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Abstract - Scheduling optimization problems provide
much potential for innovative solutions by genetic
algorithms, The complexities, constraints and
practicalities of the scheduling process motivate the
development of genetic algorithm (GA) techniques to
allow innovative and flexible scheduling solutions.

Multiobjective genetic algorithms (MOGAs) extend the
standard  evolutionary-based  genetic  algorithm
optimization technique to allow individual treatment of
several objectives simultaneously. This allows the user
to attempt to optimize several conflicting objectives, and
to explore the trade-offs, conflicts and constraints
inherent in this process. The area of MOGA
performance assessment and comparison is a relatively
new field, as much research concentrates on
applications rather than the theory. However, the
theoretical exploration of MOGA performance can have
tangible effects on the development of highly practical
applications, such as the process plant scheduling system
under development in this work. By assessing and
comparing the strengths, variations and limitations of
the developing MOGA using a quantitative method, a
highly efficient MOGA can develop to suit the
application. = The user can also gain insight into
behaviour the application itself.

In this work, four MOGAs are implemented to solve a
process scheduling optimization problem; using two and
five objectives, and two schedule building rules. A
quantitative comparison of their performances is
conducted, and the results and implications of this
comparison are then examined within the context of the
problem.

1. Introduction

Scheduling problems have provided much potential for
innovative solutions by genetic algorithms over the past
decade, (e.g., Davis, 1985; Bagchi et, al, 1991; Cleveland
and Smith, 1993; Lee et al.,, 1993; Shaw and Fleming,
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1996; Lohl et al., 1998). This work explores the use of a
schedule optimization tool which employs the properties of
the multiobjective genetic algorithm for a complex batch
scheduling problem. This tool aims to allow flexible,
interactive and informed schedule optimization, for typical
problems found within the process scheduling industry.
Shaw & Fleming, (1997), suggested that manufacturers
might use MOGA techniques for discrete event scheduling
problems, to define or prioritise their optimization goals
interactively, according to the changing demands of the
system. In batch process plant scheduling, the additional
demands include a need for batch sizing, continuous flow
of certain elements, and a choice of trains or routes through
the plant.

Besides optimizing the multiple objectives presented by
the plant, the MOGA may be a good way to deal with the
various conflicting constraints found within such a
problem. The MOGA must be designed to represent the
problem concisely but comprehensively, particularly for the
two key decision variables of order sequence and batch size.
To avoid redundancy of information or inaccuracy of
representation, a suitable method of handling four plant
objectives must be decided. Their consistent treatment with
the fifth, non-plant-defined, objective, that of feasibility,
must also be considered. This is discussed in more detail in
section 3.

In this paper, four MOGAs are applied to a prototype
batch scheduling problem which aims to model the key
processes typically found in chemical processing plants. A
generic process plant model provides a prototyping system
for the scheduling tool, framed in S88 constructs (ISA,
1995), the industry standard for batch scheduling
specifications and definitions. The model allows different
production scenarios and rules to be applied, giving the
user a framework in which to explore the effects of the
MOGA application.



2. Problem description

2.1 Literature

Research into the schedule optimization for multi-purpose
or multi-product batch plants generally focuses on
optimization of one aspect of a series of campaigns. Ku and
Karimi (1990) explored the issue of meeting the customer
due dates. Grau et al. (1996) used a recursive algorithm to
optimize completion times of batches, by reducing various
unit operation times. Kim et al. (1996) used a modified GA
to determine a multi-product production sequence and path
for each batch. Lohl et. al., (1998), compare a GA with the
frequently used MINLP method, for a mixed batch /
continuous problem. However, in this work, the batch sizes
remain constant, as the authors explain; "variable batch
sizes would introduce a complexity which cannot currently
be handled appropriately”. Shaw, Nott and Lee, (1998),
compare a GA with MILP on a problem based on a mixed
batch/continuous processing plant which includes a choice
of discrete batch sizes, and a continuous flow decision
variable in addition to the schedule sequencing problem.
Both the latter papers present mixed conclusions as to the
relative performance of the two methods at this stage.

Research into multi-objective scheduling of multi-
product or multi-purpose is minimal. Ku and Karimi
(1991) concluded that simulated annealing gave the best
results in meeting the tardiness penalties, using the dual
objectives of meeting the customer due dates, and reducing
storage times. These two objectives are later explored in
this work.  Stochastic optimization techniques were
employed by Grau et al. (1996) to optimize a campaign
batch schedule which aimed to meet deliveries and due
dates.

GAs are commonly applied to scheduling problems as
they offer a series of highly relevant advantages in this
area. They are capable of solving NP-complete problems,
as is the case with many scheduling problems, and can
handie both continuous and discrete functions. The parallel
nature of their search method allows them to handle
complex or difficult search spaces, to offer a choice of
potential solutions from the population at any stage in the
optimization process, and allows them to work with

38

.incomplete or inexact data. In addition, their powerful
search abilities can be combined with a high level of user-
interaction and direction to interact with the search, or
focus upon a particular area of interest. For all these
reasons, they are a source of interest to schedulers.

Work on multiobjective optimization genetic algorithms
for scheduling problems is more commonly found beyond
the multistage batch process domain, in a variety of other
applications, (e.g., Viennet et al., 1995, Tamaki et al.,
1992, 1996; Niemeyer and Shiroma, 1996; Shaw and
Fleming, 1996, and Ishibuchi and Murata, 1998).
Multiobjective optimization methods continue to offer
potential  advantages to schedulers requiring genuine
multiobjective treatment of their various objectives, and
commonly, constraint handling, within their solutions.

2.2 Problem Description

The chemical industry is moving away from high
volume continuous production of low cost products to low
volume, specialist chemicals of high value produced by
batch operations. The latter involves complex chemistry,
process operations and results in small yields. To make the
manufacture of such chemicals more cost effective and
efficient, multi-purpose batch plants are used. These plants
are designed to be generic, to process a broad range of
products and variety of operations. The plants are designed
to accommodate many process operations and
simultaneously operations, but there are bottlenecks where
streams merge to single resource or different products call
for the same process unit. Careful scheduling is required to
ensure that all the resources are used effectively and
efficiently.

S88.01 (ISA, 1995) and IEC 61512-1 (IEC, 1997)
standards provides guidelines to designing batch processes,
control strategies and schedules for such plants. This
standardises the framework of terminology, models and
structures to be used to describe and articulate the
scheduling requirements of a multi-purpose batch plant
(Love and Bunch, 1998). The proposed GA-based
scheduling tool is to schedul¢ a multi-purpose batch plant
expressed in S88 constructs, i.e. the overall plant is a
process cell consisting of units and equipment modules, see
Figure 1.



Figure 1- Process cell of the generic multi-purpose batch plant

For purpose of this paper, a simpler multi-purpose batch plant is used to provide an initial test problem for the GA

implementation scheduling tool, as shown in Figure 2.
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Figure 2 - Simple model of multi-purpose batch plant

More details of the schedule optimization problem
designed for this plant are given in 3.2.

3. Using Genetic Algorithms for the Batch
Scheduling Problem

The search for an effective representation for all the
complexities of scheduling problems is a common area of
research. Due to the difficulties of finding a concise and
accurate representation of including all relevant data within
the GA representation, the notion of infeasible individuals
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commonly appears in scheduling problem representation,
as it does in many other constrained applications.
'Infeasible’ in this sense means that the individuals
represent some part of the solution but that one element
may be invalid in some way and therefore invalid for the
final solution. In this example, individuals are allowed in
the population which translate into schedules that do not
satisfy the batching constraint; that the batch size decisions
made must allow the exact completion of the required



customer orders. Such individuals are therefore called

'infeasible’'.

Infeasible individuals are not automatically disqualified
from the population, nor are they repaired to create feasible
individuals. Instead, the amount of infeasbility is defined as
an additional objective that must be minimised. The
MOGA is used to deal with this infeasibility as an
objective. Additional justification for treating the
infeasibility in this way is provided in Shaw, et. al., 1999 ,
which indicates that the use of MOGA in this way is a
promising approach. This approach has been suggested
(Chu & Beasley, 1992; Surry, Radcliffe and Boyd, 1995), as
a method of avoiding the process of defining a more
complex, but constantly feasible representation, specifically
designed operators, or a repair method (Michalewicz,
1997).

3.1 MOGA

Multiobjective genetic algorithms (MOGAs) allow the
solution of problems in which more than one objective
defines the optimization goal.  The result of the
optimization process is a set of possible solutions to a
problem, all optimal in a multiobjective sense, but which
cover the range of varying emphases on the objectives.
Genetic algorithms have been shown to be effective
methods for allowing multi-objective optimization,
particularly for optimization of real-life applications that
have proved demanding previously. To avoid the
‘aggregation' method of simply adding the various
objectives in a form of weighted sum - a method which
includes all the objectives but may not treat them in an
adequately separate manner, several other forms of MOGA
have been implemented. These include sub-population
methods (Schaffer, 1985; Kursawe, 1991) and a selection
of Pareto-based approaches (Goldberg, 1989, Fonseca and
Fleming, 1993, Horn, Nafpliotis, and Goldberg, 1994,
Srivinas and Deb, 1995).

Hybrids of these techniques have also been explored
(e.g., Tamaki et al., 1996; Osyczka and Tamura, 1996) In
this work, the Pareto-ranking MOGA technique of Fonseca
and Fleming (1993; 1998) is used. This method ranks the
solutions according to their Pareto-dominance of other
solutions, thus providing a whole set of Parcto-optimal
solutions at the end of the GA run, from which the user can
choose the final schedule to suit the immediate
requirements of the plant. This flexibility has, in initial
discussions with manufacturers, provided an attractive
extension to the more common provision of one single
optimal solution based on a pre-defined priority placed
upon the objectives.

3.2 Genetic Algorithm Implementation

For an initial problem based on the plant illustrated in
Figure 2, the optimization problems focuses on two main
decision variables, batch-sizing decision and batch-reactor
assignment. Additional details of this problem may be
found in Shaw et al, 1999, but briefly the relevant points
are as follows.
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The optimal schedule of the required campaigns (set
amounts required of a particular product) must be found, by
dividing the amounts into suitable batches as necessary,
and assigning the batches to suitable reactors. Batches
must be of a size to meet the plant constraints, and must be
made by a set time deadline, whilst minimising the
following objectives;

Objective 1.
batches

Minimise cleaning time between

Objective 2.  Minimise storage cost of batches
completed which are completed early

Objective 3. Maximise percentage wasted plant
capacity

Objective 4. Minimise late orders, i.e., failure to
meet customer deadlines

Objective 5. Minimise variation in binary sections
of schedule from exact amounts required
(“batch variation” / “infeasibility”)

The three batch sizes are 0.5, 1 or 2 tonnes, defined by
the maximum holding capacity and minimum running
capacity of the three reactors. All other processes are
assumed to meet the scheduling requirements; for example,
raw materials are available and ready when required. For
each campaign, the required tonnage, speed of each
reaction, cost of storage for the completed product, and the
due date are supplied. This data is sufficient for the initial
scheduling problem.

The GA aims to optimize the five objectives by
manipulating two major decision variables of the batch
scheduling plant. A concise representation of these two
variables within the GA uses two parts of the population to
reflect this. The individuals are formed in two parts. The
first part, a binary string, represents the batch sizing
decision, in a similar GA-based technique to that used for
solving 0/1 knapsack problems (e.g., Michalewicz and
Arabas, 1994; Zitzler and Thiele, 1998). The second, a
permutation part, represents the sequencing. The two parts
are concatenated to form one individual.

Each bit in the binary part of the individual indicates
whether a batch of a particular size and product should be
made to complete the overall order, according to a pre-
defined set of possible batches which represent the available
range within the constraints of the problem. The
permutation part of the individual represents the sequence
in which the batches should be made. Standard binary and
permutation crossover and mutation operators can be used
on relevant parts of the population.

Translating this basic information about batching and
sequencing into a working schedule requires an encoding,
or schedule builder stage. From the list of sequenced
batches, an algorithm is used to assign each batch to the
appropriate unit for the relevant procedure for that recipe to
be performed. Within this assignment process, there is
often more than one suitable unit is available for allocation
to a procedure, even after several constraints upon such



assignments have been satisfied. Thus the schedule builder
includes a set of possible rules from which the assignment
decision must be chosen. For this work, a choice of two
schedule builders, and two objective functions are
implemented. SB1 uses a rule of choosing the fastest unit
to complete the task, even if this means waiting for the unit
to become available and SB2 chooses the first suitable unit
to become free for the job, even if it is the slowest once the
job is underway. The completed allocation allows a final
schedule to be created, to include start, finish, and cleaning
times for each product, from which the plant objectives can
be evaluated, as listed above and returned to the GA
optimization process.

The MOGA generally includes some form of separate
treatment of each objective at the selection stage. In this
example, given the four plant objectives and feasibility
objective, it is necessary to decide whether the optimization
process benefits from a separation of the four plant
objectives for individual optimization, in the form of a five-
objective MOGA, or whether it is sufficient to optimize two
objectives, one based on an aggregation of the plant-based
objectives and the other being the feasibility cost.

This provides four MOGAs for comparison; the two-
objective (weighted sum of all plant costs versus feasibility
cost) and five-objective (all costs separated) MOGAs, each
using the two schedule builders. The GA code is
implemented in GA MATLAB Toolbox (Chipperfield et.
al.,, 1994); running on a SPARC station (Sun Ultra 5, 333
MHz, 128 Mb RAM). The average run times were:
approximately one hour for the two-objectives, and
approximately ninety minutes for the five-objectives.

4. Experimental results of MOGA
comparisons

The MOGAs were run eleven times each, with a population
of 100 individuals, over 100 generations. Standard binary
operators were used, together with the Order Crossover
(Davis, 1985; Oliver, Smith and Holland, 1987), and Swap
Mutation for the binary and permutation parts of the
population respectively, using following operator rates.
Various sets of test problem orders were generated and
scheduled. ’

4.1 MOGA Comparison Technique - AFCM

Several recent works (Van Veldhuizen and Lamont, 1998;
Zitzler and Thiele, 1998; Coello, 1999; Shaw, Fonseca and
Fleming, 1999) begin to explore the field of MOGA
comparison. The various methods of MOGA comparison
generally aim to assess performance in two ways. The first
examines performance according to their spread across the
available trade-off surface. The second measures their
ability in terms of attainment of the optimum goal in some
multiobjective sense. In some cases, a combination of both
these measures is used. In this work, to suggest the best
approach for implementing MOGA optimization upon the
five-objective batch scheduling problem, results such as the
absolute minimum values achieved are explored together
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with an implementation of the attainment function
comparison method (AFCM) (Shaw, Fonseca and Fleming,
1999).

The AFCM method is developed as a statistical,
quantitative method for evaluating the performance and
comparison of MOGAs, using the notion of attainment
surfaces. Given a problem, a point in objective space will
lie on the 50%-attainment surface of a given optimizer if,
and only if, a single run of the optimizer on that problem
will find a better solution (in the Pareto sense) with
probability 0.5. Thus, attainment surfaces provide a
quantitative method of characterizing the performance of a
genetic algorithm, both in terms of absolute values achieved
and spread of solutions.

In Fonseca and Fleming, (1996), a statistical
interpretation of performance of a multiobjective optimizer
was given, based on the probability that the optimization
technique would attain an arbitrary goal, (i.e., produce at
least one solution better than or equal to a given point in
objective space) in a single run. Thus, the probability of
attaining a given goal can be seen as a function of the goal,
and is called an attainment function. Such probabilities can
be estimated directly from data, thus, attainment functions
can be used as measures of multiobjective optimizer
performance. The empirical estimates of attainment
functions will be called empirical attainment functions
(EAF), by analogy with the empirical cumulative
distribution function. Computing the EAFs for each
algorithm considered, and plotting their contours,
particularly at 0, 0.5, and 1, gives a clearer idea of the
variation observed across runs of each of the algorithms, in
combination with the spread of solutions observed in each
run.

In addition, this method introduces performance
comparisons in terms of statistical hypothesis testing. For
the comparison of the performance of the two methods,
MOGA1 and MOGA2, the following null and alternative
hypotheses are formulated:

Hy: There is no performance difference between
MOGAI and MOGA2

H;: There is a performance difference between
the methods

Under Hy, MOGA1 and MOGA?2 should exhibit equal
attainment functions. By implementing a form of the
permutation test (Good, 1994), a test-statistic may be
estimated. The null hypothesis may be rejected if the
estimated probability p of the test statistic being greater
than, or equal to, the value observed is not higher than a
given (small) significance level, usually from 0.05 to 0.01.
This method is discussed in more detail in Shaw, Fonseca
and Fleming, 1999, but the results of applying such a test to
the MOGA results in this work are demonstrated below in
XXX.



4.2 First comparison - Comparison of the schedule
builders for two objective MOGAs

The first test compared the performances of two-objective
MOGAs, incorporating schedule builders SB1 and SB2
respectively. Initial comparisons were made as to which
schedule builder might allow the algorithm to attain
optimum values of both costs. Summary statistics of the
costs found by all non-dominated solutions from each
MOGA are given in Table 1. This indicates the
comparative sets of values found in the entire search, but
little additional information or insight into the behaviour of
the MOGA itself.

Cost1 [Cost2

SB1_|Min__ |0.0003 |0.0000
Mean {0.0085 [0.4450

Max  10.0404 10.8390

SB2 |Min 0.0003 |0.0000
Mean |0.0075 ]0.4530

Max __ [0.0385 |0.9330

Table 1 - Comparison of summary statistics for all
solutions found in experimental runs of two-objective
MOGA with both schedule builders

Both methods are able to achieve the minima for both
costs, in particular, finding completely feasible solutions, as
shown by the zero values for Cost 2. SB2 appears to show
better performance regarding the mean cost for Cost 1
(aggregate plant costs) and SB1 for Cost 2 (feasibility).
However, applying the AFCM hypothesis test, as outlined
in section 4.1, with null hypothesis that there is no
difference between the MOGAs’ performances, gave a p-
value, p=0.5240. This allows a conclusion that there is no
significant difference in the performance of these two
MOGA:s for this problem, and therefore, the two different
schedule builder rules have no particular result on the
overall set of solutions found. The two schedule builders are
now implemented in five-objective MOGAs, in which each
cost is treated as a separate objective.

4.3 Second comparison - comparison of the schedule
builders for five-objective MOGAs

The same tests were performed to examine the effects of the
two scheduling rules within the schedule builders given a
five objective problem. The aims of the comparison were
not only to explore the consequences of the rules, if any,
upon the optimization behaviour, but also to attempt to gain
insight into their effects. Table 2 shows a summary of the
costs found by all non-dominated solutions over all runs.
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Cost 1 [Cost2 [Cost3 |Cost4 |Cost5

SB1 [Min__]0.0016 [0.0000 |0.0000 |0.0000 [0.0000
Mean {0.0869 |0.0847 |0.0507 [0.0635 {0.2720
Max_|0.2594 {0.6941 |0.2787 |0.4830 |0.8060

SB2 |Min__ |0.0016 |0.0000 [0.0000 |0.0000 (0.0000
Mean |0.0907 [0.0697 [0.0552 |0.0715 {0.2660

Max [0.2910 (0.5804 {0.3320 |0.5060 {0.8060

Table 2 - Comparison of summary statistics for ail
solutions found in experimental runs of five-objective
MOGAs with SB1 and SB2

In this instance, a clear pattern can be seen that SB1
seems to find lower costs 1, 3 and 4, and SB2 appears better
for Cost 2 and Cost 5. Both are capable of finding feasible
solutions, shown by values of zero for Cost 5. The effects
of the two schedule builders on the plant costs can be more
clearly seen as by applying the AFCM.

Figure 3 - Figure 6 show the plots of attainment surfaces
0.5 (“median surface”) and 1 (“worst case surface”) at this
stage, as parallel co-ordinate plots. It is recommended
practice to examine the plot of attainment surface 0 (“best
case surface”), but in this instance, there was little of
significant interest in these plots and they are omitted for
reasons of space. They are also less relevant given that the
application of this work is intended to be a real-life process
plant. The results of surface 1 indicate the typical
performance from a ‘one-off” single run, which would be
more commonly found in a practical situation from one run
of the scheduling program. Conversely, the attainment
surface O plot is representative of performance after
multiple experimental runs.

Median attainment surface for 5-objectives, SB1

Costs of ND points found

3
Objectives

Figure 3: Attainment surface at 0.5 (median), SB1
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Figure 4: Attainment surface at 0.5 (median), SB2

Last attainment surface for 5-objectives, SB1
T T >

Costs of ND points found

Figure 5: Attainment surface at 1 (worst), SB1

Last attainment surface for S~objectives, SB2

Costs of ND points found

Figure 6: Attainment surface at 1 (worst), SB2

Regarding the comparison of the 0.5 (median) plots, the
MOGA using SB2 provides a denser set of solutions
throughout, particularly around the cost3-cost4 area and in
its coverage of the range of values for cost 1. However, this
advantage is lost in the attainment surface 1 plot. In these,
the MOGA using SB1 seems to show a slightly wider range
of possible solutions than that using SB2, particularly in the
cost 1 and cost 3-cost 4 range. The use of SB2 loses its
advantage from the median plot, which represents “typical”
performance from half the full number of repeated runs,
compared to the ‘worst’ plot, which is more indicative of
the results that might be expected in practice. Whilst these
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plots are useful to a limited extent, it can hard to extract
additional information visually, given the high number of
objectives and solutions shown. Applying the confidence
test to the results allows additional identification of the
areas in which the MOGAs differ.

The p-value for the test outlined in 4.1 - that there was no
performance difference between the two MOGAs, was
p=0.0000, allowing the conclusion that there are significant
differences in the methods. By identifying the points at
which this difference was significant, discussed in more
detail in Shaw, Fonseca and Fleming, (1999), various
points were found at which one method or another was
significantly better. These are plotted in Figure 7.

CECH1 better

Figure 7 - Points at which the methods appeared to show
significant differences in performance

As indicated in Table 2, these plots show that there
seem to be two clear types of solution regarding the set of
trade-offs occurring. These are subsequently referred to as
solution type A - low cleaning (1), high storage (2), low %
wastage (3), low lateness (4), medium-high feasibility (5)-,
and solution type B - high cleaning (1) - low storage (2) -
mid-high % wastage (3) - high lateness (4) - low feasibility
(5). The combination of costs within these solutions
suggests that type B solutions may be focusing on the
smaller batches, which would require more frequent
cleaning and less storage, and examination of the batches
found in 100 randomly sampled 'type B' solutions gave a
ratio of batch sizes (0.5, 1, 2) as (0.53, 0.3, 0.17).
Similarly, type A solutions seem to focus on the selection of
larger batch sizes, (the equivalent ratio being (0.04, 0.16,
0.8)). The larger batch sizes will allow more frequent
satisfaction of the capacity constraint; 80% of the batches
are a maximum sized batch and therefore can run in two
out of three reactors with no wastage. Generally, SB1
seems slightly better for finding A-type solutions, and SB2
for B-type. Neither scheduler builder seems better on the
attainment of feasibility (that is, reaching zero for cost 5),
but SB1 offers a wider range of values for this cost, whilst
SB2 offers a greater number of solutions within a limited
range.

It is interesting to compare this result with that in 4.2,
which concludes that the schedule builders make no
significant difference to performance in the two-objective



MOGAs. Therefore the final comparison test compares the
two and five objective MOGAs directly. Finally, factory
practices commonly focus on ‘type A’ solutions at present,
and therefore, as SB1 seems slightly better for finding these
types of solution, as well as having a more robust
performance, SB1 is now applied in a comparison of the
two-objective MOGA against the five-objective.

4.4 Third comparison - Two objective versus five
objective, using SB1

In the third comparison, the two-objective MOGA
including SB1 was compared to the five-objective MOGA
including SB1. To allow the costs to be compared
effectively, all non-dominated costs in five objective space
were stored during the run of the two-objective MOGA.
This comparison was performed mainly by a AFCM
confidence test, which provided a p-value of zero,
p=0.0000, and allowed the following points to be identified
at which the methods differed significantly (Figure 8).

2—abj better

Figure 8 - Points at which the methods appeared to show
significant differences in performance

There are immediate clear differences. The two-
objective MOGA does have its advantages: it has some
significantly better solutions that achieve zero infeasibility
(cost5=0); but these are all very limited within the range of
"type B" solutions. This may not be surprising given that
the aggregation of the plant objectives allows their
individual influences to contribute less significantly to the
overall optimization process, compared to the influence
exerted by cost 2 (feasibility). It is clear that the five-
objective MOGA can search the whole space with more
much effectively, and finds many solutions that are
significantly different, allowing a whole range of possible
trade-offs between the various costs - and solutions of type
A or B - to be offered to the user for the final decision as to
which schedule to use.

It is therefore suggested that the implementation of the
five-objective MOGA is the recommended technique with
which to continue with the work on this problem. Section 5
provides the conclusions to this work.
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5. Conclusions and Suggestions for Further
Work

This paper demonstrates the application of two-objective
and five-objective MOGAs to a simplified batch process
scheduling problem. Both MOGAs attempt to optimize the
sequencing sizes of batches used to complete the overall
orders. The MOGA is used as a method of handling the
infeasibility constraint, and allows some flexibility in this;
by allowing some infeasibility, better results may be
achieved for the other objectives. It may be possible to
relax the feasibility requirement considering these visible
trade-offs. With more detailed modelling, this particular
infeasibility may be incorporated into existing or additional
'non-feasible' related objectives (e.g., a financial penalty for
not making the correct amounts, or increased storage costs
for handling surplus batch¢s.) This would, however,
increase the number of objectives further. It remains to be
seen whether this is an effective way of avoiding this
particular infeasibility.

The MOGA is also effective in handling the variety of
plant objectives available, and in addition, allowing insight
into the actual problem. Figure 8 suggests that the two-
objective MOGA may be more successful with an alteration
in the weighting used to explore these other costs more
fully, if this method is implemented further. However, the
five objective implementation seems to offer many benefits
in this work, given continuing attention to the effects of the
schedule builders upon the results as the model becomes
more complicated. Results may be more pronounced with a
more detailed model, in which the effects of both the batch
sizing and routing decisions may have more effect.

The work has provided insight into the trade-offs
between the objectives that are influential in the
optimization process. Manipulation of these trade-offs also
provide solutions that are recognisable as current plant
practice (e.g., ‘type A’) solutions, but also many other
solutions have been suggested which are optimal in the
multiobjective sense and could provide potentially useful
scheduling solutions to the problem. It is also interesting
that the effects of the batch sizes on the objectives, and vice
versa, perhaps indicating some further guidelines for batch
sizing decision-making within the plant.

The AFCM method has been implemented to
demonstrate the benefits of the various MOGA
implementations, and the confidence test implemented
allows identification of the areas in which the MOGAs
differ. This is, to the authors’ best knowledge, the first
example of this MOGA comparison method being applied
to a five-objective problem. The area of the performance
comparison of MOGAs with a high number - in this sense,
greater than six - of objectives is also a novel area for
exploration. Van Veldhuizen and Lamont, 1998, comment
that many MOGA comparisons focus on two or three
objective problems. However, the comparisons performed
are extremely computationally intensive. There is also
scope for additional work in this area.
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