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A B S T R A C T

Systematic mapping of the chemical environment of urban areas from around the world has demonstrated the
strong impact of urbanisation on topsoil geochemical distributions originally controlled by the underlying parent
material (PM). The variance of some elements including As, Ba, Ca, Cr, Cu, Mo, P, Pb, Sb, Se, Sn and Zn in urban
domains appears to be impacted by a mixture of geogenic and anthropogenic controls. This study evaluates how
soil chemistry has been influenced by different eras of urbanisation within London and other UK urban areas
using (a) the pre-1940 Dudley Stamp First Land Utilisation Survey data and (b) the modern urban domain
principally defined by the aggregate classes of the 2007 Land Cover Map. In the London area, calcium, and
possibly a substantial proportion of Cu, Pb, Sn and Zn enrichment observed in soils impacted by pre-1940
urbanisation relative to soils impacted only by post-1940 urbanisation, may be partly related to the destruction
of buildings during the period 1940–1941 rather than from the disposal or aerial dispersion of coal ash from
domestic fires. Some Pb, Cu, Sb, Sb, Sn and Zn contamination appears to be caused by road traffic (leaded petrol
and brake dust). The relationships between pre- and post-1940 urbanised areas in London also characterise most
of 20 other urban centres in England and Wales for which BGS holds soil chemistry data.

1. Introduction

Whilst parent material (PM) is the primary geogenic control for
some chemical elements in urban areas (Appleton and Adlam, 2012;
Appleton et al., 2013), the variance of many elements including As, Ba,
Ca, Cr, Cu, Mo, P, Pb, Sb, Se, Sn and Zn in urban domains appears to be
impacted by a mixture of geogenic and anthropogenic controls which
have developed over different eras of urbanisation. Sources of anthro-
pogenic contamination in urban areas include industrial manufacturing
and processing, power and waste incineration plants, domestic coal
burning including the historic disposal of ash, emissions from vehicles
(especially from the use of leaded petrol), fertilizer use, dispersion of Pb
and other metals together with cement, concrete and bricks from de-
molition and construction including the use of building and demolition
waste material for land reclamation and the creation of artificial ground
(Albanese and Breward, 2011). The highest levels of contamination are
to be expected in areas with the longest history of urbanisation.

Preliminary assessments of the topsoil chemistry of the pre-
dominantly urban Greater London Authority (GLA) area are available in
BGS (2011), Knights and Scheib (2011), Scheib et al. (2011), Ferreira
et al. (2017). Lark and Scheib (2013) used model-based analysis, cok-
riging and Wald statistics to examine how land use recorded at soil

sample sites within the Great London Authority (GLA) area accounts for
variations in soil Pb concentrations. McIlwaine et al. (2017) reporting
on the relationship between potentially toxic element (PTE) con-
centrations and historical urban development in the soils of Belfast and
Sheffield concluded that different PTEs are associated with different
periods of development and that soil pollution can be linked to diffuse
contamination from road traffic, domestic fuel combustion and in-
dustrial processes.

The study reported here focusses on processes causing widespread
dispersion of contaminants rather than local sources such as industrial
manufacturing or waste incineration plants. In particular, we assess
whether the different eras of urbanisation in the UK have resulted in
significantly different concentrations of elements in surface soils once
the confounding influence of parent material (geology) has been
eliminated.

2. Materials and methods

2.1. Geology and soil chemistry data

The Greater London Authority (GLA) urban area is underlain by
Cretaceous and Palaeogene sedimentary rocks covered in some areas by
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Quaternary superficial deposits of which the most extensive are allu-
vium, river terrace deposits and brickearth (Fig. 1; see Appleton et al.,
2013; for greater detail). In some sectors of the GLA, topsoil chemistry
will reflect a complex Anthropocene history rather than soil parent
material (geology). For example, the Victoria Embankment Gardens,
located between the Ministry of Defence on Whitehall and the River
Thames, are part of a reclamation scheme started in 1864 and com-
pleted in 1875 for which the subsoil was derived from the construction
of the Metropolitan District Railway and the topsoil from Barking
Creek.

BGS urban soil chemistry data are available for 6308 sites within the
GLA area. Soil samples were collected from open ground on a 500m
grid with a sample being taken as close as possible to the centre of each
500m grid square giving a density of approximately 4 samples per km2

(BGS, 2011; Flight and Scheib, 2011). However, the actual distribution
of sample sites did not follow the systematic rule exactly in that the soil
samples are, for various reasons, located relatively randomly within the
500 grid squares (Supplementary material, Fig. SM-1). At each site,
composite samples, based on 5 sub-samples taken at the centre and four
corners of a 20m square were collected from the topsoil (5–20 cm
depth). In addition, 80 samples from the BGS G-BASE (Geochemical
Baseline Survey of the Environment) regional topsoil survey located
within the GLA were included in the study. These samples were col-
lected at a sampling density of 1 sample per 2 km2 (Johnson et al.,
2005). Forty eight chemical elements were determined in the< 2mm
size fraction of the topsoils using X-ray fluorescence spectrometry
(XRFS), together with loss on ignition (LOI at 450 °C) and pH in all the
urban samples and 50% of the rural samples. Sample preparation,
analytical methods, and quality control procedures are described in
Allen et al. (2011) and Johnson (2011) and statistical parameters and
detection limits are presented in Ferreira et al. (2017).

2.2. Land use

2.2.1. Pre-1940
The pre-1940 urban and rural domains were defined using the land

use data created by scanning and digitising original maps from the
Dudley Stamp (DS) Land-Utilisation Survey (Stamp, 1931, 1948;
Environment Agency, 2007), the survey work for which was completed
in 1941 but mainly carried out between 1931 and 1934 (i.e. pre-1940).
In this study, topsoil data were grouped into two general classes: (1)

Urban (combining DS Urban and Suburban categories) and (2) Non-
Urban (combining DS Arable, Forest and Woodland, Heath and Moor-
land, Meadow and Grass, and Orchard categories). Previous uses of the
DS land use data and some of its limitations are described in Baily et al.
(2011); Swetnam, 2007; and Taylor et al., 2010.

2.2.2. Post-1940
A simplified Land Cover (LC) classification (Table 1) developed

from the aggregated classes of the Land Cover Map 2007 (LCM2007)
vector data set (Morton et al., 2011) was used to define areas currently
built-up (BU) and not built-up (NBU). LCM 2007 digital data are de-
rived by automated classification of satellite imagery where each 25m
pixel is assigned to a land cover class based upon its spectral char-
acteristics. At 4% of soil sample sites, there is a discrepancy between
the BGS general site land use (LU) class (Supplementary material Table
SM-1) and the LCM2007 data. At these sites, the spatially more accurate
LU class was used to reclassify the attribution from the LCM 2007 data.
As would be expected, concentrations of Pb in soils from small areas of
Park, Recreational Ground, Urban open space, and Woodland and
Forest located within BU areas are substantially higher than for these
classes of Land Use located within NBU areas (Table 2).

Attribution of soil samples with the Dudley Stamp and Land Cover
information allowed soil chemistry comparisons to be made between
the following domains: (1) Areas built-up pre-1940 (grey in Fig. 2); (2)
Areas built up since approximately 1940 (red in Fig. 2); and (3) Areas
that have never been urbanised (white in Fig. 2). Data for areas built-up
pre-1940, post-1940 and areas that have never been urbanised are
coded as OLD, NEW and NURB respectively.

Fig. 1. Simplified soil parent material map of London (box
in SW corner indicates extent of Fig. 4).

Table 1
Land cover (LC) classification derived from LCM2007 Aggregate land cover classification.

Land Cover
(LC) class

No. soil
samples

LCM2007 Aggregate land cover class

Built-up (BU) 4051 Built-up areas and gardens
Not built-up

(NBU)
2337 Arable; Improved grassland; Mountain, heath,

and bog; Semi-natural grassland; Broadleaf and
Coniferous woodland
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2.3. London bomb site data base

The London bomb site data base compiled by the University of
Portsmouth contains the locations of 31,373 sites where bombs landed
over the eight month period of the Blitz (October 1940–June 1941)
within civil defence region 5 (London) which consisted of the 28
Metropolitan Boroughs in the London County Council. The digital da-
tabase was compiled from scanned and geo-referenced maps of the
London World War II bomb census maps from the National Archive. The
bomb site data were used in this study to examine the potential impacts
of bombing during the Blitz on soil chemistry.

2.4. Statistical analysis

MINITAB® 15 and R® (R Core Team, 2016) were used for statistical
analysis. ANOVA and other statistical analyses assume that population

distributions are normal for each group, variances are equal for all
groups, and also that observations are randomly and independently
representative of the populations (Reimann et al., 2008). However,
these requirements are rarely met completely by data from soil chem-
istry surveys, which have traditionally been designed to achieve a
regular sample density. The application of a log-transform in general
produces more normal distributions with lower skewness coefficients,
especially for elements such as Pb where anthropogenic contamination
is a major factor. Medians are generally used as an indicator for the
central value of a data distribution (Reimann et al., 2008). In some
cases, data were log-transformed (Loge) when the skewness coefficient
exceeded 1.0. Medians and geometric means are very similar. For
comparative purposes centred logratio (clr) transformation (Reimann
et al., 2008, 2012) based on the major elements, Pb and Zn was used to
deal with the compositional nature of geochemical data when ex-
amining inter-domain variation of Ca, Pb and Zn. For the data subset
(n= 3328) used in Fig. 6, R2 between LnCa and clrCa is 87% and 94%
between Ln and clr values for Pb and Zn. Flem et al. (2017) recommend
clr or ilr (isometric log-ratio) transformations for bivariate, multivariate
and compositional data analysis of chemical element concentrations.
However, clr transformations were not adopted routinely in this study
principally because the direct link to the element concentrations is lost,
for example in relation to soil quality criteria and medians form the
main basis of this study together with variation of medians with dis-
tance from roads and bomb sites. In this study, Tukey's method provides
confidence intervals for pairwise differences between means of clr
transformed Ca and Pb data. Enrichment ratios (ratios of domain
medians) are used to describe the contrast between pre-1940 (OLD),
post-1940 (NEW) urbanised and never urbanised (NURB) domains.

3. Results and discussion

3.1. Enrichment ratios

Surface soil samples from currently built-up areas that were also
built up pre-1940 (OLD) have Ca, Cu, Ge, P, Pb, Sb, Sn and Zn con-
centrations that are 1.2–1.75 times higher than in areas that have been
built up (urbanised) since 1940 (NEW; Table 3). Ca, Cu, Pb, Sb, Sn and
Zn are 2.2–3.2 times higher in areas built-up pre-1940 (OLD) compared
with areas that have never been urbanised (NURB) in the GLA, and 2.1
to 5.2 times higher than in areas not built up outside the GLA but within

Table 2
Pb in soil summary statistics illustrating relationship between Land Cover (LC) class and
BGS site general land use (LU) classes.

Land cover
(LC) class

BGS general site land use (LU) class (see
Supplementary material Table SM-1 for
classification)

No. sites
in GLA

GM-Pb
(mg/kg)

Built-up (BU) Cemetery/Crematorium 101 246
Commercial and Residential 207 227
Domestic Gardens/Allotments 1615 290
Golf 15 118
Industrial 123 215
Park 355 247
Pasture 4 342
Recreational 245 218
Road verge 590 232
Rough Grazing 29 139
Urban open space 943 235
Woodland and Forest 35 182

Not built-up
(NBU)

Arable 292 68
Park 432 154
Recreational 291 146
Urban open space 212 164
Golf 150 97
Pasture 157 77
Rough Grazing 346 85
Woodland and Forest 246 104

Fig. 2. Areas of London (GLA) urbanised pre- and post-
1940 (white areas: never urbanised; based on Dudley Stamp
and Land Cover Map 2007 data: © L. Dudley Stamp/
Geographical Publications Ltd, Audrey N. Clark,
Environment Agency/DEFRA and Great Britain Historical
GIS; © NERC (CEH) 2011. © Crown Copyright 2007.
Ordnance Survey Licence number 100017572. © third-party
licensors).
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the London Region (defined in Appleton et al., 2013). In all cases, Pb
exhibits the highest enrichment ratios followed by Sn and Sb (Table 3).

In order to reduce the impact of element concentration variability
related to parent material (Appleton et al., 2013), further comparisons
between the two eras of urbanisation are based on data for the parent
material units with the highest number of soil samples. These are
Thames Group clays, River Terrace Deposits (sands and gravels),
Brickearth, Thames Group sands, White Chalk and Alluvium; Supple-
mentary material Table SM-2). For the metallic and metalloid trace
elements, all the major parent material domains apart from Alluvium
(for reasons discussed below) exhibit very strong enrichment of Pb
(53–85%; Fig. 3a) in the pre-1940 urban areas (OLD) with lesser en-
richment of Sn (41–59%; Fig. 3b), Ge (13–46%), Sb (26–49%, Zn
(27–41%), Cu (5–36%), Cd (up to 14%), Mo (up to 20%) and As (up to
19%) (Supplementary material Table SM-2).

The White Chalk (WCK) has lower pre-1940/post-1940 (OLD/NEW)
ratios for the metals-metalloid trace elements, compared with the other
parent materials (Supplementary material Table SM-2b), probably be-
cause the degree of urbanisation and anthropogenic contamination is
less extreme over this PM, which is mainly found at the southern
margin of the GLA.

Even higher enrichment ratios are indicated when comparing the

pre-1940 urbanised areas with never urbanised areas (OLD/NURB data
in Supplementary material Table SM-2). Pb is 2.6–3.3 times higher in
soils underlain by River Terrace Deposits and Thames Group clays with
slightly lower enrichment ratios for Sb, Sn and Sn (1.9–2.8).

In areas underlain by Thames Group clays, River Terrace Deposits
(sands and gravels), Brickearth, and Thames Group sands, calcium is
36–48% higher in the pre-1940 OLD urban areas compared with those
areas that have been built-up since that time (NEW), whilst for the
White Chalk (Fig. 1; WCK in Supplementary material Table SM-2b) it is
27% higher. Phosphorus is between 6 and 24% higher in the pre-1940
(OLD) urbanised areas. Higher levels of enrichment are indicated when

Table 3
Median topsoil values for post-1940 (NEW) and pre-1940 (OLD) urban domains and the
never urbanised (NURB) domain in the GLA compared with Not Built Up domain in
Southeast England (SEEN) outside the GLA but within the London Region (Appleton et al.,
2013) with corresponding enrichment ratios.

Domain median concentrations Enrichment Ratios

NEW OLD NURB SEEN OLD/
NEW

OLD/
NURB

OLD/
SEEN

N 981 3275* 1719** 1469***
%
Al 4.28 3.70 4.44 4.39 0.86 0.83 0.84
Ca 0.91 1.21 0.55 0.57 1.32 2.19 2.12
Fe 2.73 2.71 2.61 2.55 0.99 1.04 1.06
K 1.15 1.04 1.20 1.12 0.90 0.86 0.93
Mg 0.48 0.42 0.48 0.48 0.88 0.88 0.88
Mn 0.04 0.04 0.04 0.06 1.02 1.16 0.74
P 0.13 0.16 0.11 0.11 1.23 1.48 1.47
Si 30.31 31.01 30.64 32.69 1.02 1.01 0.95
Ti 0.35 0.31 0.38 0.38 0.91 0.82 0.83
mg/kg
As 15 17 14 13 1.11 1.20 1.28
Ba 380 398 353 339 1.05 1.13 1.17
Cd 0.6 0.7 0.5 0.5 1.08 1.30 1.30
Ce 51 48 52 56 0.93 0.92 0.85
Co 12 12 11 12 0.97 1.07 0.97
Cr 74 70 77 75 0.95 0.91 0.93
Cu 45 60 27 21 1.33 2.21 2.86
Ga 11 10 11 11 0.93 0.91 0.92
Ge 1.5 1.8 1.2 1.1 1.20 1.50 1.64
La 25 23 26 29 0.92 0.88 0.79
LoI 7.3 7.2 7.5 6.0 0.99 0.97 1.20
Mo 1.5 1.7 1.2 0.9 1.13 1.42 1.89
Ni 26 27 22 21 1.02 1.23 1.28
Pb 158 276 87 53 1.75 3.17 5.21
pH 6.6 6.8 5.6 6.1 1.03 1.21 1.11
Rb 59 52 63 63 0.88 0.82 0.83
Sb 2.8 4.2 1.6 1.1 1.50 2.63 3.82
Se 0.6 0.6 0.6 0.4 1.00 1.00 1.50
Sn 13 20 7 4 1.60 2.70 5.00
Sr 77 82 67 62 1.06 1.22 1.32
Th 6.9 6.3 7.4 7.8 0.91 0.85 0.81
U 2.3 2.1 2.3 2.3 0.94 0.91 0.93
V 80 75 78 71 0.94 0.96 1.06
Y 21 20 21 23 0.95 0.97 0.87
Zn 153 211 87 76 1.38 2.43 2.78
Zr 278 263 309 355 0.95 0.85 0.74
clrCa −0.009 0.254 −0.442 −0.357

*n LoI and pH = 3274, **n LoI and pH = 1687, ***n LoI and pH = 1022.

Fig. 3. Boxplots of (a) Pb, (b) Sn and (c) clrCa in soils from five major geological units
(BRICK = Brickearth, SAGR=River Terrace Deposits, THAMC=Thames Group clays,
THAMS=Thames Group sands, WCK = White Chalk) subdivided into areas never ur-
banised (NURB) and urbanised pre- (OLD) and post (NEW) 1940 (circle with
cross=median, box=median 95% confidence limits, box width proportional to number
of samples).
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these pre-1940 urbanised areas are compared with areas within the
GLA that have never been urbanised (NURB), being the highest for Ca
(2.3 times higher for River Terrace Deposits, Thames Group clays and
Thames Group sands, Supplementary material Table SM-2).

Knights and Scheib (2011), and Scheib et al. (2011) observed con-
sistently lower concentrations of metals within the historic Royal Parks,
Hampton Court and Wimbledon Common in the Richmond area of
south-west London. These parks have not been directly impacted by
significant urban development throughout the last 200–300 year his-
tory of London. Median concentrations are presented (Table 4) for
subsets of top soil samples overlying Thames Group clays and River
Terrace Deposits selected from an area of approximately 115 km2 that
includes the parks and surrounding built-up urban areas (Fig. 4). Three
other PMs occur within the Richmond area but these have an in-
adequate number of samples (17–45) for statistical analysis. Ca, Cu, Pb,
Sb, Sn and Zn are approximately 2–3 times enriched in the current
built-up (BU) domain soils overlying both PMs compared to the not
built-up (NBU) domain. Al, Fe, K, Mg, Mn, and P have enrichment ratios
of 1.2–1.8, whilst Si is slightly lower in built-up areas (BU/NBU ra-
tios= 0.93–0.98). This will partly reflect the compositional (closed
data) characteristics of this type of geochemical data but some of these

variations may imply subtle geogenic variations within the two PMs;
higher Al, K, Fe, Mg and Mn possibly indicate higher clay and sec-
ondary iron oxide contents in the built-up domain (BU) soils. This might
also explain why some of the minor elements such as Co, Cr, Ga, and Ni
are also higher. Higher LoI and lower pH in the Richmond Royal Parks
(NBU) soils probably reflects higher organic material content due to
accumulation of decomposing leaves and grass.

Comparison of median soil values for the Richmond Royal Parks
with the GLA (Table 4 and Supplementary material Table SM-3) shows
that enrichment ratios (BU/NBU) are similar for the major and trace
elements with ratios of 1.5 or greater, leading to the conclusion that
soils in the Richmond Royal Parks are not substantially different to
other areas in the GLA with the same underlying geology that are not
built-up.

Soil data for areas classified as built-up using LCM2007 land cover
data in 20 other urban centres in England and Wales (Scheib and Nice,
2007; Fordyce et al., 2005; Flight and Scheib, 2011) exhibit similar or
stronger enrichment in As, Cd, Cu, Pb, Sn and Zn in pre-1940 urbanised
areas (OLD) compared with post-1940 urbanisation (NEW) (Table 5).
There is some variation in the OLD/NEW ratios between the urban
areas but the ratios are broadly similar for most areas. Ca and other

Fig. 4. Pb in topsoils, generalised LCM2007 land cover and
major roads in the Richmond Royal Parks area, London
(area of this map shown in Fig. 1; LCM2007 Land cover ©

NERC (CEH) 2011. © Crown Copyright 2007. Ordnance
Survey Licence number 100017572. © third-party licensors;
Major roads: Ordnance Survey data © Crown Copyright and
database rights [2017]).

Table 4
Median topsoil concentrations and enrichment ratios for built-up (BU) and not built-up (NBU) domains defined by the land cover classification (Table 1) for River Terrace Deposits and
Thames Group clays in (i) the Richmond Royal Parks area and (ii) the GLA.

Element River Terrace Deposits (SAGR) Thames Group Clays (THAMC)

Richmond Royal Parks GLA Richmond Royal Parks GLA

BU NBU BU/NBU BU NBU BU/NBU BU NBU BU/NBU BU NBU BU/NBU

No. 162 86 1174 428 79 46 1499 749
%
Ca 0.83 0.36 2.3 1.06 0.54 2.0 0.82 0.29 2.9 1.08 0.54 2.0
P 0.18 0.12 1.5 0.17 0.14 1.2 0.13 0.08 1.6 0.14 0.10 1.5
mg/kg
Cu 43 20 2.2 58 36 1.6 39 20 2.0 59 30 2.0
Pb 251 83 3.0 277 128 2.2 204 80 2.6 244 94 2.6
Sb 3.3 1.5 2.2 4.1 2.3 1.8 2.9 1.5 1.9 4.0 1.7 2.4
Sn 17 7 2.6 20 12 1.7 13 8 1.8 18 8 2.3
Zn 164 60 2.7 202 102 2.0 134 47 2.9 201 87 2.3
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major element variation is difficult to assess, as there are insufficient
soil samples on any one PM.

3.2. Building demolition, construction and land reclamation

The enrichment ratios suggest that one or more events or processes,
which affected the pre-1940 urban domain, have caused soils over these
PMs to be enriched in Ca and to a lesser extent P, as well as some metals
and metalloids. One possibility is that widespread destruction of
buildings across large sectors of the London urban domain, especially
during the period 1940–41, when more than 1 million houses were
destroyed or severely damaged by strategic bombing, may have re-
sulted in Ca-bearing cement and lime dust being incorporated into top
soils causing this enrichment. Elevated Pb in the pre-1940 urban areas
may be partly derived from paint and/or lead pipes. Lead was the main
white pigment in paint used extensively from the 1920's to the early
1960's and less commonly until it was banned in 1992; so many post-
1940 houses will also have significant amounts of Pb in the original
paint layer. Cu, Sn and Zn are commonly used in buildings (paint,
galvanised metal, water pipes etc.). Based on visual estimation, the
spatial variation of bomb density is broadly similar to that for Pb in soil
whereas the spatial variation of Ca is strongly impacted by parent
material chemistry, especially the distribution of the White Chalk
(compare Fig. 1 with Supplementary material Fig. SM-2). Using a
Brickearth, River Terrace Deposits and Thames Group clays subset of
the London soil data with broadly similar Ca and Pb concentrations
(Supplementary material Table SM-2), which comprise the major pro-
portion (67%) of the London soil data, it transpires that whilst the
variation of bomb density is similar to soil Pb and Ca (Fig. 5), the
correlation is not very strong (R2 (adjusted)= 15% and 13%, respec-
tively for Pb and Ca (Supplementary material Fig. SM-3).

There is a progressive increase in median Ca and clr Ca with
proximity to bomb sites in the pre-1940 (OLD) urban domain (Fig. 6).
Ca is relatively stable in the post-1940 (NEW) urban domain that should
not have been impacted by bomb damage, apart from at its margins
where there could have been dispersion of Ca from bomb-damaged
buildings in adjacent pre-1940 urbanised areas (Fig. 6). In the never
urbanised domain (NURB), there is a slight increase in Ca within 100m
from the nearest bomb site that could also reflect dispersion of dust
from bomb damaged buildings in nearby pre-1940 urbanised areas
(Fig. 6). It should be noted that there is a relatively high degree of
uncertainty for medians for the 0–25m distance range of the NEW and
NURB domains as these are based on<25 samples. Pb, clrPb, Zn, clr
Zn, Cu and Sn vary very little with distance from the nearest bomb site
in the post-1940 (NEW) domain (Fig. 6 and Supplementary material
Fig. SM-4) whilst all these elements increase gradually with proximity
to bomb sites in the pre-1940 (OLD) domain. The distance profiles for
Cd and Sb are less consistent but medians for both are low (Supple-
mentary material Fig. SM-4). Profiles for the never urbanised domain
(NURB) are generally flat between 100 and 200m and>400m or

exhibit slight increases with more erratic variation close to bomb sites
(Fig. 6; Supplementary material Fig. SM-4). The progressive increase in
Pb, Zn, Sn, Sb and Cu with proximity to bomb sites in the pre-1940
(OLD) domain is suggestive of significant contamination related to the
destruction of buildings during the Blitz (1940–41) which would have
affected only those sectors of post-1940 urbanisation and never urba-
nised ground near the margins of the older urbanised areas impacted by
bombing. The variations of median chemical element concentrations
and clr values for Ca, Pb and Zn in relation to distance from bomb sites
are very similar (Fig. 6).

However, the substantial overall enrichment in Ca, Pb, Zn, Cu, Sb,
Sn and to a less extent Cd in both the post- and pre-1940 urban domains
cannot be due solely to bomb damage. It could reflect widespread
dispersed contamination from a combination of construction activities
using cement and concrete, leaded paint, coal combustion products
including ash as well as contaminants from road traffic.

Ca is not enriched in soils over Alluvium from the pre-1940 com-
pared with the post-1940 urban areas. Pb and Sn are enriched, but only
by 15% and 11% respectively, compared with the much higher en-
richment of 25–32%, 72–79% and 42–68% for Ca, Pb and Sn in soils
derived from Thames Group clays, River Terrace Deposits, Brickearth
and Thames Group sands (Supplementary material Table SM-2). Ca
enrichment in Alluvium soils from areas built-up since 1940 may be
caused by the disposal of millions of tons of debris from bomb-damaged
buildings and its use for land reclamation at Hackney, Leyton and
Becontree marshes, and for flood prevention in the Lea Valley (Ward,
2015). Twenty-nine percent of Alluvium soil sites are actually located
on Artificial ground, predominantly in the valleys of the rivers Thames
and Lea. In contrast, Artificial ground underlies only 3% and 7% of soil
sites on Thames Group clays and River Terrace deposits, respectively.
Ca in soils on Artificial ground is 70%, 40% and 60% higher for ground
underlain by Alluvium, River Terrace deposits and Thames Group clays,
respectively. However, when the data are grouped also by urbanisation
era (i.e. pre- or post-1940), it is apparent that whereas Ca is always
higher on Artificial ground, the contrast between sites on bedrock or
superficial geology (GEO) and Artificial ground (ART) is always greater
for post-1940 urbanised areas (NEW, Fig. 7a). This may reflect the use
of debris from bomb-damaged buildings for post-1940 land reclama-
tion. The same relationships are observed for clrCa. The situation is
different for Pb, which is slightly higher in soils from Artificial ground
in post-1940 urbanised areas but slightly lower on Artificial ground in
pre-1940,’s urbanised areas (Fig. 7b). This suggests that demolition or
other debris that was used to reclaim land in the pre-1940 urbanised
areas (OLD in Fig. 7b) has lowered the median Pb concentrations.
Conversely, debris from the pre-1940 urbanised areas (with relatively
high Pb) used to reclaim land in the post-1940 urbanised domain has
resulted in a slight increase in soil Pb concentrations (ART in Fig. 7b).
For sites on River Terrace Deposits and Thames Group clays, this has
resulted in the medians for Artificial ground in pre- and post-1940 ur-
banised areas being closer together than the medians for GEO (bedrock

Table 5
Median topsoil concentrations and enrichment ratios for LCM2007 built-up domain subdivided into pre-1940 (OLD) and post-1940 (NEW) urban domains for all and selected urban areas
outside London.

Urban outside London Coventry Derby Sheffield Swansea

NEW OLD OLD/NEW NEW OLD OLD/NEW NEW OLD OLD/NEW NEW OLD OLD/NEW NEW OLD OLD/NEW

As 14 17 1.2 9 11 1.2 12 15 1.3 23 21 0.9 43 49 1.1
Cd 0.5 0.7 1.4 0.3 0.3 1.0 1.8 2.1 1.2 0.6 0.7 1.2 1.3 2.3 1.8
Cr 67 70 1.0 65 65 1.0 64 65 1.0 96 88 0.9 64 69 1.1
Cu 31 56 1.8 32 63 2.0 36 49 1.4 71 52 0.7 96 168 1.8
Ni 29 30 1.0 25 27 1.1 28 33 1.2 37 39 1.1 32 42 1.3
Pb 81 180 2.2 66 159 2.4 109 257 2.4 142 227 1.6 149 368 2.5
Sn 6 13 2.2 7 15 2.1 6 8 1.3 12 16 1.3 19 43 2.3
Zn 131 193 1.5 101 169 1.7 137 220 1.6 161 197 1.2 330 568 1.7
No. 1909 2128 126 78 83 105 111 224 105 119
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or superficial geology) sites (Fig. 7b).

3.3. Domestic coal burning and ash disposal

An alternative explanation for the observed enrichment ratios is that
ash from coal combustion spread on the soils and deposition of airborne
particulates during the period when coal was extensively used for do-
mestic heating and cooking has resulted in higher concentrations of Pb,
Ge, Sb, Zn, Cu, Cd, Mo and As. Through most of the 19th and the early
half of the 20th centuries, coal was used for heating and this generated
large quantities of smoke leading up to the Great Smog of 1952, which

killed 4000 people in London. The Clean Air Act 1956 mandated the use
of smokeless fuels at a time when most homes used open fires for
heating. Contamination of soil through aerial dispersion of coal derived
particulates and disposal of coal ash by spreading on domestic garden
soils will have led to widespread enrichment in coal related metals and
metalloids. Higher concentrations would be expected in the pre-1940
urbanised domains due to the longer time period (about 150 years) over
which this type of contamination occurred, compared with the post-
1940 domain in which significant contamination will have occurred for
up to about 15 years.

Si, Al, Fe, K, and Ca are the major constituents of combustion re-
sidues (furnace bottom ash and fly ash) from bituminous coal from the
UK Yorkshire Coalfield (Spears and Martinez-Tarrazona, 2004), so these
are also likely to be a major constituent of ash derived from domestic
burning of coal. Al and Ca are about twice as high in coal combustion
ash compared with soils overlying Thames Group clays whilst con-
centrations of Fe and Mg are about 1.4 time higher and K and Si about
0.8 times lower. If the enrichment of Ca in the pre-1940 urban domain
is related to coal ash, then Al would also be expected to be enhanced.
However, this is not the case and Al is slightly higher in the never ur-
banised (NURB) soils from some PMs (Supplementary material Table
SM-2). As, Cr, Cu, Mo, Ni, Sr, V, and Y are 3–14 times higher in coal
combustion residues (Spears and Martinez-Tarrazona, 2004) compared
with never urbanised (NURB) Thames Group clay soils (Supplementary
material Table SM-2). The pre-1940 urbanised soils (OLD) are not as
enriched in As, Cu and Mo as would be expected if these elements were
dominantly from coal combustion residues whilst Ba, Cr, V and Y are
almost the same in never urbanised (NURB) and pre-1940 urbanised
(OLD) soils overlying Thames Group clays (Spears and Martinez-
Tarrazona, 2004; Supplementary material Table SM-2). Higher en-
richment ratios would be expected if coal ash were a significant factor.
On this evidence the Ca, and possibly also a substantial part of the Cu,
Pb, Sn and Zn enrichment is perhaps more likely to be related to de-
struction of buildings in the period 1940–41 than from the disposal of
coal ash from domestic fires, although road traffic contamination is also
likely to be a contributory factor.

3.4. Emissions from vehicles (road traffic)

The relationship between Pb and other elements associated with
road traffic (Harrison, 1979; Warren and Birch, 1987; Ward, 1990;
Leharne et al., 1992; Charlesworth et al., 2003; Robertson et al., 2003;
Thornton, 2012) was evaluated in the GLA by examining how these
elements vary with proximity to different classes of roads. Ordnance
Survey OS Open Roads data was used to calculate distances between
soil sample sites and roads (Supplementary material Figure SM-5).

Sites relatively close to major roads (principally high traffic volume
A roads but including a few motorways) have higher median Pb con-
centrations than sites at similar distances from minor (relatively low
traffic volume, unclassified) roads (Fig. 8) but this difference is only
apparent within 50m from the roads. Beyond this distance, there is
little difference between sites near major and minor roads. The same
relationships exist for Cu, Sb and Zn, and to a lesser extent also for Sn,
although the enrichment ratios between sites> 400m and those<25
m from roads are less than for Pb, probably due to the deposition and
accumulation of greater quantities of Pb from leaded petrol compared
with Cu, Sb and Zn from brake linings and tyres.

However, the close spatial association of buildings with roads is a
potentially confounding factor, especially in the urbanised sectors of
London. So part of the contamination close to roads could be related to
buildings, including the historical disposal of ash and airborne de-
position from domestic coal fires, Pb from paint, Zn from galvanised
metal including corrugated iron sheets, tin cans, copper pipes and
electrical wire, as well as Cd and P from fertilizer. It has also been
demonstrated above that some of this metal contamination could be
derived from debris from buildings destroyed during the Second World

Fig. 5. (a) Number of bomb sites, (b) GM Pb (mg kg−1) and (c) GM Ca (mg kg−1) in 1 km
grid squares for sectors of the GLA with both soil chemistry and bomb site data underlain
by Brickearth, River Terrace deposits or Thames Group clays (contains Bomb Sight data
by University of Portsmouth licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License).
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War.
Trends in Ca related to building demolition will be affected by the

confounding factor of parent material composition. Taking just the data
for Thames Group clays and River Terrace deposits which both have
similar median Ca concentrations (0.5%) in never urbanised (NURB)
soils, the increase in Ca with proximity to roads, and probably in gen-
eral and coincidentally with density of buildings, is confirmed (Fig. 9
and Supplementary material Figs. SM 6–7). Over the range 0–24m to
100–199m when all groups have 10 or more samples (Supplementary
material Table SM-4) the enrichment ratios (median 0–24m/median
100–199m) for pre-1940 urbanised areas (OLD) are 1.8–1.9 for Ca, Pb
and Zn and 1.4 to 1.6 for Cd, Cu, Sb and Sn.

Lower median 0–24m/median 100–199m ratios characterise the
areas urbanised since 1940 (NEW; Pb 1.5, Sb 1.4, Ca, Cd, P and Sn 1.2)
and the never urbanised (NURB) domain, when the ratios are 1.2 for Ca,
Cu, Sb and Zn but only 1.1 for Pb. Higher enrichment ratios of up to 3.5
for Pb occur over the 0–24m to> 200m range in the urbanised areas
and 1.8 over the range 0–24m to>400m in the never urbanised do-
main, although the uncertainty of these ratios must be relatively high
due to the small number of samples> 200m from roads
(Supplementary material Table SM-4).

A two way analysis of variance was used to look at the effect of
distance to roads (categorised into 0–25m, 25–50m, 50–100m,
100–200m, 200–400m) and the three categories of urbanisation (OLD,
NEW, NURB) on clr transformed Ca and Pb using the Thames Group
clays and River Terrace deposits data (n=3599). For both elements,
the ANOVA identified significant differences between the distance to
roads categories and the three urbanisation categories but the interac-
tion between the distance to roads and urbanisation was not significant.

For clrPb, the Tukey honest significant difference pairwise test showed
that all the distance to road categories were significantly different from
each other (p < .016) and that all urbanisation groups were sig-
nificantly different (p < .0017). For clrCa, the Tukey honest significant
difference pairwise test showed that all the distance categories were
different from each other (p < .019) apart from a non-significant dif-
ference between the 50–100m and the 100–200m, the 50–100m and
the 200–400m, and the 100–200m and the 200–400m categories. For
the urbanisation categories and clrCa, the Tukey honest significance
difference pairwise test showed a significant difference (p < .0001)
between all OLD and NEW categories and the NURB and OLD categories
but not between the NURB and NEW categories (p= .1).

Thorpe and Harrison (2008), Pant and Harrison (2013) and Wang
et al. (2017) summarise the sources of elements associated with road
traffic (Cu, Zn, Pb, Cd, Cr, Co, Ni, As, Ba, Sb, Mn, V, Pt, and Rh) of
which the most dominant historically is reported to be Pb from leaded
petrol/gasoline. Subsidiary amounts of Ba, Cu, Fe, Sb, Zn, Cd, Co, and
Cr come from brake linings (of which Cu is the most abundant) and
tyres (only Zn significantly exceeds crustal abundance; Thorpe and
Harrison, 2008). Previous studies (detailed in Wang et al., 2017) show
that concentrations of Pb and Cd increase with traffic volume while
concentrations of Cu, Zn, Cd and Pb decreased with distance from the
roads. Wang et al. (2017) in their study of trace elements in soils ad-
jacent to highways found that only Cu, Zn, Pb and Cd were above local
background concentrations. Cu:Sb ratios have been proposed as being
characteristic of brake wear particles with a ratio of 9:1 reported for
London (Gietl et al., 2010).

Crosby et al. (2014) concluded that correlations between Fe with
Zn, Mn, Cu and Ti suggest anthropogenic combustion processes were

Fig. 6. Variation of median topsoil Ca, clr Ca, Pb, clrPb, Zn
and clrZn with distance from the nearest bomb site grouped
by urbanisation domain (OLD=pre-1940, NEW=post
1940, NURB=never urbanised). Based on soils overlying
Thames Group clays and Terrace Gravel Deposits in areas
with bomb site data. Data grouped into 0-25-50-100-200-
400 and > 400m intervals plotted at group centre dis-
tance or at 500m for>400m group; n= 3328 (contains
Bomb Sight data by University of Portsmouth licensed
under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License).
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the main sources of these metals in urban road sediment in central
London. Deposition of Fe particles occurs when pulling away and due to
increased brake wear when stopping, together with deposition of Cu
and Zn from brake linings and tyre wear. Crosby et al. (2014) reported
strong associations between Fe, Cu, Zn and Pb linked to vehicle sources
in Wolverhampton (UK) whilst Robertson et al. (2003) found significant
associations between Pb, Fe, Mn and Cu in Manchester, which were
attributed to vehicular sources. The data in this study do not indicate a
concomitant rise in Fe, Mn or Ti with Pb, Ca and associated elements
with data grouped over the range 0–24m to>200m (Supplementary
materials Table SM-4) reducing the likelihood of contamination related
to brake dust from vehicles being a dominant factor.

Mao et al. (2014) demonstrated that London soils have a relatively
narrow range of 206Pb/207Pb falling on a mixing line between geogenic
(UK coal and UK Pb ore; Shepherd et al., 2016) and UK leaded petrol
(1.06–1.09 Shepherd et al., 2016; Chenery et al., 2012; Sangster et al.,
2000) suggesting multiple sources of Pb contamination including
petrol, paint, water pipes, coal ash. Whereas Total Pb does not correlate

with 206Pb/207Pb, it is the primary determinant of isotopically ex-
changeable Pb (Mao et al., 2014) as it is for bioaccessible Pb (Appleton
et al., 2012). Equally, the narrow range of isotopically exchangeable Pb
(16–26%) suggested a consistent assimilation and 'aging' of Pb from a
wide range of sources, and this could reflect mixing of Pb over many
decades (Mao et al., 2014). Mao et al. (2014) also concluded that whilst
the Pb isotope data for London soils are impacted by petrol Pb they are
likely to be most impacted by non-petrol Broken Hill Type Pb
(206Pb/207Pb 1.04) which was widely used in industrial application,
including paint manufacture in the 20th century, as suggested by the
sample with the lowest 206Pb/207Pb located close to an early 20th
century 'White Lead Works' that possibly used BHT or Canadian Pb
(Mao et al., 2014).

There is no significant difference between mean soil 206Pb/207Pb for
pre-1940 (n= 41, mean 1.14) and post-1940 (n=3, mean 1.13) ur-
banised areas, or never urbanised (n= 6, mean 1.15) although the
latter fall towards the higher end of the range. Neither were statistical
differences in 206Pb/207Pb detected between LCM2007 land cover

Fig. 7. Boxplot of (a) Ca and (b) Pb in soils from Alluvium,
River Terrace Deposits and Thames Group clays subdivided
into areas urbanised post-1940 (NEW) and pre-1940 (OLD)
and sites located on either bedrock or superficial geology
(GEO) or artificial ground (ART) [circle with
cross = median, box = interquartile range, whiskers ex-
tend to the lowest or highest value within the lower or
upper limit, where Lower limit = Q1- 1.5 (Q3 - Q1) and
Upper limit = Q3 + 1.5 (Q3 - Q1)].
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classes (Table 2) nor between the BGS general land use classes (Sup-
plementary material Table SM-1) although apart from domestic gar-
dens/allotments (n=24) the number of samples in each group is small
(1–5). Only when the 206Pb/207Pb data are grouped into (1) built-up
(Commercial and Residential, Domestic gardens/Allotments, Road
verge, Urban open space; n= 37) and (2) Not built-up (Cemetery, Park,
Recreational, Rough Grazing, Woodland and Forest; n= 13) is there a
significant difference between means (Tukey Method). The built-up

samples have a higher petrol Pb component although there is a sub-
stantial overlap between the ranges of 206Pb/207Pb values (Fig. 10) and
the range of values for both classes is not substantially different to that
for London airborne particulate matter (1.117-1.1152; Noble et al.,
2008) with higher ratios corresponding to the period when leaded
petrol was phased out in the UK. Atmospheric particles deposited onto
the soil can be recycled into the atmosphere.

Mao et al. (2014) suggested that other markers of road traffic

Fig. 8. Variation of median topsoil Pb concentration with distance
from major (MA: motorway and A; n=704) and minor, unclassified
(C) roads (n= 5479). Data grouped into 0-10-25-50-100-200-400 m
intervals and plotted at group centre distance; medians for data>
400m plotted at 500m. (Contains OS data © Crown copyright and
database right (2017)).

Fig. 9. Variation of median topsoil Ca, Cu, Pb, Sb, Sn, and
Zn with distance from the nearest road grouped by urba-
nisation domain (OLD=pre-1940, NEW=post 1940,
NURB=never urbanised). Based on soil samples overlying
Thames Group clays and River Terrace Deposits. Data
grouped into 0-10-25-50-100-200-400 m intervals and
plotted at group centre distance; n= 3328 (Contains OS
data © Crown copyright and database right (2017)).
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sources such as Sb and Cu from brake liners may assist with con-
tamination source identification, but there is no significant correlation
between any of the Pb isotope ratios and other indicators including As,
Ca, Cu, Sb, Sn and Zn in the 50 soil samples used by both Mao et al.
(2014) and Appleton et al. (2012), although Ca, Cu, Pb, Sb, Sn and Zn
all correlate (Pearson coefficient, p 0.05). Cu and Sb are not highest in
the road verge samples (n=5) whilst 206Pb/207Pb and 208Pb/207Pb in
road verge samples are lowest or next to lowest amongst all the land
uses suggesting a high petrol Pb component, as would be expected,
although the Pb isotope ratios are not substantially lower than for do-
mestic gardens/allotments (n=22) and urban open space (n= 5). No
obvious spatial variation can be detected in 206Pb/207Pb within the
GLA.

3.5. Other sources of contamination

P enrichment within the GLA as the result of fertilizer application is
supported by the strong correlation between P and Cd. Whilst the lack
of a corresponding enrichment in K suggests that fertilizer application
may not be a major influence on soil chemistry, the higher solubility of
the K component in NPK fertilizer may be a factor. Higher pH in the BU
soils in the Richmond Parks area will reflect higher Ca although this
cannot be dominantly due to application of phosphate fertilizer as P
enrichment in the BU soils is not very high (1.2–1.5, Table 3).

4. Conclusions

Surface soil samples from currently built-up areas within the
London GLA that were also built up in the pre-1940 have Ca, Cu, Ge, P,
Pb, Sb, Sn and Zn median concentrations that are 1.2–1.75 times higher
than in areas that have been built up (urbanised) since 1940. Ca, Cu,
Pb, Sb, Sn and Zn are 2.2–3.2 times higher in areas built-up pre-1940
compared with areas that have never been built up in the GLA, and 2.1
to 5.2 times higher than in areas not built up outside the GLA but within
the London Region. In all cases, Pb exhibits the highest enrichment
ratios followed by Sn and Sb.

Enrichment (contamination) ratios suggest that an event or process
that impacted the pre-1940 urban domain has caused soils to be en-
riched in Ca and to a lesser extent P, as well as some metals and me-
talloids. One possibility is that widespread destruction of buildings
across large sectors of the London urban domain, especially during the
period 1940–41, when more than 1 million houses were destroyed or
severely damaged by strategic bombing, may have resulted in Ca-
bearing cement and lime dust being incorporated into top soils.
Similarly elevated Pb in the pre-1940 urban areas may be partly derived
from leaded paint and lead pipes. Construction of new buildings using

cement and concrete will also result in enhancement of Ca in the soil.
The bomb density is spatially and statistically correlated with the soil
Pb and Ca, but the correlation is not very strong. However, a pro-
gressive increase in Ca with proximity to bomb sites in the pre-1940
domain suggests that contamination related to destruction of buildings
may be a significant factor, especially as Ca does not increase with
proximity to bomb sites in the post-1940 domain. The variation of Ca,
Pb and Zn medians in relation to distance from bomb sites is re-
markably similar to the variation of the centred log-ratio (clr) medians
for these elements.

Pb shows the strongest enrichment in soil samples taken 0–24m
from roads compared with those taken more than 200m from roads and
this is greater in the pre-1940 urban areas than in the post-1940 and
never urbanised areas. High enrichment near to roads is also observed
for Cu, Sb, Sn and Zn in both the pre-1940 and post-1940 urbanised
domains and substantially lower in the never urbanised domain. The
close spatial association of houses and other buildings with roads is a
potentially confounding factor, especially in the urbanised sectors of
London. The broadly comparable increase of Ca and Pb with proximity
to roads in the urbanised domains suggests that Ca, Pb and some of the
other metals derived from building debris could make up a relatively
large contribution to the total amount of the metal contamination ob-
served in London's soils. There is no concomitant rise in Fe, Mn or Ti
with Pb, Ca and associated elements with proximity to roads, which
reduces the likelihood of significant contamination being caused by
brake dust from vehicles.

Only when the 206Pb/207Pb data are grouped into (1) built-up and
(2) not built-up land uses is there a significant difference between
means. The built-up samples appear to have a higher petrol Pb com-
ponent although there is a substantial overlap between the ranges of
206Pb/207Pb values, and the range of values for both classes is not
substantially different to that for London airborne particulate matter.

Soil data for areas classified as built-up using land cover data in 20
other urban centres in England and Wales exhibit enrichment in As, Cd,
Cu, Pb, Sn and Zn in pre-1940 urbanised areas compared with post-
1940 urbanised areas which is similar or stronger to that recorded in
London.

Acknowledgements

This paper is published with the permission of the Executive
Director of the British Geological Survey (Natural Environment
Research Council). G-BASE is a BGS national capability project to map
the surface environment of Great Britain and Northern Ireland. The
London Region soils were collected as part of the London Earth Project
and we acknowledge that the authors are reporting work based on a
sampling project led by Cathy Scheib, Kate Knights, Andreas Scheib,
Bob Lister, Mick Strutt, Jenny Bearcock and Paul Everett. Sample pre-
paration and analysis was done in the BGS laboratories (Keyworth) and
the efforts of Mark Allen, Kevin Barker, Charles Brettle, John Wheeler,
Les Merry, Mark Ingham, Charles Gowing, Heather Harrison, Simon
Carter, Neil Eatherington and Leian Grimsley are acknowledged. Bob
Lister and Kay Green were responsible for the data quality control and
levelling. The work would not have been possible without the efforts of
the student sampling teams who collected the thousands of soils re-
ported here – their contribution is gratefully acknowledged. Use of the
LCM2007 data set in this non-commercial academic research project
partially funded by NERC is acknowledged and covered by the fol-
lowing copyrights: © NERC (CEH) 2011. © Crown Copyright 2007,
Ordnance Survey Licence number 100017572. The Digital Land
Utilisation Survey 1933–1949 (AfA213) was used under licence from
the Environment Agency (The Land Utilisation Survey of Britain,
1933–1949, copyright Audrey N. Clark). Use of the London Bomb Site
data base for this study (http://bombsight.org/data/) was approved by
the University of Portsmouth and licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. The

Fig. 10. Histogram of 206Pb/207Pb in soil samples from built-up and not-built-up areas
(grouped using BGS site land use data) compared with the approximate ranges of
206Pb/207Pb in UK petrol, London airborne particulates, UK coal and Pb ores (see text for
data sources).

J.D. Appleton, M.R. Cave Applied Geochemistry 90 (2018) 13–24

23

http://bombsight.org/data/


Bomb Site data base was compiled during a JISC-funded mapping
project, called Bomb Sight, devised and managed by geographer Dr
Kate Jones, formerly of the University of Portsmouth. OS Open Roads
data set contains Ordnance Survey data © Crown copyright and data-
base right 2013. The OS Open Roads data set also contains additional
data sourced from third parties, including public sector information
licensed under the Open Government Licence v1.0. Finally we thank
Antonio Ferreira and Andrew Tye (BGS), Clemens Reimann (Associate
Editor, Applied Geochemistry) and two anonymous reviewers for sug-
gesting useful improvements to earlier versions of this paper.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.apgeochem.2017.12.024.

References

Albanese, S., Breward, N., 2011. Sources of anthropogenic contaminants in the urban
environment. In: Johnson, C., Demetriades, A., Locutura, J., Ottesen, R.T. (Eds.),
Mapping the Chemical Environment of Urban Areas. Wiley-Blackwell, Oxford, pp.
116–127.

Allen, M.A., Cave, M.R., Chenery, S.R.N., Gowing, C.J.B., Reeder, S., 2011. Sample pre-
paration and inorganic analysis for urban geochemical survey soil and sediment
samples. In: Johnson, C., Demetriades, A., Locutura, J., Ottesen, R.T. (Eds.), Mapping
the Chemical Environment of Urban Areas. Wiley-Blackwell, Oxford, pp. 28–46.

Appleton, J.D., Cave, M.R., Wragg, J., 2012. Modelling lead bioaccessibility in urban
topsoils based on data from Glasgow, London, Northampton and Swansea, UK.
Environ. Pollut. 171, 265–272.

Appleton, J.D., Adlam, K.A.M., 2012. Geogenic control on soil chemistry in urban areas: a
novel method for urban geochemical mapping using parent material classified data.
Appl. Geochem. 27, 161–170.

Appleton, J.D., Johnson, C.C., Ander, E.L., Flight, D.M.A., 2013. Geogenic signatures
detectable in topsoils of urban and rural domains in the London region, UK, using
parent material classified data. Appl. Geochem. 39, 169–180.

Baily, B., Riley, M., Aucott, P., Southall, H., 2011. Extracting digital data from the First
land utilisation survey of Great Britain - methods, issues and potential. Appl. Geogr.
31, 959–968.

BGS, 2011. London Earth. http://www.bgs.ac.uk/gbase/londonearth.html, Accessed
date: 7 January 2013.

Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A., de Miguel, E., 2003. A com-
parative study of heavy metal concentration and distribution in deposited street dusts
in a large and a small urban area: birmingham and Coventry, West Midlands, UK.
Environ. Int. 29 (5), 563–573.

Chenery, S.R., Izquierdo, M., Marzouk, E., Klinck, B., Palumbo-Roe, B., Tye, A.M., 2012.
Soil-plant interactions and the uptake of Pb at abandoned mining sites in the
Rookhope catchment of the N. Pennines, UK – a Pb isotope study. Sci. Total Environ.
433, 547–560.

Crosby, C.J., Fullen, M.A., Booth, C.A., Searle, D.E., 2014. A dynamic approach to urban
road deposited sediment pollution monitoring (Marylebone Road, London, UK). J.
Appl. Geophys. 105, 10–20.

Environment Agency, 2007. 1930s Land Utilisation Mapping: an Improved Evidence-base
for Policy? Science Report: SC050031. Environment Agency. http://cdn.
environment-agency.gov.uk/scho0807bndn-e-e.pdf, Accessed date: 6 November
2013.

Ferreira, A., Johnson, C.C., Appleton, J.D., Flight, D.M.A., Lister, T.R., Knights, K.V.,
Ander, L., Scheib, C., Scheib, A., Cave, M., Wragg, J., Fordyce, F., Lawley, R., 2017.
London Region Atlas of Topsoil Geochemistry. British Geological Survey. http://
nora.nerc.ac.uk/id/eprint/516540/, Accessed date: 30 December 2017.

Flem, B., Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Banks, D., 2017. Graphical
statistics to explore the natural and anthropogenic processes influencing the in-
organic quality of drinking water, ground water and surface water. Appl. Geochem.
https://doi.org/10.1016/j.apgeochem.2017.09.006.

Flight, D.M.A., Scheib, A.J., 2011. Soil geochemical baselines in UK urban centres: the G-
BASE project. In: Johnson, C., Demetriades, A., Locutura, J., Ottesen, R.T. (Eds.),
Mapping the Chemical Environment of Urban Areas. Wiley-Blackwell, Oxford, pp.
186–206.

Fordyce, F.M., Brown, S.E., Ander, E.L., Rawlins, B.G., O'Donnell, K.E., Lister, T.R.,
Breward, N., Johnson, C.C., 2005. GSUE: urban geochemical mapping in Great
Britain. Geochem. Explor. Environ. Anal. 5 (4).

Gietl, J.K., Lawrence, R., Thorpe, A.J., Harrison, R.M., 2010. Identification of brake wear
particles and derivation of a quantitative tracer for brake dust at a major road. Atmos.
Environ. 44 (2), 141–146.

Harrison, R.M., 1979. Toxic metals in street and household dusts. Sci. Total Environ. 11,

89–97.
Johnson, C.C., 2011. Understanding the quality of chemical data from the urban en-

vironment – Part 1: quality control procedures. In: Johnson, C., Demetriades, A.,
Locutura, J., Ottesen, R.T. (Eds.), Mapping the Chemical Environment of Urban
Areas. Wiley-Blackwell, Oxford, pp. 61–76.

Johnson, C.C., Breward, N., Ander, E.L., Ault, L., 2005. G-BASE: baseline geochemical
mapping of Great Britain and northern Ireland. Geochem. Explor. Environ. Anal. 5,
1–13.

Knights, K., Scheib, C., 2011. Examining the soil chemistry of London's parklands.
[Poster]. In: Cities, Catchments and Coasts: Applied Geoscience for Decision-making
in London and the Thames Basin, London, UK, (Unpublished). http://nora.nerc.ac.
uk/14272/, Accessed date: 13 May 2011.

Lark, R.M., Scheib, C., 2013. Land use and lead content in the soils of London. Geoderma
209–210, 65–74.

Leharne, S., Charlesworth, D., Chowdhry, B., 1992. A survey of metal levels in street dusts
in an inner London neighbourhood. Environ. Int. 18 (3), 263–270.

Mao, L., Bailey, E.H., Chester, J., Dean, J., Ander, E.L., Chenery, S.R., Young, S.D., 2014.
Lability of Pb in Soil: Effects of Soil Properties and Contaminant Source.
Environmental Chemistry, A-L. CSIRO. (https://doi.org/10.1071/EN14100).

McIlwaine, R., Doherty, R., Cox, S.F., Cave, M., 2017. The relationship between historical
development and potentially toxic element concentrations in urban soils. Environ.
Pollut. 220, 1036–1049.

Morton, D., Rowland, C., Wood, C., Meek, L., Marston, C., Smith, G., Wadsworth, R.,
Simpson, I.C., 2011. Final Report for LCM2007-the New UK Land Cover Map.
Countryside Survey Technical Report No 11/07 NERC/Centre for Ecology &
Hydrology 112pp. (CEH Project Number: C03259).

Noble, S.R., Horstwood, M.S.A., Davy, P., Pashley, V., Spiro, B., Smith, S., 2008. Evolving
Pb isotope signatures of London airborne particulate mattter (PM10) – constraints
from on-filter and solution-mode MC-ICP-MS. J. Environ. Monit. 10, 830–836.

Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emissions to
particulate matter concentrations from field measurements: a review. Atmos.
Environ. 77, 78–97.

R Core Team, 2016. R: a Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E.,
Ladenberger, A., Team, G.P., 2012. The concept of compositional data analysis in
practice - total major element concentrations in agricultural and grazing land soils of
Europe. Sci. Total Environ. 426, 196–210.

Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008. Statistical Data Analysis
Explained. Applied Environmental Statistics. R. Wiley, Chichester.

Robertson, D.J., Taylor, K.G., Hoon, S.R., 2003. Geochemical and mineral magnetic
characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 18,
269–282.

Sangster, D.F., Outridge, P.M., Davis, W.J., 2000. Stable lead isotope characteristics of
lead ore deposits of environmental significance. Environ. Rev. 8, 115–147.

Scheib, A.J., Nice, S.E., 2007. Soil Geochemical Baseline Data for the Urban Areas of
Corby, Coventry, Derby, Leicester, Northampton, Nottingham and Peterborough in
the East Midlands. British Geological Survey Internal Report, IR/06/023.

Scheib, A., Flight, D., Lister, B., Scheib, C., 2011. London Earth : anthropogenic and
geological controls on the soil chemistry of the UK's largest city. [unpublished poster
presentation]. In: 25th International Applied Geochemistry Symposium, Rovaniemi,
Finland, 22–26 Aug 2011. Available at: http://nora.nerc.ac.uk/15033/.

Shepherd, T.J., Dirks, W., Roberts, N.M.W., Patel, J.G., Hodgson, S., Pless-Mulloli, T.,
Walton, P., Parrish, R.R., 2016. Tracing fetal and childhood exposure to lead isotope
analysis of deciduous teeth. Environ. Res. 146, 145–153.

Spears, D.A., Martinez-Tarrazona, M.R., 2004. Trace elements in combustion residues
from a UK power station. Fuel 83, 2265–2270.

Stamp, L.D., 1931. The land utilization survey of Britain. Geogr. J. 78, 40–47.
Stamp, L.D., 1948. The Land of Britain: its Use and Misuse (Longman, London).
Swetnam, R.D., 2007. Rural land use in England and Wales between 1930 and 1998:

mapping trajectories of change with a high resolution spatio-temporal dataset.
Landsc. Urban Plann. 81, 91–103.

Taylor, K.J., Nigel, W.A., Short, B., 2010. Assessing the land use of inter-war Britain: a
comparison of the First Land Utilisation Survey field sheets and 1:63,360 scale maps.
Appl. Geogr. 30, 50–62.

Thornton, I., 2012. Environmental geochemistry: 40 years research at imperial college,
London, UK. Appl. Geochem. 27 (5), 939–953.

Thorpe, A., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate
matter from road traffic: a review. Sci. Total Environ. 400 (1–3), 270–282.

Wang, G., Zeng, C., Zhang, F., Zhang, Y., Scott, C.A., Yan, X., 2017. Traffic-related trace
elements in soils along six highway segments on the Tibetan Plateau: influence fac-
tors and spatial variation. Sci. Total Environ. 581–582, 811–821.

Ward, L., 2015. The London County Council Bomb Damage Maps 1939-1945. Thames and
Hudson, London.

Ward, N.I., 1990. Lead contamination of the London orbital (M25) motorway (since its
opening in 1986). Sci. Total Environ. 93, 277–283.

Warren, R.S., Birch, P., 1987. Heavy metal levels in atmospheric particulates, roadside
dust and soil along a major urban highway. Sci. Total Environ. 59, 253–256.

J.D. Appleton, M.R. Cave Applied Geochemistry 90 (2018) 13–24

24

http://dx.doi.org/10.1016/j.apgeochem.2017.12.024
http://dx.doi.org/10.1016/j.apgeochem.2017.12.024
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref1
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref1
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref1
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref1
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref2
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref2
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref2
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref2
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref3
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref3
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref3
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref4
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref4
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref4
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref5
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref5
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref5
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref6
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref6
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref6
http://www.bgs.ac.uk/gbase/londonearth.html
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref9
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref9
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref9
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref9
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref10
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref10
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref10
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref10
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref11
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref11
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref11
http://cdn.environment-agency.gov.uk/scho0807bndn-e-e.pdf
http://cdn.environment-agency.gov.uk/scho0807bndn-e-e.pdf
http://nora.nerc.ac.uk/id/eprint/516540/
http://nora.nerc.ac.uk/id/eprint/516540/
https://doi.org/10.1016/j.apgeochem.2017.09.006
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref16
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref16
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref16
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref16
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref17
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref17
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref17
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref19
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref19
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref19
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref20
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref20
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref25
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref25
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref25
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref25
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref27
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref27
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref27
http://nora.nerc.ac.uk/14272/
http://nora.nerc.ac.uk/14272/
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref29
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref29
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref30
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref30
https://doi.org/10.1071/EN14100)
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref33
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref33
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref33
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref34
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref34
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref34
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref34
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref35
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref35
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref35
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref36
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref36
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref36
https://www.R-project.org/
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref39
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref39
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref39
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref39
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref40
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref40
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref41
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref41
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref41
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref42
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref42
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref43
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref43
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref43
http://nora.nerc.ac.uk/15033/
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref45
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref45
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref45
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref46
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref46
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref47
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref48
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref49
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref49
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref49
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref50
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref50
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref50
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref51
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref51
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref52
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref52
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref53
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref53
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref53
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref54
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref54
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref55
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref55
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref56
http://refhub.elsevier.com/S0883-2927(17)30412-2/sref56

	Variation in soil chemistry related to different classes and eras of urbanisation in the London area
	Introduction
	Materials and methods
	Geology and soil chemistry data
	Land use
	Pre-1940
	Post-1940

	London bomb site data base
	Statistical analysis

	Results and discussion
	Enrichment ratios
	Building demolition, construction and land reclamation
	Domestic coal burning and ash disposal
	Emissions from vehicles (road traffic)
	Other sources of contamination

	Conclusions
	Acknowledgements
	Supplementary data
	References




