
J. C. Roberts, P. D. Ritsos, J. Jackson, and C. Headleand, “The explanatory visualization framework: An
active learning framework for teaching creative computing using explanatory visualizations,” IEEE
Transactions on Visualization and Computer Graphics, vol. x, no. x, pp. xx-xx, Jan. 2018. DOI
http://ieeexplore.ieee.org/document/8017594/

Abstract:
Visualizations are nowadays appearing in popular media and are used everyday in the workplace.
This democratisation of visualization challenges educators to develop effective learning strategies, in
order to train the next generation of creative visualization specialists. There is high demand for
skilled individuals who can analyse a problem, consider alternative designs, develop new
visualizations, and be creative and innovative. Our three-stage framework, leads the learner through
a series of tasks, each designed to develop different skills necessary for coming up with creative,
innovative, effective, and purposeful visualizations. For that, we get the learners to create an
explanatory visualization of an algorithm of their choice. By making an algorithm choice, and by
following an active-learning and project-based strategy, the learners take ownership of a particular
visualization challenge. They become enthusiastic to develop good results and learn different
creative skills on their learning journey.

Definitive Version at:
URL: http://ieeexplore.ieee.org/document/8017594/

@article{Roberts-et-al-TVCG-2018,
 author = {Roberts, Jonathan C. and Ritsos, Panagiotis D. and Jackson, James and Headleand, Chris},
 journal = {IEEE Transactions on Visualization and Computer Graphics},
 title = {The explanatory visualization framework: An active learning framework for teaching creative
computing using explanatory visualizations},
 year = {2018},
 volume = {x},
 number = {x},
 pages = {xx-xx},
 month = jan,
 url = {http://ieeexplore.ieee.org/document/8017594/},
 DOI ={10.1109/TVCG.2017.2745878}}
}

http://ieeexplore.ieee.org/document/8017594/
http://ieeexplore.ieee.org/document/8017594/

The Explanatory Visualization Framework:
An active learning framework for teaching creative computing

using explanatory visualizations
Jonathan C. Roberts, Member IEEE, Panagiotis D. Ritsos, Member IEEE, James R. Jackson, Christopher Headleand

Fig. 1. Students are tasked with creating explanatory visualizations of computer graphics and visualization algorithms. The output from
several final-year undergraduate students work is shown.

Abstract— Visualizations are nowadays appearing in popular media and are used everyday in the workplace. This democratisation of
visualization challenges educators to develop effective learning strategies, in order to train the next generation of creative visualization
specialists. There is high demand for skilled individuals who can analyse a problem, consider alternative designs, develop new
visualizations, and be creative and innovative. Our three-stage framework, leads the learner through a series of tasks, each designed
to develop different skills necessary for coming up with creative, innovative, effective, and purposeful visualizations. For that, we get
the learners to create an explanatory visualization of an algorithm of their choice. By making an algorithm choice, and by following
an active-learning and project-based strategy, the learners take ownership of a particular visualization challenge. They become
enthusiastic to develop good results and learn different creative skills on their learning journey.

Index Terms—Explanatory visualization, Information Visualization, Teaching visualization, Learning Support

1 INTRODUCTION

Visualization now pervades both work and leisure. In parallel, we are

seeing a democratisation visualization, with a broad range of people

creating and publishing data visualizations. Consequently, we need

people with the necessary creative and innovative skills to develop clear

and informative visualizations. We certainly want to have visualization

professionals and enthusiasts who are creative, passionate about design,

knowledgeable about data and excited about creating data-visualization

solutions. We require people who are independent creative thinkers

who can tackle new challenges and design appropriate solutions. Robin-

son [53] writes “We need to create [learning] environments ... where
every person is inspired to grow creatively”. There is, therefore, a

need to develop teaching methods that empower learners to think for

themselves and apply the knowledge that they have already gained [55].

Especially for the study of data visualization, but also for all areas

• Jonathan C. Roberts is with Bangor University. E-mail:
j.c.roberts@bangor.ac.uk.

• Panagiotis D. Ritsos is with Bangor University. E-mail:
p.ritsos@bangor.ac.uk.

• James R. Jackson is with Bangor University. E-mail:
j.r.jackson@bangor.ac.uk.

• Christopher Headleand is with University of Lincoln. E-mail:
cheadleand@lincoln.ac.uk.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

of computer science, we believe that learners need to develop their

creative skills. In fact, our long-term vision is to develop strategies

and techniques that help teach the next generation of creative thinkers

and data-visualization engineers. This article fits within our larger

vision to develop fundamental competences. Specifically, the aim of

the framework we present, is to develop and hone skills that bolster

creative design, promote the consideration of alternative solutions to-

wards implementing more effective visual designs and foster critical

evaluation, for learners in higher education.

In this article we present the explanatory visualization framework

(EVF), a three-stage, six-part, active learning framework where learners

design and code their own explanatory visualizations. The article is

useful to anyone who is teaching data-visualization techniques or seeks

to increase creativity and design acumen of learners.

2 HOW TO USE THIS PAPER

This article expands and extends our poster presentation at IEEE VIS

2016 [51]. In our framework, the students are active participants in

all aspects of their learning. Active learning encourages students to

do tasks, and think what they are doing [6]. This is in contrast to

traditional instruction where students passively listen and teachers do

most of the talking. Through this process learners take responsibility

for their own learning, guided by the teacher. This experiential learning

approach [32] enables them to engage with the process and develop

their own skills in reporting, explaining, coding, thinking creatively and

reflecting. The EVF contains three consecutive stages, each developing

different skills of the learner. For each stage we detail lectures, practical

activities and assessment. Students can revisit their work and ideas

within each stage. In fact, students are encouraged to regularly reflect on

their work, whereas they receive ongoing feedback from the instructor

such that they can develop their skills (formative feedback) and improve

their work before submitting for grading. They also receive appropriate

feedback (summative feedback) after submission.

As our framework conforms to a whole module (unit of work), we

include enough information for a teacher to apply the ideas to their

situation. In fact we encourage teachers to adapt the framework for their

situation. Consequently, we detail the learning outcomes (Sect. 5.1 and

Fig. 3). The framework provides an overarching structure, driven by

the requirement to develop an explanatory visualization. Thus, teachers

could exchange activities with their favoured method; e.g., while we

suggest a sketched planning method (and we use the Five Design

Sheets method [49]) it could be possible to use other methods that

help students consider alternative concepts and create a final realisation

design. Teachers could choose to focus on some of the stages, especially

if short of time. E.g., teachers could set stages 1 and 2 (which achieves

all learning outcomes) or a single stage could be set as an assignment.

But students learn more deeply by completing all stages. Another

advantage of the model is that only a few resources are required: the

students would need a computer (for stages 1 and 3) and pens, paper

and maybe a scanner to achieve stage 2 of the EVF.

The ideas within this framework have matured over the past four

years, with problems being ironed out in the first two years. We have

used the whole framework in its totality for the last two years in our

Computer Graphics & Visualization third-year module. We demon-

strate the application of the EVF with examples of student work. The

paper has, broadly, two parts. First we detail background and pedagogy

on creative design (Sect. 3) and other related work (Sect. 4). Second,

we explain the framework in detail (Sect. 5 onwards).

3 BACKGROUND & PEDAGOGY

There are many and varied strategies to guide students’ learning, beyond

the traditional “chalk and talk” lecture. Strategies such as flipped

learning and blended learning have been successfully applied to a range

of disciplines. Some subject specific approaches are also beginning to

emerge, such as, for example, practising computing techniques without

computers [63]. Whichever the method used, the aim is still the same:

to improve students’ learnt knowledge of the area and to develop their

skills. As students differ in their propensity to specific learning styles,

we need to be flexible as educators. To foster the next generation of

skilled data-visualization engineers we will need to develop a variety

of suitable educational strategies and resources.

3.1 Active and Project Based Learning
With active learning [41] students participate in the process of learning,

beyond passively listening. It is an especially effective approach for

teaching creative and data-visualization skills. The learners actively

practice, and even fail tasks, in order to gradually refine their adeptness

in the related activities. Indeed students need a safe environment

where failure can be embraced. They need to learn the boundaries and

possibilities of what they can do, what is possible, and learn how to

improve and adapt their behaviours. Creative thinking is a skill that can

be taught, but it takes time and effort on the behalf of the learner. For

instance, if sketching is being used in design, students may be afraid to

commit on paper their ideas [49]. Yet, through practice and formative

assessment they can become confident in design ideation and know

how to improve and recover from mistakes. However, if learners focus

only on fostering skills, rather than their own inclination and alertness,

then they will not develop the mindset required to tackle unfamiliar

challenges [22, 46, 47].

Moreover, one of the big challenges with developing creative

thinkers is that creative questions are ill-defined [52], they are “vague,
fluid and not susceptible to formalization” [61]. This burdens learn-

ers and educators alike; not only because students struggle to answer

creative questions, or that they do not know how to break the problem

down into smaller parts, but they are also more difficult to grade. When

the teacher asks the student to “build a calculator application in Java

using the Gridbaglayout”, the question is convergent and there is little

space for design creativity. But, when asking a more open question

there is no one correct answer, and significant room for interpretation.

While educators should not shy away from setting divergent ques-

tions, they face a dilemma. On one hand, they should not expect

learners to develop their own strategies by merely asking them to “go

build a solution”. On the other hand they should not say “build this tool

with this specification” because that would not enable them to develop

their skills sufficiently. What is required is a framework that leads

learners through key stages, yet provides them with freedom to explore

and design their own imaginative solutions. Our framework provides

a balance between being prescriptive, yet providing freedom for the

learner to be creative. We are using a particular style of active learning;

we are employing project-based learning. With project-based learning

(PBL) students work on challenges, resembling authentic real-world

problems. They use a variety of skills to make decisions and create

solutions, through high engagement and direct involvement. PBL has

its origins in the early 1900s [3] and the theories of John Dewey on

experiential learning, the constructivist views of Piaget and Kolb’s

experience-based learning systems [33]. It is an approach that has been

gathering momentum across curricula and levels of education.

In our framework, we give the student a precise goal (build an ex-

planatory visualization). However, the desired outcome is deliberately

open to interpretation, in terms of how it can be accomplished, to en-

gender creativity and innovation by the student. We outline a journey

of how to achieve that goal using our framework, allowing and encour-

aging students to make choices along the way. When students make

choices, they feel empowered and take a more positive attitude to their

learning. PBL enables learners to create something new, through study-

ing about the topic, and developing their metacognition and critical

thinking skills. However, to create an effective project-based learning

environment, students need to be given feedback on how they are pro-

gressing, they need to be able to revise their ideas, and they need to

think critically over what they have done. We therefore ensure there

are plenty of opportunities, for the students, to get feedback from their

peers and tutor.

3.2 Explanatory visualization
The overarching activity of the EVF needed to be a task that is ill-

defined such to allow creativity, yet constrained enough to keep the

students focused on a specific goal. Our original approach was to get

students to build a game. However, this was not well suited for our

purpose, as students focused on game-play logic, rather than being

creative and visual. Instead, we ask the students to create explanatory

visualizations of well-known computational algorithms.

People create visualizations to explore unknown relationships within

the data, present results of experiments with the goal to understand the

statistical data, to illustrate and to explain [10] processes. Our attention

is to the latter. There are subtle yet clear differences between presen-
tation and explanatory visualization. First, the goal of explanatory

visualization is to educate. Visual depictions are used to help instruct

and upskill. Second, its focus is to elaborate on concepts or processes

rather than data sets. Third, is to elucidate what is going on, why it

happens, and how it relates to other principles. Within the research

community there has been a huge effort in the area of exploratory visu-

alization. Researchers have created investigative tools and interactive

systems to help users explore and understand the underlying data. Like-

wise, visualizations to present results in a clear and meaningful way are

used throughout science. However, little research has been published

on explanatory visualization.

In particular, the task of creating explanatory visualizations requires

the student to take six steps, that help develop the correct mindset and

creative skills. With these steps, the student needs to: (1) compre-

hensively understand the subject material such to deliver a suitable

explanation; we consider this to be a “see one, do one, teach one” ap-

proach, or in our case “explain one” instead of teach one, (2) understand

the end-user and empathise with them to judge whether the end-user

would apprehend the information through their explanation, (3) under-

stand storytelling techniques and story development, (4) investigate

alternative stories, such to decide upon the best way to present the

information, (5) simplify and emphasise the main points (make minor

points less obvious or leave them out). Finally, (6) students will need

Fig. 2. Comparison of the EVF with the nine-stage visualization
model [56], Instructional models (Jonassen [30], ADDIE [8]), and Deci-
sion processing models (Simon [61], Wallas [68], Design Council [14]).

to edit the story and decide what information is presented [27].

For our purpose, we get the students to create explanatory visual-

izations of computer graphics and visualization algorithms. We use

algorithms because they provide a complex and multifaceted task, are

suitable for our computer science students, and the chosen algorithms

implicitly extend students’ knowledge. We can imagine other tasks to

be equally suitable, such as visualising data structures, physics phenom-

ena, or biological processes. While the focus on algorithm explanation

can be swapped for another suitable activity, the use of the explanatory

visualization style cannot: it is key to the success and uniqueness of

this framework. As students need to explain an algorithm in a visual

manner, they must understand said algorithm first. Visualization styles,

such as exploratory visualization would not get the student to make the

same cognitive decisions, as they may provide the means to describe or

investigate, but not necessarily to explain in detail.
We, like many other pedagogical researchers [7, 54, 64, 67] voice a

call to raise visual literacy in the classroom. Learners require structure,

and direction, to help them develop skills. A part of this learning jour-

ney is well resourced. There are many strategies that can be used in

class to help teach concepts, ranging from sketches on the board and

diagrams shown sequentially in a presentation, to videos and demon-

stration of visualization tools for constructing physical models [26].

However, there are comparatively few frameworks available to guide

and advance skills in creativity and visualization in the computing

curriculum.

4 RELATED WORK

There are several decision processing models that we draw upon, in-

cluding those by Simon [61], Wallas [68] and the four-part model of

the Design Council [14]. We present a comparison of these models

in Fig. 2. In fact, there is remarkable similarly between these and in-

structional models such as ADDIE [8] (analysis, design, development,

implementation and evaluation) and Jonassen’s eight stages [30]. The

instructional styles of Merrill [40] and Kolb’s experiential learning

cycle [33] also have relevance here. Our framework draws upon these

models, especially Kolb’s [32] experiential learning cycle. We inte-

grate thinking, with modifying (through improvements from formative

feedback). Integrating, experiencing and practising the ideas through

sketching, implementing, and evaluating the work. Our approach takes

the student through the entirety of Bloom’s [35] taxonomy, from knowl-

edge to synthesis and evaluation. Moreover, the data-visualization

community have likewise created several models that help develop-

ers consider and build visualization tools. Models such as Munzner’s

nested model [42], McKenna et al. [39] (understand, ideate, make,

deploy) and the nine-stage design-study model by Sedlmair et al. [56]

could be used in teaching situation. However our three-stage framework

is pragmatically designed to conform with a module’s (unit of teaching)

duration, be easily administered by a teacher and be understandable by

a student. Our framework also provides frequent opportunities for the

teacher to give formative and summative feedback, and grading.

Explanatory visualizations have proven useful to teach various con-

cepts, such as mathematics [1, 15], algorithms and data-structures [19,

44, 62]. In fact, a simple Internet search of “visualization of sorting

algorithms” returns a large quantity of animation videos and interactive

tools that can be used by a learner. Algorithm visualization is relevant,

because we are asking the students to create their own explanation of

an algorithm. Most of the seminal work was done in the late 1990s and

early 2000s. The surveys by Urquiza and Vel´azquez-Iturbide [66] and

Shaffer et al. [59] provide a useful account of the early work, including

work by Brown on Balsa, and tools such as Tango and Polka. Fouh

et al. [19] and Sorva et al. [62] investigate how visualizations help

with programming education. Unfortunately most of these explanatory

visualizations are created by the educator in advance of the lesson, and

thus are merely viewed passively by the learner. Certainly, there are

some examples whereby the student can interact and explore the tool

by changing different parameters. Yet, even when this happens the

workload, especially the creative imagination and its design, resides

with the educator rather than the student. In contrast, our approach is to

get the students to be be active in their learning by creating their own

visual explanations in code, and thus understanding the algorithm at

hand in greater depth.

But, are these animation systems effective? One of the first eval-

uations on the matter was done by Hundhausen et al. [25], followed

by another study by Grissom et al. [20], with mixed results. While

some users did benefit from the explanatory animations, others seemed

hindered by them. Reviewing the past two decades of algorithmic

visualization, Fouh et al. [19] provide a useful reflection, saying that

the issue is not the algorithmic visualization per se rather it is how

students use it, and that it “is effective when the technology is used to
actively engage students in the process” [19]. This too is one of our

motivations; if we can improve student engagement with the material

then we will be able to develop the skills of more students. Grissom et

al. [20] write “The true value of using visualizations may lie not in their
content but rather in their serving as a motivational factor to make
students work harder”. This is exactly what we are doing. The students

make a choice of algorithms to follow, they design their own solutions

and then build them. Because they are choosing their own project to

follow and setting their own goals, they are more motivated [31], have

more freedom, they feel in control of their learning. The structure gives

clear grading points, and helps them understand their own learning

pathway.

Within the past (approximately) ten years, computing education has

taken another step change. There are now several environments that

provide a sandbox for students to learn programming. For example,

Greenfoot [34] employs animation as an integral part of teaching com-

puter programming skills (and is now used throughout Wales, UK to

teach 11-19 years). JavaScript and Python animation libraries have

been used to provide animation interfaces for learning coding princi-

ples. Furthermore, there is a rise of online interactive development

environments used throughout education. However, our goal is not

to teach programming skills, but to develop higher level design and

critical-thinking skills within computer scientists. This is a similar

goal to Sengupta et al. [58] who try to teach broader skills such as ab-

straction, encapsulation and complexity, and Hsieh and Cifuentes [23]

who compare learning between paper-based and computer-generated

visualizations.

In other related work, VisitCards [21] provides a way to explore the

design space with users, while the Five Design-Sheet method (FdS) [49,

50] enables users to explore alternative design solutions. We use the

FdS in this framework for the design stage. Apart from educational

algorithmic visualizations only a few other examples of explanatory

visualizations exist. E.g., Weiskopf et al. [70] developed an explanatory

visualization of general relativity, Natali et al. [45] focused on the

communication of geological concepts, while Tufte [65] and Lipsa et

al. [37] look to more general visualizations in other sciences.

5 FRAMEWORK OVERVIEW

We define six components: research, report, design alternatives, plan,

develop and reflect, that are split into three stages. When a module or

unit of work is first created, the teacher needs to devise its learning

outcomes, aims for each part of learning and develop the learning

content. Such to address this point, and to enable teachers to use

material from this article, we write these in language that could be

given to the student to explain what they will be expected to do.

Our aim is to develop skills in learners that correspond to the higher

levels of Bloom’s taxonomy [48], especially to enhance creative and

critical reflectionabilities

1

. At the end of our class we expect students

to demonstrate knowledge of a chosen algorithm, be able to analyse the

problem and critically evaluate the solution. We also expect students

to be able to think through different designs, plan how they will be

implemented, and be able to prepare technical reports and communicate

their ideas effectively.

We get every student to choose a different algorithm to study. Each

student then develops their own explanatory visualization that will be

different to his/her peer. This a very important point within the frame-

work, because it enables every student to have a different problem to

tackle and therefore allows students to discuss their creative ideas with

each other without any issues of plagiarism. We need the students to be

comfortable to share and discuss ideas. This is unusual in an academic

situation, because most of the times every student is developing similar

code and working on the same problem, whereas the students are typi-

cally not encouraged to share ideas. However, we want them to share

their ideas, concerns, discuss their implementation strategies and peer

review each others work.

The framework addresses eight learning outcomes, outlined in Fig. 3.

We also indicate where each outcome is measured, within the six-

component framework. The six components are grouped in three con-

ceptual stages. Each stage comprises of traditional lectures (denoted

TLs), lab-based activities assessment activities, and self-study activ-

ities. In Fig. 3 we present a schematic of the whole framework, and

articulate each of the three stages in Sect. 6,7 and 8.

5.1 Learning Outcomes
There are various learning outcomes that result from EVF. The learners

need to develop and demonstrate deep understanding of their chosen

algorithm, in order to be able to explain it sufficiently (LO1). They are

directed to look into background work an pick out the information they

believe is significant and will contribute to their explanation (LO2 and

LO3). They need to devise effective ways to describe the algorithm

and its execution over time (LO2, LO4 and LO6). They use sketching

to create alternative designs of their algorithm depiction and discuss

them with their peers and tutor (LO4, LO5 and LO7). This works as

a form of formative assessment where they begin to assess whether

their solution has the desired outcome (LO3). They implement their

preferred solution (LO6) and write a report about it (LO5), reflecting

on the quality of their work, its efficiency and potentially alternative

strategies (LO3). All of the above need to be done with a creative and

innovative attitude, which to a large extend needs to be established by

both the learner and the tutor.

In particular, we believe that reflection is an important skill, neces-

sary throughout the whole design and implementation process. Reflec-

tion traditionally comes at the end of a computing project, and certainly

for individual computing-projects most academics would expect the

students to reflect on their work and achievements in the last chapter,

or section. This type of reflection is definitely important and helps

the student to consider successes and failings. Yet, reflection must be

taking place throughout the whole process. We (as educators) want the

learners to consider the decisions as they make them, and when they

make them. Learners must contemplate the decisions they are making,

to evaluate and reflect upon the quality of their work as they do it, and

make judgements as they move from the outline research to the final

build. What we are asking is that learners perform metacognition [17],

such to develop critical thinking skills. Metacognition is “thinking

about thinking”. It encourages the student to think why they are mak-

ing a decision, and what would happen if they make that decision.

Facione [16] writes about this idea, and his statement gives us the ulti-

mate set of traits that we would like to see in every student. He writes,

1

Bloom’s taxonomy defines six levels of action verbs; defining skills that

learners should grasp from knowledge, comprehension, application, analysis,

synthesis to evaluation.

“The ideal critical thinker is habitually inquisitive, well-informed, ...
willing to reconsider, clear about issues, orderly in complex matters,
diligent in seeking relevant information, reasonable in the selection of
criteria, ... and persistent in seeking results, which are as precise as
the subject and the circumstances of inquiry permit” [16].

5.2 Aims of the components
It is important that the students know what they will be doing from

the outset of the teaching process. Background information needs

to be provided, such to explain the framework and importantly, what

is expected from the students. Managing student expectations is also

important, and the students need to realise that they will be developing

their own explanatory visualizations, and that they are encouraged to

share ideas and concepts. Beyond this background stage, and after the

students have chosen an algorithm to depict, the six components of the

EVF are as follows:

Research. The aim is to get the student to develop a deep understand-

ing of the algorithm. Reference material should be investigated,

including books, papers, videos and other resources to: i) learn about

the topic, and (ii) learn more about explanatory visualizations and

see if other people have done any for the chosen algorithm.

Report. The aim is to write a clear, concise document that commu-

nicates effectively the information from different perspectives and

summarises salient information. The concise, two-page (approxi-

mately 1000 word) report, is structured by the following sections:

summary, history, algorithms, maths, diagram, application, similar-to

and references.

Design alternatives. The aim is to analyse the algorithm, be creative

and design sketches of different potential solutions. We use the Five

Design-Sheet [50] method that starts with many initial ideas, refines

them down to three, and eventually one (realisation) design, which

will be implemented.

Plan. The aim is to develop an appropriate solution, ascertain how to

tell the story, and work out the main (key) frames of the story. The

code development is planned and divided into manageable chunks

(e.g., apply the use of UML or design patterns to achieve the goal).

Develop. At this stage, the goal is to code an effective explanatory

visualization solution, i.e., not only to consider the syntax of the

code, or the semantics of the processes but also consider the design

of the depiction, how it is designed to be effective, its aesthetics and

whether it appropriately conveys the story.

Reflect. The aim of the final stage is to perform a critical analysis of

the work, and to judge whether it is fit for purpose, i.e, to criticise,

evaluate and assess the work achieved. This is done by creating

a 2000 word report. (Note, when considering Bloom’s verbs [35],

most lists use the term evaluate as the main category, with minor

verbs such as judge, critique, reflect, rate, etc. We choose to use

the term reflect, so not to confuse with evaluation and usability of

human-computer systems.)

5.3 EVF in our teaching
We have used our strategy as the learning mechanism for final-year

undergraduate major students who are taking a Computer Graphics and

Visualization module. The participating students already have some

software engineering skills, and they are fluent in Java, know JavaScript,

Python and C++. The module runs throughout the academic year and

the whole assessment makes 6 ECTS (European Credit Transfer and

Accumulation System). In Europe one academic year corresponds to 60

ECTS credits and is equivalent to 1500–1800 hours of total workload.

The module content comprises of a series of foundational traditional

lectures (see Sect. 6) and lab sessions. For our use, the students receive

an one hour lecture, with a two-hour laboratory session, per week.

The laboratory sessions are used for several purposes, including set-

ting exercises, giving one-to-one formative feedback, self study, peer

discussions, and formative and summative assessment. The students

self-study is supported with one-to-one meetings to provide personal

guidance and feedback. Students need to work on the project in their

own time, as well as in the lab sessions, and they are also encouraged

to ask feedback and make discussions with their peers.

Where measured

Domain Definition Research Report Design Plan Develop Reflect
LO1 Knowledge Demonstrate deep knowledge and understanding of the algorithm. 3 3 3
LO2 Skills, cognitive Analyse a problem and define appropriate computing solutions. 3
LO3 cognitive Reflect critically, analyse if the solution meets the criteria. 3 3
LO4 practical Plan, sketch and consider alternatives of design. 3
LO5 practical Prepare technical reports and deliver presentations. 3 3
LO6 practical Develop and deploy (explanatory visualization) software. 3 3
LO7 interpersonal Communicate effectively. 3 3
LO8 Attitude Be creative and innovative in developing computing solutions. 3 3

ECTS credits 1

1/2

1/2 3 1

Fig. 3. We divide the framework into three stages. Stage 1 covers the research and reporting. Students choose and learn about the algorithm
and present it. Stage 2 includes design and planning, whereby students learn about ideation and sketching, and then practice these skills before
designing and making plans of what they are to build. Finally, in stage 3 students develop the explanatory visualization and make a critical reflection
of their work, and demonstrate what they have done. Knowledge, skill and attitude related learning outcomes are addressed in our framework. They
are measured at different stages (1) Research, (2) Report, (3) Design, (4) Plan, (5) Develop and (6) Reflect. To provide an idea of workload, and
to allow study effort to be compared, we include values for the European Credit Transfer and Accumulation System (ECTS). One academic year
corresponds to 60 ECTS credits.

6 STAGE 1: ESTABLISHING FUNDAMENTAL KNOWLEDGE

The principal goal of Stage 1 is to increase and assess knowledge

(see Fig. 3). Learners should develop deep understanding of the algo-

rithm (or artefact they are explaining) and how it is used. The learners

will need to perform research, take notes and then write up the discov-

ered knowledge in a well structured, well written report. The following

subsections explain the components of stage 1 in more detail.

6.1 Lectures
Introductory lectures are used to explain the whole process and also

to present an overview of all the algorithms they could choose. By

explaining the process, the student can better understand the journey

that they are about to embark and they have knowledge of what they

are to expect. By providing a summary of every algorithm they can

make an informed decision of which algorithm to choose.

TL1: Introduction. The first lecture provides a description of the

complete framework, its learning objectives and the teaching activ-

ities, including details of deliverables and marking scheme. They

need to consider an end-user. We get the students to develop their

explanatory visualizations for an imaginary second-year computer-

science undergraduate student. Students can empathise with this

situation, e.g., one student said “I wish I had these explanatory visu-
alizations when I was a second year student”. While there is benefit

to using real users [12], it is not always practical or feasible, particu-

larly in a learning environment. We want students to learn how to

make decisions on their own designs, rather than being potentially

directed by client goals, or develop user/client engagement skills.

TL2: Research techniques and strategies. Students are taught how

to search, identify and summarise related previous work. This lecture

complements other modules which include more in-depth teaching

of research strategies.

TL3: Presentation of available algorithms. We briefly explain the

available algorithms, using a “chalk and talk” session and sketches on

the wipe-board. The idea is to provide a summary of each techniques,

rather than detail information for each algorithm. In our case, the

students would have been taught about half of the algorithms in the

previous year, so some explanations act as revision. We explain all

new algorithms in greater detail.

TL4: Explanatory Visualization techniques. The focus of this ses-

sion is to explain visualization techniques in the context of Explana-

tory Visualizations. We include details of graphical marks, symbols

and Gestalt laws of similarity, proximity and synchrony. We refer

students to books, including those by Ware [69], Munzner [43] and

Roberts et al. [50]. Particular attention is given to animation tech-

niques which are especially suited for Explanatory Visualizations.

The material covers the basic types of animation (flipbook, keyframe

and procedural) and the twelve principles of animation [36] (staging,

solid drawing, slow-in/out, anticipation, timing, arc, pose, appeal,

follow-through, secondary action, squash and stretch, exaggeration).

Chevalier et al. [13] provide a useful summary of uses of animation.

6.2 Practical Activities
In the first laboratory session each student chooses a different algorithm

or technique. To achieve this task practically, we used a shared/editable

document which all students can access. They write their name against

the algorithm they wish to study and can instantly see if an algorithm

has been chosen. We have a list of over 80 algorithms, including:

Anti-aliasing, Colour spaces (RGB, CLS), Colour-mapping, Transfer

function, Coordinated views. Direct and Indirect manipulation, Direct

volume rendering (gel-like), Dividing cubes, etc.

Next, the students research their chosen algorithm. They take notes

and receive formative feedback on what they have discovered and

suggestions where to look and what to learn. The aim of these one-to-

one sessions is to allow students identify any strengths and weaknesses,

and to encourage them in their research. Furthermore, it gives the tutor

an idea of the progress of all students. In the formative feedback session

the tutor needs to perform two tasks: First, to acknowledge successes

of the students’ work. It is important that aspects of quality, good work,

correctness are described. Second, the work should be guided forward;

from asking questions to identifying aspects to correct. Imperatively,

formative feedback is positive, constructive, encouraging, confidential,

and evidenced by the work presented.

6.3 Assessment
We have observed that writing is not easy for computing students.

Learners within a technical field often find it difficult to locate relevant

material, struggle over the actual process of writing (because it is not so

familiar with them) and may be less-motivated to do well. But, while

the output of this stage is merely a report, it is an important part of the

process. The student needs to understand the algorithm in great detail

in order to be able to discuss it in depth. Therefore, the very act of

writing a summary report helps to gel the ideas in their mind [18]. In

this part, we are engaging the learner in directed thinking: the very act

of writing something down on the page requires deep thought, creative

thinking and organisation of the ideas. Through the act of writing, the

learner is engaging in creative thinking and a good/well-written report

requires that a student has deeply reflected on their work.

For this report, we define a specific structure. This acts as a prompt to

lead the students to find specific information and look at many sources,

helps the students structure the report, and helps tutors grade it. We

encourage learners to consider each of these sections as stories that

cover the same topic but are told from different perspectives; a historical

perspective, mathematical perspective, as follows:

Title of algorithm and author name

Summary of the algorithm or technique,.

History or who invented it and for what purpose, etc.

Algorithm description/pseudo code.

Maths including equations, algorithm speed, efficiency etc.

Diagram or schematic of the process.

Application describing how and where it is used, extensions, etc.

Similar to other work or interchangeable.

References

7 STAGE 2: DESIGN AND PLAN

The aim of the second stage is to investigate alternative design ideas

and to increase creative skills. After some intoductory lectures there are

practical activities to upskill creativity, including exercises to practice

sketching skills, explanation, demonstration and practice of the Five

Design-Sheets method [49], and storyboarding techniques.

7.1 Lectures
For Stage 2 there is some foundational material that need to be pre-

sented to the students as lectures or seminars. Apart from encouraging

the students to put pen to paper and design their solutions, we give

lectures on creative thinking (TL5) and the FdS methodology (TL6).
There are several resources that cover creative thinking and where

ideas come from. We adapt the list in Roberts et al. [49] and ideas

from Johnson [29]. In summary, we cover ideas of (i) convergent and

divergent thinking, (ii) reflection of the ideas, (iii) collaboration and

asking for opinions (and this is why we insist that everyone follows

their own algorithm, such that students can share ideas). (iv) inspiration

from nature, biomimicry and bioinspiration; (v) inspiration from the

environment and workplace (objects on your desk, pictures on the wall,

etc.); (vi) inspiration from related work and (vii) serendipity of ideas

coming from mistakes.

7.2 Practical Activities
One of the main challenges in developing creative skills is low self-

esteem and low-self belief. This may exist due to several reasons:

perhaps the student had a bad experience in an art class at lower School,

where they were told they could not draw, which makes them reluctant

to sketch and make drawings. Or that they are their worst critic and

claim their own drawings as being inadequate, and so will not draw any-

thing because they feel that they are not good enough. Other students,

who traditionally excel at programming, do less well in the creative

activities. Indeed, some computing students say “we code, we do not

design”.

Having the right attitude is important. If the student comes into the

class with a negative mindset, then they will not perform well. They

need to relax and forget about these past criticisms. Robinson [54]

explains that students do better and want to learn more when they

are “in their element”, when they are happy and doing something they

enjoy. But likewise, teachers should have the right attitude [5]. The

teacher can easily create a bad climate, by being negative about design

and creativity skills, showing a dislike of the topic “you’ll hate this

activity, but you need to do it”, distrusts the students, or assumes they

will do poorly whatever happens. Teachers need to convey a positive

attitude, be encouraging, and expect that everyone will do well. Deep

learning is not only difficult and time consuming for the learner, but the

tutor also needs to invest time and effort into the activities. In order to

mitigate these problems and try to pre-empt some of the challenges, we

emphasise and encourage the following:

1. Sketching and not drawing. This distinction is important. It is

possible to make the argument that drawings are works of art,

whereas sketches are artefacts that are merely fit for purpose, and

that purpose is to communicate. Students are not being judged on

their creative ability, rather the process they follow and the ideas

that are created.

2. Improve your skills through practice. Sketching is a skill and

therefore it can be learnt. Practising different exercises and merely

sketching more will improve students’ confidence and ability.

3. Persist in creativity. Shneiderman, reflecting on creative models

wrote: “..creative work starts with problem formulation and ends
with evaluation plus refinement. They acknowledge the balance of
1% inspiration and 99% perspiration – a flash of insight followed
by much hard work to produce a practical result” [60].

4. Enjoy the experience. If the students enjoy the experience then

they are more likely to do better, and develop better creative ideas.

5. Be curious. Curiosity can be a motivating factor and if the stu-

dents are curious and want to learn, then they will make effort to

self study.

Another challenge, that can limit the students’ capacity in creativity, is

knowing where to start. Given a blank sheet of paper, it can be daunting

for a student to know what to do first. Indeed, the Five Design-Sheet

structure [49] does help with this issue. However, for the first design

sheet we suggest to sketch what they know. They know about the

algorithm, its input parameters and what the output looks like.

7.2.1 Practising sketching and example exercises
We use several exercises to help develop confidence in sketching. We

encourage students to use large sheets of A3 (tabloid or ledger) paper

for their sketching. It is much easier to sketch and be creative on a

bigger sheet of paper. We also encourage the use of black drawing-pens

to create the outlines, along with coloured pencils or some felt-tip pens

to add colour to the sketches. Again while we do encourage colour to

be used it should be used sparingly. We use the following exercises:

Students draw straight lines. Horizontal, vertical and diagonal lines

are drawn on the page. The task is to get them as close together as

possible, but also sketched as quickly as possible. While this is a

simple exercise it helps build confidence in sketching.

Students perform a continuous line-study. The aim of this exercise

is to look at something (such as a plant) and sketch the result without

looking at the page or the pen. This starts to build confidence in

creativity and commitment to the page. If this is done in a group, the

students can show their sketches, and it creates a positive atmosphere.

Tutor gives live demonstration of the Five Design-Sheets (FdS) [50]
We have used several different scenarios, including designing a

heritage-capture application and a smart-phone puzzle-game. For

this walk-through of the methodology, we keep it separate to the

specific problem to hand, such that the students do not take this

live-demonstration as the result that they need to copy.

Students do their own FdS. Individually they make their own

sketches. We do this activity in a large room, where many students do

it at the same time, this allows students to share experiences and ideas.

7.2.2 Design alternatives, the FdS method
This aim of this part is to look at the problem through different per-

spectives, and to investigate alternative design solutions, which are

refined to create a final realisation design. Often students struggle with

creating different ideas. The reason we use the FdS is that it provides a

structure. It leads the students on a journey, from less-formed creative

ideas to a developed plan that they can build. By the end of the FdS

task, they will have intensely thought about their design algorithm,

explored alternative design ideas, and thought deeply about one (po-

tential) solution. The method gets students to sketch their designs by

hand on five sheets of paper. For more information on the method see

Roberts et al. [49, 50].

We acknowledge that other creative design methods could be used,

such as less formal sketching methods [11] but, in our experience,

students who use less formal approaches struggle to explore the expanse

of potential alternative possibilities. Token and constructive based

tasks using physical objects [26] are useful for understanding concepts,

but are less suitable for our purpose of creating graphical exploratory

visualizations. Wireframe drawing software could be used, but again

it is far more difficult to structure the design process, explore design

alternatives and students can get distracted by getting to grips with the

software rather than generating alternative design ideas.

7.2.3 Planning using storyboarding
The aim of this part is to get the students to plan and think how they

move from their designs into something that they can build. First

they need to confirm the story that they are telling. For that, we get

students to sketch a storyboard. Second they need to start planning the

implementation and ascertain how they are to code the solution.

Change scale PerspectiveSlide show

Highlight salient featuresZoom

Say it
again

Say it
again

Say it

Picture in picture

Progression

Pre-defined Random

A B C
C
BA

ExploratoryUser choice

A
B
C

Structure

Fig. 4. Several different explanatory styles exist. First, the overarch-
ing progression can be pre-defined, random, chosen by the user or
exploratory. Different structures can be used to control the frames.

While there is less work on explanatory visualizations, several re-

searchers have investigated narrative styles in data-visualization [24,57]

and we refer the students to this body of work. We deliver a lecture on

explanatory visualization covering progression and overarching struc-
tures, (see Fig. 4). The progression of the story can be predefined
and linear, random, or the user can choose the path of the learning.

Hybrid approaches exist that mix two styles together. Indeed, several

students choose to use a hybrid approach, where the user is led through

a pre-defined story at the start (for about 1 minute). Then, afterwards,

the mode changes, and the user can interact with the tool to explore

specific values (e.g., see Fig. 6).

Fig. 5. Storyboard of a kd-tree explanatory visualization, showing how
the student has thought through the key frames to tell the story.

Slide show Exploration

(A)

(B)

Fig. 6. Explanatory visualization of linear interpolation. The explanation
has two parts: a pre-determined animation sequence (slide show), fol-
lowed by an exploratory mode where users can select and translate any
circle in part (A) to interactively change the values displayed in (B).

Fig. 7. Explanatory visualization of the Marching Squares algorithm
by a student, developed in WebGL, showing the final contoured data.
The animation automatically progresses through four stages (load or
generate data, threshold, march and lookup index). At each stage the
animation pauses to allow the user to interact and explore values.

Sketching a storyboard enables the student to think about the key

events in their explanatory story. It not only makes a plan that they

can follow, but it also demonstrates if they understand the story that

they need to explain. For example, we can imagine the Marching

Cubes algorithm [38] has a few key stages: (i) to setup all the variables

required, and to create the lookup table, (ii) load the data, (iii) threshold

the data, (iv) for each cell calculate the index and look it up in the

lookup-table, (v) retrieve the normalised geometry and interpolate

exact intersections, (vi) calculate normal, colours and (vii) render the

triangles. This type of algorithm could be described in a slide-show

style. Fig. 5 shows a student’s storyboard of a KD-Tree visualization.

The student has considered the opening screen, how to generate or

load some data, the two-dimensional tree representation and a three-

dimensional representation. Two other students used similar slide-show

structures, first to explain linear interpolation (Fig. 6), and second

the Marching Squares algorithm (Fig. 7). They first introduced the

concepts using a pre-defined set of animations, before breaking into an

exploratory mode, where the user can explore different values.

7.3 Assessment
The students develop their FdS sheets over the duration of a few weeks.

This allows the teacher to give formative feedback on the sheets (the

blue parallelogram in Fig. 3). Students may need to re-do their sketches

to improve them and go through a few iterations before they eventually

submit the work for grading. Because we use an electronic course

management system, we get the students to scan of their sheets into

a PDF and upload it to the submission portal. To grade the FdS, we

allocate four marks for every panel, per sheet. This gives 20% for each

sheet (100% for five sheets). The grader should focus on the process

rather than how good the ideas are. However, the students need to have

something buildable, at least, on sheet 5 (the realisation sheet). They

receive a grade and written feedback for their FdS. We allow students

to resubmit their sheets if they wish to do so. However, every time they

resubmit they are deducted 10% of that grade. This allows students to

improve their designs (in addition to any previous formative feedback)

and recover from failure. We view this re-submission policy as a safety

net. In our experience only 5% of students took this option, yet 100%

of the students re-submitting did get better results. The higher graded

students did not view the re-submission as time well-spent, as their

benefit was small. Nonetheless, this approach helps to improve the

grades of some students with lower grades.

8 STAGE 3: DEVELOP, REFLECT AND PRESENT

The aim of the final stage is to develop an implementation of the

final design from sheet 5 and the organisation of the story from the

storyboard sketches. Following that, the students reflect on their work,

make a presentation and demonstrate their explanatory visualization.

8.1 Lectures
As we are focusing on final-year undergraduate students, the students

should know how to program. Therefore, our primary goal is not to

develop implementation skills but to guide the students to build infor-

mative explanatory visualizations of high usefulness, expressiveness

and informational strength. In addition, we want students to focus

on their own design ideas, rather than use other peoples’ creativity.

We ask the students to implement their solution in Processing.org or

OpenGL. We choose Processing and OpenGL because academics in the

school have long experience with using them for visualization activities,

whereas the students receive training in these libraries from a number

of modules, including the one discussed in this paper. To supplement

their knowledge of OpenGL we give some lectures on the Processing

library. We acknowledge that there are many excellent visualization

libraries and toolkits, such as D3.js, VTK, Tableau, Qlik or even some

of the visualization aspects of Excel. However, we want the students to

develop their own ideas, rather than being influenced by pre-defined

visualization tools.

8.2 Practical Activities
Students develop their solutions over ten weeks. The timeframe is prag-

matic, and chosen to fit in with other assessment activities and within

a semester (in the UK). It is long-enough, for the students to develop

something substantial, yet short enough to keep them focused. Some

students may say “we design, we don’t code”. These students may

need more tutoring, but they too should be able to develop an appro-

priate solution in Processing. Students may not be able to implement

everything they have designed. In fact, we encourage iterative code

development; starting with basic functionality and improving it over

time. They should continually reflect on their development and how

it fulfils the requirement. If it does not meet the goals then they need

to appropriately adapt their implementation. It is fine if their solution

migrates from their FdS design; we do not compare their final deliver-

able to their original design (each stage is individually graded), but it

is important that they discuss how their implementation has changed

from their design in their critical reflective report. They receive weekly

formative feedback (like the other stages). Regular tutor contact helps

to keep the students on track, and for most students these meetings are

quick, where they give a demonstration and receive verbal feedback.

Students are also encouraged to self-reflect and ask their peers for

feedback and suggestions. To prompt them in this task, we get them to

think through the following questions: Does your explanatory visual-
ization explain the main parts and have enough detail for someone to
understand the algorithm? Is it clear and does it explain the process
and state changes? Would a second year computer scientist understand
the algorithm from your visualization? Is it well designed? Does it use
good graphics and animation principles? Could it be published, or is
it good-enough quality to show to second year students?

8.3 Assessment
Students give presentations of their explanatory visualizations to the

teacher and write a critical reflective report of their work and achieve-

ments. Their presentation and report are both graded. Reflection on

what has been achieved is extremely important. A significant stage

of Kolb’s experiential learning cycle is to perform reflective observa-

tion [32]. When learners understand what they have achieved, and how

they could have done it better, then they will perform at a higher level

next time. We note that students often find it difficult to perform a

critical reflection of their own work. They can fall into a trap of either

being too critical and negative, or say that everything is perfect. The

ideal approach is when students provide a balanced reflection of their

explanatory visualization. We ask the students to structure their report

0 20 40 60 80 100

0

10

20

30

Grade (%)

%
o

f
S

t
u

d
e
n

t
s

With EVF

Without EVF

Fig. 8. Cohort statistics, indicating a clear shift in average grades and a
reduction of work under the pass threshold (40%).

into three sections: (1) work done, achievements, description of suc-

cesses and brief discussion of challenges, (2) description of how their

result explains the algorithm and related concepts, including screen-

shots of their work, and (3) a well-argued critical reflection on their

work, discussing what they have done well and what they would do

differently if they had the opportunity.

9 EVALUATION & DISCUSSION OF THE EVF
To evaluate the success of the EVF we performed a usability study, and

looked at a series of indicators on how students achieved the learning

outcomes, in relation to knowledge, skill and attitude (see Fig .3). We

discuss our observations, through a series of investigative questions.

Our cohorts include students with a wide range of abilities, ranging

from academically strong students, who are driven by natural curiosity,

to students who are attending, simply to obtain a qualification. Often,

underachieving students believe that academic assignments are not

relevant to life, and are thus less likely to engage. Problem Based

Learning naturally makes the task relevant [4]. This is demonstrated by

analysing students grades. When we compare students’ averages from

two years of using the EVF, with the average of students grades of three

years without (see Fig. 8) we see that there are less failing students, and

the overall Normal distribution has shifted higher. There are certainly

many factors involved; nonetheless it is a positive indicator of the use of

the EVF. We believe three aspects were influential: (1) the use of PBL

and the explanatory task, has helped engage more students. Students

can empathise with the task, see relevance to their life, and that they

could use the project as an example of work undertaken in the CV. Such

realisations motivate students to perform well. (2) The experiential

style has meant that students developed and improved; they began to

realise that they can try ideas, and recover when these do not come to

fruition. Finally, (3) The tutor/student meetings has enabled students to

ask for advice, guidance, and has helped students stay on track.

Is the EVF perceived as being usable? We evaluated the EVF

using a modified System Usability Scale (SUS) questionnaire [9]. We

modified the SUS, using the method explained by Roberts et al. [49], by

replacing the word “system” with “framework” and “technical person”

with “tutor”. We chose the modified SUS because it short, simple

to administer, easy to understand, suited for small sample sizes and

systematically used to evaluate different systems in terms of their us-

ability [2]. 17 undergraduate students completed the questionnaire. The

reliability of the modified scale was measured high, with a Cronbach’s

alpha of (a=0.786). We calculated an average SUS score of 70.53

indicating that the framework was perceived to have good usability, by

means of the scale determined by Bangor et al. [2].

What do students think is a positive aspect of the EVF? Re-

garding the positive aspects of the EVF, most students commented

favourably about the overall process and the planning of the task. For

example, one student wrote “It’s a good way of planning out a project
because ideas can be improved as you progress through the frame-
work”, adding “encourages trying different ideas” and “creates a clear
path for achieving the task”. Many students talked positively about

creativity, e.g., “It opens up your creativity and ideas” and “Can see
the development through multiple stages allowing you to think and
reflect at each”. In terms of how EVF facilitated their learning process

the students said: “It helped me plan out a project well and to keep
developing and improving my idea from the very start all the way to

the end”. They also reported, “I arrived at a stronger idea at the end
of it than I likely would have otherwise” and that it helped “structure
my design efforts that are usually unstructured and vague, at least
initially”. Finally, one student discussed how reflecting on their work

helped them, stating “it does achieve what it sets out to do, it does
allow for self-reflection and improvement of the work being done”.

What do students think is a negative aspect of the EVF? Looking

at the negative comments, there were two kinds of responses. First, a

few students focused on the process, stating “it took a lot of time to
figure out what exactly was expected of me to complete each activity”
and that “some people may not like these set design methods”. Such

comments highlight the need to spend time at the start of the module,

talking about learning objectives, expectations and ensuring that the

students understand the whole process. Secondly, negative replies also

focused on the need to create alternative designs. One student wrote:

“[it is] tempting to just concentrate on one idea from the beginning” and

“I tend to prefer not to storyboard and just go with it”. Responding

specifically on the Five Design-Sheets method, one student wrote: “I
wasn’t sure about some parts of the FdS – how the first sheet worked, but
got there in the end”. As co-authors of the Five Design-Sheet method,

we understand fully the challenges and benefits of using sketching and

creative design in academic teaching. We have had personal experience

of computing students saying bluntly “we code, we don’t design”, a

concern acknowledged by others [28]. As teachers we need to continue

with a positive attitude and try to explain the benefits of being creative

in design, not only for innovation and product design, but for every-day

code development.

Have students increased their knowledge? As tutors we saw stu-

dents start by knowing very little, and left knowing substantial knowl-

edge of the algorithm. We look look to several indicators as evidence

that the students extended their knowledge. (Teachers can use these

indicators to help them grade). (1) The wording in their report (stage

1) substantiates that they looked at many sources. They cited book,

journals and conference papers, and made reference to online videos.

For instance, if students only looked at, say, Wikipedia it would be one

of their references, and they may not include other citations. While

we acknowledge the benefit of Wikipedia to learn the basics about the

topic, validity of information is often questionable. In our case only 6

of 71 students cited Wikipedia as a referenced source, indicating that

students did look more widely. (2) Citations can also act as a proxy for

judicious behaviour. We investigated the quality and type of references.

Reference quantity could be another indicator, but since we ask students

to create a short report quantity is not a suitable metric. As authors

we graded the references as being excellent (full detail), good, and

poor (e.g., with missing information or only with URLs). 80% of the

citations were rated as being good or suitable. (3) From our experience

students who do not care about the assessment often plagiarise (more

than 25% of the material). We analysed copying within the reports

using the turnitin.com plagiarism detector and found our students score

between 0% and 20% copied material. This figure includes copied

quotations, citations, equations and pseudo code – which are generally

acceptable. The low plaigiarism score indicates that students wrote the

text in their own words.

Have students developed their skills? Our framework is designed

to challenge learners to take ownership of a problem and explore a

divergent range of creative solutions. All students results implicitly

demonstrate that students have implementation skills, e.g., see Fig. 1,

Fig. 6 and Fig. 7. Counting designs on sheet 1 of the FdS is one way

to evaluate creativity. At the start of the process it was evident that

about half of the computing students were less convinced by sketching,

and they were only creating a few different ideas. Nonetheless, by the

time they submitted their FdS sketches they had created, on average,

ten different ideas (with a range 4 to 23). For example, Fig. 9 shows

twelve ideas created by a student investigating anti-aliasing.

Have student attitudes changed by following the EVF? We gain

insight into students’ attitude from their critical reports (stage 3), where

they reflected over the whole process. Interestingly, the students achiev-

ing the top 80% of the grades used verbs from the higher levels of

Blooms’ taxonomy [35]; phrases like “I learnt”, “I ensured that the

Fig. 9. Student sketch (on their FdS sheet 1) showing 12 different ideas.

information was accurate”, “I made decisions of how to choose the
right papers to cite”. E.g., one student wrote “The biggest thing I
learned was that the algorithm was such a broad topic [...] and did not
consist of only one algorithm, but is bundle of them [...] accomplishing
the same task”. However, when we look at the lower 20% students we

see students reflecting mainly on bugs in their code, rather than making

a holistic reflection.

While the EVF approach provides significant flexibility it also re-

quires buy-in from both the students and the educator. The students

need to change their mindset. They need to mentally commit to a new

way of thinking and approaching problems. When faced with a creative

problem, many students have genuine concerns that they do not know

what to do, or what is expected of them. Computing students often lack

creative training in their pre-university education, so forcing them to

engage with these processes can be daunting. But also the teacher needs

to change their mindset. If they are not positive or encouraging then

the students will likewise be apathetic and disengage from the teaching.

It is the teachers’ responsibility to invest time in talking and discussing

with students more, providing frequent feedback and guidance.

10 CONCLUSION

Teaching creative skills in Higher Education has a number of bene-

fits; the most important being that the students become more adept

in thinking through problems, considering alternative strategies and

ultimately creating more effective solutions. While creativity is implicit

throughout disciplines in Higher Education it is rarely discussed or pro-

moted within the teaching. One of the challenges of integrating creative

exercises in the curriculum is that (by its nature) creative thinking is

an ill-defined question. There is no one answer, which not only makes

it more difficult for students (who are typically not used to thinking

divergently) to create their assessments, but it implicitly makes it more

difficult for the teacher to judge and grade.

The EVF guides a learner to think through the explanatory visual-

ization task, consider alternative solutions and reflect on their design,

implementation choices, and actions. The framework is designed to

provide a good balance between fostering creative thinking and provid-

ing the structured guidance that students need. It also enables teachers

to swap-in their favoured exercise or assessment and apply the model

to their situation. By creating their own explanatory visualizations,

students learn and develop their creative, reflection and communication

skills. While visualization techniques are starting to pervade our work

and leisure, we feel that there are many opportunities to use explanatory

visualizations in teaching and learning.

REFERENCES

[1] A. Arcavi. The role of visual representations in the learning of mathemat-

ics. Educational studies in mathematics, 52(3):215–241, 2003.

[2] A. Bangor, P. T. Kortum, and J. T. Miller. An empirical evaluation of

the system usability scale. International Journal of Human-Computer
Interaction, 24(6):574–594, 2008. doi: 10.1080/10447310802205776

[3] S. Bell. Project-based learning for the 21st century: Skills for

the future. The Clearing House, 83(2):39–43, 2010. doi: 10.1080/

00098650903505415

[4] J. Biggs. What the student does: Teaching for enhanced learning. Higher
Education Research & Development, 18(1):57–75, 1999.

[5] J. B. Biggs. Teaching for quality learning at university: What the student
does. McGraw-Hill Education (UK), 2011.

[6] C. C. Bonwell and J. A. Eison. Active Learning: Creating Excitement
in the Classroom. 1991 ASHE-ERIC Higher Education Reports. ERIC,

1991.

[7] J. Boy, R. A. Rensink, E. Bertini, and J. D. Fekete. A principled way of

assessing visualization literacy. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1963–1972, Dec 2014. doi: 10.1109/TVCG.

2014.2346984

[8] R. K. Branson, G. T. Rayner, J. L. Cox, J. P. Furman, and F. King. In-

terservice procedures for instructional systems development. executive

summary and model. Technical report, DTIC Document, 1975.

[9] J. Brooke. SUS – a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[10] F. Brooks. Keynote address: A vision for visualization. In Proceedings
of 4th IEEE Visualization Conference, p. 2. IEEE, San Jose, California,

October 1993.

[11] B. Buxton. Sketching user experiences: getting the design right and the
right design. Morgan Kaufmann, 2010.

[12] C. Chen and Y. Yu. Empirical studies of information visualization. Inter-
national Journal of Human-Computer Studies, 53(5):851–866, Nov 2000.

doi: 10.1006/ijhc.2000.0422

[13] F. Chevalier, N. H. Riche, C. Plaisant, A. Chalbi, and C. Hurter. Anima-

tions 25 years later: New roles and opportunities. In Proceedings of the
International Working Conference on Advanced Visual Interfaces, AVI ’16,

pp. 280–287. ACM, New York, NY, USA, 2016. doi: 10.1145/2909132.

2909255

[14] D. Council. Eleven lessons: managing design in eleven global companies.

desk research report. Design Council, 34 Bow Street, London, 2007.

www.designcouncil.org.uk.

[15] M. de Guzman. The role of visualization in the teaching and learning of

mathematical analysis. In International Conference on the Teaching of
Mathematics (at the Undergraduate Level) 2002, July 2002.

[16] P. A. Facione. Critical thinking: A statement of expert consensus for

purposes of educational assessment and instruction. research findings and

recommendations. ERIC, ED315423, 1990.

[17] J. H. Flavell. Metacognition and cognitive monitoring: A new area of

cognitive–developmental inquiry. American Psychologist, 34(10):906,

1979. doi: 10.1037/0003-066X.34.10.906

[18] L. Flower and J. R. Hayes. A cognitive process theory of writing. College
Composition and Communication, 32(4):365–387, 1981.

[19] E. Fouh, M. Akbar, and C. A. Shaffer. The role of visualization in computer

science education. Computers in the Schools, 29(1-2):95–117, 2012. doi:

10.1080/07380569.2012.651422

[20] S. Grissom, M. F. McNally, and T. Naps. Algorithm visualization in CS

education: Comparing levels of student engagement. In Proceedings of
the 2003 ACM symposium on Software visualization, pp. 87–94. ACM,

2003. doi: 10.1145/774833.774846

[21] S. He and E. Adar. Vizitcards: A card-based toolkit for infovis design

education. IEEE Transactions on Visualization and Computer Graphics,

23(1):561–570, Jan 2017. doi: 10.1109/TVCG.2016.2599338

[22] L. Hetland. Connecting creativity to understanding. Educational Leader-
ship, 70(5):65–70, 2013.

[23] Y.-C. J. Hsieh and L. Cifuentes. Student-generated visualization as a study

strategy for science concept learning. Journal of Educational Technology
& Society, 9(3):137–148, 2006.

[24] J. Hullman and N. Diakopoulos. Visualization rhetoric: Framing effects in

narrative visualization. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2231–2240, Dec 2011. doi: 10.1109/TVCG.2011.255

[25] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A meta-study of

algorithm visualization effectiveness. Journal of Visual Languages &

Computing, 13(3):259–290, 2002. doi: 10.1006/jvlc.2002.0237

[26] S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer. Constructive

visualization. In Proceedings of the ACM conference on Designing Inter-
active Systems (DIS), pp. 433–442. ACM, 2014. doi: 10.1145/2598784.

2598806

[27] N. Iliinsky and J. Steele. Designing Data Visualizations. O’Reilly, Septem-

ber 2011.

[28] N. Jackson, M. Oliver, M. Shaw, and J. Wisdom. Developing Creativity in
Higher Education: An Imaginative Curriculum. Routledge, 2014.

[29] S. Johnson. Where good ideas come from: The natural history of innova-
tion. Penguin UK, 2010.

[30] D. H. Jonassen. Instructional design models for well-structured and ill-

structured problem-solving learning outcomes. Educational Technology
Research and Development, 45(1):65–94, 1997.

[31] J. Klerkx, K. Verbert, and E. Duval. Enhancing Learning with Visualiza-
tion Techniques, pp. 791–807. Springer New York, New York, NY, 2014.

doi: 10.1007/978-1-4614-3185-5 64

[32] A. Y. Kolb and D. A. Kolb. Learning styles and learning spaces: Enhanc-

ing experiential learning in higher education. Academy of Management
Learning & Education, 4(2):193–212, 2005.

[33] D. Kolb. Experiential learning: experience as the source of learning and
development. Prentice Hall, Englewood Cliffs, NJ, 1984.

[34] M. K¨olling. The greenfoot programming environment. ACM Transactions
on Computing Education (TOCE), 10(4):14, 2010.

[35] D. R. Krathwohl. A revision of bloom’s taxonomy: An overview. Theory
Into Practice, 41(4):212–218, 2002.

[36] J. Lasseter. Principles of traditional animation applied to 3d computer

animation. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 35–44. ACM,

New York, NY, USA, 1987. doi: 10.1145/37401.37407

[37] D. R. Lipsa, R. S. Laramee, S. J. Cox, J. C. Roberts, R. Walker, M. A.

Borkin, and H. Pfister. Visualization for the physical sciences. Computer
Graphics Forum, 31(8):2317–2347, Dec. 2012. doi: 10.1111/j.1467-8659.

2012.03184.x

[38] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In Proceedings of the 14th Annual Confer-
ence on Computer Graphics and Interactive Techniques, (SIGGRAPH), pp.

163–169. ACM, New York, NY, USA, 1987. doi: 10.1145/37401.37422

[39] S. McKenna, D. Mazur, J. Agutter, and M. Meyer. Design activity frame-

work for visualization design. IEEE Transactions on Visualization and
Computer Graphics, 20(12):2191–2200, Dec 2014. doi: 10.1109/TVCG.

2014.2346331

[40] M. D. Merrill. First principles of instruction. Educational Technology
Research and Development, 50(3):43–59, 2002.

[41] C. Meyers and T. B. Jones. Promoting Active Learning. Strategies for the
College Classroom. ERIC, 1993.

[42] T. Munzner. A nested process model for visualization design and val-

idation. IEEE Transactions on Visualization and Computer Graphics,

15:921–928, Nov 2009. doi: 10.1109/TVCG.2009.111

[43] T. Munzner. Visualization Analysis and Design. A.K. Peters Visualization

Series. A K Peters, 2014.

[44] T. L. Naps, G. R¨ossling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-

hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A.

Vel´azquez-Iturbide. Exploring the role of visualization and engagement in

computer science education. SIGCSE Bulletin, 35(2):131–152, June 2002.

doi: 10.1145/782941.782998

[45] M. Natali, I. Viola, and D. Patel. Rapid visualization of geological con-

cepts. In 25th Conference on Graphics, Patterns and Images (SIBGRAPI),
pp. 150–157, Aug 2012. doi: 10.1109/SIBGRAPI.2012.29

[46] D. N. Perkins, E. Jay, and S. Tishman. Beyond abilities: A dispositional

theory of thinking. Merrill-Palmer Quarterly, 39(1):1–21, 1993.

[47] D. N. Perkins and D. N. Perkins. The mind’s best work. Harvard University

Press, 2009.

[48] A. Renkl, R. K. Atkinson, U. H. Maier, and R. Staley. From exam-

ple study to problem solving: Smooth transitions help learning. The
Journal of Experimental Education, 70(4):293–315, 2002. doi: 10.1080/

00220970209599510

[49] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching designs using the

five design-sheet methodology. IEEE Transactions on Visualization and
Computer Graphics, 22(1):419–428, Jan 2016. doi: 10.1109/TVCG.2015.

2467271

[50] J. C. Roberts, C. J. Headleand, and P. D. Ritsos. Five Design-Sheets –
Creative design and sketching in Computing and Visualization. Springer

International Publishing, 2017. doi: 10.1007/978-3-319-55627-7

[51] J. C. Roberts, J. R. Jackson, C. Headleand, and P. D. Ritsos. Creating

Explanatory Visualizations of Algorithms for Active Learning. In Posters
presented at the IEEE Conference on Visualization (IEEE VIS 2016),
Baltimore, MD, USA, October 2016.

[52] J. C. Roberts, D. Keim, T. Hanratty, R. Rowlingson, R. Walker, M. Hall,

Z. Jackobson, V. Lavigne, C. Rooney, and M. Varga. From Ill-defined

Problems to Informed Decisions. In M. Pohl and J. Roberts, eds., Fifth
EuroVis Workshop on Visual Analytics (EuroVA),, pp. 7–11. Eurographics

Association, Swansea, UK, 910 June 2014. doi: 10.2312/eurova.20141138

[53] K. Robinson. Out of Our Minds: Learning to be Creative. Capstone,

2001.

[54] K. Robinson. The Element – how finding your passion changes everything.
Viking Penguin, 2009.

[55] A. Ryan and D. Tilbury. Flexible pedagogies: new pedagogical ideas.

Higher Education Academy, London, 2013.

[56] M. Sedlmair, M. Meyer, and T. Munzner. Design study methodology:

Reflections from the trenches and the stacks. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2431–2440, 2012.

[57] E. Segel and J. Heer. Narrative visualization: Telling stories with data.

IEEE Transactions on Visualization and Computer Graphics, 16(6):1139–

1148, Nov 2010. doi: 10.1109/TVCG.2010.179

[58] P. Sengupta, J. S. Kinnebrew, S. Basu, G. Biswas, and D. Clark. Integrat-

ing computational thinking with k-12 science education using agent-based

computation: A theoretical framework. Education and Information Tech-
nologies, 18(2):351–380, 2013. doi: 10.1007/s10639-012-9240-x

[59] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S. Ponce,

and S. H. Edwards. Algorithm visualization: The state of the field. ACM
Transactions on Computing Education (TOCE), 10(3):9:1–9:22, Aug.

2010. doi: 10.1145/1821996.1821997

[60] B. Shneiderman. Creating creativity: User interfaces for supporting in-

novation. ACM Transactions on Computer-Human Interaction (TOCHI),
7(1):114–138, Mar. 2000. doi: 10.1145/344949.345077

[61] H. A. Simon. The structure of ill structured problems. Artificial Intelli-
gence, 4(3-4):181–201, 1973.

[62] J. Sorva, V. Karavirta, and L. Malmi. A review of generic program

visualization systems for introductory programming education. ACM
Transactions on Computing Education (TOCE), 13(4):15, 2013.

[63] R. Taub, M. Armoni, and M. Ben-Ari. CS unplugged and middle-school

students views, attitudes, and intentions regarding CS. ACM Transactions
on Computing Education (TOCE), 12(2):8, 2012. doi: 10.1145/2160547.

2160551

[64] J. Trumbo. Visual literacy and science communication. Science Commu-
nication, 20(4):409–425, 1999. doi: 10.1177/1075547099020004004

[65] E. R. Tufte. Visual Explanations. Graphics Press, Cheshire, Connecticut,

1997.

[66] J. Urquiza-Fuentes and J.

´

A. Vel´azquez-Iturbide. A survey of successful

evaluations of program visualization and algorithm animation systems.

ACM Transactions on Computing Education (TOCE), 9(2):9, 2009. doi:

10.1145/1538234.1538236

[67] A. Vande Moere and H. Purchase. On the role of design in information

visualization. Information Visualization, 10(4):356–371, Oct. 2011. doi:

10.1177/1473871611415996

[68] G. Wallas. The art of thought. Cape, London, 1926.

[69] C. Ware. Information Visualization: Perception for Design. Elsevier

(Morgan Kaufmann), Amsterdam, 2012.

[70] D. Weiskopf, M. Borchers, T. Ertl, M. Falk, O. Fechtig, R. Frank, F. Grave,

A. King, U. Kraus, T. Muller, H. P. Nollert, I. R. Mendez, H. Ruder,

T. Schafhitzel, S. Schar, C. Zahn, and M. Zatloukal. Explanatory and illus-

trative visualization of special and general relativity. IEEE Transactions
on Visualization and Computer Graphics, 12(4):522–534, July 2006. doi:

10.1109/TVCG.2006.69

