A Time-line Approach for the Generation of
Simulated Settlements

Benjamin Williams and Christopher J. Headleand
School of Computer Science
University of Lincoln
Lincoln, UK
Email: bwilliams @lincoln.ac.uk

Abstract—In this paper we present a model for procedurally
generating virtual settlements populated with roads, land parcels
and buildings. Our model improves on existing research by
considering historical influence on settlement growth. To do this,
an interactive time-line is used, allowing for a designer to specify
a number of architectural periods. These architectural periods
are then used in the generation process, giving the designer a
robust tool to interactively generate photo-realistic urban scenes.
Our results show that a variety of settlement types and sizes can
be generated. In addition, we demonstrate that road patterns
within real-world settlements can be created using our system.

Index Terms—Procedural Content Generation; Virtual
Worlds; Procedural Cities

I. MOTIVATION

There has been a large body of research into procedu-
ral modelling algorithms, in the field of visualization and
computer graphics. Researchers in this field have discussed
algorithms to create a variety of content, including terrains [1],
[2], trees [3], [4], buildings [5] and entire in-game levels [6],
[7]. These algorithms take away the task of manually creating
assets to be rendered within a scene, and instead focus on
how assets can be created on-demand. They also typically
allow for a large set of core assets, through parametrization.
This permits a designer to create a large quantity of visually
disparate objects with little or no effort, other than the creation
of the original algorithm.

The large demand for high fidelity scenes has been the
driving force for advancements in graphical technology [8].
High quality scenes are utilized in a number of different areas,
especially the games development industry and television/film
production. As a result, procedural modelling approaches are
used in industry as an alternative to traditional approaches.
An example of this is the MASSIVE multi-agent system',
which was used to procedurally generate large crowds in the
production of the Lord of the Rings trilogy of films.

A frequent element seen in games and television are settle-
ments, from sprawling cities to smaller villages and hamlets.
Designing a settlement manually is a time-consuming process,
largely due to the scale of the scene and the amount of
elements used in its composition. As a result of this, interest
in researching the procedural creation of cities and other
settlements has risen in recent years.

Thttp://www.massivesoftware.com/

An aspect often overlooked by existing research in this area
is providing historical context for the generated settlements.
Providing historical context permits the environment designer
to define time periods which influence the development of a
city, e.g. architectural styles or urban planning decisions.

Currently, state-of-the-art algorithms for generating settle-
ments only consider the creation of a city in a single period.
Modelling techniques which develop settlements over time do
exist [9]-[11], however very little of these approaches use
historical context to influence the development of a settlement.
Historical influence plays an important role in the development
decisions took when developing a city. For example, economic
depression has a large impact on development decisions took
throughout a certain historical period, due a shortage of
resources [12].

The aim of this paper is to elaborate on this, to provide
a system which permits the automatic generation of virtual
settlements using a historical time-line. This time-line will fea-
ture various interactively created historical periods, which will
directly influence the growth of a settlement. This system will
allow the designer to interactively create virtual settlements
with a high degree of control over the resulting output. It
will also give the designer a robust tool to model different
road growth patterns and architectural periods, whilst also
simulating the growth of many settlements over time.

II. RELATED WORK

The procedural generation of virtual settlements has a
variety of applications in many areas. For example, these
applications include creating testing environments for robot
navigation [13], [14], an interactive tool to aid games devel-
opment [15] and even as a tool to aid in urban design [16].
This section will briefly review previous work into this field
of research.

A. City Generation

An early system to generate entire virtual cities was pre-
sented by Parish and Miiller, who introduced the CityEngine
system [17]. This system takes input maps, such as population
density and an elevation map, and uses these maps to generate
a virtual city. To do this, the system uses a street graph and
extended L-Systems to grow a road network guided by the
various input maps.

Later approaches to this problem build on this work, by
improving various aspects of city generation. For example,
Vanegas et al. [18] introduce a system which allows for the
interactive editing of these input maps, by using an agent-
based approach to city generation. This system also takes into
account geographical influences, such as land value and job
density, which are largely based on the UrbanSim model [19].
A similar interactive system is introduced by Chen et al. [20],
in which road networks are modelled using a tensor field
interactively designed by the user. Yang et al. [21] propose a
template matching method for the creation of road networks,
by using hierarchical domain splitting. Similarly, Nishida et
al. [22] propose a technique in which road networks are grown
using the transformation of real-life road network examples.
Following this, land parcels are computed and buildings are
placed to produce a procedural generated city.

One area of research related to this is modelling urban land
usage and zoning. In the work of Lechner et al. [23] the
authors build on their previous work [24] to produce a system
which procedurally models patterns of land usage in cities.
Groenewegen et al. [25] expands on this to create cities using
urban land usage modelling to guide city development. Other
areas of research include the real-time generation of cities,
such as the work of Greuter et al. [26], [27] in which the
authors proposed a method for creating cities pseudo-infinitely.

Recent research into this domain has led to some interesting
approaches. In the work of Garcia-Dorado et al. [28], the
authors focus on the use of realistic weather simulation to
enhance the fidelity of procedurally generated city scenes.
Peng et al. [29] propose an algorithm to automatically generate
street layouts within a city. The authors achieve this by
using an integer-programming based approach to optimize
road networks with levels of decreasing coverage. These road
networks can then be used with an external program to place
parcels and buildings.

Whilst there is a large body of research into the generation
of cities, only a handful of approaches consider the growth
and development of a city over time, with the majority of ap-
proaches simulating the development of cities at a fixed point
in time. Interpolation techniques between maps exist [11],
[30], which use image-based interpolation to model settlement
development. Furthermore, Weber et al. [10] introduce a
procedural city generation technique with emphasis on the
development of the city over time.

These approaches however, do not consider the simulation
of many cities together, and do not take into account neigh-
bouring settlement around the city. Bene$ et al. [9] tackle
this issue by introducing a city generation system which both
develops cities over time, whilst also taking into consideration
the influence of neighbouring cities. To do this, the algorithm
creates an initial road network, and grows it using traffic sim-
ulation. This approach however, does not simulate settlements
separately, and only outputs a 2-dimensional representation of
roads and parcels.

B. Village Generation

Whilst there is a large body of research into large-scale city
development, the area of generating smaller, non-urban settle-
ments (such as villages and hamlets) is an under-researched
area. Through a survey of the literature, we discovered only
two papers which specifically focus on generating non-urban
settlements.

Glass et al. [31] pioneered the research into this domain, by
demonstrating a technique to duplicate road patterns in African
settlements. This was achieved by the application of Voronoi
tessellation and L-Systems to approximate road patterns. This
approach however, did not consider the generation of settle-
ments, but instead focused on approximating the road patterns
found in real-life aerial imagery.

This was improved upon by Emilien et al. [32], who demon-
strate a technique to procedurally generate small villages.
Firstly, the user provides a number of heatmaps for the terrain,
such as proximity to water and terrain elevation, which are
used to influence the placement of roads. Following this,
an anisotropic conquest method is used to find land parcels
adjacent to each road, and procedurally generated buildings
are placed and correctly orientated within each parcel.

C. Historical Context

Another under-researched problem is the use of historical
context in the generation of settlements.

To our knowledge, the only attempt to address this is in the
work of Benes et al [9]. In this paper, BeneS et al. present a
model for the generation of road networks which takes into
account some level of historical context when building a city.
However, this approach only considers the influence on road
networks and not architectural styles, nor the generation of
any contextual information. Furthermore, the graphical output
of this method is only limited to road networks.

III. SETTLEMENT GENERATION

In the following sub-sections we will introduce the various
steps of our system, to procedurally generate settlements.
Firstly, our method for initially placing settlements will be
discussed, followed by the introduction of a historical timeline.
Then, our technique to simulate road network growth and the
generation of land parcels will be discussed. Finally, we will
introduce our algorithm to create buildings within these land
parcels.

A. Settlement Seeding

Our system is flexible to allow for multiple settlements to
be concurrently generated within a single environment.

The starting position of the generation referred to as a
’seed position’, as it is the point from which a settlement
grows. To find these seed positions, we use a method based on
the seeding algorithm introduced by Emilien et. al. [32]. The
variation we use follows similar steps to the original algorithm,
which will be described below.

In the first step, a number of randomly sampled seed points
are chosen within the environment. Following this, each of

these points is scored by using the function S(p), where the
steepness s of a point in the environment p is established. In
addition, the score S(p) is checked against a threshold value
t: if the score S(p) is greater than ¢, then it removed from the
environment. The purpose of this step is to filter out points
which exist on steep terrain, keeping only valid candidate
points.

At this point, a number of candidate seed positions have
been found which exist on flat terrain. The next step is to
filter these further, to select the points which the settlements
should grow from. Ideally, each of these positions should be
placed at some distance away from others, to avoid settlements
overlapping and allowing them to grow independently. One
solution to this is to group clusters of points together which
are close to one another. These groups of points can then
be used to determine the initial starting size and position of
the settlement. An additional benefit to using this approach is
that the number of settlements used in the simulation is also
determined by this clustering algorithm.

(b)

Fig. 1. A demonstration of the clustering algorithm, which groups point based
on the nearest neighbouring point. In Fig. 1a seed points are randomly sampled
within the environment, then in Fig. 1b, are grouped using the algorithm
discussed in this section.

To group the points, a neighbourhood distance d,, is defined.
This distance represents the local neighbourhood of each point.
Each point p in P is then compared to each other point k in
P where k # p.

If d (p, k) > dy, then the point & is ignored as it is outside
the local neighbourhood of p. Otherwise, p is assigned the

group of k, or in the case that k£ has no assigned group, p is
assigned a new group. If there are no points within the local
neighbourhood of p, then p is assigned a new group by default,
as it is an outlier.

To better illustrate this, a pseudo-code algorithm of this
method can be seen in Fig. 3, and an example of its usage
can be seen in Fig. 1. Following this process, each group of
points represents a settlement. For example, in Fig. 1, there
are two groups of points which represent two settlements. To
obtain the point at which a settlement should be placed, the
mean of all the points for that group is took and used.

At this point, the settlement seed positions to grow from
have been found, and each settlement is ready to be simulated
over time. The next step involves the actual simulation of each
settlement.

B. Historical Timeline

A major component of our system is the addition of
a historical time-line, with which the designer can specify
different architectural periods to influence the development of
each settlement.

To do this, the designer can use a graphical user interface
to interactively create an arbitrary number of time periods.
These time periods can be given a duration, and also sorted
in a chronological order. The total duration of this time-line
is simply the sum of the duration of each time period.

As the simulation runs, the elapsed time is incremented and
recorded. This is then used to calculate the current time period
for this time frame, by running through each period on the
time-line and testing if the current elapsed time lies within
the start/end time of that period.

The time periods which are created along the time-line are
then used in the simulation process itself, to influence the
development of each settlement. This is achieved by specifying
a set of parameters to be used in the simulation, along with
the time period — such as road length, building types, and so
forth. By doing this, the system can easily calculate the current
time period and use the parameters supplied with this period
to influence the development of each settlement in some way.
The types of parameters supplied with each time period will
be discussed in greater detail later in this paper.

Period C: Brick buildings,

Period A: Thatch buildings, gridded roads

windy roads

_ End

Period B: Stone buildings,
windy roads

Start

Fig. 2. A visual example of a time-line with three architectural periods.

procedure CLUSTER(P, d,)

1:

2 140

3 for p € P do

4: for k € P do

5: if d (p,k) > d, or p = k then
6: continue

7 end if

8 1 1+1

9: if group (k) # NONE then
10: group(p) < group(k)

11: else

12: group(p) < nextGrouplD
13: end if
14: end for

15: end for

16: if i = 0 then

17: group(p) < nextGrouplD

18: end if

19: end procedure

Fig. 3. Pseudo-code for the clustering algorithm used to group seed points
which are close.

C. Road Network Growth

One of the most important aspects of generating virtual
settlements is the creation of a road network. The road network
of an urban area defines the connectivity between roads, as
well as their location within the environment.

For the road network, we use the same approach took
by Parish and Miiller [17], of using a directed street graph
G = (V, E) to represent the connectivity of junctions within
a settlement. By associating the vertices V' with the junctions
of the road network, roads can easily be defined as the edges
E of the graph. This graph is then modified throughout the
simulation to create new roads, and connect existing roads
together.

Furthermore, each settlement’s road network is initialized
with a single vertex, which is placed at the seed position found
for this settlement in Section 3.1. A random point is chosen
around this vertex, forming an initial road. This enables the
settlement to initially grow from this position outwards.

1) Road Creation: We simulate road network growth for
each settlement in the following way, at each frame. Firstly,
a junction within the road network is selected randomly as
p. Then, the junctions connected from this junction poy are
found, along with the junctions connected fo this junction pj,.
The mean position of the point lists poy and pj, are found with

(1), as oout = f(pout) and oj, = f(pin)-

A1t+Aa+- 4N,
- ~ >0

f) = (1)

P otherwise

Following this, the angle 6 is found between oy, and oy,
by using (2). A diagram illustrating this process can be seen
in Fig. 4.

Oout

Fig. 4. A diagram showing ooy, the mean position of the junctions connected
out from p, and oj,, the mean position of the junctions connected into p. Here
0 is simply the angle of the vector v.

= Oout — Oin ?)
0

arctan2 (vm7 vy)

At this point, the angle € is used to find a new point offset
from p. This point will become a new junction, and will be
connected to p. To do this, two angular offsets are used. The
first, Oosset, 1s an offset which is always added to €. The second,
Orand, is an offset which is randomly chosen in the range
[—Brandmax; Orandmax]- An illustration of the effects of altering
Ootisec can be seen in Fig. 5.

To find the new point k, another value d is used, which
defines the distance to offset k£ from p. The value of d is
randomly chosen in the interval [Rpmindist, Fmaxdist)-

_|sin (0 + Ootser + Orana)
b= c0s (0 + Oofrser + Orand) I ®

Following this step, the closest junction in the road network
to k is found as c. If the distance between k and c is less than
d, then k is discarded. Similarly, if the path between p and k
intersects a road at any point, k is also discarded. Otherwise, k
is added as a new vertex in the street graph G, and is connected
from p, creating p — k.

(@) Ooftser = 90° (b) Oofser = 20°

Fig. 5. An example of two road networks built with different values of ygfses-
Notice how simply altering this value results in very different road layouts.

(b) With minimum distance
and intersection checks

(a) Without minimum distance
or intersection checks

Fig. 6. An example of two road networks created with the same parameters,
but with/without minimum distance and road intersection checks.

This step is took in order to maintain a suitable distance
between junctions, and ensure that the offset angle of the road
is correct. An example of this process can be seen in Fig. 6.

After this step, a road has successfully been added to a
settlement. Additionally, this road is given an age to identify
which time period it was built in, to be used later for building
placement and land parcel generation.

Following the completion of a single frame, an additional
step is performed to connect together existing roads. This is
achieved by finding roads which are cul-de-sacs (junctions
with either an indegree or outdegree of 0) and connecting them
together if they are within a distance R4 of one another. If
the path between these two junctions intersects any road, then
this connection is not made.

2) Designer-Controlled Parameters: As mentioned previ-
ously, our system allows for multiple time periods to be freely
created along a timeline by a designer. Each of these time pe-
riods includes parameters to be used in the generation process,
which influence the appearance of the resulting settlements.

In particular, the values of each parameter used in the
creation of roads can be specified by the designer for each
time period. A full table of these can be seen in Table 1. This
allows for multiple periods to be specified by the designer,
with different architectural rules for the generation process
to follow. For example, the designer may specify two time
periods — one in which roads are gridded and short, and
another in which roads are windy and long.

By allowing the designer to specify time periods with
choosable parameters, the designer is given a powerful tool to

TABLE I
A FULL LIST OF VARIABLES WHICH CAN BE SPECIFIED IN EACH TIME
PERIOD, FOR ROAD NETWORK GROWTH.

Parameter Description

Ootfset A constant angular offset to use when offset-
ting a point from the road, for road creation.

Orandmax The maximum random angular offset to use.

Rmindist The minimum length of newly created roads.

Rinaxdist The maximum length of newly created roads.

Redist The minimum distance between the created
point and the vertex which was selected,
to maintain a minimum distance between
vertices.

(a)

(d)

Fig. 7. Two examples of road networks built using our system. Each of
these examples was built using multiple time periods and different sets of
parameters.

generate a diverse range of road layouts, with a large degree
of control over the output.

Furthermore, our system allows the designer to limit road
extensions to roads built in a specific time period. More
specifically, the road growth algorithm can be configured to
only select junctions built within a specific time period, rather
than using any junction. This gives a greater degree of control
to the designer, allowing them target and extend roads built in
a specific time period. Two examples of road networks built
using this functionality can be seen in Fig. 7.

D. Land Parcel Generation

Once the roads have been generated, the next step of the
simulation is to allocate plots of land for buildings to be placed
within. We refer to these plots of lands as land parcels. 1deally,
these land parcels should be correctly orientated alongside
roads, and minimize the amount of empty space between
roads.

Additionally, another goal to consider is to eliminate overlap
between parcels. This rule embodies the fact that plots of land
are mutually exclusive, and any specific area of land belongs
to a single owner only. Furthermore, the area of every parcel
should not intersect the area of any road.

With these considerations in mind, we created an algorithm
which creates land parcels which efficiently maximize empty
space, for any arbitrary road network structure. Our algorithm
also observes these considerations, and produces polygons
which do not intersect one another, or the road network.

To do this, we use a method which casts rays orthogonal
to the direction of a road, along its length. More specifically,

dspacin g

dray
s

dpadding

Fig. 8. An example of rays being cast along a road between a and b.

given the position a where a road starts, and b where it ends,
rays are cast orthogonal to the vector v = (b — a).

The origins of these rays are spaced along v by a fixed
distance dspacing, in the direction of v. Additionally, these rays
are also position in the direction of the orthogonal vector u
from v by a distance dpaddaing. Finally, each ray is cast from
this origin for a distance dr,y. A diagram illustrating each of
these variables is can be found in Fig. 8.

Each ray is cast iteratively, along v. If the ray intersects the
edge of another parcel, or any road, then the magnitude of the
ray is reduced by the distance dpaading. This can be seen in
Fig. 8.

Following this, if the magnitude of the ray is negative,
or lower than a threshold dpings then it is not considered.
Otherwise, the ray’s origin position p and end position k are
added as vertices in a polygon, which represents a land parcel.
An illustration of this can be seen in Fig. 9a.

Following this process, the vertices of this polygon are
connected together, forming an enclosed space. This can be
seen in Fig. 9b. At this point, this polygon represents a
land parcel to place a building within, and is added into the
simulation.

This process is then ran for each generated road, on both
sides, to produce land parcels for every road within the
settlement. An example of output from this algorithm with
an arbitrary road network can be seen in Fig. 10.

E. Building Placement

The final step in the simulation is to place 3D meshes
of buildings into the environment, using the land parcels
generated in the previous step.

These placed buildings should be situated entirely within a
land parcel, with no part overstepping its boundaries. Further-
more, the space within each land parcel should be maximized,
allowing multiple buildings to be placed alongside one another.

To do this, the relative dimensions of the land parcel are
firstly took. Then, a 3D mesh of a building is selected at
random for this time period. This selection process is then
repeated if the dimensions of the mesh oversteps the land

obstacle

Sy

b

dpaddjn g

(a) Scaling ray length to eliminate intersection of obstacles.

ko
O obstacle
o
Po O ks
© O
®)
O
O Ps

(b) The vertices are connected, to create a land parcel.

Fig. 9. A diagram showing rays being scaled due to intersection with

obstacles, and being connected together to create a land parcel.

(@) dray = 10

(b) dray =5

Fig. 10. An example of land parcels generated using our algorithm. Notice
the different values of dray and their effects on the land parcel size.

parcel, until either one is found, or none are found. If no
meshes are found, then no buildings are placed within this
parcel.

This mesh is then tested from the left side of the parcel
until an available space is found. Once this building is placed,
it is correctly rotated to face the road which runs alongside the
parcel. To test for an available space, positions from the left
edge are sampled at increasing distances, and the placement
of the building is tested. If the building intersects another
building, or exceeds the parcel boundaries, then the distance
is increased and tested again. This is repeated until there is no
available space within the parcel.

This process is ran for each land parcel generated from
the previous step. Additionally, a number of trees are placed

(a) An aerial view of a generated village, with
highlighted land parcels.

(b) A village built along an arterial road.

(c) A small town consisting of many streets and
avenues.

Fig. 11. Examples of different types of settlements generated by using our system.

around each parcel, and removed if they intersect any road or
land parcel.

IV. RESULTS & DISCUSSION

We implemented our procedural settlement system in C#,
using the Unity3D? game engine to render the scene. Our
system is capable of producing photo-realistic depictions of
urban areas, with a variety of road network patterns and
buildings.

For example, Fig. 11 shows a variety of different settlement
types and sizes which can be created through the use of our
system.

A. Evaluation

To evaluate our results, we compare output from our system
against real-life aerial imagery and map data. This approach
is often taken by similar papers to validate the accuracy of a
generated settlement to a real-world example [18], [24], [32].

In comparing results from our system against geographical
data, we found that a number of different road patterns found
in real-world examples can be recreated using our system.

Residential culs-de-sac are typically built in groups orthog-
onal to tertiary roads, with a fixed spacing between each street.
An example of this in the real world can be seen in Fig. 12a.
Our system can be configured to recreate the qualities of these
streets, producing realistic streets adjacent to a road. This can
be seen in Fig. 12b.

Another type of common road pattern are intersections.
These occur when two or more roads meet and intersect. A
real-life example of this can be see in Fig. 13a, where two
arterial roads meet. Our system is also capable of modelling
these types of road, as seen in Fig. 13b.

Furthermore, our system is capable of producing settlements
similar to small villages found in real geographical data. For
example, we used a number of time periods to influence road
growth and recreate Cundall, a small village in the UK.

This can be seen in Fig. 14.

Zhttps://unity3d.com/

V. HISTORICAL CONTEXT AND VIRTUAL MUSEUMS

To conclude, in this paper we presented a novel approach to
the problem of procedural settlement generation. We expanded
on existing work by introducing an interactive method to gen-
erate settlements through the use of a historical time-line. This
time-line allows the designer to specify architectural periods,
influencing building placement and road growth patterns.

Our inspiration for this approach is drawn from the lack
of attention to historical context in settlement generation by
related works. We believe historical context plays an important
role in the development of settlements, and have created an
approach which considers this.

The implementation of our system produces photo-realistic

(a) (b)

Fig. 12. A diagram showing the ability of our system to generate realistic
culs-de-sac.

(@) (b)

Fig. 13. A diagram showing the ability of our system to generate realistic
cross-roads.

(@) (b)

Fig. 14. A diagram showing the ability of our system to generate small
villages, similar to a real-world example.

renderings of virtual settlements, including roads, land parcels,
buildings and foliage. We validated the results from our system
by comparing against real-life map data. Through this, we
demonstrated that our system is capable of producing a variety
of similar road growth patterns similar to those in real-life,
giving the designer a robust tool to develop photo-realistic
urban scenes.

We have presented early work to the problem of procedural
settlement generation with historical context. The next phase
of this research is to conduct a large-scale evaluation with
users. In future work, we will consider other areas such as
using historical context to create a virtual museum, which
outlines the history of a generated settlement. We would also
like to focus on inter-settlement influences, such as trading
routes and traffic simulation.

[1]

[2]

[3]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

G. Cordonnier, J. Braun, M.-P. Cani, B. Benes, E. Galin, A. Peytavie,
and E. Guérin, “Large scale terrain generation from tectonic uplift and
fluvial erosion,” in Computer Graphics Forum, vol. 35, no. 2. Wiley
Online Library, 2016, pp. 165-175.

J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” IEEE Transactions on Computational Intelligence and
Al in Games, vol. 2, no. 2, pp. 111-119, 2010.

K. Xie, F. Yan, A. Sharf, O. Deussen, H. Huang, and B. Chen,
“Tree modeling with real tree-parts examples,” IEEE transactions on
visualization and computer graphics, vol. 22, no. 12, pp. 2608-2618,
2016.

J. Lluch, E. Camahort, and R. Vivé, “Procedural multiresolution for plant
and tree rendering,” in Proceedings of the 2nd international conference
on Computer graphics, virtual Reality, visualisation and interaction in
Africa. ACM, 2003, pp. 31-38.

T. Addo, L. Magalhdes, E. Peres, and F. Pereira, “Procedural generation
of traversable buildings outlined by arbitrary convex shapes,” Procedia
Technology, vol. 16, pp. 310-321, 2014.

D. Ashlock, C. Lee, and C. McGuinness, “Search-based procedural
generation of maze-like levels,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 3, no. 3, pp. 260-273, 2011.

K. Compton and M. Mateas, “Procedural level design for platform
games.” in AIIDE, 2006, pp. 109-111.

M. Hadwiger, J. M. Kniss, K. Engel, C. Rezk-Salama, and H. Landis,
“High-quality volume graphics on consumer pc hardware,” in IEEE
Visualization. Citeseer, 2002.

J. Bene$, A. Wilkie, and J. Kfivanek, “Procedural modelling of urban
road networks,” in Computer Graphics Forum, vol. 33, no. 6. Wiley
Online Library, 2014, pp. 132-142.

B. Weber, P. Miiller, P. Wonka, and M. Gross, “Interactive geometric
simulation of 4d cities,” in Computer Graphics Forum, vol. 28, no. 2.
Wiley Online Library, 2009, pp. 481-492.

L. Krecklau, C. Manthei, and L. Kobbelt, “Procedural interpolation of
historical city maps,” in Computer Graphics Forum, vol. 31, no. 2pt3.
Wiley Online Library, 2012, pp. 691-700.

J. E. Moser, “The great depression,” A COMPANION TO WORLD WAR
11, p. 47, 2013.

D. Gonzdlez-Medina, L. Rodriguez-Ruiz, and 1. Garcia-Varea, “Proce-
dural city generation for robotic simulation,” in Robot 2015: Second
Iberian Robotics Conference. Springer, 2016, pp. 707-719.

C. J. Headleand, G. Henshall, L. Ap Cenydd, and W. Teahan, ‘“Ran-
domised multiconnected environment generator,” 2014.

R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrating
procedural generation and manual editing of virtual worlds,” in Pro-
ceedings of the 2010 Workshop on Procedural Content Generation in
Games. ACM, 2010, p. 2.

Y. Sun and J. Taplin, “Adapting principles of developmental biology and
agent-based modelling for automated urban residential layout design,”
Environment and Planning B: Urban Analytics and City Science, p.
2399808317690156, 2017.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

Y. I. Parish and P. Miiller, “Procedural modeling of cities,” in Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques. ACM, 2001, pp. 301-308.

C. A. Vanegas, D. G. Aliaga, B. Benes, and P. A. Waddell, “Interactive
design of urban spaces using geometrical and behavioral modeling,” in
ACM Transactions on Graphics (TOG), vol. 28, no. 5. ACM, 2009, p.
111.

P. Waddell, “Urbansim: Modeling urban development for land use,
transportation, and environmental planning,” Journal of the American
planning association, vol. 68, no. 3, pp. 297-314, 2002.

G. Chen, G. Esch, P. Wonka, P. Miiller, and E. Zhang, “Interactive
procedural street modeling,” in ACM transactions on graphics (TOG),
vol. 27, no. 3. ACM, 2008, p. 103.

Y.-L. Yang, J. Wang, E. Vouga, and P. Wonka, “Urban pattern: Layout
design by hierarchical domain splitting,” ACM Transactions on Graphics
(TOG), vol. 32, no. 6, p. 181, 2013.

G. Nishida, I. Garcia-Dorado, and D. Aliaga, “Example-driven procedu-
ral urban roads,” in Computer Graphics Forum. Wiley Online Library,
2015.

T. Lechner, P. Ren, B. Watson, C. Brozefski, and U. Wilenski, “Proce-
dural modeling of urban land use,” in ACM SIGGRAPH 2006 Research
posters. ACM, 2006, p. 135.

T. Lechner, B. Watson, P. Ren, U. Wilensky, S. Tisue, and M. Felsen,
“Procedural modeling of land use in cities,” 2004.

S. Groenewegen, R. M. Smelik, K. J. de Kraker, and R. Bidarra,
“Procedural city layout generation based on urban land use models.”
in Eurographics (Short Papers), 2009, pp. 45-48.

S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural
generation ofpseudo infinite’cities,” in Proceedings of the Ist interna-
tional conference on Computer graphics and interactive techniques in
Australasia and South East Asia. ACM, 2003, pp. 87—f.

, “Undiscovered worlds—towards a framework for real-time proce-
dural world generation,” in Fifth International Digital Arts and Culture
Conference, Melbourne, Australia, vol. 5, 2003, p. 5.

I. Garcia-Dorado, D. G. Aliaga, S. Bhalachandran, P. Schmid, and
D. Niyogi, “Fast weather simulation for inverse procedural design of 3d
urban models,” ACM Transactions on Graphics (TOG), vol. 36, no. 2,
p- 21, 2017.

C.-H. Peng, Y.-L. Yang, F. Bao, D. Fink, D.-M. Yan, P. Wonka, and N. J.
Mitra, “Computational network design from functional specifications,”
ACM Transactions on Graphics (TOG), vol. 35, no. 4, p. 131, 2016.
C. A. Vanegas, D. G. Aliaga, B. Benes, and P. Waddell, “Visualization
of simulated urban spaces: Inferring parameterized generation of streets,
parcels, and aerial imagery,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 3, pp. 424-435, 2009.

K. R. Glass, C. Morkel, and S. D. Bangay, “Duplicating road patterns
in south african informal settlements using procedural techniques,” in
Proceedings of the 4th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa. ACM, 2006, pp.
161-169.

A. Emilien, A. Bernhardt, A. Peytavie, M.-P. Cani, and E. Galin,
“Procedural generation of villages on arbitrary terrains,” The Visual
Computer, vol. 28, no. 6-8, pp. 809-818, 2012.

