlation between CD8+Treg or CD4+Treg tumour infiltrations with 

tumour volume or disease stage. 

(A) Percentage of tumour infiltrating CD8+Treg and (B) CD4+Treg were plotted 

against total tumour volume. Patients were classified according to the BCLC staging 

system and plotted against (C) tumour CD8+Treg and (D) CD4+Treg infiltrations. 

Data are expressed as median and interquartile range and statistical significance was 

tested using Spearman’s correlation and Mann-Whitney test. r2 and p values are 

indicated. (n=28) 
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3.6 Effect of Viral liver disease on CD8+Treg infiltration seen in HCC 
 
 

CD8+Treg have been implicated in the pathogenesis of chronic viral infection such as 

HCV which may have an effect on Treg infiltration in tumour and non-tumour tissues 

[215]. To identify the possible effects of chronic viral infection on CD8+Treg 

infiltration, samples were grouped according to their underlying chronic liver diseases 

into viral (n=13) or non-viral (n=15) groups and frequency of CD8+Treg infiltration 

analysed. The percentage of CD8+Treg infiltration remained higher in the tumour, 

when compared to matched non-tumour tissues in both viral and non-viral groups 

(Figure 3-11). However, this only reached statistical significance in the non-viral 

group. The frequency of CD4+Treg infiltrating the tumour remained significantly 

higher when compared to matched non-tumour tissues in both viral and non-viral 

groups (Figure 3-11). Interestingly, no significant differences were seen in CD8+Treg 

or CD4+Treg infiltrating in non-tumour tissue between viral and non-viral disease.  
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Figure 3-11 CD8+Treg frequency in HCC tissues, stratified for non-viral and viral 

disease background. 

 
Samples were separated into non-viral or viral groups according to the underlying 

chronic liver disease. The frequency of (A) CD8+Treg and (B) CD4+Treg infiltrating 

HCC and non-tumour tissues were analysed. Data are expressed as median and inter-

quartile range and statistical significance was tested using the Mann-Whitney test for 

non-viral vs. viral or two-tailed Wilcoxon matched pairs test for tumour vs. matched 

non-tumour. ns=non-significant, **p<0.01 (n=28) 
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Figure 3-9: CD8+Treg frequency in HCC tissues, stratified for non-viral and viral 

disease background. 

 

Samples were separated into non-viral or viral groups according to the underlying 

chronic liver disease. The frequency of (A) CD8+Treg and (B) CD4+Treg infiltrating 

HCC and non-tumour tissues were analysed. Data are expressed as median and inter-

quartile range and statistical significance was tested using the Mann-Whitney test for 

non-viral vs. viral or two-tailed Wilcoxon matched pairs test for tumour vs. matched 

non-tumour. ns=non-significant, **p<0.01 (n=28) 
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Figure 3-9: CD8+Treg frequency in HCC tissues, stratified for non-viral and viral 

disease background. 

 

Samples were separated into non-viral or viral groups according to the underlying 

chronic liver disease. The frequency of (A) CD8+Treg and (B) CD4+Treg infiltrating 

HCC and non-tumour tissues were analysed. Data are expressed as median and inter-

quartile range and statistical significance was tested using the Mann-Whitney test for 

non-viral vs. viral or two-tailed Wilcoxon matched pairs test for tumour vs. matched 

non-tumour. ns=non-significant, **p<0.01 (n=28) 
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3.7 CD8+Treg phenotype  
 

Previous studies have begun to define the phenotype of CD8+Treg [398], but research 

in this area are much more scarce when compared with CD4+Treg. Assessment of 

expression of proteins that had been previously detected on both CD8+Treg and 

CD4+Treg subsets were used to further ascertain the precise phenotype of the 

CD8+Treg isolated from HCC. Freshly isolated tumour derived MNC were labelled 

with a range of monoclonal antibodies to define surface and intracellular phenotype. 

Cells were determined as CD8+Treg or CD8+Non-Treg by the expression of 

CD3+CD8+CD25highCD127low or CD3+CD8+CD25low respectively. Increased 

expression of FOXP3 (76.3%±7.37% vs. 3.66%±3.66%), CTLA-4 (72.3%±6.1% vs. 

3.4%±0.77%) and CD39 (72.4%±28.45% vs. 8.15%±2.32%) was detected in 

CD8+Treg from HCC when compared to CD8+Non-Treg. Both CD8+Treg and 

CD8+Non-Treg expressed a high level of CD28 (66.69%±11.97% vs. 

69.29%±8.46%). However, in contrast to previous studies, Treg associated expression 

of GITR (6.18%±5.98% vs. 3.93%±1.45%) and CD103 (1.60%±0.17% vs. 

2.53%±1.78%) were only expressed at a low level on CD8+Treg isolated from tumour 

tissues and the expression was comparable to CD8+Non-Treg (Figure 3-12).  

  



CD8+Treg 

 

 

113 

          

Figure 3-12 Regulatory phenotype of isolated CD8+Treg from human HCC. 

(A) Representative histograms showing, expression of FOXP3, CTLA-4, CD39, 

CD28, GITR and CD103 on CD8+Treg and CD8+Non Treg cells isolated from human 

HCC compared to isotype control. (B) The frequency of FOXP3, CTLA-4, CD39, 

CD28, GITR and CD103 expression were compared between CD8+Treg and 

CD8+Non-Treg in tumour samples. Data are expressed as mean and statistical 

comparison was made with paired students t-test *p<0.05, **p<0.01. 
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3.8 CD8+Treg level in the blood of HCC patients or healthy donor 
 
 
Previous studies on CD8+Treg have suggested these cells are likely to be induced by 

the local immune environment and as a result are only present at a low frequency in 

blood [399]. This is compared to CD4+Treg, which can occur naturally or though 

induction from non-Treg cells [400]. To analyse the level of CD8+Treg in different 

tissue compartments, matched samples of blood, tumour and non-tumour were 

obtained for the demonstration of CD8+Treg. The frequencies of tumour infiltrating 

CD8+Treg were significantly higher (3.57%) when compared to either non-tumour 

tissue (0.65%) or blood (0.95%) from the same patients (Figure 3-13). However, the 

distribution of CD4+Treg slightly differs from CD8+Treg. Not only was the frequency 

of CD4+Treg much higher within the tumour (6.71%) when compared to matched 

non-tumour tissue (0.73%), a concomitant elevation in CD4+Treg numbers (5.33%) in 

the blood from the same patient was recorded, to a comparable level as was seen in 

the tumour. To further analyse the presence of circulating CD8+Treg, blood from 50 

patients with HCC, prior to treatment with TACE, and 10 healthy donors, was 

obtained for the analysis of CD8+Treg. The frequency of blood CD8+Treg was 

detectable but at consistently very low levels and there were no significant differences 

between HCC patients (1.30%±1.30%) and healthy donor (0.94%±1.8%) (Figure 

3-13). Again, a different pattern was seen with CD4+Treg compared with CD8+Treg, 

in which the CD4+Treg level from the blood of HCC patients (6.01%±6.65%) was 

much higher when compared to healthy donors (3.03%±3.33%). 
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Figure 3-13 CD8+Treg level in blood of HCC patients 

Flow cytometric analysis of (A) CD8+Treg and (B) CD4+Treg from matched tumour, 

non-tumour and blood obtained from a patient with HCC. CD8+Treg and CD4+Treg 

are shown in black circles and cells were gated on CD3+CD8+ and CD3+CD4+ 

respectively. The level of blood CD8+Treg or CD4+Treg from HCC patients (n=50) 

was compared to healthy donors (n=10). Data expressed as median and interquartile 

range and statistical comparison was made using the Mann-Whitney test where 

ns=non-significant, **p<0.01. 
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3.9 Discussion 
 

Research on suppressive T-cells has focused mainly on regulatory T-cells that are 

characterised by the surface expression of CD4, but increasing evidence has 

suggested a role for other subsets of regulatory T-cell in the generation of a 

suppressive tumour microenvironment. Our understanding of different subsets of 

suppressive immune cells will allow us to identify possible targets for 

immunotherapeutic intervention and it is likely that the targeting of multiple 

suppressive cell types will be needed for the development of an effective anti-tumour 

immune response.  

 

To increase the accuracy in identifying CD8+Treg, a number of different techniques 

were used in this current work. The use of a multifactorial panel of Treg markers 

increases the likelihood of identifying the correct cell type. This work has used the 

now accepted expression pattern of CD25highCD127low to define regulatory cells in 

addition to CD8 to define the subset of T-cells of interest. These cells expressed the 

regulatory markers FOXP3, CTLA-4, CD39 and CD28, but only possessed limited 

expression of CD103 and GITR. Therefore, the cells that have been described differ 

from CD8+CD28- and CD8+CD103+ regulatory T-cells described previously by others 

[191, 192, 217-219], but expresses a similar phenotype to previously identified 

CD8+CD25+Treg [143, 220-225]. In comparison to some studies on CD8+CD25+Treg, 

I was not able to detect any significant expression of the tumour necrosis factor 

receptor (TNFR) superfamily member, GITR, identified as key to the induction of 

CD4+ Treg [401]. However, variations in the expression of regulatory markers are 

common. One possible explanation may stem from the location and disease from 
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which the CD8+Treg have been isolated. The microenvironment of different diseases 

and tumours varies enormously and it is likely such differences may influence the 

CD8+Treg phenotype. Such variation in phenotype could also reflect the 

heterogeneity of CD8+Treg, suggesting that CD8+Treg are unlikely to be a stable 

population of T-cells, but rather a T-cell subset, which can be altered by the local 

immune environment. The presence of CD4+Treg in HCC has been confirmed by a 

number of studies and this current work offers further evidence for the important role 

CD4+Treg have on the tumour microenvironment. In addition, the majority of study 

looking at Treg, often focus on one particular tissue/blood compartment. In particular, 

it is not uncommon to assume results generated from isolated peripheral cells are the 

same as what occur within the tumour.  Hence, for future study it maybe useful to 

analyse CD8+Treg from tumour and peripheral and compare their phenotype and 

function. The importance of the origin of the cells and its effect on its phenotype was 

elegantly demonstrated by Scurr et al [402]. In which distinct T-cell populations 

isolated from the blood, tumour and colon tissue of colorectal cancer patients 

demonstrated differences in the expression of common regulatory marker such as 

CTLA-4 and CD39. The differences in phenotype correlated with where the cells 

were isolated from.   

 

CD8+CD25high Treg have been demonstrated to infiltrate human HCC in one previous 

study [239]. This study analysed the phenotype of T-cells infiltrating HCC and 

healthy donor liver tissues. The group demonstrated the presence of a subset of 

CD8+T-cells with a high expression of the regulatory markers CD25, FOXP3, GITR, 

CTLA-4 and a low expression of CD127. The frequency of this subset of cells was 
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significantly higher in HCC tissue when compared to healthy donor tissues. A 

limitation however of this study is the lack of confirmation that this subset of CD8+T-

cells possessed regulatory function. In addition, the study demonstrated a positive 

correlation between CD8+Treg numbers and advanced tumour stage.  This is different 

from my current findings.  

 

At the time of writing, due to the limited number of studies in CD8+Treg no other 

group had investigated the relationship between CD8+Treg infiltration and HCC 

tumour stage. However, a study on colorectal cancer concluded a subset of 

CD8+CD25+Treg with suppressive function correlated with tumour stage [228]. In a 

more recent study, Chen et al., demonstrated the percentage of circulating 

CD8+CD28-Treg correlated with the pathological stage in non-small cell lung cancer 

and tumour burden [403] . 

 

Further evidence on the association of Treg frequency with tumour stage and 

prognosis has been provided by work carried out on CD4+Treg. A number of studies 

in HCC and other human tumours have concluded the enrichment of CD4+Treg 

correlated with more advanced stage of disease and is associated with a poorer 

prognosis [126, 404-409]. However, similar to my current work, conflicting results 

are emerging arguing against such findings. Studies in breast cancer did not detect 

correlation between tumour stage or circulating CD4+Treg frequencies with prognosis 

[410, 411]. Work in haematological cancer, head and neck cancer and more recently 

in colorectal cancer has even suggested increased CD4+Treg infiltration might be 

beneficial to survival, through the inhibition of inflammatory driven tumour 
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progression by Treg [412-414]. These discrepancies between studies emphasise the 

complexity of the tumour microenvironment. 

 

The inconsistencies in such results may be explained in a number of ways. The 

methods used to identify tumour-infiltrating Treg differ widely between studies, such 

as the use of immunohistochemistry, flow cytometry and polymerase chain reaction 

(PCR), making direct comparison between studies difficult. Similarly, the clinical end 

points used to assess correlation with Treg infiltration differ between studies, e.g. the 

use of different tumour staging systems and survival end points.  As already 

discussed, early difficulties in Treg research had been the result of a lack of specific 

markers. This of course can also be translated into interpretation of Treg studies. The 

makers used to define Treg vary enormously between these studies, with some early 

studies confining to the use of single marker to identify their Treg population. In 

addition, the lack of functional data in some of these works may further hamper the 

robustness of the studies. Lastly, the source of the cells being analysed also differs 

between studies, with some studies using blood Treg and others using tumour-

infiltrating Tregs, marking comparison of the actual data troublesome. 

 

In my current work, the tissues analysed were obtained from patients with no prior 

treatment for their HCC. The use of adjuvant treatment, such as local ablation in HCC 

may affect the analysis of immune cells infiltration. Following successful local 

ablation treatment, the tumour often undergoes necrosis followed by a reduction in 

viable tumour cell numbers, but this does not directly translate into a reduction in 
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tumour size. Hence, caution is needed when interpretation result of Treg infiltration 

against tumour volume or disease stage.  

 

Unlike other solid tumours, HCC usually occurs on the background of a wide range of 

different chronic liver diseases. The underlying chronic disease is likely to play an 

important role in the generation of the tumour microenvironment and may in part 

affect the number and type of immune cell infiltrating the tumour. In addition, 

increasing evidence derived from genetic profiling of human tumours, including HCC 

has supported the notion of variation in biological properties between tumours [415, 

416]. 

 

The frequency of CD8+Treg and CD4+Treg were comparable between non-tumour 

tissues obtained from patients with underlying non-viral and viral disease. In addition, 

the frequency of CD8+Treg and CD4+Treg remained higher in tumour tissues when 

compared to matched non-tumour tissues irrespective of the underlying liver disease. 

The frequency of CD8+Treg infiltration was not statistically significant between 

tumour and matched non-tumour tissues in viral disease, but this is likely to be the 

result of a reduction in sample numbers (n=13). However, this doesn’t exclude the 

possible effect of underlying liver disease on the tumour microenvironment. 

 

Numerous studies have looked into the incidence of recurrent HCC after liver 

transplantation, with the common surrogate endpoint being 5 years recurrence free 

survival [417].  Unfortunately, my work has been conducted only in the last three 

years with a mean follow-up period of 562 days (range 57-1027 days), which is too 
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short for any meaningful analysis of survival.  At the time of writing 3 patients had 

developed recurrent tumour following their surgery. 

 

The differences seen in the distribution of CD8+Treg and CD4+Treg in tissues and 

blood was noteworthy. Whilst CD4+Treg frequencies in the blood of HCC patients 

seem to mirror the increased level of CD4+Treg in the tumour, this wasn’t the case for 

CD8+Treg, which are present at a reduced frequency in the blood of both HCC 

patients and healthy donors. This may suggests the generation of the two subsets of 

Treg are rather different and gives further support to the notion that increased level of 

CD8+Treg in tissues are the result of induction from non-Treg cells within the tumour 

microenvironment. However, the precise mechanism on how CD8+Treg are induced 

remains unclear.  

 

In summary, a novel subset of CD8+CD25highCD127low T-cells has been identified in 

HCC. They express some of the common regulatory markers, previously described in 

CD8+Treg and CD4+Treg. CD8+Treg appear to account for a very small number of 

circulating Treg in health and disease. 
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4 The induction of CD8+Treg 
 

The previous chapter described the presence of a subset of CD8+T-cells in HCC 

expressing some of the common markers for regulatory T-cells.  We hypothesised that  

these CD8+T-cells likely represent a novel subset of CD8+Treg. However, it remains 

unclear whether these cells occur naturally or arise via induction by the tumour-

microenvironment. This chapter will illustrate how DC are able to induce CD8+Treg. 

 

4.1 Circulating CD8+Treg in HCC patients 
 

CD8+Treg (CD8+CD25highCD127low) appear to only be present at a low frequency in 

the peripheral blood of HCC patients when compared to tumour tissues. In addition, 

the frequencies of circulating blood CD8+Treg are no different in HCC patients or 

healthy donors (Chapter 3). However, the percentages of tumour infiltrating 

CD8+Treg were significantly higher when compared to non-tumour tissues. The 

increase in CD8+Treg appears to be confined to within the tumour, with no effect on 

circulating CD8+Treg. This observation points towards the possible role of the tumour 

microenvironment in the induction CD8+Treg. To further support this concept, 

disease progression and therefore increase tumour volume doesn’t appear to have an 

effect on circulating CD8+Treg. In a cohort of 10 patients who had progressive 

disease despite TACE treatment, the percentages of circulating CD4+Treg 

(CD4+CD25highCD127low) were significantly elevated as disease progressed (Figure 

4-1). In comparison, despite disease progression the percentage of circulating 

CD8+Treg remained static. These data further support for the possible role of 
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induction of CD8+Treg by the tumour environment and not from recruitment of 

naturally occurring CD8+Treg from a distal site.   
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Figure 4-1 Measurement of circulating Treg during HCC progression 

10 patients had progressive HCC despite TACE as defined by mRECIST and blood 

samples were analysed for change in circulating CD4+Treg and CD8+Treg by flow 

cytometry. In patients with HCC the frequency of circulating CD8+Treg did not 

change with disease progression, in comparison a significant increase was seen in 

circulating CD4+Treg frequencies. Data are expressed as median and inter-quartile 

range and statistical significance was tested using the two-tailed Wilcoxon matched 

pairs test. **p<0.01 (n=10) 

 

 

Base
lin

e

Day
 42

 

Base
lin

e

Day
 42

 
0

5

10

15

          Days after TACE

T
re

g 
(%

)
**

CD8+Treg CD4+Treg



CD8+Treg induction 

 

 

125 

4.2 Direct effect of tumour condition medium on CD8+Treg induction 
 

A number of suppressive cytokines have been proposed to be involved in the direct 

induction of Treg and some of these cytokines have been shown to be elevated within 

tumours, including HCC [418-421]. To ascertain whether soluble factors produced by 

HCC are involved in the induction of CD8+Treg, tumour-conditioned medium from 

fresh HCC tissue and matched non-tumour-conditioned medium were generated. 

Naïve CD8+T-cells isolated from healthy donors were cultured in conditioned 

medium at different concentrations for 24 hours, 3 days and 5 days. The cells were 

assessed for induction of CD3+CD8+CD25highCD127lowT-cells using flow cytometry. 

Surprisingly, following incubation of CD8+T-cells in condition medium, no induction 

of CD8+Treg was detected at any of these time points (Figure 4-2). The use of 

different concentrations of tumour-conditioned medium did not appear to alter the 

result.  
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Figure 4-2 The effect of tumour conditioned medium on CD8+Treg induction 

Naïve CD8+T-cells were cultured in RPMI alone, tumour or matched non-tumour 

conditioned medium for 1-5 days. (a) The expression of CD25 and CD127 were 

determined by flow cytometry on day 1, 3 and 5. Cells were gated on CD3+CD8+ 

expression. (B) Representative dot plots of CD25highCD127low cells (black circle) 

following culture with tumour condition medium  (top panel) or matched non-tumour 

condition medium (bottom panel) at 3 different time points. (C) Results from 3 

independent experiments to demonstrate induction of CD8+Treg following incubation 

with conditioned medium at three different time points, compared to baseline and 

RPMI only. Results from 2 sets of experiments to demonstrate induction of CD8+Treg 

with different ratios of tumour conditioned medium compared to baseline and RPMI 

after 3 days of incubation. Data were expressed as median and interquartile range. 

Statistical comparisons were made with Mann-Whitney test. 
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In the setting of CD4+Treg induction, evidence has suggested TCR activation is 

required in the addition of suppressive cytokines for the generation of induced Treg 

[422-424]. To recapitulate this here, naïve CD8+T-cells were incubated in the 

presence of conditioned medium (1:1 CM:RPMI ratio) plus CD3/CD28 activation 

beads to provide TCR engagement. Indeed a population of CD25highCD127low cells 

were induced, however, this same phenotype was generated even in the absence of 

conditioned medium (Figure 4-3 & Figure 4-4). To further ascertain whether these 

CD25highCD127low cells are truly Treg, the induced CD25highCD127low cells were 

stained for the expression of FOXP3. In addition, the induced cells were isolated by 

flow cytometric sorting and used in a suppression assay to confirm their functional 

capacity. These cells were confirmed to be FOXP3 negative and importantly did not 

possess suppressive capacity against responder T-cells (Figure 4-3 & Figure 4-4). 

These data suggest this population of cells represents recently activated T-cells and 

not Treg. 
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Figure 4-3 Representative flow cytometry data on the phenotype & function of 

CD8+CD25highCD127lowT-cell induced in the presence of conditioned medium.  

Naïve CD8+T-cells were cultured in the presence of RPMI alone, tumour or matched 

non-tumour conditioned medium with the addition of CD3/CD28 activating beads at 

1:1 beads to cells ratio for 3 days. The expression of CD25, CD127 and FOXP3 were 

determined by flow cytometry. CD25highCD127low cells were isolated by flow 

cytometric cell sorting and used in an allogenic T-cell suppression assay. Cells were 

gated on CD3+CD8+ cells. (A) Representative dot plots of CD25highCD127low cells 

(black circle) induced following incubation with RPMI alone, tumour or matched 

non-tumour conditioned medium with the addition of CD3/CD28 activation. (B) 

Histogram showing the expression of FOXP3 on induced CD25highCD127low T-cells 

compared to CD25low T-cells and isotype control. (C) Representative histograms 

showing allogeneic responder T-cells (CD25low) proliferation, as determined by 

dilution of violet cell trace, in the presence of induced CD25highCD127low T-cells (top 

panel), or alone (bottom panel).  
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Figure 4-4 Phenotype & function of CD8+CD25highCD127lowT-cell induced in the 

presence of conditioned medium. 

(A) The frequency of CD8+CD25highCD127low T-cells following incubation with 

RPMI alone, tumour or matched non-tumour conditioned medium with the addition of 

CD3/CD28 activation were compared. (B) The frequency of FOXP3 expression were 

compared between CD8+CD25highCD127low and CD8+CD25low T-cells following 

incubation with tumour conditioned medium. Data were expressed as median and 

interquartile range. Statistical comparisons were made with Mann-Whitney test. 

Representative data from 3 independent experiments.  CM; conditioned medium. 
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4.3 Effect of HCC tissue conditioned medium on DC phenotype 
 
 
Tumour-conditioned medium, either alone or used in combination with TCR 

activation, was not able to induce a suppressive phenotype on CD8+T-cells. In an 

attempt to induce CD8+Treg, a more physiological method was tested. DCs are the 

prototypic professional antigen-presenting cell, characterised by their ability to 

process antigens and generate immune responses. However, it has also been 

recognised that DC play an important role in immune regulation. An increasing 

number of studies have demonstrated the presence of immature/tolerogenic DC, 

which on interaction with T-cells, result in the induction of Treg [73, 425]. Previous 

data from our lab [426] has demonstrated the presence of tolerogenic DC infiltrating 

human HCC. Hence, HCC interaction with DC may result in the generation of 

tolerogenic DC and in addition may have the potential to induce CD8+Treg.  

 

The frequency of DC in liver tissue is variable and their use in downstream 

experiments therefore unpredictable.  Accordingly, an alternative approach was 

needed to assess the possible effect the tumour environment may have on DC 

phenotype and function. Using a well-established approach, moDC were generated ex 

vivo by the differentiation of CD14+ monocytes in the presence of IL-4 and GM-CSF 

to provide a source of cells for further experiments.  To investigate the effect of HCC 

on DC maturation, the ex-vivo generated moDC were primed with conditioned 

medium obtained from either human HCC tumour tissue or matched non-tumour 

tissues for 24 hours.  
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Following priming, moDC were assessed for their expressions of DC maturation 

markers by flow cytometry (Figure 4-5).  Expression of DC maturation markers was 

compared on moDC primed in the presence of tumour-conditioned medium or 

matched non-tumour conditioned medium.  Priming in HCC condition medium 

consistently lead to reduced expression of ; MHC Class I (21.5 IQR 17.3-30.8 vs. 53.8 

IQR 34.3-57.1, p<0.05), MHC Class II (160.5 IQR 121.9-185.6 vs. 266 IQR 235.1-

352, p<0.01), CD80 (6.3 IQR 4.5-7.7 vs. 7.8 IQR 4.3-9.6, p<0.05) and CD86 (15.4 

IQR 10.4-24.9 vs. 21.9 IQR 12.6-43.3, p<0.05) (Figure 4-6). The results reflected the 

groups earlier finding that primary isolated DC from tumour tissue displayed an 

immature phenotype when compared to DC from matched non-tumour tissues [426]. 
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Figure 4-5 Representative flow cytometric for DC phenotype 

 
MoDC were differentiated from circulating CD14+ monocytes and primed by either 

tumour or matched non-tumour conditioned medium for 24 hours. Following priming, 

moDC were analysed for the expression of DC maturation markers by flow 

cytometry. MoDC were identified by FSC and SSC and determined to be CD14 

negative.  Representative histogram displaying the expression of MHC-I, MHC-II, 

CD80 and CD86 on moDC (grey) compared to isotype control (white).  
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Figure 4-6 moDC phenotype following priming with HCC conditioned medium. 

 

Comparison of DC maturation markers expressions between moDC primed with 

tumour or matched non-tumour conditioned medium. Results from 5 replicate 

experiments with each experiment carried out in duplicate. Data are expressed as 

median and inter-quartile range and statistical significance was tested using the two-

tailed Wilcoxon matched pairs test. *p<0.05, **p<0.01. MFI; median fluorescence 

intensity   
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4.4 Effect of tumour-conditioned medium on the functions of DC 
 
 
With the ability to generate adequate number of moDC, attempts were made to 

ascertain weather the reduction in DC maturation markers following priming with 

tumour-conditioned medium translates into dysfunction of these cells. MoDC primed 

with conditioned medium were assessed for the production of IL-12, which is 

normally secreted by activated DC to induce activation of T-cells. By using flow 

cytometry it was shown moDC that had been primed by tumour-conditioned medium 

produced less IL-12, when compared to moDC that had been primed with matched 

non-tumour conditioned medium (Figure 4-7). In addition, previous studies had 

suggested the production of the suppressive cytokine IL-10 may be important in the 

induction of T-cells into Treg and its secretion can act as a marker of their tolerogenic 

phenotype [427]. However, IL-10 was not detected by flow cytometry in moDC 

following priming by either tumour or non-tumour conditioned medium (Figure 4-7).  
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Figure 4-7 The effect of tumour conditioned medium  

on DC cytokines production  

 
MoDC that had been primed by tumour or matched non-tumour conditioned medium 

cells were analysed for their production of cytokines by intracellular staining. RPMI 

and lipopolysaccharide (LPS) were used as a negative and positive control 

respectively. Results from 3 replicate experiments, showing the production of (A) IL-

12 and (B) IL-10 by tumour and matched non-tumour condition medium primed 

moDC. Data are expressed as median and inter-quartile range and statistical 

significance between tumour and non-tumour primed cells was tested using the two-

tailed Wilcoxon matched pairs test. *p<0.05 
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As professional APC, the key function of DC is to interact with T-cells and prime 

their recognition of cognate antigen and to initiate T-cell proliferation. The induction 

of T-cell proliferation was used to assess the ability of moDC primed with 

conditioned medium to function as APC using an allogeneic T-cell proliferation 

assay, in which primed moDC are co-cultured with naïve CD8+T-cells for 5 days. The 

ability of CD8+T-cells to proliferate was assessed by flow cytometry. MoDC that had 

been primed with tumour-conditioned medium had a significant reduction in their 

ability to induce T-cell expansion, compared to moDC that had been primed by 

matched non-tumour conditioned medium, or RPMI alone. However, this did not 

reach statistical significant (Figure 4-8). 
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Figure 4-8 The effect of tumour conditioned medium on DC induced T-cell 

proliferation. 

MoDC were cultured in tumour or matched non-tumour conditioned medium and 

cells cultured in RPMI were used as the control. After 24 hours, the moDC were 

harvested and co-cultured with naïve allogeneic CD8+T-cells (labelled with violet cell 

trace tracking dye) for a further 5 days. The ability of moDC to stimulate the 

proliferation of CD8+T-cells was assessed by the dilution of violet cell trace. (A) 

Representative dot plots showing the percentages of CD8+T-cell proliferation. (B) 

The ability of moDC cultured in control medium, tumour or non-tumour matched 

conditioned medium to induce CD8+T-cells proliferation were compared. Data are 

expressed as mean and standard deviation. Statistical comparisons were made with 

Wilcoxon signed ranked test. Data were obtained from 3 replicate experiments. ns; 

non-significant.  
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4.5 The effect of DC on CD8+Treg induction 
 

HCC conditioned medium appears to effect both DC maturation and function. To 

assess whether tumour primed DC are able to induce CD8+Treg, primed moDC were 

co-cultured with allogeneic naïve CD8+T-cells for 5-7 days. Following, the culture 

period, the expression of common regulatory markers on CD8+T-cells were analysed 

by flow cytometry. Co-culturing of naïve allogeneic CD8+T-cells with tumour primed 

moDC induced a higher percentage of CD3+CD8+CD25highCD127lowT-cells when 

compared to CD8+T-cells that had been cultured with moDC that had been primed 

with matched non-tumour conditioned medium or RPMI alone (Figure 4-9).  
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Figure 4-9 The effect of tumour conditioned medium primed moDC on the induction 

of CD8+CD25high CD127lowT-cells 

 
MoDC were cultured in tumour or matched non-tumour conditioned medium and 

cells cultured in RPMI alone were used as control. After 24 hours, the moDC were 

washed and co-cultured with naïve allogeneic CD8+T-cells for a further 5 days. At the 

end of the culture period, the expression of CD25 and CD127 on CD8+T-cells was 

analysed by flow cytometry. The results from 5 replicate experiments are displayed.  

Data are expressed as median and IQR, statistical significance was tested using the 

two-tailed Wilcoxon matched pairs test. *p<0.05, **p<0.01. 
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Having demonstrated the induction of CD8+CD25highCD127low T-cells by conditioned 

medium primed moDC in an allogeneic co-culture assay, I wanted to more accurately 

mirror the in vivo tumour microenvironment.  Therefore, this assay was repeated 

using autologous naïve CD8+T-cells.  Indeed, the same induction of Treg was 

recorded when co-culturing naïve autologous CD8+ T-cells with tumour primed 

moDC wherein a higher proportion of induced CD8+CD25highCD127lowT-cells were 

recorded when compared to autologous CD8+ T-cells cultured with matched non-

tumour primed moDC or medium alone (Figure 4-10).  

 

Importantly unlike CD8+CD25highCD127lowT-cells that had been cultured with tumour 

conditioned medium with or without TCR activation by CD3/CD28 beads, but in the 

absence of MoDC, the CD8+CD25highCD127lowT-cells induced by tumour-primed 

moDC expressed high levels of the regulatory marker FOXP3 in addition to CTLA-4 

and CD39. This further evidence strengthens the hypothesis that these cells are 

induced CD8+Treg (iCD8+Treg) (Figure 4-11 & Figure 4-12). 
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Figure 4-10 The ability of tumour conditioned medium primed DC to induce 

autologous CD8+Treg  

 
Autologous naïve CD8+T-cells were cultured in RPMI alone, or with moDC that had 

been primed by tumour or matched non-tumour conditioned medium for 5 days. The 

expression of CD25 and CD127 on CD8+T-cells was analysed by flow cytometry. 

The results from 5 replicate experiments are displayed.  Data are expressed as median 

and inter-quartile range and statistical significance was tested using the two-tailed 

Wilcoxon matched pairs test. *p<0.05, **p<0.01. 
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Figure 4-11 Phenotype of DC induced CD8+CD25highCD127lowT-cells 

CD8+CD25highCD127lowT-cells that had been induced by tumour-conditioned 

medium primed moDC were analysed for their expressions of the regulatory markers 

FOXP3, CTLA-4 and CD39 by flow cytometry. Representative dot plot showing the 

induction of CD25 and CD127 expressions (black circle) following culture with 

tumour-conditioned medium primed moDC (A).  Histograms showing the expressions 

of FOXP3 (B), CTLA-4 (C) and CD39 (D) on CD25highCD127low cells (dark grey), 

compared to CD25low cells (light grey) and isotype control (dotted line).  
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Figure 4-12 Expression of regulatory phenotype on induced CD8+T-cells 

 

The frequency of FOXP3, CTLA-4 and CD39 expression on CD8+CD25low cells and 

CD8+CD25highCD127low cells, following induction with tumour-conditioned medium 

primed moDC were compared in three replicate experiments. Data are expressed as 

mean and standard error. Statistical comparison was made with paired students t-test. 

**p<0.01. 
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4.6 Cells-contact dependent induction of CD8+CD25highCD127lowT- Cells 
 
 

Given the evidence that HCC conditioned DC are able to induce a subset of 

CD8+CD25highCD127lowT-cells that express distinct markers of regulatory T-cells, a 

number of proposed mechanisms were considered.  In the absence of cell-cell contact, 

HCC conditioned DC may result in the generation of Treg via the production of 

suppressive cytokines.  Alternatively, in the presence of direct cell-cell contact, 

inadequate co-stimulation due to down regulation of CD80/CD86 or the direct 

interaction of DC with T-cells via previously un-described mechanisms may result in 

the observed effect [277, 278, 427].  

 

Tumour primed moDC do not produce the suppressive cytokine IL-10 (see previous 

section), suggesting that the induction of Treg maybe more likely to be related to 

contact–dependant mechanisms. To further ascertain that the induction of CD8+Treg 

by tumour primed moDC required close cell-to-cell contact, naïve CD8+T-cells were 

co-cultured with tumour-conditioned medium primed DC with or without the 

inclusion of a 0.4 µM transwell inserts to prevent cell contact. The cells were co-

cultured either side of the transwell insert for 5 days and the expression of CD25 and 

CD127 on CD8+T-cells were analysed by flow cytometry. The induction of 

CD25highCD127low T-cells was entirely abolished by the prevention of cell-cell contact 

between T-cells and moDC (Figure 4-13) suggesting the induction of CD8+Treg is 

dependent on direct cell-cell contact. 
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Figure 4-13 The effect of transwell on the induction of CD8+Treg  

 

The requirement of cell-contact dependent induction of CD8+CD25highCD127lowT-

cells by moDC was assesed by culturing naïve CD8+T-cell and tumour conditioned 

medium primed moDC together or seprated by a 0.4 µm transwell insert. The 

percentage of induced CD8+CD25highCD127lowT-cells was determined by flow 

cytometry. Results from 3 replicate experiments are displayed.  Data are expressed as 

median and inter-quartile range and statistical significance was tested using the two-

tailed Wilcoxon matched pairs test. *p<0.05. 
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4.7 Localisation of DC and CD8+T-cells within HCC 
 

Having demonstrated that cell-cell contact is important for the induction of 

CD8+Treg, the presence of this phenomenon in vivo was considered.  I used  

immunohistochemical staining of paraffin embedded human HCC tissues to 

demonstrate the location of  DC and CD8+T-cells.  Using the expression of CD11c 

and CD8 as markers of DC and CD8+T-cells respectively, DC and CD8+T-cell can be 

seen co-localised within the tumour environment (Figure 4-14). 
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Figure 4-14 Localisation of DC and CD8+T-cells within human HCC 

 
(A,B,C) Dual immunohistochemistry staining for CD8 (red) and CD11c (black) 

expression in human HCC tumour. (D) Staining with isotype control. Scale bar 

represents 20 µm. Representative experiment of 3 replicates. 
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4.8 The effect of contact dependent DC-CD8+T-cells interactions 

For DC to activate T-cells, multiple signals need to be transmitted, including 

activation of the TCR, co-stimulatory signals and secretion of pro-inflammatory 

cytokines. In addition, the length of time DC spend in contact with T-cells also 

determine the fate of the T-cell [428]. To determine whether the amount of time 

tumour primed DC interacts with T-cells is critical for the induction of CD8+Treg, the 

interactions of moDC with T-cells were assessed using a fluorescent live cell imaging 

technique. Similar to previous experiments, moDC were primed by either tumour-

conditioned medium or matched non-tumour conditioned medium for 24 hours.  In 

addition, a positive control of LPS activated moDC was used. Naïve CD8+T-cells 

were isolated and labelled with CFSE to distinguish them from moDC. Following 

their priming, moDC were co-cultured with CFSE labelled naïve CD8+T-cells and 

their interactions over 24 hours recorded using a Cell IQ imager. Images were 

captured at 5 minutes intervals and contact time between individual T-cells and 

moDC were calculated. Of note, differences in the microscopic appearance between 

the tumour and non-tumour conditioned medium primed moDC were immediately 

obvious. MoDC primed in matched non-tumour medium or LPS appeared to have the 

classical features of matured/activated DC, characterised by numerous surface 

protrusions (Figure 4-15). In comparison, moDC that had been primed by tumour-

conditioned medium remained round, suggesting a more immature phenotype. 
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Figure 4-15 Analysis of DC-T-cell interactions using the cell IQ imager  

 

Naïve CD8+T-cells were labelled with CFSE (green cells) and co-cultured with 

tumour or matched non-tumour conditioned medium (CM) primed moDC or LPS 

primed moDC (grey cells). Images were captured using the cell IQ imager at 5 

minutes intervals. Representative images from two experiments showing T-cell-

moDC interaction and their microscopic appearance at 1 hour post culture.  
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On analysing the time moDC spend in contact with naïve CD8+T-cells, LPS primed 

moDC had a significantly higher contact time with T-cells (Figure 4-16). This is in 

comparison to moDC that had been primed by either tumour-conditioned medium or 

matched non-tumour conditioned. Importantly, no differences were seen in the 

interaction time of CD8+T-cells with moDC that had been primed with tumour or 

matched non-tumour conditioned medium. Hence, interaction time between moDC 

and CD8+T-cells appear not to be involved in the induction of CD8+Treg. 
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Figure 4-16 Interaction time between DC and CD8+T-cells  

 

Naïve CD8+T-cells were labelled with CFSE and co-cultured with moDC that had 

been primed by tumour or matched non-tumour conditioned medium for 24 hours. 

The interaction time between individual CD8+T-cells and moDC were captured at 5 

minutes intervals over a 24 hours period and analyse.  (A) Graph showing individual 

DC-T-cells contact time. (B) Data from a total of 120 observed cell-to-cell 

interactions in two separate experiments. Data are expressed as mean and standard 

error and statistical significance was tested using the Mann Whiney U test *p<0.05.  
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4.9 Indoleamine 2,3-dioxygenase-dependent induction of CD8+Treg  
 

Having demonstrated that cell-to-cell contact appears to be involved in the induction 

of CD8+Treg, but that the interaction time between CD8+ T-cells and DC is not 

critical.  The expression of co-stimulatory molecules (CD80, CD86) on DC seems to 

be also affected by HCC tumour conditioned medium. However, DC that had been 

cultured in medium alone also displayed reduced expression of co-stimulatory 

molecules, but did not possess the same ability to induce CD8+Treg, suggesting 

tumour primed DC must exploit additional factors for the induction of CD8+Treg. 

Studies of a wide range of human tumours have implicated multiple regulatory 

molecules in the generation of a suppressive tumour environment [429], including 

iNOS, agrinase, IDO, TGF-β and IL-10. It is likely some of theses molecules are 

involved in the induction of CD8+Treg seen within HCC tumours and in the 

experimental models used in this study. To investigate the involvement of theses 

molecules, moDC primed with tumour-conditioned medium were co-cultured with 

naïve CD8+T-cells in the presence of neutralising antibodies or inhibitors of each of 

theses candidate molecules. The effects on the blocking of theses molecules on 

CD8+Treg induction was assessed by flow cytometry. Inhibition of each of the 

candidate molecules did not affect the ability of tumour-primed moDC to induce 

CD8+Treg, except for IDO. When naïve CD8+T-cells were cultured in the presence of 

tumour primed moDC and the IDO inhibitor 1-methyl-tryptophan (1-MT), the 

percentage of CD8+CD25highCD127lowT cells induced was significantly reduced and 

in a dose dependent manner (Figure 4-17).  
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Figure 4-17 The effect of IDO on the induction of CD8+CD25highCD127lowT-cells by 

moDC 

(A) Naïve CD8+T-cells were cultured with tumour conditioned medium primed 

moDC in the presence or absence of neutralising monoclonal antibodies/inhibitor 

against IL-10 (5µg per mL), TGFβ (10µg per mL), against IDO by 1-MT (500 µM), 

iNOS by NMMA (300µM) and arginase by HONA (500µM). (B) The role of IDO in 

the induction of CD8+CD25highCD127lowT-cells by tumour conditioned medium 

primed moDC was confirmed to be dose dependent by titration of the inhibitor 1-MT.  

Representative data from five replicate experiments. Data are expressed as median 

and inter-quartile range and statistical significance was tested using the Mann Whiney 

U test vs. tumour conditioned primed moDC. *p<0.05, **p<0.01. Indoleamine 2,3-

dioxygenase; IDO, 1-MT; 1-methyl-tryptophan, iNOS; inducible nitric oxide 

synthases, interleukin-10; IL-10, Transforming growth factor beta; TGF-β, 

nonselective nitric oxide synthase inhibitor; NMMA, N-hydroxy-L-arginine; HONA. 
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4.10 Presence of IDO in HCC 
 

The enzyme indoleamine-2,3-dioxygenase (IDO) has been increasingly recognized to 

play an important role in immune modulation [430]. In particular, IDO has been 

linked to tumour progression through the inhibition of effector immune cells [431, 

432] and recruitment and induction of CD4+Treg [433]. The expression of IDO has 

been shown to be elevated within the tumour environment in a number of different 

human cancers and has been associated with disease stage [434, 435]. To confirm the 

role of IDO in human HCC, the expression of IDO within tumour and matched non-

tumour tissue were compared at a protein level by Western blot.  Assays were 

performed with protein obtained from snap frozen matched tumour and non-tumour 

HCC tissues. Although IDO was shown to be expressed in tumour and non-tumour 

tissues, semi-quantification using Image J software demonstrated increased IDO 

expression in tumour tissues when compared to matched non-tumours (Figure 4-18).  
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Figure 4-18 Expression of IDO in HCC 

 
Protein lysates were isolated from HCC and matched non-tumour tissues and analysed 

for the presence of IDO by western blot. GAPDH was used as control. (n=3) 
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Given the demonstration of increased expression of IDO within HCC tissues when 

compared to non-tumour tissues we went on to determine if this could be attributed, at 

least in part, to production by tumour infiltrating DC. Multi-colour 

immunofluorescence staining was used to analyse the presence of IDO in tumour 

infiltrating DC. Co-localisation of the DC marker CD11c and IDO was demonstrated 

on tumour infiltrating DC, in human HCC tissues (Figure 4-19). To further quantify 

the effect of HCC on IDO production by DC, the expression of IDO on tumour or 

matched non-tumour primed moDC were compared by intracellular staining and flow 

cytometry. The expression of IDO was increased in moDC following priming with 

tumour-conditioned medium when compared to moDC primed with matched non-

tumour conditioned medium (Figure 4-20). 

. 
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Figure 4-19 Staining of IDO in human HCC 

 

Immunofluorescence staining of snap frozen HCC tumour tissue for co-expression of 

CD11c (green), IDO (red) and nucleus (DAPI:blue) in human HCC tumour sections. 

Scale bar represents 100 µm. Representative data from 3 experiments.   
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Figure 4-20 IDO expression on tumour conditioned DC 

 
MoDC were primed with tumour or matched non-tumour conditioned medium for 24 

hours. Followed by the analysis for they expression of IDO by intracellular staining 

and flow cytometry. MoDC were identified by forward (FSC) and side scatter (SSC) 

and determined to be CD14 negative.  (A) A representative histogram on the 

expression of IDO by moDC. (B) Data from five separate experiments, showing the 

expression of IDO on tumour or matched non-tumour primed moDC. Data are 

expressed as median fluorescent intensity and statistical significance was tested using 

the two-tailed Wilcoxon matched pairs test. *p<0.05. 
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4.11 IL-6 level in tumour-conditioned medium. 
 

Having confirmed a role for IDO in the induction of CD8+Treg by tumour-

conditioned medium primed moDC, we next assessed the content of conditioned 

medium for the presence of other soluble factors that may influence DC phenotype. 

 

To define possible candidate soluble factors involved in the modulation of DC, a 

cytokine array kit was used to measure differences in relative levels of multiple 

cytokines, chemokines, and acute phase proteins between tumour and non-tumour 

conditioned medium.  

 

IL-6 was noted to be significantly elevated in tumour-conditioned medium when 

compared to matched non-tumour conditioned medium (Figure 4-21). Suggesting IL-

6 may be a possible target that may be responsible for the modulation of DC.  

 

  



CD8+Treg induction 

 

 

160 

 

Figure 4-21 Measurement of IL-6 in tumour conditioned medium 

 
The presence of 36 different cytokines, chemokines, and acute phase proteins were 

measured by a commercial cytokine array kit in tumour and matched non-tumour 

conditioned medium samples.  (A) A representative cytokine array film developed 

following incubation with tumour conditioned medium. (B) The spot density was 

measured by image-J in 2 sets of matched tumour and non-tumour condition medium 

samples. Data are expressed as median and inter-quartile range and statistical 

significance was tested using the two-tailed Wilcoxon matched pairs test. *p<0.05. 
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4.12 IL6 is not critical for the generation of tolerogenic DC 
 

To ascertain whether IL-6 was contributing to the priming of tolerogenic DC, moDC 

were cultured in the presence of tumour-conditioned medium plus the addition of 

increasing concentrations of an IL-6 neutralising antibody. The expression of 

maturation markers on tumour primed DC were measured by flow cytometry.  The 

addition of IL-6 blockade did not statistically alter the expression of MHC-I, MHC-II, 

CD80 or CD86 (Figure 4-22).  

 

IL-6 is a complex cytokine; it can be present as a soluble form or surface bound to its 

receptors [436] and can induce the differentiation of immune cells along two defined 

pathways. The classical pathway involves the activation of membrane bound IL-6 

receptor. Alternatively, IL-6 can exert is action via the trans-signalling pathway, 

though the activation of soluble IL-6 receptor. Importantly, the trans-signalling 

pathway has been shown to be a significant component of inflammation driven 

tumourgenesis [437, 438]. Consequently, the blocking of IL-6 alone may not be 

adequate to fully neutralise its effect. With this in mind, an additional series of 

experiments was performed utilising an IL-6 receptor neutralising antibody to block 

the activity of IL-6. DC were cultured in the presence of tumour-conditioned medium 

plus the addition of increasing concentration of an IL-6 receptor neutralising 

antibody. The expression of maturation markers on tumour primed DC were once 

again measured by flow cytometry (Figure 4-23).  Inhibition of IL-6 receptor had no 

statistically additional effect on the expression of maturation markers on tumour 

primed DC, suggesting the presence of IL-6 in tumour conditioned medium is not a 

critical component for the induction of tolerogenic moDC.  
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Figure 4-22 The effect of IL-6 blockade on tumour conditioned medium primed 

moDC 

MoDC were primed with either tumour conditioned medium in the absence or 

presence of increasing concentrations of IL-6 neutralizing antibodies for 24 hours. 

The expression of (A) MHC-I, (B) MHC-II, (C) CD80 and (D) CD86 were analysed 

by flow cytomtery. Results are from 3 replicate experiments and data are expressed as 

median and inter-quartile range. Statistical significance was tested using the Mann 

Whiney test compared to control (tumour conditioned primed moDC). MFI; median 

fluorescence intensity. 
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Figure 4-23 The effect of IL-6 receptor blockade on tumour conditioned medium 

primed moDC 

MoDC were primed with either tumour conditioned medium in the absence or 

presence of increasing concentrations of IL-6 receptor neutralizing antibodies for 24 

hours. The expression of (A) MHC-I, (B) MHC-II, (C) CD80 and (D) CD86 were 

analysed by flow cytomtery. Results are from 3 replicate experiments and data are 

expressed as median and inter-quartile range. Statistical significance was tested using 

the Mann Whiney test compared to control (tumour conditioned primed moDC). MFI; 

median fluorescence intensity. 
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4.13 Discussion 
 

The CD4+Treg population is formed of both naturally occurring and induced 

regulatory T-cells [439-441]. In comparison, most previous studies have suggested 

induction as the predominant route for CD8+Treg development [229, 230]. The low 

frequency of CD8+Treg present within the peripheral blood and non-tumour tissues, 

compared to those seen in tumour tissues of patients with HCC, plus the static level of 

circulating CD8+Treg despite HCC progression, points towards an active role of the 

tumour microenvironment in the generation of CD8+Treg.  

 

A number of different mechanisms have been proposed to be involved in the 

induction of CD8+Treg. In the current study, attempts were made to induce CD8+Treg 

by culturing naïve CD8+T-cells with HCC conditioned medium with or without TCR 

activation with CD3/CD28 beads. However, the resulting population was 

predominately composed of newly activated effector cells. Initially, this result was 

unexpected as multiple studies have previously demonstrated the ability to generate 

CD4+Treg and CD8+Treg ex-vivo by a combination of TCR activation with the 

presence of tumour supernatant or suppressive cytokines such as IL-10 and TGF-β 

[231, 442]. However, unlike the current study, the majority of these studies employed 

sub-physiological concentrations of cytokine to induce the Treg. This may explain the 

inability in the current study to induce CD8+Treg directly with tumour-conditioned 

medium alone, which more accurately recapitulates the physiological 

microenvironment. 
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The data in this chapter highlights the importance of DC interaction with tumour cells 

within HCC in the generation of CD8+Treg. The interaction of APC with T-cells has 

been proposed by others to be involved in the induction of CD8+Treg [204, 228]. In 

vitro studies designed to assess the modulating effect of HCC on immune cells has 

shown DC that have been incubated with human hepatoma supernatant were able to 

induce a subset of CD4+Treg [274]. Clinical studies in patients with solid organ 

cancers, including HCC, demonstrated the frequencies of DC with a tolerogenic 

phenotype correlated with an increase in circulating CD4+Treg [443, 444]. 

Importantly, the role of CD8+Treg induction in tumours has recently been 

demonstrated in colorectal and ovarian cancer [204, 228]. Wei et al., demonstrated 

that DC isolated from malignant ascitic fluid removed from ovarian cancer patients 

was able to induce CD8+T-cells that secreted IL-10. Importantly, these induced 

CD8+T-cells were able to suppress effector cell proliferation. However, the study 

lacked data on CD8+Treg phenotype.  

 

Despite increasing evidence suggesting the possible role of DC in Treg induction, the 

precise mechanisms involved remain unclear. DC are essential in the generation of 

appropriate immune responses against a wide array of harmful pathogens and cancer 

cells. However, data from previous studies has suggested tumours are able to disrupt 

the function of DC and may even have to ability to ‘hijack’ DC to aid immune 

evasion and Treg induction. A possible mechanism involved is the disruption of DC 

function though the down regulation of co-stimulatory molecules on DC and a 

reduction in pro-inflammatory cytokine production [73]. This leads to inadequate 

stimulation of T-cells resulting in the induction of Treg. Support for such a hypothesis 
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stems from the identification of blood derived and tumour infiltrating DC from HCC 

patients that lack maturation markers such as MHC molecules and co-stimulatory 

molecules [270-272, 426]. These DC are impaired in their inability to induce T-cell 

proliferation and produce pro-inflammatory cytokines [274].  In addition, DC isolated 

from HCC patients acquire tolerogenic properties though the production of 

suppressive cytokines such as IL-10 and TGF-β [445, 446]. Data from this chapter 

demonstrated similar results, with the ability of HCC to interact with DC, resulting in 

the lack of expression of maturation markers and production of the pro-inflammatory 

cytokine IL-12. However, no significant up-regulation of IL-10 or TGF-β production 

was recorded. Also transwell experiments designed to prevent cell-cell contact 

demonstrated cell contact is essential in the induction of CD8+Treg. Taken together, 

this data suggests soluble factors are unlikely to play a key role in CD8+Treg 

induction in HCC, although there may still be a role for membrane bound IL-10 or 

TGF-β to induce their effects on naïve T-cells.  

 

Increasing interest has been focused on the importance of the physical interaction 

between DC and T-cell in the initiation of immune responses. On engagement with T-

cells, DC form an immunological synapse in which a wide array of signals (MHC 

molecules, TCR, co-stimulatory molecules) are involved in the activation of T-cells 

[447]. In addition, interaction of adhesion molecules present on the surface of both 

DC and T-cells (CD11a-ICAM-1) also plays an important role in maintaining the 

interaction between cells, leading to T-cell activation [448]. The contact time between 

DC and T-cells has been suggested to play a role in their functional outcome [428, 

449]. However, in the current study, the length of interaction time between DC and T-
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cell does not appear to differ between tumour or non-tumour primed DC and is 

therefore unlikely to be important in the generation of CD8+ T-reg.  

 

The enzyme IDO has been increasingly recognized to play an important role in 

immune modulation [430] via its contribution to the degradation of the essential 

amino acid tryptophan into is metabolite kynurenine. IDO has been suggested to 

affect immune responses in three distinct ways. Firstly, the degradation of tryptophan 

results in the disruption of a number of molecular stress response pathways, such as 

the general control nonrepressed-2 (GCN-2) and the mammalian target of rapamycin 

(mTOR) pathways, both of which are involved in immune cell activation. The 

disruption of such pathways by IDO, results in the inhibition of effector cell 

activation and importantly has been shown to induce Treg [450, 451]. Secondly, the 

accumulation of kynurenine, a major ligand for aryl hydrocarbon receptor (AhR), can 

induce Treg via the promotion of FOXP3 expression and priming of tolerogenic DC 

[452]. Lastly, IDO has recently been shown to provide a direct intracellular signal to 

DC leading to the triggering of regulatory pathways independent of tryptophan 

breakdown or kynurenine accumulation.  However, despite increasing study 

suggesting the possible role of IDO in aiding tumour progression, conflicting 

evidences are emerging.  

 

IDO can be detected in a wide array of tissues and cells including those associated 

with immune function and other non-immune cells. In particular IDO is highly 

expressed in a wide range of human tumours, including HCC, and importantly has 

been demonstrated to correlate with cancer patient’s disease prognosis [453-458]. 
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Contrary to such findings, a recent study in patients with HCC demonstrated that the 

presence of IDO within the tumour environment correlated positively with 

progression-free survival. Importantly, it was show that the cytotoxic activities of 

peripheral mononuclear cells isolated in these patients was directly proportionate to 

the level of IDO present and this was suppressed by blocking with 1-MT [459]. 

Similarly, the presence of IDO within human renal cell cancer correlated with better 

progression free survival [460]. In addition, further contradicting effect of IDO can be 

seen in study looking at the direct effect of IDO on tumour cell survival.  It has been 

shown that the effect of IDO, can have a direct effect on prolonging tumour cells 

survival though tryptophan depletion and the built up of kynurenine metabolite. 

However, studies have demonstrated the opposite effect. In which IDO can inhibit 

tumours cells proliferation [461-463]. However, such studies often have their 

limitation, mainly due to association studies being a poor reflection on actual 

causation.  

 

As stated previously, IDO can modulate the immune response though a number of 

different pathways and the current study has highlighted the potential for Treg 

induction in response to production of IDO by professional APC such as DC [452]. 

Importantly, recent work investigating the activation of IDO in tumour cells has 

suggested a reciprocal role of Treg. Mainly through the induction of tolerogenic DC 

by Treg expression of CTLA-4,  resulting in the expression of IDO on DC [464]. In 

addition, a recent clinical study demonstrated IDO expression in tumour stromal 

tissues correlated with better response in patients treated with a CTLA-4 blocking 

antibody [465], further supporting the possible interaction between Treg and IDO.  



CD8+Treg induction 

 

 

169 

 

A direct result of the increasing evidence demonstrating the role of IDO in the 

disruption of anti-tumour immune response is the development of studies focusing on 

the therapeutic potential of IDO blockade as a cancer treatment. Early rodent studies 

suggest IDO blockade using the enzyme inhibitor 1-MT is able to delay tumour 

growth [431, 454]. Several IDO inhibitors are now in early phase clinical trials as 

treatments for human cancer, including molecules which have a higher IDO blocking 

ability compared to 1-MT [466]. Studies supporting the use of IDO blockade in the 

attempt to reverse tumour suppression appear promising. However, our current 

understanding on how IDO affect tumour immune response remains limited. It is 

proposed that the blockade of IDO may in effect reverse the immune suppression seen 

in tumour progression. Such hypothesis was based on one of the pivotal study, 

demonstrating IDO induced decrease in tryptophan resulted in inhibition of T-cell 

proliferation [467]. However, once again conflicting data exists, in which one study 

demonstrated that despite total depletion of trytphan, no suppression of immune cell 

proliferation was seen [468]. It has been agreed that such differences seen in these 

studies can been related to the differences in experimental condition. It is plausible 

that in-vitro experiments are unlikely to mimic one seen in in-vivo experiments. In 

which the tryptophan level is unlikely to be depleted to a similar level when compared 

to in-vitro condition. Recent data has emerged questioning the actual involvement of 

IDO in tumour suppression. As already mentioned increasing interest has been put on 

the use of 1-MT as a potential anti-cancer treatment. It is hypothesis the blockage of 

IDO by 1-MT results in the reversal of tumour immune suppression. However, recent 

studies has suggested the anti-tumour effect seen in the use of 1-MT, may actually be 
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independent of IDO. Agaugue et al. demonstrated in a murine model that the affect of 

1-MT on DC function was depending on the quality of DC maturation through TLR 

and the effects of 1-MT were independent to IDO activity [469]. In addition, the DC 

matured through TLR4 pathway in the presence of 1-MT resulted in the generation of 

IL5 and IL13 secreting T-cells and not IFN. Such effects maybe detrimental in the 

setting of anti-tumour response due to the skewing towards a Th2 response. It was 

suggested by the authors, the IDO independent effect of 1-MT might be the result of 

disruption of trytphan uptake or metabolism by DC. However, further studies are 

required to unravel such findings.  To further add uncertainty into the actual 

mechanism of how 1-MT may reverse tumour immune suppression, a biochemical 

identical enzyme of IDO; tryptophan-2,3-dioxygenase (TDO) are also present in 

human cancer [470]. However, TDO cannot be inhibited by 1-MT. Hence, adding 

further evidence to suggest that the affect of 1-MT maybe independent on is inhibition 

on IDO.  

 

Putting the data against the role of IDO on the generation of a suppressive tumour 

environment aside.  The suitability of 1-MT as a treatment for cancer has also been 

questioned. In addition to the potential Th2 skewing effect of 1-MT on DC mentioned 

above, the actual potency of 1-MT inhibition on IDO has also been questioned. 1-MT, 

a competitive inhibitor of IDO exists in two isomers: L-1MT and D-1MT. The two 

isomers appear to act differently depending on the cells types and cell compartment 

[471]. The main effect of L-1MT appears to be against cell free IDO activity and IDO 

secreting cell lines. While D-1MT appears to inhibit tryptophan degradation on IDO 

expressing mDC. Due to the effect of D-1MT on immune cells, it has been commonly 
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used as the isomer of chose for clinical studies. However, with the advances in 

science much potent inhibitor of IDO has been developed. In particular the use of 

siRNA to suppress IDO expression at a genomic level. The use of siRNA has 

enormous advantage over chemical inhibitor such as 1-MT. Mainly through the 

avoiding of off target effect as seen in the use of 1-MT as discussed above.    

 

Additional studies have proposed the suppression of anti-tumour immune responses 

may involve other enzymatic pathways. The enzyme arginase-1 has been implicated 

mainly in the suppression and function of MDSC [472], but recent evidence has 

supported a role for this molecule in the induction of tolerogenic properties in DC 

[473]. Similarly to IDO, arginase-1 results in the activation of GCN-2 via the 

degradation of the amino acid arginine, leading to the disruption of effector cell 

activation and induction of regulatory T-cells [474]. Arginase-1 has been shown to be 

present on DC following culture with retinoic acid leading to the induction of 

regulatory T-cells [473, 475]. The possible role of arginase-1 in the induction of 

regulatory T-cells was further supported by the demonstration of FOXP3 positive 

cells with co-expression of arginase [476]. Similarly, the enzyme nitric oxide 

synthase, though the production of nitric oxide, has been implicated as another 

potential candidate in the induction of regulatory T-cells [477]. However, unlike IDO 

neither of these enzymes was shown to be involved in CD8+Treg in the current study. 

 

After confirming the involvement of IDO in the induction of CD8+Treg, an attempt 

was made to investigate what component of tumour-conditioned medium resulted in 

the generation of tolerogenic DC. Using a cytokine array, increased secretion of IL-6 
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was identified, which, given its wider effects may have been responsible for 

generating the tolerogenic phenotype and function of tumour primed DC. IL-6 has 

been described to be associated with the pathogenesis of HCC and an increased risk 

of HCC development [78, 79, 83, 478]. More recently IL-6 has been shown to be 

involved in the disruption of DC maturation [80, 479, 480]. In addition, a study of 

human colorectal tumours demonstrated the serum concentration of IL-6 correlated 

with the presence of tumour infiltrating CD8+Treg [228]. Importantly, the study 

demonstrated the ability to induce CD8+Treg ex-vivo in the presence of IL-6. 

However, no assessment of the suppressive function of the induced CD8+Treg was 

performed.  

 

In the current study, despite blocking both soluble IL-6 and its receptor, the 

imprinting of a tolerogenic phenotype on DC by tumour-conditioned medium was not 

affected. This contradicted the afore mentioned studies which demonstrated the 

immune-tolerogenic effect of IL-6 on DC and with the confirmation of an elevated 

level of IL-6 in tumour conditioned medium. Whilst the demonstration of IL-6 

involvement in the induction of CD8+Treg would have been a satisfactory explanation 

for the modulating effect of HCC, the inability to identify the components of a 

secretome responsible for DC disruption, emphasises the complexity of the tumour 

microenvironment. This also highlights the limitation of the use of tumour-

conditioned medium to mimic what occurs within tumours. However, steps were 

incorporated into the experimental design, in an attempt to minimize the possible 

confounding factors, commonly seen in the use of conditioned medium. Firstly, 

conditioned medium was obtained by culturing tissues in serum free conditions to 
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minimise the recognition of serum components and constituents of the secretome 

[481]. Secondly, fresh human tumour slices and not cell lines were used to generate 

conditioned medium. This has the advantage of investigating the interaction between 

different cells within the tumour microenvironment and not just a single cell.  Lastly, 

studies of HCC are often confounded by the presence of underlying liver disease, in 

particular viral liver diseases. It is therefore difficult to distinguish between the effects 

of the viral disease and those resulting from the tumour. To limit such effect, 

conditioned medium was generated only from tumour samples obtained from patients 

with non-viral liver disease.  There are however other factors that were not possible to 

control, such as hypoxic conditions. In addition, a positive control wasn’t added to the 

experiments to confirm the potency of the neutralising antibodies used. Finally, the 

concentration of the conditioned medium may not mirror the in-vivo picture where the 

interplay between different organ systems will result in a complex secretome. 

 

In addition to IL-6, the chemokine CCL2 was also presence at a higher level within 

the tumour supernatant were compared to matched non-tumour supernatant. CCL2 

also commonly know as monocyte chemoattractant protein-1 (MCP-1), is an 

important chemokines involved in the trafficking of monocytes and macrophages 

[482].  CCL2 expression was shown to be present in human HCC and has been 

suggested to correlate with prognosis [483]. Is effect has been suggested to be related 

to the tumour ability to recruit suppressive immune cells such as TAM and MDSC 

into the tumour environment. Hence, preventing anti-tumour immune cells response 

in the tumour [484, 485]. One of the main limitation of this current work, relate to 

lack of further experiments looking at the involvement of CCL2 on DC modulation or 
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Treg induction. With the development of therapeutic targeting against the CCL2 

pathway, future work in this area is very attractive.  
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5 Functional capacity of CD8+Treg 
 
 
The data so far have demonstrated the presence of a subset of CD8+Treg infiltrating 

human HCC, displaying a regulatory phenotype similar to other previously identified 

CD8+ regulatory T-cells in human diseases, including cancer. In addition, DC has 

been demonstrated to interact with tumour cells in human HCC, in the induction of 

CD8+Treg from naïve CD8+T-cells.  

 

It is, however, important to recognise that the current arrays of phenotypic markers 

we used to define regulatory cells are not 100% specific.  Indeed, it is becoming 

increasingly accepted that some of these markers can be expressed on non-regulatory 

cells dependent on the microenvironment in which they are induced. To further 

confirm the regulatory role of the CD8+Treg identified in the current study, their 

suppressive function needs to be confirmed. 

 

5.1 Cytokine production of HCC infiltrating CD8+Tregs 
 

To confirm that the CD8+Treg population identified in HCC tissue are true regulatory 

T-cells, their suppressive capacity was assessed. A number of previous studies 

examining regulatory CD8+T-cells have demonstrated their ability to secrete 

suppressive cytokines and this has been proposed to be central to their suppressive 

function [486]. To enable the assessment of cytokine production in tumour infiltrating 

T-cells, mononuclear cells from human HCC were freshly isolated and stimulated by 

TCR activation. The ability of the T-cells to produce cytokine was demonstrated by 
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intracellular flow cytometry.  Following stimulation, the cytokine production profile 

differed markedly between T-cell subsets isolated from tumours. CD8+Treg secreted 

predominately the suppressive cytokine IL-10 and only produced a low level of the 

pro-inflammatory cytokine IFN-γ. This is in comparison to the CD8+CD25low T-cells 

(non-Treg), which secreted predominately IFN-γ and minimal IL-10 (Figure 5-1B & 

C). The production of the suppressive cytokine TGFβ was also measured on different 

subsets of CD8+T-cells but this did not differ significantly between CD8+Treg and 

non-Treg cells (Figure 5-1D & E) (Figure 5-2). 

 

This suggests, in addition to the induction of CD8+Treg, the tumour environment may 

enhance Treg function whilst at the same time adversely affect the function of 

responder cells.  
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Figure 5-1. Flow cytometric analysis of cytokine production from HCC-infiltrating 

CD8+T-cells 

 

Mononuclear cells were isolated from HCC tissues and stimulated by TCR activation 

(Cytostim) before the expression of IL-10, IFN-γ and TGFβ on T-cell subsets was 

analysed. (A) Cells were gated on CD3+CD8+ and defined as either regulatory or 

effector based on expression of their CD25 and CD127. (B) CD8+Treg produced IL-

10 in preference to IFN-γ whilst in (C) CD8+CD25low T-cells (non-Treg) this pattern 

was reversed. TGF-β production did not differ significantly between either (D) 

CD8+Treg or (E) CD8+CD25low T-cells. Representative data from 5 replicate 

experiments. Interleukin-10; IL-10, interferon gamma; IFN-γ, transforming growth 

factor beta; TGF-β.  
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Figure 5-2 Measurement of cytokine secretion in HCC infiltrating CD8+Treg by flow 

cytometry 

 

Cytokine secretion by T-cells was assessed in cells isolated from three independent 

samples of HCC tumour and matched non-tumour tissue. MNC were isolated from 

matched tumour and non-tumour tissues and stimulated with cytostim. The expression 

of IL-10, IFN-γ and TGF-β on T-cell subsets was assessed by flow cytometry. Cells 

were gated on CD3+CD8+. CD8+Treg isolated from tumour tissue produced the 

suppressive cytokines (A) IL-10 and (B) TGFβ.  Comparison of cells isolated from 

matched tumour and non-tumour samples demonstrated that tumour resident 

CD8+Treg produced more IL-10 whilst no difference was seen in cells producing 

TGF-β. Conversely, the expression of the pro-inflammatory cytokine (C) IFN-γ by 

CD8+CD25low T-cells (non-Treg) was increased in non-tumour samples when 

compared with matched tumour samples. Data from 5 replicate experiments. Data are 

expressed as median and interquartile range. Statistical comparisons were made with 

Wilcoxon signed ranked test where *P<0.05. Mononuclear cells; MNC, interleukin-

10; IL-10, interferon gamma; IFN-γ, transforming growth factor beta; TGF-β. 
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5.2 Optimization of a suppression assay  
 
 
The hallmark of Treg is their ability to suppress the function and proliferation of 

responder T-cells (CD25lowT-cells). To assess the direct suppressive capacity of 

tumour infiltrating CD8+Treg, a well-established suppression assay was employed. 

This assesses the ability of responder T-cells to proliferate in the present of regulatory 

T-cells. However, in a ‘classical’ suppression assay, a large number of regulatory T-

cells are often required [487] which can be a major obstacle in research focussing on 

recovery of T-cells from tumour. This is due to the low frequency of cells isolated 

from tissues. For this reason, the assay was optimised for the use in situations when 

the number of regulatory T-cells is limited.  

 

Suppression assays require the isolation of regulatory T-cells. When the number of 

cells used in the assay is small, the purity of the isolated cell population is essential, 

because contamination by other cells may have a significant effect on the final result. 

In the current study, to ensure the purity of the isolated tumour CD8+Treg, cells were 

obtained by high-speed flow cytometric cell sorting (Figure 5-3). This allows the 

isolation of highly purified populations of viable tumour infiltrating CD8+Treg 

(>90%), whilst at the same time allowing the acquisition of phenotype data, hence 

maximising the use of limited HCC tissues.  
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Figure 5-3 Cells isolated by flow cytometric sorting. 

 

Representative dot plots showing cell purity on isolated (A) CD8+Treg and (B) 

CD8+CD25low T-cells (non-Treg) following cell sorting.  
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The numbers of cells isolated from each tumour were variable, but usually low 

(between 5000-20,000 CD8+Treg per gram of tissue). For a classical suppression 

assay, an average of 400,000 cells are often quoted to be required. In an attempt to 

increase the number of CD8+Treg, the isolated cells were expanded using protocols 

developed for peripherally isolated CD4+Treg [488, 489]. However, no significant 

expansion of tumour isolated CD8+Treg was seen and the cultured CD8+Treg often 

died following prolonged expansion (14 days). In an attempt to maintain viability, 

MNC isolated from tumour were expanded directly without prior isolation of 

CD8+Treg, but again the numbers and viability of recovered cells remained low.  

 

Due to the difficulties increasing the number of tumour infiltrating CD8+Treg, 

attention was turned towards optimising the suppression assays for use with low 

numbers of cells.  It is commonly quoted, 50,000 responder T-cells are required per 

well of a 96-well plate for suppression assays. Reduction in the number of responder 

T-cells will therefore directly reduce the number of Treg required. To ensure, a 

reduction in responder T-cells numbers will not effect T-cell proliferation, the 

proliferation capacity of different concentrations of responder T-cells was compared. 

Responder T-cells from healthy donors were first isolated by magnetic antibody cell 

selection methods and labelled with a cell trace dye to enable visualisation of 

proliferation by flow cytometry. Either 25,000 or 50,000 responder T-cells were 

transferred into each well of a 96-well round bottomed plate (to maximise the contact 

between CD8+Treg and responder T-cells) before the cells were activated with 

CD3/CD28 beads (Dynal) or Treg suppressor beads (Miltenyi Biotec) to induced 

proliferation. Following 3 days of culture, the proliferation of T-cells was assessed by 
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flow cytometry. When compared, the proliferation of 25,000 responder cells was 

similar to the usual 50,000 cells (Figure 5-4), suggesting the reduction in responder T-

cell number does not compromise the ability to proliferate and therefore the accuracy 

of the assay. 
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Figure 5-4 Optimisation of suppression assay 

 

Responder T-cells (CD3+CD25low) were isolated by flow cytometric cell sorting from 

PBMC and labelled with Violet cell trace. The labelled cells were cultured in the 

presence of CD3/CD28 activating beads to induce proliferation for 3 days and 

proliferation was determined by dilution of violet cell trace by flow cytometry. 

Representative histograms showing responder T-cells cultured at (A) 50,000 cells per 

well and (B) 25,000 cells per well. Cell proliferation are shown as percentage. 

Representative of 3 replicate experiments. 
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The initial optimisation of the suppression assay using CD3/CD28 Dynal beads to 

induce T-cell proliferation was unsuccessful (Figure 5-5 A & C). No suppression of 

responder T-cells was seen even at a 1:1 Treg to responder T-cells ratio. Dynal beads 

are commonly used to induce T-cell expansion and activation for downstream 

experiments and are large (4.5 µm) particles, which in this setting seem to induce 

intense supra-physiological stimulation of responder T-cells, which appeared to 

overcome Treg suppression.   

 

In an attempt to overcome the problem of excessive stimulation/activation and the 

inability to suppress T-cell proliferation, when Dynal beads was used to drive 

responder T-cell proliferation, an alternative method was assessed. Treg inspector 

beads (Miltenyi Biotec) have been specifically developed for use in suppression 

assays to induce T-cell proliferation. The beads consist of a cocktail of CD3, CD2 and 

CD28 activating antibodies adsorbed onto 50 nm particles. Using Treg inspector 

beads, it was possible to demonstrate the suppressive capacity of peripherally isolated 

CD4+Treg. However, this did not reach statistical significant (Figure 5-5).  

  



CD8+Treg function 

 

 

185 

 

Figure 5-5 Comparison of Dynal beads and Treg inspector  

CD4+Treg (CD4+CD25highCD127low T-cells) and responder T-cells (CD3+CD25low) 

were isolated by magnetic antibody cell sorting from PBMC. Responder T-cells were 

labelled with Violet cell trace and cultured in the presence of Dynal CD3/CD28 

activating beads or Miltenyi Biotec Treg inspector beads at an 1:1 bead to cell ratio to 

induce proliferation for 3 days.  Cells were cultured either alone or in the presence of 
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CD4+Treg at a 1:1 (responder:Treg) ratio.  Proliferation of responder T-cells was 

determined by dilution of violet cell trace. Cells undergoing proliferation is shown as 

a percentage. Representative flow cytometric histograms showing responder T-cell 

proliferation cultured alone with either dynal beads or Treg inspector or in the 

addition of Treg at a 1:1 Treg:responder ratio. (B) The suppression capacity of Treg 

was compared in the presence of either dynal beads or Treg inspector. Data are 

expressed as mean and standard deviation. Statistical comparisons were made with 

Wilcoxon signed ranked test. Data were obtained from 3 replicate experiments.  
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5.3 CD8+Treg isolated from HCC are functionally suppressive 
 
 
Having finalised the optimisation of the suppression assay, the suppressive function 

of tumour infiltrating CD8+Treg was assessed.  Following isolation by flow 

cytometric cell sorting, HCC derived CD8+Treg were cultured with allogenic 

responder T-cells at a 1:8 Treg:responder ratio in the presence of Treg inspector beads 

for 3 days.  In the presence of tumour infiltrating CD8+Treg, the proliferation capacity 

of responder T-cells was significantly reduced (Figure 5-6A). The suppressive ability 

of tumour infiltrating CD8+Treg was comparable to tumour infiltrating CD4+Treg 

isolated from the same tumours (Figure 5-6B) confirming tumour-infiltrating 

CD8+CD25highCD127lowT-cells are true regulatory T-cells. 
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Figure 5-6 Suppressive function of HCC infiltrating CD8+Treg  

 

To assess the suppressive ability of HCC infiltrating CD8+Treg, violet cell trace 

labelled allogeneic responder T-cells (CD3+CD25low) were cultured in the absence or 

presence of CD8+Treg. Responder T-cells were stimulated with Treg inspector beads 

at 1:1 ratio to induce proliferation. (A) After 3 days of culture, T-cell proliferation 

was analysed by determining the percentage of violet cell trace dilution. 

Representative flow cytometric histograms showing responder T-cell proliferation 

cultured alone (top) and in the presence of HCC infiltrating CD8+Treg (bottom) at a 

1:8 Treg:responder ratio. (B) The suppression capacity of tumour infiltrating 

CD8+Treg was compared to CD4+Treg (CD4+CD25highCD127low) obtained from the 

same tumours. Data are expressed as mean and standard deviation. Statistical 

comparisons were made with Wilcoxon signed ranked test where *P<0.05. Data were 

obtained from 4 replicate experiments.  
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5.4 Suppressive function of induced CD8+Treg 
 
 

In the previous chapter, tumour primed DC was demonstrated to induce a subset of 

CD8+T-cells resembling the phenotypic characteristic of HCC infiltrating CD8+Treg. 

Hence, we continued to investigate whether these induced cells possess regulatory 

function. Assays were performed to assess their cytokine production capability and 

suppression function. Cytokine production of induced Treg-cells was assessed by 

stimulating naïve CD8+T-cells that had been cultured with tumour primed DC with a 

TCR linking antibody (cytostim). The expression of IL-10 and IFN-γ by CD8+T-cells 

subsets was determined by flow cytometry.  Similar to HCC infiltrating CD8+Treg, 

tumour primed DC induced CD8+Treg capable of producing the suppressive cytokine 

IL-10, but not IFN-γ (Figure 5-7).  Similarly, non-Treg cells produced predominately 

IFN-γ and not IL-10. 

 

To assess the suppression capacity of iCD8+Treg, T-cells, which had been co-cultured 

with condition medium primed DC were isolated using flow cytometric cell sorting to 

separate CD8+CD25highCD127low and CD8+CD25low T-cells. Different ratios of sorted 

iCD8+Treg cells were incorporated into a suppression assay. In the presence of 

iCD8+Treg, the proliferation ability of responder T-cells was significantly reduced in 

a dose dependent manner (Figure 5-8). To ensure the suppressive function was only 

confined to iCD8+Treg, sorted CD8+CD25low T-cells cells cultured with tumour 

primed DC acted as a control in the suppression assay.  CD8+CD25low T-cells were 

not able to suppress the proliferation of responder T-cells. 
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Figure 5-7 Measurement of IL-10 & IFN-γ in HCC induced CD8+Treg  

 

Navie CD8+T-cells were cultured with tumour conditioned medium primed DC for 5 

days and assessed for their cytokine production by TCR-linking stimulation and flow 

cytometry. The cells were gated on CD3+CD8+ and iCD8+Treg were defined as 

CD8+CD25lowCD127low T-cells, whilst CD8+Non-Treg was defined as CD8+CD25low 

T-cells. The number of cytokine producing cells was stated as percentage of total 

CD8+T-cells. In common with CD8+ Treg isolated from tumours, iCD8+Treg 

produced predominantly IL-10 whilst non-Treg cells produced IFN-γ. Data are 

expressed as mean and standard deviation. Statistical comparisons were made with 

Wilcoxon signed ranked test where *P<0.05. Data were obtained from 4 replicate 

experiments. 
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Figure 5-8 Assessment of suppressive function in induced CD8+Treg  

Naïve CD8+T-cells were cultured with tumour-conditioned medium primed DC for 5 

days. Following culture with tumour primed DC, iCD8+Treg were isolated by flow 

cytometric sorting. The suppressive ability of iCD8+Treg was assessed by labelling 

allogeneic responder T-cells with violet cell trace and cultured in the absence or 

presence of different ratios of iCD8+Treg. CD3+CD2+CD28+ beads (Treg inspector) 

were added to induce responder T-cell proliferation. After 3 days of culture, T-cell 

proliferation was analysed by determining the percentage of violet cell trace dilution, 

demonstrating the capacity of iCD8+Treg to supress effect T cell proliferation. (A) 

Representative flow cytometric histograms showing T-cell proliferation in the 

presence of an increasing ratio of iCD8+Treg. (B) Suppression assays from 3 replicate 

experiments, the black bar represents the use of CD8+CD25low cells instead of 

iCD8+Treg. Data are expressed as means and standard deviation. 
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5.5 The suppressive function of CD8+Treg is mediated thought CD39 
 

Functional assessments of Treg isolated from tissue are often limited due to the 

difficulty in obtaining adequate numbers of cells. However, with the ability to 

generate CD8+Treg on demand by culturing tumour conditioned-medium primed 

moDC with naïve CD8+T-cells, further characterisation of the mechanisms involved 

in the suppressive capacity of CD8+Treg were performed.  

 

As shown in previous chapters, CD8+Treg isolated directly from HCC or induced 

from tumour primed DC, secreted IL-10, TGF-β, expressed CTLA-4 and CD39. All 

of these molecules have been shown in previous studies to be involved in the 

suppressive functions of Tregs [228, 229, 486, 490]. To further ascertain weather any 

of these factors are involved in the suppressive capacity of CD8+Treg, increasing 

concentrations of neutralising antibody against IL-10, TGF-β, CTLA-4 and CD39 

were added into an allogeneic suppression assay.  

 

The blockade of IL-10, TGFβ and CTLA-4 did not affect the suppression capacity of 

iCD8+Treg on responder T-cell proliferation (Figure 5-9). However, the addition of a 

CD39 neutralising antibody was able to reverse the suppressive capacity of induced 

CD8+Treg in a dose dependent manner.  
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Figure 5-9 The effect of CTLA-4, IL-10, TGF-β & CD39 blockade on CD8+Treg 

function 

Naïve CD8+T-cells were  co-cultured with moDC primed with HCC tissue-

conditioned medium and then isolated by flow cytometric sorting based on 

CD3+CD8+CD25highCD127low expression.  The ability of induced CD8+Treg to 

suppress responder T-cell proliferation was assesed by suppression assays.  

Responder T-cells were labelled with violet cell trace and stimulated with 

CD2+CD3+CD28+ activating beads (Treg inspector) and cultured with induced 

CD8+Treg at a 1:1 ratio in the presence or absence of increasing concentrations of 

neutralising antibodies against IL-10, TGF-β, CTLA-4, CD39 or isotype control. 

Responder T-cells cultured alone acted as a positive control. After 3 days of culture, 

T-cell proliferation was analysed by determining the percentage of violet cell trace 

dilution.  Data are expressed as mean and standard deviation. Statistical comparisons 

were made with Mann-Whitney U test where ***P<0.001 vs. Treg+Resp. Results are 

from 3 replicate experiments. 
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A study by Bastid et al suggested that CD39 is involved in the suppressive 

mechanism of Treg though the generation of adenosine from ATP/ADP [491]. To 

further confirm the importance of CD39 in the suppressive capacity of CD8+Treg, A 

selective ecto-ATPase inhibitor; diethyl-b-c-dibromomethylene-D-adenosine-50-

triphosphate trisodium salt hydrate (ARL67156) was used to block the CD39 

adenosine pathway. Similar to the addition of CD39 neutralizing antibody, the 

suppressive capacity of CD8+Treg was partially reversed by the disruption of CD39 

by ARL6715 (Figure 5-10).   
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Figure 5-10 The effect of CD39-adenosine pathway blockade on CD8+Treg function 

 

The ability of CD8+Treg to inhibit responder T-cell proliferation was assesed by 

suppression assay in the presence or absence of the ATPase inhibitor diethyl-b-c-

dibromomethylene-D-adenosine-50-triphosphate trisodium salt hydrate (ARL67156) 

or neutralising CD39 antibodies. Responder T-cells cultured alone acted as the 

positive control. Data are expressed as mean and standard deviation and result are 

from 3 replicate experiments. Statistical comparisons were made with Mann-Whitney 

U test where *P<0.01 vs. Treg 
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5.6 CD8+Treg suppress responder T-cells though cell contact  
 

The localization of CD39 within lipid rafts of cells has been demonstrated previously 

[492], suggesting close cell-cell contact is likely to be required to support its function. 

To ascertain weather cell-cell contact is critical for CD8+Treg to effect their 

suppressive capacity, suppression assays were carried out in the presence of transwell 

inserts to prevent contact between responder T-cells and CD8+Treg. In this setting it 

was possible to demonstrate that suppression of effector T cell expansion by 

CD8+Treg is cell contact dependent, as the special separation of both cell populations, 

whilst maintaining free movement of soluble factors, abolishes their suppressive 

capacity (Figure 5-11).  
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Figure 5-11 The effect of transwell on CD8+Treg suppression 

 

The requirement of cell-contact dependent suppression by induced CD8+Treg 

(iCD8+T-cells) was assesed by culturing the flow cytometric sorted induced cells with 

responder T-cells, together or separated by a 0.22µm transwell insert in the presence 

of CD2+CD3+CD28+ activating beads (Treg inspector) at a 1:1 ratio. After 3 days of 

culture, T-cell proliferation was analysed by determining the percentage of violet cell 

trace dilution. Data are expressed as mean and standard deviation and result are from 

3 replicate experiments. Statistical comparisons were made with Mann-Whitney U 

test where *P<0.05 vs. responder only 
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5.7 CD8+Treg do not suppress via cytotoxic pathways 
 
 

An alternative mechanism for CD8+Treg suppression may involve direct cell killing 

of the responder cells [493]. To assess whether CD8+Treg can suppress by direct cell 

cytotoxicity, iCD8+Treg were co-cultured with responder T-cells in a suppression 

assay. To assess for possible killing of responder T-cells, the viability stain 7-ADD (a 

membrane dye that is excluded from viable cells) was added prior to flow cytometry.  

Dead or dying cells are unable to export the dye out of the cells and appear as 

fluorescently labeled cells on flow cytometry. Despite effective suppression of 

responder cell proliferation by CD8+Treg no increase in 7-AAD positive cells was 

detected, suggesting CD8+Treg does not exert their function in a cytolytic manner. 
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Figure 5-12 Assessment of Cytotoxic activates in CD8+Treg 

 

CD8+Treg were cultured with violet cell trace labelled responder T-cells at increasing 

ratios and in the presence of CD2+CD3+CD28+ beads (Treg inspector) to stimulate 

responder T-cell proliferation. Following 3 days of culture, the cells were stained with 

7-ADD for 5 minutes at room temperature prior to flow cytometry. Responder T-cell 

proliferation was determined by dilution of violet cell trace and dead or dying cells 

was defined as 7-ADD positive cells. Representative dot blot from 3 replicate 

experiments 
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5.8 Discussion 
 

A number of mechanisms have been suggested to explain the suppressive function of 

regulatory CD8+T-cells, although many of these remain contentious. The production 

of suppressive cytokines by regulatory CD8+T-cells has been proposed by a number 

of studies to play an important role in their suppressive ability with IL-10 being one 

of the key cytokines involved in this and the control of a wide range of effector 

immune cells [494]. Comparable to the current study, IL-10 expressing regulatory 

CD8+T-cells has been identified in the blood of patients with chronic infection and 

cancer. Importantly, a positive association between the frequency of IL-10 producing 

regulatory CD8+T-cells and disease progression has been demonstrated [204, 208, 

211]. In addition, the importance of IL-10 in mediating regulatory CD8+T-cell 

suppression gained further support by studies demonstrating the reversal of effector 

cell dysfunction following the in vitro blockade of IL-10 secreting regulatory CD8+T-

cells [211]. Likewise the cytokine TGF-β has an important role in the maintenance of 

immune tolerance by controlling the proliferation, differentiation and apoptosis of a 

plethora of immune cells [495]. Presence of TGF-β producing regulatory CD8+T-cells 

has been associated with a wide range of human diseases [216]. However, at present, 

there are no data to show the involvement of TGF-β producing regulatory CD8+T-

cells in human cancer.  

 

Despite the detection of IL-10 and TGF-β expressing regulatory CD8+T-cells, I was 

unable to demonstrate a role for either of these cytokines in the suppressive function 

of CD8+Treg. Recent studies have also questioned the importance of suppressive 

cytokines for the inhibitory function of regulatory T-cells [496]. In a study of HCV, 
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the in vitro blockade of IL-10 had no effect on the suppressive function of IL-10 

expressing regulatory CD8+T-cells [210]. In a separate study on human prostate 

cancer, the neutralization of both IL-10 and TGF-β did not prevent regulatory CD8+T-

cells suppression [497].  

 

Further evidence to discount the effect of soluble factors such as IL-10 and TGF-β in 

the suppressive function of regulatory CD8+T-cells comes from studies linking the 

requirement of cell-contact dependant mechanisms for maintenance of regulatory 

function. These studies demonstrated the prevention of cell-contact between 

responder T-cells and regulatory CD8+T-cells entirely abolished the suppressive 

capacity of regulatory cells [203, 210].   

 

Despite not being able to demonstrate the effect of IL10 and TGF-β in the current 

work, is worth considering they may still be involved. Such hypothesis stem from the 

shortfall of the current experiment. The functional assays on cytokine blockade were 

conducted on peripheral isolated T-cells that have been induced by tumour-

conditioned DC. These iCD8+Treg processes identical phenotypical markers to the 

one found in human HCC. However, due to the limited number of tumour infiltrating 

CD8+Treg, it was not possible to confirm if blocking of IL10 or TGF-β effects the 

functionality of tumour derived CD8+Treg. This is especially important as previously 

discussed in chapter 3.  This is because despite expressing the same regulatory 

marker, the functional capacity of Treg appears to be determined by their location.  

Hence, even if induced peripheral CD8+Treg doesn’t appear to suppress through 

either IL-10 or TGF-β, it is still possible that tumour infiltrating CD8+Treg maybe 
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able to suppress via soluble factors. To answer such question, we would need to 

perform functional assays using matched CD8+Treg from the blood, tumour and non-

tumour tissue. This will be currently challenging due to the limited number of 

CD8+Treg we can isolate from these compartments.  

 

Continued debate on the role of soluble factors in regulatory CD8+T-cell function, has 

given rise to a number of novel mechanisms as possible candidates to explain the 

suppressive capacity of these cells.  Cytotoxic T-lymphocyte antigen-4 (CTLA-4) is a 

glycoprotein expressed on T-cells. It is homologous to the receptor CD28 and shares 

the same ligands (CD80 & CD86) that are essential for effector T-cell activation 

[299]. The important role of CTLA-4 in immune regulation was first recognised in 

animal models in which CTLA-4 deficient mice exhibit lethal lymphoproliferative 

disorder and multi-organ lymphocyte infiltration [300, 301]. However, the precise 

mechanism in which CTLA-4 modulates the immune system remains controversial.  

 

The observation of high CTLA-4 expression on regulatory T-cells gave credit to the 

concept of its possible involvement in their suppressive function. Early in vivo 

experiments supported such a hypothesis by demonstrating the neutralisation of 

CTLA-4 inhibited CD4+Treg suppression [498, 499]. Further evidence of a role for 

CTLA-4 in the function of regulatory T-cells were provided by studies showing 

defective CD4+Treg function in CTLA-4 deficient mice [498, 500]. A possible role 

for CTLA-4 in regulatory CD8+T-cell function has also been reported. In a study by 

Olson et al., an infiltrating population of antigen specific regulatory CD8+T-cells 

were identified in tumour samples taken form patients with prostate cancer. These 
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regulatory cells were also positive for CTLA-4, and their suppressive activity was 

diminished by the blockade of CTLA-4 [497]. However, in the current work, despite 

the high expression of CTLA-4 seen on regulatory CD8+T-cells, its blockade did not 

result in the reversal of responder T-cell suppression.  However, these findings do not 

differ from those in some other studies that also argued against the role of CTLA-4 in 

regulatory T-cell function, with failure to reverse their suppression through CTLA-4 

blockade [496, 501]. Despite this conflicting evidence for a role of CTLA-4 in 

regulatory T-cell function, the involvement of this molecule in other immune 

modulating roles has emerged. These include the induction of the suppressive 

molecules TGF-β and IDO on APC, the restriction of CD28-CD80/CD86 signalling, 

the direct inhibition of APC cells and disruption APC-T-cell activation via inhibition 

of cell adhesion [302-307]. 

 

Another candidate involved in the suppressive mechanism of regulatory CD8+T-cells 

is CD39, shown to be present on CD4+Treg and detected on regulatory CD8+T-cells 

by others [502, 503]. CD39 (ectonucleoside triphosphate diphosphophydrolase-1) is 

an ectoenzyme that is proposed to have immune suppressive function by hydrolyzing 

ATP and ADP, respectively to AMP. AMP is further processed by the ectoenzyme 

CD73 ecto-5’-nucleotidase, which drives the conversion of AMP into adenosine. 

Whilst adenosine is usually present at a low concentration in the extracellular 

compartment, it has been shown to be increased in a number of human tumours and 

has a direct suppressive effect on a wide range of effector immune cells [504]. 
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Adenosine can trigger multiple pathways via the activation of membranous adenosine 

receptors, classified as A1, A2A, A2B and A3 receptors. The A2A receptor is present 

on a wide range of immune cells and is up regulated on TCR activation in T-cells. 

The binding of adenosine on T-cell expressed A2A receptor results in a rapid increase 

of intracellular cAMP leading to inability to proliferate. The reversal of T-cell 

suppression by the blocking of CD39 in the current study is consistent with the 

reported importance of the CD39-adenosine pathway in immune evasion. However, 

despite the demonstration of increased expression of CD39 in both primary and 

induced regulatory CD8+T-cells, it was not possible to detect the presence of the ecto-

enzyme CD73 on CD39+CD8+Treg. CD73 expression has been reported on both 

immune cells and stromal cells and is required downstream of CD39 in the conversion 

of ATP/ADP to AMP. However, similar to my work, other groups have also 

demonstrated the lack of CD73 and CD39 co-expression on regulatory T-cells. 

Alternatively, CD39+ regulatory T-cells may still be able to maintain their suppressive 

function in the absence of CD73 co-expression via interaction with CD73 from a 

paracrine source such as responder cells. Furthermore, the lack of CD73 co-

expression on regulatory T-cell may be a technical limitation of flow cytometry, 

where relatively high concentrations of soluble factors are required for effective 

demonstration.  

 

In addition to the direct regulatory effect of CD39 expressing Treg on effector T-cells, 

the CD39-adenosine pathway had also been reported to be involved in immune 

modulation of other immune cell subsets and increased levels of adenosine result in 
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the trafficking of a wide range of immune cells in to the tumour microenvironment to 

aid its progression [505].  

 

Additionally, adenosine has the ability to disrupt the function of effector immune 

cells, in some cases converting them towards a tolerogenic phenotype [491]. NK cells 

have been shown to play an important role in the anti-tumour response and adenosine 

had been demonstrated to inhibit the function of these cells by reducing their ability to 

produce pro-inflammatory cytokines such as IFN and TNF and impairing their 

cytolytic function [506]. In addition, NK cells that bear the T-cell receptor, NKT 

cells, which constitutively produce IFN, have been shown to produce IL-4 and TGF in 

response to adenosine.  Furthermore, macrophages are also affected by adenosine, 

both by inhibition of its phagocytic function [507] as well as by switching M1 

macrophages into an M2 phenotype.  This results in the production of suppressive 

cytokines such IL-10, but also the pro-angiogenic cytokines VEGF, which may 

further enhance tumour growth.  

 

More recently, CD39 has been proposed to play a role in the tolerogenic capacity of 

liver DC. It has been demonstrated in an animal liver transplant model, the presence 

of CD39 provided protection against ischemic/reperfusion damage, when compared to 

CD39-/- mice [508]. 

 

Only partial reversal of responder T-cell suppression by CD8+Treg was possible by 

blockade of CD39, either with a neutralising antibody or the inhibitor ARL. This is 

perhaps unsurprising given the multiple mechanisms employed by regulatory T-cells 
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to suppress immune cells. One such additional mechanism involves the 

immunomodulating molecule indoleamine-2,3-dioxygenase (IDO). In addition to its 

role in the induction of regulatory CD8+T-cells (chapter 4), IDO has been linked to 

the direct inhibition of effector cells via the degradation of the essential amino acid 

tryptophan [509]. IDO has also been shown to be present on regulatory CD8+T-cells 

and disruption of IDO though a single nucleotide polymorphism (SNP) in the IDO 

gene resulted in regulatory CD8+T-cell dysfunction in patients with systemic sclerosis 

[510].   

 

In addition, the limitation of the use of ARL as an inhibitor can also affect the result 

seen. 6-N,N-diethyl-D-b-g-dibromomethylene adenosine triphosphate or better know 

as ARL 67156 was described as a selective inhibitor of ecto-ATPase [511]. Since the 

discovery of ARL 67156 our understanding of ecto-ATPase has increased, with the 

identification of additional ecto-ATPase. Which includes the ecto-nucleoside 

triphosphate diphosphohy- drolase (ENTPDase) family, that consists of CD39 

(NTPDase1), CD39L1 (NTPDase2), CD39L3 (NTPDase3) and hepatic ATPDase  

(NTPDase8). Two members of the ecto- nucleotide 

pyrophosphatases/phosphodiesterases (E-NPP) family, NPP1 and NPP3 were also 

recently discovered to confer ecto-ATPase activities [512-515]. It has been recognised 

that the main target of ARL 67156 appear to be against selected ecto-ATPase, mainly, 

CD39, CD39L3 and NPP1 [516].  Hence, the partial inhibitor effect seen in the 

current study can be the result of the inability of ARL 67156 to block other active 

ecto-ATPase. To complicate the matter, our understanding of the distribution of the 

ecto-ATPase in different tissue compartments and cancers remains poor.  Hence, a 
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better understanding of ecto-ATPase together with the development of a broader 

inhibitor of ecto-ATPase is needed. 

 

One of key recent observations that lead to the design of this study to investigate 

regulatory CD8+T-cells, was evidence suggesting that they may be more potent when 

compared to CD4+Treg. In a study by Chaput et al., CD8+CD25highT-cells isolated 

from colorectal cancer not only suppressed effector T-cell proliferation, but also more 

importantly appear to have a higher suppressive capacity when compared to 

CD4+Treg isolated from the same source [228]. Similarly, in a study of allogeneic 

bone marrow transplantation, regulatory CD8+T-cells were noted to be more potent 

when compared to CD4+Treg and importantly protected the host from GVHD [227]. 

However, in this study, the suppressive capacity of regulatory CD8+T-cells and 

CD4+Treg isolated from HCC were similar. The differences seen between my data 

and previous works may be due to heterogeneity in the method used to assess Treg 

suppression. Previous studies on regulatory CD8+T-cells had often used H3-thymidine 

to determine cellular proliferation of responder T-cells. In such assays, H3-thymidine 

is incorporated into new strands of chromosomal DNA during mitotic cell division. 

The extent of cell proliferation can be determined by obtaining the radioactivity in 

cultured cells. However, the use of H3 thymidine can be limited by is inability to 

differentiate between responder T-cells and regulatory T-cell proliferation. For 

example, the superior regulatory CD8+T-cells suppression seen over CD4+Treg can be 

the result of CD4+Treg proliferation, which can be misinterpreted for responder T-cell 

proliferation. This can lead to a false impression of an increased suppression by 

regulatory CD8+T-cells over CD4+Treg. In the current work, flow cytometry has been 
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chosen as the method to assess cell proliferation. Fluorescence is only incorporated 

into responder T-cells and their proliferation can be determined by the dilution of the 

fluorescence by flow cytometric analysis, eliminating the problem of regulatory T-cell 

proliferation contributing to a false read out.  

 

One of the limits to the current work on the assessment of CD8+Treg function had 

been the inability to compare the suppressive function of isolated peripheral and 

tumour isolated cells. However, such experiments would have been technically 

challenging due to the low number of CD8+Treg present in the blood of HCC patients 

(chapter 3). Nevertheless, some comparison can be made by looking at the 

suppressive capacity of circulating CD4+Treg from patients with HCC. When 

assessed using the same responder to CD4+Treg ratio, it appears tumour infiltrating 

CD4+Treg are more potent in their suppressive capacity when compared to CD4+Treg 

isolated from blood. However, we have to be cautious in such interpretation as these 

samples are taken from different patients.  Full evaluation of this phenomenon would 

require blood samples being taken from patients undergoing resection or 

transplantation for HCC such that direct comparison of Treg function could be made. 

Similarly, despite induced CD8+Treg displaying phenotypic features similar to 

primary isolated CD8+Treg obtained from HCC, the suppression capacity of induced 

cells appears to be less when compared to primary isolated cells. One possible reason 

for such differences could be down to the additional effect the tumour environment 

has on the function of CD8+Treg. HCC tumours consist of multiple components in 

addition to tumour cells, such as stromal cells and immune cells.  Increasing evidence 

has suggested the different components of the tumour may all play an important role 
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in the generation of the suppressive tumour environment. For example tumour 

fibroblasts have been shown to have the ability to present antigen to immune cells and 

produce a wide array of suppressive cytokines [54, 517, 518]. It was beyond the scope 

of the current study to determine any affect stromal cells my play in the induction of 

CD8+Treg. Additional evidence to support the modulating effect of the tumour 

microenvironment on T-cells can be seen from the assessment of their cytokine 

production. CD8+Treg from the tumour produced a higher percentage of the 

suppressive cytokine IL-10 compared to cells isolated from matched liver tissue. 

Similarly, CD8+CD25low T-cells (non-Treg) cells isolated from the tumour produced 

less IFN-γ when compared to cells isolated from non-tumour tissue.  

 

Research into immune cell function in human disease is often limited by the inability 

to isolate adequate numbers of cells and this has become increasingly problematic 

with the increased complexity we use to define rarer subsets of immune cells. In Treg 

research, attempts to overcome such limitations lead to the use of expanded T-cells.  

However, I was unable to expand tumour derived CD8+Treg using established 

protocols developed for CD4+Treg expansion. It has been proposed that the survival 

of immune cells within the liver may involve constant communication between them 

and liver stromal cells. This may explain the inability to induce tumour CD8+Treg in 

the absence of the supportive network found in the tumour/liver environment. This 

hypothesis is supported by work carried out in our own laboratory and others 

demonstrating the importance of hepatic factors in the survival of liver immune cells 

[519] [520]. 
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Not withstanding these limitations, the ability to assess the function of primary 

isolated cells has a major advantage over expanded cells. Expansion of any cell 

population is largely dependent on the purity of the starting population; even minor 

contamination by non-Treg cell can affect the final expanded cell population. In 

addition, current methods used for the expansion of Treg have often resulted in an 

unstable subset of cells, with limited survival potential and occasionally even 

conversion into an effector T-cell phenotype[521].  It is also critical to take care when 

designing assays to assess the suppressive capacity of Treg where a number of 

different methods have been employed to stimulate responder T cell proliferation.  

Historically, professional antigen presenting cells, such as DC have been used in 

combination with soluble anti-CD3 antibody to provide a more physiological method 

to induce cell proliferation.  However, the addition of a third population of cells into 

the assay will only add to the complexity of interpretation and is likely to result in 

more variability. In the current work, CD3/CD28 beads were used to stimulate T-cell, 

as these should provide a consistent proliferative signal to the responder cell 

population. However, it was apparent that the size and antibody loading of these 

beads is critically important to ensure assay sensitivity. This was evidenced by the 

excessive stimulation provided by the large beads sourced from Dynal which resulted 

in a degree of proliferation in responder cells that could not suppressed by the 

addition of Treg, a problem that was overcome by using smaller nano-particles to 

drive proliferation. Indeed, the importance of reagents used in suppression assays was 

elegantly demonstrated by Oberg et al., showing how bead concentration may effect 

the ability of Treg to suppress in-vitro.[522]  
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6 TACE modulate regulatory CD4+T-cells 
 

To this point, the current work has emphasised the importance of Tregs in the 

generation of a tolerogenic tumour environment. Treatments that lead to their 

depletion or disruption are likely to enhance immunological rejection of malignancy. 

Given the increasing evidence that “classical” cytostatic therapy might also have the 

potential to enhance anti-tumour immune responses, it was hypothesise that local 

ablative treatment such as TACE, may have the ability to counteract tumour induced 

immune suppression by the disruption of Tregs. 

 

Treatment options for incurable HCC depend on the tumour stage. For patients with 

limited disease confined to the liver, local ablative treatments such as TACE have 

been shown to be beneficial [523]. TACE involves the intra-hepatic arterial infusion 

of a chemotherapeutic agent such as doxorubicin, followed by embolization of the 

blood vessels supplying the tumour with a gelatine sponge or other embolic agents.  

This leads to a combination of cytotoxic and ischaemic induced tumour cell death. 

Increasing evidence suggests that control of HCC can also be mediated indirectly by 

activation of anti-tumour immune responses during local ablative therapy [524], but 

the precise mechanism remains unclear. Therefore, investigating the immunological 

mechanisms, in particular focusing on the regulatory response, that take place 

following local ablative treatment for HCC, may provide more information on the 

kinetics and nature of the immune response.  This information will allow us to target 

particular components of the anti-tumour immune response by enhancing 

immunotherapy and thereby assisting in the development of new treatments for HCC. 
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To investigate the effect of TACE on the regulatory response, the frequency and 

function of circulating Tregs in HCC patients, together with TAA response, at the 

time they were receiving TACE. Was studied the immunological results were 

correlated with clinical response to treatments ( 

Figure 6-1).  

 

 

 

 

Figure 6-1 Study design. 

Study time line, showing time point for obtaining blood for immune response 

measurement before and after treatment. 
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6.1 Patient’s characteristics 
 
 
50 patients were recruited into the study over a period of 2.5 years and a total of 150 

blood samples were obtained during that time. HCC was diagnosed based on 

histology or cross sectional imaging as defined by the European Association for Study 

of the Liver (EASL) guidelines [525]. All patients underwent TACE with lipiodol and 

doxorubicin and 12 patients had previous treatment for their HCC (2 resection, 2 

RFA, 8 TACE) prior to inclusion into the study. The studied cohort was typical of a 

Western centre, consisting of mainly male patients (n= 42; 84%) with liver cirrhosis 

(n=48; 96%) as a result of predominately ALD (n=13; 26%), NAFLD (n=10; 20%) 

and HCV (n=9; 18%). The average age of patients at the time of TACE was 65 (range 

45-83). All patients had stable Child’s A liver disease with a mean MELD score of 

9.1 (range 7.5-11.4). The mean AFP at baseline was 5ng/mL (range 3-22.5). The 

mean tumour volume was 50mm3 (range 15-166) with the number of lesions being 

treated ranging from 1 to 5. All patients gave written informed consent prior to taking 

part in the study. 
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Pt. Age Gender Disease Total tumour 
size (mm) 

No. of lesions CPS MELD 

1 58 M HBV/HIV 64 1 10 14.6 
2 78 M HBV 18 1 5 9.4 
3 67 M HFE 58 4 5 3.9 
4 66 M HBV 35 1 5 11.1 
5 77 M ALD 103 5 5 10.4 
6 50 M HBV 44 1 5 15.8 
7 60 M HCV 48 1 5 6.4 
8 70 M ALD 22 1 5 8.5 
9 64 F ALD 28 1 5 7.7 
10 61 M HFE 75 3 5 6.4 
11 70 M ALD 19 5 5 7.5 
12 75 M NAFLD 60 1 5 10.4 
13 64 M ALD 48 1 5 6.8 
14 83 M Non-cirrhotic 55 1 7 15.6 
15 67 M HBV 92 3 5 6.4 
16 65 M ALD 54 1 8 12.5 
17 76 M HBV 27 1 5 9.7 
18 75 F HCV 64 2 8 15.0 
19 65 M HBV 20 1 7 12.0 
20 67 M ALD/NAFLD 32 1 5 7.5 
21 71 M HCV 30 1 5 6.4 
22 55 M HCV 37 1 7 12.0 
23 73 M NAFLD 20 1 5 10.3 
24 63 M HCV 49 3 5 7.5 
25 80 M ALD 22 1 5 11.4 
26 69 M ALD 100 1 5 7.5 
27 64 M ALD 90 2 5 6.4 
28 69 M ALD/HBV 18 1 5 11.9 
29 64 M ALD 17 1 5 13.6 
30 65 F NAFLD 19 1 5 6.4 
31 53 F HCV 17 1 5 6.4 
32 72 M NAFLD 166 2 5 13.5 
33 58 M ALD/HCV 116 4 6 9.6 
34 60 M ALD 53 3 5 9.4 
35 61 F HBV 17 1 5 7.5 
36 69 M ALD 18 1 5 7.5 
37 50 M HCV 54 1 5 8.2 
38 65 M NAFLD 66 3 5 9.2 
39 62 M Non-cirrhotic 35 3 5 9.5 
40 66 M NAFLD 60 1 7 11.2 
41 66 F HCV 35 2 5 7.5 
42 83 M HHC 15 1 5 8.7 
43 72 M NAFLD 49 1 5 7.5 
44 54 M NAFLD 112 1 6 12.9 
45 45 M HCV 30 1 5 11.9 
46 54 F NAFLD 36 1 5 9.1 
47 68 M NAFLD 64 1 5 8.4 
58 68 F PSC 100 3 7 8.9 
59 59 M Crytogenic  58 1 5 9.6 
50 66 M ALD 35 2 5 8.5 
 
F, Female; M, Male; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; HHC, hereditary haemochromatosis; HIV, Human 
Immunodeficiency Virus; NAFLD, Non-Alcoholic Fatty Liver Disease; ALD, Alcoholic Liver Disease; PSC, Primary Sclerosing 
Cholangitis; CPS, Child-Pugh Score; MELD, Model for End-Stage Liver Disease. 
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6.2 Treg in the blood of patients with HCC 
 

To confirm the presence of Treg in the peripheral blood of patients suffering from 

HCC and to define baseline frequencies, PBMC were isolated from the blood samples 

of HCC patients on the day prior to their TACE-treatment and analysed by flow-

cytometry. CD4+Treg and CD8+Treg were defined as CD3+CD4+CD25highCD127low 

cells and CD3+CD8+CD25highCD127low cells respectively. Both CD4+Treg and 

CD8+Treg can be detected in the blood of HCC patients prior to treatment (Figure 

6-2A-E). 
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Figure 6-2. Gating strategies for the identification and characterization of CD4+Treg 

& CD8+Treg  

(A) Representative dot plots of flow cytometric analysis for the demonstration of Treg 

in the peripheral blood of HCC patients. PBMCs were gated on forward scatter (FSC) 

and side scatter (SSC). (B) CD4+T-Cells were identified by surface expression of 

CD3+CD4+. (C) CD4+Treg are represented as CD3+CD4+CD25highCD127low cells. (D) 

CD8+T-Cells were identified by surface expression of CD3+CD8+. (E) CD8+Treg are 

represented as CD3+CD8+CD25highCD127low cells. Representative of 150 samples. 
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6.3 Changes in circulating CD4+Treg during treatment 
 
 

To assess the effect of TACE on different subsets of circulating Treg, blood was 

collected from HCC-patients and assessed using flow cytometry before treatment, 

with follow up 3 days and 42 days after treatment.  Figure 6-3 and Figure 6-4 show 

representative dot plots of CD4+Treg and CD8+Treg respectively from two HCC 

patients undergoing TACE. Patient-17 was defined as a complete responder following 

TACE treatment in accordance to the mRECIST criteria with a decrease in circulating 

CD4+Treg percentage 42 days after TACE, but no change in the frequency of 

circulating CD8+Treg. Treg frequency was expressed as a percentage of total CD4+ T-

cells or CD8+T-cells respectively. In comparison, patient-43 who had progressive 

disease despite TACE, showed an increase in the percentage of CD4+Treg 42 days 

after TACE whereas the percentage of circulating CD8+Treg remained stable.  
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Figure 6-3 Changes in circulating CD4+Treg following TACE 

 

Representative flow cytometry dot plots demonstrating changes in CD4+Treg at 

baseline and 42 days after TACE treatment in two patients. Cells were gated on 

CD3+CD4+ cells and CD4+Treg are shown as CD25highCD127low cells (black circle) 

and the percentage of CD4+Treg in relation to total CD4+T-cells are displayed. (A&B) 

Patient-17 is a complete responder and (C&D) Patient-43 had progressive disease. 
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Figure 6-4 Changes in circulating CD8+Treg following TACE 

 

Representative flow cytometry dot plots demonstrating changes in CD8+Treg at 

baseline and 42 days after TACE treatment in two patients. Cells were gated on 

CD3+CD8+ cells and CD8+Treg are shown as CD25highCD127low cells (black circle) 

and the percentage of CD8+Treg in relation to total CD8+T-cells are displayed. (A&B) 

Patient-17 is a complete responder and (C&D) Patient-43 had progressive disease. 
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Blood samples were obtained from 50 patients at all three time points. The percentage 

of circulating CD8+Treg remained stable following TACE treatment (baseline; 

2.1%±2.1%, day 3; 1.8%±1.7%, day 42; 1.6%±2.3%) (Figure 6-5).  In comparison, 

the percentage of circulating CD4+Treg were significantly reduced in patients 

following TACE when compared to baseline and this effect can be seen as early as 

day 3 after treatment (n=50; baseline; 6.0%±6.6%, day 3; 4.8%±5.5%, day 42; 

5.5%+5.2%) (Figure 6-6).  

 

Stratifying patients according to treatment efficacy, the percentages of CD4+Treg 

were significantly reduced following TACE in both the complete-responder-group 

(n=23; baseline; 6.3%±5.58%, day 3; 4.4%±4.5%, day 42; 4.3%±5.7%) and the 

partial-responder-group (n=17; baseline; 9.3%±8.8%, day 3; 8.6%±7.1%, day 42; 

6.0%±5.3%). Contrary to this observation, a significant increase of circulating 

CD4+Treg (n=10; baseline; 4.6%±2.5%, day 3; 5.1%±2.4%, day 42; 6.6%±4.7%) was 

seen in the peripheral blood of patients who were non-responders following TACE-

treatment. In order to account for any variability in baseline Treg frequency, both 

CD4+ and CD8+ Treg were analysed for fold change from baseline (Figure 6-6E).  

 

Similar to the pattern of changes seen in the percentage of circulating CD4+Treg, the 

fold change of CD4+Treg was significantly different following stratification according 

to treatment response. The frequency of circulating CD4+Treg in the peripheral blood 

of complete responders decreased on day 3 and day 42, -1.79±1.83 and -1.31±3.38 

fold decrease compared to baseline respectively. In the partial responder/stable 

disease group a -0.63±1.96 and -1.72±2.88 fold decrease in circulating CD4+Treg on 
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day 3 and day 42 respectively compared to baseline was observed. In the progressive 

disease group, a -0.01±1.48 decrease in circulating CD4+Treg on day 3 compared to 

baseline was observed. Interestingly, a 1.12± fold increase in circulating CD4+Treg on 

day 42 compared to baseline was observed in the non-responder-group.  

 

To assess rather comparable changes are seen in the absolute number of Treg 

following TACE. Flow cytometry was performed using counting beads in 30 patients. 

Similarly to the percentage change, there was a statistically significant difference in 

the absolute number of CD4+Treg in patients following TACE (Figure 6-8).  

However, no significant different was seen in the absolute number in CD8+Treg 

before and after TACE treatments (Figure 6-8).  
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Figure 6-5 CD8+Treg level following treatment with TACE  

 

The frequency of CD8+Treg were analysed in 50 patients at baseline, day 3 and day 

42 following TACE and correlated to treatment response according to mRECIST 

criteria by cross-sectional imaging. (A) Changes in circulating CD8+Treg pecentage 

in entire cohort (n=50), (B) complete responder (n=23), (C) partial responder/stable 

disease (n=17), (D) non-responders (n=10) at baseline, day 3 and day 42 following 

TACE. Data are expressed as median and interqurtile range. Statstiscal comparisons 

were made with Wilcoxon signed ranked test.  
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Figure 6-6 CD4+Treg level following treatment with TACE  

 

The percentage of circulating CD4+Treg were analysed in 50 patients at baseline, day 

3 and day 42 following TACE and correlated to treatment response according to 

mRECIST criteria by cross-sectional imaging. (A) Changes in circulating CD4+Treg 

pecentage in entire cohort (n=50), (B) complete responder (n=23), (C) partial 

responder/stable disease (n=17), (D) non-responders (n=10) at baseline, day 3 and day 

42 following TACE. (E) Comparison in fold change in circulating CD4+Treg at day 3 

and day 42 after TACE were also made. Data are expressed as median and interqurtile 

range. Statstiscal comparisons were made with Wilcoxon signed ranked test where 

*P<0.05, **P<0.01, vs. baseline. 
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Figure 6-7 CD8+Treg absolute number following treatment with TACE 

 

The absolute number of circulating CD8+Treg were analysed in 30 patients at 

baseline, day 3 and day 42 following TACE and correlated to treatment response 

according to mRECIST criteria by cross-sectional imaging. (A) Changes in 

circulating CD8+Treg number in entire cohort (n=30), (B) complete responder (n=10), 

(C) partial responder/stable disease (n=14), (D) non-responders (n=6) at baseline, day 

3 and day 42 following TACE. Statstiscal comparisons were made with Wilcoxon 

signed ranked test.. 
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Figure 6-8 CD4+Treg absolute number following treatment with TACE  

The absolute number of circulating CD4+Treg were analysed in 30 patients at 

baseline, day 3 and day 42 following TACE and correlated to treatment response 

according to mRECIST criteria by cross-sectional imaging. (A) Changes in 

circulating CD4+Treg number in entire cohort (n=30), (B) complete responder (n=10), 

(C) partial responder/stable disease (n=14), (D) non-responders (n=6) at baseline, day 

3 and day 42 following TACE. Statstiscal comparisons were made with Wilcoxon 

signed ranked test where *P<0.05, **P<0.01, ***P<0.001 vs. baseline. 
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6.4 Frequency of circulating Treg in disease stage and age 
 
 
A number of studies had previously confirmed the presence of Treg in the circulation 

of patients with different tumours and the frequency of Treg had been suggested to be 

predictive of disease stage and prognosis. Having already demonstrated the lack of 

correlation between tumour infiltrating Treg and tumour volume or disease stage in 

the current study (Chapter 3). A repeat analysis based on circulating Treg was 

performed. Similarly, circulating CD8+Treg or CD4+Treg did not correlate with 

tumour volumes in this study (CD4+Treg; r2=0.034, CD8+Treg: r2=0.032) (Figure 

6-9). However, 10 patients had prior local ablative treatment (8 had TACE, 2 had 

RFA) before inclusion into the study, which may confound the interpretation of the 

reported results. In addition, analysis was performed on the frequency of circulating 

CD4+Treg and CD8+Treg according to patient’s age.  However, no correlation was 

found (CD4+Treg; r2=0.01, CD8+Treg: r2=0.041) (Figure 6-10). 
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Figure 6-9 The effect of tumour volumes or severity of liver disease on 

circulating CD4+Treg or CD8+Treg level 

 

The baseline percentage of (A&C) circulating CD4+Treg or baseline percentage of 

(B&D) circulating CD8+Treg of individual patients was plotted against total tumour 

volume (mm3) or severity of liver disease according to their MELD score. Patients 

who were treatment naïve are displayed as black circles and patients who had 

previous local ablative treatments are displayed as white squares. Statstiscal 

comparisons were made with Spearman’s correlation r2
 and P value are indicated. 

MELD; modified end-stage liver disease.  
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Figure 6-10 The effect of age on circulating CD4+Treg or CD8+Treg level 

 

The baseline percentage of (A) circulating CD4+Treg or baseline percentage of (B) 

circulating CD8+Treg of individual patients was plotted against age. Statstiscal 

comparisons were made with Spearman’s correlation r2
 and P value are indicated.  
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6.5 Effect of chronic viral liver disease on CD4+Treg following TACE 
 
 

As no variation in the frequency of circulating CD8+Treg following TACE was 

identified, the study focused on circulating CD4+Treg.  

 
As the development of HCC occurs invariably on the background of underlying 

chronic liver disease (in particular viral liver disease) it is important to consider the 

effect the viral immune response may have on the results seen. Following adjustment 

of the obtained data by censoring of patients with viral disease (n=16) in the analysis, 

the changes in circulating CD4+Treg after TACE displayed a similar trend to the 

original cohort (viral + non-viral) (Figure 6-11). A statically significant reduction in 

circulating CD4+Treg percentage in both complete-responder (n=16; baseline; 

6.15%±8.04%, day 3; 4.62%±4.54%, day 42; 5.01%±9.30%) and partial 

responder/stable disease groups (n=14; baseline; 9.48%±7.28%, day 3; 8.75%±6.4%, 

day 42; 6.78%±5.24%) was seen.  

 

The changes seen in patients with progressive disease were also similar, with an 

increase in circulating CD4+Treg percentage following TACE (n=4; baseline; 

3.73%±1.89%, day 3; 4.71%±1.89%, day 42; 6.57%±2.62%), but this did not reach 

statistical significance. The stratification of treatment response in the viral group, also 

demonstrated a trend toward a reduction in circulating CD4+Treg percentage in the 

complete-responder (n=7; baseline; 5.32%±3.2%, day 3; 2.49%±4.27%, day 42; 

3.02%±3.83%) and partial responder/stable disease group (n=3; baseline; 

4.94%±2.47%, day 3; 3.64%±3.56%, day 42; 3.19%±2.32%), and an increase in 
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circulating CD4+Treg percentage in patients with progressive disease  (n=6; baseline; 

4.85%±3.16%, day 3; 5.59%±3.86%, day 42; 7.95%±5.27%). However, none of the 

stratified viral group reached statistical significance. Interestingly, patients with viral 

disease consisted 60% (6/10) of the progressive disease group despite forming only 

30% (16/50) of the entire cohort. 
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Figure 6-11 Changes in circulating CD4+Treg with treatment response  

 

The percentage of circulating CD4+Treg was analysed according to the underlying 

chronic liver disease (non-viral disease (n=34) and viral disease (n=16)) at baseline, 

day 3 and day 42 following TACE and correlated to treatment response according to 

mRECIST criteria by cross-sectional imaging. Changes in the percentage of 

circulating CD4+Treg in the non-viral group accoding to response; (A) complete 

responder (n=16), (B) partial responder/stable disease (n=14), (C) non-responders 

(n=10) and in the viral group; (D) complete responder (n=4), (E) partial 

responder/stable disease (n=3), (F) disease progressor (n=6). Data are expressed as 

median and interqurtile range. Statstiscal comparisons were made with Wilcoxon 

signed ranked test where *P<0.05, **P<0.01, vs. baseline. 
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6.6 CD4+CD25highCD127low T-cells phenotype following TACE 
 

To ensure that the circulating CD25highCD127low cells I had identified are bono fide 

CD4+Treg, I extended the phenotypic analysis to define expression of some of the 

accepted regulatory markers previously described in CD4+Treg. CD4+Treg isolated 

from blood of HCC patients demonstrated high expression of FOXP3, CTLA-4, 

CD39 and CCR4 (Figure 6-12).  

 

It is possible TACE may have the potential to induce the activation of effector T-cells 

resulting in the up-regulation and expression of markers such as CD25. To ensure the 

changes in CD4+CD25highCD127low seen in HCC patients truly reflect changes in 

CD4+Treg and not activated T-cells, I analysed the expression of the master 

transcription regulator FOXP3 on CD4+T-cells before and after treatment. The 

expression of FOXP3 on CD4+CD25highCD127low T-cells was maintained at baseline 

(77.33%±10.07%), day 3 (73.33%±16.07) and day 42 (79.3%±11.93%) after TACE 

treatment (Figure 6-12).  
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Figure 6-12 The effect of TACE on circulating CD4+Treg regulatory phenotype  

 

(A) Representative flow cytometic histograms showing the expression of FOXP3, 

CTLA-4, CD39 and CCR4 on CD4+CD25highCD127low T-cells (grey) compared to 

isotype controls (white), from the blood of HCC patients. (B) The expression of 

FOXP3 expressed on CD4+Treg was analysed at baseline, day 3 and day 42 following 

TACE. Data are expressed as median and interqurtile range. Statstiscal comparisons 

were made with Wilcoxon signed ranked test vs. baseline. Representative of 3 

samples.  
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6.7 The suppressive capacity of circulating CD4+Treg following TACE  
 

To further confirm that the circulating CD4+CD25highCD127low T-cells are CD4+Treg, 

I isolated CD4+CD25high T-cells from the blood samples of HCC patients prior to their 

TACE. CD4+CD25high T-cells were isolated by magnetic bead isolation and their 

regulatory function was analysed using a suppression assay as previously described 

(n=8). CD4+Treg isolated from HCC patients were suppressive at baseline, as 

demonstrated by their ability to inhibit CD3+CD28+ activated responder T-cell 

proliferation in a dose dependant manner  (Figure 6-13). These findings confirm that 

CD4+CD25highCD127low T-cells detected in HCC patients are functional CD4+Treg. 
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Figure 6-13 The assessment of circulating CD4+Treg suppressive function from HCC 

patients  

 

The suppressive ability of CD4+Treg was assessed by labelling allogenic responder T-

cells with fluorescent violet cell trace and cocultured with Treg in decreasing ratios 

following comparison to stimulated control. Responder T-cells were activated with 

CD3+CD28+ beads to induce responder T-cell proliferation. After 3 days of culture, T-

cell proliferation was analysed by determining violet cell trace dilution using flow-

cytometry. (A) Representative flow cytometric histogram showing T-cell proliferation 

in the presence of increasing ratio of CD4+Treg from an HCC patient. (B) Replicate 

data presented in a table format. Data are expressed as mean and standard deviation. 

Representative of 24 samples. 
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To identify weather TACE-treatment has any effect on the function of CD4+Treg, 

their suppressive capacity was compared before and after treatment. CD4+Treg 

maintained their suppressive capacity despite TACE-treatment, with comparable 

suppressive ability before and after TACE irrespective of response to treatment 

(Figure 6-14). The suppressive capacity of CD4+Treg showed inter-individual 

differences, despite standardising the assay by using responder T-cells from the same 

healthy donor.  

  



CD8+Treg function 

 

 

237 

 

 

 

 

Figure 6-14 The assesment of suppressive ability of CD4+Treg before and after 

TACE-treatment.   

 

Data from two representative allogenic T-cell-proliferation-assays from (A) patient-

31 and (B) patient-45 at baseline, day 3 and day 42 following TACE. (C) The 

suppression of CD4+Treg at baseline, day 3 and day 42 following TACE were 

assessed in 10 patients. Data are expressed as means ± standard deviation. 
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6.8 Changes in circulating CD4+Treg with progression free survival 
 

To assess whether the prognosis of patients with HCC undergoing TACE treatment 

was associated with changes in circulating CD4+Treg, analysis of any correlation 

between progressions free survival and changes in circulating CD4+Treg was 

performed. Patients were separated into two groups according to either an increase or 

decrease in CD4+Treg, at day 3 or day 42 after TACE treatment compared to baseline. 

Patients were censored if they proceeded to liver transplantation. Patients with a 

decrease in the circulating CD4+Treg at day 42 following TACE had a significant 

prolonged progressive free survival (291 days) when compared to patients with an 

increase in CD4+Treg (84 days), p<0.05. However, the change in circulating 

CD4+Treg percentage at day 3 following TACE did not demonstrate such pattern, 

with both groups showing similar progression free survival time (increased; 291 days 

vs. decreased; 229 days).  
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 Figure 6-15 Correlation of progression free survival with circulating CD4+Treg 

 

Patients undergoing TACE-treatment were separated into two groups, according to 

the change in their circulating CD4+Treg percentage 42 days after treatment. 

Progression free survival when compared between the two groups. Kaplan-Meier 

survival curve illustrating the progression-free survival difference between patients 

that had an increase in CD4+Treg (green) or decrease in CD4+Treg (blue). Statstiscal 

comparisons were made with log rank test. p < 0.05. 
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6.9 Discussion 
 

TACE has been shown to be an effective palliative treatment in patients with HCC, 

resulting in improvement in patient’s survival [523]. The effectiveness of TACE is a 

result of directed local-regional delivery of chemotherapy and the disruption of blood 

supply to the tumour. However, increasing evidence suggests ablative treatment may 

enhance anti-tumour immune responses in addition to direct tumour cell killing. Such 

hypotheses derive from the observation that the destruction of tumour cells results in 

the release of large quantity of immune-active molecules (e.g. heat shock proteins and 

pro-inflammatory cytokines such as IL-17 and VEGF), which may have a potential 

role in inducing an immune response [391-394]. 

  

Further evidence supporting this hypothesis comes from studies demonstrating the 

activation of a wide range of immune cells following local ablative treatment [526]. 

Importantly, patients who demonstrated enhanced immune responses following such 

treatments had better outcomes when compared to patients who lacked evidence of 

immune responses [385]. In a study by Zeribini et al., circulating NK cells were 

increased following RFA in patients with HCC and this was associated with 

activation of NK cells with enhanced cytotoxicity and IFN-γ production. In a study 

investigating the presence of TAA-specific CD8+T-cells before and after local 

ablative treatment in patients with HCC [386], the number of TAA-specific CD8+T-

cells was significantly associated with prolonged tumour free survival. In a similar 

study, T-cell-responses to autologous tumour lysate were assessed before and after 

ablative treatment in patients with HCC. Response to autologous tumour lysate was 
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significantly increased following treatment [387]. In a novel study addressing the 

effect of local ablative treatment on APC, ex-vivo generated moDC were stimulated 

with tumour tissue obtained from HCC patients at the time of RFA. MoDC stimulated 

with RFA treated tumour tissue displayed a more mature phenotype when compared 

to moDC stimulated with non-treated tumour tissue or matched non-tumour tissue. In 

addition, moDC stimulated with RFA treated tissues demonstrated an enhanced 

ability to produce IL-12, induce T-cell proliferation and direct the expansion of TAA-

specific T-cells [387].  

 

The enhancement of anti-tumour immune responses in patients undergoing local 

ablative treatment has often been explained by the release of tumour antigen into the 

circulation or the release of pro-inflammatory cytokines as a result of tumour cell 

death. However, the precise mechanisms how anti-tumour the immune response is 

enhanced following local ablative treatment remains unclear. Results from my current 

work suggest the modulation of the suppressive tumour environment by local ablative 

treatment may be a possible mechanism. The disruption of Treg by TACE may 

remove the inhibition on effector immune cells, leading to re-establishment of an anti-

tumour immune response as suggested by the increase in TAA responses following 

TACE seen in my current work. Further support for the possible contribution of local 

ablative treatment on the disruption of the suppressive tumour environment derives 

from a recent study by Mizukoshi et al. Here, they reported that TAA-specific T-cell 

responses were inversely correlated with the presence of circulating suppressive 

MDSC (CD14-HLR-DRlow) in patients undergoing RFA treatment for HCC. [388]. In 

addition, in a study of 33 patients undergoing TACE for HCC, changes in circulating 
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CD4+Treg were observed to correlate inversely with poorer prognosis [389]. 

However, the study was limited to the use of CD25 expression as a sole marker for 

CD4+Treg and with no functional data to confirm the suppressive capacity of the 

CD4+Treg population. In a study of HCC patients undergoing local ablative treatment 

with cryotherapy [390], 31 patients were monitored for changes in circulating 

CD4+Treg as defined by a combination of CD25highCD127low and FOXP3 expression 

before and after treatment. Patients were stratified according to their response to 

treatment as defined by RECIST, in the 17 patients whom responded to treatment a 

correlation between a significant decrease in CD4+Treg at day 48 and response was 

recorded. In comparison, 14 patients who had progressive disease had an increase in 

their circulating CD4+Treg following treatment. Interestingly, compared to my work, 

the study observed an increase in CD4+Treg suppressive capacity following treatment 

in the tumour progression group as compared to the responder group. Such 

differences in the results may be explained by variation in methods used to assess 

Treg suppression.  In particular this study used [3H]-thymidine labelled cells to detect 

proliferation of responder cells which lead to an overestimation of the suppressive 

capacity of Treg (chapter 5) and, in addition, the study used responder T-cells from 

different healthy donors, with inherent variation in T-cell proliferation, which can be 

mistaken for differences in CD4+Treg suppression seen between patients.  

 

In my work, the majority of the patients had a decrease in circulating CD4+Treg 

subsets following TACE and this correlated with a prolonged progression free 

survival when compared to patients with an increase in CD4+Treg. A potential 

explanation for the decrease in circulating CD4+Treg may be the result of direct 
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tumour killing, leading to a reduction in tumour bulk. The reduction in tumour bulk is 

likely to disrupt tumour cells or tumour stromal cells associated with the induction or 

stimulation of CD4+Treg, leading to a decrease in CD4+Treg percentage. It is 

plausible that the reduction in circulating CD4+Treg may be the result of pooling of 

CD4+Treg into the tumour following TACE. However, the prolonged progression free 

survival seen in this group of patients is counterintuitive for such a hypothesis, as an 

increase in CD4+Treg tumour infiltration has been shown to be a predictor of a worse 

outcome. To clarify this issue, changes in tumour infiltrating CD4+Treg before and 

after treatment with concomitant analysis of changes in circulating CD4+Treg would 

need to be performed. However, this would require the obtaining of serial tumour 

biopsies, which is unlikely to be ethically acceptable in the UK due the risk of tumour 

seeding and, more importantly, the increased risk of bleeding associated with tumour 

biopsy. In addition, the interpretation of the results may be hampered by the 

heterogeneity of the tumour after TACE. Following TACE, the tumour will consist of 

variable regions of necrotic and viable tumour tissue and the results of such a study 

would be highly dependent on the region the biopsy was obtained from. However, in 

a study conducted in China, tumour biopsies were obtained from 16 HCC patients 

before and after treatment with cryoablation. Using immunohistochemistry, the 

frequency of FOXP3 positive cells was reduced following treatment. This would 

argue against a possible role for Treg pooling following treatment as a reason for the 

reduction in circulating CD4+Treg [390]. 

 

Another potential reason for the reduction in circulating Treg may be related to the 

immunomodulation of other subsets of immune cells. The tumour microenvironment 
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is highly infiltrated by a variety of immune cells such as tolerogenic DC and MDSC. 

Both of these subsets of cells have been shown to be involved in the generation of 

CD4+Treg. In a study looking at primary isolated DC from the blood of HCC patients 

undergoing ablative treatment, the maturation of mDC and their ability to induce T-

cell proliferation were significantly enhanced following treatment with RFA or PEI 

[527]. Hence, the stimulation of DC may indirectly inhibit the induction of CD4+Treg. 

Unfortunately in the current study I had limited availability of material to permit 

analysis of the maturation status of DC following treatment.  

 

At the other end of the spectrum, patients who had an increased circulating CD4+Treg 

frequency following treatment were associated with progressive disease and shorter 

progression free survival. In such patients the disease progressed rapidly, more so 

than expected for the slow proliferation of most HCC. Such rapid progression may be 

the result of positive feedback from the remaining viable tumour cells. This could 

result in the production of an array of pro-tumorigenic molecules (IL-6, VEGF)[528], 

supporting tumour progression [529, 530]. Interestingly the elevation of VEGF has 

been proposed to be associated with CD4+Treg induction [531]. 

 

Accurate interpretation of data is essential if we are to arrive at robust conclusions. 

The majority of the studies involving Treg have used the percentage of Treg as their 

main readout and similarly I used the same method for the analysis of my data. The 

affect of Treg on immune response is likely dependent on the balance between 

effector cells and regulatory cells. Hence an absolute change in Treg numbers may 

not reflect the actual kinetics of an immune response, as an increase in Treg number 
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may be counteracted by a comparable increase in effector T-cells. Nevertheless, the 

result derived from looking at the change in absolute Treg count at day 42 following 

TACE also correlated with treatment response. Interestingly, the absolute CD4+Treg 

count was reduced in all patients irrespective of treatment response at day 3, which 

differs from changes in the proportion of CD4+Treg in relation to other T cells. The 

reduction in absolute cell count is likely a reflection on the lymphopenic effect caused 

by the chemotherapy used in TACE. Evidence suggests that the immunomodulation 

potential of certain chemotherapeutic agents may be implicated in the selective 

depletion of Treg [379]. This may provide another possible mechanism for the 

reduction in circulating Treg following TACE seen in my current work.  

 

The current study has illustrated the immunmodulatory effects of TACE, in particular 

in relation to the depletion of circulating CD4+Treg. However, despite undergoing 

TACE, a significant number of patients (n=10) did not display a decrease in 

circulating CD4+Treg and, importantly, this was associated with a shorter time to 

progression-free survival. Bearing this in mind, the data presented here suggests this 

group of patients may benefit from additional treatment in order to reduce circulating 

CD4+Treg. However, the effectiveness of such an approach would need to be tested in 

a clinical trial setting.   

 

Further depletion of CD4+Treg may provide further benefit for patients irrespective of 

the change in CD4+Treg caused by TACE. The most promising agent that has been 

investigated for the depletion of CD4+Treg comes in the form of the alkylating agent 

cyclophosphamide. Cyclophosphamide is a well-known agent used in a wide range of 
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human malignant and autoimmune diseases. However, it was observed that the 

administration of cyclophosphamide at a lower dose than is traditionally used might 

have a potential immunomodulating effect.  The first recognition of its ability to 

enhance immune responses was by demonstrating a boosting of vaccination responses 

in humans [377]. This was followed by the hypothesis that the immunmodulating 

property of cyclophosphamide may be due to its ability to selectively deplete immune 

suppressive T-cells.   

 

In a mouse model, administration of low dose of cyclophosphamide (2mg 

intraperitoneal) caused a modest decrease in splenocytes within 24 hours, a nadir of 

50% by day 4 and full recovery by day 10. Throughout the nadir, there was selective 

depletion of CD4+CD25+ cells, functionally confirmed as Treg [378]. In a rat model 

of Treg-sensitive immune-mediated tumour rejection, only cyclophosphamide and 

methotrexate had an effect on Treg numbers, from a range of cytotoxic agents tested. 

Cyclophosphamide 30mg/kg IP resulted in selective depletion of Treg and release 

from immune suppression, which peaked at day 7-post injection.  This single 

cyclophosphamide dose delayed tumour growth and enhanced the efficacy of anti-

tumour vaccination [368]. Furthermore, the effect on CD4+CD25+ cells accounts for 

the long recognised effect of cyclophosphamide on skin contact sensitivity to 

dinitrochlorobenzene [532] and increases the potential for activation of high avidity 

anti-tumour CD8+ responses [533]. Bolus cyclophosphamide treatment of animals has 

been reported to modify the cytokine release profile of T lymphocytes and to 

transiently reduce T-cell proliferation followed by a rebound expansion [534].   

 



CD8+Treg function 

 

 

247 

More importantly, in a clinical study of patients with metastatic solid tumours, a 

metronomic low dose cyclophosphamide regimen (50mg orally twice daily day 1-7 on 

14-day cycles) reduced numbers of putative Treg. Consecutively, this led to a reversal 

of suppression of both natural killer lytic activity and T cell receptor-induced T cell 

proliferation [379]. In line with these findings a small pilot study in HCC showed that 

low-dose cyclophosphamide reduced circulating Treg numbers in patients with HCC 

[380].  

 

Conversely to these low dose studies, high dose cyclophosphamide has been 

successfully adapted as part of conditioning ahead of autologous T cell infusion for 

melanoma [535]. It is apparent that vaccination of profoundly lymphopenic hosts 

during T cell recovery can result in greater immune responses than vaccination of 

normal hosts [536]. Whether a similar mechanism might enhance expansion of 

responders to vaccination following low dose cyclophosphamide is not clear. 

 

With increasing evidence suggesting the possible benefit of selective Treg depletion 

by cyclophosphamide in the enhancement of anti-tumour responses, low dose 

cyclophosphamide has been incorporated into trials of DC-based cancer vaccines. 

Such studies have also included patients suffering from HCC and have demonstrated 

the efficacy and safety of combining cyclophosphamide with available DC vaccines. 

Hence, the addition of cyclophosphamide in conjunction with TACE may offer 

further benefit.  
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The assessment of response to local ablative treatment in HCC can often be 

challenging. In many solid cancers, the response to treatment such as chemotherapy is 

commonly assessed by the RECIST criteria, which is biased towards shrinkage of 

tumour lesion(s) following treatment. Whilst the use of the RECIST criteria has 

offered a robust method to standardise how we assess treatment response, its use in 

the assessment of TACE treatment in HCC-patients can often be problematic. The 

successfulness of TACE is dependent on its ability to induce tumour necrosis and the 

use of RECIST criteria to assess response to TACE-treatment may not reflect this 

mechanism, leading to underestimation of the response. However, due to the unique 

vasculature of HCC, viable tumour can be assessed by enhancement seen during 

different phases on cross sectional imaging. Using such properties a modified 

RECIST criteria was developed incorporating vascular enhancement in the treated 

tumour to aid in the assessment of response to treatment.  As a result, my current 

work has employed the use of mRECIST over traditional RECIST criteria for the 

assessment of tumour response following TACE. 

 

The association of HCC with viral hepatitis is well documented and the persistence of 

viral disease has been associated with escape from the host immune response, 

potentially by the induction of regulatory immune cells such as Treg. Hence, it is 

possible that the result of this study may be affected by the additional 

immunosuppression caused by the virus itself. However, the majority of results 

obtained remained significant (CR & PD group) even when analysis of patients who 

suffered from viral liver disease (n=16) was censored. Interestingly, out of the 10 

patients with progressive disease following TACE, 6 of them had either HCV or HBV 
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infection. It maybe therefore be plausible to suggest that the additional immune 

suppression exerted by the viral infection may compound the inhibition of any anti-

tumour response. 

 

Similarly to tumour infiltrating Treg (chapter 3), circulating Treg from HCC patients 

prior to TACE treatment did not appear to correlate with tumour volume. The reason 

for such discrepancy compared to previous published studies had already been 

discussed in detail in previous chapters. Additionally, unlike the analysis of tumour 

infiltrating Treg which allows for the macroscopic analysis of the tumour, the 

comparison of tumour volume/disease stage with circulating Treg is often carried out 

using measurements obtained from cross sectional imaging. It is well known that 

tumour size can differ widely between imaging and macroscopic measurement, hence 

adding further bias when correlating tumour volume data with circulating Treg.  
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7 Overview 
 

This study has confirmed the presence of a subset of HCC infiltrating CD8+T-cells, 

that share many phenotypical features of the well-studied CD4+Treg. The CD8+ Treg 

identified are characterised by elevated expression of the IL2 receptor alpha chain, 

CD25, minimal expression of the IL7 receptor alpha chain, CD127 and a sustained 

expression of the master transcription regulator FOXP3. More importantly, tumour 

infiltraing CD8+CD25highCD127low cells were able to inhibit responder T-cell 

proliferation, hence, confirming their status as regulatory CD8+T-cells. 

CD8+CD25highCD127lowTreg have been previously described in human disease [537], 

including one study in human HCC [239]. However, the current work is the first study 

incorporating functional data. 

 

A review of the published literature reveals many different subsets of CD8+T-cell 

with regulatory functions have been described, with varied phenotype, suppressive 

capacity and proposed mechanism of action [187, 190, 200, 222, 225, 229, 486, 538]. 

This extensive variation in the description of regulatory CD8+T-cells is a reflection of 

the complexity of the immune system. Unlike CD4+Treg, the many subsets of 

regulatory CD8+T-cells that have been described are often reported to be induced 

from non-regulatory precursor cells [180, 442, 539, 540],  a finding mirrored in my 

current work. Evolution of an immune system that possesses a diverse mix of Treg 

with varied phenotype and function can be related to the key role of suppressive 

immune cells. It is logical for the host to have multiple mechanisms to counteract 

against autoimmunity, having the ability to tailor specific subsets of regulatory cells 
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to counteract self-reactive immune responses. This may explain the heterogeneous 

phenotype identified in studies describing CD8+Treg. Alternatively, the reported 

variation may be an experimental artefact induced by the inconsistency of 

experimental methods used in the study of Treg by different investigators. A key 

criticism of many studies is the lack of functional assessment of the cells of interest, 

which remains the gold-standard to confirm regulatory phenotype. This can largely be 

explained by the difficulties faced in obtaining adequate human samples. 

 

Lack of tissue availability can be the result of tumour location, i.e. non-operative 

tumours within abdominal organs, and the need of diagnosis overriding the need for 

research. Also the increasing use of non-invasive techniques in the diagnosis of some 

cancers has contributed to the continued restriction of material for research.  The 

current study did not differ and many of the same difficulties were encountered. In the 

West, HCC remains uncommon when compared to countries with an epidemic of 

HCC [4]. Consequently, obtaining tissue was unpredictable, as sources of fresh 

tumour were derived from explanted liver following liver transplantation. To this end, 

I had to adopt my research methods due to the limitation of tissue availability, for 

example, by optimising the suppression assay [541].  However, as technology 

advances, we will be better placed to overcome the limitation commonly seen in 

cancer immunology research.  The development of more sophisticated flow cytometry 

platforms capable of detecting more antigens in any one sample with the additional 

ability to isolate cells by cell sorting will increase the repertoire of assays we are able 

to perform [542].  
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In an attempt to overcome the difficulties in obtaining human samples, it is often 

necessary that we turn towards animal models and tumour cell lines to further our 

understanding of tumour biology. However, no animal models or cell lines can fully 

recapitulate the human system. This is especially important when studying human 

immune-biology. This disparity between human physiology and animal models is 

typified by many of the common murine models used in HCC. The majority of which 

occur without chronic liver disease, a scenario rarely encountered in human HCC 

[543]. Patients with chronic liver disease often present with immunological 

symptoms, indeed most liver damage is a consequence of immune activation in 

response to some form of insult.  Accordingly, the immune response in these patients 

is often compromised and, as such, the use of animal models of HCC lacking the 

background of liver inflammation is unlikely to reflect the human system.  

 

The current work has demonstrated that HCC tumour-microenvironment can imprint 

DC which, when cultured with naïve T cells, induces a subset of CD8+Treg. However, 

in common with other tumour immune studies, the current experiments had focused 

on interaction of only a few cell types in isolation. It is important to recognise that the 

tumour is a dynamic environment, consisting of many tumour cells (often with 

varying mutations), tumour stromal cells and immune cells[429]. The tumour 

microenvironment is defined by the complex interaction between these cells and yet 

most research in the field is reductionist and focusses on at best a few cell types. 

Clearly, devising and validating robust models to recapitulate this heterogeneous 

milieu will be  both complex and time consuming.  As a result of this, immune 

pathways are frequently treated as one directional processes, although increasing 
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evidence has suggested the importance of multi-directional cross-talk between 

different cell types within the tumour [544]. Of particular relevance to the current 

study,  recent work has suggested that not only do Treg become activated and induced 

by DC, Treg themselves may also have the potental to direct DC towards a 

tolerogenic phenotype [545-547]. Thus, creating a positive feedback towards the 

generation of a suppressive tumour microenvironment. It is important therefore to 

consider multi-cell/direction interaction in an studies continuing on from my research. 

 

The field of immunotherapy has developed significantly since it was first described. 

Early attempts at treating malignant disease by inducing an immune reaction were 

developed by William B Coley in the late 19th/early 20th Century and were met with 

scepticism [548]. However, contemporary data supporting his approach have 

validated these early claims and more recent studies demonstrating the infiltration of 

immune cells in a wide range of human tumours, including HCC, have provided 

support the concept of immunotherapy [549]. The first generation of modern-day 

immunotherapeutic treatments consisted of cytokine-based therapy and demonstrated 

promising results in cancer patients with improvement in recurrence-free survival 

[316-318]. This resulted in an increased interest in the field and gave rise to several 

studies using dendritic cells as a form of cellular vaccine against cancer, further 

encouraging the potential of immunotherapy [349].  

 

However, despite the potential of early phase clinical trials, the overall result of 

immunotherapy has so far been disappointing. Whilst many studies have 

demonstrated an ability to enhance anti-tumour responses in patients with solid organ 
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tumours, few have translated to lasting clinical responses [550]. Most immunotherapy 

has focused on the amplification of the effector arm of the anti-tumour immune 

response, either by vaccination with antigen loaded DC (including in the first FDA 

approved cancer vaccine for use in prostate cancer [551]) or by expansion of tumour 

infiltrating T-cells [552]. However, as our understanding of the suppressive nature of 

the tumour microenvironment has increased, a greater understanding of the molecular 

pathways involved has enabled the development of drugs designed to target tumour 

suppression. Currently, data from the new generation of immunomodulatory agents, 

such as checkpoint blocking drugs is very encouraging [553]. A number of trials 

involving immune checkpoint inhibitors designed to block the effect of CTLA-4 and 

PD-1 have shown early promise, including a recent phase II clinical trial of CTLA-4 

blockade with tremelimumab in patients with HCC. [335]  

 

Data from the current work offer further support in the potential benefit of disruption 

of the suppressive tumour environment. Treatment responses to TACE correlated with 

a reduction in CD4+Treg in patients with HCC, suggesting perturbation of the 

regulatory repertoire will be advantageous. Furthermore, such results may support the 

measurement of circulating Treg as a prognostic indicator of TACE treatment-

response. Importantly, the ability of ablative treatment to modulate immune 

responses, in addition to the direct destruction of tumour cells, makes it an attractive 

adjuvant to current immunotherapeutic interventions. As immunotherapy is likely to 

be more effective on the background of reduced immunosuppression and reduced 

tumour bulk. Importantly, recent early phase clinical trials combining the use of 

transarterial embolization (TAE) with intra-tumoral infusion of DC vaccine for HCC 
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has appeared to be safe (Table 7-1), giving further support for the use of TACE as an 

adjuvant to immunotherapy in the next phase of clinical trials. 

 

Table 7-1. Summary of DC vaccine trials involving trans-arterial embolization 

 

Study 
Number 
of 
Patients 

Vaccine Injection 
route 

Adverse 
reaction 

Nakamoto 2011 [554] 13 GM-CSF–IL-4 DCs 
and OK432 

Intra-arterial N/A 

Nakamoto 2007 [555] 10 GM-CSF–IL-4 DCs Intra-arterial No grade 
3 to 4 

Mizukoshi 2009 [556] 33 GM-CSF–IL-4 DCs 
+/- OK432 

Intra-arterial No grade 
3 to 4 

GM-CSF, Granulocyte-macrophage colony-stimulating factor; IL-4, Interleukin-4; 

DC, dendritic cells. 

 

However, the data generated in the current study suggest that despite the ability of 

TACE to disrupt CD4+Treg frequency in a large majority of patients, a significant 

number (20% progressive disease) had little benefit. The observed increase in 

circulating CD4+Treg in these patients suggests the addition of CD4+Treg depletion 

treatment may be beneficial. Adjuvant treatment to disrupt the CD4+Treg population 

could be achieved with the use of the alkylating agent cyclophosphamide, which, 

when used at low doses, has been shown to selectively deplete these cells [379]. 

 

Although early results from checkpoint inhibitor studies have shown great promise, it 

is unlikely that the targeting of individual suppressive pathways exploited by the 

tumour will by adequate to reverse tumour immune evasion in a majority of patients. 

There is however hope that an increased understanding of the interactions that occur 
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within the tumour microenvironment will allow for successes similar to those 

currently seen in the treatment of chronic infectious diseases. Much can be learnt 

from the novel treatments of  HIV and HCV where the targeting of multiple pathways 

in these chronic viral infections has transformed the prognosis of patients with such 

diseases [557, 558]. As our understanding of the cancer proteome increases there is 

optimism that, by targeting multiple pathways, the future of cancer immunotherapy 

may mirror the progress made in viral diease. 

 

The introduction of immunotherapy into routine clinical practice is still nascent and 

will require numerous iterations before a comprehensive arsenal of drugs is available. 

The UK government has made the development of cellular therapy a key goal.  There 

remain, however, numerous obstacles to overcome. Firstly, due to the small scale of 

early phase clinical trials and the current methods used to manufacture most cellular 

immunotherapies, the production cost at present is high. Increased automation will 

likely bring these costs down and permit easier scale out of manufacturing processes 

to facilitate commercialisation. An additional consideration is the lack of consistency 

in the preparation of immunotherapeutic treatments between trials has resulted in a 

lack of clarity of what the best methods are to produce the most effective 

immunotherapy. This is typified well by the difficulty in defining an appropriate 

antigen to use in DC vaccines [559]. Continued research in this exciting field will 

hopefully yield reward in the foreseeable future and lead to effective cancer therapies 

with the potential to induce lasting remission.  
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With this in mind, I have been involved in the set-up of a new immunotherapy trial to 

be conducted by the University of Birmingham. ImmunoTACE: A randomised phase 

II clinical trial of conditioning cyclophosphamide and chemoembolisation with or 

without vaccination with dendritic cells pulsed with HepG2 lysate in vitro in patients 

with hepatocellular carcinoma opened to recruitment in 2015, with the first patients 

received DC vaccines in early 2016. The trial involves the use of an autologous ex-

vivo generated DC pulsed with tumour cell line lysate and cyclophosphamide for the 

depletion of Treg in conjunction with TACE in patients with HCC. Both the design of 

this study and the techniques employed as part of the immune monitoring methods 

within the trial have evolved from the results generated in my current work.  The 

ImmunoTACE clinical trial has been designed to integrate with the standard of care 

pathway for patients newly diagnosed with HCC whom do not meet the criteria for 

transplantation or surgical resection.  This is an important consideration when 

developing immunotherapy-based studies to enable their delivery in a practical 

manner and hence facilitate their use in routine clinical practice. 
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9 LIST OF ABBREVATIONS 
 
g   Acceleration of gravity 

AP-1   Activator Protein-1  

ALD   Alcoholic Liver Disease 

APC   Allophycocyanin 

α   Alpha 

AFP   Alpha-Feto Protein 

7-ADD   7-aminoactinomycin D 

ANOVA  Analysis of variance 

APC   Antigen Presenting Cells 

AhR   Aryl hydrocarbon Receptor  

AASLD  Association for the Study of Liver Disease  

BCLC    Barcelona Cancer Liver Centre 

β   Beta 

BCA   Bicinchoninic Acid Assay  

CAF   Cancer Associated Fibroblast  

CFSE   Carboxy Flurescein Succinimidyl Ester 

cm   Centimeter 

CCR   CC chemokine receptors 

CPS   Child-Pugh Score  

CD   Cluster of Differentiation 

CSF-1   Colony-Stimulating Factor-1  
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CR   Complete Response 

CTLA-4  Cytotoxic T-Lymphocytes-associated protein-4 

δ   Delta 

DC   Dendritic Cells 

DNA   Deoxyribonucleic Acid 

DAPI   4’,6-diamidino-2-phenylindole 

DEN   Diethylnitrosamine  

DMSO   Dimethyl Sulfoxide 

DPX   Di-N-Butyle Phthalate in Xylene 

dH2O   Distilled Water 

ER   Endoplasmic Reticulum  

EDTA   Ethylene Diamine Tetraacetic Acid 

EASL   European Association for Study of the Liver 

EAE   Experimental Allergic Encephalomyelitis  

ECM   Extra Cellular Matrix  

FCS   Foetal Calf Serum 

FITC   Fluorescein Isothiocyanate  

FDA   Food and Drug Administration  

Foxp3   Forkhead Box P3 

FSC   Forward Scatter 

γ   Gamma 

GCN-2   General Control Nonrepressed-2  

GITR   Glucocorticoid-Induced TNFR-Related  
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GPS   Glutamine-Penicillin-Stretomycin 

GVHD   Graft vs. Host Disease  

g   Grams  

GM-CSF  Granulocyte-Macrophage Colony-Stimulating Factor   

HSEC   Hepatic Sinusoid Endothelial Cells  

HSC   Hepatic Stellate Cells  

HBV   Hepatitis B Virus 

HCV   Hepatitis C Virus 

HCC   Hepatocellular Carcinoma 

HHC   Hereditary Haemochromatosis 

HIV   Human Immunodeficiency Virus 

HLA   Human Leukocyte Antigen 

H2O2   Hydrogen Peroxide 

HIF-1α   Hypoxia Inducible Factor 1-alpha 

IDO   Indoleamine 2,3-Dioxygenase 

iCD8+Treg  Induced CD8+Regulatory T-cells 

iNOS   inducible Nitric Oxide Synthase 

IL   Interleukin 

IQR   Interquartile Range 

L   Litre 

ICAM-1  Intercellular Adhesion Molecule-1 

IFN   Interferons  

IL   Interleukin 
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IPEX   Immunodysregulation Polyendocrinopathy Enteropathy X-linked  

ILT   Immunoglobulin-like Transcript  

IBD   Inflammatory Bowel Disease 

LPS   Lipopolysaccharide 

LAG-3   Lymphocyte-Activation Gene-3  

MHC   Major Histocompatibility Complex  

MMP   Matrix Metalloproteinases  

mTOR   Mechanistic Target Of Rapamycin  

MFI   Median fluorescent intensity 

MAGE   Melanoma Associated Antigen  

MSC   Mesenchymal Stem Cells  

1-MT   1-Methyl-Tryptophan  

µg   Microgram 

µL    Microlitre 

mL   Millilitre  

MELD   Modified End Stage Liver Disease 

mRECIST  Modified Response Evaluation Criteria In Solid tumours 

mAb   Monoclonal antibodies  

moDC   Monocyte Derived Dendritic Cells 

MDSC   Monocyte Derived Suppressor Cells 

MNC   Mono Nuclear Cells 

MS   Multiple Sclerosis 

NK   Natural Killer Cells 
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NY-ESO  New York-Esophageal Squamous Cell Carcinoma 

NOHA   N-hydroxy-L-arginine 

NAFLD  Non Alcoholic Fatty Liver Disease 

NMMA  Nonselective nitric oxide synthase 

NFkB   Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells  

n   Number (of subjects / cases) 

PEI   Percutaneous Ethanol Injection 

PS   Performance Status 

PBS   Phosphate Buffer Saline 

PE   Phycoerythrin 

PDGF   Platelet-Derived Growth Factor  

PD-1   Programmed cell death protein 1  

PD   Progressive Disease 

PSC   Progressive Sclerosing Cholangitis 

PR   Partial Response 

PAMP   Pathogen Associated Molecular Patterns 

PRR   Pattern Recognition Receptors 

PBMC   Peripheral Blood Mononuclear Cells 

PBS   Phosphate Buffer Saline 

PCR   Polymer Chain Reaction 

RAF-1   Rapidly Accelerated Fibrosarcoma-1 

RFA   Radio Frequency Ablation 

RCT   Randomized Controlled Trial 
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ROS   Reactive Oxygen Species  

RAG   Recombination Activating Gene  

RNA   Ribonucleic Acid 

RPMI   Rosewell Park Memorial Institute  

SCID   Severe Combined Immunodeficiency  

SSC   Side Scatter 

STAT-3  Signal Transducer & Activator of Transcription-3  

SIV   Simian Immunodeficiency Virus  

SDS PAGE  Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

SD   Stable Disease 

SSX   Synovial Sarcoma X Breakpoint 

SLE   Systemic Lupus Erythematosus  

TSPY   Testis Specific Protein on Y chromosome  

TIM   T-cell immunoglobulin and mucin-domain-containing-molecule-3  

TCR   T-Cell Receptor 

TLR   Toll-Like Receptors  

TACE   Trans Arterial Chemoembolisation   

TEMED  Tramethylethylenediamine  

TGF   Transforming Growth Factor 

TAA   Tumour Associated Antigen 

TAM   Tumour Associated Macrophages 

TNF   Tumour Necrosis Factor 

Tregs   Regulatory T-cells 
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UCSF   University of California San Francisco  

USS   Ultra Sound Scan 

VEGF   Vascular endothelial growth factor 

W/V   Weight/Volume 

  

     

 


