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Abstract

Over the past two decades, a large literature examining psychological changes across women’s
ovulatory cycles has accumulated, emphasizing comparisons between fertile and non-fertile phases
of the cycle. While some studies have verified ovulation using luteinizing hormone (ILH) tests,
counting methods— assessments of conception probability based on counting forward from actual or
retrospectively recalled onset of last menses, or backward from actual or anticipated onset of next
menses — are more common. The validity of these methods remainslargely unexplored. Based on
published data on the distributions of the lengths of follicular and luteal phases, we created a sample
of 58,000+ simulated cycles. We used the sample toassessthe validity of counting methods. Aside
from methods that count backward from a confirmed onset of next menses, validities are modest,
generally ranging from about .40-.55. We offer power estimates and make recommendations for

future work. We also discuss implications for interpreting past research.
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How Valid are Assessments of Conception Probability in Ovulatory Cycle Research?
Evaluations, Recommendations, and Theoretical Implications

1. Introduction

Two studies in the late 1990s triggered a rapid expansion of interest in psychological changes
related to the ovulatory cycle(Gangestad & Thornhill, 1998; Penton-Voak et al., 1999; see also
Grammer, 1993). Both documented increases in women’s preferences for purported indicators of
heritable fitness at high fertility relative to low fertility within the cycle. A decade and a half later,
there are dozens of studies of cycle shifts in women’s mate preferences and dozens more of cycle
shifts in women’s attractiveness, including changes in women’s body odors, voices, facial
appearance, and proceptive behavior (reviewed in Gildersleeve, Haselton, & Fales, 2014a; Gangestad
et al., i press; Haselton & Gildersleeve, 2011; Thornhill & Gangestad, 2008).

Cycle shift effectshave attracted attention and intense research effort for at least two reasons.
First, cycle shifts are non-intuitive and difficult to explain without an explicit evolutionary account.
Therefore, these findings have been viewed as powerful evidence of the utility of an evolutionary
approach for understanding human behavior (e.g., Neuberg, Kenrick, & Schaller, 2010). Second,
these findings have challenged the widespread prior conclusion that human sexuality —unlike that of
many non-human species, including most other primates — 1s independent of hormonal control (e.g.,
Symons, 1979). Thus, the discovery of cycle shifts in women’s mate preferences and attractiveness
has heralded a potentially radical revision to understandings of human sexuality and its evolutionary
and hormonal underpinnings.

In a meta-analysis of studies examining cycle shifts in women’s mate preferences,
Gildersleeve et al. (2014a) foundrobust but modest effects. In a subsample of studies examining
targeted cycle shifts in attraction to hypothesized male fitness indicators (e.g., facial, body, and vocal

masculinity; facial symmetry and scents associated with symmetry; and behavioral dominance),
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weighted mean effect sizes in a short-term mating context and unspecified context were .26 and .20,
respectively (Hedge’s g, comparable to Cohen’s ). In a more recent meta-analysis of studies
examining detectable changes accompanyingwomen’s fertile phase, Gildersleeve and Haselton
(2014) found robust effects of comparable magnitude.Subsamples of studies examining fertility cues
that are relatively likely or unlikely to be under women’s volitional control (e.g., proceptive behavior
vs. natural body odor attractiveness) yielded mean effect sizes of .20 and .28, respectively.

At the same time, many studies have yielded null findings. Indeed, of 42 published and
unpublished studies in Gildersleeve et al.’s (2014a) subsample of targeted cycle shifts, 17
(40%)produced a statistically significant finding, whereas 60% did not. This variability in outcomes
has led some to argue that previous findings wete false positives, and support for effects was largely
due to publication bias (Wood et al., 2014). Others have noted that wide variation in methods used
to assess women’s fertility within the cycle permits considerable analytic flexibility. As a result,
researchersmay well have tried multiple analyses (e.g., with different high- and low-fertility windows)
and reported only favorable results (e.g., Harris, Pashler, & Mickes, 2014). In other words, positive
findings might have been “p-hacked” (Simonsohn et al., 2014).

To empirically examine publication bias andp-hacking, Gildersleeve et al. (2014b)
constructed p-curves of significant findings in the meta-analysis sample. Consistent with the
existence of realcycle shifts, these curves were robustly right-skewed, with a disproportionately large
number of p-values < .01.The estimated mean effect size was .30, slightly greater than meta-analytic
estimates. As well, p-curves were consistent with statistical power of only about 33%. One possible
explanation for variability in the significance of cycle shifteffects, then, is relatively weak power.

Most studies examining cycle shifts have assessed conception probability using a counting
method — either counting forward from last menstrual onset or backward from next menstrual onset

to the current day to assess whether a woman is presently in her “fertile window.” Yet the validities
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of these methods have never been thoroughly evaluated, let alone quantified (but see our discussion
of Gonzales and Ferrer, 2015, below). An evaluation of these methods is timely for two reasons.
First, such an evaluation can make clear which methods have greatest validity and thereby encourage
more uniform and accurate procedures moving forward. Second, extant data suggest that effect sizes
are robust but modest; and the typical study, underpowered. However, there remains the question of
why. Effect sizes detected in studies are a function of the “true” effect of conception probability and
the validity with which fertility status is measured. One possibility is that the effect of conception
probability truly is small (e.g, Harris et al., 2014). However, an alternative possibility is that effect
sizes merely appearsmall because measurement is poor. For example,if the correlation between
estimated and true conception probability is only .5, the study will produce an effect size 50% of the
true effect size. Because we do not know the validities of methods used to assess conception
probability, we cannot yet draw confident conclusionsbased on the extant literature.

In this paper,we evaluate the validity of these methods. We aim to contribute to
methodologicalstandards for the future, but our results can also contribute to a proper theoretical
interpretation of findings to date.

1.1 Methods Used in Studies of Shifts across the Ovulatory Cycle

A woman has a non-zero conception probability — probability of conceiving following
unprotected sex — on the day of ovulation and up to 5 days prior (e.g., Baird et al., 1995). All days
outside of this “fertile window” arenon-fertile. The follicular phase extends from the onset of
menses until ovulation. The luteal phase extends from ovulation until next menstrual onset. The
fertile window, then, is the latter part of the follicular phase. Aside from a few hours following
ovulation, the luteal phase is non-fertile. See Figure 1.

Researchers have typically used one of two methods to assess where women fall within the

ovulatory cycle: Detection of an LLH surge and day-of-cycle counting.
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LH detection. Luteinizing hormone (ILH), released by the pituitary gland, characteristically
surges 24-36 hours prior to ovulation (e.g., Guermande et al., 2001). Typically marketed to women
actively trying to conceive, test sticksthat detect an ILH surge are commercially available (e.g.,
Clearblue©, OvuSign©). Kits typically consist of plastic-encased strips that contain an immunoassay
sensitive to LH in urine.

When correctly used, LH detection tests arevery accurate. In one study, Clearblue© found
that over 99% of LH surges were detected by their tests (see
http://www.cleatblueeasy.com/healthcare/ clearblue-digital-ovulation-test.php).As LH surges vary
in their duration and intensity (Direito et al., 2013; Park et al., 2007), however,accuratedetectionis
enhanced when LH tests are administered daily until the onset of the surge. Some studies (e.g., Fales,
Gildersleeve, & Haselton, 2014) have followed up positive results by verifyingthe date of next
menstrual onset, which usually (~80% of the time) occurs 14£2 days after ovulation (e.g., Baird et
al., 1995).

Studies that use LH tests are typically within-subject designs, with individual women assessed
twice during a cycle: once when fertile, as verified by LH tests, and once during the mid-luteal phase
(e.g., Gangestad et al., 2002, 2005, 2014;Pillsworth & Haselton, 2006; Durante et al., 2011), though
some studies have assessed women 3+ times (e.g., Burriss et al., 2015). When fertile phase
assessments precede luteal phase assessments, researchers typically schedule luteal phase sessions to
follow fertile phase sessionsby a week or more. When luteal phase assessments precede fertile phase
assessments, researchers typically ask women to report their menstrual onset between sessions,
thereby verifying that the luteal phase session did in fact occur during the luteal phase (e.g., Larson
etal, 2012, 2013).

A few studies have scheduled women’s high-fertility session only after detecting an LLH surge

(e.g, Canta et al., 2014). However, most have scheduled women’s high-fertility session on a day
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when they were expected to be fertile but only counted that session as fertile if women experienced
an LH surge no more than 2 days before or 4 days after it (e.g., Gildersleeve et al., 2012). Although
one can assign specificcontinuous conception probabilities depending on timing of a session relative
to the LH surge (e.g., Burriss et al., 2015), most studies to date have simply categorized sessions as
being in or outside of the fertile window.

Day-of-the-cycle counting methods. The most widely used methodology involves counting days
from menstrual onset to assess cycle position. Within this approach, multiple methods have been
used.

The forwardmethod counts days from last menstrual onset forwardto the day of assessment.
For instance, if 2 woman wasassessed on the 15" of the month, and her last menstrual period (“day
17 of her cycle)began on the 5 of the month, thenher session was on“day 11” of her cycle.

The backward method counts days from next menstrual onset backward to the day of
assessment (e.g., Puts, 2005). If a woman was assessed on the 15™ of the month, and her next
menstrual period began on the 25" of the month, then her session was on “reverse count day 10” of
her cycle (10 days prior to the end of the cycle, as marked by the onset of her next menstrual
period). The rationale for backward counting is that luteal phase lengths are less variable than
follicular phase lengths (e.g., Baird et al., 1995; Fehring et al., 2006). Hence, referencing a woman’s
day of the cycle relative to the end of it, rather than its onset, shouldbe a more accurate way of
assessing her fertile window. The method, however, requires an assessment of onset of next menses.
Some researchers have followed up with women to verify their date of next menstrual onset. For
practical reasons, however, many researchers haveestimated when women will start their next period
based on women’s self-reports of their date of last menstrual onset and typical cycle length or

women’s own prediction of when their next period will begin.
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Counting methods must convert day of the cycle into a conception probability. The most
common approach to date defines discrete windows. By the forward approach, researchers define a
particular range of days as high fertility, and some or all of the remaining days as low fertility.
Different studies have designated different windows. Hence, Penton-Voak et al. (1999) and others
(e.g., Little et al., 2008), following conception probabilities published by Jochle (1973), defined days
6-14 as high fertility. Others have defined the high fertility window differently (see Gildersleeve et
al., 2014a). As noted by Gildersleeve et al. (2014a) and Wood et al. (2014), window sizes have varied;
6-9 days are most common.

Women ovulate on different days of the cycle, as both follicular and luteal phase lengths
vary. Therefore, some researchers have represented conception probability as a continnous measure.
Conception probabilities are actual probabilities of conception among women having unprotected
sex on different days of the cycle, the most widely used of which were developed by Wilcox et al.
(2001). For instance, day 7, 12, 19, and 27 have conception probabilities of .017, .084, .032, and .007,
respectively. See Figure 2. With a forward procedure, women are assigned a conception
probabilitycorresponding to their current day in cycle. With a backward procedure, women can be
placed on a standard 28- or 29-day cycle through calculations of how far they are from the end of
their cycles and assumptions that, on a standard 29-day cycle, women ovulate on day 15. Women are
then assigned conception probabilities based on the publishedestimates(e.g., Gangestad et al., 2007;
Puts, 20006). Finally, some studies have averaged conception probabilities based on forward and
backward procedures, as each could have unique error (e.g., Gangestad et al., 2007).

1.2 The V alidity of Conception Probability Measures
How valid are measures of conception probability? That is, how highly do theycorrelate with

women’s /rzeconception probabilities?
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LH detection. Aside from more expensive procedures (e.g., measurement of daily estradiol and
progesterone levels, ultrasound; e.g., Roney et al., 2013; Cobey et al., 2013), LH detection sticks offer
the greatestaccuracy. If, as may be the case, inaccurate classification of women as being in the fertile
phase vs. the luteal phase 1s no more than ~5%, the validity of conception probability, expressed as
a Pearson r (a phi coefficient), equals or exceeds .9.Even with LH detection, however, some women
will be assessed during their fertile phase but not necessarily on their most fertile days. Validity 1s .8
if one assumes a misclassification rate of 10% - likely an upper-bound estimate, and hence one that
yields a lower-bound estimate of accuracy.

Counting methods. Counting methods, naturally, are less accurate. But how much so? And
which methods outperform others?’These questions remain unaddressed.

1.3 A Methodoelogy to Accurately Estimate the V alidity of Counting Methods

The accuracy of counting methods depends upon a number of parametric features of the
distributions of women’s cycles. Forward methods depend on the distribution of follicular phase
lengths — that is, when ovulation occurs. Backward methods depend crucially on the distribution of
luteal phase lengths,as well as the precision with which one knows the length of the current cycle
(e.g., based on confirmed onset of next menses or self-reported typical cycle length).

Much is now known about these distributions. Recently, Stirnemann et al. (2013)estimated
the day of conception, via ultrasound fetal biometry (conducted 11-14 weeks post-conception, with
statistical adjustments to reduce error) in nearly 6000 women. As women typically conceive within
hours after ovulation (e.g., Harper, 1994), the distribution of days of conception effectively matches
the distribution of days of ovulation. Results, then, should closely match the true distribution of
women’s follicular phase lengths (see also Wilcox et al., 2001; Fehring et al., 2006; and Cole et al.,
2009, who also estimated distribution of follicular phase length, but with smaller samples and/otless

accurate methodology.)
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Multiple studies have estimated the distribution of luteal phase lengths (Lenton et al., 1984;
Baird et al., 1995; Fehring et al., 2006; Cole et al., 2009). Additionally, Fehring et al. (20006) report
amodest negative correlation between follicular phase and luteal phase lengths in a sample of over
1000 women, a value consistent with data presented by Cole et al. (2009). Cole et al. (2009)
partitioned variation across cycles into between-women and within-woman components. Finally, at
least two studies have examined the accuracy of women’s self-reported average cycle length (Jukic et
al., 2009; Small et al., 2009).

Though this information cannot estimate the accuracy of conception probability measures
algorithmically, a way forward is possible: One can use this knowledge to simulate a sample that
mimics real cycles. Within a large, representative sample in which one knows for each simulated
cycle precisely when ovulation occurredand, hence, which days are fertile, one can compute and
evaluate the accuracy of conception probability estimates given by various counting methods. We
used these procedures to estimate the validity coefficients of specific counting methods.

One other recent study simulated cycles using similar methodology. Gonzales and Ferrer
(2015) used data on parameters of cycle characteristics reported by Fehring et al. (2015) to create a
simulation sample. Our simulation procedures and those of Gonzales and Ferrer (2015) differ in a
number of ways: First, we used Stirnemans et al.’s (2013) distribution of day of ovulation, estimated
from fetal bimetry, to create a sample of cycles, whereas Gonzales and Ferrer (2015) used mean day
of ovulation, along with an estimate of its standard deviation, and assumed normality to create their
sample. Second, though Gonzales and Ferrer (2015) attempted to account for inaccuracy of
women’s estimates of next menstrual onset, our estimates, based on pertinent literature, assumed
less accuracy. Third, we examined the effect of anovulation, whereas Gonzales and Ferrer (2015) did
not. The most important difference between our simulations and those of Gonzales and Ferrer

(2015), however, is that the two simulations had fundamentally different aims. Gonzales and Ferrer
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(2015) sought to estimate the power of studies of particular designs. Specifically, in between-subject
studies evaluated in these simulations women were either sampled from a phase estimated to consist
of fertile days or from a phase estimated to consist of non-fertile days; in within-subject studies
women were assessed during both. The authors specifically sought to estimate the statistical power
of such studies. By contrast, we sought to estimate the validity of methods that assign conception
probabilities to women (either by classifying women into fertile and non-fertile groups, or by
assigning quantitative values of conception probability) when women are sampled randomly. Our
simulations not only speak to validity. They also speak to statistical power of studies that sample
women randomly from across the cycle and assign conception probability based on counting
methods, which has been the most common method used in cycle studies to date (Gildersleeve et
al., 2014a). Therefore, our simulations, and their implications, apply to a broader range of study
designs and considerably more of the extant literature.

2. Methods

2.1 Generating aRepresentative Sanmple of Cycle Days

We created our simulation sample in 6 steps. See Supplemental Online Materials(SOM) for
an expanded description.

1. A sample with day of ovulation and current day of the cycle. First, we created a sample with a
representative distribution of days of ovulation within a cycle (or, equivalently, follicular phase
lengths, as the follicular phase begins the first day of the cycle and ends on the day of ovulation).
Stirnemann et al. (2013) used ultrasound fetal biometry to estimate the day of conception (number
of days following beginning of last menses to day of conception) on a sample of nearly 6000
women. As they noted, conception typically occurs within 12 hours of ovulation; hence, the
distribution of days of conception should closely match that of days of ovulation. We used an online

graphical data extractor (http://arohatgi.info/WebPlotDigitizer/) on Stitnemann et al.’s Figure 1 to
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obtain proportions of cycles in which conception occurred on a given day. We then created 1000
cases that matched these proportions. This sample of 1000 was multiplied 35-fold, with each of the
35 sets given a current day of the cycle ranging from 1 to 35. Hence, our sample of 35,000 cycles
had a distribution of days of ovulation matching that of Stirnemann et al. and a uniform distribution
of current day of the cycle, representing days 1 to 35.

2. Assumed distribution of luteal phase lengths. Several large-sample studies have estimated the
length of the luteal phase (days from ovulation to beginning of next menses) to average 13-14 days
(Baird et al., 1995: 13.1; Cole et al., 2009: 13.2 days; Lenton et al., 1984: 14.1 days; Fehring et al.,
20006: 12.4 days; sample sizes range from 327-1060), with standard deviations of approximately 2.0
days (Baird et al.: 2.2; Fehring et al.: 2.0; Cole et al.: 2.0; Lenton et al.: 1.4 with outlying values
excluded). We created a sample of luteal phase lengths approximating a normal distribution with
mean 13.5 days and standard deviation of 2.0.

3. Assumed correlation between follicular and luteal phase lengths. Across over 1000 cycles, Fehring et
al. (2006) estimated a correlation of -.323 between follicular and luteal phase lengths, consistent with
an estimate by Cole et al. (2009).We modeled a correlation of -.3by generating a normally distributed
standard random variable and creating a weighted sum of that variable and z-scored follicular phase
lengths, weights being \/(1 -.3%) and .3, respectively. We then transformed this sum to a variable with
mean 13.5 and standard deviation of 2.0 (above), and rounded values to the nearest integer; this
variable is luteal phase length.

4. Elimination of cases with cycle day exceeding cycle length. As current day of the cycle cannot
possibly exceed length of the current cycle (i.e., follicular + luteal phase lengths), we eliminated from
our data base all such impossible cases (19.5% of all simulated cycles).

5. A second sample. To assess the impact of random variation in our simulated sample, we

created a second sample using precisely the same procedures but generating a new random variable
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to compute luteal phase lengths. Results for the two samples were neatly identical: mean absolute
difference in estimated validity coefficients (expressed as 7; see below) was .006. We report results
for the two samples combined.

6. The fertile phase and estimated probabilistic conception probability. Following Stirnemann et al.
(2013), we defined the true fertile window as beginning mid-way through the day five days prior to
the day of ovulation and ending mid-way through the day of ovulation. Hence, we coded this
variable for the 5 days prior to the day of ovulation and the day of ovulation itself as .5, 1, 1, 1, 1, .5,
respectively, and all other days as 0. Following Wilcox et al. (1995), we also assigned continuous
probabilities of conception resulting from unprotected sex. See SOM.

Data were created and analyzed using SPSS 22.0.We generated 28,197 and 28,148 cases in
the two samples, for a total combined sample of 56,345 cases.Validities of all methods were assessed
based on this total combined sample. Data files are freely downloadable
fromhttp://psych.unm.edu/people/directory-profiles/steven-gangestad.html.

2.2 Characteristics of the Representative Sample

To assess how well our sample represents real cycles, we examined its features. As Table 1
shows, mean length of the follicular phase is 15.00 (§D= 3.44). As outlined in Table 1, the mean
lengths of the follicular phase, estimated from Stirnemann et al. (2013) (eliminating lengths > 29
days), and the luteal phase in our target distribution are nearly identical to our observed distribution.
The correlation between lengths of the follicular and luteal phases 1s -.317, close to our target of -.3,
and even closer to the value of -.323 reported by Fehring et al. (20006). Cycle length, then, has a
mean of 15.00+13.56, or 28.56, with a standard deviation of 3.39. Fehring et al’s (2006) unweighted
mean of five large studiesis also 28.56 (s = 3.34). Fehring et al. reported correlations between the
length of the entire cycle and length of the follicular and luteal phases as .829 and .255, respectively.

In our sample, these correlations are .825 and .276. In sum, our simulated sample almost perfectly



Assessing Conception Probability 15

matches real samples of cycles with respect to the distribution of cycle lengths, follicular phase
lengths, luteal phase lengths, and their associations — precisely the features that affect the
distribution of fertile days within the cycle.

Table S1 (see SOM) compares the percentages of cases possessing particular days of
ovulation we targeted based on Stirnemann et al. and the percentages of cases in our sample with
those days of ovulation. Again, our sample closely matches our target. We therefore feel confident
that our simulated cycles can accurately evaluate the validity of conception probability measures.

2.3 The Methods of Estimated Conception Probability Evalnated

We evaluated two sets of methods for estimating fertility status: those based on(1) Wilcox et
al. (2001) and on (2) Stirnemann et al. (2013). Wilcox et al. (2001) estimated probabilities of
conception following unprotected sex for each day of the cycle, using a sample of 696 cycles from
213 women. These values were based on days of ovulation estimated from daily patterns of urinary
metabolites of estradiol and progesterone, in conjunction with estimated probabilities of conception
for days relative to ovulation (Wilcox et al., 1995). Based on their estimated distribution of days of
ovulation and a presumed 5-day fertile window (extending over 6 days, with half of the first day and
last day being within the window), Stirnemann et al. (2013) estimated probability of being within the
fertile window for each day of the cycle. As the distribution of the fertile window in our sample is
based on Stirnemann et al.’s work, estimates of validity might be slightly biased in favor of
Stirnemann et al.’s methods.

Within each of these two sets, we evaluated specific methods of estimating fertility within
the cycle.

Continnous forward estzmate of fertility. Wilcox et al. (2001; Table 1) and Stirnemann et al. (2013;

Figure 5) give conception probability or probability of being within the fertile window for each day
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of the cycle. We extracted values from Stirnemann et al.’s figure using
http://arohatgi.info/WebPlotDigitizer/. See SOM for all values and SPSS syntax.

Continuons backward estimate of fertility, actual cycle length. Backward estimatesare based on day of
the cycle in conjunction with cycle length, assuming luteal phase length is nearly invariant. To derive
these estimates using continuous values, we first placed a woman’s current day of the cycle on a
standard 29-day cycle based on cycle length, then assigned probability values from Wilcox et al.
(2001) for regular cycles and Stirnemann et al. (2013) for all cycles. Based on the modal luteal phase
length reported by Baird et al., 1995), we assumed a luteal phase length of 14 days. If a woman was
within 14 days of the end of the cycle, then, her place on a standard 29-day cycle would be 29 minus
the number of days from the end of her cycle. (E.g., if she were on day 20 of a 31-day cycle, she
would be placed at day 18 of a 29-day cycle — the same 11 days from the end of her cycle.) If she
were more than 14 days from the end of her cycle, we estimated her comparable day of the cycle to
be the day proportionately at the same place within the follicular phase, rounded to the nearest
integer day. (E.g., if she were on day 11 of a 31-day cycle — 65% of the way into her presumed
follicular phase of 17 days — she would be placed at day 10 within a 29-day cycle, the value closest to
65% of the way into a follicular phase of 15 days.) When using Wilcox et al.’s (2001) estimates, we
assigned a conception probability using the values they reported for regular cycles (Table 1).
Stirnemann et al. (2013) did not report probabilities of being within the fertile window for regular
cycles; rather, they reported probabilities for all cycles. We estimated probabilities for regular cycles
from data they present and found that they do not increase validity. Therefore, we used the values
they reported for all cycles. (See Puts, 2006; Gangestad et al., 2007; Garver-Apgar et al., 2008, for
similar procedures.) This backward estimate assumes that the length of the cycle is known precisely

and therefore can be used only when researchers obtain a follow-up report from participants of



Assessing Conception Probability 17

onset of next menses after assessment.(See SOM for SPSS syntax that computes these continuous
estimates.)

Continnous backward estimate of fertility, reported typical cycle length. Some researchers have
computed backward estimates using women’s self-reported typical cycle length. These self-reports
will not perfectly match actual length of the current cycle because (1) women’s cycle lengths vary,
and (2) women might not accurately report their typical cycle length. Literatures speak to the impact
of each source of error. Cole et al. (2009) estimated that the between-woman individual variance in
cycle length 1s 5.2, while the within-woman variance is 2.8. By these estimates, 35% of the variance
in cycle length is within-woman. Jukic et al. (2007) and Small et al. (2007) examined associations
between self-reported typical cycle length and observed mean cycle length, and found correlations of
only .45 and .50, respectively. As imperfect measurement of actual mean cycle length may partly
explain poor matching, we modeled two different scenarios: an optimistic one, which presumed a
correlation of true mean cycle length and reported mean cycle length of .7, and a pessimistic one,
which presumed this correlation to be .5.

To create measures of self-reported typical cycle length in our data, then, we (a) constructed
a measure of true mean cycle length by computing a variable based on current cycle length but with
35% error added in and with 35% less variance than current cycle length (5§D = 2.73); (b) used this
measure to create two self-reported typical cycle length measures, one possessing a Pearson 7 of .7
with true mean cycle length, the other possessing an 7 of .5 with true mean cycle length. Mean typical
cycle length was set at 28.5, closely reflecting the actual mean in the sample. Standard deviations in
the reports matched that in estimated true mean cycle length. Values were truncated at 22 and 35

(affecting <1% of all cases).
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To estimate the probability of being within the fertile window using a backward procedure
based on self-reported typical cycle length, then, we substituted self-reported cycle length for current
cycle length in the procedures we describe above.

Averages of forward and backward estimates. Both forward and backward estimates are subject to
error, with etror in forward estimates resulting from variation in day of ovulation and error in
backward estimates resulting from departures from the assumed 14-day luteal phase lengthand, for
reported typical cycle lengths, the imperfect association between reported typical cycle length and
current cycle length. Because errors are imperfectly correlated, an average of the forward and
backward estimates could in theory yield a measure more valid than either one alone. Hence, we also
evaluated three such averages: the average of the forward estimatewith, separately,the backward
estimates based on (1) current cycle length, (2) self-reported typical cycle length with validity
coefficient (7) of .7, and (3) self-reported typical cycle length with validity coefficient of .5.

Discrete high-and low-fertility windows. Most studies to date have defined a discrete high-fertility
window based on either forward or backward procedures (see Gildersleeve et al., 2014a). Size of the
high-fertility window has typically varied from 6 to 9 days, with the remaining days (or a subset of
them, as we discuss later) designated as low fertility. We constructed high-fertility windows of all
sizes within this range based on both forward and backward estimates. Optimal windows were
identified by defining the high-fertility window as the 6, 7, 8, or 9 days associated with the highest
conception probability or probability of falling within the fertile window. For forward procedures,
we 1dentified optimal windows using both Wilcox et al.’s (2001) and Stirnemann et al.’s (2013)
conception probability estimates. For backward procedures, we confirmed that our windows were
optimal for each window size. Table 2 lists all high-fertility windows we examined. In total, we
examined 20 different measures based on discrete windows: 2 (Wilcox et al. vs. Stirnemann et al.) x 4

(6, 7, 8, 9-day windows) = 8 forward windows; 4 (6, 7, 8, 9-day windows) x 3(known onset of next
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menses plus two methods based on reported typical cycle length, differing in assumed validity of
reports). = 12 backward estimates.

Elimination of cases. With all methods, every case was given a conception probability value,
whether continuously or discretely distributed. Of course, researchers can eliminate cases falling on
days of the cycle on the fringes of the fertile window, thereby mote cleanly distinguishing high from
low fertility cases. With continuous measures, such a procedure 1s akin to a post hoc extreme groups
design. As Preacher et al. (2005) note, such procedures rarely increase power, as loss of power due
to reduced N offsets increases due to enhanced validity of measurement. Moreover, elimination of
data raises suspicion, warranted or not, of post hoc data analytic decisions. Accordingly, they firmly
advise against this practice. In the discussion, we address the question of whether elimination of
days is advisable.

2.4 Anovulatory Cycles

A small proportion of cycles are anovulatory, even among healthy women who regularly
cycle. One recent study found that, in 509 cycles of healthy, premenopausal women (mean age = 27)
without diagnosed menstrual or ovulatory disorders, approximately 8% were anovulatory (as
determined by daily assays of reproductive hormones; Ahrens et al., 2014). Naturally, the presence
of anovulatory cycles decreases the validity of counting methods, as such a method will mistakenly
judge certain days within anovulatory cycles to be fertile. To assess the impact of anovulatory cycles,
we randomly selected 8% of our sample and assigned these cases conception probability values of
zero, no matter what the day of the cycle.

We note that undergraduate populations may have higher rates of anovulatory cycles. Using
a criterion recommended by Ellison et al. (1987; failute to reach 300 pmol/L of progesterone during

the luteal phase), Roney and Simmons (2013) classified 31% of cycles as anovulatory. They noted
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that their criterion may be overly conservative and misclassify some ovulatory cycles. Nonetheless,
our simulations may underrepresent anovulatory cycles in young college women.

Of course, hormonal variation, rather than ovulation per se, probably gives rise to cycle
shifts (e.g., Roney & Simmons, 2013). Anovulatory cycles are characterized by substantially smaller
changes in hormone levels across the cycle, but not an absence of changes altogether (e.g., Ellison et
al., 1987). We present findings both taking into account and not accounting for anovulatory cycles.
2.5 Reporting Error

Forward estimation procedures assume that first day of last menstruation is reported
accurately. Wegienka and Baird (2005) assessed the accuracy of women’s retrospective reports. Most
women (57%) recalled a day that matched a prospective assessment. But nearly 20% of women’s
reports were off by more than 3 days. As some error could have been due to unclear instructions,
our modeling of error was more optimistic: 66% of women were assumed to report a day that
exactly agreed, with error of 1, 2, 3, 4, and 5 days constituting 16%, 8%, 5%, 3%, and 3% of the
sample, respectively. Consistent with Wegienka and Baird’s (2005) findings, error in the simulated
sample increased with day of the cycle (> day 22: 50% spot-on vs. 39% in Wegienka & Baird; < day
7: 85% spot-on vs. 68% in Wegienka & Baird), and underestimation of time passed exceeded
overestimation (21% vs. 14%, compared to 25% and 19% in Wegienka & Baird.)

3. Results
3.1 Estimated V alidities of the Measures

Analyses examining validity of our measures were straightforward: Within the total sample of
56,345, we computed Pearson product-moment correlations between estimated conception
probability based on possible methods with two sets of values for “true” conception probability
(continuous estimates of conception probability; estimates of being inthe high- vs. low-fertility

window). For measures based on discrete high fertility windows, these values are point-biserial



Assessing Conception Probability 21

correlations. In short, we refer to these correlation coefficients as “validities.” In our initial analyses,
we assumed that every cycle is ovulatory, and reports of cycle length are fully accurate; subsequently,
we assessed the impact of anovulatory cycles and reporting error.

Assigned or “true” conception probability, based on values from Wilcox et al. (1995),
covaried very highly with assigned state of falling within the 5-day fertile window, » = .956. Validities
estimated using these two criteria, then, are very similar.

Full results are presented in Table 3. Validity coefficients average a very modest .54 but vary
substantially(.41-.70).

Estimates based on Wilcox et al. (2001) vs. Stirnemann et al. (2013). Validities of estimates based
on Wilcox et al. and Stirnemann et al. are very similar, mean absolute difference in validity = .017.
We see no substantive or practical differences between these estimates of fertility status.

Continnous vs. discrete measures. Uniformly, continuous measures outperform comparable
discrete measures. For forward estimates and backward estimates based on reported typical cycle
length, the validities of continuous measures average .058 greater than discrete measures. Even when
the precise cycle length 1s known, continuous measures perform better (mean difference = .042).
Becauseluteal phase lengthisnota constant 14 days, a continuous measure captures the effects of
luteal phase variation better than discrete windows.

Discrete high-andlow-fertility windows. Though use of any discrete high-fertilitywindow is a mistake, given
the better continuous measures available,one can nonetheless compare performance across window
sizes.Although one ne review of the literature (Wood et al., 2014; see also Harris et al., 2014) claimed
6-day windows to be more valid than longer windows, this claim is wrong: 6-day windows perform
poorly. Longer windows (8-9 days) outperform shorter windows (6-7 days), likely because shorter
ones often designate actual high-fertility days as low fertility. An exception is a backward estimate

based on a confirmed length of the current cycle. This is understandable: Longerwindows hedge
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bets on true day of ovulation, but a backward count based on a known cycle length narrows the
range of likely true days of ovulation. Even in these instances, however,a 7-8 day window is best.

One review of the literature (Wood et al., 2014; see also Harris et al., 2014) claimed 6-day
windows to be more valid than longer windows. This claim is wrong: 6-day windows perform
pootly.

In addition to the windows listed in Table 2, we examined the validity of several other
discrete windows represented in the literature. See SOM, Table S2.

Averages vs. individual continnous measures. When length of the current cycle is precisely known,
backward estimates clearly outperform either forward estimates or averages of forward and
backward estimates. Indeed, in that circumstance, the validity coefficient 1s ~.70. But when reported
typical cycle length is used, the validity of forward-backward averages matches or exceedsboth
forward and backward estimates. Precise validity of the self-report (.7 vs. .5) has little impact:
Validities for averages based on such self-reportsare ~.57 and .55, respectively.

3.2 The Impact of Anovulatory Cycles and Reporting Error

The impact of 8% anovulatorycycles can be summarized simply: No matter what the
counting method, validities are reduced by .02-.03, approximately 5%. For instance, the validity of a
continuous backward method based on Wilcox et al.’s estimates falls from .70 to .67. Validities of
averages of continuous forward and backward estimates fall fromroughly .56 to .54, on average. See
SOM, Table S3.

The reporting error we modeled reduced validities by 5-6% on average. Backward estimates
based on confirmed first day of next menses are not affected by reporting error and hence are not
included in this average. See SOM, Table S4.

Jointly, then, anovulatory cycles and reporting error reduce validities of any measure based

on a forward estimate by ~10%, on average.
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3.3 Power Calculations

Choice of a measure has two major implications. First, relatively valid measures lead one to
be able to more accurately estimate the true size of a correlation between conception probability and
a variable of interest. Second, relatively valid measures increase power to detect, through traditional
hypothesistesting, a true effect of conception probability on a psychological variable of interest (or,
in Bayesian analysis, find support for a model claiming a true effect exists relative to one positing no
effect). Suppose that there exists a true effect of falling within the fertile window on a psychological
state equal to Cohen’s 4 of .5. Unless fertility status is perfectly measured, measurement error will
attenuate that true effect; hence, one is tasked with detecting a manifest effect smaller than .5.
Naturally, greater measurement error attenuatesthe manifest effect size more dramatically. Power 1s a
function of the effect size to be detected and sample size. To achieve the same power to detect an
effect of interest using a measure of poorer validity compared to one of superior validity, one must
boost sample size.

We estimated power to detect true effect sizes (Cohen’s 4) ranging from .4 (a low-medium
effect) to .8 (large effect; Cohen, 1989) for measures with specific, targeted validities:

A validity of 1.0. Though not practically achievable, this value 1s an ideal comparison.

A validity of .85. DailyLH tests in the presumed high-fertility phase may yield validity of
measurement of .8-.9 (see introduction). We assume here a validity of .85.

A validity of .7. This is the highest estimated validity of any counting method we examined: a
continuous backward estimate with follow-up confirmation of the accurate next menstrual onset.

A validity of .55. This 1s the approximate validity of an average of continuous forward and
backward estimates based on a self-report of typical cycle length.

A validity of 43. This 1s a slightly optimistic estimate of the validity (estimated at .41-.43) of

adiscrete forward estimate with a 6-day window based on Wilcox et al. (2001).
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Power: Between-Subject Designs, Representative Sampling

We first consider statistical power in between-subject designs in which women are
representatively sampled from the population of normally ovulating women. In such samples, we
expect that approximately 5 women for every 28.5 sampled are in the fertile phase (as 5 days are
fertile out of an average cycle of 28.5 days — 17.5%). Unequal representation of fertile and infertile
women affects power; e.g., 4 of .5 and equal numbers of fertile and infertile womentranslates to  of
.243 (roughly half of d), but representative sampling translates to r of .187 — nearly 25% smaller.

Table 4 reports sample sizes needed to achieve 80% power (desired) and 70% power
(moderate) for true 4 of .4, .5, .6, .7, and .8. Cohen’s ds of .5 and .8 are considered medium and large
effect sizes, respectively. As can be seen, even when highly valid measures of conception probability
are used, sample sizesexceeding 200 are needed to achieve 80% power to detect a medium effect
size. For example, a backward estimate based on a precisely known date of next menstrual onset has
validity of .7 but requires a sample size of ~450 to achieve80% power to detect a medium effect.A
forward estimate based on a discrete 6-day high-fertility window has validity of .43 but requires a
sample size of 1200.

Table S5lists power for 4 of .5 and .8 and sample sizes of 50, 100, and 200. Within this range,
only sample sizes nearing 200 and using conception probability measures with validity of at least .7
have reasonable power, but only to detect large effect sizes. Even if validity is .7, power to detect a
true effect size of .5 is <50%. When typical day-of-cycle based measures are used, power to detect
medium effect sizes with sample size 200 falls below30%. Table S6 gives power estimates when 8%
anovulatory cycles and reporting error are assumed.

Though most between-subject studies conducted to date have sampled women
representatively across the cycle, some researchers have attempted to oversample women in the

fertile phase by pre-screening women. Naturally, for any given sample size power is improved in
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such cases, though at the considerable cost of pre-screening many more women than end up in the
sample and selecting only a subset of them for the actual study. Improvement of power in such
instances depends on the extent to which the fertile phase is oversampled, and the precise days of
the cycle researchers target for oversampling. Given thatthis particular kind of between-subject
studies are relatively rare (Gildersleeve et al., 2014a), we do not estimate power for such instances
here. Using similar simulation procedures, Gonzales and Ferrer (2015) provide power estimates for
certain specific instances and, like us, estimate power to be relatively low. (E.g., they report that a
between-subjects study with N = 200 has approximately 20% power to detect a medium effect size.)
By downloading and running analyses on our simulation sample tailored to a particular set of
targeted days, researchers can estimate power for any specific design.

Power: Within-Subject Designs

In within-subject designs, women are typically assessed twice in their cycles: Once in the
fertile phase and once in the nonfertile,luteal phase. Power of a within-subject design is enhanced
when individual differences across women produce a positive correlation in responses assessed
across the fertile and luteal phases. We assessed power of within-subject designs under assumptions
of this correlation being .3, .5, and .7.

Table 5presents results. Naturally, one expects that within-subject designs achieve adequate
power with smaller N than a between-subjects design. The differences here, however, are dramatic:
Depending on the racross phases, 10% to 21% the sample size is needed relative to a comparably
powered between-subjects design. In our experience, a moderate correlation across phases of .5 or
more can typically be expected.In that case, required sample sizes to achieve power with the two
designs differ by a factor of ~6.

For instance, a within-subject design that assesses fertility status with LH tests (assumed

validity of .85) requires a sample size of just under 50 to achieve 80% power to detect ad of .5. A
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comparable between-subject design using LH sticks would require over 300 participants.
Comparable power in between-subjects designs using a backward method with confirmed day of
next menses requires close to 500 participants.A between-subjects design using a forward-backward
average based on self-reported typical cycle length requires close to 750 participants.

Validities listed — e.g., .7, .55, .43 — correspond to validities for designs that sample women
twice during the cycle on representative days, not targeted days, using backward estimate with next
menstruation confirmed, average of forward and backward using typical cycle length, and forward
estimate using discrete windows, respectively. Many within-subject studies, however, target specific
high fertility and low fertility dates. Such designs afford greater power, though how much depends
on precisely how days were targeted. We estimate that designs that assess women twice during a
cycle during targeted high and low fertility windows, based on counting methods, typically achieve
validity ~.1 greater than that achieved with representative sampling. Hence, for instance, a study that
used a backward design with onset of next menstruation confirmed would typically have a validity of
measurement of .7. Yet if high fertility and low fertility days are targeted, validity might increase to
.8. In such a case, 80% power to detect an effect size of .5 would be achieved with a sample size of
about 55, as opposed to 71. Readers should treat values listed in Table 5 as guidelines.

Table S7 presents power of within-subject design studies using measures of varying validity,
with sample sizes of 25, 50, and 100 and assuming a correlation of .5 across phases for the
dependent measure. Table S8 presents power of within-subject design studies assuming 8%
ovulatory cycles and reporting error.

4. Discussion

We aimed to evaluate the validities of various counting methods to assess conception

probability. To do so, we simulated a large sample of cycles that demonstrably possess the

distributional characteristics of real cycles. Our evaluations yield several broad observations. First,
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the validities of counting methods are modest, overall. Their median is approximately .5. Virtually all
fall short of .6, even ones that account for between-women variation in typical cycle length. Second,
to achieve reasonable statistical power, studies using most counting methods require extremely large
sample sizes (see also Gonzales & Ferrer, 2015). To be able to detect a medium effect size of .5 with
80% power, a between-subjects study that uses a measure with validity near the median (.5) demands
a sample size of about 900 or over 1000 when anovulatory cycles and reporting errors are present.

These findings have important implications. First, they inspire a set of recommendations
going forward. Second, they inform interpretations of the current literature.
4.1 Recommendations for Future Research

Our findings yield clear recommendations for future research examining shifts across the
cycle.

Recommendation 1: A within-subject design should generally be the design of choice. Between-subject
studies of cycle effects require very large sample sizes to achieveacceptable levels of statistical power.
Even if the most valid counting method is used to measure conception probability, 80% power to
detect a medium effect size requires a sample size nearing 500 — and that method requires a follow-
up confirmation of first day of next menstruation. The best method based on a single session — an
average of continuous forward and backward estimates — demands a sample size exceeding 700. By
contrast, a within-subject design can achieve comparable power with a sample size of 50-80. We
suspect that researchers will typically find within-subject studies to be more efficient. Based on
evaluations of particular kinds of between-subject designs, Gonzales and Ferrer (2015) offered a
similar recommendation.

Onenotable exception may be when women are recruited and complete questionnaires
online. Particularly when researchers wish to access a non-college population faitly cheaply or avoid

the potential problem of sensitizing women to researchers’ interest in cycle shifts, between-subject
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studies with a large N might be reasonable. However, between-subject studies with an N less than
500cannot be recommended; most methods call for N> 700. Researchers opting for these designs
should interpret manifest effect sizes with caution. Relatively low validities of these methods for
determining effects of fertility will reduce estimates of effect sizes, on average, by about half relative
to the ideal of a validity of 1.0.

Naturally, the potential weaknesses of within-subject designs should also be kept in mind. If
presented with a stimulus two or more times, individuals may recall their previous responses and, in
an effort to appear consistent, may give the same response. Accordingly, in one study researchers
instructed participants to “answer as you feel #ow, which could be different than how you uswually
feel” (Gangestad et al., 2010). Cantu et al. (2014) created two different stimulus sets, and each
woman responded to each one just once — one during her high fertility session and the other during
her low fertility session (with high and low fertility stimuli counterbalanced across women).
Researchers should implement procedures that minimize carry-over effects in within-subject designs
when possible.

Recommendation 2: In within-subject studies, detection of ILH surges and a continnous backward estimate
with confirmed onset of next menses are methods of choice. Within-subject designs are best if they incorporate
a highly valid means of assessing the fertile phase. Two methods yield 80% power to detect medium
effect sizes with N< 100: detection of LH surge and a backward estimate with confirmed onset of
next menses. We recommend sample sizes of 50+and 80+, respectively (see Tables 6, S3).
Stunningly, within-subject studies with these sample sizes can be as informative as between-subject
studies of 1000+ (specifically, if the correlation between the dependent variable assessed at low
fertility and high fertility is .5 or greater).

Researchers will not detect LH surges for some women recruited for participation —

typically, up to one third ofthe recruited sample (e.g., Gangestad et al., 2005; Larson et al., 2013).
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Some of these women are precisely those one wishes to exclude, as their current cycle is anovulatory
or irregular, with day of ovulation not well predicted by a counting method. Nonetheless, if
researchers target a final sample size of 50 women, they might need to recruit 75 women, close to
the same number required fora backward count method with confirmed onset of next menses (with
10-15% attrition due to lack of follow-up; e.g., Larson et al., 2013). Perhaps the primary trade-
offdictating choice between these two methods, then, is the benefit of increased certainty of
confirmed ovulation with ILH sticks and the cost in money, time, and effort that LH surge detection
entails. If taken for 5 consecutive days in the presumed high-fertility window, LH sticks typically run
< $10 per participant.

Recommendation 3: Assay reproductive hormones instead. As ovulatory cycle shifts likely arise as a
function of changing hormonal levels, studies that examine covariation of estradiol, progesterone,
and testosterone levels with variables of interest across time are desired (e.g., Welling et al., 2007;
Puts et al., 2013; Grillot, Simmons, Lukaszewski, & Roney, 2014). They do not require researchers
to assess timing of ovulation per se. We recommend this form of study independent of the validity
of conception probability measures(as specific hormones may have different effects; e.g., DeBruine
et al., 2005; Jones et al., 2005) but recognize that they are costly.Given low validity of most counting
methods, however, some researchers might find these costsworth their expense. Once again, within-
subject studies are most powerful. Because hormonal effects are likely a function of both hormone
levels and tissue-specific receptor density (for which there could be meaningful individual
differences), researchers may be interested in examining both within-woman and between-woman
hormonal correlates (see Roney & Simmons, 2013, on potential time-lagged correlation). If
researchers sample hormones every other day or more frequently, they can also identify the timing

of ovulation within the study (see, e.g., Roney & Simmons, 2013; see also Puts et al., 2013).
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Excclusion of days and loss of participants. One research strategy is to collect data on a large
sample of women and then remove participants whose sessionsdo not, with at least modest
probability, fall into the fertile and nonfertile phases. Classification is relatively accurate in the
resulting sample. Hence, for instance, one can classify the 5 days running from 10-14 (those with
conception probability > .07; Wilcox et al., 2001) as “fertile” and the days 1-7 and 21 and greater
(those with conception probability < .02; Wilcox et al., 2001) as “non-fertile,” leaving the 8 days
from 8-10 and 16-20 unclassified and therefore unanalyzed. Whereas a forward 6-day window based
on Wilcox et al. has a validity of .43, this classification variable has a validity of .60.

But will this approach increase power?No. The benefits of enhanced validity of
measurement are offset by thereduced sample size. For example, with validity of .60, the 5-day
discrete fertile window above yields 80% power to detect an effect size ofd = .5 with a sample of
622. However, it eliminates, on average, 29% of a sample. Therefore, to achieve a final sample size
of 622, one should run 860 women. Averaging forward and backward continuous estimates based
on typical cycle length yields 80% power with740 women.

Trimming a sample has other costs, too: it eliminates potentially informative data and raises
suspicions of post hoc data analytic decisions (e.g., see Gelman & Loken, 2013). Just as Preacher et
al. (2005) do not recommend ad hoc extreme group selection, we do not recommend trimming a
sample to more cleanly define high- and low-fertility groups.

Rather than trimming a sample, researchers can oversample women in the fertile phase of
the cycle by using a pre-screening instrument. Naturally, pre-screening to target specific days of the
cycle has effects on power similar to the effect oftrimming a sample. Yet Gonzales and Ferrer (2015)
estimated that large sample size (>200) is typically necessary even when researchers sample just two
sets of days in a between-subject design: A 1-6 day high fertility window and a low fertility window

during the luteal phase.
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4.2 Evaluations of the Existing Research Findings: Statistical Power and Effect Sige Estimation

Potentially, our findings have profound implications for interpreting the extant literature on
ovulatory cycle shifts (see also Gonzales & Ferrer, 2015). As noted eatlier, findings are variable —
e.g., 40% of Gildersleeve et al.’s (2014a) subsample of 42 studiestargeting core mate preference
shifts produced significant effects. As some of these studies yielded mixed findings — some
significant, others not - effects of interest were detected at a rate closer to 30%.But as also noted, p-
curves of significant effects are robustly rightskewed, with a large proportion of them being <.01. A
p-curve’s right skew 1s purportedly a signature of real non-zero effects (Simonsohn et al., 2014 -
thoughwe acknowledge that p-curve analysis is a relatively new technique and requires additional
evaluation). Thus, while at least some findingsmay wellreflect true effects, significant effects are not
detected in most studies. What explains this pattern?

Statistical power plays a role. In 100 exact replicates of a study, each with precisely 30%
power to detect a true effect, 30% will, on average, detect the effect. The same is true of a set of
studies of varying sample sizes assessing effects of heterogeneous size, with a mean of 30% power.
The p-curves Gildersleeve et al. (2014b) presentedyieldestimates of mean power in the studies
entered into it. The pattern of observed p-values closely follows the theoretical curve expected if
power is 33%.(A larger sample of effectsyielded the same estimate; Gangestad, Grebe, Gildersleeve
& Haselton, unpublished). Hence, power roughly matches the rate of positive effects observed in
Gildersleeve et al.’s (2014a) narrow sample.

As noted above, power, in turn, is a function of effect size and sample size. So why 1s power
poor — because true effects are exceedingly weak or because NN is insufficient to detect meaningful
true effect sizes? Here, our findings are pertinent: In light of the weak validity of counting methods
for the assessment of conception probability, the sample size of most studies in the literature may

possess woefully inadequate power to detect even medium to large true effect sizes.
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Though a review of past findingsis beyond the scope of this paper, we use the Gildersleeve
et al. (2014a) meta-analysis sample to illustrate this point. Of the 42 studies in the“narrow”’sample,
24 and 18 studies implemented between-subjects and within-subject designs, respectively. Just 3 of
42 studies assessed ILH, and 4 used a backward method with confirmednext menstrual onset. Of the
remaining studies, about half (18) exclusively relied on a forward counting method, andthe rest (17)
used backward counting or a mixture of methods. At the median, then, conception probability
estimations likely had validity ~.50. The median sample sizeswere 118 and 29for between- and
within-subjects designs, respectively. Given validity of .50 and these sample sizes, power to detect a
medium effect size of .5 would be 17% and 24%, respectively, which yields a weighted average of
20%.Power to detect a large effect size of .8would be 35% and 41%, which yields a weighted average
of 37%.1t is hardly surprising, then, that fewer than half of these studies produced significant effects,
even if true effects are, on average, of medium or large size.

Of course, some studies had even weaker power. For instance, Rupp et al.’s (2009) between-
subject study of 13 women, using a continuous forward estimate (estimated validity = .52), had 5%
power to detect a 4 of .5. Mote surprisingly, some large studiesyielded stunningly low power too.
Harris’s (2011) study of 258 women’s fertility status using a discrete forward estimate of 8 days (days
6-14; estimated validity = .43), for instance, had an astonishingly small 25% power to detect a 4 of .5.

Naturally, if the proportion of effects in these studies that were significant slightly exceeds
their median power to detect an effect size of .5, then one might also expect an average effect size of
about .5. Gildersleeve et al. (2014a,b) estimated mean effect sizes of .26 and .20 for effects on
preferences in short-term and unspecified mating contexts, while their p-curve yielded an estimate of
.30. A mean observed effect size of ~.25 may seem inconsistent with true effect size of ~.5. Yet a
true effect size of .5 means that 7zehigh and low fertility group means differ by .50f a standard

deviation. Once again, when measurement of conception probability is poor, manifest effect size
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falls well short of.5. Specifically, if validity of measurement is .5 and true effect size 1s.5, manifest
effect size 1s expected to be .24— close to values Gildersleeve et al. (2014a,b) report.Hence, a true
mean effect size of .5 is consistent with findings to date in light of low validity of methods used to
assess conception probability.

To propose that low power possibly explains, in part, the mixed nature of results in studies
to date is not to arguethat every preference shift examined to date is real. Indeed, some recent
studies that have failed to find cycle shifts have had considerable power. Zietch et al. (in press) and
Munoz-Reyes et al. (2014), for instance, examined the association between fertility status and
preference for facial masculinity in sample sizes close to 600 and 500, respectively. They should have
had 60-70% power to detect medium effects (see Table 4),but neither study detected an effect,
withmean effect size close to zero. As other recent studies examining cycle shifts in ozher preferences
have found positive effects (e.g., Canta et al., 2014; Giebel et al., 2013), we suspect that another
reason for mixed results in this area is heterogeneity of true effects across different kinds of
preferences (see Gangestad et al., unpublished). Whereas some preference shifts may be robust and
substantial, others may be negligible. To identify which effects are robust, additional, appropriately
poweredstudies are needed.

4.3 Summary and Conclusions

Psychological effects of the ovulatory cycle have garnered increasingly broad interest in the
evolutionary and social sciences, spurring many dozens of studies and considerable controversy over
their robustness. An unusual feature of this literature is the exceptionally broad diversity of methods
used to assess the key variable in question — fertility within the cycle. We sought toempirically
estimate validities of these methods using a large set of simulated cycles whose distributional

characteristics closely match those of real cycles. Results were striking, and yield two outcomes: (1) a
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set of recommendations for researchers and (2) important implications for understanding the true
magnitude of cycle shift phenomena.

If researchers adopt the methodological standards we suggest, several welcome advances
should follow. First, by following these standards, researchers will help to assuage concerns that
methodological flexibility has produced false positives in an absence of true cycle shifts. Second,
more uniform standards will allow for acoherent comparison across studies of psychological
variables of interest, identifying where cycle shifts are present and absent. Third, if our analysis of
the extant literature in light of low validity is correct, higher validity methods are likely to revealcycle
shifts considerably larger and more robust than previous estimates. If such findings indeed emerge
as methods improve, they will shed light on a potentially important role for fertility in regulating

human social behavior, paralleling widely established patterns in our nonhuman cousins.



Assessing Conception Probability 35

References

Ahrens, K. A, Vladutir, C. J., Mumford, C. L., Schliep, K. C., Perkins, N. J., Wactawski-Wende, J.,
Schisterman, E. F. (2014). The effect of physical activity across the cycle on reproductive
tunction. Annals of Epidemiology, 24, 127-134.

Baird, D. D., McConnaughey, R., Weinberg, C. R., Musey, P. I, Collins, D. C., Kesner, J. S., Knecht,
E. A., & Wilcox, A. . (1995). Application of a method for estimating day of ovulation using
urinary estrogen and progesterone metabolites. Fpidemiology, 6, 547-550.

Burriss, R. P., Troscianko, J., Lovell, P. G, Fulford, A. J. C., Stevens, M., Quigley, R., Payne, J.,
Saxton, T. K., & Rowland, H. M. (2015). Women’s changes in skin color across the ovulatory
cycle are not detectable by the human visual system. PLoS ONE, DOL:

10:1371 /journal.pone.0130093.

Canty, S. M., Simpson, J. A., Griskevicius, V. Weisberg, J. Y., Durante, K. M., & Beal, D. J. (2014).
Fertile and selectively flirty: Women’s behavior toward men changes across the ovulatory cycle.
Psychological Science, 25, 431-438.

Cobey, C. D. (2013). Men perceive their female partners, and themselves, as more attractive around
ovulation. Bzological Psychology, 94, 513-516.

Cole, L. A., Ladner, D. G., & Byrn, F. W. (2009). The normal variabilities of the menstrual cycle.
Fertility and Sterility, 91, 522-527.

DeBruine, L. M., Jones, B. C., & Perrett, D. I. (2005). Women’s attractiveness judgments of self-
resembling faces change across the menstrual cycle. Hormmones and Bebavior, 47, 379-383.

Direito, A., Bailly, S., Mariani, A., & Ecochard, R. (2013). Relationships between the luteinizing
hormone surge and other characteristics of the menstrual cycle in normally ovulating women.

Fertility and Sterility, 99, 279-285.



Assessing Conception Probability 36

Durante, K. M., Griskevicius, V., Hill, S. E., Perilloux, C., & Li, N. P. (2011). Ovulation, female
competition, and product choice: Hormonal influences on consumer behavior. Journal of
Consumer Research, 37,921-934.

Ellison, P. T., Lager, C., & Caffee, J. (1987). Low profiles of salivary progesterone in college
undergraduate women. Journal of Adolescent Health Care, 8, 204-207.

Fales, M. R., Gildersleeve, K. A., & Haselton, M. G. (2014). Exposure to percetved male rivals
increases testosterone on fertile days relative to nonfertile days of their partner’s ovulatory cycle.
Hormones and Bebavior, 65, 454-460.

Fehring, R., Schneider, M., & Raviele, K. (2006). Variability in the phases of the menstrual cycle.
Journal of Obstetric, Gynecologic, and Neonatal Nursing, 35, 376-384.

Gangestad, S. W., Garver-Apgar, C. E., Simpson, J. A., & Cousins, A. ]. (2007). Changes in women’s
mate preferences across the ovulatory cycle. Journal of Personality and Social Psychology, 92, 151-163.

Gangestad, S. W., & Thornhill, R. (1998). Menstrual cycle variation in women’s preference for the
scent of symmetrical men. Proceedings of the Royal Society of London B, 262, 727-733.

Gangestad, S. W., Thornhill, R., & Garver, C. E. (2002). Changes in women’s sexual interests and
their partners’ mate retention tactics across the menstrual cycle: Evidence for shifting conflicts
of interest. Proceedings of the Royal Society of London B, 269, 975-982.

Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2005). Women’s sexual interests across the
ovulatory cycle depend on primary partner fluctuating asymmetry. Proceedings of the Royal Society of
London B, 272, 2023-2027.

Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2010). Fertility in the cycle predicts
women’s interest in sexual opportunism. Evolution and Human Bebavior, 31, 400-411.

Gangestad, S. W., Garver-Apgar, C. E., Cousins, A. J., & Thornhill, R. (2014). Intersexual conflict

across the ovulatory cycle. Evolution and Human Bebavior, 35, 302-308.



Assessing Conception Probability 37

Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (in press). Women’s sexual interests across
the ovulatory cycle: Function and phylogeny. In D. M. Buss (Ed.), Handbook of evolutionary
psycholagy (2™ edition). New York: Wiley.

Garver-Apgar, C. E., Gangestad, S. W., & Thornhill, R. (2008). Hormonal correlates of women’s
mid-cycle preference for the scent of symmetry. Evolution and Human Bebavior, 49, 223-232.

Gelman, A., & Loken, E. (2014). The statistical crisis in science. Awmerican Scientist, 102, 460-465.

Giebel, G., Weierstall, R., Schauer, M., & Elbert, T (2013). Female attraction to appetitive aggressive
men is modulated by women’s menstrual cycle and men’s vulnerability to traumatic stress.
Ewolutionary Psychology, 11, 248-262.

Gildersleeve, K., &Haselton, M. G. (2014)..Are women more attractive at high fertility? A meta-analytic
revie. Unpublished manuscript.

Gildersleeve, K., Haselton, M. G., & Fales, M. (2014a). Do women’s mate preferences change across
the ovulatory cycle?: A meta-analytic review. Psychological Bulletin, 40, 1205-1259.

Gildersleeve, K., Haselton, M. G.; & Fales, M. (2014b). Meta-analyses and p-curves support robust
cycle shifts in mate preferences: Response to Wood & Carden and Harris, Pashler & Mickes
(2014). Psychological Bulletin, 40, 1272-1280.

Gildersleeve, K., Haselton M. G., Larson, C. M. & Pillsworth, E. G. (2012). Body odor
attractiveness as a cue of impending ovulation in women: Evidence from a study using
hormone-confirmed ovulation. Homnones and Behavior, 61, 157-161.

Gonzales, J. E., & Ferrer, E. (2015). Efficacy of methods for ovulation estimation and their effect
on the statistical detection of ovulation-linked behavioral fluctuations. Bebavior Research Methods,
1-20.

Grammer, K. (1993). 5-a-androst-16en-3a-on: A male pheromone? A brief report. Ethology and

Soczobiology, 14, 201-208.



Assessing Conception Probability 38

Grillot, R. Simmons, Z. L., Lukaszewski, A. W., & Roney, J. R. (2014). Hormonal and

morphological predictors of women’s body attractiveness. Evolution and Human Bebavior, 35, 176-

183.2014
Guermandi, E., Vegetti, W., Bianchi, M. M., Uglietti, A., Ragni, G., & Crossignani, P. (2001).

Reliability of ovulation tests in infertile women. Obstretrics and Gynecology, 97, 92-96.

Harper, M.J.K. (1994). Gamete and zygote transport. In Nobil E. and Neill ].D. (Eds.). The Physiology

of Reproduction, 2nd edition. Raven Press Ltd., New York, NY, pp. 123-187.

Harris, C. R. (2011). Menstrual cycle and facial preferences reconsidered. Sex Roles, 64, 669-681.

Harris, C. R., Pashler, H., & Mickes, L. (2014) Elastic analysis procedures: An incurable (but
preventable) problem in the fertility effect literature: Comment on Gildersleeve, Haselton, &
Fales (2014). Psychological Bulletin, 40,1260-1264.

Haselton, M. G., &Gildersleeve, K. A. Can men detect ovulation? Current Directions in Psychological
Science,61,157-161.

Jochle, W. (1973). Coitus induced ovulation. Contraception, 7, 523-564.

Jones, B. C., Little, A. C., Boothroyd, L., DeBruine, L. M., Feinberg, D. R., Law Smith, M. J.,
Cornwell, R. E., & Perrett, D. I. (2005). Commitment to relationships and preferences for
femininity and apparent health in faces are strongest on days of the menstrual cycle when
progesterone level is high. Hormmones and Bebavior, 48, 283-290.

Jucik, A. M. Z., Weinberg, C. R., Wilcox, A. J., McConnaughey, D. R., Hornsby, P., & Baird, D. D.

(2008). Accuracy of reporting of menstrual cycle length. American Journal of Epidemiology, 167, 25-

33.

Larson, C. M., Haselton, M. G., Gildersleeve, K. A., & Pillsworth, C. G. (2013). Changes in women’s

feelings about their romantic relationships across the ovulatory cycle. Hornones and Bebavior, 63,

128-135.



Assessing Conception Probability 39

Larson, C. M., Pillsworth, C. G., & Haselton, M. G. (2012). Ovulatory shifts in women’s attractions
to primary partners and other men: Further evidence of the important of primary partner sexual
attractiveness. PLoS ONE, 7, ¢44456. DOI: 10.1371/journal.pone.0044456

Lenton, E. A., Landgren, B. M., & Sexton, L. (1984). Normal variation in the length of the luteal
phase of the menstrual cycle. British Journal of Obstetrics and Gynecology, 91, 685-689.

Little, A. C., Jones, B. C., & Burriss, R. P. (2007). Preferences for masculinity in male bodies change
across the menstrual cycle. Hormones and Bebhavior,31, 633-639.

Munoz-Reyes, Iglesias-Julios, M., Martin-Elola, C., Losada-Perez, M., Monedero, 1., Pita, M., &
Turiegano, E. (2014). Changes in preference for male faces across the menstrual cycle in a
Spanish population. Anales de Psicologia, 30, 667-675.

Neuberg, S. L., Kenrick, D. T., & Schaller, M. (2010). Evolutionary social psychology. In S. T.
Fiske, D. Gilbert, and G. Lindzey (Eds.), Handbook of social psychology (pp. 761-796). New York:
John Wiley & Sons.

Park, S. J., Goldsmith, L. T., Skurnick, J., H., Wojtczuk, A., & Weiss, G. (2007). Characteristics of
the urinary luteinizing hormone surge in young ovulatory women. Ferzility and Sterility, 88, 684-
690.

Penton-Voak, LS., Perrett, D. 1., Castles, D., Burt, M., Koyabashi, T., & Murray, L. K. (1999).
Female preference for male faces changes cyclically. Nazure, 399, 741-742.

Pillsworth, E. G., & Haselton, M. G. (2006). Male sexual attractiveness predicts differential
ovulatory shifts in female extra-pair attraction and male mate retention. Evolution and Human
Bebavior,27, 247-258.

Preacher, K. R., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme
groups approach: A critical reexamination and new recommendations. Psychologzcal Methods, 10,

178-192.



Assessing Conception Probability 40

Puts, D. A. (2005). Mating context and menstrual phase affect women’s preferences for male voice

pitch. Evolution and Human Behavior, 26, 388-397.

Puts, D. A. (20006). Cyclic variation in women’s preferences for masculine traits: Potential hormonal

causes. Human Nature, 17, 114-127.

Puts, D. A., Bailey, D. H., Cardenas, R. A., Burriss, R. P., Welling, I.. L. M., Wheatley, J. R., &
Dawood, K. (2013). Women’s attractiveness changes with estradiol and progesterone across the
ovulatory cycle. Hormones and Behavior, 63, 13-19.

Roney, J. R. & Simmons, Z. L. (2013). Hormonal predictors of women’s sexual desire in normal
menstrual cycles. Hormone and Bebavior, 63, 636-645.

Rupp, H. A,, James, T. W., Ketterson, E. D., Sengelaub, D. R., Janssen, E., & Heiman, . R. (2009).
Neural activation in the orbitofrontal cortex in response to male faces increases during the
follicular phase. Hormones and Bebavior, 56, 66-72.

Simonsohn, U., Nelson, L. D.; & Simmons, J. P. (20140. P-curve: A key to the file drawer.Journal of
Experimental Psychology: General,143, 534-537.

Small, C. M., Manatunga, A. K., & Marcus, M. (2009). Validity of self-reported menstrual cycle
length. Annals of Epidemiology, 17, 163-170.

Stirnemann, J. J., Samson, A., Bernard, J-P., & Thalabard, J-C. (2013). Day-specific probabilities of
conception in fertile cycles resulting in spontaneous pregnancies. Human Reproduction, 28, 1110-
1116.

Symons, D. (1979). The evolution of human sexuality. New York: Oxford University Press.

Thornhill, R., & Gangestad, S. W. (2008). The evolutionary biology of human female sexuality. New York:

Oxford University Press.



Assessing Conception Probability 41

Wegienka, G., & Baird, D. D. (2005). A comparison of recalled date of last menstrual period with
prospectively recorded dates. Journal of Women’s Health, 14, 248-252.

Welling, L. I.. M., Jones, B. C., DeBruine, L. M., Conway, C. A., Law Smith, M. J., Little, A. C.,
Feinberg, D. R., Sharp, M. A., & Al-Dujaili, E. A. (2007). Raised salivary testosterone in women
is associated with increased attraction to masculine faces. Hormzones and Behavior, 52, 156-161.

Wilcox, A. J., Duncan, D. B., Weinberg, C. R., Trussell, J., & Baird, D. D. (2001). Likelihood of
conception with a single act of intercourse: Providing benchmark rates for assessment of post-
coital contraceptives. Contraception,63, 211-215.

Wilcox, A. J., Weinberg, C. R., & Baird, B. D. (1995). Timing of sexual intercourse in relation to
ovulation. New England Journal of Medicine,333, 1517-1521.

Wood, W., Kressel, L., Joshi, P. D. & Louie, B. (2014). Meta-analysis of menstrual cycle effects on
mate preferences. Emotion Review, 6, 229-249.

Zietsch, B. P, Lee, A. J., Sherlock, J. M., & Jern, P. (in press). Variation in women’s facial
masculinity preference is better explained by genetic differences than by previously identified

context-dependent effects. Psychological Science.



Assessing Conception Probability 42

Table 1

Characteristics of the Simulated Representative Sample

Observed Target
Mean SD Mean SD
Cycle Length 28.56 3.39 28.56' 3.34
Length of the Follicular Phase 15.00 3.44 14.96° 3.40
Length of the Luteal Phase 13.56 2.02 13.50° 2.00

Pearson Product-Moment Correlation Coefficients

Observed Target
Lengths of the Follicular and Luteal Phases =317 -.300*
Lengths of Cycle and Follicular Phase .825 829!
Lengths of Cycle and Luteal Phase 276 255"

Notes. N = 56,345

'Based on Fehring et al. (2006)

*Based on Stirnemann et al. (2013)

"Based on Lenton et al. (1984), Baird et al. (1995), Fehring et al. (2006), Cole et al. (2009)

“Based on Fehring et al. (2006) and Cole et al. (2009); Value reported in Fehring et al.: -.323
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Table 2

Discrete High Fertility Windows Examined in Our Analyses

Forward Backward

Length (days) Wilcox et al.Stirnemann et al.

6 11-16 10-15 14-19
7 10-16 9-15 14-20
8 10-17 9-16 13-20
9 9-17 8-16 13-21

Notes. Forward windows are ranges of forward counting days. Backward windows are ranges of
reverse counting days. Ranges under “Wilcox et al.” maximize conception probability using daily
values reported by Wilcox et al. (2001). Ranges under “Stirnemann et al.” maximize conception

probability using daily values reported by Stirnemann et al. (2013).
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Validities of Measures of Conception Risk / Fertility Status

Conception Probability
Forward

Backward — known
backward — report .7
Backward — report .5
In Fertile Window
Forward

Backward — known
Backward — report .7

Backward — report .5

Continuous Discrete Windows
Single Average 6 7 8 9
.521 / .555 432 /.480 480 /.502  .465/.505 493 / .509
700 / .678  .654 / .655 .659 671 .661 .650
567 /.560 570 / .582 472 495 502 513
.531/.528 550 /.565  .424 449 457 470
.510 / .551 A16 / 473 469 /.500 452/ .499 484 / 506
704 / .690 651 /.660  .657 .675 .658 .649
564 / 563 562 /.582 463 492 494 509
527 / .529 546 / .564 417 445 450 465

Notes. N = 56,345. Conception Probability, In Fertile Window: two criterion measures. Forward: a forward estimate of conception risk; Backward —
known: a backward estimate based on confirmedfirst day of next menses; Backward — report .7: a backward estimate based on self-reported typical cycle
length, with validity .7; Backward — report .5: a backward estimate based on self-reported typical cycle length, with validity .5. For continuous measures
and forward windows, two estimates are reported, separated by a slash: ones based on Wilcox et al. (2001) (before slash); ones based on Stirnemann et
al. (2013) (after slash). 6, 7, 8, 9: Number of days in the high fertility window. Bold values: Highest validities on row, within Wilcox et al./Stirnemann et

al. sets.
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Table 4

Sample Size Necessary to Achieve 80% and 70% Power: Between-Subjects Studies with
Representative Sampling

Cohen’s 4
4 5 .6 7 8

Equivalent » .150 .187 222 257 291
Validity of Conception Risk Measure
1.0 344 222 156 116 90

271 175 123 92 71
.85 477 309 217 162 126

375 243 171 127 99
.70 705 456 321 239 187

554 359 252 189 147
.55 1143 740 521 389 302

898 581 410 306 239

43 1872 1213 854 638 498

1469 952 671 501 391

Notes. Ns needed for 80% power given in the top row; Ns needed for 70% power given in the
bottom row (italicized). Cohen’s 4: true standardized difference between high fertility and low
fertility means. Equivalent 7 Value of » Cohen’s 4 translates to with representative sampling (5 of
every 28.5 women being in the fertile phase). Bolded values: Recommended sample size to achieve
adequate power. Two-tailed tests assumed.
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Table 5

Sample Size Necessary to Achieve 80% and 70% Power: Within-Subjects Studies

Cohen’s 4
5 8

racross phases:.3 .5 7 ) .5 7
1.0 47 34 22 20 15 12

37 27 17 16 12 8
.85 65 48 30 28 21 14

51 38 24 22 17 12
.70 96 71 45 42 32 22

76 56 36 33 25 17
.55 157 116 74 69 52 36

123 971 58 54 41 29
43 258 190 122 113 86 60

202 149 96 89 68 47

Notes. Left-hand column: Validity of measurement of conception risk. Ns needed for 80% power
given in the top row; Ns needed for 70% power given in the bottom row (italicized). Cohen’s 4: true
standardized difference between high fertility and low fertility means. Bolded values: Recommended
sample size to achieve adequate power. Two-tailed tests assumed.

Validities listed — e.g., .7, .55, .43 — correspond to validities for designs that sample women twice
during the cycle on representative days, not targeted days, using backward estimate with next
menstruation confirmed, average of forward and backward using typical cycle length, and forward
estimate using discrete windows. Many within-subject studies, however, target specific high fertility
and low fertility dates. Such designs afford greater power, though how much depends on precisely
how days were targeted. We estimate that designs that assess women twice during a cycle during
targeted high and low fertility windows, based on counting methods, typically achieve validity ~.1
greater than that achieved with representative sampling. Hence, for instance, a study that used a
backward design with onset of next menstruation confirmed would typically have a validity of
measurement of .7. Yet if high fertility and low fertility days are targeted, validity might increase to
.8. 80% power to detect an effect size of .5 then might be achieved with a sample size of about 55,
as opposed to 71. Readers should treat these values as guidelines.
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Figure Captions

Figure 1. Hypothetical cycle of a woman whose cycle length was 28 and day of ovulation was day 14.
The “fertile window” in this cycle extends from forward count day 9 to forward count day 14. By
the reverse count, her day of ovulation was day 15, and her fertile phase was reverse count day 20 to

reverse count day 15. The follicular phase ends at ovulation. The luteal phase begins at ovulation.

Figure 2. Probabilities of conception resulting from a single act of intercourse by day of the cycle
estimated by Wilcox et al. (2001). For any given cycle, the fertile window lasts up to 6 days, with
varying probabilities of conception resulting from a single act of intercourse (maximal 1-2 days prior
to day of ovulation). Mean day of ovulation (length of the follicular phase) is 15. But day of
ovulation varies across cycles, both within and between women. Probabilities for conception, then,
are a function of (a) the distribution of follicular phase lengths, and (b) variation in probabilities of

conception actross days within the fertile window.
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