

Gateway to the Earth

Gemma Kelly, Ciarán Beggan, Tony Swan, Alan Thomson

www.geomag.bgs.ac.uk/data_service/space_weather/geoelectric.html http://ow.ly/OSaZ3

© NERC All rights reserved

British

Geological Survey

ATURAL ENVIRONMENT RESEARCH COUNCIL

Geoelectric Monitoring

- Validating models of surface electric fields that cause geomagnetically induced currents (GIC) in power grids
- Providing additional monitoring of space weather impact at ground level
- Long term monitoring to study space weather and space climate variability
- Measurements started at Eskdalemuir in November 2012
- Lerwick was installed in March 2013
- Hartland was completed in May 2013

awpt5

awpt5	I have inserted slides as if this verson of the talk is for the IUGG meeting. Obviously we can cut things out for the NAM version, if this is shorter
	in duration.
	Alan Thomson, 29/04/2015

Slide 2

Field Setup

- Measurements of the electric field are made by recording the voltage difference between two points in the ground, separated by a known distance in a given orientation.
- At each site two electrode pairs are used, spaced approximately 100m apart, in a North-South and East-West configuration

17th March 2015: Eskdalemuir

http://www.bgs.ac.uk/citizenScience/ geosocial/home.html

17th March 2015: Eskdalemuir

awpt3 Also would be useful to have a plot of E-field over the long term, e.g. a month, to show issues like jumps, spikes, drift etc. Would be of interest for the observatory community as these guys are engineers. Alan Thomson, 29/04/2015

17th March 2015: Lerwick

awpt3	Also would be useful to have a plot of E-field over the long term, e.g. a month, to show issues like jumps, spikes, drift etc. Would be of interest
	for the observatory community as these guys are engineers.
	Alan Thomson, 29/04/2015

17th March 2015: Hartland

awpt3 Also would be useful to have a plot of E-field over the long term, e.g. a month, to show issues like jumps, spikes, drift etc. Would be of interest for the observatory community as these guys are engineers. Alan Thomson, 29/04/2015

Tides

Comparison with model: 17th March 2015

SECS Source field, assumed period of 20 minutes

awpt6 Get Ciaran's thoughts on this before he goes off on paterntity leave, e.g. based on his modelling results Alan Thomson, 29/04/2015

22nd-23rd June 2015

22nd-23rd June 2015: Eskdalemuir

22nd-23rd June 2015: Lerwick

22nd-23rd June 2015: Hartland

Comparison with model: 22nd June 2015

Plane wave interpolation, assumed period of 20 minutes

Future developments

- A few more storms would be nice....
- Distortion tensor
- Improvements in filtering and field set up to follow
- Better QC and data processing also needed – but data available on request
- More sites across the UK? (See Sean Blake's poster for more on sites in Ireland)

Summary

- Tides, rainfall, lightning and probably temperature variations in the data
- Other problems and noise evident in the data, this is very much a learning experience
- E-field data follows both B and dB/dt suggesting complex geology
- Comparison with the model:
 - Clear local differences w.r.t measurements (the 'classic MT problem')
 - Not fully dealt with un-modelled periodic sources: tides and Sq
 - But some agreement with regional scale models gives support to modelling methodology

http://www.geomag.bgs.ac.uk/data_service/space_weather/geoelectric.html

© NERC All rights reserved

Lightning

Data quality

- Example of the raw data over nearly 2 years
 - Green shading shows where there are clear problems
 - Steps and spikes common
 - Note auto-scaling is used

Lerwick

Tidal Signature at Hartland & Lerwick

March 17th 2015: Hartland

Comparison with model: 22nd June 2015

Plane wave interpolation, assumed period of 20 minutes

Spline fit to model to remove trend

-0.1

-0.2

0.2

-0.1

-0.2

06:00

09:00

12:00

15:00

18:00

Y Efield [V/km]

21:00

BGS

Geoelectric Indices – NCK T-Index

- The T-Index is a 3hour range index computed for Nagycenk Observatory, Hungary
- Values are given as 0-9, in steps of 1.8 mV/km for the largest of Ex or Ey
- Daily sum of T is shown
- Perhaps other shorter duration indices would be better?

Days since 01-01-1962: 12 month smoothing filter

awpt2 Could you plot a distribution function of the E-field for Esk, say, over many months of data and we can see where we might put bounds to construct our own version of the T index? I wonder what the characteristics of this distribution would be, e.g. in relation to a distribution function for e.g. dB/dt over the same time span. Alan Thomson, 29/04/2015

Building a Local T Index: Distribution of E-fields

- 1 second data from 1/1/2013 to 05/08/2013 at ESK
- De-trending each individual day and removing data > 1000 mV/m as spikes

Geo-electric Field Monitoring - Details

- Electrodes maintained in a 'neutral' Cu-CuSO4 clay mixture to prevent polarisation/self potential effects
- Transient resistance between electrodes checked before & after installation (< 5 KΩ)
- Buried in pits ~ 0.6m deep (helps minimise temperature variation)
- Electrode pairs separated by about 80-100 m
- Shielded cable to minimise pick-up of noise on signal line

Improving Filtering in 2015

- 50Hz noise in signal
- New design of pre-amp/filter
 - x100 gain
 - 3-pole Butterworth lowpass filter (fc = 20Hz)
 - Will be installed at all UK electric field sites

