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Changes in the frequency of common plant species across linear features in Wales from 1990 to 1 

2016; implications for potential delivery of ecosystem services  2 

 3 

Abstract 4 

In 2016, 21 1km squares recorded in Wales as part of the Countryside Survey of Great Britain were 5 

revisited. One hundred and thirty seven quadrats alongside linear features that had all been 6 

recorded in the same place in 1990, 1998 and 2007 were re-found and the plant species 7 

compositions recorded. Changes in individual species frequency were analysed and the results 8 

summarised by a number of ecosystem services and one disservice whose delivery are linked to 9 

functionally important species being present. 10 

 Results indicated a continuation of a trend toward increased shading and woody cover seen 11 

between the first Countryside Survey in 1978 and the last in 2007. Most species showed no 12 

significant change in frequency suggesting that the significant directional trend seems only to have 13 

impacted a subset of the species present. A greater sample size would be required to capture 14 

impacts on a larger number of species including a wider range of Common Standards Monitoring 15 

(CSM) positive indicator species that may find refuge on the linear network in lowland Wales. Having 16 

grouped species by the ecosystem services they help deliver, we found that injurious weeds (an 17 

ecosystem disservice to food production) either declined or remained stable, a greater number of 18 

butterfly larval food plants decreased than increased and there was a net decline in potential nectar 19 

yield. Consistent with the successional trend, increasing species in these service-providing groups 20 

tended to be tall or shade-tolerant herbs and tree species. Decreasing species tended to be short, 21 

shade-intolerant forbs.  22 

 23 

Introduction 24 

Common plants make a disproportionately large contribution to ecosystem functioning and 25 

therefore to the delivery of services that benefit humans. In the UK for example, up to five common 26 

forage grasses and two Trifolium species support our grassland agricultural sector (Gililand et al., 27 

2007), one functional group of mosses (Sphagnum spp) build our peatlands storing carbon and 28 

potentially mitigating downstream flooding (Smart et al., 2010; Holden et al., 2017), 22 common 29 

forbs are estimated to provide around 90% of total potential nectar provision (Baude et al., 2016) 30 

and common trees and shrubs stabilise our soils, help mitigate noise, air pollution and lowland 31 

flooding and provide breeding habitat for many bird species (Rhodes et al., 2015; Smith et al., 2017; 32 
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Dixon et al., 2016; Chandler et al., 2018). The importance of common species and habitat dominants 1 

in influencing the delivery of ecosystem services is predicted by the ‘mass:ratio’ hypothesis (Grime 2 

1998). This has found much subsequent support (Wardle et al., 1999; Smith et al., 2003; Pakeman et 3 

al., 2011; Smith et al., 2017 and Kershaw and Mallik, 2010 for critical review) and is inevitably also 4 

linked to the concept of organisms as ‘ecosystem engineers’ (Jones et al., 1994). The larger pool of 5 

common subordinate plant species, that is species contributing lower biomass but still relatively 6 

common across the landscape, are also of importance in supporting different ecosystem functions 7 

via a range of mechanisms (Cardinale et al., 2011; Pywell et al., 2015; Carvell et al., 2006). Measuring 8 

change in the plant species that dominate Britain by area and by mass focusses on those species 9 

likely to be most involved in driving contemporary ecosystem function across the countryside. An 10 

exception to this centres on rarer species and the cultural, spiritual and intellectual fulfilment they 11 

bring as objects of delight and study. They may also have a role in providing low levels of function 12 

but across multiple, complimentary functions (Soliveres et al., 2016). However, understanding the 13 

abundance of common species is also relevant to understanding the fortunes of the rarer species 14 

because the latter often lose out in competition with common dominants that are favoured by 15 

modern land-use regimes (Hodgson 1991; Powney et al., 2014; Smart et al., 2006a; Walker et al., 16 

2017). Indeed the results from a wide range of long-term and large-scale studies show how human 17 

driving forces have tended to non-randomly filter for different kinds of plants, segregating the 18 

declining losers from the increasing winners on the basis of their traits and rarity (Duncan and 19 

Young, 2000; Tamis et al.,  2005; Walker and Preston, 2006; Sundberg 2014). Across Britain, the 20 

Countryside Survey (CS) has been able to describe and quantify these patterns based on a national-21 

scale, stratified random sample of the vegetation (Smart et al., 2002; 2003; 2005; 2006b; Carey et 22 

al., 2008; Norton et al.,  2012).  A unique feature of the survey is that it pays particular attention to 23 

the plant species composition of linear features comprising hedgerows, the banks of watercourses 24 

including ditches, field boundaries and road verges. Analysis of these data has shown how important 25 

the linear network is as a reservoir and refuge for functionally important plant biodiversity including 26 

common nectar plants (Baude et al., 2016), high conservation value indicator plants (Smart et al., 27 

2006a) and Crop Wild Relatives that provide genetic insurance for future crop-breeding in an era 28 

when global food security in the face of climate change has risen to the top of the agenda (Jarvis et 29 

al., 2015). Whilst functioning as refugia for plants not favoured by adjacent land-use, linear features 30 

have also been subject to marked successional change that reduce the quality of the refuge for some 31 

species and increase it for others. Evidence from Countryside Survey has shown that since 1978 and 32 

up to the last survey in 2007 linear features and especially streamsides have seen increased shading 33 

and cover of trees and shrubs (Carey et al., 2008). This trend was most evident in England and Wales 34 
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and has been correlatively linked to increased water quality but also to the suppression of 1 

herbaceous species richness as a result of the filtering of shade-intolerant herbs (Smart et al., 2006a; 2 

Norton et al., 2016). Since the linear network is best developed in lowland Britain successional 3 

changes on linear features have also occurred against a backdrop of intensive land-use, exposure to 4 

run-off rich in macronutrients and high atmospheric nitrogen deposition. Yet, since the mid-eighties, 5 

management options funded by regionally focussed and then more widespread agri-environment 6 

schemes may have ameliorated intensifying factors adjacent to linear features in some places. These 7 

schemes have also funded interventions that directly impact linear features in the hope of achieving 8 

a wide range of objectives including water course protection, hedgerow management, ecological 9 

connectivity and the creation of buffer strips for birds, invertebrates and plants. The signal of agri-10 

environment scheme effects may be present in our results but our objective is not to try to isolate 11 

this signal since the sample size is relatively small and we do not currently have access to location-12 

specific information on historical scheme uptake and the duration of options. We return to this 13 

briefly in the discussion. 14 

 15 

In this paper we ask whether the trend for increased woody cover and shading on linear features has 16 

continued from 1990 to the present. We focus on Wales only. The last GB-wide CS was carried out in 17 

2007 but in 2016, 21 of the CS 1 km survey squares in Wales were revisited and their quadrats 18 

recorded as part of the Glastir Monitoring & Evaluation Program funded by Welsh Government (Fig. 19 

1). These 1 km squares contained 137 linear quadrat locations at which the vegetation has been 20 

recorded in the same position in 1990, 1998, 2007 and now in 2016. Our analysis focused on 21 

changes in these 137 plots. Those first recorded in 1978 were excluded because of small sample 22 

sizes and to serve the exploratory needs of our analysis. They could be included in a future 23 

investigation.  24 

We summarise the ecological significance of changes in species frequency by grouping individual 25 

species according to their potential contribution to various ecosystem services and one disservice 26 

across the countryside (Table 1). We did not measure the delivery of each service in the sense of 27 

quantifying the benefits realised from the species being present. Our focus was on assembling 28 

evidence of changes in abundance of functionally important species assuming that for benefits to be 29 

realised the right species need at least to be sufficiently abundant in the regional species pool.  30 

Moreover, the delivery of each service is also dependent upon the species being situated in the 31 

appropriate habitat. For example, positive Common Standards Monitoring indicators for lowland 32 

meadows and upland hay meadows will only contribute to condition assessment when present in 33 

existing meadows or grasslands targeted for restoration. However, agri-environment scheme 34 
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options that aim to achieve maintenance and restoration require a responsive wider species pool. 1 

We assume that the success of such options is increased where populations of these indicators 2 

persist and can alleviate dispersal limitation. Persistence is often more likely on linear features since 3 

these can retain greater diversity than adjacent managed fields (Smart et al., 2002; 2006a).     4 

In summary we ask the following questions: 5 

1. Do changes in the frequency of common plant species indicate an ongoing trend toward 6 

greater woody cover and shading on linear features seen across Wales between 1990 and 7 

2016? 8 

2. What are the implications of species frequency changes for ecosystem services delivered by 9 

plants on linear features?  10 

 11 

Methods 12 

Survey design 13 

The Countryside Survey was established in 1978 with the aim of estimating the stock of common 14 

habitat types across Britain and characterising their soils and plant species composition (Wood et al., 15 

2017). The sampling design chosen to ensure unbiased yet representative coverage of Britain was 16 

based on a random selection of 1km squares stratified by Land Class - a physiographic and climatic 17 

classification of 1km squares, correlated with but independent of land-cover and vegetation (Bunce 18 

et al., 1996). Subsequent surveys in 1990, 1998 and 2007 were used to quantify changes in soils, 19 

vegetation, habitat area and many other attributes over time allowing for adjustments to the sample 20 

size and stratification reflecting devolution and the need to report on UK Biodiversity Action Plan 21 

Broad and, where possible, Priority Habitats.  Detailed methods have been previously documented 22 

(Norton et al., 2012; Carey et al., 2008; Smart et al., 2003). Exactly the same field protocols were 23 

used for finding and recording quadrats in the 21 CS squares revisited in Wales in 2016 as in previous 24 

surveys.  25 

  26 

Plot types 27 

Linear plots sampled field boundaries (maximum 5 per 1km square), hedgerows (2 per square), road 28 

verges (5 per square) and the banks of watercourses including ditches (5 per square). A stratified, 29 

random design was used to position plots on their respective features (see Carey et al., 2008 for 30 

further details). All linear plots were 1x10m in size with the long axis arranged parallel to the linear 31 
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feature. Streamside plots were placed next to the channel and then 1m measured up toward the 1 

break of slope. Field boundary plots were positioned with one edge adjacent to the first vertical 2 

feature defining the edge of the field. Hedgerow plots were aligned with one edge along the central 3 

axis of the hedge and road verge plots were positioned along the edge of the road or track and 4 

measured 1m into the adjacent vegetation. After being put into position during the first survey, 5 

quadrats were recorded in the same position in every year of survey being re-found in each repeat 6 

visit using a combination of photographs, sketch maps and in many cases re-finding a small 7 

aluminium plate buried at one of the corners of the plot. Surveyors were asked to make a judgement 8 

in the field as to whether they found the plot with sufficient accuracy for the data to be treated as a 9 

repeat record at the same spatial location as in previous surveys. In total 137 linear plots were 10 

available for analysis with each plot having been recorded four times in the same place.  11 

 12 

Data assembly  13 

Species lists from each plot were arranged as presence/absence data by plot, year and 1km square. 14 

A number of taxon amalgamations were implemented for species known to be difficult to separate 15 

in the field, for example Quercus robur with Q.petraea. Nomenclature follows Stace (2010). 16 

Changes in frequency across the surveys were analysed at the individual species level. Results were 17 

then summarised as counts by groupings of species as follows. All plants analysed were assigned 18 

exclusively to one of five growth forms; lianas (Hedera helix and Lonicera periclymenum), forbs 19 

(herbaceous non-graminoids), graminoids (including grasses, sedges and rushes), ferns and woody 20 

species (trees, shrubs and dwarf shrubs. Rubus fruticosus agg was also included here). These growth 21 

forms usefully discriminate later successional species – ferns, lianas and woody species – from early 22 

to mid-successional forbs and graminoids. Species were also grouped by average canopy height 23 

following the classification used by Grime et al. (1995). Species were also assigned to groups that 24 

reflected clear and established links to the delivery of ecosystem services and one disservice (Table 25 

1).  26 

 27 

Analysis 28 

For each plant species with greater than 10 recorded occurrences across the four survey years we 29 

tested whether it exhibited a linear trend in number of recorded presences (increase or decrease) 30 

over time. To determine the significance of the linear trends, a randomisation test was adopted that 31 

could both preserve the temporal and spatial structure of the data whilst also incorporating 32 
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changing detection rates across plant types across years. CS has been repeatedly validated by 1 

independent Quality Assurance surveys (Prosser and Wallace, 1992, 1999, 2008). These visit a subset 2 

of the quadrats in a sub-sample of CS squares soon after surveyors carry out the ‘real’ survey. The 3 

same team have carried out the QA exercise in every CS maintaining continuity of practice and 4 

recording effort. The results have shown that detection rate has varied between surveys and also by 5 

broadly defined plant type. Exhaustive analysis of the QA datasets after the 2007 survey showed that 6 

most metrics were unaffected by between-survey variation in recording effort however a correction 7 

factor was applied to analysis of the mean Ellenberg fertility scores while analysis of changes in 8 

individual plant species applied a modification of the Telfer et al. (2002) method used for Atlas 2000 9 

(Carey et al., 2008; Smart et al., 2008). However, that method involved a correction that took no 10 

account of the fact that detection could differ between species groups; for example sedges, forbs or 11 

trees and shrubs. The method was also set up for pairs of surveys and not a time series of more than 12 

two surveys. Since that time methods for addressing the problem of varying recorder effort have 13 

increased in sophistication (Bailey et al., 2014; Isaac et al., 2014). We therefore included varying 14 

detection probability between survey year and plant type in our analysis of change in species 15 

frequency so that our results were robust to average variation in detection rate specific to each of 16 

the four survey years and to the type of plant. Detection rate is simply the proportion of records of a 17 

particular plant type - forbs, graminoids or woody species (trees, shrubs, dwarf shrubs and lianas) - 18 

found by the QA surveyor that were also found by the CS surveyors. These proportions can be 19 

readily calculated for each plot in each random sub-sample of plots visited by both QA and CS 20 

surveyors. Since the proportion of the total QA list that was recorded by the CS teams varied 21 

between plots the distributions of values were summarised by fitting the parameters of a beta 22 

distribution to each QA dataset defined by survey year and plant type (see Fig S1).     23 

In the randomisation test the observed regression slope of counts in each year against time was 24 

compared against a distribution of regression slopes derived from randomising the presence of each 25 

species within each plot and within each 1km square but across years, hence maintaining the 26 

structure of the observed data. Detectability was incorporated by a including a stochastic process 27 

representing whether the randomised presence was recorded or not. Note that the regression 28 

slopes were fitted to the total count of each species across occupied plots over time.   29 

The randomised distribution of regression slopes for a particular species was generated by the 30 

following algorithm: 31 

1. Extract the total number of years in which the species was present within each quadrat to 32 

determine the number of pseudo presences. 33 
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2. Randomly assign these pseudo-presences across the four available years (1990, 1998, 2007, 1 

2016) but within each plot such. Thus the 1’s and 0’s from each plot swap years but never 2 

swap spatial location. Note that if the species was present in every year no random sorting 3 

was possible for that quadrat. Plots in which the species was never recorded are ignored.   4 

3. Convert each pseudo-presence into a pseudo-observation by multiplying by a random draw 5 

from a Bernoulli distribution. The probability in the Bernoulli trial is a random draw from a 6 

Beta distribution given the fitted parameters for the detection rate relevant to the survey 7 

year and plant type (Fig S1).   8 

4. Fit a linear trend to the pseudo-observations generated and store.  9 

5. Repeat steps 2-4 10,000 times for each species.  10 

The probability that the observed slope is significantly larger or smaller than a draw from the null 11 

distribution is calculated as the count of observed slopes that are greater or less than each 12 

randomised slope divided by the total number of randomised slopes.   13 

The detection rate (𝐷) is not applied species-specifically as this information is either not available or 14 

sparse for most species, but is applied given the survey year and the plant type to which the species 15 

belongs. The count of randomised presences in any year is therefore reduced to reflect the level of 16 

under-recording quantified by the detection rate for that year and species type. The observed 17 

counts are not adjusted and so end up higher relative to the reduced counts in the randomised data 18 

with which the trend in the observed data is compared. Therefore, the comparison of regression 19 

slopes is corrected for varying recorder effort by down-weighting the randomised data rather than 20 

by having to add pseudo-presences to the observed data.  Uncertainty in each detection rate is 21 

introduced by drawing the 𝑝 for the Bernoulli from the appropriate Beta distribution.  So for each 22 

species ℎ in quadrat 𝑗 in square 𝑖 in survey year 𝑦 its pseudo observations were obtained and were 23 

randomly re-assigned to each year with probability,  24 

𝐼ℎ𝑗𝑖𝑦 = 𝐷ℎ𝑗𝑖𝑦 ∙ 𝑇ℎ𝑗𝑖𝑦 25 

𝐷ℎ𝑗𝑖𝑦 ~ 𝐵𝑒𝑟𝑛(𝑝𝑓𝑦) 26 

𝑃𝑓𝑦~𝐵𝑒𝑡𝑎(𝛼, 𝛽) 27 

 28 

where 𝑝 is drawn from a Beta distribution representing the spread of detection rates for each year 𝑦  29 

and each growth form 𝑓, 𝑇ℎ𝑗𝑖𝑦 represents the pseudo-presence/absences generated from step 2 in 30 

the above algorithm and 𝐷 is a binary draw from the Bernoulli distribution. Parameters for each Beta 31 
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distribution were fitted using the fitdistrplus R package and the method of moments (Delignette-1 

Muller and Dutang, 2015). See Fig. S1 in Supplementary Material for fitted and observed 2 

distributions of detection rate.   3 

    4 

Contribution to vegetation cover of the species tested 5 

The mass:ratio hypothesis highlights the correlation between biomass and contribution to 6 

ecosystem function.  While we have no biomass measurements for species in plots a useful indicator 7 

of how important the species tested might be in terms of its contribution to standing biomass can be 8 

derived by expressing the proportion of total vegetation cover across the linear plots attributable to 9 

the species tested. Thus if species that became more or less common, contributed a large 10 

percentage of total cover they may have a disproportionate importance in influencing services that 11 

are correlated with the amount of vegetation present.  12 

 13 

Results 14 

Identity of broad habitats adjacent to the linear features 15 

Linear networks are better developed in the lowland landscapes of Britain and this is clearly 16 

reflected in the identity of the broad habitats most commonly found adjacent to the linear plot 17 

sample revisited in Wales (Fig. 2).  The most common habitat was Improved grassland. Arable land is 18 

not extensive in Wales and so was much less common as an adjacent habitat than it would have 19 

been in England for example. 20 

 21 

Changes in species frequency 22 

Of those species that showed significant change in frequency, those increasing were more likely to 23 

be trees and those decreasing were more likely to be forbs and grasses (Table 2, Fig. 3). Moreover, 24 

shorter species (<10 to 60cm) were more likely to be decreasing while species showing no significant 25 

change ranged more widely in height (Table 2, Fig. 4). The tallest species either did not change 26 

significantly or increased in frequency (Fig. 4).   27 

Forbs were the biggest species group analysed and most did not show any significant change (58 of 28 

74 analysed) but in absolute terms the largest number of decreasing species were forbs. The only 29 
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groups to have no decreasing species but only increasing or stable species were ferns and woody 1 

species however these groups of species were small compared to forbs (Fig. 4; Table 2) 2 

Among species associated with the potential delivery of ecosystem services and disservices the 3 

greatest number of significant changes were reductions in frequency but the majority of species in 4 

all groups showed no significant change up or down. Decreasing species included CSM positive 5 

indicators (8 of 61 analysed), nectar providing plants (11 of 69), Injurious Weeds (2 out of 5), 6 

butterfly larval foodplants (11 of 44) and N fixers (3 of 10) (Table 2; Fig. 5). Increasing species 7 

included four species in the CSM positive indicator and Ancient Woodland Indicator (AWI) group 8 

(Blechnum spicant, Deschampsia cespitosa, Chryosplenium oppositifolium and Dryopteris affinis 9 

agg.). Increasing butterfly larval foodplants were Deschampsia flexuosa, Hedera helix agg., Ilex 10 

aquifolium and Quercus robur/petraea. Of the N fixing species only Alnus glutinosa increased in 11 

frequency significantly, consistent with the increased abundance of woody species across the 12 

network. No injurious weeds increased significantly. Nine nectar-providing species increased in 13 

frequency. These were woody species (Acer pseudoplatanus, Alnus glutinosa, Corylus avellana, 14 

Rubus fruticosus agg., Hedera helix agg.) and shade-tolerant or tall herbs (Galium aparine, Geum 15 

urbanum, Chryosplenium oppositifolium and Heracleum sphondylium) (Table 2).  16 

  17 

Contribution to vegetation cover 18 

The 127 species tested contributed 80% of total plant cover in linear plots in 1990 and 73% in 2016. 19 

The significant changes in frequency we detected also appeared to be consistent with changes in 20 

total cover. Increasing species occupied 9% of total cover among 1990 plots rising to 20% by 2016. 21 

Species that became less frequent also declined from 22% of total cover in 1990 to 11% by 2016. The 22 

largest contribution was from species that were frequent enough to be tested but showed no overall 23 

significant change over the 26 years (Fig. 6). 24 

 25 

Discussion 26 

Overall the patterns of changing frequency that we have detected are consistent with the 27 

continuation of a successional trend clearly seen in Britain and in particular in Wales from 1978 up 28 

until the last CS in 2007 (Carey et al., 2008). Therefore in the last 9 years conditions have continued 29 

to become less favourable for mid-successional, shade-intolerant plant species. Two particular 30 

groups of shade-intolerant plants are therefore likely to have suffered; a) nutrient-loving species and 31 

b) shade-intolerant forbs of less fertile conditions.  32 
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Nutrient-loving species require ample light to realise the rapid and suppressive growth achievable 1 

when macronutrients are freely available. Thus shading reduces their vigour. We see evidence of this 2 

in the significantly reduced frequency of the injurious weeds Cirsium vulgare and Rumex obtusifoius 3 

in linear plots from 1990 to 2016 although the other injurious weeds Cirsium arvense, Rumex crispus 4 

and Senecio jacobaea showed no significant change in the same period. Species that are less 5 

nutrient-demanding but also shade-intolerant include the large pool of short forbs that feature in 6 

the CSM positive indicator list. Many CSM positive indicator species are infrequently encountered 7 

across Wales because their preferred habitats are relatively rare and because they often have small 8 

population sizes and make a small contribution to vegetation cover.  Therefore the few CSM positive 9 

indicators analysed here are biased toward those more common in the lowlands (Table 2). Species 10 

that declined include Lotus pedunculatus, Festuca ovina, Hypochoeris radicata and Centaurea nigra 11 

but many others did not change significantly such as Lotus corniculatus, Hypericum pulchrum, Vicia 12 

cracca, V.sativa and Stellaria uliginosa. Most showed no consistent directional change. Too few CSM 13 

positive indicator species were encountered to be able to infer large-scale impacts across such a 14 

large and diverse group while many of the habitat specialists in this group are also unlikely to benefit 15 

from the refuge or connectivity function of lowland linear features. An exception maybe 16 

streamsides. Smart et al. (2006a) examined how richness of indicators of unimproved mesotrophic 17 

grasslands responded to a spatial gradient of land-use intensity across linear features in lowland 18 

Britain. While indicator richness declined on streamsides the rate of decline was slower than 19 

adjacent farmland, and streamsides were overall richer in indicator species than field boundaries, 20 

road verges and hedgerows. Shading effects interacted with land-use intensity to drive down 21 

indicator richness even further but increased shade seemed also able to buffer indicator species 22 

against the effects of intensification but only for the small subset of indicators that were shade-23 

tolerant.  24 

Given the increase in woody cover, shade-tolerant Ancient Woodland Indicators might have been 25 

expected to increase. Most, including Stellaria holostea, Hyaconthoides non-scripta, and Oxalis 26 

acetosella, showed no evidence of increase. However other shade-tolerators did become more 27 

common in linear features in the 26 years including Hedera helix agg. and Geum urbanum.  28 

The importance of linear features as refuge features has also been shown for nectar providing plants 29 

and crop wild relatives (Baude et al., 2016; Jarvis et al., 2015).  These are also diverse groups of 30 

plants so that the shading trend appears to have favoured some but not others. Thus shorter, 31 

grassland species such as Cerastium fontanum,  Trifolium pratense, Cenataurea nigra, Hypochoeris 32 

radicata and Lotus pedunculatus declined while taller nectar-providing species increased including 33 

Heracleum sphondylium, Galium aparine, Alnus glutinosa, Acer pseudoplatanus and Rubus fruticosus 34 
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agg. While many nectar-providing species showed no change in frequency the net outcome was a 1 

reduction in potential nectar production of about 4400 Kg sugar ha-1 year-1 derived crudely as the 2 

number of plants species significantly lost or gained weighted by their average potential sugar 3 

production (Fig. 7). Two important caveats apply in interpreting this figure. First, the sugar 4 

production values are estimates of potential yield. To be realised they obviously require flowering 5 

and, for forbs at least, this tends to be reduced under shade and when subject to elevated nitrogen 6 

deposition (Phoenix et al., 2012). Second, the nectar production totals do not provide information 7 

on when in the growing season each plant is likely to contribute. Plants that flower early and help to 8 

fill the spring gap in nectar provision may be critical even if their potential nectar yield is lower than 9 

summer-flowering species (Russo et al., 2013).     10 

To summarise, the changes in individual species frequency seen over 26 years in an unbiased sub-11 

sample of plots on linear features across Wales indicate a continuation of the trend for increased 12 

shading and woody cover seen between 1990 and the last full Countryside Survey in 2007. This trend 13 

was also detected across linear features in England but was much less apparent in Scotland (Carey et 14 

al., 2008). Between 1990 and 2016 in Wales, most species showed no significant change in 15 

frequency suggesting that the significant directional trend seems only to have impacted a subset of 16 

the species present. A greater sample size would be required to capture impacts on a larger number 17 

of species including the many less common CSM positive indicator species that may find partial 18 

refuge on the linear network in lowland Wales.  19 

By grouping species in terms of the ecosystem services and disservice that they can potentially 20 

influence we found that injurious weeds either declined or remained stable, a greater number of 21 

butterfly larval food plants decreased than increased and that there was a net decline in potential 22 

nectar yield. Consistent with the successional trend, increasing species in these service-providing 23 

groups tended to be tall or shade-tolerant herbs and tree species and decreasing species tended to 24 

be short, shade-intolerant forbs.  25 

A number of further research questions arise from this work. Firstly, to what extent have species 26 

changes actually contributed to ecosystem service delivery, especially given the apparent stability 27 

among most species? A second question concerns quantifying the longer-term, cumulative effects of 28 

over 30 years of agri-environment funding on service-delivering common plants in Wales and the 29 

rest of Britain. In Wales the baseline of 1km survey squares established by the Glastor Monitoring & 30 

Evaluation Program (GMEP https://gmep.wales/) was carefully stratified by uptake of options 31 

funded under the Glastir scheme so that in future these data should be able to help address this 32 

question. The trend on linear features in Wales toward taller vegetation with greater woody cover is 33 

https://gmep.wales/
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a continuation of one component of a general pattern of homogenisation of plant traits and reduced 1 

local species richness seen across Britain from 1978 to 1998 (Smart et al., 2006b). Recently however, 2 

analysis of plant and animal records at 10km square and coarser resolutions has indicated a slowing 3 

or even reversal of homogenisation and species loss in Britain and parts of Europe (Carvalheiro et al., 4 

2013). The authors hypothesised that this might reflect the widespread and long-term impact of 5 

extensification resulting from agri-environment scheme funding. The coarse resolution of their data 6 

made it impossible to directly answer this question because they could not differentiate temporal 7 

change between habitat types and locations known to have been subject to long-term AES 8 

intervention versus locations never in scheme. Building on the legacy of change in CS plots, joint 9 

analysis with the GMEP sample alongside emerging data from the National Plant Monitoring 10 

Scheme, could allow us to test this hypothesis at the detailed level of habitat, landscape features 11 

and associated management options. Such an analysis would require finely-resolved legacy data on 12 

past schemes to be assembled. 13 

Lastly, the successional trend on linear features may have further facilitated the delivery of other 14 

ecosystem services such as flood amelioration, ecological connectivity, carbon storage and 15 

watercourse protection. The mechanisms supporting these services are less reliant on individual 16 

plant species than changes in vegetation structure attributable to the increasing dominance of 17 

woody plant cover. An interesting question centres on the extent to which trade-offs may have 18 

arisen for example between those services whose delivery is supported by short forbs versus trees 19 

and shrubs.  20 
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Table 1: Relationships between types of plant species and potential for contributing to the supply of 1 

different ecosystem services. 1. Jarvis et al. (2015); 2. Baude et al. (2016); 4. Five species notifiable 2 

under the Weeds Act 1959 (https://www.legislation.gov.uk/ukpga/Eliz2/7-8/54/contents). 6. 3 

Positive CSM indicators extracted from a full listing across habitats compiled by Walker, K.J for the 4 

NPMS scheme, March 2014, plus Ancient Woodland Indicator species (Kirby 2006, Kimberley et al., 5 

2013); 7. Larval food plants extracted from a phytophagous database originally compiled by Lena 6 

Ward and held at the Biological Records Centre, Wallingford. See Smart et al. (2000).  7 

 8 

COMMON PLANT GROUP ECOSYSTEM SERVICES 

1) Crop Wild Relatives 
 

Genetic insurance for future crop production 

2) Potential nectar supply 
 

Pollinator diversity and crop production 

3) Nitrogen fixers 
 

Food production and carbon fixation 

4) Injurious weeds 
 

Disservice for food production 

5) Trees & shrubs Climate control, soil stabilisation, cultural 
importance, supporting cultural value of wild 
bird diversity, carbon storage, flood 
amelioration 
 

6) CSM & AWI  Positive Common Standards Monitoring 
indicators (CSM) and Ancient Woodland 
Indicators (AWI) support cultural biodiversity 
value and help indicate the status of valued 
semi-natural  habitats   
 

7) Butterfly larval foodplants Cultural value of biodiversity 

 9 

 10 

 11 

https://www.legislation.gov.uk/ukpga/Eliz2/7-8/54/contents
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Table 2: Results of an analysis of change in frequency of plant species in linear plots in Wales recorded in the same locations in 1990, 1998, 2007 and 2016. 

Estimated nectar values for flowering plants were extracted from Baude et al. (2016). BL=butterfly larval food plants. CSM & AWI = Positive Common 

Standards Monitoring indicators or Ancient Woodland Indicator. CWR =Crop Wild Relatives. N_fix=nitrogen fixers. IW=Injurious Weeds. Can_ht = average 

canopy height in classes (1, <100mm; 2, 101-299mm; 3, 300-599mm; 4, 600-999mm; 5, 1-3m; 6, 3.1-6m; 7, 6.1-15m; 8 >15m). Obs slope = the regression 

slope of the observed count data versus time. Rand_p the probability that the Obs slope is < than a slope derived from a random shuffling of the species  

presences between years (see text). Number of plots occupied in each survey year. SIG=empirical two-tailed test of the Rand_p value at the 5% level. Dir; + 

if observed slope >0, - if <0.  

Species name Estimated 
nectar (kg 
sugar ha-1 

yr-1) 

BL CSM 
& 

AWI 

IW CWR N_fix Can 
ht 

Obs 
slope 

Rand_p 1990 1998 2007 2016 SIG Dir 

Acer pseudoplatanus 243.75 0 0 0 0 0 8 0.3109 0.0060 4 7 7 13 y + 

Achillea millefolium 603.25 0 1 0 0 0 2 -0.5617 1.0000 35 29 25 20 y - 

Alnus glutinosa 7.07 0 0 0 0 1 8 0.3096 0.0010 2 4 10 9 y + 

Bellis perennis 105.23 0 0 0 0 0 1 -0.2970 0.9870 14 10 8 6 y - 

Blechnum spicant . 0 1 0 0 0 3 0.3135 0.0010 4 3 9 11 y + 

Centaurea nigra 2569.17 0 1 0 0 0 3 -0.7063 1.0000 31 20 15 12 y - 

Cerastium fontanum 23.26 0 0 0 0 0 1 -0.9122 1.0000 54 40 35 29 y - 

Chrysosplenium 
oppositifolium 

47.79 0 1 0 0 0 2 0.2647 0.0010 5 8 7 13 y + 

Cirsium vulgare 1961.79 1 0 1 0 0 4 -0.3987 0.9990 13 16 12 3 y - 

Corylus avellana 1.7 0 0 0 1 0 6 0.6495 0.0010 11 12 17 28 y + 

Dactylis glomerata . 1 0 0 1 0 3 -0.6218 1.0000 79 78 63 66 y - 

Deschampsia cespitosa . 1 1 0 0 0 2 0.3908 0.0010 8 12 13 19 y + 

Deschampsia flexuosa . 1 1 0 0 0 2 -0.2059 0.9830 11 7 10 4 y - 

Dryopteris affinis . 0 1 0 0 0 5 0.2548 0.0010 1 1 5 7 y + 

Fagus sylvatica . 0 0 0 1 0 8 0.4970 0.0010 2 3 10 14 y + 

Festuca ovina agg. . 1 1 0 1 0 2 -0.4152 0.9990 25 13 12 13 y - 

Fraxinus excelsior . 0 0 0 1 0 8 0.8053 0.0010 10 17 21 32 y + 

Galium aparine 4.89 0 0 0 0 0 5 0.5135 0.0080 25 46 35 44 y + 
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Geum urbanum 1.93 0 0 0 0 0 3 0.2462 0.0090 13 10 16 18 y + 

Hedera helix agg. 705.45 1 0 0 0 0 8 0.3894 0.0080 26 29 36 35 y + 

Heracleum sphondylium 1507.04 0 0 0 0 0 3 0.3947 0.0180 30 28 38 38 y + 

Holcus mollis . 1 1 0 0 0 2 -0.4125 0.9750 40 32 13 34 y - 

Hypochaeris radicata 101.28 0 1 0 0 0 1 -0.3531 1.0000 17 14 4 10 y - 

Ilex aquifolium . 1 0 0 0 0 7 0.2172 0.0080 4 7 8 10 y + 

Lolium perenne . 1 0 0 1 0 3 -0.7003 0.9990 76 69 65 57 y - 

Lotus pedunculatus 8.45 1 1 0 1 1 3 -0.5267 1.0000 19 12 11 4 y - 

Plantago lanceolata 0.37 1 1 0 1 0 1 -0.4092 0.9910 29 22 19 18 y - 

Plantago major . 1 0 0 0 0 1 -0.6165 1.0000 37 29 23 21 y - 

Quercus robur & petraea . 1 0 0 0 0 8 0.3023 0.0060 8 8 10 16 y + 

Rubus fruticosus agg. 167.49 0 0 0 0 0 5 0.4488 0.0130 58 50 61 67 y + 

Rumex obtusifolius . 0 0 1 0 0 3 -0.3677 0.9820 36 24 21 26 y - 

Trifolium pratense 894.26 1 0 0 1 1 2 -0.3050 0.9970 8 13 2 3 y - 

Trifolium repens 803.62 1 0 0 1 1 1 -0.5868 0.9990 57 57 39 46 y - 
                

Agrostis canina sens.lat. . 0 1 0 1 0 1 -0.1630 0.9141 14 5 5 9 n - 

Agrostis capillaris . 1 1 0 1 0 2 -0.1003 0.6713 62 67 68 59 n - 

Agrostis stolonifera . 0 0 0 0 0 2 0.0422 0.4446 74 85 62 83 n + 

Alopecurus pratensis . 0 0 0 1 0 2 -0.0713 0.7722 4 7 1 4 n - 

Angelica sylvestris 93.98 0 1 0 0 0 3 0.1063 0.1309 5 5 2 9 n + 

Anthoxanthum odoratum . 1 0 0 1 0 2 -0.2007 0.8162 45 43 28 44 n - 

Anthriscus sylvestris 150.54 0 0 0 0 0 3 0.2383 0.0919 19 26 20 28 n + 

Apium nodiflorum . 0 1 0 0 0 3 -0.1399 0.9151 7 9 3 5 n - 

Arrhenatherum elatius . 1 0 0 1 0 5 0.3274 0.0629 41 38 45 48 n + 

Athyrium filix-femina . 0 1 0 0 0 5 0.1459 0.1479 12 17 15 17 n + 

Brachypodium sylvaticum . 1 1 0 0 0 3 -0.0561 0.7133 12 11 9 11 n - 

Bromus hordeaceus . 0 0 0 1 0 2 -0.1274 0.8641 8 7 8 4 n - 

Cardamine 
hirsuta/flexuosa 

14.26 0 0 0 0 0 2 0.0726 0.3457 15 14 11 18 n + 
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Cardamine pratensis 51.14 1 1 0 0 0 2 0.2132 0.0729 6 13 11 13 n + 

Carex hirta . 0 0 0 0 0 3 0.1921 0.0340 3 8 7 9 n + 

Chamerion angustifolium 335.03 0 0 0 0 0 4 -0.0488 0.7123 4 6 5 3 n - 

Circaea lutetiana 3.28 0 0 0 0 0 2 0.0535 0.3167 6 10 9 8 n + 

Cirsium arvense 80.01 1 0 1 0 0 4 -0.0673 0.6434 32 29 32 29 n - 

Cirsium palustre 4733.31 1 1 0 0 0 4 0.2865 0.0350 19 13 16 26 n + 

Crataegus monogyna 584.18 1 0 0 0 0 7 0.0799 0.2787 20 21 22 22 n + 

Crepis capillaris 59.83 0 1 0 0 0 2 -0.1234 0.8911 6 2 3 2 n - 

Cynosurus cristatus . 1 0 0 1 0 1 -0.0898 0.6853 25 24 19 24 n - 

Digitalis purpurea 245.6 1 0 0 0 0 4 -0.0825 0.7193 18 19 18 16 n - 

Dryopteris 
dilatata/carthusiana 

. 0 1 0 0 0 3 0.0851 0.2637 14 9 16 14 n + 

Dryopteris filix-mas . 0 1 0 0 0 5 0.1921 0.0869 13 16 21 17 n + 

Elytrigia repens . 1 0 0 0 0 3 -0.2158 0.9231 17 17 4 15 n - 

Epilobium hirsutum 50.68 0 1 0 0 0 5 0.0686 0.2767 5 4 10 5 n + 

Epilobium montanum 17.05 0 0 0 0 0 4 0.2244 0.1339 20 28 24 28 n + 

Equisetum arvense . 0 0 0 0 0 4 0.1102 0.0949 9 4 7 11 n + 

Festuca rubra agg. . 0 1 0 0 0 2 -0.0442 0.5844 49 62 44 54 n - 

Ficaria verna 0.92 0 0 0 0 0 2 -0.0884 0.8132 7 4 2 5 n - 

Filipendula ulmaria . 0 1 0 0 0 4 -0.0871 0.7602 22 18 16 20 n - 

Galium palustre 8.28 0 1 0 0 0 4 0.0429 0.3776 12 5 8 12 n + 

Galium saxatile 0.73 0 1 0 0 0 1 -0.1162 0.8342 15 15 14 12 n - 

Geranium robertianum 11.99 0 1 0 0 0 3 0.1234 0.2188 34 39 35 39 n + 

Glechoma hederacea 43.95 0 0 0 0 0 2 0.0772 0.2348 8 11 12 10 n + 

Holcus lanatus . 1 0 0 1 0 3 -0.3373 0.9321 92 94 86 85 n - 

Hyacinthoides non-scripta 31.24 0 1 0 0 0 2 0.1201 0.0919 6 3 4 9 n + 

Hypericum pulchrum . 0 1 0 0 0 3 -0.1459 0.9321 8 3 5 3 n - 

Juncus 
articulatus/acutiflorus 

. 0 1 0 0 0 2 0.0086 0.4655 6 8 9 6 n + 

Juncus bufonius sens.lat. . 0 0 0 0 0 1 0.0594 0.3347 3 11 11 5 n + 
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Juncus bulbosus . 0 1 0 0 0 1 -0.1624 0.9740 5 6 1 2 n - 

Juncus effusus . 0 1 0 0 0 5 0.2871 0.0320 26 28 32 33 n + 

Juncus inflexus . 0 0 0 0 0 5 -0.0647 0.6933 10 7 4 9 n - 

Lapsana communis 3.14 0 0 0 0 0 3 -0.0502 0.6573 12 15 14 11 n - 

Lathyrus pratensis 185.98 1 1 0 1 1 4 0.0013 0.4715 17 17 14 18 n + 

Lonicera periclymenum 89.64 1 1 0 0 0 6 0.0785 0.1898 5 8 6 8 n + 

Lotus corniculatus 22.59 1 1 0 1 1 2 -0.0323 0.5445 11 10 7 11 n - 

Luzula 
campestris/multiflora 

. 0 1 0 0 0 2 -0.1419 0.8591 20 14 10 17 n - 

Lysimachia nemorum 0.65 0 1 0 0 0 1 0.0040 0.4426 6 2 5 5 n + 

Mercurialis perennis . 0 1 0 0 0 3 0.0422 0.3197 7 11 9 9 n + 

Nardus stricta . 1 0 0 0 0 2 0.0323 0.3726 9 12 9 11 n + 

Oenanthe crocata . 0 1 0 0 0 4 0.0838 0.1648 11 10 8 14 n + 

Oxalis acetosella 3.76 0 1 0 0 0 1 0.0838 0.2138 13 11 12 15 n + 

Phleum pratense sens.lat. . 1 0 0 1 0 4 -0.1208 0.8212 16 11 9 13 n - 

Poa annua . 1 0 0 1 0 2 -0.1815 0.7872 38 48 33 38 n - 

Poa pratensis sens.lat. . 0 0 0 1 0 2 -0.3386 0.9481 16 46 10 19 n - 

Poa trivialis . 1 0 0 1 0 3 0.0832 0.3746 37 55 24 50 n + 

Polygonum aviculare agg. 2.11 0 1 0 0 0 4 -0.0284 0.5704 11 5 8 9 n - 

Polypodium vulgare 
sens.lat. 

. 0 1 0 0 0 2 -0.0277 0.6044 2 5 6 1 n - 

Potentilla anserina 0.09 1 1 0 0 0 2 0.0825 0.2058 14 14 12 17 n + 

Potentilla erecta 46.83 0 1 0 0 0 2 -0.1908 0.9341 20 15 13 15 n - 

Potentilla reptans 18.97 1 0 0 0 0 2 0.1538 0.1119 10 8 9 14 n + 

Potentilla sterilis 6.06 0 1 0 0 0 1 -0.1261 0.8492 10 8 9 6 n - 

Prunella vulgaris 324.27 0 1 0 0 0 1 -0.1175 0.8012 14 16 12 12 n - 

Prunus spinosa 258.51 1 0 0 1 0 6 -0.1776 0.9191 26 28 28 21 n - 

Pteridium aquilinum . 0 0 0 0 0 5 0.0601 0.3217 20 20 16 23 n + 

Ranunculus acris 49.66 0 1 0 0 0 2 0.2759 0.0460 13 18 12 23 n + 

Ranunculus repens 26.39 0 0 0 0 0 2 0.0073 0.4935 59 61 65 58 n + 
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Rumex acetosa . 1 1 0 0 0 2 -0.1281 0.6953 48 40 37 45 n - 

Rumex acetosella . 1 1 0 0 0 1 -0.1413 0.9491 7 9 6 4 n - 

Rumex 
conglomeratus/sanguineus 

. 0 0 0 0 0 4 -0.0092 0.5285 1 7 10 0 n - 

Rumex crispus . 0 0 1 0 0 3 -0.1149 0.7942 10 10 6 8 n - 

Sagina procumbens . 0 0 0 0 0 1 -0.1459 0.8741 16 12 11 12 n - 

Scorzoneroides autumnalis 391.29 0 1 0 0 0 1 0.0660 0.3237 4 7 7 6 n + 

Senecio jacobaea 1602.69 0 0 1 0 0 4 -0.1149 0.8721 6 6 2 4 n - 

Silene dioica 101.47 0 1 0 0 0 3 -0.0799 0.7602 17 16 15 15 n - 

Stachys sylvatica 450.74 0 1 0 0 0 3 -0.1036 0.7972 11 10 10 8 n - 

Stellaria graminea 16.25 0 0 0 0 0 2 -0.0713 0.7373 6 7 7 4 n - 

Stellaria holostea 0.01 0 1 0 0 0 3 -0.1947 0.9281 19 16 17 13 n - 

Stellaria media 3.32 0 0 0 0 0 2 -0.0198 0.5395 15 11 15 13 n - 

Stellaria uliginosa 2.49 0 1 0 0 0 1 -0.0759 0.7423 11 8 4 10 n - 

Tamus communis . 0 1 0 0 0 5 -0.0475 0.7143 8 9 8 7 n - 

Taraxacum agg. 686.23 0 0 0 0 0 2 0.2422 0.1229 53 55 55 60 n + 

Trifolium dubium . 1 0 0 0 1 1 -0.0026 0.4905 4 7 4 5 n - 

Ulex europaeus 1.11 1 0 0 0 1 5 0.0086 0.4945 6 9 7 7 n + 

Urtica dioica . 1 0 0 0 0 4 0.3050 0.0819 50 48 50 58 n + 

Veronica chamaedrys 5.06 1 1 0 0 0 1 -0.0865 0.7612 12 16 15 10 n - 

Veronica serpyllifolia 5.46 0 0 0 0 0 1 0.1175 0.1239 4 2 6 6 n + 

Vicia cracca 105.55 1 1 0 1 1 5 -0.0508 0.6813 10 4 5 8 n - 

Vicia sativa 327.02 0 0 0 1 0 4 -0.0026 0.5085 6 10 4 8 n - 

Vicia sepium 75.16 0 1 0 1 1 4 -0.0165 0.6074 10 13 15 9 n - 

Viola 
riviniana/reichenbiana 

20.83 0 1 0 0 0 2 -0.2125 0.9261 26 29 26 21 n - 
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Figure 1 Map showing location of Countryside Survey 1km squares surveyed in Wales in 2016. 
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Figure 2: Broad habitats adjacent to the repeat plots when surveyed in 2016. The adjacent habitat is 

derived from a GIS analysis that assumes a maximum 5m width of each linear feature. Where the 

feature is >5m then Boundary & linear features is designated as the adjacent habitat.  
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Figure 4: Distribution of average plant heights among decreasing, increasing species and those that 

showed no significant change between 1990 and 2016 (1 <100mm; 2 101-299mm; 3 300-599mm; 4 

600-999mm; 5 1-3m; 6 3.1-6m; 7 6.1-15m; 8 >15m). 
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Figure 3: Distribution of growth forms among decreasing, increasing species and those that showed 

no significant change between 1990 and 2016 (f=forbs, fe=ferns, g=graminoids, w=woody species 

includes two lianas). 
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Figure 5: Distribution of service-providing plant groups among decreasing, increasing species and 

those that showed no significant change between 1990 and 2016 (Butt_larv = butterfly larval 

foodplants; CSM_AWI= Common Standards Monitoring positive indicators and Ancient Woodland 

Indicator species; IW= injurious weeds; N_fix=nitrogen fixers). 
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Figure 6: Summed cover of the plant species tested or with too few records to test expressed as a 

percentage of the total cover of all plant species in the 137 Countryside Survey linear plots in Wales 

recorded in 1990, 1998, 2007 and 2016. 
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Figure 7: Changes in potential nectar production by growth form (f=forb, w=woody species includes 

two lianas). Sugar yield was estimated by summing the database values for each plant species given 

in Baude et al., (2016). These are potential sugar yield values and therefore depend on production of 

an average number flowers per unit area of plant cover per growing season. 
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Fig S1: Histograms of detection rate plus a kernel density estimate of predicted values of detection rate given fitted Beta distributions by plant growth form 

(Gf) where f = forb, g = graminoid, w = woody species, and year of survey (Yr). Detection rate is the proportion of plants species recorded by the QA 

surveyor that were also recorded by the CS field surveyors.  
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