
© 2017 The Authors. Journal of Ecology 
© 2017 British Ecological Society 

This version available http://nora.nerc.ac.uk/518925/ 

NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  

This document is the authors’ final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. There may be differences between this and the publisher’s 
version. You are advised to consult the publisher’s version if you wish 
to cite from this article. 

The definitive version is available at http://onlinelibrary.wiley.com/ 

Article (refereed) - postprint 

This is the peer reviewed version of the following article: 

Bullock, James M.; Hooftman, Danny A.P.; Tamme, Riin; Götzenberger, Lars; 
Pärtel, Meelis; Mallada Gonzalez, Laura; White, Steven M. 2018. All 
dispersal functions are wrong, but many are useful: a response to 
Cousens et al. Journal of Ecology, 106 (3). 907-910, which has been 
published in final form at https://doi.org/10.1111/1365-2745.12890 

This article may be used for non-commercial purposes in accordance with 
Wiley Terms and Conditions for Use of Self-Archived Versions. 

Contact CEH NORA team at 

noraceh@ceh.ac.uk 

The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive

https://core.ac.uk/display/146465927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nora.nerc.ac.uk/518925/
http://nora.nerc.ac.uk/policies.html#access
http://onlinelibrary.wiley.com/
https://doi.org/10.1111/1365-2745.12890
mailto:nora@ceh.ac.uk


All dispersal functions are wrong, but many are useful: a response to Cousens et al. 1 

 2 

James M. Bullock1*, Danny A.P. Hooftman1,2, Riin Tamme3, Lars Götzenberger4, Meelis Pärtel3, Laura Mallada 3 

González1, and Steven M. White1,5 4 

 5 

1. NERC Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK. 6 

2. Lactuca: Environmental Data Analyses and Modelling, Diemen, 1112NC, The Netherlands. 7 

3. Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. 8 

4. Institute of Botany, Czech Academy of Sciences, Dukelská 135, 37982 Třeboň, Czech Republic. 9 

5. Wolfson Centre for Mathematical Biology, Mathematical Institute, Radcliffe Observatory Quarter, 10 

Woodstock Road, Oxford, OX2 6GG, UK. 11 

 12 

Correspondence author: James M. Bullock, jmbul@ceh.ac.uk 13 

 14 

Running headline: Useful dispersal functions  15 

mailto:jmbul@ceh.ac.uk


Summary 16 

1. To address the lack of information about the shape and extent of real dispersal kernels, Bullock et al. (2017) 17 

synthesized empirical information on seed dispersal distances. Testing the fit of a variety of probability 18 

density functions, they found no function was the best-fitting for all datasets but some outperformed others. 19 

Cousens, Hughes and Mesgaran (2017) focus on their specific finding of the generally poor fit of the WALD 20 

function to wind dispersal data and use this to argue that mechanistically derived functions would not be 21 

expected to fit data particularly well. 22 

2. We agree in part with this argument and discuss the issues that may lead to poor fit, including the simplifying 23 

assumptions of the WALD and the complexity of the dispersal process. We explain the fundamental linkage 24 

between the mechanistic form of the WALD and the derived function used for fitting to data. 25 

3. We demonstrate however, that the logic that a mechanistically based function could fit to data is valid, under 26 

the hypothesis that it encompasses the key processes determining the dispersal kernel. This argument is 27 

supported by the facts that: a) our analyses and others have shown the WALD performs well in a number of 28 

cases; and b) the WALD is the best fitting function for an example in which we simulate dispersal data using 29 

a realistic representation of variability in the wind dispersal process. 30 

4. Synthesis. While there are reasons that mechanistically derived functions may not fit well to empirical data, 31 

they do in some empirical and simulated cases and this suggests they can capture the dispersal behaviour 32 

of real systems. Mechanistic functions should be explored along with other more general functions when 33 

describing empirical data to investigate their simplifying assumptions and to add to our arsenal of functions 34 

for analysing dispersal data. Analyses using these functions are critical if we are to move from simply 35 

describing the system in which the data were gathered to gaining more general insights into dispersal and 36 

predicting its consequences. 37 
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Introduction 41 

Our synthesis of plant dispersal studies (Bullock et al. 2017) analysed the rich empirical information on seed 42 

dispersal distances from studies on a wide variety of plants across many ecosystems worldwide. A major 43 

aspect of our study was the fitting of a number of widely used probability density functions to these data sets, 44 

and a comparison of their performance. We found that many of these straightforward functions described the 45 

empirical data well, but the performance of alternative functions varied. No single function fitted all data sets 46 

well, but certain functions – the exponential power and log-sech – were the best performing on average. We 47 

then fitted these two functions to data sets that represented combinations of dispersal mode and plant 48 

growth form. These functions fit the combined data sets well despite variation among studies in empirical 49 

methods, local conditions, vegetation type and the exact dispersal process. The analysis of alternative 50 

dispersal kernels and presentation of generalized kernels for growth form/dispersal mode groups provides a 51 

rich resource for ecologists, and we described ways by which this improved information might enrich spatial 52 

ecology.  53 

We take this opportunity to correct typographical errors in our paper in the equations for: the 2Dt, which 54 

should be  
𝑏−1

𝜋𝑎2 (1 +
𝑑2

𝑎2)
−𝑏

; the gamma, which should be 
1

2𝜋𝑎2Γ(𝑏)
(

𝑑

𝑎
)

𝑏−2
exp (−

𝑑

𝑎
); and the Weibull, which 55 

should be 
𝑏

2𝜋𝑎2 𝑑𝑏−2exp (−
𝑑𝑏

𝑎𝑏). 56 

Among other probability density functions, our analysis included the WALD, which is based on a 57 

mechanistic description of seed dispersal by wind (Katul et al. 2005). We noted the fact that when fitted to 58 

datasets describing seed dispersal by wind, the WALD performed poorly compared with many other 59 

functions, in that it was among the best-fitting functions in relatively few cases. Cousens, Hughes and 60 

Mesgaran (2017) focus on this specific aspect of our paper and suggest one would not expect the WALD to fit 61 

empirical data particularly well. They give two closely interlinked reasons for this, which can be summarised 62 

as an argument that the simplifications of the WALD make it unlikely to fit the complexity of real data. The 63 

WALD is based on an assumption of a single seed release height and unvarying environmental conditions 64 



(including wind speed) during the dispersal period. We do not disagree with this argument in general – in fact 65 

we made a similar argument in our paper. But, we show below how Cousens, Hughes and Mesgaran (2017) 66 

over-simplify the issues and therefore unnecessarily downplay the utility of mechanistically based functions in 67 

describing empirical data.  68 

 69 

Why the WALD might not fit real dispersal kernels 70 

The WALD function is based upon simplifications to an idealised three-dimensional Lagrangian stochastic 71 

dispersal model for the trajectories of air particles having no mass in turbulent flows, where the drift and 72 

diffusion terms are determined by assuming a high Reynolds number and well-mixed conditions, modelled by 73 

a generalised Fokker-Planck equation (Thomson 1987; Katul et al. 2005). The final function form for the WALD 74 

is derived to make further simplifying assumptions, which we discuss below. These simplifications result in an 75 

inverse Gaussian distribution, which is considerably more useful to ecologists than some cumbersome 76 

stochastic differential equation which retains the full complexity of dispersal by wind. 77 

The equation given in our paper (see also Nathan et al. (2012)) is the re-parameterised WALD suitable for 78 

fitting to dispersal data by finding solutions for the parameters a and b, whereby the probability density of 79 

seeds at distance d = 
√𝑏

√8𝜋3𝑑5
exp (−

𝑏(𝑑−𝑎)2

2𝑎2𝑑
), which in this form is the 2-dimensional dispersal location kernel 80 

(see Bullock et al. 2017). This is derived by Katul et al. (2005)) from the mechanistic model, which allows 81 

calculation of a dispersal kernel from measures of plants and the environment. Specifically, 𝑎 =  
𝐻�̅�

𝐹
 and 𝑏 =82 

 (
𝐻

�̅�
)

2
, where H is the seed release height, F is the seed terminal velocity, �̅� is the mean wind speed at the 83 

height of seed release and �̅� is a turbulent flow parameter (Katul et al. 2005; Bullock et al. 2012). Since the 84 

WALD is mechanistically derived and parameterised by plant traits and environmental variables, one may use 85 

these readily available data to predict dispersal and spread without a priori obtained dispersal data (Bullock et 86 

al. 2012; Hemrová et al. 2017). This means the fitted function is fundamentally linked to the theory of the 87 

mechanistic model. 88 



As is clear in our paper, we agree that there are good reasons why the WALD may not fit empirical data 89 

well, but these are several. Cousens, Hughes and Mesgaran (2017) give one suggestion. In our paper we 90 

suggested two additional and equally valid mechanisms by which the model might not fit to empirical 91 

data. Considering the underlying theory, simplifying assumptions in the WALD include (Katul et al. 2005): flow 92 

is vertically homogeneous; seed terminal velocity is achieved instantly after seed release; the seed settling 93 

time is assumed to be much longer than the vertical velocity integral timescale; and the simplifications to the 94 

Thomson (1987) model, including Gaussian fluctuations and the use of Kolmogorov scaling within the inertial 95 

subrange to arrive at the diffusion coefficient.  96 

Many of the coefficients in the WALD are averaged, which allows the full equations to be simplified from 97 

the underlying equations.  One such coefficient is the mean wind speed, given by �̅� in Katul et al. 98 

(2005).  There is variation over a season in the wind speed a falling seed might experience, as Cousens, 99 

Hughes and Mesgaran (2017) state, but it will also vary over the time that the seed takes to fall and hence �̅� 100 

could be modelled as a function of time, which would result in an intractable non-closed-form 101 

equation.  Another example is the seed release height, as this will vary naturally. As Cousens, Hughes and 102 

Mesgaran (2017) suggest, one could sum up all the possible release heights of individual seeds and the 103 

corresponding WALDs to get a new kernel, which is hard to work with.  Or one might convolve some 104 

distribution of seed release heights (e.g. a Gaussian) with a WALD. This might fit better, but there are now 105 

extra parameters and one could go on like this with a large number of possible combinations. 106 

 107 

Why the WALD does fit real dispersal kernels, sometimes 108 

Despite these issues, there are good reasons for fitting the WALD to data.  The logic that a mechanistically 109 

based function might fit well to data is valid, as it is hoped that it encompasses the relevant processes 110 

determining the dispersal kernel and so captures the dispersal kernel. Thus, clear hypotheses are set up about 111 

the determinants of the realised kernel. Indeed, the WALD has been used by others when fitting functions to 112 

data. In the original paper proposing the WALD, Katul et al. (2005) proposed and implemented fitting it to 113 



measured dispersal kernels, while also introducing the assumptions in doing so which are being discussed 114 

here. The WALD has been tested in some studies in which alternative functions are compared.  Studying a 115 

wind-dispersed tree, Norghauer, Nock and Grogan (2011) found the WALD and Weibull functions gave 116 

comparable and better fits to dispersal data than the lognormal. Lara-Romero et al. (2014) fitted functions to 117 

seedling data for two herbs using inverse modelling and found the WALD was at least as good a fit to the data 118 

as the 2Dt, exponential power and lognormal. It should also be clarified that in our study the WALD was by no 119 

means a poor fit to wind dispersal data in all cases, belying the implication that it will never fit empirical data 120 

well. Of the 55 wind dispersal data sets, the WALD was in the best-fit group for 15, and had an r2>0.9 for 25.  121 

One way to examine the ability of the WALD to describe dispersal data from a varying environment is to 122 

draw dispersal distances from WALD functions representing variation in parameter values, and then assess 123 

how well a single WALD fits these data in turn. Cousens, Hughes and Mesgaran (2017) do this, but their 124 

example is unrealistic. They make draws from a WALD with the parameters a and b varying independently 125 

each time “according to a uniform distribution of several orders of magnitude”. In reality, these parameters 126 

are unlikely to vary either uniformly or over such wide ranges as they are based on plant and environmental 127 

variables (e.g. seed release height, wind speed), which are likely to be more tightly distributed and closer to 128 

the mean. Furthermore the parameters are correlated, i.e. both reflect wind conditions and plant height, and 129 

so do not vary independently. In Fig. 1 we develop a more realistic example, using data from Bullock et al. 130 

(2012) in which we showed that variation in horizontal wind speed over a season follows a Weibull 131 

distribution. Generating a dispersal data set using a WALD sampled over a Weibull distribution of wind 132 

speeds, we find that the WALD is a better fit (Fig. 1) than the log-sech or the other functions that we 133 

investigated in Bullock et al. (2017). This shows that it is sensible to ask the question whether a WALD fits 134 

wind dispersal data. We would note however, that if multiple parameters of the WALD (e.g. H, F, U) were 135 

allowed to vary over realistic distributions and convolved with the WALD, then the resulting distribution might 136 

take on a number of forms, and not necessarily the WALD. 137 

 138 



Conclusion 139 

In Bullock et al. (2017) we showed that it is possible to summarise the complex and variable dispersal process 140 

using simple functions over a large number of empirical data sets. We found none of the functions we used 141 

gave best fit overall, suggesting no single function captures the dispersal process intrinsically. Mechanistically 142 

based functions may fail to describe such data for reasons set out by us in the original paper, by Cousens, 143 

Hughes and Mesgaran (2017), and expanded upon here. We advocate however that these functions are 144 

explored along with other more general functions when describing empirical data both to assess whether 145 

their simplifying assumptions are valid when tested in the real world and to add to our arsenal of possible 146 

functions for analysing data.  Parametric summaries of dispersal data are critical if we are to use the past and 147 

ongoing work of ecologists in gathering dispersal data for more than simply describing the system in which 148 

the data were gathered.  149 

Prediction in ecology aims both to explain systems and to forecast, or anticipate, future changes (Mouquet 150 

et al. 2015). In line with both aims, our paper synthesized dispersal information and provided general 151 

dispersal functions. These are of use to researchers who may either not have the necessary data to model 152 

their system or may not be interested in case specific kernels. These general and better validated kernel 153 

functions would be useful, for example, in species distribution modelling (Miller & Holloway 2015), analysing 154 

spatial networks (Marleau, Guichard & Loreau 2014) and predicting responses to climate change (Santini et al. 155 

2016). 156 
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Fig. 1. A illustration that dispersal data generated from a WALD probability density function with variation in 198 

parameter values are in turn fitted well by a WALD function with a single value for each parameter. We used 199 

the WALD to model dispersal mechanistically for the wind dispersed orchid Himantoglossum hircinum, as 200 

parameterised by Bullock et al. (2012) from measured plant and environmental characteristics. In that study, 201 

variation in wind speed through the dispersal season followed a Weibull distribution (r2>0.99). To represent 202 

variation in the wind speed experienced by seeds as they are released from the plant, we drew 10,000 wind 203 

speeds from the fitted Weibull and used each to parameterise a WALD, and then drew a single dispersal 204 

distance from each individual WALD. We counted the number of seeds in 0.25 m distance bins: this bin size 205 

was selected as it represented well the shape of the resulting dispersal kernel (especially the non-zero mode), 206 

without giving an excessive number of bins. We then fitted the 11 probability density functions described by 207 

Bullock et al. (2017) to this kernel, using the dispersal distance kernel formulation (Nathan et al. 2012). The 208 

WALD fit best, having the lowest AIC and a r2 (calculated as in Bullock et al. (2017)) of 0.981. The figure 209 

illustrates: the generated dispersal data, which we curtail at 10 m (encompassing 96% of individual dispersal 210 

distances) for this graph to aid clarity; the fitted WALD and 2Dt, which were the best and second best fitting 211 

functions respectively; and the power exponential and log-sech, which (Bullock et al. (2017)) showed fit well 212 

to data generally, but in this case did not perform particularly well. 213 
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