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A B S T R A C T

We take three flow simulators, all based on Darcy’s Law but with different numerical solver implementations, to
assess some of the issues surrounding their use to model underground CO2 storage. We focus on the Sleipner CO2

injection project, which, with its seismic monitoring datasets, provides unique insights into CO2 plume devel-
opment during a large-scale injection operation. The case studies firstly compare simulator performance in terms
of outputs and run-times on carefully matched model scenarios; then we compare numerical with analytical
Darcy solutions to explore the potential for modelling simplification; finally we look at the effects of including
conservation of energy in the simulations. The initial case-study used simplified axisymmetric model geometry to
simulate the upward flux of CO2 through a heterogeneous reservoir, incorporating multiphase flow with coupled
CO2 dissolution into formation brine. All three codes produced near-identical results with respect to CO2 mi-
gration velocity and total upward CO2 flux at the reservoir top. The second case-study involved 3D modelling of
the growth of the topmost layer of CO2 trapped and migrating beneath topseal topography. Again the three codes
showed excellent agreement. In the third case-study the simulators were tested against a simplified analytical
solution for gravity currents to model the spreading of a single CO2 layer beneath a flat caprock. Neglecting
capillary effects, the numerical models showed similar layer migration and geometry to the analytical model, but
it was necessary to minimise the effects of numerical dispersion by adopting very fine cell thicknesses. The final
case-study was designed to test the non-isothermal effects of injecting CO2 into a reservoir at non-ambient
temperature. Only two of the simulators solve for conservation of energy, but both showed a near identical
thermal anomaly, dominated by Joule-Thomson effects. These can be significant, particularly where reservoir
conditions are close to the critical point for CO2 where property variations can significantly affect plume mo-
bility and also seismic response. In conclusion, the three simulators show robust consistency, any differences far
less than would result from geological parameter uncertainty and limitations of model resolution. In this respect
the three implementations are significantly different in terms of computing resource requirement and it is clear
that approaches with simplified physics will pay rich dividends in allowing more detailed reservoir hetero-
geneity to be included. Contrary to this, including conservation of energy is heavier on computing time but is
likely to be required for storage scenarios where the injectant stream is significantly different in temperature to
the reservoir and most critically for shallower storage reservoirs where CO2 is close to its critical point.

1. Introduction

Numerical simulations are a vital tool for understanding the short,
medium and long-term fate of CO2 injected in the subsurface. Indeed,
one of the key regulatory requirements outlined in the European
Directive on CO2 storage (EU, 2009) is to demonstrate “…. conformity
of the actual behaviour of the injected CO2 with the modelled beha-
viour”. It is important therefore to determine the validity and applic-
ability of numerical simulators for reproducing the key coupled

processes related to flow of CO2 in the reservoir.
Here we look at three commonly used numerical simulators to as-

sess their efficacy for modelling underground CO2 storage. The assess-
ment is in three parts. First we test the comparative performance of the
simulators on two identical model scenarios – one with axisymmetric
geometry, one with full 3D geometry. Second we compare the numer-
ical results with analytical solutions for a spreading CO2 layer. Finally
we assess the degree to which it is necessary to include thermal effects
in CO2 flow simulation.
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Various authors (e.g. Pruess, 2005; Class et al., 2009) have run code
comparisons on CO2 injection problems; some have focussed on hy-
pothetical test cases and others such as Singh et al. (2010) have utilised
calibration data from a real injection project. In all these cases a sa-
tisfactory match between the codes was obtained but with some dif-
ferences that can largely be ascribed to variation in modelling im-
plementation between the operators at the various institutes carrying
out the code comparison.

Our comparison differs somewhat from previous studies in that all
three simulators were tested in-house (at BGS), with model meshes
carefully designed to be as identical and/or equivalent as practicable. In
this way, modelling differences due to ‘operator-effect’ were largely
eliminated.

For this study we deployed three simulators: TOUGH2 from
Lawrence Berkeley National Laboratory (Pruess, 2004); ECLIPSE 100
the industry-standard black oil simulator from Schlumberger
(Schlumberger 2011); PFLOTRAN an open-source parallel subsurface
flow and reactive transport code (Lichtner et al., 2015). All three are
based on established multi-phase implementations of Darcy’s Law for
fluid flow in a porous medium.

The CO2 storage project at Sleipner (Baklid et al., 1996) has a
comprehensive time-lapse seismic monitoring programme which pro-
vides unique detail on large-scale CO2 plume development. The case-
study simulations presented here are based around these monitoring
results, for overall realism, and to enable us to explore some of the
issues around the numerical simulation of actual physical processes. But
it is important to stress that we do not attempt to obtain exact history-
matches of the Sleipner monitoring data; this is a multi-faceted task
outside the scope and aims of our comparative study.

1.1. The Sleipner CO2 storage operation

CO2 separated from natural gas produced at the Sleipner field in the
North Sea (Norwegian block 15/9) is being injected into the Utsira
Sand, a regional saline aquifer of late Cenozoic age (Fig. 1). The aquifer
comprises mostly unconsolidated sand of high porosity (> 30%) and
high permeability (> 1 Darcy) and is generally in excess of 200 m thick
in the Sleipner area. A number of thin intra-reservoir mudstones, ty-
pically 1–2 m thick, are evident from geophysical logs acquired in wells
around Sleipner (Fig. 1).

The CO2 is injected via a deviated well in a dense phase at a depth of
1012 m below sea level, approximately 200 m below the top of the
aquifer. Injection commenced in 1996 at a roughly constant rate, with
around 15 million tons of CO2 stored by 2016. The growth of the re-
sulting plume has been monitored using repeat time-lapse 3D seismic
data acquired in 1999, 2001, 2002, 2004, 2006, 2008 and 2010 (Fig. 2).

The CO2 is imaged on the seismic data as a number of high ampli-
tude sub-horizontal reflections within the reservoir (Fig. 2). Most of this
reflectivity is thought to arise from thin layers of CO2 trapped beneath
the intra-reservoir mudstones which are partially but not wholly sealing
(Arts et al., 2008; Chadwick et al., 2004, 2005, 2010; Chadwick and
Noy, 2015; Chadwick et al., 2016). The seismic data suggest that CO2

has migrated vertically upwards through the reservoir via a chimney in
the mudstones (Fig. 2) located a little to the south of the injection point.
Nine interpreted reflective layers had formed by 1999 (when CO2 first
reached the top of the reservoir), and each individual reflective layer
has remained mappable on all of the subsequent surveys.

1.2. Simulators used in the code comparison

ECLIPSE 100 is a fully implicit, 3D, 3-phase, isothermal black oil
simulator. Fluid Pressure-Volume-Temperature (PVT) properties are
interpolated from look-up tables as a function of pressure. The simu-
lations in this code comparison were run using block-centred geometry
(Schlumberger, 2011), with inter-block transmissibility calculated
using an arithmetic average of the cell interface area coupled with the

harmonic average of the permeability. The density and compressibility
of CO2 as a function of temperature were calculated using the Span and
Wagner (1996) equation-of-state and converted to the relevant black oil
representation using the scheme published by Hassanzadeh et al.
(2008): brine is represented as an oil phase in the simulator, allowing
for CO2 dissolution. Activity coefficients for CO2 and H2O were ob-
tained directly from the equation-of-state using the methodology de-
scribed by Spycher and Pruess (2005), while the solubility of CO2 in
brine was calculated according to Duan et al. (2006). Brine density and
viscosity were taken from the International Association for the Prop-
erties of Water and Steam tables, using Ezrokhi’s method to calculate
the density effect of salt and dissolved CO2 (Zaytsev and Aseyev, 1992).
The viscosity of CO2 was calculated as a function of temperature and
density using relationships published by Vesovic et al. (1990) and
Fenghour et al. (1998).

TOUGH2 was designed as a general purpose, multi-phase, non-iso-
thermal simulator (Pruess et al., 1999; Pruess, 2004). It uses integral
finite differences to achieve spatial discretisation, with fully implicit
time stepping. By default it implements an upstream weighting scheme
to calculate inter-node transmissibility coefficients, but this was
changed to a harmonic averaging scheme to match the ECLIPSE models.
The code comparison used the ECO2N fluid properties module (Pruess,
2005), which uses the methodology described by Spycher and Pruess
(2005) to compute activity coefficients. CO2 density and viscosity are
derived from correlations published by Altunin (1975); which provide a
very close approximation to the Span and Wagner (1996) equation-of-
state. These PVT correlations are used to generate tables of CO2 and
brine properties that are then interpolated during the computation to
obtain specific phase parameters. The solubility of CO2 in brine is cal-
culated according to Duan et al. (2006).

PFLOTRAN is an open-source, parallel subsurface flow and reactive
transport code, built on top of the PETSc family of PDE numerical

Fig. 1. Isopach map of the Utsira Sand and (inset) representative geophysical well logs
showing reservoir heterogeneity (γ-ray logs on the left tracks and resistivity logs on the
right tracks). The reservoir sand has characteristically low γ-ray and resistivity readings
so peaks within the sand denote thin mudstones.
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solvers (Lichtner et al., 2015). It contains a specific multiphase model of
the brine − CO2 fluid system (MPHASE), with CO2 density calculated
using the Span and Wagner (1996) equation-of-state. MPHASE calcu-
lates the viscosity of CO2 as a function of temperature and density using
relationships published by Fenghour et al. (1998). Again, the solubility
of CO2 in brine is calculated according to Duan et al. (2006). PFLO-
TRAN uses the International Formulation Committee of the Sixth In-
ternational Conference on Properties of Steam (Haywood, 1965) to
compute the density and viscosity of water. These PVT correlations are
used to generate tables of CO2 and brine properties that are then in-
terpolated during the computation to obtain specific phase parameters.

1.3. Reservoir and fluid properties

Reservoir temperatures were based on robust long-term measure-
ments from the nearby Volve water production operation, quoted in
Alnes et al. (2011). Reservoir pressures were assumed to be initially
hydrostatic. Internal fluid property modules supplied with TOUGH2
and PFLOTRAN were used to compute the density and viscosity of CO2

as a function of temperature and pressure (see above), with example
values shown in Table 1. Brine fluid properties were calculated for a
sodium chloride mass fraction of 0.032, giving a mean brine density
and viscosity of approximately 1020 kg m−3 and 8 × 10−4 Pa.s re-
spectively. The black oil parameters used in ECLIPSE100 were calcu-
lated using CO2 densities from the Span and Wagner (1996) equation-
of-state (see Table 1) using the scheme described by Hassanzadeh et al.
(2008).

1.4. The case-study simulations

Four case-study simulations have been used for our code compar-
ison, each of which was based around aspects of the Sleipner CO2 in-
jection operation described above. The first case-study aimed to ap-
proximate whole plume geometry in a vertically heterogeneous
reservoir using a 2D radial axisymmetric model. The second case-study
investigated the temporal evolution of the topmost CO2 layer in three-
dimensions (see Chadwick and Noy (2010) for more information). This
model is similar to the ‘Sleipner Benchmark’ released by Statoil in 2011
and described by Singh et al. (2010) and Cavanagh (2013). In the third
case-study the TOUGH2 simulator was compared with an analytical
solution for a single CO2 layer spreading beneath a flat caprock. The
final case-study, a simple axisymmetric model of a warm buoyant CO2

plume rising upward through a uniform sandstone reservoir, was used
to test the thermal modelling capabilities of two of the codes (PFLO-
TRAN and TOUGH2).

2. Case-study 1: 2D axisymmetric model code comparison

2.1. Model setup

The axisymmetric model for the full Sleipner plume used here has
previously been described by Chadwick et al. (2010) and Chadwick and
Noy (2015). It was created for the TOUGH2 simulator and incorporates
a 2D radial axisymmetric mesh, with 80 cells in the X (I) grid direction
increasing in width logarithmically with distance from the injection
well. The mesh is only one cell thick in the Y (J) direction, but the cell
volume increases with X so that it represents the full circumference at
the radial distance X from the injection well.

The simulation grid is divided vertically into 170 cells with variable
dimensions, chosen to give detailed resolution in the vicinity of the
injection point and to include the thin mudstone layers known to trap
CO2 in the reservoir. The top of the reservoir is positioned at a depth of
797 m below sea level, with the base of the reservoir at 1083 m. No-
flow boundary conditions were placed at the top, base and perimeter of
the model, although the grid extends to a radial distance of
2.5 × 105 m, effectively behaving as an “open aquifer” over the injec-
tion timescale.

The geological model comprises 16 stratigraphical layers: four
‘lower’ sands and five ‘upper’ sands, with intervening thin mudstones
and the topmost sand unit capped by 50 m of very low permeability
caprock (Table 2). Sand permeabilities are consistent with measure-
ments of 1.6–3.3 Darcy from a single core (Zweigel et al., 2004) but

Fig. 2. Cross-section from the time-lapse 3D seismic
data at Sleipner showing the baseline (1994) dataset
and selected repeat surveys. The amplitudes have
been normalised using the maximum survey ampli-
tude to facilitate comparison between vintages. Note
strong reflections corresponding to the CO2 plume
(top panels). Maps of the plume expressed as nor-
malised average absolute reflection amplitude in a
travel-time window containing the plume (bottom
panels). Line of cross-section is marked with a black
line in map view. Location of the plume feeder
chimney is indicated by a black circle in map view
and a black arrow on the seismic sections. Black
polygons from 2001 onwards mark the extent of the
topmost CO2 layer within the overall plume foot-
print.

Table 1
Representative CO2 fluid properties used in the code comparison. The values were cal-
culated using the Span and Wagner (1996) equation-of-state. Note that TOUGH2 uses
correlations published by Altunin (1975) to obtain CO2 fluid properties, however the two
formulations show excellent agreement within the PT range of the case-studies. These
properties were converted into black oil tables for ECLIPSE using the scheme described by
Hassanzadeh et al. (2008).

Depth Temperature (C) Pressure (MPa) Density (kg m−3) Viscosity (cP)

700 25.6 7.3 745.81 0.0620
750 27.2 7.8 740.85 0.0613
800 28.8 8.3 736.25 0.0607
850 30.3 8.8 733.39 0.0604
900 31.9 9.3 729.37 0.0599
950 33.5 9.8 725.62 0.0594
1000 35.1 10.4 725.41 0.0594
1050 36.7 10.9 722.04 0.0590
1100 38.3 11.4 718.89 0.0586
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modified following Chadwick and Noy (2015). The permeability of the
intra-reservoir mudstones was adjusted to allow CO2 to reach the top of
the reservoir by 1999, matching time-lapse seismic observations which
showed that CO2 had reached the caprock just prior to the (October)
1999 repeat survey. This constraint has resulted in a much higher ef-
fective permeability for the intra-reservoir mudstones than has been
measured on intact core samples of Sleipner caprock (around
4.0 × 10−7 Darcy, Harrington et al., 2010; Chadwick and Noy, 2015).
This ‘semi-permeable’ behaviour might reflect preferential flow through
pervasive small-scale fractures resulting in very low effective threshold
pressures (Cavanagh and Haszeldine, 2014) or higher permeability
feeder chimneys in the mudstones (Hermanrud et al., 2009).

Relative permeability and capillary pressure curves for CO2 and
brine in the Utsira Sand were computed by fitting a Van-Genuchten
model to measurements from core samples measured in the laboratory
(Eric Lindeberg personal communication). A similar function was used
for the mudstones, but with an order-of-magnitude increase in capillary
entry pressure (see Table 2 and Fig. 3).

A variable injection rate with a mean value of 27 kg s−1 was used,
based on the actual values measured at the wellhead (Ola Eiken, Statoil,
personal communication, see Fig. 3d).

2.2. Results

Sample results from the axisymmetric model comparison are pre-
sented as CO2 saturation profiles extracted at simulation time-steps
corresponding to the 1999, 2001 and 2006 seismic monitor surveys
(Fig. 4). For comparison with the observed data, markers show the
equivalent radial extent of each seismically mapped CO2 layer, calcu-
lated by fitting a circle with the same area as the observed layer area. It
is clear that the different codes produce remarkably consistent CO2

distributions in the plume, with individual layer spreading very con-
sistent between the models. The models also provide a reasonable
match to the layer extents mapped on seismic data but it is noticeable
that with time the modelled radii tend to progressively outstrip the
observed equivalent radii. This is to be expected, given that layer
spreading in the axisymmetric model is beneath perfectly flat mudstone
seals, whereas the real seals have a degree of undulation, with buoyant
ponding tending to retard spatial spread.

The relative consistency of each simulator in terms of advective
fluid mass transfer through the plume can be tested using the volu-
metric growth of the topmost CO2 layer and it is clear that the codes all
show excellent agreement in predicting this (Fig. 5). CO2 volume in the
topmost layer can also be derived from time-lapse seismic analysis (see
Chadwick and Noy, 2015 for methodology) and it is clear that the
model results are consistent with seismic observations, with the proviso
that very thin CO2 accumulations at low saturation (< 0.2) cannot be
reliably mapped on the time-lapse seismics (to account for this, only
CO2 saturations> 0.2 have been included in the simulated layer

volume curves).

3. Case study 2: 3D model code comparison

3.1. Model setup

Recent quantitative seismic analysis of CO2 plume migration at
Sleipner has focused on the topmost spreading layer in the plume (e.g.
Chadwick and Noy, 2015; Williams and Chadwick, 2012; Furre et al.,
2015). This layer lies directly beneath the reservoir caprock and is
clearly and stably imaged on time-lapse 3D seismic data, which pro-
vides reliable constraints for flow simulation.

The monitoring data show that growth of the topmost layer between
1999 and 2006 was accomplished by rapid lateral spreading of CO2 to
infill a topography of domes and ridges beneath the reservoir topseal
(Fig. 6).

The geological model for the code comparison is based on that de-
veloped by Chadwick and Noy (2015) and comprises a single uniform
sand unit, 16 m thick, with a porosity of 0.37 and a permeability of 8
Darcy. Relative permeability and capillary pressure curves for CO2 and
brine in the Utsira Sand were computed by fitting a Van-Genuchten
model to measurements from core samples measured in the laboratory
(Table 2 and Fig. 3a). The assigned permeability is substantially higher
than core-plug measurements (∼3 Darcy), but recent re-assessment of
regional permeability and wireline log data suggest that the perme-
ability of the topmost sand body might be significantly higher than
previously supposed (Williams and Chadwick, 2017). This is examined
further in the Discussion.

The top reservoir surface was mapped from the baseline (1994)
seismic dataset and depth-converted using a layer-cake velocity model
derived from available well data. The model was discretised using 60
50 × 50 m cells along the X axis and 111 50 × 50 m cells along the Y
axis. The 16 m thick reservoir was divided vertically into 8 × 2 m cells.
No-flow boundary conditions were placed at the top and base of this
layer (simulating an impermeable caprock and underlying mudstone
layer), while the lateral model domains were maintained at near hy-
drostatic pressure conditions. This was achieved by using large
boundary cells (TOUGH2 and PFLOTRAN) or a pore-volume multiplier
(ECLIPSE).

The flow model assumed a single feeder to the top layer of CO2

positioned at the prominent gas chimney observed on seismic data
(Fig. 2), with CO2 flux matched to volumes derived from the seismic
data (Fig. 5). Temperature in the sand unit was set to 29C in the si-
mulators and fluid properties were again calculated using the Span and
Wagner (1996) equation-of-state in ECLIPSE and PFLOTRAN and Al-
tunin’s (1975) correlations in TOUGH2 (Table 1).

3.2. Results

Results from the three models show the extent of the top spreading
layer at the time of the 2006 time-lapse seismic survey (Fig. 7). All
models show the dual effects of radial spreading from the CO2 source/
feeder with evidence of buoyancy-driven migration in the north-east
where the CO2 is starting to migrate northwards beneath the linear
ridge (Fig. 6).

As before, all three codes show good agreement in CO2 distributions
but with some variation in local migration patterns at the layer edges.
In the Eclipse 100 simulation more CO2 has spilled beyond the CO2-
water contact at the eastern margin of the grid compared to the
TOUGH2 or PFLOTRAN models. This reflects the fact that Eclipse 100 is
a black oil simulator that assumes a constant reservoir temperature.
This was set to the average temperature in the layer (∼30C), whereas a
temperature gradient was used in the TOUGH2 and PFLOTRAN model
runs. All of the simulation models are consistent with each other, but in
absolute terms they fail to match the observed extents of layer
spreading; this aspect is examined further in the Discussion.

Table 2
Rock units and physical properties used in the code comparison.

Property Caprock Upper Sand Lower Sand Intra-Reservoir
Mudstone

Porosity (−) 0.17 0.37 0.37 0.17
Permeability

(Darcy)
1.01325 × 10−7 3.03975 1.01325 1.31722 × 10−1

Van
Genucht-
en λ (−)

0.4 0.75 0.75 0.7

Slr (−) 0.2 0.05 0.05 0.05
Sgr (−) 0.05 0.05 0.05 0.05
Capillary

entry
pressure
(Pa)

2 × 106 1.5 × 103 1.5 × 103 1.65 × 104
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4. Case-study 3: comparison of numerical codes with an analytical
solution

The third case-study compares the numerical simulations with an
analytical solution employing similar but simplified physics for the
spreading of a single CO2 layer beneath a flat caprock.

4.1. Analytical solution

Lyle et al. (2005) and Bickle et al. (2007) presented analytical so-
lutions for gravity flows in a permeable medium with axisymmetric
symmetry. Their model (Fig. 8) comprises a porous permeable medium
filled with a fluid into which a less dense fluid is introduced along a line
source under an impermeable caprock. The fluid ponds under the ca-
prock and spreads radially. To obtain the solution several simplifying
assumptions were made, including no capillary pressure, no viscosity
difference, no relative permeability effects and constant fluid densities.

Darcy’s Law and the continuity (conservation of mass) equation give
key relationships between the rate of fluid input (αQt(α−1), where a
value α = 1 corresponds to release at constant flux Q (m3/s)), the ra-
dius of the spreading layer, rN(t) (m), as a function of time t (s), and the
thickness of the layer h (m) as a function of radial distance r (m), and
time (s).

The radius of the layer is given by:

=
+r η (α)(γQ/ϕ) tN(t) N

1
4 (α 1)/4 (1)

And the thickness is given by:

⎜ ⎟= ⎛
⎝

⎞
⎠

−h(r, t) η Q
(ϕγ)

t f(y)N

1
2

(α 1)/22
(2)

Where:

=
′

γ
ρkg
(ϕμ)

Ø is the porosity, k is permeability (m2), ρ is the density of the in-
troduced fluid (kg/m3), μ the viscosity of the introduced fluid (Pa s) and
g’ = gΔρ/ρ, the reduced gravity with Δρ the difference in density be-
tween the introduced fluid and the initial fluid filling the medium (kg/
m3). The similarity variable η is given by:
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⎝

⎞
⎠

−
− +η γQ

ϕ
rt

1
4

(α 1)/4

ηN (α) (i.e. η at r= rN) is a function of α only and is given by:

∫= ⎡
⎣⎢

⎤
⎦⎥

−

π yf y dyη 2 ( )N 0

1
1
4

Where the scaled similarity variable y = η/ηN ranges from 0 at the
source to 1 at the outer edge of the CO2 layer and f(y) is given by
numerical solution of the differential equation:

⎜ ⎟
⎛
⎝

⎞
⎠

+ + + − =α y
δf
δy

α yfd
dy

yf δf
δy

1
4

(1 ) 1
2

(1 ) 02

Given:

= + − →α y yf 1
4
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Fig. 3. (a) Relative permeability and capillary pressure curves for the Utsira sandstone. (b) Relative permeability and capillary pressure curves used for the silt/shale layers separating the
individual sandstone bodies. (c) Relative permeability and capillary pressure curves for the caprock. (d) The injection rate as a function of time used in the 2D axisymmetric model.
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This is a good approximation for f except when y is small, and ηN is
well approximated by:

= ⎡
⎣⎢ +

⎤
⎦⎥

η 12
π(1 α)N

1
4

Fig. 4. CO2 saturation profiles for the 2D axi-symmetric code comparison. Simulation time-steps corresponding to the 1999, 2001 and 2006 seismic surveys are shown for each code used
in the comparison. The grid cell containing the injection point is marked with an arrow in the lower left corner of each plot. White markers show the equivalent radial extent of each
seismically mapped layer.

Fig. 5. Volumetric growth of the topmost CO2 layer. Solid lines show volumes calculated
from the axisymmetric plume models with a CO2 saturation cut-off of 0.2. Black circles
show CO2 layer volume estimated from time-lapse seismic measurements. Fig. 6. Perspective view of the top reservoir (base topseal) surface, looking north.

Coloured polygons show the mapped extents of the topmost CO2 layer in 1999 (solid
white line), 2001 (black line) and 2006 (broken white line). Note the prominent north-
trending linear ridge demarcated by the layer extents in 2006. Distance from the southern
tip of the 2006 polygon to the northern tip is about 3000 m.
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The equations predict, that 1) for constant input flux (α= 1) the
radius of the CO2 layer will be proportional to the square root of time;
2) for constant flux the axial thickness of the layer h(0,t) is nearly in-
variant; 3) there are simple relationships between both the radius and
thickness of the layer and the input flux and physical parameters por-
osity, viscosity and permeability.

4.2. Numerical model setup

The numerical simulation of a single CO2 layer was carried out in
TOUGH2. An axisymmetric model was setup injecting dense-phase CO2

into the base of an aquifer 112 m thick with an impermeable caprock.
The mesh is highly refined, with elements 5 cm thick at the top of the
aquifer and 1 m wide out to a radius of 250 m, then gradually ex-
panding to the outer boundary at 20 km.

Key properties of the model are based broadly on Sleipner (Table 3),
with fluid properties as follows: brine salt mass fraction 0.032; brine
density 1020 kg m−3; brine viscosity 8.60 × 10−4 Pa s; CO2 density
720 kg m3; CO2 viscosity 5.93 × 10−5 Pa s. The injection point was
placed 102 m below the reservoir top with an injection rate of 10 kt per
year, the latter being of the same order as the CO2 supply to the topmost
layer at Sleipner.

The analytical model assumes identical reservoir and fluid proper-
ties and conditions as the numerical model, with a constant flux of 10 kt
per year of CO2 along an axial line source (Fig. 9).

4.3. Results

In the TOUGH2 model the CO2 rises in a thin buoyant column to the
base of the caprock and then spreads radially beneath it (Fig. 9). The
modelled layer is around 3–4 m thick in the axial part (above the feeder
column) thinning gradually towards its leading-edge. A steepening of
the CO2–water contact (CWC) towards the perimeter is an effect of
capillary resistance to flow of the CO2, defined by the capillary pressure
curve. CO2 saturations in the layer, again defined by the capillary
pressure curve, are generally high, but decrease towards the CWC
across a zone termed the capillary fringe. The analytical model (shown
as a black curve in Fig. 9) shows similar layer development and geo-
metry to the numerical model but with significant differences. The CWC
maintains a roughly uniform dip out to the layer edge and the layer
spreads rather further than in the numerical model. Full CO2 saturation
throughout the layer is implicit in the analytical model, because it does
not include capillary effects. Volumetrics require therefore that the
layer in the analytical model be somewhat thinner than in the numer-
ical model. The analytical solutions predict that for a constant injection
rate the axial thickness of the layer is invariant (Eq. (2)). This behaviour
is supported by the numerical model which maintains roughly constant
axial layer thicknesses through time (Fig. 9).

To examine the effects of capillary forces on layer geometry and
saturation a second scenario was developed, this time injecting 500 t of
CO2 per year (Fig. 10). A lower injection rate was selected because
capillary effects are relatively more significant in thinner layers and the
reduced injection rate provides this.

The first numerical model run included capillary pressure and
shows a familiar geometry with the CWC steepening towards the layer
edge with a saturation fringe (Fig. 10a). It is notable that the axial layer
thickness is smaller than those above, reflecting the smaller input flux.
The corresponding analytical model shows the familiar thinner layer
with somewhat wider spread and uniform CWC dip (shown as a black
line in Fig. 10a). The second numerical model run omitted capillary
pressure effects from the computation (Fig. 10b). The resulting layer
has full CO2 saturation throughout and shows a much improved match
to the analytical model in terms of both the layer spread and layer

Fig. 7. Extents of the topmost CO2 layer in 2006, some 2500 days after the start of layer
initiation in 1999. The bold white polygon delimits the lateral extent of the CO2 layer
mapped on 3D seismic data.

Fig. 8. Geometry and parameters of the layer spreading model (modified from Bickle
et al., 2007).

Table 3
Physical properties used in the numerical – analytical comparison.

Physical Properties Value

Caprock permeability (m2) 0.0
Sand porosity (−) 0.37
Sand permeability (m2) 1.00 × 10−12

Hydrostatic pressure (MPa) 8.0
Reservoir temperature (°C) 29

Fig. 9. Growth of a single CO2 layer with an injection rate of 10 kt y−1 Layer spread after
2 (a) and 10 (b) years from the numerical model with layer profiles from the analytical
solution shown as black lines (Eq. (2)).
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geometry.
In order to test for the effects of numerical dispersion, the model

mesh was modified such that the cell heights at the top of the reservoir
were increased from 5 cm to 25 cm (Fig. 11). Compared to the detailed
numerical model this had the effect of increasing the volume of each
modified grid cell and increasing the minimum layer thickness. One
consequence is to reduce the free phase CO2 saturation in the layer
(Fig. 11b) because the same amount of CO2 is distributed within a

greater volume in each cell. Another consequence is to reduce the layer
lateral spread at the top of the plume. This is an important point be-
cause accurate modelling of lateral plume migration is a key require-
ment for robust long-term storage prediction. It is notable that even in
the modified model (Fig. 11b) the layers are still very thin compared
with cell dimensions typically adopted for generalised reservoir flow
modelling, so this numerical dispersion effect is likely to be significant
in many flow models.

To further the numerical/analytical comparison, repeat model runs
were carried out in Eclipse 100 and PFLOTRAN with results that were,
to all intents and purposes, identical to those from TOUGH2. It is evi-
dent therefore that, at least for the growth of a single layer, the nu-
merical and analytical approaches give very comparable results. In the
numerical models, capillary pressure effects clearly influenced layer
geometries and saturations, especially for thinner layers, but when
these were removed (to match the analytical model assumptions), re-
sults were almost identical.

5. Case-study 4: thermal effects

Much of the flow simulation work traditionally carried out for CCS
assumes, for simplicity, that CO2 is injected at ambient reservoir con-
ditions. This is not usually the case. Depending on wellhead tempera-
ture and specific adiabatic conditions in the wellbore, CO2 will gen-
erally not have the same temperature as the reservoir at the injection
perforations. So, for example, when injecting into strongly depleted
fields, adiabatic decompression in the wellbore will lead to injecting
CO2 significantly colder than the reservoir. In contrast, at Sleipner
adiabatic compression in the wellbore leads to the injection of CO2

warmer than the surrounding reservoir. The temperature of the CO2 at
the injection perforations is estimated at∼48C or slightly above (Alnes
et al., 2011), around 13C warmer than ambient reservoir temperature
at the injection point. Furthermore, interpretation of the time-lapse
gravity data (Alnes et al., 2011) suggest that the average density of the
CO2 plume at Sleipner is compatible with its having a warm, less dense,
axial core.

The effects of a plume of warm buoyant CO2 rising to the top of the
reservoir without cooling to ambient reservoir temperature are worthy
of investigation. Two of the codes compared in this study (TOUGH2 and
PFLOTRAN) solve for conservation of energy and are suitable for
modelling heat propagation in a migrating CO2 plume.

A new axisymmetric model was set up, injecting CO2 at a rate of
27 kg s−1, but at 49C, into the base of a homogeneous sandstone re-
servoir 275 m thick and overlain by 750 m of low permeability shale
caprock (Table 4). This is simpler than the model shown in Fig. 4 in that
there are no intra-reservoir mudstones to interrupt the plume ascent to
the reservoir top.

The CO2 saturation distributions produced by the two simulators in
this simple reservoir model are to all intents and purposes identical
(Fig. 12), a simple buoyant axial column of CO2 rising above the in-
jection point and feeding a single CO2 layer spreading radially beneath
the caprock.

Fluid temperature distributions from the two models are also very

Fig. 10. Growth of a single CO2 layer with an injection rate of 500 ty−1 a) Numerical
model with capillary pressure b) Numerical model without capillary pressure. The black
line in a, b shows the CO2-water contact predicted by the analytical solution.

Fig. 11. The effects of numerical dispersion on growth of a single CO2 layer with an
injection rate of 500 ty−1 a) CO2 saturation after 6 years for a model with a mesh spacing
of 100 × 5 cm at the top of the reservoir b) CO2 saturation after 6 years for a model in
which the grid cell height has been increased from 5 to 25 cm.

Table 4
Rock units and physical properties used in the thermal code comparison.

Physical Properties Value

Caprock porosity (−) 0.17
Caprock permeability (Darcy) 1.01325 × 10−7

Caprock thermal conductivity (W/m/K) 4.2
Caprock specific heat capacity (J/Kg/K) 1.0+03
Sand porosity (−) 0.37
Sand permeability (Darcy) 3.03975
Sand thermal conductivity (W/m/K) 4.2
Sand specific heat capacity (J/Kg/K) 1.0+03
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similar, comprising an axial column of elevated fluid temperatures
above the injection point and a radially spreading thermal anomaly at
the reservoir top. It is noticeable that the thermal imprints of the rising
column and the spreading layer are of lesser spatial extent than the
corresponding fluid saturation features. This is because of radial heat
loss from the column into the surrounding reservoir and vertical heat
loss from the spreading layer into the caprock and underlying reservoir.
The thermal anomaly at the injection point is +14C, corresponding to
the temperature difference between the injected CO2 and the ambient
reservoir. Above the injection point the temperature anomaly reduces
to +8C at the reservoir top and reduces further radially, such that it
becomes negligible at distances more than about one third of the full
layer spread

More detail of the temperature evolution is revealed by a vertical
temperature profile through the grid cells immediately above the in-
jection point at a distance of 2.5 m from the model axis (Fig. 13a). Both
codes show a consistent temporal and spatial evolution of the thermal
anomaly. The dominant physical processes occurring in the model are
rapid vertical advection of warm CO2 combined with cooling due to
expansion as the hydrostatic pressure drops with elevation above the
injection point. Steady-state heat transfer occurs after ∼365 days, and
thereafter the vertical temperature profile closely approximates the
Joule-Thomson (JT) cooling curve (Fig. 13a) with a coefficient of 5C/
MPa for the warm buoyant CO2 (Span and Wagner, 1996).

The models show that cooling due to expansion is significant and
takes place a lot faster than conductive heat transfer to the surrounding
reservoir. The CO2 has cooled to a temperature of ∼37C by the time it
has reached the top of the reservoir (some 8C above the background
reservoir temperature) and the thermal anomaly propagates laterally
beneath the caprock for a distance of 700 m from the axis (Fig. 13b).

Because this particular model scenario is based on Sleipner which is
a shallow reservoir with the injected CO2 close to its Critical Point, the
effect of the thermal anomaly on CO2 properties (Fig. 14) is significant.
A ∼50% decrease in viscosity and density in the core of the plume both
contribute to increased mobility of the CO2 phase. The bulk modulus
(Fig. 14d) is also markedly reduced which will modify the seismic
properties of the CO2. This will affect the rock physics of CO2 saturated
reservoir rock and should be taken into account for quantitative ana-
lysis of the seismic response such has been attempted a number of times
at Sleipner (e.g. Chadwick and Arts, 2005; Furre et al., 2015). 6. Discussion

6.1. Validity of Darcy-flow assumption

The three simulators show results that are remarkably consistent

Fig. 12. CO2 saturation (PFLOTRAN top left,
TOUGH2 top right) and thermal anomaly
(PFLOTRAN bottom left, TOUGH2 bottom right) re-
sulting from CO2 injection into a homogeneous
sandstone reservoir. The output time is equivalent to
that of the 2006 seismic monitor survey. The grid cell
containing the injection point is marked with an
arrow in the lower left corner of each plot.

Fig. 13. (a) Vertical temperature profile at a distance of 2.5 m from the model axis,
showing the temporal evolution of temperature with depth toward a steady-state solution,
which was established by ∼365 days following the onset of injection. (b) Comparison of
the horizontal temperature distribution in the model cells immediately beneath the ca-
prock 3556 days after the onset of injection (corresponding to the 2006 seismic monitor
survey). JT = Joule-Thomson.
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with each other. Differences in the modelled outer edges of the layer
extents are generally around 50 m or less, though locally up to
∼100 m. This is similar to or less than the uncertainty of layer edge
detection on the seismic data itself, Bickle et al. (2007) noting that the
outermost parts of the seismically-imaged layers would not be detect-
able due to their being too thin, with under-estimation of layer extents
by up to 100 m. In absolute terms however none of the simulation case-
studies match the observed monitoring data very well, notably in their
failure to reproduce the rapid lateral spread of the layer observed by
2006. History-matching the observed growth of this layer has proved
challenging generally, with most published simulations having diffi-
culty in predicting the rapid northward migration of CO2 along the
prominent linear ridge in the base of the topseal (Figs. 6 and 7). Various
authors have investigated the effects of small uncertainties in feeder
geometry, topseal topography, permeability anisotropy and gas com-
position (e.g. Chadwick and Noy, 2015; Zhu et al., 2015) but the Darcy-
based modelling approaches have had mixed results in replicating the
observed layer growth rates.

Our numerical and analytical models are all based around a ‘Darcy’
type flow formulation. It has been proposed that because CO2 migration
in the topmost layer is dominated by buoyancy, rather than pressure-
driven viscous forces, Darcy-type flow models, strictly valid only for
slow viscous fluid flow, might not be wholly appropriate and modelling
with alternative physics should be utilised (Cavanagh, 2013; Cavanagh
and Haszeldine, 2014). In this context flow models with alternative
physics have been proposed, notably the invasion-percolation (IP)
scheme (Cavanagh, 2013). At Sleipner, IP modelling allows good spa-
tial/geometric matching of the topmost layer spread, but it is a quasi-
static technique that does not incorporate a temporal element (the fluid
overcomes capillary resistance essentially instantaneously) and so is not
well suited to the type of temporal history-matching that time-lapse
monitoring requires (Oldenburg et al., 2015). Recent laboratory ex-
periments (Krishnamurthy et al., 2017) comparing core-flood CO2 sa-
turation measurements against Darcy and IP simulations have found a
tendency for IP to markedly underestimate CO2 saturations, leading
Krishnamurthy et al. (2017) to suggest hybrid modelling approaches,
such as using multiple IP runs to pre-condition reservoir grid properties
(e.g. capillary threshold pressure variation) prior to full Darcy simula-
tion. More fundamental modelling approaches, reaching down into
pore-scale processes, are also being developed, such as Lattice-Boltz-
mann modelling (e.g. Sukop and Thorne, 2007) but these are compu-
tationally very demanding and not currently suitable for simulating
two-phase flows in reservoirs with complex geology and high resolution

geological characterisation datasets.
Recent support for the Darcy-based modelling approach is provided

by detailed re-assessments of the reservoir properties at Sleipner
(Williams and Chadwick, 2017, Cowton pers. comm.) which indicate
significant depositional heterogeneity in the top reservoir sand, with
wide permeability variation. When these more heterogeneous reservoir
properties are incorporated into Darcy flow models a much closer his-
tory-match can be obtained (Williams and Chadwick, 2017).

It is clear that computing power is a primary limit on simulation
accuracy, notable in limiting the resolution and geological detail that
can be incorporated into the reservoir meshes. Our comparison shows
marked differences in processor requirements between different Darcy
simulators, but it is also clear that Darcy modelling is susceptible to
useful simplifications and the vertical equilibrium approximation for
numerical modelling has proved useful in simulating the Sleipner
plume (e.g. Nilsen et al., 2011). More radical is the development of
purely analytical solutions to model CO2 flow (e.g. Nordbotten et al.,
2005; Lyle et al., 2005; Bickle et al., 2007). These allow extremely rapid
computation of layer flows, albeit in a simple reservoir, and our com-
parison shows that published analytical solutions are consistent with a
full physics Darcy numerical model. More recently a hybrid approach
has been developed, whereby analytical solutions for gravity flows
beneath dipping seals have been discretised within a finite-difference
numerical scheme to allow very short computational times even on a PC
(Laurence Cowton pers. comm.). This level of computational efficiency
allows the incorporation of complex geology at the small (metres)
length scales that are really required for realistic modelling.

There is therefore a crucial trade-off between including full complex
physics in flow models and the need to include complex and high re-
solution geological heterogeneity. It seems that Darcy modelling with
suitable simplifications to allow radically reduced computation times is
the best way to proceed at the present time, particularly where geolo-
gical uncertainty is significant and where the spread of a migrating CO2

layer is accurately tracked through time.
The inclusion of thermal effects is clearly important, and is rarely

included in CO2 plume simulation. For injection into depleted gas fields
CO2 entering the reservoir will generally be significantly cooler than the
surroundings and accurate modelling of the evolving CO2 front will be
essential. Even in the normally-pressured aquifer of the Utsira Sand,
temperature has an important effect on fluid mobility Williams and
Chadwick (2017), and as we show here, potentially on the seismic re-
sponse of the fluid-rock system.

Fig. 14. (a) Thermal anomaly, (b) CO2 viscosity, (c)
CO2 density and (d) CO2 bulk modulus resulting from
CO2 injection into a homogeneous sandstone re-
servoir. The output time is equivalent to the 2006
seismic monitor survey. The grid cell containing the
injection point is marked with an arrow in the lower
left corner of each plot.
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6.2. Model runtimes

ECLIPSE 100 is at least 10 times faster than either PFLOTRAN or
TOUGH2. This large difference in performance reflects the fact that
both PFLOTRAN and TOUGH2 use numerical differentiation for the
solution of the non-linear problem, while ECLIPSE uses analytical de-
rivatives. This can bring significant computational saving. In addition
TOUGH2 and PFOTRAN do not implement a linear solver optimised for
the type of multi-phase problems encountered in reservoir simulations.
ECLIPSE uses a nested factorisation that can offer significant speedup
compared to standard linear solvers.

7. Conclusions

Three numerical multiphase flow simulators, one black-oil
(ECLIPSE100) and two fully compositional (PFLOTRAN and TOUGH2),
were tested on their ability to model CO2 injection into a saline aquifer.
Modelling case-studies were based on the Sleipner injection operation,
which provided an appropriate context for large-scale storage, in terms
of CO2 layer dimensions, thickness profiles and spreading rates, plus
excellent time-lapse monitoring data. All case-studies were set-up
carefully on the three simulators to virtually eliminate ‘operator ef-
fects’.

The simulators all showed excellent agreement in modelling the
upward flux of CO2 through an isothermal heterogeneous reservoir and
in each case modelled saturation profiles showed good agreement with
the distribution of CO2 observed on time-lapse seismic surveys. 3D
models of the topmost CO2 layer, migrating beneath the caprock, and
clearly imaged by seismic data, also showed excellent consistency be-
tween the three codes. Minor differences related to solver im-
plementations, meshing, smoothing and small equation-of-state dis-
crepancies. In all cases modelling differences were less than monitoring
uncertainty. In absolute terms however none of the case-studies pro-
duced close matches of the layer’s temporal evolution, notably its rapid
lateral migration and very high mobility. One possibility is that the
physics of fluid flow in this layer is different to the Darcy physics used
by the simulators, but our favoured explanation is that imperfect re-
servoir characterisation is the root cause.

Numerical simulations of a simple, thin spreading layer with an
analytical model also showed an excellent match and highlighted the
effects of capillary forces in terms of layer fluid saturation and geo-
metry. The importance of fine-scale modelling was also evident, as
coarser numerical meshes resulted in strong numerical dispersion with
impaired layer spreading accuracy.

Two of the codes (TOUGH2 and PFLOTRAN) were also run in non-
isothermal mode to investigate the effects of injecting CO2 significantly
warmer than the ambient reservoir temperature. Again, the codes
showed excellent agreement in predicting the distribution and magni-
tude of the resulting thermal anomaly and its temporal development. It
is clear that, particularly in shallow reservoirs where stored CO2 is close
to its Critical Point, thermal effects are significant, because they affect
CO2 mobility and also its seismic properties, important for quantitative
monitoring.
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