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Abstract 

Traditional medicines (TM) have been used for centuries to treat illnesses, but in many cases 

their modes-of-action (MOAs) remain unclear. Given the increasing data of chemical 

ingredients of traditional medicines and the availability of large-scale bioactivity data linking 

chemical structures to activities against protein targets, we are now in a position to propose 

computational hypotheses for the MOAs using in silico target prediction. The MOAs were 

established from supporting literature. The in silico target prediction, which is based on the 

“Molecular Similarity Principle”, was modelled via two models: a Naïve Bayes Classifier and 

a Random Forest Classifier. Chapter 2 discovered the relationship of 46 traditional Chinese 

medicine (TCM) therapeutic action subclasses by mapping them into a dendrogram using the 

predicted targets. Overall, the most frequent top three enriched targets/pathways were 

immune-related targets such as tyrosine-protein phosphatase non-receptor type 2 (PTPN2) 

and digestive system such as mineral absorption. Two major protein families, G-protein 

coupled receptor (GPCR), and protein kinase family contributed to the diversity of the 

bioactivity space, while digestive system was consistently annotated pathway motif. Chapter 3 

compared the chemical and bioactivity space of 97 anti-cancer plants’ compounds of TCM, 

Ayurveda and Malay traditional medicine. The comparison of the chemical space revealed 

that benzene, anthraquinone, flavone, sterol, pentacyclic triterpene and cyclohexene were the 

most frequent scaffolds in those TM. The annotation of the bioactivity space with target 

classes showed that kinase class was the most significant target class for all groups. From a 

phylogenetic tree of the anti-cancer plants, only eight pairs of plants were phylogenetically 

related at either genus, family or order level. Chapter 4 evaluated synergy score of pairwise 

compound combination of Shexiang Baoxin Pill (SBP), a TCM formulation for myocardial 

infarction. The score was measured from the topological properties, pathway dissimilarity and 

mean distance of all the predicted targets of a combination on a representative network of the 

disease. The method found four synergistic combinations, ginsenoside Rb3 and cholic acid, 

ginsenoside Rb2 and ginsenoside Rb3, ginsenoside Rb3 and 11-hydroxyprogesterone and 

ginsenoside Rb2 and ginsenoside Rd agreed with the experimental results. The modulation of 

androgen receptor, epidermal growth factor and caspases were proposed for the synergistic 

actions. Altogether, in silico target prediction was able to discover the bioactivity space of 

different TMs and elucidate the MOA of multiple formulations and two major health 

concerns: cancer and myocardial infarction. Hence, understanding the MOA of the traditional 

medicine could be beneficial in providing testable hypotheses to guide towards finding new 

molecular entities. 
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Chapter 1:  
Introduction 
 

 

1.1 A brief history of traditional medicine 

Humanity is dependent on natural products and has been so for millennia. These plants, 

animal parts and minerals are used both to treat many diseases (1, 2). Indeed, the knowledge 

of curative plants may be traced back at least 60,000 years where remains of medicinal plants 

such as opium poppies, ephedra, and cannabis were documented during archaeological 

excavations of Neanderthals burial sites at Shanidar in Iraq (3). The discovery of natural 

products with healing properties posed a massive challenge to early humans. Empirical 

discoveries of both healing and harmful properties of natural products resulted from trial and 

error, which can be fatal when experimenting poisonous natural products. Progressively, the 

knowledge of empirical discoveries was collected in the form of traditional medicine (4). The 

first written record of the use of natural products dates from 2600 BC of Mesopotamia, in 

which hundreds of clay tablets in cuneiform described, among others, the oils of Cedrus 

species (cedar) and Cupressus sempevirens (cypress), Glycyrrhiza glabra (licorice), 

Commiphora species (myrrh), and Papaver somniferum (poppy juice) were used for treating 

cold, cough, and inflammation (2, 4, 5). “Ebers Papyrus”, an ancient Egyptian pharmaceutical 

record (1500 BC), documented not only plants but also animal parts and minerals to constitute 

its 700 drugs (2, 4, 5). In other parts of the world, the ancient Greeks also documented the 

compilation of the uses of natural products for medicinal purposes (2, 4, 5). In Asia, 

traditional Chinese medicine (TCM) and Ayurveda (India) have been developed. These are 

two of the most extensively documented traditional medicines and so are considered in detail 

in this study (2, 4, 5). The practice of traditional medicine, over thousands of years, matured 

into systematic healthcare. Traditional medicine is defined by the World Health Organization 

(WHO) as sum total of the knowledge, skills, and practices based on the theories, beliefs, and 

experiences indigenous to different cultures, whether explicable or not, used in the 

maintenance of health as well as in the prevention, diagnosis, improvement or treatment of 

physical and mental illness (6)Ultimately, the goal of traditional medicine is to apply a 

holistic approach to maintain the overall balance of a human body. 

 

1.2 Natural products in drug discovery 

The identification of chemical compounds for observed therapeutic effects is still an on-

going process, despite the historical uses of natural products in traditional medicines for 

treating various diseases. The elucidation of chemical compounds for an observed therapeutic 
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effect was first reported in 1775 from the extract of Digatalis purpurea that was previously 

observed to treat arrhythmia (7). Subsequently, more compounds have been successfully 

discovered such as salicin, quinine and penicillin to name a few (5, 8). Some plant-derived 

drug have been developed with the same medicinal values of their sources (9). Table 1.1 lists 

some representatives of drugs based on their ethnomedicinal uses. The previous historical 

success could be partly responsible for the results of a recent report, which indicated that at 

least 40% of the 1,562 drugs that were approved between 1981 to 2014, were natural products 

or inspired by natural compounds (10). Scientifically, natural products have been exploited in 

drug discovery, as they inherently offer a large structural diversity, much of which has yet to 

be explored (1). In addition, natural products offer a biological readiness to bind to many 

molecular targets resulting from the interactions with multi-enzymes during their synthesis, 

thus mimicking endogenous metabolites (1, 5). Natural products also show better solubility 

as, on average, they retain relatively low log P values, which in order to do so natural 

products, generally, have higher molecular weights to contain more hydrogen bond acceptors 

(1, 11). Given these points, natural products, with or without known indications from 

traditional medicines could provide a valuable alternate therapeutic space to explore new 

molecular entities leading to more efficacious drugs. 

 

Table 1.1: A representative list of drugs that were developed based on the indications of their 

ethnomedicinal uses (9). 

Drug Action/Clinical use Plant source Traditional 

medicine 

Digitoxin Cardiotonic/arrhythmia Digatalis pupurea L. Europe 

Asiaticoside Wound healing/Tissue 

repair 
Centella asiatica Asia, Southeast 

Asia 

Khellin Asthma/Bronchodilator Amni visnaga Egypt 

Scopolamine Narcotic/Sedative Datura metel Arab 

Theophylline Diuretic/Diuretic Camellia sinensis Sri Lanka 

 

Although natural products have contributed a fair share in drug discovery (10), they are 

still undervalued for various reasons. The first is technical: natural products are difficult to be 

fully synthesised due to their complex structures. This difficulty cannot be easily avoided by 

isolating compounds as the method of isolation could create a supply issue for target 

validation as well as being expensive in both time and finance (1, 12). Second, the shift from 

cell-based assay to target-based assay has discounted natural products from drug discovery 

process due to the incompatibility issue of natural product extracts in high throughput 

screening (HTS). The extracts contain a mixture of compounds thus, interfering with the 

process of elucidating mode-of-action (MOA) (12-14). Third, the rise of combinatorial 

chemistry, which allows the synthesis of large numbers of structurally distinct molecules, is 
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viewed to increase the chances of finding a ‘hit’ alongside to repress known issues posed by 

natural products (1, 12, 13). The limitations described above might also contribute to less 

attraction of looking into traditional medicine. In this study, we aim to propose the MOA of 

traditional medicines by exploring and assessing the applicability of in silico approaches 

towards this goal. 

 

1.3 Approaches to elucidate mode-of-action 

Initially, phenotypic-based screening was a primary focus in drug discovery, where 

compounds were tested on organisms, tissues or cells showing a desired phenotype (15, 16). 

The prior knowledge of ‘target’ is not required in this method because a compound is simply 

considered a ‘hit’ if it elicits a desired phenotype and a ‘miss’ if not (15, 16). With the advent 

of HTS technology and the Human Genome Project, the strategy in drug discovery shifted to 

target-based screening (16, 17). One of the strengths of target-based screening is that the 

target is readily identified and validated, therefore, explaining the MOA. This approach can 

expedite the drug discovery process but does so with a significant drawback that is to interpret 

the therapeutic effect of a compound, it must be considered in a relevant disease model (16, 

17). Hence, phenotypic screening can be regarded to show higher potential to find a ‘hit’ but 

target identification is still required to understand the MOA. The target identification 

approaches can be described from the field of genetics, proteomics, and computational 

inference methods and reverse pharmacology (17-19). A brief description of each approach 

can be found in Table 1.2. In this study, we applied ligand-based in silico method to predict 

targets of traditional medicine compounds in order to rapidly improve mechanistic 

understanding of their ethnomedicinal uses.  
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Table 1.2: The four different approaches for target identification as described by Schenone et 

al. (17) , Chan et al. (18) and Vaidya A. (19) 

Field of Approach Description 

Genetics The approach identifies a target by deleting a gene to reduce the 

expression of protein that is hypothesised to be modulated for 

the desired phenotypic effect. An example of such approach is 

gene-knockout organism. However, the compound could also 

modulate a different target of the same pathway for the same 

desired phenotypic effect.   

Proteomics The approach identifies a target based on the physical 

interaction between a protein and a chemical compound. One of 

the classical approaches is the affinity chromatography where 

compounds of interest are immobilised on a column. The 

compounds are incubated with proteins extracts and non-

specific bound proteins are moved by extensive washing. The 

bound proteins are eluted with excess free drug or under highly 

denaturing conditions and characterised by SDS–PAGE and 

mass spectrometry. Although, the method could provide the 

relative binding specificity, it is difficult to be implemented in 

HTS. 

Computational inference 

methods 

The approach is able to identify targets based on two methods; 

ligand-based and structure-based using computational 

algorithms. To put simply, the ligand-based method 

incorporates chemical structures to predict targets while the 

structure-based method relies on the three-dimensional structure 

of a protein to predict binding affinity. Whilst the method is 

fast, experimental analysis is still required to validate the 

predicted targets. 

Reverse pharmacology The approach identifies the target through genomic, proteomic 

and metabolomics studies. The potential hits are screened through 

target-binding assays where the highly selected hit the molecular 

target is identified. The highly selected hit undergoes in vivo 

studies significantly show the desired physiological effect. 

 

  



 6 

1.4 Ligand-based in silico target prediction 

1.4.1 The principle behind ligand-based in silico target prediction 

Rapid development in both combinatorial chemistry and HTS has allowed the explosion in 

number and size of compound libraries and bioactivity databases(20-22). These two types of 

databases provide an interface to study both biology and chemistry concurrently using 

informatics approaches, which has given rise to computational chemogenomic (23, 24). Some 

of the examples of the compound libraries and/or bioactivity data can be found in Table 1.3 

and Table 1.4. In addition to aforementioned databases, compound libraries of natural 

products have also kept arising (Table 1.5). 

 

Table 1.3: The databases that stores compounds and their structural information. 

Database Description Size of database  

(as of Jan 2017) 

Ref. 

ChemSpider The database is publicly accessible 

database that contains chemical 

structures and their physical and 

chemical properties, spectral data, 

synthetic methods, known reactions, 

safety information and systematic 

nomenclature. 

(http://www.chemspider.com) 

58 million structures (25) 

ZINC The database is a collection of chemical 

compounds.  

(http://zinc15.docking.org) 

The current version 15 

contains more than 120 

million compounds. 

(26) 

 

Table 1.4: The databases that contain compounds and their structural information together 

with their bioactivity information. 

Database Description Size of database  

(as of Jan 2017) 

Ref. 

Binding DB The database is publicly accessible that 

stores experimental protein-small 

molecule interaction data. The data is 

curated from scientific articles and US 

patents.  

(www.bindingdb.org) 

A total of 1,325,129 

bioactivity data (US 

patents, journals, other 

databases) of 6,914 

protein targets and 

589,218 small 

molecules.  

(27) 

ChEMBL A public drug discovery database 

consisting of small bioactivity 

molecules derived from scientific 

journals. 

(https://www.ebi.ac.uk/chembldb) 

The current version 22 

consists of 14,371,197 

bioactivity data (HTS) 

of 1,686,695 

compounds and 11,224 

targets. 

(28) 

PubChem The public database contains chemical 

compounds and their activities against 

different biological assays. 

(https://pubchem.ncbi.nlm.nih.gov/#) 

A total of 232,660585 

bioactivity data (HTS) 

of 10,341 protein 

targets and 94,475,253 

compounds. 

(29) 
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Table 1.5: Compound libraries of natural products that contain their structural information, 

physicochemical properties or bioactivity activities. 

Database Description Size of database  

(as of Jan 2017) 

Ref. 

Traditional 

Chinese 

Medicine 

Systems 

Pharmacology 

Database and 

Analysis 

Platform 

(TCMSP) 

The database is publicly accessible 

and contains chemical compounds 

that link to their herbs and their 

associated targets and diseases. 

Associated targets and diseases are 

retrieved from DrugBank (30) and 

TTD database  database(31) and 

PharmGKB 

(https://www.pharmgkb.org/). 

(http://ibts.hkbu.edu.hk/LSP/tcmsp.ph

p) 

29, 384 structures from 

499 Chinese 

herbs registered in the 

Chinese pharmacopoeia 

and they are associated to 

3,311 targets and 837 

diseases. 

(32) 

Naturally 

occurring Plant 

based Anti-

cancerous 

Compound-

Activity-Target 

Database 

(NPACT) 

The database is publicly accessible 

and each record provides information 

on their structure, properties 

(physical, elemental and topological), 

cancer type, cell lines, inhibitory 

values (IC50, ED50, EC50, GI50), 

molecular targets, commercial 

suppliers and drug likeness of 

compounds. 

(http://crdd.osdd.net/raghava/npact/in

dex.html) 

1,574 compounds curated 

from 762 references, 

which include 353 cell 

lines of 19 cancer types. 

(33) 

Super Natural 

II 

It is publicly available database of 

natural compounds with additional 

information such as MOA, pathways, 

and toxicity. 

(http://bioinf-

applied.charite.de/supernatural_new/i

ndex.php?site=home) 

Approximately 326,000 

unique compounds, 

collected from 16 

suppliers. 

(34) 

 

 

Ligand-based in silico target prediction (“in silico target prediction” will be used hereinafter) 

applies chemogenomics that aims to systematically study the relationship of compounds and 

biactivity space by annotating compounds to their targets and implementing algorithms to 

measure compound-target classification, which is used to predict targets of an orphan 

compound (24, 35-37) (Figure 1.1). Two basic assumptions are applied in chemogenomics 

(38): 

1. Structurally similar compounds modulate similar targets 

2. Similar targets share similar patterns (binding sites) 

http://crdd.osdd.net/raghava/npact/index.html
http://crdd.osdd.net/raghava/npact/index.html
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From these assumptions, chemogenomics is able to identify molecular recognition between all 

possible ligands and all proteins in a biological system (23, 39). There are two main elements 

to in silico target prediction: 

1. Generating chemical compound descriptors 

2. Developing a machine learning model to identify patterns in the compound descriptors 

The first element characterises a chemical compound using properties called descriptors (23). 

Descriptors can be described through their dimensionality from one dimensional (1D) through 

to three dimensional (3D) (36, 40, 41). 1D descriptors describe the physicochemical 

properties of a molecular structure such as molecular weight, polarity, and molar refractivity 

(36, 40, 41). The 1D descriptors are easy to interpret but using only one type of 1D descriptor 

to characterise set of compounds does not offer sufficient discriminating power (36, 40, 41). 

Therefore, it is usually used in combinations with other 1D descriptors (36, 40, 41). 2D 

descriptors encode molecular connectivity, which can be described as topological indices and 

fingerprints (36, 40, 41). The topological indices are integers calculated from the 2D-graph 

representation of a compound (36, 40, 41). Fingerprints are encoded as bit strings, which the 

descriptors predefine the presence (1) or absence (0) of fragments or substructures in a 

particular chemical structure (36, 40, 41). 3D descriptors describe the shape of the chemical 

compound such as pharmacophore-type representation (36, 40). The 3D descriptors may be 

able to provide information on the binding properties of the compounds (36, 40). However, 

calculating 3D descriptors could require large computational time for a large set of 

compounds (36, 40). The descriptors are used to identify similarities between molecules. The 

similarity measure between two compounds, using a pair of bitstring, is usually computed 

using Tanimoto coefficient (Tc) or Jaccard Index. The Tc can be explained from the equation 

below: 

𝑇𝑐 =
𝑐

𝑎 + 𝑏 − 𝑐
 

(Equation 1.1) 

a is number of features present in compound A, b is number of features present in compound 

B and c is number of features present both in compound A and B. The Tc value is between 0 

and 1 with value closer to 1 shows higher similarity between the two compounds. Altogether, 

the first part describes the ligand space. 

The second element is mapping the features of the first component to an output 

property. This is done by building a chemogenomic database or ligand-bioactivity space from 

selected bioactivity databases (42). The bioactivity data is divided into ‘training set’ and ‘test 

set’ (42). In general, the ‘training set’ contains experimental results of x compounds acting on 

y targets, which are then ‘trained’ using an appropriate algorithm (23). The algorithm, such as 
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Naïve Bayes classifier, Random Forest and Support Vector Machine, will represent the 

training set in a form of classification model, for the machine to learn, which eventually 

enables target prediction of novel a compound (23, 36). The details of the algorithms will be 

explained in Chapter 2 (Naïve Bayes classifier) and Chapter 3 and 4 (Random Forest) as two 

different versions of in silico target prediction were used. Targets are predicted based on the 

similarity of the compounds in the training set to modulate the same targets (23). The 

performance of the model is validated by correctly predicting the targets of a ‘test set’, which 

is also known as internal set validation or the targets of a different bioactivity database, which 

is also known as external set validation (42). Therefore, by manipulating a large bioactivity 

data, in silico target prediction is perceived as one of the possible methods to potentially 

predict targets of TM compounds to eventually suggest their MOAs. The applications of in 

silico target prediction have been reported in the literature using different chemical 

fingerprint, different training sets of data and different classification algorithms, which will be 

further discussed next. 

 

Figure 1.1: Workflow of in silico target prediction tool using chemogenomic approach. A set 

of bioactivity compounds is compiled to build the chemogenomic database. An appropriate 

algorithm is used to learn the classification of the chemogenomic database. Then, using a 

novel compound as enquiry, the target(s) of a novel compound is predicted by comparing the 

similarity of the novel compound to the compounds in the chemogenomic database to produce 

a list of putative targets. 

 

1.4.2 Applications of in silico target prediction 

One of the earliest studies published on target prediction is the Prediction of 

Bioactivity Spectra for Substances (PASS) method (43). The model was developed using 
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structure-activity relationships for over 300,000 biologically active organic compounds 

representing for more than 4,000 types of biological activity collected from databases and 

literature. The structures were characterised by a set of descriptors of multilevel 

neighbourhood atom (MNA) and the prediction was based on Bayes estimates. The model’s 

performance showed it achieved average accuracy above 95% in the leave-one-out cross 

validation approach.  

Nidhi et al. used a large chemogenomic dataset to develop the in silico target 

prediction (44). In this work, ligand-target pairs from the WOrld of Molecular BioAcTivity 

(WOMBAT) database were extracted and the compounds were encoded using Extended-

Connectivity Fingerprint (ECFP). A multiple-category Laplacian naïve-Bayes algorithm was 

trained on the model consisted of 964 target classes. The model was employed to predict the 

top three most likely targets for all compounds from a different database, the MDL Drug 

Database Report (MDDR). The results showed that, on average for ten MDDR activity 

classes with known targets, the top three targets were predicted correctly for 77% of the 

compounds. 

In the Similarity Ensemble Approach (SEA), the target prediction was developed by 

grouping and relating the protein targets based on chemical similarity among their ligands, 

which were quantitatively measured using an algorithm adapted from BLAST (45). The 

model contained over 65,000 ligands and 246 targets of MDDR. The study discovered that the 

chemical structure of methadone, loparamide and emitidine showed close structural similarity 

to ligands for the muscarinic M3, α2 adrenergic and neurokinin NK2 receptors as their off-

targets. The experimental validations indicated the binding affinities of the drugs to 

antagonise the targets were in micro molar ranges. 

In contrast to different types of bioactivity classes, Mestres et al. conducted a study 

that focused on one class of target protein, nuclear human receptor, (NHR) (46). The model 

consisted of 2,033 molecules and 25 nuclear receptors extracted from literature. The 

molecules were characterised using Shannon Entropy descriptors (SHED), which described 

the topology of molecules by mapping the distributions of atom-cantered feature pairs. A 

nuclear receptor network derived from a matrix of minimum Euclidean distance of SHED 

profiles. The profiling of the nuclear receptors was tested against four external focused 

libraries of proteases, kinases, ion channel and GPCR, and 2,944 NHR drugs. The results 

showed that between 4.4% and 9.7% of the focused libraries and 5.2% of the drugs having 

affinities to binding NHR. Thus, this method does not only identify putative targets but also 

potential off-targets. 
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In regard to traditional medicine, the application of in silico target prediction was 

reported for TCM and Ayurveda compounds. Mohd Fauzi et al. employed a predictive model 

that was generated from ChEMBL bioactivity database version 10.0, which consisted of 

155,208 molecules across 894 targets (47). A Naïve Bayes classifier was utilised to train the 

model and the compounds were characterised based on ECFP_4 (48) with a diameter of four 

bonds. The model was validated using five-fold cross validation and achieved a recall of 68%. 

TCM compounds of ‘tonifying and replenishing’ medicinal class were successfully connected 

to their relevant targets that were associated to hypoglycaemic effect and Ayurveda cancer 

compounds were predicted to modulate primary anti-cancer targets. Both predictions were 

validated by literature. Given the previous studies, in silico target prediction can be extended 

to predict targets of traditional medicine by linking to their ethnomedicinal uses (Figure 1.2). 

 

 
Figure 1.2: Visualization of the link between a compound, target, and an indication. The 

compound’s mode-of-action can be elucidated from the targets predicted using an in silico 

target prediction method, which can be rationalised by the reported usage of the medicinal 

plant for treating an illness. The three elements are strongly interconnected with each other.  

 

1.4.3 Other methods of in silico target prediction 

In silico target prediction based on machine learning methods are not the only available tool. 

Various methods are available for in silico target prediction such as protein/ligand panel 

docking, chemical similarity searching and the analysis of “bioactivity spectra” (49). Protein 

panel docking is one of the earliest tools that has been widely used in traditional medicine, 

where a compound is docked to a wide panel of potential proteins and the proteins are 
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subsequently ranked based on calculated binding affinity scores (50). Chen et al., used 

INVDOCK, a ligand binding inverse docking strategy, against nine TCM compounds, 

genistein, ginsenoside Rg1, quercetin, acronycine, baicalin, emodin, allicin, cathecin and 

camptothecin (50). The study discovered that over 50% of the predicted targets had relevant 

literature support to suggest the compounds’ MOAs.  In a different study, where the in silico 

target prediction was further validated experimentally, Zhang et al. identified putative targets 

of 19 compounds isolated from two medicinal plants in TCM, which were used for the 

treatment of diabetes and inflammation using a reverse docking approach, TarFisDock (51). 

The natural products showed moderate inhibitory activities against the most frequent target 

candidate, dipeptidyl peptidase IV (DPP-IV) with IC50 values ranging from 14.14μM to 

113.76μM in an in vitro enzyme assay (51). Although this protein panel docking method 

requires only the chemical structures of the putative active ingredients, it is limited to high 

quality protein structures and the accuracy of the docking programs used (52).  

Chemical similarity searching is based on the “Molecular Similarity Principle” (41, 

49). In this method, the query compound is compared to a database of compounds with 

known targets and the compounds are represented as chemical fingerprints which the 

similarity between the two compounds is measured (52).  In a study by Cleves et al., (53), out 

of 1000 drugs, 700 drugs modulate approximately 85 biological targets from three different 

analysis; drug and target similarities, ligand-based virtual screening and selectivity of ligand-

based models. When the results were compared, the “chemical similarity” principle 

performed well when drug pairs sharing a target had higher similarity. Although this method 

does not require a training set, it does not prioritise which target is important for the query 

compound and prior knowledge of target class information is ignored (52). 

A method based on bioactivity spectra uses information from the response to a 

compound across a series of biological readouts such as cell lines, targets or genes expression 

profiles, which creates biological activity spectra (49). As bioactivity spectra are related to the 

compound’s structure, it can also be viewed as molecular descriptors and used for target 

prediction (52). For example, Chen et al., developed bioactivity profile similarity search 

(BASS) using 4,296 compounds that were tested against the NCI-60 cell lines (54). The 

annotated targets for all the compounds were extracted from public databases. Potential 

targets of a query compound were calculated based on bioactivity profile similarity between 

the query compound and all reference compounds in the database. The model demonstrated 

44.8% successful predictions from 237 query compounds with known target annotations. 

Although, this method could select a set of compounds with relevant bioactivity data, it 

requires the initial collection of experimental data across many targets, which can be difficult 
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to obtain (52). Given these points, ligand-based in silico target prediction could at least 

overcome some of these limitations by having a larger bioactivity space and statistically 

prioritised predicted targets.  

 

1.5 Systems biology to elucidate mode-of-action 

While target identification continues to be important to elucidate compounds’ MOA, the 

targets by themselves do not represent the complete mechanism of the MOA. Biologically, a 

measure of a compound’s response comes from systems biology (cells, tissues, animals) 

suggesting the target is not acting alone but interacting with neighbouring proteins (55, 56). 

The chain of interactions forms a dynamic biological network to produce phenotypic response 

(55, 56). The chain of interactions, which can be defined as a pathway, is the collection of 

proteins acting in collaboration that is part of a particular function or process (57). Multiple 

pathways of shared targets and proteins can be embedded into a biological network to provide 

a more comprehensive view of how systems biology functions to better understand the 

compound’s MOA (55, 56). However, analysing pathway in isolation from the network has 

also been done, in some cases, as pathway annotations are able to describe the compound’s 

MOA (57). The motive to include systems biology in drug discovery derives from a growing 

understanding of the physiology of a disease (58). The manifestation of a disease involves 

multiple interactions between targets of various pathways in a biological network (58). 

Therefore, by capturing beyond target space, the strategy is seen to be able to elucidate the 

MOA of a compound from the pathogenesis of a disease. In comparison, this concept aligns 

closely to the holistic approach of traditional medicine that aims to restore a healthy state of a 

patient with localising symptoms rather than to treat the source of the illness. 

Efforts have been seen in in silico drug discovery to include systems biology. One of 

the continuous efforts is the emergence of public databases of molecular interactions. At 

target level, several databases of interacting proteins have been compiled. The protein-protein 

interactions (PPI) databases are regularly collected from literature curation and high-

throughput protein interaction assays and in some cases, the databases include predicted 

interactions as well (59, 60). These PPIs are also put into biological contexts by creating 

pathway databases, which can have different emphasis and coverage (57, 60). Table 1.6 and 

Table 1.7 list the statistics/properties of the publicly available PPI and pathway databases. 

Consequently, the information stored in both types of databases can be combined to 

understand how the organisation at the molecular level contributes to cellular and organism 

phenotypes. 
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Table 1.6: The statistics of protein interactions (Homo sapiens only) databases. 

Acronym Database full name Proteins 

(as of Jan 

2017) 

Interactions 

(as of Jan 

2017) 

Publications 

(as of Jan 

2017) 

Ref. 

IntAct IntAct Molecular 

Interaction Database 

46,895 208,595 7,182 (61) 

HPRD Human Protein 

Reference Database 

30,047 41,327 453,521 (62) 

BioGRID Biological General 

Repository for 

Interaction Datasets 

20,931 278,358 25,759 (63) 

MINT Molecular Interaction 

Database 

10,807 61,143 8,644 (64) 

 

Table 1.7: The properties of pathway databases. 

Acronym Database full name Coverage Interactions 

(as of Jan 

2017) 

Ref. 

KEGG 

Pathway 

Kyoto 

Encyclopaedia Gene 

and Genome 

Pathway 

Represents collections of 

manually drawn pathway map 

of metabolism, genetic 

information processing, 

cellular processes, organismal 

systems, human disease, and 

drug development. 

(http://www.genome.jp/kegg/

pathway.html) 

481,160 (65) 

Signalink2.0 Signalling pathway 

resource with multi-

layered regulatory 

networks 

Includes signalling pathway 

cross-talks, transcription 

factors, miRNAs and 

regulatory enzymes. 

(http://signalink.org/) 

275,359 

(only for 

Homo 

sapiens) 

(66) 

Reactome Reactome Pathway 

Database 

Includes core human 

pathways such as DNA 

replication, transcription, 

translation, cell cycle, 

metabolism, and signalling 

cascades. 

(http://www.reactome.org/) 

209,988 (67) 

 

A few examples are discussed here to illustrate the inclusion of pathways to understand 

compound’s MOA. For instance, a study by Liggi et al., demonstrated that enriched KEGG 

pathways such as “axon guidance” and “endocytosis” of predicted targets could be linked to 

the frequently observed phenotype, pigmentation, of Xenopus laevis that were previously 

treated with the NCI Diversity Set II compounds (68). The functions of the targets and 

pathways to pigmentation were validated by literature (68). Relating to traditional medicine, 

Liu et al., generated a compound-target network of nine compounds that were identified to be 
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abundance in Reduning Injection TCM formulation used in combatting inflammation (69). 

Inflammation-related pathways were first extracted from literature, which also identified a 

few of major drug targets. The compound was connected to the drug targets if they were 

predicted targets of the compounds. Related targets, such as mitogen–activated protein 

kinases (MAPK1 and MAPK14), were identified from the network topology. Experimental 

results showed that the TCM formulation modulated the MAPK pathway to exert its anti-

inflammatory effects. Therefore, by annotating pathways of the targets, the MOA of 

compounds could be understood better for the reported indications. 

Because systems biology is more than discrete PPIs and pathways, thus, creating a 

biological network using either of both components could provide a more comprehensive 

insight of the compound’s MOA. Depending on a research question and available data, a 

biological network is regularly modelled using two different approaches (70). 

1. Top-down or data-base approach 

2. Bottom-up or knowledge-base approach 

In a top-down approach, experimental data is extracted to infer a biological network. Various 

methods can be employed to build the network namely statistical (correlation and regression) 

and probabilistic methods (Bayesian, logic models, and ordinary differential equations), in 

which the gene expression data can be either static or time-course (70). As a result, the 

approach attempts to correlate the molecule’s behaviour and underlying interactions in the 

genome-wide studies (71). For instance, Liu et al., applied correlation statistical method by 

generating a network using weighted gene co-expression network analysis (WGCNA) from 

gene expression samples of breast cancer patients who received Tamoxifen treatment. The 

aim was to identify the biomarkers in order to understand the underlying mechanism for 

Tamoxifen resistance (72). The analysis used unsupervised clustering to identify functional 

modules and significant genes, which were validated using independent samples of breast 

cancer survivors treated with Tamoxifen (72). The results indicated five hub genes (CDK1, 

DLGAP5, MELK, NUSAP1, and RRM2) were strongly related to poor survival (72). 

Therefore, the top-down approach could facilitate the causal relationship between phenotype 

and a drug. 

Contrary to the top-down approach, the bottom-up approach starts with single 

components or the proteins of interest as the building blocks of the network in order to 

simulate the dynamic properties of the resulting system (70). The physical interactions 

between these proteins could be retrieved from PPI or pathway databases, which eventually 

the interactions are combined to build a biological network (70). The outcome of this method 

maps all possible connections between proteins in the network because the overlapping 
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information between the databases is usually small (59, 60). To illustrate this approach, Zhu 

et al., used differentially expressed genes measured between non-failing heart and ischemic 

dilated cardiomyopathy (ICM) patients, in addition to validated cardiac myocyte proteins to 

build a representative network of dilated cardiomyopathy (73). The PPI were retrieved from 

DIP, BIND, Prolinks, KEGG and HPRD (73). The network was divided into four layers; 

extracellular, plasma membrane, cytoplasm and nuclease, which Gene Ontology (GO) 

analysis showed the over-represented biological processes were in the cytoplasm and nuclease 

layer (73). Network analysis revealed that the Janus family tyrosine kinase-signal transducer 

and activator of transcription (Jak-STAT) signalling pathway might play an important role in 

the development of ICM (73). Subsequently, treating related drugs in in vitro experiments 

could validate the biological processes discovered. Together, the applications discussed of 

systems biology are observed to prospectively fill the gap between chemistry and biology, 

thus potentially helping the drug discovery process in the future. 

 

1.6 Limitations of in silico mode-of-action methods 

Despite the applications of in silico target prediction able to elucidate the MOA, there are 

several limitations. First, the “Molecular Similarity Principle” is not always true. There are 

cases where molecules that are similar in structure but exhibit very different activities, which 

is known as the “activity cliff” (74). For example, a change in one functional group might 

prevent a compound from binding to the same target. To confirm the predicted target is 

modulated by the compound, a molecular docking method is proposed in order to learn about 

the molecular interactions between the compound and predicted target. Second, the data in the 

training set contains inconsistent results. The inconsistent results may be due to different 

experimental design and interpretation, such as insufficient description of assays, making it 

difficult to compare two similar assays from different experiments (75). This can be 

minimised by selecting bioactivity data based on several confidence criteria. Third, the 

predictions are still limited to the target space in the training set. Hence the model usually 

covers a fraction of proteins in the human genome. However, as more bioactivity data 

becomes available, the size of target space can be further expanded. Fourth, the algorithm is 

unable to report whether a novel compound either activates or inhibits the predicted targets, as 

this can be experimentally influenced by ADMET (Absorption, Distribution, Metabolism, 

Excretion and Toxicity) properties (68). Therefore, only a general justification could be 

established between the predicted targets/pathways and the phenotypic response. Finally, 

relating to the PPI and pathway databases, despite the large size of most databases, their 

curation is error-prone and the protein interactions coverage is still incomplete as many parts 
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of the systems biology have yet to be studied (57). Hence, these limitations remain to 

potentially affect the analysis of in silico MOA’s results. 

 

1.7 Structure of this thesis 

Given that, traditional medicines are known for the observed efficacies, the applicability of in 

silico target prediction in elucidating the MOA of the compounds, of one or different types of 

traditional medicine, is explored. The work is presented in self-contained chapters. Chapter 2 

discusses the mechanistic relationship between 46 TCM therapeutic action subclasses that 

each subclass describes a distinct healing property. In the subsequent chapter, Chapter 3, the 

work compares both chemical space and bioactivity space of three different traditional 

medicines, namely TCM, Ayurveda, and Malay traditional medicine (Malay TM) for treating 

cancers. The final work, Chapter 4, evaluates synergy of two compound combinations from a 

TCM formulation, Shexiang Baoxin Pill (SBP), by mapping the compounds predicted targets 

onto a representative biological network. The formulation is widely known for treating 

coronary heart disease. Finally, Chapter 5 discusses the results and conclusions from previous 

chapters. 
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Chapter 2:  
Global Mapping of Traditional Chinese Medicine onto Bioactivity Space and Pathway 

Annotation Improves Mechanistic Understanding and Discovers Relationships Between 

Therapeutic Action (Sub-)Classes 

 

 

2.1 Introduction 

Traditional Chinese medicine (TCM) has been practiced for thousands of years for the 

prevention and treatment of diseases using a unique system of theory, diagnosis and treatment 

(76, 77). The philosophical background of TCM is based on Yin and Yang, as well as the Five 

Elements (agents) theories (Figure 2.1). The Yin and Yang are the harmony of two opposite 

energies and the Five Elements describe the five interdependent functional organs; heart, 

liver, spleen, lung and kidney with its own Yin and Yang (78, 79). When a human body 

suffers from a disease, the dynamic balance and the relationship of the five elements are 

disturbed. Hence, to rectify the disturbance, TCM applies a holistic approach with the key 

therapeutic principles being “Zheng” (meaning syndrome or pathological patterns seen in 

patients) and “Fufang” or “Fang Ji”, (meaning compound formulations consisting of materia 

medica) (80-86). Note that a TCM Fufang are primarily based on medicinal plants, but may 

also contain fungi (e.g. Ganoderma lucidum), mineral (realgar), and occasionally animal 

products (e.g. Calculus bovis). Chinese medicines can be organised into several classifications 

such as therapeutic actions, source of the medicine and internal organs (87). In this study, the 

classification of the Chinese medicines follows the therapeutic actions, of which some also 

possess sub-classifications based on clinical applications recorded by TCM monographs (88). 

A combination of two or more Chinese medicine categories make up a treatment formulation, 

which then contains a considerable number of chemical compounds (89).  
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Figure 2.1: The philosophy of TCM defines yin and yang as opposite energies that 

complement the natural world. Water, earth, metal, wood and fire are the five elements that 

organise all natural phenomena into five patterns. Each element has its own organs of yin and 

yang characteristics. Each element can either nourish or restrain one another to keep a 

dynamic balance among the elements. TCM compounds of materia medica are used to correct 

the imbalance of yin and yang in the human body. 
 

The mixture of compounds in the formula works through the therapeutic principle 

Jun-Chen-Zuo-Shi, by maximizing the therapeutic effects and minimizing the side effects (76, 

90, 91). Based on the healing/pharmacological properties and constituents of each medicine, 

the Jun (emperor) component is the principal compound in the mixture targeting the major 

symptom of the disease. There are only a few varieties of Jun medicines that are administered 

as a single formula, usually in large doses. The Chen (minister) components synergise with 

Jun to strengthen its therapeutic effects, and may also treat secondary symptoms. The Zuo 

(assistant) medicine reduces or eliminates possible adverse or toxic effects of the Jun and/or 

Chen components, while also enhancing their effects and sometimes treating secondary 

symptoms. Finally, the Shi (courier) components facilitate delivery of the principal 

components to the lesion sites, or facilitate the overall action of the other components (92, 93). 

Therefore, at the molecular level, a TCM formula, which is a multi-component and multi-

target agent, is assumed to modulate a series of protein targets in an integrative manner to 

harmonise the body system (94). In brief, TCM is a well-structured system from diagnosis to 

healing, whose theories and medicines are rationally connected and interdependent.  

TCM contains a plethora of compounds, which originate from the biodiversity of 

natural product medicines, which is a rich resource for discovering new TCM-based drugs. 
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However, to develop a novel TCM-based drug still remains challenging. One of the factors 

that contribute to making it a challenge is an undefined medicine concoction. The 

characterisation of the complex formulation by using methods to isolate the compounds is an 

exhaustive task that is very time consuming (95, 96). Although many compounds have been 

isolated from Chinese herbs (97, 98), their MOAs, in many cases, are still not yet understood 

at the molecular level (96). Another challenging issue in TCM is measuring the efficacy, 

pharmacokinetic-pharmacodynamic profiles and dose-efficacy relationship of multiple 

compounds simultaneously, both in vitro and in vivo (95, 96, 99). However, as shown in this 

work, particularly related to MOAs, it is now possible to suggest the MOA of TCM 

compounds using in silico target prediction. For example, Zehler et al, applied inverse 

screening method for three indirubin (TCM active principle in against chronic myelogenous 

leukaemia) derivatives, 5-bromo-indirubin-3′oxime (5BIO), 6-bromo-indirubin-3′oxime 

(6BIO) and 7-bromo-indirubin- 3′oxime (7BIO) in order to identify their potential kinase 

targets (100). The predicted target phosphoinositide-dependent kinase 1 (PDK1) was 

functionally supported by an in vitro kinase assay, which showed inhibition activity of 6BIO 

at 1.5 μM (100). 

The motivation of the current study is prompted by the success to link TCM and 

Ayurveda compounds to the predicted targets that were relevant for the indications of various 

therapeutic action classes in TCM and cancer in Ayurveda (47). The aim of the study was to 

extend the analysis of the targets prediction compounds of TCM therapeutic action classes 

including their subclasses by first generating a hierarchical clustering. The first part of the 

study was to understand the MOAs of the subclasses from the predicted targets as well as 

from annotated KEGG pathways because a target alone is insufficient to provide a full 

biological profile towards the effect of the ligand on a biological system (65, 101). In the 

second part, bioactivity spaces of all therapeutic action (sub-)classes were compared in order 

to understand relationships between the clusters. Hence, the global mapping of TCM 

compounds explored in this work, based on the therapeutic action (sub-)classes, does not only 

provide the better insight of the MOAs of the TCM compounds but also describes for the first 

time the relationship between the therapeutic action (sub-)classes.  

  



 21 

2.2 Materials and methods 

2.2.1 Dataset and dataset preparation 

TCM compounds were obtained from TCM Database@Taiwan (88) in structure-data (SD) 

format. A total of 13,091 compounds from 46 different therapeutic action (sub-)classes were 

imported into MOE (102). To prepare structures for further analysis, covalently bound Group 

I metals were disconnected into ionic representation, while keeping only the largest molecular 

fragments, neutralising the compound by removing salts and adjusting the hydrogens and 

partial charges using MMFF94 (modified) partial charges. The duplicates from each 

therapeutic action (sub-)class were removed, resulting in a total number of 10,749 distinct 

compounds. The list of classes with the final number of compounds for each (sub-)class is 

provided in Table 2.1. 

Table 2.1: The list of therapeutic action classes, subclasses and their number of respective 

Chinese medicine and compounds. A total 10,749 compounds from 46 therapeutic action 

subclasses were included in the analysis presented in this work.  

Chinese medicine 

Class 

Chinese medicine 

Subclass 

Chinese medicine (sub-

)class (Chinese Names) 
Abb. NoH NoC 

Exterior releasing 
Wind cold dispersing 

Sàn hán jiě biǎo yào 

 (散寒解表药) 

ER - wind 

cold 
21 538 

Wind heat dispersing 
Qīng rè jiě biǎo yào 

(清热解表药) 

ER -wind 

heat 
22 413 

Heat clearing 

medicinal 
Heat clearing and blood 

cooling 

Liáng xuè huó xuè yào 

(凉血活血药) 

HC - blood 

cool 
14 99 

Heat clearing and 

dampness drying 

Qīng rè lì shī yào 

(清热利湿药) 
HC - damp  11 264 

Deficiency 
Qīng xū rè yào  

(清虚热药) 
HC - def 10 186 

Heat clearing and 

detoxicating 

Qīng rè jiě dú yào 

(清热解毒药) 
HC - detox 54 1029 

Heat clearing and fire 

purging 

Qīng rè xiè huǒ yào 

(清热泻火药) 

HC - fire 

purge 
18 234 

Purgative medicinal 
Laxative medicinal 

Rùn xià yào  

(润下药) 
Purg - lax 3 27 

Offensive purgative 
Gōng xià yào  

(攻下药) 
Purg - off 6 54 

Drastic (purgative) 

water-expelling 

Jùn xià zhú shuǐ yào 

(峻下逐水药) 

Purg - water 

expel 
14 206 

Dampness resolving Water draining and anti-

icteric 

Lì shī tuì huáng yào 

(利湿退黄药) 

Damp - 

antiicteric 
6 189 

Water draining and 

strangury resolving 

Lì niào tōng lín yào 

(利尿通淋药) 

Damp - 

stran 
15 133 

Water draining and 

swelling dispersing 

Lì shuǐ xiāo zhǒng yào 

(利水消肿药) 

Damp - 

swell 
13 265 

Qi regulating 
 

Lǐ qì yào  

(理气药) 
Qi 36 699 

Digestant medicinal 
 

Xiāo shí yào  

(消食药) 
Digest 8 146 

Hemostatic medicinal 
Astringent hemostatic 

Shōu liǎn zhǐ xiě yào 

(收敛止血药) 

Hemo - 

astringent 
5 92 

Blood cooling Liáng xuè zhǐ xiě yào Hemo - 13 198 
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hemostatic (凉血止血药) blood cool 

Meridian warming 

hemostatic 

Wēn jīng zhǐ xuè yào 

(温经止血药) 

Hemo - 

meridian 
2 146 

Stasis-resolving 

hemostatic 

Huà yū zhǐ xiě yào 

(化瘀止血药) 

Hemo - 

stasis 
6 245 

Blood activating and 

stasis resolving 
Blood activating 

analgesic 

Huó xuè zhǐ tòng yào 

(活血止痛药) 

BASR - 

analgesic 
7 487 

Blood breaking mass 

eliminating 

Pò xiě xiāo zhēng yào 

(破血消癥药) 

BASR - 

break 
9 177 

Blood activating 

menstruation resolving 

Huó xuè tiáo jīng yào 

(活血调经药) 

BASR - 

menstrual 
15 457 

Blood activating trauma 

curing 

Huó xuè liáo shāng yào 

(活血疗伤药) 

BASR - 

trauma 
12 261 

Cough suppressing 

and panting-calming 
Clearing and Heat 

phlegm resolving 

Qīng huà rè tán yào 

(清化热痰药) 
CSPC - heat  30 237 

Cold phlegm resolving 

and warming 

Wēn huà hán tán yào 

(温化寒痰药) 
CSPC - cold 19 147 

Cough suppressing and 

panting calming 

Zhǐ ké píng chuǎn yào 

(止咳平喘药) 

CSPC - 

panting 
16 334 

Tranquilizing Heat nourishing 

tranquilizing 

Yǎng xīn ān shén yào 

(养心安神药) 

Tranquil - 

heat 
1 145 

Settling tranquilizing 
Zhòng zhèn ān shén yào 

(重镇安神药) 

Tranquil - 

settle 
6 1 

Orifice opening 
 

Kāi qiào yào  

(开窍药) 
Orifice 7 68 

Liver-pacifying and 

wind extinguishing 
Extinguish wind to 

resolve convulsion 

Xí fēng zhǐ jìng yào 

(息风止痉药) 

LPWE - 

convulsion 
8 85 

Liver yang calming 
Píng yì gān yáng yào 

(平抑肝阳药) 

LPWE - 

liver 
7 22 

Tonifying and 

replenishing Blood tonifying 
Bǔ xiě yào  

(补血药) 
TR - blood 7 388 

Qi tonifying 
Bǔ qì yào  

(补气药) 
TR - qi 15 474 

Yang tonifying 
Bǔ yáng yào  

(补阳药) 
TR - yang 23 559 

Yin tonifying 
Bǔ yīn yào  

(补阴药) 
TR - yin 17 259 

Astringent 
Anhidrotic 

Gù biǎo zhǐ hàn yào 

(固表止汗药) 

Ast - 

anhidro 
3 17 

Lung-intestine 

astringent 

Liǎn fèi sè cháng yào 

(敛肺涩肠药) 
Ast - lung 8 145 

Secure essence, reduce 

urination, and check 

vaginal discharge 

Gù jīng suō niào zhǐ dài yào  

(固精缩尿止带药) 
Ast - secure 6 125 

Wind-dampness 

dispelling 
Bone(sinew) 

strengthening 

Qū fēng shī qiáng jīn gǔ yào 

(祛风湿强筋骨药) 
WD - bone 5 44 

Heat clearing 
Qū fēng shī rè yào 

(祛风湿热药) 
WD - heat 8 175 

Cold dispersing 
Qū fēng hán shī yào 

(祛风寒湿药) 
WD - cold 13 309 

Interior warming 
 

Wēn lǐ yào  

(温里药) 
Warm 13 457 

Worm expelling 

medicinal  
Qū chóng yào  

(驱虫药) 
Worm 9 93 

Emetic medicinal 
 

Yǒng tǔ yào  

(涌吐药) 
Emetic 3 9 
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Parasite destroying, 

dampness eliminating 

and itchiness relieving 

 
Gōng dú shā chóng zhǐ yǎng 

yào (攻毒杀虫止痒药) 
Parasite 8 81 

Anti-malarial 

medicinal  
Kàng nüè yào  

(抗疟药) 
Malarial 4 30 

      Total compounds 10,749 

Abb. = Abbreviation 

NoH = Number of Chinese medicine 

NoC = Number of compounds 

2.2.2 Target prediction 

The processed molecular data was then subjected to a target prediction that was modelled 

using the Laplacian-modified Naive Bayes classifier, which detail of the target prediction 

algorithm can be found in (103). Briefly, this model contained 189,147 ligand-protein pairs 

extracted from ChEMBL v.14.0 (28) across 477 human targets which was used as the training 

set. The training set contained active compounds with reported activities (Ki/Kd/IC50/EC50) of 

at least 10 μM with a confidence score of 8 or 9 and at least 20 compounds were available to 

associate the chemical features with a target class. 

The molecular descriptors of the compounds were represented by Molprint2D circular 

fingerprints (104). In Molprint2D circular fingerprints (Figure 2.2), the atom environments of 

a molecule are directly calculated from molecular connectivity table, which can be described 

in two steps. First, a Sybyl atom type is assigned to each heavy atom of a molecule after 

removing the explicit hydrogen. Second, the individual atom fingerprint is calculated for 

every heavy atom by constructing a count vector that describes the neighbouring atoms from 

zero distance up to two bonds from the central atom. This second process creates features of 

atom environments, which are stored as a binary fingerprint of absence or presence of a 

feature. The second process is repeated for all assigned Sybyl atoms. 

 

 

Figure 2.2: The figure illustrates an example of how a Molprint2D fingerprint is generated 

for an aromatic carbon, <0>, of a molecule. After assigning Sybyl atom type for each heavy 

atom of a molecule, the atom environment of the heavy atom is generated by describing its 

neighbouring atoms up two bonds (layers).  
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The targets predicted for the new compound uses the Naïve Bayes classifier as a method for 

classification as follows (105). 

𝑃(𝜔𝛼|𝜘) =
𝑃(𝜘|𝜔𝛼)𝑃(𝜔𝛼)

𝑃(𝜘)
   

(Equation 2.1) 

Here, the probability of a new compound belonging to a target class, 𝜔𝛼, with a given vector 

molecular feature, 𝜘, is calculated. The prior target class probability, 𝑃(𝜔𝛼) is assumed to be 

equivalent to proportion of the molecules, 𝑁𝜔, modulate that class from the total number of 

molecules, 𝑁, in the training set. 

𝑃(𝐶 = 𝜔) =
𝑁𝜔𝛼

𝑁
 

(Equation 2.2) 

The denominator, 𝑃(𝜘) calculates the sum of the fraction of molecules from each class from 

𝛽 = 1 to 𝐿 in the training set multiplied by the probability of the vector of molecular feature 

given the target class.  

∑
𝑁𝜔𝛽

𝑁
𝑃(𝜘|𝜔𝛽 

𝐿

𝛽=1
) 

(Equation 2.3) 

The posterior probability, 𝑃(𝜘|𝜔𝛼) is the likelihood of the feature, 𝜘, given the class, 𝜔𝛼. 

The internal validation of the in silico target prediction was measured using 5-fold 

cross validation with a recall of correct targets that was larger than 80% in the top 1% of 

predictions. In the external validation, the algorithm showed a recall of 63.6% in the top 1% 

of predictions using dataset extracted from WOrld of Molecular BioAcTivity version 2011.1 

(WOMBAT) (106). Only target scores above a confidence score, which are defined 

individually for each target class, were taken as the output. The confidence scores for each 

class was calculated by the optimal balanced accuracy (precision and recall trade-off) on a per 

target class basis, and were used to retain protein targets likely to interact with the compounds 

in the dataset (107). 

 

2.2.3 Pathway annotation 

Each predicted target was annotated with its full set of pathways from the KEGG biological 
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pathways (release 58.1) (108). It was possible to annotate 405 out of 477 targets with KEGG 

biological pathways (68, 109). 

 

2.2.4 Enrichment calculations 

To normalise the classification results from target prediction/pathway annotation, enrichment 

calculations were performed by normalising frequencies of the target prediction/pathway 

annotation of each therapeutic action subclass of compound to a background of 10,000 

compounds that were selected randomly from PubChem (110) and ZINC (111), which 

consists of 194,849 compounds in total. Two methods were used to perform the enrichment 

calculation in this step, namely Estimation Score and Average Ratio. The calculation of the 

scores was performed as follows (68, 109). 

1. Estimation Score 

The Estimation Score is based on the frequency of the number of predicted targets/pathways 

in the random dataset, which is larger or equals the frequency of the number of predicted 

target/pathways in the test dataset. The absolute frequency, C, was divided by the total 

number of the random dataset, giving a value between 0 (enriched) and 1 (random). 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =
𝐶

1000
 

(Equation 2.4) 

2. Average Ratio 

The Average Ratio is calculated by the ratio of the frequency (F) of the predicted 

target/annotated pathway in each random dataset with the frequency (F) of predicted targets 

in the test dataset. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑡𝑖𝑜 =  

𝐹(𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡1)
𝐹(𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)

+
𝐹(𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡2)

𝐹(𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)
+ ⋯ +

𝐹(𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡10000)
𝐹(𝑡𝑒𝑠𝑡 𝑠𝑒𝑡)

10000
 

(Equation 2.5) 

In this study, enriched targets/pathways were considered if they showed an Estimation 

Score ≤ 0.01, and descending Average Ratio was used to further discriminate important 

targets in agreement with previous work by Liggi et al. (68, 109). The relative cut-off of both 

Target Frequency (TF)/Pathway Frequency (PF) that was ≥ 5% of the highest predicted 

target/pathway frequency was used after ranking the targets using the Estimation Score and 

Average Ratio methods to determine which targets were considered to be enriched in a 

particular therapeutic action (sub-)classes. 
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2.2.5 Hierarchical clustering based on the bioactivity space of the therapeutic action 

(sub-)classes 

The frequencies of compounds across 477 targets for each therapeutic action (sub-)class were 

subjected to agglomerative hierarchical clustering (112, 113). The clustering method involved 

two steps as follows:  

1) Selecting measures of dissimilarity or similarity 

The dissimilarity distance between two therapeutic action (sub-)classes was calculated 

using the “dist” function of the ‘Euclidean’ method in R (114) after scaling the 

frequencies.  

2) Clustering 

Clustering was performed using the “hclust” function in R (114) based on the previously 

calculated Euclidean distance and Ward’s clustering method (115). In this method two 

clusters were merged if the sum of squared Euclidean distance was minimal.  

A cut-off dissimilarity distance of approximately 20 was applied in order to obtain a 

manageable number of clusters, defining 14 groups of therapeutic action (sub-) classes, 

namely cluster I to XIV.  

 

2.2.6 Targets and pathways analysis  

The top three enriched targets/pathways were inspected with regard to their ability to explain 

the MOA of the compounds classified in the therapeutic action (sub-)classes. To improve the 

mechanistic understanding of the MOA, the top three enriched targets/pathways were linked 

to the indications of the (sub-)classes with supporting evidence from literature and supporting 

in vitro or in vivo studies of the Chinese medicines’ extracts or isolated compounds. However, 

supporting in vitro and in vivo studies were excluded in the pathway analysis because, in 

many (sub-)classes, no information was found. The 14 clusters were grouped based on the 

number of (sub-)classes in a cluster, which ranged from ten (sub-)classes to only one (sub-) 

class that derived from different classes. Three clusters were analysed in detail in the next 

section. Cluster VII was the only cluster that composed of (sub-)classes with the same TCM 

vital substance of its meridian system, blood. Cluster X was picked as a representative of a 

cluster of different classes while cluster XII was selected as a representative of a cluster with 

only one type of (sub-)class. The top three enriched targets/pathways per selected (sub-) 

classes were summarised in Table 2.2 and Table 2.5 and the top three enriched 

targets/pathways of all (sub-)classes can be found in Table A2.1 and Table A2.2 
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(Appendices). 

To compare the bioactivity spaces among the clusters, all enriched targets in a cluster 

were classified according to their protein family as derived from UniProt (116). The enriched 

pathways for all clusters were also classified according to KEGG ortholog groups, which are 

derived by comparing sequence similarity of individual genes and defining the functional 

group from the list of genes in the respective group (65). The KEGG ortholog group will be 

described as a pathway motif from here onwards. All the enriched targets were annotated 

from 59 protein families and the enriched pathways were annotated from 33 pathway motifs. 

A major protein family/pathway motif for a cluster was defined if the number of enriched 

targets/pathways was at least 5% of the total number of enriched target/pathway in the 

respective cluster and presence for at least eight clusters. Only five major protein families and 

eight major pathway motifs were identified. The frequencies of enriched targets/pathways per 

cluster were normalised before constructing two different heatmaps using heatmap.2 function 

of the gplots package in R (114), in order to visualise whether the major protein 

families/pathway motifs were equally important across clusters. 

2.3 Results and Discussions 

2.3.1 Overview of the results 

The in silico target prediction of 10,749 TCM compounds yielded 409 unique targets, of 

which 183 were enriched targets. In the pathway annotation, the total number of unique 

pathways was 171, of which 99 were enriched pathways. The results discussed from here 

onwards cover 45 of the 46 therapeutic action (sub-)classes only. One therapeutic action 

subclass is not included because no target was retained from the “Tranquilizing - Settling” 

(Tranquil-settle) subclass, which contained only one compound. This subclass was therefore 

omitted from hierarchical clustering and all subsequent analysis. In Figure 2.3, a dendrogram 

shows the hierarchical clustering of 45 TCM therapeutic action (sub-)classes based on their 

bioactivity fingerprints. The cluster tree generates a diverse spread of the 45 therapeutic 

action (sub-)classes, which is defined into 14 clusters. In many instances, branches of the 

dendrogram paired up from different type of classes or subclasses. Based on the molecular 

similarity principle (41), this observation indicates that many similar compounds are present 

in both (sub-)classes despite having different therapeutic actions. The link of the top three 

enriched targets of the therapeutic action (sub-)classes are discussed in the next sections as 

well as their top three enriched pathways.  
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Figure 2.3: Hierarchical cluster analysis of TCM classes and subclasses is based on the similarity of the bioactivity fingerprint of each class. The 

‘Tranquil-settle’ subclass was not included here (and in the further analysis) since it only contained a single compound for which no reliable targets 

could be predicted. The (sub-)classes were defined into 14 clusters, which cluster VII, X, and XII were selected for further analysis based on the top 

three enriched targets/pathways.  
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2.3.2 Target analysis 

2.3.2.1 Clusters with four therapeutic action (sub-)classes (Cluster X) 

Only Cluster X represents this group. The subclasses in cluster X are “Wind-dampness 

dispelling, bone (sinew) strengthening” (WD – bone), “Tonifying and replenishing, qi 

tonifying” (TR – qi), “Cough suppressing and panting-calming, clearing and heat phlegm 

resolving” (CSPC – heat) and “Tranquilizing, heat nourishing tranquilizing” (Tranquil – 

heart). The top three enriched targets from cluster X are mainly implicated in 

immunomodulation, namely steryl-sulfatase (STS) (117), tyrosine-protein phosphatase non-

receptor type 2 (PTPN2) (118), and peptidyl-prolyl cis-trans isomerase FKBP1A (FKB1A) 

(119), glucose homeostasis such as sodium glucose transporter 1 (SGLT1) and 2 (SGLT2) 

(120), cancer which is, DNA topoisomerase 1 (TOPO1) (121), reproductive system such as 

testosterone 17-beta-dehydrogenase 3 (17-beta-HSD 3) (122) and central nervous system 

(CNS) such as glutamate carboxypeptidase 2 (CGPII) (123).  

Dissecting the in silico target prediction per subclass, starting from the “Wind-

dampness dispelling, bone strengthening” (WD – bone), the top three enriched targets are 

TOPO1 (Estimation Score (ES)=0, Average Ratio (AR)=0.0144), SGLT1 (ES=0, 

AR=0.0342), and STS (ES=0, AR=0.0370). From the in silico target prediction, 

acankoreoside A-C derived from Acanthopanax gracilistylus were suggested to modulate 

TOPO1 and SGLT1 in the subclass, while compounds from Homalomena occulta such as 

asterpenoid, bullatantriol, and homalomenol were suggested to modulate STS, as well as 

compounds such as quercetin of Taxillus chinensis. The target prediction of compounds from 

Acanthopanax gracilistylus is supported by an in vitro study that the herb’s extract inhibits 

cell proliferation in several types of cancer cells (124). It is also reported that the extract of 

Taxillus chinensis exhibits significant anti-inflammatory activity in vitro (125). The herbs 

from this class are used to relieve pain, relax muscle and tendons, open channels and 

collaterals, and strengthen tendons and bones (87, 126). The actions of the herbs are related to 

the disturbance of muscular function in diabetes (127) and cancer cachexia which affects 

protein and lipid metabolism in skeletal muscle (128). 

 The top three enriched targets for “Tonifying and replenishing, qi tonifying” (TR – qi) 

subclass are PTPN2 (ES=0, AR=0.0174), SGLT2 (ES=0, AR=0.0282) and SGLT1 (ES=0, 

AR=0.0321). Many compounds from Glycyrrhiza glabra, Glycyrrhiza uralensis, Dolichos 

lablab, Panax ginseng, and Astragalus membranaceus were predicted to modulate PTPN2 

and SGLT1. In particular to PTPN2 (129), a compound, glycyrrhizin from Glycyrrhiza glabra 

and Glycyrrhiza uralensis is supported by an in-vivo study that suggests the compound 

ameliorates all established chronic histopathologic changes of lung tissue in the mouse model 
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of asthma (130). TCM describes the medicines from this subclass act on the spleen and lung, 

which the deficiency of lung qi is characterised by shortness of breath such in asthma (87).  

 A sub-cluster consists of two therapeutic action subclasses is seen to have highly a 

similar bioactivity space. The first subclass is “Cough suppressing and panting-calming, 

clearing and heat phlegm resolving” (CSPC – heat) with the top three enriched targets being 

PTPN2 (ES=0, AR=0.0112), TOPO1 (ES=0, AR=0.0236), and 17-beta-HSD 3 (ES=0, 

AR=0.0341). Compounds from Platycodon grandiflorum such as platycoside A-M were 

suggested to be modulated by all the top three enriched targets and compounds from Bambusa 

tuldoides, Peucedanum decursivum, and Trichosanthes kirilowii were mostly predicted to 

modulate 17-beta-HSD 3. Although Platycodon grandiflorum (131) and Trichosanthes 

kirilowii (132) are reported to exhibit anti-cancer properties, the reports do not support the 

link between the top three enriched targets and the indication of therapeutic action subclass to 

rationalise the MOA of the compounds.  

The second subclass, “Tranquilizing, heart nourishing tranquilizing” (Tranquil – 

heart), lists FKB1A (ES=0, AR=0.0077), PTPN2 (ES=0, AR=0.0167) and CGPII (ES=0, 

AR=0.0209) as its top three enriched targets. Compounds of three different herbs were 

predicted to modulate FKB1A and PTPN2 and only compounds of Ganoderma lucidum, such 

as ganoderic acid and lucidenic acid derivatives were predicted to modulate CGPII. The 

prediction of CGPII from triterpenoids of Ganoderma lucidum such as ganoderic acids are 

supported by Zhang et al., which triterpernoids exhibit nerve growth factor or brain-derived 

neurotrophic factor activities in vitro, which has the therapeutic potential in 

neurodegenerative diseases (133). The therapeutic actions of the herbs from the subclass are 

described to have effects on central nervous system (87). In conclusion, the MOAs of the 

compounds for three subclasses in cluster X can be suggested from their top three enriched 

targets.  

 

2.3.2.2 Clusters with three therapeutic action (sub-)classes (Cluster VII) 

Cluster VII is one of the clusters that consists of three therapeutic action subclasses, with two 

subclasses, “Hemostatic, stasis resolving” (Hemo-stasis) and “Tonifying and replenishing, 

blood” (TR-blood) that shows a highly similar bioactivity space. The third subclass is  “Heat-

clearing, blood cooling” (HC-blood cool). Overall, the top three enriched targets in the cluster 

can be classified into immunomodulation which are PTPN2 (118), protein kinase C beta type 

(PKC-β) (134), protein kinase C eta type (PKC-η) (135) and protein kinase C gamma type 

(PKC-γ) (136),cancer, namely TOPO1 (121), and glucose homeostasis such as SGLT2 (120). 

The top three enriched targets in “Hemostatic, stasis resolving” (Hemo-stasis) and  
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“Tonifying and replenishing, blood” (TR-blood) are PTPN2 (ES=0, AR=0.0089), PKC-η 

(ES=0, AR=0.0182), PKC-γ (ES=0, AR=0.0209) and PTPN2 (ES=0, AR=0.0140), PKC-β 

(ES=0, AR=0.0230) and PKC-ε (ES=0, AR=0.0240), which all of them is implicated in 

immunomodulation. In the “Hemostatic, stasis resolving” (Hemo-stasis) subclass, compounds 

such as ginsenosides and notoginsennosides of Panax notoginseng were predicted to 

modulate all top three enriched targets. The target prediction also showed that anthraquinone 

compounds from Rubia cordifolia such as purpurin, ruberythric acid and soranjidiol modulate 

PKC-β and PKC-ε. In support of the target prediction of anthraquinone compounds of the 

second herb, a study reported the herb’s ethanol extract shows wound healing activities in 

mice, which from histological evaluations indicate a marked infiltration of the inflammatory 

cells, increasing blood vessel formation and enhancing cells proliferation (137). This finding 

agrees with the description of the subclass of which is to stop bleeding with a stabbing pain at 

a fixed location (87). 

In the “Tonifying and replenishing, blood” (TR-blood) subclass, compounds from 

Paeonia lactiflora such as albiflorin, gallotannin, and casuarictin were predicted to modulate 

PKC-β and PKC-η. PTPN2 and PKC-η were both frequently predicted to be modulated by 

compounds from Panax notoginseng such as notoginsenoside and ginsenoside. It is found the 

ginsenoside Rg1 of Panax notoginseng ameliorates liver damage and suppresses 

proinflammatory cytokines secretion in concanvalin A-induced hepatitis in mice (138). This 

subclasses is described to have pharmacological effects on the liver, heart, and spleen and 

prevent failures of the organs (87). The top three enriched targets for “Heat-clearing, blood 

cooling” (HC-blood cool) subclass are PKC-β  (ES=0, AR=0.0100), TOPO1 (ES=0, 

AR=0.0123) and SGLT2 (ES=0, AR=0.0137). In this subclass, compounds from Paeonia 

lactiflora such as albiflorin, isopaenoflorin, and benzoylpaenoflorin were predicted to 

modulate both PKC-β  and TOPO1, while SGLT2 was predicted to be modulated by 

compounds from Rehmannia glutinosa such as rehmanionoside A and B. We found that the 

target prediction of SGLT2 is supported by a study on stachyose extract from Rehmania 

glutinosa, which shows a significant hypoglycaemic effect in diabetic mice (139). TCM views 

the action of the subclass is to promote the generation of body fluids from excessive heat (87, 

126) which the consumption of body fluid is one of the symptom in diabetes (140) and cancer 

patients (141). Altogether, in many instances, the MOAs of the compounds can be explained 

from the enriched targets and can also be linked to the indications of the (sub-)classes. 

 

2.3.2.3 Cluster with one therapeutic action (sub-)class (Cluster XII)  
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One out of five clusters, which has only one therapeutic action class is cluster XII, “Parasite 

destroying, dampness eliminating and itchiness relieving” (Parasite). The top three enriched 

targets are dihydrofolate reductase (DHFR), which plays a role in bacterial infection and 

cancer (142) (ES=0, AR= 0.0532), DNA-dependent protein kinase catalytic subunit (DNA-

PKcs), which is implicated in cancer (143) (ES=0, AR=0.0644) and tumour necrosis factor 

(TNF), which is found to exert activities in cancer, inflammation, and bacterial infection (144, 

145) (ES=0, AR=0.0687). From the target prediction compounds from Allium sativum were 

predicted to modulate DHFR, such as allicin, allilthiamine, and allyl disulphide. This 

prediction agrees with a study by Adetumbi et al., from which the extract of Allium sativum is 

found to inhibit the synthesis of proteins, nucleic acids, and lipids in Candida albicans where 

the major component of the herb was allicin (146). The finding relates to the phenotypes of 

the subclass, which is to kill and expel parasites and subsequently relieve pain (87, 126). In 

brief, the MOAs of the class can be linked to the enriched targets and the indications of the 

subclass. Table 2.2 summarises the top three enriched targets of the therapeutic action (sub-

)classes. 

The above analysis can be summarised into two different views namely biological space and 

chemical space. From the biological space’s view, many of the top three enriched targets, 

regardless of therapeutic action (sub-)classes in any of the clusters, are implicated in 

immunomodulation such as PTPN2, PKCs, FKBP1A and STS, which PTPN2 and PKCs of 

which were frequently predicted. Both PKC family and PTPN2 are implicated in 

immunomodulation. The frequency of immune-related targets can be related when TCM 

influences the immune system regulation by either promoting or suppressing the immune 

factors (147). The PKC isoenzymes act as important mediators in immune cellular signalling 

in T- and B-lymphocytes in acquired immune system (148). PTPN2 also plays a major role in 

the transmission of immune cell signalling events (118). From the chemical space’s view, 

triterpenoid is the most frequent phytochemical (Table 2.3), which was predicted to modulate 

some of the top three enriched target, such as TOPO1, PTPN2, and PKCs. The compounds 

are found in different herbs such as Acanthopanax gracilistylus, Glycyrrhiza glabra, 

Platycodon grandiflorum, Ganoderma lucidum and Panax notoginseng. To validate the result 

from the chemogenomic principle that similar targets share similar compounds, a compound, 

CHEMBL 486881, from ChEMBL database (28) is most similar to acankoreoside A, with 

Tanimoto coefficient (TC) value of 0.56 (Table 2.4). Anti-proliferative activity against 

human HEK293 cells after 72 hrs by MTT conversion assay inhibition assay with reported 

IC50 = 0.23uM. Hence, the chemogenomics principle appears to stand (at least for 

acankoreoside A) because both compounds are implicated in cancer and structurally similar.  
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Table 2.2: The top three enriched targets in clusters VII, X, and XII. It can be seen that, in many cases, top three enriched targets are implicated in 

immunomodulation. The Estimation Score = 0, for all top three enriched targets. 

  

TCM Therapeutic Action 

Class 

TCM Therapeutic 

Action Subclass 
Top three enriched targets  

Target function reported 

by literatures 

Average 

Score 

Cluster X 

Wind-dampness dispelling 
Bone(sinew) 

strengthening 

DNA topoisomerase 1 cancer 0.0144 

Sodium/glucose cotransporter 1 glucose homeostasis 0.0342 

Steryl-sulfatase immunomodulation 0.0370 

Tonifying and replenishing Qi tonifying 

Tyrosine-protein phosphatase 

non-receptor type 2 immunomodulation 0.0174 

Sodium/glucose cotransporter 2 glucose homeostasis 0.0282 

Sodium/glucose cotransporter 1 glucose homeostasis 0.0321 

Cough suppressing and 

panting-calming 

Clearing and Heat phlegm 

resolving 

Tyrosine-protein phosphatase 

non-receptor type 2 immunomodulation 0.0112 

DNA topoisomerase 1 cancer 0.0236 

Testosterone 17-beta-

dehydrogenase 3 reproduction system 0.0341 

Tranquilizing 
Heat nourishing 

tranquilizing 

Peptidyl-prolyl cis-trans 

isomerase FKBP1A immunomodulation 0.0077 

Tyrosine-protein phosphatase 

non-receptor type 2 immunomodulation 0.0167 

Glutamate carboxypeptidase 2 CNS 0.0209 

Cluster 

VII 

Heat clearing medicinal 
Heat clearing and blood 

cooling 

Protein kinase C beta type immunomodulation 0.0100 

DNA topoisomerase 1 cancer 0.0123 

Sodium/glucose cotransporter 2 glucose homeostasis 0.0137 

Hemostatic medicinal 
Stasis-resolving 

hemostatic 

Tyrosine-protein phosphatase 

non-receptor type 2 

immunomodulation 0.0089 

Protein kinase C eta type immunomodulation 0.0182 

Protein kinase C gamma type immunomodulation 0.0209 

Tonifying and replenishing Blood tonifying 
Tyrosine-protein phosphatase 

non-receptor type 2 

immunomodulation 0.0140 
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Protein kinase C beta type immunomodulation 0.0230 

Protein kinase C eta type immunomodulation 0.0240 

Cluster 

XII 

Parasite destroying, 

dampness eliminating and 

itchiness relieving 

  

Dihydrofolate reductase cancer, bacterial infection 0.0532 

DNA-dependent protein kinase 

catalytic subunit 

cancer 0.0644 

Tumour necrosis factor cancer, bacterial infection 0.0687 
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Table 2.3: Compounds from Clusters VII, X, and XII, which were found to modulate the top three enriched targets of the therapeutic action classes 

from the respective clusters. The phytochemical, triterpenoids were frequently found in different herbs. The predicted targets were supported by 

published literature based on at least one of the herbs, suggesting that the other herbs that also contain the same compound could contribute to related 

therapeutic effects.  

Cluster X 

Therapeutic action (sub-

)class 

Herb Compound Predicted targets 

(based on the top 

three enriched 

targets) 

Literature Support 

“Wind-dampness 

dispelling, bone 

strengthening”  

(WD – bone) 

Acanthopanax 

gracilistylus 

Acankoreoside A 

 

 

TOPO1 

SGLT1 

The herb’s extract inhibited cell 

proliferation several types of 

cancer cells (124). 

Tonifying and 

replenishing, qi tonifying”  

(TR – qi) 

Glycyrrhiza 

glabra 

Glycyrrhiza 

uralensis 

Glycyrrhizin 

 

PTPN2 

 

An in vivo study that suggested 

the compound ameliorates all 

established chronic 

histopathologic changes of lung in 

the mouse model of asthma (130). 
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Cough suppressing and 

panting-calming, clearing 

and heat phlegm resolving 

(CSPC – heat) 

Platycodon 

grandiflorum 

Platycoside A 

 

PTPN2 

TOPO1 

17-beta-HSD 3 

No supporting literature. 

Tranquilizing, heart 

nourishing tranquilizing 

(Tranquil – heart) 

Ganoderma 

lucidum 

Ganoderic acid C1 

 

CGPII Triterpernoids of the herb 

exhibited nerve growth factor or 

brain-derived neurotrophic factor 

activities in vitro, which has the 

therapeutic potential in 

neurodegenerative diseases (133). 

Cluster VII 

Therapeutic action (sub-

)class 

Herb 

 

Compound Predicted targets 

(based on the top 

three enriched 

targets) 

Literature Support 

Hemostatic, stasis 

resolving 

(Hemo-stasis) 

Rubia cordifolia Purpurin 

 

 

 

 
 

 

PKC-β 

PKC-ε 

The ethanol extract showed 

wound healing activities in mice, 

which from histological 

evaluations indicated a marked 

infiltration of the inflammatory 

cells, increased blood vessel 

formation and enhanced 

proliferation of cells (137). 
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Tonifying and 

replenishing, blood 

(TR-blood) 

Panax 

notoginseng 

Ginsenoside Rg1 

 

PTPN2 

PKC-η 

The compound ameliorated liver 

damage and suppressed 

proinflammatory cytokines 

secretion in concanvalin A-

induced hepatitis in mice (138). 

“Heat-clearing, blood 

cooling” 

(HC-blood cool) 

Rehmania 

glutinosa 

Rehmannioside A 

 

SGLT2 The stachyose extract from the 

herb showed a significant 

hypoglycaemic effect in diabetic 

mice (139). 

Cluster XII 

Therapeutic action (sub-

)class 

Herb Compound Predicted targets 

(based on the top 

three enriched 

targets) 

Literature Support 

Parasite destroying, 

dampness eliminating and 

itchiness relieving 

(Parasite) 

Allium sativum Allicin 

 

DHFR The extract of Allium sativum was 

found to inhibit the synthesis of 

proteins, nucleic acids, and lipids 

in Candida albicans where the 

major component of the herb was 

allicin (146). 
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Table 2.4: Compound from ChEMBL database that is most similar to acankoreoside A (Table 2.3) and Its Activity Profile 

Reference compound Closest Similarity Reported Activity 

Profile 

Acankoreoside A 

 

 

CHEMBL 486881  

 

Anti-proliferative activity 

against human HEK293 

cells after 72 hrs by MTT 

conversion assay 

inhibition assay with 

reported IC50 = 0.23uM 

 

Tanimoto coefficient = 

0.56 
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2.3.3 Pathway analysis 

2.3.3.1 Clusters with four therapeutic action (sub-)classes (Cluster X) 

The top three enriched pathways in cluster X are mainly implicated in digestive system 

(carbohydrate digestion and absorption, bile secretion and mineral absorption). In this cluster, 

only one pathway, from the top three enriched pathways, is not classified in the digestive 

system, which is terpenoid backbone biosynthesis.   

 In the “Wind-dampness dispelling, bone strengthening” (WD – bone) subclass, the top 

three enriched pathways are mineral absorption (ES=0, AR=0.0342), carbohydrate digestion 

and absorption (ES=0, AR=0.1427) and bile secretion (ES=0, AR=0.2050). To link the 

mineral absorption pathway to the indication of the subclass, it has been reported that 

minerals such as calcium is an important mineral for bone remodelling to strengthen the bone 

(149). In the second pathway, carbohydrate digestion and absorption, is associated to the 

indication of the subclass, when a study shows that a lower rate of mesenchymal stem cells 

differentiated into osteoblasts when mice were fed with low carbohydrate - high fat (LC-HF) 

diets, which explains the observation of reduced bone formation (150). However, no study 

can be found to link bile secretion to the indication of the subclass. 

 “Tonifying and replenishing, qi tonifying” (TR – qi) subclass has mineral absorption 

(ES=0, AR=0.0321), carbohydrate digestion and absorption (ES=0, AR=0.1251) and bile 

secretion (ES=0, AR=0.2678) in the top three enriched pathways. Minerals play vital roles in 

maintaining the cell functions to optimise health and prevent diseases. The first enriched 

pathway, mineral absorption, the process of recycling iron in erythrocytes is seen in splenic 

macrophages in the red pulp (151) and agrees with the indication of the subclass which is qi 

tonifying related to the maintenance of blood flow within the vessels that is implicated 

directly from spleen’s activity (126) In the second pathway, no study can be found to link 

carbohydrate digestion and absorption to the indication of the subclass. Relating to the third 

enriched pathway, bile secretion, it has been reported that the major components of bile acid, 

chemodeoxycholic acid and glycochenodeoxycholic acid can induce cyclooxygenase-2 

expression and cell proliferation in esophageal squamous cells, suggesting that bile acids may 

contribute to the inflammation and mucosal thickening (152). Another paper demonstrates 

that bile acids may induce airway fibrosis through the production of TGF- β1 and fibroblast 

proliferation (153). These findings can be associated with the indication of the subclass, 

which is related to lung deficiency (87). 

 The top enriched pathways of “Cough suppressing and panting-calming, clearing and 

heat phlegm resolving” (CSPC – heat) subclass are minerals absorption (ES=0, AR=0.0380), 

carbohydrate digestion and absorption (ES=0, AR=0.1572) and bile secretion (ES=0, 
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AR=0.1958). Relating to the first enriched pathway, mineral absorption, the abnormal 

distribution of trace elements such as zinc, selenium and copper have been reported to 

aggravate oxidative damage and inflammation in the airways and subsequently decreased the 

lung’s function in asthmatic patient (154), in which an asthmatic condition is described as 

retention of heat phlegm in the lung (155). In the second enriched pathway, carbohydrate 

digestion and absorption, the ingestion of carbohydrate is reported to attenuate the migration 

of T lymphocytes to the bronchial epithelial cell line when it is infected with the common 

respiratory pathogen human rhinovirus during strenuous exercise (156). This effect agrees 

with the indication of the subclass which is to dissolve phlegm upon infection in the lung (87, 

126). However, no strong evidence can be found to link bile secretion to the indication of the 

subclass. 

 The “Tranquilizing, heart nourishing tranquilizing” (Tranquil – heart) subclass lists 

mineral absorption (ES=0, AR=0.0387), carbohydrate digestion and absorption (ES=0, 

AR=0.1163) and terpenoid backbone biosynthesis (ES=0, AR=0.2166). In the first enriched 

pathway, mineral absorption, it is reported that selenium plays an important role in the brain 

where its deficiency is implicated in senility and Alzheimer’s disease (157). In the third 

enriched pathway, terpenoid backbone biosynthesis includes mevalonate and non-mevalonate 

pathway. The mevalonate pathway is a pathway implicated in cholesterol biosynthesis in the 

brain and deficiencies in cholesterol metabolism can lead to diseases of the central central 

nervous system (CNS) diseases (158). Both findings agree with the indication of the subclass, 

which is the pharmacological effects are on the central nervous system (87). Although no 

strong evidence to support, the second enriched pathway, carbohydrate digestion and 

absorption, the two enriched pathways can be linked to the indication of the subclass. In short, 

in many instances, the top three enriched pathways can be associated to the indications of the 

(sub-)classes to explain their MOAs. 

 

2.3.3.2 Cluster with three therapeutic action (sub-)classes (Cluster VII) 

The top three enriched pathways in the cluster can be classified into digestive system 

(carbohydrate digestion and absorption, bile secretion and mineral absorption), cellular 

communication (tight junction) and membrane transport (ABC transporters). The top three 

enriched targets in “Hemostatic, stasis resolving” (Hemo-stasis) subclass are mineral 

absorption (ES=0, AR=0.0267), carbohydrate digestion and absorption (ES=0, AR=0.0987) 

and bile secretion (ES=0, AR=0.1872) and “Tonifying and replenishing, blood” (TR-blood) 

subclass lists mineral absorption (ES=0, AR=0.0329), carbohydrate digestion and absorption 

(ES=0, AR=0.1055) and tight junction (ES=0, AR=0.2053). In “Hemostatic, stasis resolving” 
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(Hemo-stasis) subclass, the mineral absorption pathway can be related to zinc deficiency, 

which has been reported to delay wound healing (159). In the bile secretion pathway, bile 

acids are implicated in platelet inhibition by solubilising the platelets, which patients with 

obstructive jaundice were exposed to abnormal hemostasis due to high level of bile acids 

(160). Both enriched pathways are related to the indication of the subclass, which is to 

achieve hemostasis (87) and no study can be found to associate carbohydrate digestion and 

absorption pathway to the indication of the subclass. In “Tonifying and replenishing, blood” 

(TR-blood), the first enriched pathway, mineral absorption, can be linked to the indication of 

the subclass which is to strengthen the heart that controls blood vessel (87), when selenium is 

reported to be protective against cardiovascular disease by contributing to the production of 

vasodilatory prostacyclin by the endothelium (157). No study can be found to support the link 

between the second pathway, carbohydrate digestion and absorption to the indication of the 

subclass. The third enriched pathway, tight junction, the presence of tight junctions in the bile 

epitheliums act as barriers from toxic diffusion from bile into hepatic interstitial tissue, which 

could impair the organ’s function(161). TCM enriched can be associated with the indication 

of the subclass, which is to strengthen the function of liver (87).  

 The top three enriched targets for “Heat-clearing, blood cooling” (HC-blood cool) 

subclass are mineral absorption (ES=0, AR=0.0276), carbohydrate digestion and absorption 

(ES=0, AR=0.0753) and ABC transporter (ES=0, AR=0.0769). The mineral absorption 

pathway can be linked to the subclass when a decreased in intracellular magnesium 

concentration is implicated in type 2 diabetes (162) and the disease, according to TCM, is 

described as the deficiency of body liquid due to heat syndrome (163). Similar to previous 

subclass, no study can be found to link the second enriched pathway, the carbohydrate 

digestion and absorption, to the indication of the subclass. In the third pathway, ABC 

transporter, it is reported that the high expression of ABCG5 and ABG8 in 

hypercholesteromic condition of the heart is involved in cardiovascular protection by 

lowering plasma cholesterol level (164). The pathway can be linked to the indication of the 

subclass when the herbs are described to act on liver and heart (87). All in all, in many cases, 

the top three enriched pathways can be linked to the indications of the subclasses to explain 

their MOAs. 

 

2.3.3.3 Cluster with one therapeutic action (sub-)classes (Cluster XII)  

In the “Parasite destroying, dampness eliminating and itchiness relieving” (Parasite) class, the 

top three enriched pathways are steroid biosynthesis (ES=0, AR=0.2530), 

glycerophospholipid metabolism (ES=0, AR=0.2941) and collecting duct acid secretion 
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(ES=0, AR=0.3420). Both of the first two pathways, steroid biosynthesis and 

glycerophospholipid metabolism are part of lipid metabolism, and many reports have 

suggested their link to immune response. For instance,  steroid biosynthesis is down-regulated 

by interferon type I upon viral infection (165) and the chlamydia exploits the nutrient-rich 

host cell cytosol by trafficking the glycerophospholipid from the host cell for survival (166). 

In relation to the collecting duct acid secretion pathway, bacterial infection in the kidney is 

reported to affect the collecting duct acid secretion because the presence of 

lipopolysaccharide (LPS) of the bacteria inhibits the HCO3
− absorption (167). These pathways 

agree with the functions of the subclass, which is to kill and expel parasites (87, 126). 

Altogether, the top enriched pathways can be linked to the indication of the class to explain 

the MOAs. Table 2.5 summarises the top three enriched pathways of the therapeutic action 

(sub-)classes. 

The above analysis can be summarised into three observations as follows. First, a type 

therapeutic action (sub-)class is implicated in different enriched pathways and each pathway 

is involved in a different disease. Second, more than one therapeutic action (sub-)classes are 

implicated in a pathway that is involved in multiple diseases. Third, more than one therapeutic 

action (sub-)classes are implicated in different pathways but involved in only one type of a 

disease. The first observation is indicated, in many cases, by the (sub-)classes in any of the 

three clusters such as bile secretion and mineral absorption in “Tonifying and replenishing” 

(TR-qi). The top three enriched pathways in a therapeutic action (sub-)class are implicated in 

different pathways and diseases. The modulation of one pathway to a disease could provide a 

better insight on the (sub-)class MOA in the biological system. In the second observation, the 

mineral absorption in cluster VII and cluster X and carbohydrate digestion and absorption in 

cluster VII are implicated in various types of diseases. The redundancy of a pathway in the 

pathogenesis of various diseases implies that a pathway could serve multiple purposes; for 

instance, the mitogen-activated protein kinase (MAPK) signalling pathway was implicated in 

inflammation, cancer, cardiovascular dysfunction and Alzheimer’s disease (168). The third 

observation shows that different pathways from different therapeutic action subclasses in a 

cluster, are implicated in a type of physiological function, such as the ABC transporter and 

mineral absorption from “Heat-clearing, blood cooling” (HC-blood cool) and “Tonifying and 

replenishing, blood” (TR-blood) respectively is implicated in physiological function of the 

heart. The different pathways for a particular physiological function explain that a pathway 

does not function alone in the manifestation of a disease but through the interactions of 

multiple pathways (169), which account for the different clinical symptoms. To put it briefly, 

the pathways annotation is not only beneficial to suggest the MOAs of the (sub-)classes based 
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on their indications, but also show that one pathway could have manifold functions and 

multiple pathways contribute to the pathogenesis of a disease. From the TCM perspective, it 

is suggested that the involvement of multiple pathways in the pathogenesis of a disease 

explains the complex TCM formulation, which consist of a set of herbs from various 

therapeutic action (sub-)classes. 
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Table 2.5: The top three enriched pathways in clusters VII, X, XII. It can be seen that, in many cases, similar pathways appear in the top three enriched 

targets regardless of clusters and subclasses. The Estimation Score = 0, for all top three enriched pathways.  

 

  
TCM Therapeutic Action Class TCM Therapeutic Action Subclass Top three enriched pathways  

Average 

Score 

Cluster X 

Wind-dampness dispelling Bone (sinew) strengthening 
hsa04978  Mineral absorption 0.0342 

hsa04973  Carbohydrate digestion and absorption 0.1427 

hsa04976  Bile secretion 0.2050 

Tonifying and replenishing Qi tonifying 
hsa04978  Mineral absorption 0.0321 

hsa04973  Carbohydrate digestion and absorption 0.1251 

hsa04976  Bile secretion 0.2678 

Cough suppressing and panting-

calming 
Clearing and Heat phlegm resolving 

hsa04978  Mineral absorption 0.0380 

hsa04973  Carbohydrate digestion and absorption 0.1572 

hsa04976  Bile secretion 0.1958 

Tranquilizing Heat nourishing tranquilizing 
hsa04978  Mineral absorption 0.0387 

hsa04973  Carbohydrate digestion and absorption 0.1163 

hsa00900  Terpenoid backbone biosynthesis 0.2166 

Cluster VII 

Heat clearing medicinal Heat clearing and blood cooling 
hsa04978  Mineral absorption 0.0276 

hsa04973  Carbohydrate digestion and absorption 0.0753 

hsa02010  ABC transporters 0.0769 

Hemostatic medicinal Stasis-resolving hemostatic 
hsa04978  Mineral absorption 0.0267 

hsa04973  Carbohydrate digestion and absorption 0.0987 

hsa04976  Bile secretion 0.1872 

Tonifying and replenishing Blood tonifying 
hsa04978  Mineral absorption 0.0329 

hsa04973  Carbohydrate digestion and absorption 0.1055 

hsa04530  Tight junction 0.2053 

Cluster XII 

Parasite destroying, dampness 

eliminating and itchiness 

relieving 
  

hsa00100  Steroid biosynthesis 0.253 

hsa00564  Glycerophospholipid metabolism 0.294 

hsa04966  Collecting duct acid secretion 0.342 
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2.3.4 Comparison of bioactivity spaces of clusters  

In this part of study, the aim was to investigate the differences of bioactivity spaces among all 

clusters by classifying all the enriched targets in the cluster to their respective protein 

families. The 181 enriched targets were classified into 59 protein families. Out of 59 protein 

families, five protein families were frequently annotated in all clusters, which are GPCR, 

protein kinase, NHR, carbonic anhydrase and cytochrome P450. The heatmap in Figure 2.4 

compares the five major protein families that were annotated based on the enriched targets in 

each cluster. The more saturated colour represents the more significant the protein family 

across all clusters. The numbers of protein families in the clusters were normalised because 

the distribution of enriched targets were not consistent due to numbers of therapeutic action 

(sub-)classes per cluster were different.  

What can be seen from the graph is that GPCRs and protein kinases are the most 

highly clustered protein families in almost all clusters. The results were expected as both of 

the families are the two most largest protein families that are involved in many physiological 

processes (170, 171), thus, explaining why these two protein families were observed to be 

significant in many of the clusters. In addition, the diversity of the compounds in the (sub-) 

classes also contributed to the prediction of enriched targets from these protein families. At 

least four protein families were significant across all clusters, except for cluster VII and X in 

cytochrome P450. The number of enriched targets in the cluster was amongst the lowest 

across all clusters, cytochrome P450 were less classified. NHRs were found to be annotated in 

all clusters and the frequent predictions of the nuclear hormone receptor family can be 

explained by the presence of naturally occurring steroids in natural compounds (172). For the 

remaining two major protein families, the cytochrome P450 family was also expected to be 

modulated by most of the subclasses because this protein family plays an important role in the 

degradation of structurally rather diverse exogenous compounds (173). The carbonic 

anhydrase family, which is an ubiquitous enzyme, involved in the inter-conversion between 

carbon dioxide and the bicarbonate ion that is important for many physiological processes 

(174). All in all, five major protein families were observed to occur frequently in most of the 

clusters and were heavily implicated in the biological processes such as cell regulation, 

sensory system and steroid metabolism. This analysis has allowed the discovery of the 

bioactivity space connection between subclasses in TCM based on the sets of enriched targets 

from our in silico target prediction. The TCM compounds of a significant cluster for a 

particular protein family can be further explored in finding new molecular entities for a 

disease related to the protein family. 
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Figure 2.4: The heatmap compares the five major protein families that were annotated based 

on the enriched targets in each cluster, which were normalized. The more saturated colour 

across clusters represents the more significant the protein family. GPCR and protein kinase 

are observed to be significant protein families in almost all clusters. It appears that all the 

protein families are heavily implicated in the biological processes such as cell regulation, 

sensory system and steroid metabolism. The TCM compounds of significant cluster for a 

particular protein family can be suggested to be further explored for finding new molecular 

entities. 
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2.3.5 Comparison of pathway annotation of clusters  

In this part of the study, we aimed to investigate the differences in pathway motifs among all 

clusters by classifying the enriched pathways according to KEGG ortholog. The 99 enriched 

pathways were classified to 33 pathway motifs, which were almost half the number of total 

pathway motifs available in KEGG. The major pathway motifs from the classification were 

infectious diseases, digestive system, immune system, signal transduction, lipid metabolism, 

cancer and cellular community. The heatmap in Figure 2.5 compares the seven major 

pathway motifs that were annotated based on the enriched pathways in each cluster. The more 

saturated colour across clusters represents the more significant the pathway motif. The 

numbers of pathway motifs in the clusters were normalised due to the differences in numbers 

of the pathways that were enriched among all (sub-)classes 

Figure 2.5, it is seen that that the digestive system is consistently classified in all 

clusters, which in many cases, the plots’ colour are more saturated compare to other pathway 

motifs. The digestive system includes the digestion and absorption of macro- and 

micronutrients and shows that the majority of the enriched pathways are bile secretion, 

pancreatic secretion and gastric acid secretion. The bile secretion controls the cholesterol 

homeostasis by routing the elimination of cholesterol, in addition to harmful exogenous 

lipophilic substance (175). In addition to the digestive system, infectious diseases, signal 

transduction, and lipid metabolism are significant pathway motifs in many of the clusters. The 

significance of infectious diseases can be deduced from frequently predicted 

immunomodulatory targets as the pathogenic factors are described to attack weakened 

immune system (176). The signal transduction pathway motif can be deduced from the 

classification of one of the major protein families, GPCR which translates the extracellular 

signals for the downstream effectors that produce a physiological response in a target cell 

(177). Many Chinese medicines have been reported to have lipid regulating effects by 

influencing the intestinal lipid absorption and lipid metabolism, to name a few (178). Also, 

one of the highly observed enriched pathways in the lipid metabolism pathway motif was 

steroid hormone biosynthesis, in which the cytochrome P450 protein family is involved in 

(179). It also appears that a few of the pathway motifs are insignificant for some clusters such 

as the immune system for cluster II and the excretory system in cluster XIV, which resulted 

from a low number of compounds influencing the target prediction and pathway annotation. 

The list of compounds that were annotated for the Chinese medicines in the subclasses might 

be incomplete in order to influence the classification of the immune system as well as the 

remaining missing pathway motifs. In addition, only enriched pathways were used in the 

classification. In a similar manner, for the major protein families, the compounds from 
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significant clusters for the major pathway motifs can be further explored for types of diseases 

that are well known to be implicated such as the digestive system, which is well known to be 

in involved in liver disease. 

Altogether, this analysis has allowed the discovery of major pathway motifs in all 

clusters. Despite having the different therapeutic action (sub-)classes in a cluster, in many 

cases, all the clusters can be classified of having the seven major pathway motifs. The 

classification of the major pathway motifs was associated with the major protein families 

analysed in the previous section. 

 

 

Figure 2.5: The heatmap compares the seven major pathway motifs that were annotated based 

on the number of enriched pathways in each cluster, which were normalized. The more 

saturated colour across clusters represents the more significant pathway motifs. The 

significant cluster for a particular pathway can be further explored for a disease with the 

known pathway motif such as digestive system in liver disease. 
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2.4 Conclusion 

The global mapping of relationships between TCM therapeutic action classes and subclasses, 

based on their predicted targets and annotated pathways, provides a novel approach to 

understand the MOAs of TCM formulations. The dendrogram, which was generated based on 

the in silico target prediction of TCM therapeutic action (sub-)classes compounds, has 

enabled the visualisation of their bioactivity space. In the first part of the study, it was to 

rationalise the link between the top three enriched targets/pathways to the description of the 

respective therapeutic action (sub-)classes with supporting literature. Overall, the most 

frequent top three enriched targets were immune-related targets such as tyrosine-protein PTPN2 

and PKC-family, while the most frequent enriched pathway was related to the digestive system 

such as mineral absorption and bile secretion. In TCM, symptoms are usually regarded as the 

invasion of pathogenic factors, thus sensitizing the immune system to response, and this 

might provide a mechanistic link between TCM and Western thinking. In the second part of 

the study, the annotation of the protein family in all clusters showed that the GPCR and protein 

kinase family were the two major protein families that contributed to the diversity of the 

bioactivity space. The highly annotated pathway motif indicated that the digestive system was 

consistently annotated, which agreed with the important treatment principle of TCM, “the 

foundation of acquired constitution” that includes spleen and stomach. With the global overview 

of the bioactivity space of the therapeutic action (sub-)classes, the similarity could be 

observed and the differences between them, which are not apparent from the name given to 

the (sub-)class itself. Hence, this analysis helps to reduce the gap between TCM and Western 

medicine. 
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Chapter 3:  
Exploring the Chemical Space and Bioactivity Space of Traditional Medicine from China, 

India and Malaysia for Treating Cancers 

 

 

3.1 Introduction 

Traditional medicines (TMs) from different geographical locations are often based on 

different ingredients and formulations; however, the diseases to be treated are in many cases 

related. In many TM practices, plants are usually the major resource but some animal parts 

and minerals are also frequently used. Each TM can use different types of plants (which is an 

aspect we will investigate further in the current work) to treat the same diseases such as 

infectious diseases (180), memory and cognitive function (181) and cancer (182). These 

different plants do not only have structurally different compounds but also similar 

compounds. These compounds, most of which exhibit pharmacological properties, are known 

as secondary metabolites. The distribution of similar compounds in different plants can be 

explained by two notions. First, the plants are closely related in the phylogenetic tree, thus, 

contributing to the distribution of similar compounds (183). The relationship between 

phylogeny and shared phytochemistry has been reported before (184, 185); it is described as 

the characteristics of the plants’ taxa despite being found in different regions. Second, the 

commonality, paradoxically, can also be explained by convergent evolution, where the 

production of secondary metabolites evolves independently in different plant phylogenetic 

lineages, in response to similar environmental challenges (186, 187). The occurrence of 

similar compounds from plants of unrelated taxa was found in a few studies (97, 188), which 

indicates the importance of a few types of secondary metabolites in plants defence 

mechanisms being exploited for medicinal purposes. Thus, it can be seen that structurally 

similar compounds can be found in either the same or unrelated niches of the phylogenetic 

tree of plants used to treat the same diseases. 

The variability of plants used in treating the same disease can also be attributed to 

different compounds modulating different related targets or different genetic background to 

respond to TM treatment. Knowledge of the therapeutic target may help uncover the MOA of 

TM compounds and how the genes contribute to the development of the disease. Hence, the 

common and differential MOAs of different TMs could be understood better by comparing 

their chemical and bioactivity spaces. Thus far, investigations to compare the bioactivity 

spaces of different TMs are still limited (180, 182), where both studies included different TMs 

only from within the same region. Unlike the bioactivity space, extensive studies have 

investigated the variability of the chemical space between TMs but in comparison to 
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combinatorial libraries (189, 190). Hence, previous comparison studies were either restricted 

to only chemical or target space, whereas we aim to compare them concurrently. 

To understand the relations between the likely MOAs of TMs, we used in silico target 

prediction. While previous studies have investigated links between TCM and Ayurveda and 

their putative targets on a large scale (47), in this work we explored the links between three 

TMs and their putative targets in cancer, which is one of the diseases treated by many TMs 

and where sufficient data for analysis is available. 

 Cancer was probably first defined by the physician Hippocrates (460–370 B.C) from 

a Greek word, karkinos, to describe carcinoma tumours (191). However, communities from 

different parts of the world had established their own philosophy of treatments to fight against 

cancer using TM long before the disease was defined. The three types of TM, namely 

Traditional Chinese Medicine (TCM), Ayurveda, and Malay TM, hold distinct views about 

cancer (Figure 3.1). According to TCM, cancer occurs when there is an imbalance between 

endogenous physical conditions, which is associated with the dysfunction of viscera and 

bowels, particularly the spleen and kidney deficiencies of the body and also the interference 

of exogenous pathogenic factors (141, 192). Cancer can be briefly concluded as the stagnation 

of toxin and heat, the obstruction of phlegm/dampness, Qi stagnation and blood stasis, and the 

imbalance of yin and yang in the viscera and bowels (192). On the other hand, Ayurveda 

believes that cancer is due to the disruption of aura that allows negative astral forces to enter 

the body (193). Cancer is described as inflammatory or non-inflammatory swelling which can 

either be a minor (Granthi) or major (Arbuda) neoplasm (194, 195). The swelling starts off 

when one or two of the three bodily systems, which are the nervous system (Vata or air), the 

venous system (Pitta or fire), and the arterial system (Kapha or water), which maintain the 

normal function of the body, are out of control in benign cancer and all of them become 

dysfunctional in malignant cancers due to clashes between Vata and Kapha forces resulting in 

morbidity (193, 194). In Malay TM, the physical characteristics of a person consist of four 

elements, which are fire (Suprawi), earth (Suddawi), wind (Dammawi) and water (Balpawi), 

by which a disease can be identified by recognizing the nature of the elements; damp, cold, 

hot and dry (196). Limited knowledge has been documented on how the Malay TM views 

cancer, but the symptom of cancer is described as a swelling that is due to the imbalance in 

the wind, which affects how the blood flows (197). Therefore, altogether, the above TMs 

agree that cancer is viewed as an obstruction in the normal body function, within the 

particular reference frame of each TM, which is described in modern medicine as the 

uncontrolled division of abnormal cells, that also will eventually disrupt the body function 

(191). 
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Figure 3.1: The comparison of the cancer definitions from TCM, Ayurveda, and Malay TM. 

In principle, each TM defines a healthy body through different elements. One of the elements 

is viewed to be disrupted when cancer develops. In TCM, the imbalance of yin and yang from 

spleen and kidney deficiencies are described as symptoms of cancer. Ayurveda believes that 

one of the three elements that holds a healthy body is disrupted in cancer. Similar in Malay 

TM, cancer happens when there is an imbalance of the wind element, which is a part of the 

four elements used to describe as state of a healthy body. 

 

This current study aims to undertake the analysis of predicted targets differently by 

comparatively exploring both chemical and target space of the three TMs, i.e. TCM, 

Ayurveda and Malay TM with respect to treating cancer. The chemical space of TM 

compounds was compared with anti-cancer drugs in addition to diversity analysis of different 

TMs by scaffold decomposition. TM compounds were predicted using an in silico target 

prediction algorithm and the bioactivity space between TMs was compared by analysing the 

relation between predicted targets and their annotated plants and the significant target class of 

a TM. A phylogenetic tree was also constructed to determine its influence in the comparison 

study. In the end, this study allowed us to better understand the relations between TMs in 

treating cancer by analysing their common and differential MOAs. 
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3.2 Materials and methods 

3.2.1 Compilation of traditional medicine datasets 

Three TM datasets were used for this study. The TCM (97) and Ayurveda (193, 194, 198) 

plants used for cancer treatments (cancer-related plants) were extracted from literature. All 

TCM compound structures were collected from the Traditional Chinese Medicine Systems 

Pharmacology Database Platform (TCMSP) database (32) by searching the plants’ scientific 

names. Out of 97 plants in (97), only 47 plants were found in the TCMSP. Due to limited 

Ayurveda databases available, the set of compounds of each Ayurveda plant was derived from 

the Dr. Duke's Phytochemical and Ethnobotanical Database (199) and the corresponding 

compound structures were downloaded from PubChem (110) using PubChem IDs as input in 

the PubChem Download Service. Where the structure was not available in PubChem (110), 

ChemSpider (25) or the Human Metabolome Data (HMDB) (200) were used as an alternative. 

The cancer-related plants and compound structures for Malay TM were derived from a 

commercial database, Natural Product Discovery System (NADI) (201). The cancer-related 

plants and their structures were compiled by using keywords “tumour” and “cancer” in the 

search engine of the database.  

In total, the numbers of cancer-related plants of TCM, Ayurveda, and Malay TM were 

47, 34, and 28 respectively. Due to identical plants being observed in the TMs, the set of 

compounds of those particular plants were revised so that the set of compounds of each plant 

was consistent. This was done by combining the set of compounds of the same plants 

followed by removing duplicate compounds. The final numbers of compounds were 2,292 

(TCM), 1,583 (Ayurveda) and 1,127 (Malay TM) (Table 3.1).  
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Table 3.1: The dataset of TCM, Ayurveda and Malay TM. It can be seen that the distribution 

of the compounds is variable. The order of the plants follows the order in the phylogenetic 

tree from right to left. 

 

Plant TCM Ayurveda 
Malay 

TM 

No of 

compounds 

Pteris multifida  16 
  

16 

Drynaria fortunei  50 
  

50 

Cedrus deodara  
 

6 
 

6 

Schisandra chinensis  66 
  

66 

Cinnamomum aromaticum  72 
  

72 

Magnolia officinalis  108 
  

108 

Annona squamosa  
 

41 
 

41 

Houttuynia cordata  27 
  

27 

Piper betle  
 

18 
 

18 

Piper nigrum  
  

35 35 

Aloe vera  
 

139 139 278 

Allium sativum  
 

163 163 326 

Imperata cylindrica  18 
  

18 

Cymbopogon citratus  
 

78 78 156 

Curcuma longa  89 89 89 267 

Kaempferia galanga  
  

2 2 

Alpinia officinarum  99 
  

99 

Zingiber montanum  
  

9 9 

Zingiber officinale  76 76 
 

152 

Aconitum kusnezoffii  9 
  

9 

Pulsatilla chinensis  27 
  

27 

Nigella sativa  
 

20 
 

20 

Paeonia suffruticosa  28 
  

28 

Portulaca oleracea  40 
  

40 

Persicaria orientalis  45 
  

45 

Polygonum aviculare  22 
  

22 

Polygonum cuspidatum  45 
  

45 

Vitis vinifera  
 

266 
 

266 

Terminalia arjuna  
 

42 
 

42 

Lawsonia inermis  
  

10 10 

Capparis spinosa  
 

39 
 

39 

Moringa oleifera  
 

35 35 70 

Raphanus sativus  
 

57 
 

57 

Isatis tinctoria  103 
  

103 

Anacardium occidentale  
 

19 
 

19 

Boswellia serrata  
 

22 
 

22 

Citrus aurantium  42 
  

42 

Zanthoxylum nitidum  41 
  

41 

Melia azedarach  
 

46 
 

46 

Azadirachta indica  
 

30 
 

30 

Eurycoma longifolia  
  

79 79 

Brucea javanica  9 
  

9 
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Samadera indica  
  

16 16 

Gynostemma pentaphyllum  47 
  

47 

Citrullus lanatus subsp. vulgaris  
  

15 15 

Momordica charantia  
  

47 47 

Trichosanthes kirilowii  50 
  

50 

Phyllanthus niruri  
 

6 6 12 

Ricinus communis  
 

50 
 

50 

Euphorbia hirta  
 

15 
 

15 

Garcinia atroviridis  
  

6 6 

Garcinia mangostana  
  

62 62 

Albizia lebbeck  
 

27 
 

27 

Senna tora  49 
 

49 98 

Senna alata  
  

4 4 

Astragalus complanatus  29 
  

29 

Spatholobus suberectus  48 
  

48 

Pisum sativum  
 

56 
 

56 

Abrus precatorius  
 

32 32 64 

Sophora tonkinensis  37 
  

37 

Sophora japonica  17 
  

17 

Cornus officinalis  140 
  

140 

Diospyros kaki  
  

28 28 

Centella asiatica  
 

38 38 76 

Angelica sinensis  90 
  

90 

Foeniculum vulgare  38 
  

38 

Elephantopus scaber  
 

24 24 48 

Carthamus tinctorius  121 
  

121 

Atractylodes lancea  23 
  

23 

Saussurea costus  
 

16 
 

16 

Gynura procumbens  
  

2 2 

Inula britannica  32 
  

32 

Eclipta prostrata  28 
  

28 

Centipeda minima  29 
  

29 

Artemisia argyi  106 
  

106 

Chrysanthemum x morifolium  50 
  

50 

Chrysanthemum indicum  19 
  

19 

Heliotropium indicum  
 

6 
 

6 

Cuscuta chinensis  19 
  

19 

Datura metel  
 

19 
 

19 

Physalis minima  
  

5 5 

Withania somnifera  
 

26 
 

26 

Calotropis gigantea  
 

16 
 

16 

Catharanthus roseus  
  

54 54 

Gardenia jasminoides  12 
  

12 

Rubia cordifolia  
 

12 
 

12 

Oldenlandia diffusa  22 
  

22 

Forsythia suspensa  86 
  

86 

Andrographis paniculata  
 

21 21 42 

Bacopa monnieri  
 

9 
 

9 
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Picrorhiza kurrooa  
 

11 
 

11 

Scutellaria baicalensis  43 
  

43 

Scutellaria barbata  69 
  

69 

Lycopus lucidus  11 
  

11 

Prunella vulgaris  45 
 

45 90 

Ocimum tenuiflorum  
 

13 
 

13 

Orthosiphon stamineus      34 34 

Total 2,292 1,583 1,127 5,002 
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3.2.2 A phylogenetic tree of anti-cancer plants 

The anti-cancer plants were converted into NCBI Taxonomy IDs and standardised scientific 

names by using the NCBI Taxonomy Database (202). The list of IDs was uploaded to the first 

web-based tool, Phylogenetic Tree Generator (phyloT) (203) to create an output file of 

phylogenetic tree in Newick format. The figure of the phylogenetic tree was generated by 

uploading the Newick file format to the second web-based tool, Interactive Tree Of Life 

(iTOL) v3.4 (204). A table of source(s) of the TM for each scientific name was created in a 

separate file to create a bar chart label at the end of each node of the phylogenetic tree.  

 

3.2.3 Structural similarities between TM compounds and anti-cancer drugs 

Both TM compounds and 151 anti–cancer drugs of DrugBank (30), in SMILES (simplified 

molecular-input line-entry system) format, were characterised as 2,048 bit of ECFP_4 circular 

Morgan-type fingerprints (Figure 3.2) using RDkit (205). The generation of ECFP_4 

fingerprints can be described in three steps (48). First, each heavy atom of a molecule is 

assigned with an identifier. Second, the features of each atom are described through two 

iterations that equal to four bonds diameter from the identifier. At iteration zero, the 

information only represents the initial atom identifier (atom 1). At iteration one, the 

information describes the immediate neighbours (atom 2) of atom 1. At iteration two, the 

information describes the immediate neighbours of atom1 and the immediate neighbours of 

atoms 2. The iteration step is repeated for all identifiers in a molecule. Third, duplicates of the 

same feature are removed by keeping only one representative of that particular feature. As a 

result, the fingerprint of a molecule contains sub-structural information from all parts of the 

molecule.  

 

Figure 3.2: The figure illustrates an example of how an ECFP4 fingerprint is generated for 

C1 of a molecule. Each iteration describes larger and larger circular neighbourhoods of C1 

atom. After two iterations, the description of C1 atom has grown further to include amide 

group, carboxylic group and as much of the aromatic ring. 
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After generating the ECFP_4 fingerprints, the pairwise similarity combinations were 

calculated using Tc. The conversion was done in a workflow built in KNIME v.2.10.4 (206). 

Only Tc values between TM compounds and anti-cancer drugs were extracted for analysis.  

 

3.2.4 Comparison of scaffold diversity 

The compound structures of the previously generated SMILES format were uploaded to 

DataWarrior v4.2.2 (207). The frameworks of the compounds were decomposed into Murcko 

scaffolds (208). Each type of scaffold was given a unique identifier for comparison purposes. 

To measure scaffold diversity, for each TM dataset, a ratio between the number of unique 

scaffolds and the total number of compounds was calculated. The ratios of the 

Order/Family/Genus to quantity unique scaffolds were measured to determine whether the 

scaffold diversity was influenced by the taxon. The distribution of scaffold diversity of each 

TM dataset was measured using cyclic systems retrieval (CSR) curves (209). This was done 

by plotting two types of fractions, fraction of scaffolds and fraction of database, from the 

most common scaffolds to the least common scaffold. The fraction of scaffolds was defined 

as the ratios of compounds to scaffold types, while the fraction of database was defined as the 

ratios of compound of the scaffold types to the total number of compounds. The diversity of a 

TM dataset was determined by the fraction of scaffolds accounting for 50% of the TM 

compounds, which is also known as F50 (209). 

 

3.2.5 Compounds pre-processing 

The compounds in SMILES format were uploaded to Standardizer (210) to standardise the 

compounds prior to in silico target prediction. Six pre-selected actions were specified in the 

configuration file; ‘Remove Fragment’, ‘Remove Explicit Hydrogens’, ‘Neutralize’, ‘Clean 

2D’, ‘Mesomerize’ and ‘Tautomerize’. The standardised TM compounds were saved in 

SMILES format.  

 

3.2.6 Target prediction 

The standardised compounds were run on an in silico target prediction algorithm that was 

modeled using the Random Forest (211). Briefly, the model contained a training set of active 

compounds extracted from ChEMBL v.21.0 (28) and inactive compounds extracted from the 

PubChem Compound and PubChem BioAssay databases (212). In total, the model contained 

5,888,615 ligand-target pairs of actives and inactive associate with 1,651 targets. The active 

training set were active compounds with reported activities (Ki/Kd/IC50/EC50) of lower than 10 

μM with a CONFIDENCE_SCORE of 5 or greater for ‘binding’ or ‘functional’ human 
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protein assays (28). The inactive training set were inactive compounds of assays submitted by 

researchers to PubChem Compound and PubChem BioAssay databases (28). The descriptor 

of a molecule was generated based on ECFP_4 circular Morgan-type fingerprints (48) with a 

2,048 bit length, hence stereochemistry of compounds was excluded. The algorithm calculates 

the probability of an orphan compound belonging to a target class by considering both 

chemical features of active and inactive compounds against target classes, giving a more 

holistic perspective of chemical features, which contribute towards or against bioactivity. 

To predict targets of TM compounds, the Random Forest (RF) classifier can be briefly 

described as follows. First, a Scikit-learn (Version 17) RF classifier of 100 trees, with the 

number of features and max depth set to ‘auto’ and the ‘class_weight’ set to ‘balanced’, was 

trained using the binary matrix of the active and inactive compound-target fingerprints on a 

per-target basis (213). Models generate a probability representing the number of trees in the 

forest that predict a target as active, represented as p(activity). Platt scaling (214), a 

calibration method in machine learning, is performed to convert the classification from the 

random forest into the probabilities of the prediction being correct, which is known as True 

Positive Rate (TPR). 

 

3.2.7 The TPR of predicted targets 

The TPR value was selected by assessing the distribution of fraction of targets predicted for 

each TPR interval of 0.1 between 0 and 1. A curve of the fraction of targets predicted TPR 

intervals was evaluated to define a TPR threshold of each TM (Figure 3.3). In general, the 

fraction of targets predicted decreases as the threshold value increases. A threshold value of 

0.7 was selected for all TM datasets because at least 60% of the targets in the model were 

predicted. The selected threshold value is a reasonable trade-off between false-negative 

predictions and number of predicted targets compares to larger threshold values. By using the 

selected TPR threshold, the target predictions algorithm was performed, which produced a 

binary matrix of predicted targets. 
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Figure 3.3: The curves of the fraction of targets predicted decreases when TPR values 

increases. A TPR threshold value of 0.7 was selected in this analysis because more than 60% 

of the targets were predicted. 

 

3.2.8 Annotating predicted targets as cancer-related targets  

The UniProt IDs of the predicted targets were mapped to their gene names in the Retrieve/ID 

mapping tab in UniProt (116). We found that three UniProt IDs, P47929, Q13748, and 

Q16637 were annotated with two gene names, while P62158 was annotated with three gene 

names. Only primary gene names defined by Uniprot (116) were used in the analysis. Two 

pairs of UniProt IDs, A2TJX0, Q13887 and P0DMS8, P33765 were synonyms. All the gene 

names were uploaded to Target Validation Platform (215) to annotate the gene names with 

cancer. By using the keyword ‘cancer’ in the search tab of the Target Validation Platform 

(215), a total of 28,019 genes associated with cancer was listed. The list was compared to the 

gene names of predicted targets.  

 

3.2.9 Heatmap with hierarchical clustering based on bioactivity space and target class  

Two heatmaps were generated in this study. The first heatmap compared the bioactivity space 

similarities of the TM plants, while the second heatmap compared the targets classes of TMs. 

Before constructing the heatmaps, the frequencies of compounds of per predicted target and 

the frequencies of predicted target per target class were normalised. The dissimilarity 

distances between the normalised frequencies of TM plants/target classes were calculated 

using ‘Euclidean’ method of the “dist” function. Clustering was performed using the Ward 

method of the “hclust” function, where two TM plants/target classes were merged if the sum 

of squared Euclidean distance was minimal. The heatmaps were generated using “heatmap” 

function. All the aforementioned functions were available in the stats package of R (114).  
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3.3 Results and Discussions 

3.3.1 Phylogenetic tree of anti-cancer plants  

In this study, a total of 97 anti-cancer plants were used to construct a phylogenetic tree 

(Figure 3.4) and each plant was annotated with its source of TM (TCM/Ayurveda/Malay 

TM). Altogether, nine identical plants were found in Ayurveda and Malay TM, two identical 

plants were observed between TCM and Malay TM, one identical plant was identified in 

TCM and Ayurveda and one plant was present in all three TMs. The distribution of the 

labelled TM plants is observed to be scattered along the phylogenetic tree and is not clustered 

according to the type of TM indicating that, in many cases, the plants from different TMs 

share common ancestors. In other words, TMs are, according to this analysis, intrinsically 

related to each other. Each terminal taxon is marked with filled circles that represent 

taxonomic ranks. For each plant, the rings around the filled circles represent superkingdom, 

kingdom, phylum, order, family and genus. These taxonomic ranks were consistently 

annotated. The remaining ranks that were annotated varied from class, subclass, subfamily, 

tribe, subtribe, subgenus, and subspecies. 

Figure 3.4 shows that all plants are rooted to phylum, Streptophyta. The TM plants 

were annotated with 27 orders, 48 families, and 90 genera, indicating that the most immediate 

evolutionary relationship of the plants is found at genus level. There are seven clades that 

share the same genus, Piper betle (Ayurveda) and Piper nigrum (Malay TM), Zingiber 

montanum (Malay TM) and Zingiber officinale (TCM and Ayurveda), Polygonum aviculare 

(TCM) and Polygonum cuspidatum (TCM), Garcinia atrovirdis (Malay TM) and Garcinia 

mangostana (Malay TM), Senna tora (TCM and Malay TM) and Senna alata (Malay TM), 

Sophora tonkinensis (TCM) and Sophora japonica (TCM), Chrysanthemum x morifolium 

(TCM) and Chrysanthemum indicum (TCM), and Scutellaria baicalensis (TCM) and 

Scutellaria barbata (TCM). For at least three pairs plants, the findings indicate that plants of 

different TMs with the same medicinal usage are evolutionary related. A similar observation 

was demonstrated by Saslis-Lagoudakis et. al (216). The study of the genus Pterocarpus that 

is geographically distributed in Neotropics, Tropical Africa and Indomalaya indicates the 

same ethnomedicinal uses of Pterocarpus plants, which have been largely used for gastro-

intestinal and skin illnesses. At a molecular level, the similar medicinal properties of plants of 

shared phylogeny was investigated by Lopez et. al (217). The screening of alkaloid extracts of 

26 wild plants belonging to the genus Narcissus L., for acetyl cholinesterase (AChE) 

inhibitory activity shows that the lowest IC50 values are expressed by those extracts 

containing galanthamine. 
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In general, the TM plants share different genera, which can be explained by 

convergent evolution (218). Independent evolution of the same trait is a result of unrelated 

plants in the phylogeny to adapt to similar environmental challenges. Hence, similar 

compounds of different TM plants might be responsible for the observed therapeutic effects. 

The screening of phytochemical constituents of different plants with overlapped medicinal 

uses could confirm the distribution of similar bioactive compounds. For example, the 

investigation of phytochemicals of ten medicinal plants of different families in the Mardan 

region of Pakistan shows that flavanoids are identified in six medicinal plants, which have 

been used traditionally for heart disease (219).  

Therefore, it was hypothesised that the common MOAs of TM plants for treating 

cancer would stem from similar compounds, and the phylogenetic distance between the plants 

could either be small or large. The phylogenetic tree of 97 TM plants was used to determine 

whether proximity in the phylogenetic tree resembled the similarity of chemical as well as 

cancer-related bioactivity space of the compounds of those plants. 
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Figure 3.4: The phylogenetic tree of 97 plants of three TCM, Ayurveda, and Malay TM. Each plant was labelled to its source(s). All plants were 

annotated (rings with filled circle) to the same superkingdom, kingdom and phylum (on the top right) with 27 orders, 47 families and 90 genera, 

implying diverse plants have been traditionally used for treating cancers. 
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3.3.2 Comparison of chemical space between TM compounds and anti-cancer drugs 

We next analysed the chemical space similarities between TM compounds and 151 anti-

cancer drugs from DrugBank (30). In this study, the Tc value of 0.3 was used to determine 

whether a TM compound is structurally similar to an anti-cancer drug, considering the 

previous report on the activity–relevant similarity of active compounds (220). Only 204 TM 

compounds (including identical compounds of different plants) were structurally similar to 28 

anti-cancer drugs. The list of 28 anti-cancer drugs and the similar TM compounds can be 

found in Table A3.1 (Appendices). 

The observation of Table A3.1 shows that the anti-cancer drugs can be classified into derived 

from natural products or resembling metabolites. Among the anti-cancer drugs in the first 

group are Abiraterone (DB05812), Cytarabine (DB00987), Ingenol Mebutate (DB05013), 

Vinblastine (DB00570), Vincristine (DB00541), Vindesine (DB00309) and Vinorelbine 

(DB00361) are derived from plants (Table 3.2), while the remaining anti-cancer drugs are 

derived from bacteria (221-224). Abiraterone (DB05812) is naturally derived from 

ketoconazole, an anti-fungal agent, which has caused serious side effects when the compound 

is given to prostate cancer patients (225, 226). Abiraterone has been used for castration 

resistant prostate cancer in men, in which the drug modulates CYP17, a catalysis enzyme for

the production of androgen, to inhibit the proliferation of prostate cancer cells (227). It was 

discovered that beta-sitosterol, which is structurally similar to Abiraterone (DB05812) (Tc = 

0.331), is widely distributed in 40 different plants (Table A3.1). Structurally, both beta-

sitosterol and Abiraterone contain steroid four-fused rings and differ in their side chains. 

Although beta-sitosterol is not developed into an anti-cancer drug, the compound has been 

studied extensively and showed to induce apoptosis in cancer cells in vitro (228). Cytarabine 

(DB000987) is inspired by a series of C-nucleoside-derived compounds isolated from the 

Caribbean sponge, Cryptotheca crypta, which is widely used for the treatment of leukaemia 

and lymphoma (229). Cytarabine shows structural similarities with guanosine (Tc=0.357) and 

adenosine (Tc=0.333) of Allium sativum (Ayurveda and Malay TM), adenosine (Tc=0.333) of 

Carthamus tinctorius (TCM), and uridine (Tc=0.420) of Isatis tinctorius (TCM). These TM 

compounds are also nucleosides. Ingenol Mebutate (DB05013), isolated from Euphorbia 

peplus, has been used for the treatment of skin cancer by inducing cellular necrosis (230). 

Table 3.2 shows that Ingenol-triacetate of Euphorbia hirta (Ayurveda) is structurally similar 

to Ingenol mebutate with a Tc value of 0.456. It has been reported that the methanol extract of 

Euphorbia hirta has been evaluated for cytotoxic activity with the most effective activity is 

the inhibition of HEp‐2 cell proliferation (231). All four drugs, Vinblastine (DB00570), 

Vincristine (DB00541), Vindesine (DB00309), and Vinorelbine (DB00361) are derived from 
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Catharanthus roseus (Malay TM) and two compounds of this plant (leurosidine and 

leurocristine) showed Tc values of 1.0 to Vinblastine and Vincristine. The MOA of 

Vinblastine has been reported by binding to tubulin and microtubules, which subsequently 

depolymerises the microtubules and destroys mitotic spindles to block mitosis of cancer cells 

(232). Among other TM compounds that are structurally similar to the four drugs is vindoline, 

which has been reported with cytotoxic activity against the human colorectal carcinoma cell 

line HCT 116 (233). In the second group, a few of the anti-cancer compounds resemble the 

naturally occurring compounds in the human body (guanosine, pehenylalanine, thymidne, 

uridine) such as Decitabine (DB01262), Clofarabine (DB00631) and Fluradabine (DB01073). 

These drugs act by interfering with cellular processes of naturally occurring nucleosides such 

as nucleic acid synthesis, cell signalling and enzyme metabolism (234). The summary of these 

seven anti-cancer drugs can be found in Table 3.2. Given that only seven anti-cancer drugs, 

which are derived from plants, are structurally similar to the TM compounds, the findings 

indicate the possibilities of finding more anti-cancer compounds from TM plants due to many 

unexplored compounds.  
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Table 3.2: The structurally similar TM compounds and anti cancer drugs. The complete list of TM compounds that are similar (Tc ≥ 0.3) to the anti-

cancer drugs can be found in Table 1S in Supporting Information. Only the compounds with the highest Tc value are shown here. 

 

*PID : PubChem ID 

No Anti-cancer drugs DrugBank 

ID 

TM compounds Plants Source of TM Tc 

value 

1 Abiraterone  

(PID 132971) 

 

DB05812 Bassicaterol  

(PID 5281327) 

 

Houttuynia cordata 

Moringa oleifera 

 

TCM 

Ayurveda, 

Malay TM 

0.339 

2 Cytarabine  

(PID 6253) 

 

DB00987 Uridine  

(PID 6029) 

 

Isatis tinctoria TCM 0.420 



 67 

3 Ingenol Mebutate 

(PID 6918670) 

 

DB05013 Ingenol-Triacetate 

(PID 65377) 

 

Euphorbia hirta Ayurveda 0.456 

4 Vinblastine  

(PID 13342) 

 

DB00570 Leurosidine (Vinrosidine)  

(PID 161115) 

 

Catharanthus roseus Malay TM 1.00 
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5 Vincristine  

(PID 5978) 

 
 

 

 

 

DB00541 Leurocristine  

(PID 5978) 

 
 

 

 

Catharanthus roseus Malay TM 1.00 

6 Vindesine 

(PID 40839) 

 
 

 

 

DB00309 Leurosidine (Vinrosidine) 

(PID 161115) 

 
 

 

 

Catharanthus roseus Malay TM 0.733 
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7 Vinorelbine 

(PID 5311497) 

 

DB00361 3’,4’-Anhydrovinblastine 

(PID 443324) 

 

Catharanthus roseus Malay TM 0.756 
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3.3.3 Molecular scaffold analysis  

The decomposition of the compounds’ frameworks based on Murcko scaffolds (208) 

produced 776 unique scaffolds, which represented 76.63% of the compounds, while the 

remaining compounds were identified as macrocyclic and acyclic compounds (23.37%). From 

776 scaffolds, the highest common scaffold, 14.18%, was between Ayurveda and Malay TM, 

owing to the same plants found in both TMs. The three TMs shared 13.40% common 

scaffolds. The common scaffolds of TCM-Ayurveda and TCM-Malay TM was 3.87% and 

3.22% respectively. Nevertheless, each TM comprised a set of distinct scaffolds, which was 

29.12%, 18.30%, and 17.91% for TCM, Ayurveda, and Malay TM respectively. The higher 

percentages of distinct scaffolds than common scaffolds imply that the TMs were diverse 

from each other.  

To compare the diversity of the three TM datasets, various ratio metrics (N/M, 

Nsing/N, and Nsing/M) (190) were calculated in Table 3.3. In general, the higher the ratio, 

the more diverse the dataset is. From this analysis Malay TM is highly diverse followed by 

Ayurveda and TCM. In addition to ratio metrics, cyclic systems retrieval (CSR) curves, which 

have been used previously to assess the distribution of compound in cyclic systems, were 

generated (Figure 3.5) (190, 209). The curves also show that Malay TM is the most diverse 

dataset followed by Ayurveda and TCM, with the F50 values of TCM, Ayurveda, and Malay 

TM are 0.018, 0.028, and 0.052. Despite having the largest set of compounds, TCM has the 

least diverse scaffolds, where 50% of the TCM compounds were decomposed into six types 

of scaffolds. At one-half of the datasets, Ayurveda and Malay TM,compounds were 

decomposed into eleven and twenty types of scaffolds respectively. 

The low scaffold diversity of the TCM dataset is not influenced by the phylogeny 

where the ratio of scaffold to order and scaffold to genus are the highest compared to those of 

Ayurveda and Malay TM. Many similar compounds of TCM belong to unrelated plants. On 

the contrary, the high scaffold diversity of the Malay TM data set is influenced by the 

phylogeny where the ratio of scaffold to order, scaffold to family and scaffold to genus were 

the lowest. The results can be seen in the phylogenetic tree, where, in many cases, Malay TM 

plants are closely clustered. In brief, the findings demonstrate that TCM agrees with the 

convergent evolution process whereas the diverse scaffolds observed in Malay TM can be 

explained by divergent evolution (186). 
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Table 3.3: Results of scaffolds diversity analysis. 

Database M N O F G N/M Nsing Nsing/N Nsing/M O/N F/N G/N 

TCM 2292 391 20 24 43 0.17 213 0.54 0.09 0.051 0.061 0.110 

Ayurveda 1583 392 19 28 36 0.25 236 0.60 0.15 0.048 0.071 0.092 

Malay TM 1127 383 16 19 26 0.34 252 0.66 0.22 0.042 0.050 0.068 

 
 

M=No of compound in database, N=No of unique scaffolds, O=No of Order taxon, F=No of Family taxon, G=No of Genus taxon,  

Nsing=No of singleton scaffolds 

 

 

Figure 3.5: The cyclic systems retrieval (CSR) curves indicate Malay TM has higher scaffold diversity than Ayurveda and TCM. At one-half of the 

dataset, the compounds of Malay TM were decomposed into 20 scaffold types compared to Ayurveda (eleven scaffold types) and TCM (seven scaffold 

types). 
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 To further analyse the prevalent scaffolds of TMs, we looked at the top ten most 

frequent scaffolds (Figure 3.6). Overall, six scaffolds were frequently present in all TMs, two 

scaffolds were frequently present in Ayurveda and Malay TM and one scaffold was 

frequently present in Ayurveda and TCM. No common scaffold was observed between TCM 

and Malay TM. Each TM showed three (TCM), two (Malay TM), one (Ayurveda) different 

scaffolds from each other. It was found that the benzene scaffold was the highest frequent 

scaffold identified across all TMs, which also has been commonly identified in other natural 

product databases (190). A few of these scaffolds are already explored scaffolds in drug 

discovery such as anthraquinone (235), coumarin (236), cyclohexene (237), flavone and 

isoflavone (238), sterol (239), pentacyclic tritepenes (240) and xanthone (241) with various or 

focused therapeutic activities. Regarding the cancer-related scaffolds anthraquinone, flavone, 

sterol and pentacyclic triterpenes are four frequent scaffolds in all TMs. 

Anthraquinone is a tricyclic planar ring system with various therapeutic properties (235). The 

reported MOA of anthraquinone derivatives is primarily by intercalating its aromatic structure 

with DNA between base pairs to possibly inhibit  DNA replication in cancer cells (235). The 

substitution patterns of the anthaquinone scaffold also contribute to the anti-cancer properties 

of the compounds (235). Flavone contains three-ring skeletons, and the MOAs of flavone 

derivatives are diverse. The functional groups of the scaffold makes it amenable to selective 

modulators for different targets (238). Phytosterol, which contains a tetracyclic lipid 

component, is implicated in cholesterol metabolism (239). One of the MOAs is by lowering 

blood cholesterol by incorporating less cholesterol in the lipid rafts of cancer cells, thus, 

promoting apoptosis through signal transduction (239). Pentacyclic triterpene is one of the 

widely spread secondary metabolites in plants with diverse biological properties. The MOAs 

of betulinic, ursolic, oleanolic and maslinic acids, a few of the representative compounds of 

the group, are implicated in cell apoptosis by activating either intrinsic (mitochondrial) or 

extrinsic (death receptor) apoptotic pathways (240). Xanthone, which is more frequently 

present in Malay TM, contains a three-membered heterocyclic ring. Similar to the 

anthraquinone, xanthone derivatives are also DNA-intercalating modulators (241). The 

stereochemistry of xanthonic derivatives is described to influence their MOAs (242). 

Coumarin, which is more frequently present in TCM, consists of a benzene ring joined with a 

pyrone ring. The MOAs of coumarin derivatives are diverse through the diverse substitution 

of the coumarin nucleus (236). Although cyclohexene is among the most frequently present 

scaffolds in all TMs, this scaffold is more known as an anti-influenza drug, Oseltamivir (243) 

than that anti-cancer scaffold. 
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To summarise, the most frequent scaffolds in the TMs, in many cases, are widely 

explored for their anti-cancer properties, where the MOAs can either stem from the core 

structure or functional group substitutions. The compounds are primarily reported to induce 

apoptosis of cancer cells. The remaining scaffolds in the top ten frequent scaffolds could be 

worth exploring for their anti-cancer activities, as they are found to abundance in anti-cancer 

plants. 
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TCM  Ayurveda  Malay TM  
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1.83% 
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2.71% 
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1.39% 
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1.15% 

 

1.48% 

 

1.14% 

 

0.98% 

 

1.27% 

 
 

1.14% 

 

0.98% 

Figure 3.6: The top ten most frequent scaffolds of TMs. Six scaffolds are frequent in all TMs, 

two scaffolds are frequent in Ayurveda and Malay TM and one scaffold is frequent in 

Ayurveda and TCM. No common scaffold is observed between TCM and Malay TM only. 

Each TM shows three (TCM), two (Malay TM), one (Ayurveda) different scaffolds that are 

more frequent in that TM than the remaining two TMs.   
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3.3.4 Comparison of bioactivity space of the plants  

We next performed the comparison of the bioactivity space. Out of 1,651 targets in the in 

silico target prediction model, 1,163 were predicted. All the predicted targets were annotated 

with cancers when compared to the list of associated cancer targets from a Target Validation 

Platform (215). The normalised frequency of predicted targets was used to generate a heatmap 

in Figure 3.7, which compares the bioactivity space of TM plants.  

Overall, the majority of TM plants show similarities of their bioactivity space but they 

are not phylogenetically related, except in a few cases. The similarities of the bioactivity 

space between TM plants with relation to their phylogeny can be observed in three clusters, I, 

II and III, which are labelled on the left dendrogram of the heatmap. The main difference of 

the three clusters is that the plants of Cluster I contain a higher number of compounds than 

plants in Cluster II and III, hence more similar predicted targets are observed between plants 

in Cluster I. Despite the parse distribution of compounds in TM plants, the heatmap shows 

that the similar bioactivity space between eight pairs of plants could be linked to their 

phylogeny either at the order, family or genus taxonomic rank in all three clusters. The top 

three frequently annotated protein families of shared predicted targets are selected to describe 

the observation. In cluster I, two pairs of plants are shown with similar bioactivity space. The 

first pair, Alpinia officinarum (TCM) and Zingiber officinale (Ayurveda and Malay TM) share 

the same family (Zingiberaceae) and order (Zingiberales). The second pair, Alium sativum 

(Ayurveda and Malay TM) and Aloe vera (Ayurveda and Malay TM) are members of the 

same order, Asparagales. The percentages of identical predicted targets are 67.54% and 

77.53% in both pairs respectively. The compounds of those four plants were predicted to 

modulate targets of all protein families, and the top five frequent target classes are kinase, 

oxireductase, ion channel, GPCR and hydrolase.  

In the Cluster II, three pairs of plants are identified to share similar bioactivity space, 

namely, Spatholobus suberectus (TCM) and Sophora tonkinensis (TCM), and Eclipta 

prostrate (TCM) and Chrysanthemum x morifolium (TCM) are members of the family, 

Fabaceae and Asteraceae, and the order, Fabales and Asterales, respectively. The third pair of 

the plants, Scutellaria barbata (TCM) and Scutellaria baicalensis (TCM), is phylogenetically 

related at the genus level, Scutellaria. The percentages of overlapped bioactivity space for 

each pair of the plants are 73.29%, 72.05% and 70.56% respectively. The family Fabaceae 

and Asteraceae share bioactivity spaces that are frequently annotated to kinase, 

oxidoreductase, ion channel, GPCR and transferase. The pair of genus Scutellaria plants was 

also frequently annotated with the same target classes as previous pairs except the fifth target 

class was hydrolase. 
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In Cluster III, three pairs of plants are phylogenetically related at the family and order 

level. The first pair, Ocimum tenuiflorum (Ayurveda) and Lycopus lucidus (TCM) share the 

same family (Lamiaceae) and order (Lamiales). The top five target classes of the overlapped 

predicted targets between these plants are kinase, hydrolase, oxireductase, nuclear hormone 

receptor (NHR) and GPCR. The final two pairs of plants of this cluster are only 

phylogenetically related at the order level. The first pair, Phyllanthus niruri (Ayurveda and 

Malay TM) and Garcinia atroviridis (Malay TM) are members of the order Malpighiales. The 

second pair, Picrorhiza kurrooa (Ayurveda) and Orthosiphon stamineus (Malay TM) belongs 

to the order, Lamiales. Both plants of the order, Malpighiales and Lamiales were predicted to 

modulate targets that are frequently annotated to oxireductase, kinase, transferase, lyase, and 

hydrolase. The percentages of identical predicted targets are 66.10%, 41.20% and 42.90% for 

the first, second and third pair.  

 Out of eight pairs of plants with similar bioactivity space and phylogenetically 

related, only one pair of plants, Scutellaria barbata (TCM) and Scutellaria baicalensis (TCM) 

is related at genus level. The genus Scutellaria is widely studied for various medicinal 

properties, and phenols and terpenes have been demonstrated with anti-cancer properties 

(244). Five pairs of plants belong to the same source of TM except for Alpinia officinarum 

(TCM) and Zingiber officinale (Ayurveda and Malay TM), Ocimum tenuiflorum (Ayurveda) 

and Lycopus lucidus (TCM) and Picrorhiza kurrooa (Ayurveda) and Orthosiphon stamineus 

(Malay TM). Out of the five pairs of plants, three of them, from Cluster II, belong to TCM, 

which could contribute to the low scaffold diversity of the TCM dataset found in the previous 

section. The annotation of the target classes demonstrates that kinase and oxireductase are the 

two most frequent annotated target classes in all eight pairs of plants. In conclusion, 

generally, TM plants agree with the convergent evolution process, where these plants share 

common MOAs, except in a few cases, where the common MOA can be described from their 

relations in the phylogeny. 
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Figure 3.7: The heatmap compares the bioactivity space of the TM plants based on the 

normalised numbers of compounds modulating the predicted targets. In general, a large 

number of TM plants share similar bioactivity space although they are not phylogenetically 

related. Only eight pairs of plants are shown to be phylogenetically related when compared to 

Figure 3.2. These observations can be described by dividing the heatmap into three clusters, 

Cluster I, II, and III, which for each cluster, at least two pairs of plants (blue box) are 

phylogenetically related and share similar bioactivity space. The evolutionary relationship of 

these plants can either be from the genus, family or order taxonomic rank. 
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3.3.5 Comparison of targets classes of traditional medicines 

In this part of study, the aim was to determine the significant target classes of TMs by 

classifying the predicted targets to their respective target classes. The 1,163 predicted targets 

were annotated to 14 target classes and one type of target class, ‘Other’, of which the target 

class of the remaining targets were not classified. The heatmap in Figure 3.8 compares the 14 

target classes between the TMs. The more saturated colour across the TMs the more 

significant the target class. The number of the target classes in the TMs was normalised due to 

the differences in numbers of the predicted targets per TM. What can be seen from the 

heatmap is that all TMs exhibit kinase as the most significant target class. Kinase, which is 

one of the largest target classes plays many key roles in cellular functions such as signal 

transduction, cell cycle regulation, cell division, and cell differentiation, which genetic 

alterations can often lead to cancer (245). Per target class, the results showed that only three 

target classes, hydrolase, phosphatase and transporter, were more significant in TCM. Four 

target classes were discovered to be more significant in Ayurveda, which are GPCR, ion 

channel, oxireductase, and protease. Six target classes, isomerase, ligase, lipase, lyase, NHR 

and transferase, were identified to be more significant in Malay TM. The observations imply 

that the TMs use could exert diverse MOAs by modulating various target classes, which can 

explain the holistic approach of the TMs. 

In TCM, among the three significant target classes, hydrolase is the most frequently 

annotated. The frequently predicted targets of hydrolase are histone deacetylases (HDACs) 

(246). HDAC is involved in the regulation of gene expression of cell proliferation, cell cycle 

regulation and apoptosis, which mutations of HDAC could lead to cancer (247). It is observed 

that GPCR is the most frequent annotated target class in Ayurveda. The most frequent 

predicted targets of GPCR are serotonin receptors (5-hydroxytryptamine). Serotonin receptor 

is implicated in cancer by acting as a growth factor on several types of tumour (248). In 

relating to Malay TM, transferase is the most frequent annotated target class, which is 

frequently annotated to DNA polymerases. DNA polymerase, an enzyme that synthesises 

DNA, is generally involved in cancer pathogenesis when DNA strand breaks are not 

prohibited for DNA replication as the function of p53 is loss (249). The difference in target 

classes suggests that TMs could exhibit differential MOAs for treating cancers. 
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Figure 3.8: The heat map compares the 14 target classes of the TMs based on the normalised 

numbers of predicted targets. Kinase is observed to be the most significant target class in all 

TMs. Three, four and six target classes are observed to be more significant in TCM, Ayurveda 

and Malay TM. The findings indicate that the TMs could exhibit different MOAs for treating 

cancers. 
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3.4 Conclusion 

TCM, Ayurveda and Malay TM are practiced in different geographical locations but all three 

TMs have been reported for treating cancers. Given the increasing amount of chemical 

information available, this study compared both the chemical and bioactivity space that are 

utilized by such medicines. The phylogenetic tree of 97 TM plants was used to determine 

whether proximity in the tree resembled the similarity of chemical and bioactivity space. It 

was found that in these plants were members of 27 orders, 48 families, and 90 genera 

indicating convergent evolution, where the plants experience similar environmental 

challenges to result similar anti-cancer properties. In the chemical space analysis, seven anti-

cancer drugs, which were derived from plants, were shown to be structurally similar to the 

TM compounds (Tc ≥ 0.3). The scaffold diversity analysis demonstrated that Malay TM is the 

most diverse TM followed by TCM and Ayurveda. The convergent evolution process could 

explain the low diversity of TCM and the high diversity of Malay TM is a common process of 

divergent evolution. In the top ten most frequent scaffolds, benzene, anthraquinone, flavone, 

sterol, pentacyclic tritepene and cyclohexene were the most frequent scaffolds in all TMs. 

Anthraquinone, flavone, sterol and pentacyclic tritepene have been reported for anti-cancer 

activities. There are six different scaffolds that are more frequent in one of the TMs than the 

remaining two TMs, which could be worth exploring for anti-cancer activities due to their 

abundance. The comparison of the bioactivity space showed that only eight pairs of plants 

with similar bioactivity spaces were phylogenetically related at either genus, family or order 

level. The observations indicate that the common MOAs for a large number of TM plants are 

not related to their phylogenies. The annotation of the bioactivity space with target classes 

revealed kinase was the most significant target class in all TMs. Four, three and six targets 

classes were observed to be more significant in TCM, Ayurveda and Malay TM respectively 

suggesting TMs could exhibit differential MOAs. By comparing chemical and bioactivity 

space, these approaches provide a closer understanding of the common and differential MOAs 

of different anti-cancer plants used by TCM, Ayurveda and Malay TM for treating cancers. 
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Chapter 4:  
Evaluating Synergistic Pairwise Combinations of Shexiang Baoxin Pill (SBP) for Coronary 

Heart Disease from Network Topology 

 

 

4.1 Introduction 

The World Health Organization (WHO) has projected that cardiovascular disease (CVD) will 

be the leading cause of death globally by 2030 with 23.6 millions deaths (250). A staggering 

statistic in 2012 already showed that at least 42% of the deaths relating to cardiovascular 

disease were contributed by coronary heart disease (CHD). This is also projected to increase 

(250). CHD is a disease pertaining to the blood vessels supplying the heart muscle, whose 

clinical symptoms include angina, myocardial infarction, sudden death and chronic heart 

failure (251). The pathophysiology of CHD has been generally described as an imbalance of 

supply and demand of oxygen in the heart muscle, which is also known as myocardial 

hypoxia, which eventually leads to a sudden reduction in coronary flow (252). To reduce the 

risk and fatal consequences of CHD, several drugs have been prescribed to patients, such as 

anti-platelet drugs, angiotensin converting enzyme inhibitors, beta-blockers, statins and 

calcium-channel blockers, in addition to a surgery option, coronary angioplasty (253). Despite 

the significant progress that has been observed in the treatment of CHD, there are a subset of 

patients who are not suitable for conventional treatments either due to acquiring complex 

diseases or having side effects to the current drugs (253, 254). Hence, there is an urgent need 

to develop new therapeutic tools to overcome the limitations of current treatments. 

Neovascularization through angiogenesis provides a natural repair mechanism for 

CHD. The mechanism aims to improve blood flow by promoting the formation of new blood 

vessels to resupply blood flow to the hypoxic cardiac tissue (255). In addition to the 

development of therapeutic angiogenesis (255), traditional medicine, such as TCM, also 

offers a natural remedy for treating CHD. Shexiang Baoxin Pill (SBP) is one of the widely 

used TCM formulations for CHD, which has been claimed to promote vasodilation and 

angiogenesis in the heart (82). The therapeutic effects of SBP were recently reported by a 

meta-analysis of 26 studies of 2,634 cases collected between 2010 and 2016, which showed 

SBP improved electrocardiogram rate of patients with fewer side effects than isosorbide 

dinitrate for angina pectoris (256). The therapeutic effects of SBP are derived from seven 

different Chinese materia medica, namely Moschus (musk deer), Panax Ginseng (ginseng 

plant), Calculus Bovis (dried gallstone of cattle), Cortex Cinnamomi (cinnamon twig), Styrax 

(resin of rose maloes), Venenum Bufonis (toad venom) and Borneolum Syntheticum (borneol) 

(257). The determination of the SBP compounds has been reported in a few studies (257-259). 
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The studies have identified at least 17 compounds in the formulation, which are regarded as 

the SBP bioactive compounds. Consequently, the identification of SBP bioactive compounds 

allow mechanistic studies to understand the therapeutic effect of SBP. 

The therapeutic effects have been investigated in a few in vivo studies. Xiang et al. 

reported a comparative serum metabolomics study of experimentally induced myocardial 

infarction (MI) in rats that were treated with SBP, a multicomponent formulation called 

SAHRA and five single agents (260). The study revealed that the SBP-treated group showed 

better therapeutic effects than the remaining two groups by regulating three out of four 

pathological processes that are involved in MI development (260). In a follow-up study, 

experimentally induced MI in rats was treated with seven SBP compounds individually and 

an all in one combination (261). The results showed that the physiological parameters of the 

combination were closer to the control group than the monotherapy (261). The interactions 

between the SBP compounds might contribute to the therapeutic effects (261). Jiang et al., 

demonstrated that borneol, one of the active SBP components, enhanced the plasma 

concentration of four types of ginsenoside after oral administration to male Sprague-Dawley 

rats (262). Given the collection of reports, the studies support the claim of the therapeutic 

effects of SBP, which were achieved by the interactions between the compounds.  

However, the MOAs underlying these therapeutics effects remained unexplained. The 

elucidation process is challenging if the compounds are to be tested using the present 

evaluation paradigm for single chemical compounds (263). For this reason, a combination of 

two compounds was selected to understand the MOAs. The study of compound combination 

has become a more common approach in drug discovery from the understanding of a complex 

disease that involves multiple targets and pathways (264). The effects of compound 

combinations can either be synergistic, additive, antagonistic or none, where synergy is the 

desired effect. A synergistic effect results from two compounds that produce an effect greater 

than the sum of their individual effects. The decision process to determine synergy of a 

combination could be measured using three popular strategies, which are Highest single agent 

(HSA) (265), Loewe additivity (266) and the Bliss independence model (267). The HSA 

defines the expected synergy effect (YHSE) is higher than the maximum effect of individual 

compounds (y1 and y2), YHSE=max (y1, y2). Therefore, synergy is determined if an 

experimental combination shows effect higher than y1 or y2. The Loewe additivity quantifies 

synergy if the Combination Index (CI) < 1. The CI value can be measured from the equation 

below.  

𝐶𝐼 =
𝑎

𝐴
+

𝑏

𝐵
 

Equation (4.1) 
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(a , b) are the doses of compounds 1 and 2 in a combination and (A ,B) are the single doses of 

compounds 1 and 2. The Bliss independence model states that two compounds exert their 

effects independently, which the expected synergy effect (YBLISS) of two compounds (Y1 and 

Y2) can be measured from YBLISS = Y1 + Y2 – Y1Y2. Hence, synergy is determined if an 

experimental combination shows an effect higher than YBLISS. 

Although, the identification of synergistic compound combinations is achievable in 

high-throughput screening, usually only a small number of combinations are identified (264, 

268, 269). Therefore, computational approaches have been preferred to quantify, filter and 

rank compound combinations rapidly for guiding experimental investigations (264, 268, 269). 

One such computational approach is predicting compound combinations based on the PPI 

interaction network (269). For example, Li et al., generated a disease-specific network using 

PPI from HPRD and KEGG (270). Based on the network, an algorithm, Network-target-based 

Identification of Multicomponent Synergy (NIMS) was developed to evaluate synergistic 

combinations calculated from the topological relationships of the combinations of targets on a 

disease-specific network and their phenotypes similarities. The combinations with high 

synergy score were validated experimentally and their MOAs were characterised from the 

constructed network. Synergy evaluation was also investigated using drugs. Huang et al. 

established a systematic tool, DrugComboRanker (271). The tool ranked drug synergy 

combinations measured from the topological properties of a network that was generated using 

genomic profiles (271). The targets of the top-ranked synergy drugs were then mapped onto a 

disease-signalling network that could elucidate the drugs’ MOAs that were supported by the 

literature. Hence, it appears that the topological properties of a PPI network maybe able to 

prioritise synergistic combinations and eventually elucidate the MOAs. 

To address the question of synergistic combinations of SBP compounds, this study 

aimed to identify the synergistic compound combinations of pairwise combinations of 22 SBP 

compounds by calculating the synergy scores from a PPI network. The 20 top-ranked and 

bottom-ranked combinations were validated using Human Umbilical Vascular Endothelial 

Cells (HUVEC). The Bliss synergy scores were measured to determine the robustness of the 

synergy score calculation. In the end, the MOAs of the top-ranked combinations were 

described based on the connections of the predicted targets in the network. Hence, this 

method is able to suggest the MOAs of two SBP compounds to explain the claimed 

synergistic effects.  
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4.2 Materials and methods 

4.2.1 Dataset preparation 

The 22 SBP compounds (Table 4.1) were suggested from an on-going study of SBP by Dr 

Tai-Ping Fan (Department of Pharmacology, University of Cambridge). The structures of the 

compounds were downloaded from PubChem (110). The compounds in SMILES format were 

uploaded to Standardizer (210) to standardise the compounds prior to in silico target 

prediction. Six pre-selected actions were specified in the configuration file; ‘Remove 

Fragment’, ‘Remove Explicit Hydrogens’, ‘Neutralize’, ‘Clean 2D’, ‘Mesomerize’ and 

‘Tautomerize’. The standardised SBP compounds were saved in SMILES format.
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Table 4.1: The structures of 22 SBP compounds, which similar structures are arranged next to each other. PCID stands for PubChem ID. 

Ginsenoside Rb1 

(PCID 9898279) 

 

Ginsenoside Rb2 

(PCID 6917976) 

 

Ginsenoside Rb3 

(PCID 12912363) 

 

Ginsenoside Rc 

(PCID 12855889) 

 

Ginsenoside Rd 

(PCID 11679800) 

 

Ginsenoside Re 

(PCID 441921) 

 

Ginsenoside Rg1 

(PCID 441923) 

 

Ginsenoside Rg3 

(PCID 9918693) 

 

Cholic acid 

(PCID 221493) 

 

Hyodeoxycholic acid 

(PCID 5283820) 

 

Chenodeoxycholic acid 

(PCID 10133) 

 
 

Deoxycholic acid 

(PCID 222528) 
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Bufalin 

(PCID 9547215) 

 

Gamabufotalin 

(PCID 259803) 

 

Cinobufagin 

(PCID 11969542) 

 
 

11-hydroxyprogesterone 

(PCID 92750) 

 

17-hydroxyprogesterone 

(PCID 6238) 

 

Cinnamic acid 

(PCID 444539) 

 

Cinnamaldehyde 

(PCID 637511) 

 

Muscone 

(PCID 10947) 

 
Borneol 

(PCID 6552009) 

 

Benzyl benzoate 

(PCID 2345) 
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4.2.2 Target prediction 

The standardised compounds were run on an in silico target prediction algorithm that was 

modeled using the Random Forest (211). Briefly, the model contained a training set of active 

compounds extracted from ChEMBL v.21.0 (28) and inactive compounds extracted from the 

PubChem Compound and PubChem BioAssay databases (212). In total, the model contained 

5,888,615 ligand-target pairs of actives and inactive associate with 1,651 targets. The active 

training set were active compounds with reported activities (Ki/Kd/IC50/EC50) of lower than 10 

μM with a CONFIDENCE_SCORE of 5 or greater for ‘binding’ or ‘functional’ human 

protein assays (28). The inactive training set were inactive compounds of assays submitted by 

researchers to PubChem Compound and PubChem BioAssay databases (28). The descriptor 

of a molecule was generated based on ECFP_4 circular Morgan-type fingerprints (48) with a 

2,048 bit length, hence stereochemistry of compounds was excluded. The algorithm calculates 

the probability of an orphan compound belonging to a target class by considering both 

chemical features of active and inactive compounds against target classes, giving a more 

holistic perspective of chemical features, which contribute towards or against bioactivity. 

To predict targets of TM compounds, the Random Forest (RF) classifier can be briefly 

described as follows. First, a Scikit-learn (Version 17) RF classifier of 100 trees, with the 

number of features and max depth set to ‘auto’ and the ‘class_weight’ set to ‘balanced’, was 

trained using the binary matrix of the active and inactive compound-target fingerprints on a 

per-target basis (213). Models generate a probability representing the number of trees in the 

forest that predict a target as active, represented as p(activity). Platt scaling (214), a 

calibration method in machine learning, is performed to convert the classification from the 

random forest into the probabilities of the prediction being correct, which is known as True 

Positive Rate (TPR). 

 

4.2.3 The TPR of predicted targets 

The TPR value was selected by assessing the distribution of a fraction of targets predicted for 

each TPR interval of 0.1 between 0 and 1. A curve of the fraction of targets’ predicted TPR 

intervals was evaluated to define a TPR threshold of each SBP compound (Figure 4.1). In 

general, the fraction of targets predicted decreases as the threshold value increases. A 

threshold value of 0.65 was selected for all SBP compounds because at least four targets were 

predicted for ginsenoside compounds. The selected threshold value is a reasonable trade-off 

between false-negative predictions and the number of predicted targets compared to larger 

threshold values. By using the selected TPR threshold, the target prediction algorithm was 

performed, which produced a binary matrix of predicted targets. 
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Figure 4.1: The curves of the fraction of targets predicted decreases when TPR values 

increases. A TPR threshold value of 0.65 was selected in this analysis because at least four 

targets were predicted for ginsenoside compounds. 

 

4.2.4 Generating a representative angiogenesis and CHD network 

To generate the PPI network, angiogenesis and CHD annotated genes were extracted from six 

databases (Table 4.2). By using the keyword “angiogenesis”, the annotated genes were 

extracted from UniProt (272) and Comparative Toxicogenomics Database (CTD) (273). The 

annotated genes from Gene Ontology (GO) were retrieved using an identifier, GO:0001525 

(274). The CHD annotated genes were extracted from UniProt (272) and Target Validation 

Platform (TVP) (215) by using the keyword “coronary heart disease”. In CTD (273), the CHD 

annotated genes were retrieved from six CTD identifiers, D006333 Heart Failure, D001145 

Arrhythmias, Cardiac, D006323 Heart Arrest, D017202 Myocardial Ischemia, D006341 Heart 

Rupture, and D009202 Cardiomyopathies. To prioritise the extracted genes from CTD, the 

top 1,000 angiogenesis annotated genes were selected based on the Inference Score. In 

another approach, the CHD annotated genes from six identifiers were combined and the top 

1,000 CHD annotated genes were selected based on the Inference Score. The CHD annotated 

genes of TVP (215) were filtered based on an Association Score of at least 0.7, which at least 

80% of genes were included. All annotated targets from UniProt (272) and GO (274)were 

kept. For the purpose of this study, all genes were regarded to encode their complementary 

proteins.  
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Table 4.2: The numbers of annotated genes of angiogenesis and CHD, which were extracted 

from six databases and the final numbers of genes to construct the network. 

Angiogenesis Coronary Heart Disease 

Database Number of Genes Database Number of Genes 

Gene Ontology 

(GO:0001525) 
404 Target Validation 

Platform 
727 

Uniprot 494 Uniprot 935 
Comparative 

Toxicogenomics 

Database  

1,000 Comparative 

Toxicogenomics 

Database  

1,000 

Numbers of genes for 

network generation 
407 Numbers of genes for 

network generation 
304 

 

 Initially, two separate networks were generated for angiogenesis and CHD by 

selecting proteins that were consistently found in at least two databases. The PPIs between 

two proteins were retrieved from Reactome (275) before merging them into a new network. 

Singnalink2.0 database (66) was also incorporated to further expand the network. The 

selected layer of Signallink2.0 (66) was Pathway Member composed of 1,086 nodes and 

1,226 edges. Cytoscape v3.3.0 (276) was used in each step of the network generation. In a 

network, the protein is known as a node while the link between two nodes is known as an 

edge. Self-loops and multiple edges between the same pairs of nodes were removed. Only the 

first-degree neighbours of SBP targets were selected for generating the final network.  

 

4.2.5 Network properties analysis 

The properties of the network were assessed based on the topology such as degree 

distribution, average clustering coefficient and average shortest path length. Degree (k) is the 

number of edges a node has. Degree distribution of a network was calculated from the 

frequency (f) of each degree from the total number of nodes (n): 

〈𝑘〉  =  
𝑓𝑘

𝑛
 

(Equation 4.2) 

The degree distribution was analysed based on the annotation of the node attributes in Table 

4.3. The boxplot each node’s attribute was created using boxplot() function of stats package in 

R (114). 

Real biological networks exhibit a scale-free behaviour. To determine this property, the 

average clustering coefficient and average path length of the network were compared to 1,000 

random networks of the same number of nodes and edges and the edges were permutated. The 

random networks were generated by randomising the degree of the original network using 

degree.sequence.game() function of igraph (277) package in R (114), The clustering 
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coefficient is defined as sets of three nodes which are connected to each other. This measure 

provides information on how neighbours are connected in the network, where the value is 

between 0 and 1. The average clustering coefficient <C> of a network can be quantified by: 

〈𝐶〉 =  
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

 

Equation (4.3) 

Here, Ci is the ratio of number of triangles connected to node i to the number of triples (both 

open and closed triangles) centred on node i. The sum of Ci is averaged by the total number of 

nodes (n).  

The average path length is defined as the number of average shortest steps for all possible 

pairs of nodes in the network, in which a shorter average path length is more desirable. The 

average path length <l> of a network can be quantified by: 

〈𝑙〉 =  
1

𝑛(𝑛 − 1)
 ∑ 𝑑(𝑛𝑖, 𝑛𝑗)

𝑖 ≠𝑗

 

Equation (4.4) 

Here, d(ni, nj) is a measure of the shortest distance between node i and node j. The sum of the 

distance for all possible pairs of nodes is averaged by the number of all possible pairs of 

nodes. 

 

4.2.6 Biological process analysis 

The functional pathway enrichment of the SBP predicted targets and all proteins in the 

network was measured by ClueGO (278) by selecting GO Biological Process as the 

background set. The statistical test used for the enrichment was based on a two-sided 

hypergeometric option with a Bonferroni correction, a p-value less than 0.001. A fusion term 

was used with a defined kappa score of 0.65. The level of specificity of GO terms was 

selected between 3 and 13. 

 

4.2.7 Formulating the synergy score of compound combinations 

In total, there were 231 unique pairwise combinations generated from 22 SBP compounds. To 

measure a synergy value of a combination, three elements were integrated. The three elements 

were topological properties, pathway dissimilarity and average node distance. The synergy 

score was calculated by using Equation (4.5). The equation was modified from a previous 

study by Li et al., (270) by adding two new elements, pathway dissimilarity and mean 

distance. The Synergy Score (SS) of compound i and compound j was a product of a 
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Topology Score (TS) and a Pathway Dissimilarity Score (PDS) divided by a Mean Distance 

Score (MDS).  

 

The TS was derived from two topological features and a defined node attribute of the 

predicted targets for compound i and compound j as described below. 

 

𝑇𝑆 (𝑖, 𝑗) =  
1

2
 [

∑ (𝐷𝑒𝑔 × 𝐵𝑒𝑡𝑤 × 𝑊𝐴)−1/3
𝑖

𝑛𝑖
+

∑ (𝐷𝑒𝑔 × 𝐵𝑒𝑡𝑤 × 𝑊𝐴)−1/3
𝑗

𝑛𝑗
] 

Equation (4.2) 

From the above equation, TS was a harmonic average product of the TS of compound i and 

the TS of compound j. The TS of a compound was defined as a sum of three elements, degree 

(Deg), betweeness (Betw) and weight attribute (WA). The Deg and Betw were calculated 

based on the connections of a node in the network, while the WA was defined as whether a 

node was annotated as an angiogenesis protein, and/or a CHD protein. Both angiogenesis and 

CHD proteins were proteins that were extracted from six databases to construct the network. 

The scheme of the WA was described in Table 4.3. 

 

Table 4.3: The weight attribute of the nodes in the network. 

Node Attribute Weight 

Angiogenesis (An) 2 

Coronary Heart Disease (CHD) 2 

An and CHD 3 

Not An and CHD  1 

 

The sum of product of Betw, Deg and WA was normalised using taking the reciprocal of its 

cube root and the final TS was averaged by the number of predicted SBP targets, n, for that 

compound. 

The second element of the SS score was to calculate the pathway dissimilarity 

between two compounds. The pathways were derived from the gene functional enrichment 

calculation in the network analysis. A matrix of frequency of nodes to a pathway was created. 

Pearson coefficient correlation (PCC) was used to calculate the pathways similarity. The 

calculated value was subtracted by 1 to get the PDS. 

 

𝑃𝐷𝑆 (𝑖, 𝑗) =  1 −  𝑃𝐶𝐶(𝑖, 𝑗) 

Equation (4.3) 
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Prior to calculating the PDS, a heatmap of the bioactivity space similarity of SBP 

compounds was assessed. The frequencies of compounds of per predicted target were 

normalised. The dissimilarity of distances between the normalised frequencies of SBP 

compounds were calculated using ‘Euclidean’ method of the “dist” function. Clustering was 

performed using the Ward method of the “hclust” function, where two SBP compounds were 

merged if the sum of the squared Euclidean distance was minimal. The heatmaps were 

generated using the “heatmap” function. All the aforementioned functions were available in 

the stats package of R (114). 

 

The third element, MDS, was calculated from the sum of the shortest distance between all 

pairwise pairs of targets of compound i and compound j (iCj), which was averaged by the 

number of pairwise targets, niCj.  

 

𝑀𝐷𝑆 (𝑖, 𝑗) =  
∑ 𝑑𝑚𝑖𝑛𝑖𝐶𝑗

𝑛𝑖𝐶𝑗
 

Equation (4.4) 

The three elements were combined into the SS equation as below: 

𝑆𝑆(𝑖, 𝑗) =  
𝑇𝑆 (𝑖, 𝑗)  ×  𝑃𝐷𝑆 (𝑖, 𝑗)

𝑀𝐷𝑆 (𝑖, 𝑗)
 

Equation (4.5) 

 

A Spearman Rank Correlation Coefficient (SRCC) was used to assess the relationship 

between the scores of the three elements and the synergy scores. SRCC was measured using 

the “cor” function of R the stats package (114). 

 

4.2.8 Robustness of Synergy Score evaluation 

To evaluate the robustness of the Equation (4.5), the SS of a combination of the original 

network were compared to SS of a background distribution by computing the SS from 1000 

random graphs of the same number of nodes and edges. The nodes of each compound were 

randomly selected based on the number of targets predicted. The enrichment of a SS from the 

original network was measured based on Estimation Score (ES). 

𝐸𝑆 =  
𝐶

1000
 

Equation (4.8) 

Here, C is defined as where the frequency of SS in the 1000 random graphs is smaller than SS 

in the original network. The absolute frequency obtained is then divided by total number of 
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random graphs giving a value between 0 and 1. A combination is considered enriched when 

ES is ≤ 0.01. 

 

4.2.9 Synergistic evaluation of combinations in HUVEC 

In order to validate the predicted SS, five combinations from the 20 top-ranked and five 

combinations from the bottom ranked were treated in HUVEC. HUVECs were cultured in 

Promocell’s Endothelial Cell Growth Medium 2 containing 2% FBS, human Epidermal 

Growth Factor, human Basic Fibroblast Growth Factor, Insulin-like Growth Factor, human 

Vascular Endothelial Growth Factor 165, Ascorbic Acid and Heparin (EGM-2). The 

HUVECs were incubated at 37°C in humidified air containing 5% carbon dioxide. HUVECs 

were seeded in 96-well plates at a density of 2,500 cells/well in 100μL of EGM-2. 24 hours 

later, the media was aspirated and appropriate compound concentrations diluted in 

Endothelial Cell Basal Medium 2 (EBM-2, Promocell) were added to the relevant wells (total 

volume in each well = 100μL). After 72hr of incubation, 10μL of Cell Counting Kit-8 (CCK-

8, Dijindo) was added to each well. CCK-8 utilises Dojindo’s highly water-soluble 

tetrazolium salt (WST-8). Dehydrogenases within cells reduce WST-8 to produce orange 

formazan. The amount of formazan dye generated is proportional to the number of living 

cells. The plates were incubated for 1-4 hours at 37°C. A MultiSkan Ascent Plate Reader 

measured absorbance at 450nm. The experimental work was performed by Dr Ranjoo Choi.  

 

4.2.10 Bliss independence model measurement 

The combination response (4x4) matrix contained percentages of cell growth and at zero 

concentration, the cell growth was equal to 100%. Each value in the matrix was subtracted 

from 100 to produce percentage cell growth. The combination matrix was plotted as a 

heatmap. A single dose response curve was constructed prior to calculating the Bliss 

independence model. The single dose response curve was fitted using 4-parameter log-logistic 

function (4-PL). The Bliss score of each combination was calculated by averaging (3x3 

matrix) the difference between the actual percentage of cell growth and the expected 

percentage of cell growth. The combination interaction landscape was visualised in a 3D 

contour plot. All the calculations and figures of this section were carried out using the synergy 

finder package (279) in R (114).  
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4.3 Results and Discussions 

4.3.1 Analysis of pathways associated with SBP predicted targets 

Prior to the network construction, the analysis of the SBP predicted targets shows that the 

predicted targets are associated with GO biological processes (BP) that are related to either 

angiogenesis or CHD (Table A.4.1). Such biological processes are mitogen activated protein 

kinase (MAPK)-related pathways (GO:0000187, GO:0032872, GO:0043405), angiogenesis 

(GO:0001525), ERK1 and ERK2 cascade (GO:0070371), T-cell activation (GO:0042110), 

lymphocyte differentiation (GO:0030098), blood vessel morphogenesis (GO:0048514), and 

epidermal growth factor receptor signalling pathway (GO:0030098). Numerous studies have 

demonstrated that angiogenesis and/or CHD affected these biological processes.  

 For example, atherosclerotic process cause thrombosis in arteries that leads to MI in 

CHD (280). The over accumulation of cholesterol on the artery walls induces cholesterol 

crystal formation that can activate an associated inflammasome such as cytokines (280). 

Inflammatory cytokine production is one of the key features in CHD. T cell activation and 

lymphocyte differentiation prevent the accumulation of these pro-inflammatory cytokines, 

hence suppressing the atherosclerotic state (281). The cross talk between inflammation and 

angiogenesis has also been reported, where the infiltration of T cells into autoimmune lesions 

induces pathogenic angiogenesis by secreting VEGF (282). MAPK-related pathways have 

been widely studied for their associations with cardiovascular diseases. Four subfamilies, 

ERK1/2, JNK, p38, and ERK5 of MAPK, have been characterised for their involvements in 

cardiac development, function and diseases (283). One of the subfamilies, ERK1 and ERK2 

cascade, is among the enriched GO BP terms. The up-regulation of ERK 1/2 MAPK 

phosphorylation induces anti-inflammatory cytokine, interlukin-10 (IL-10), to prevent tumour 

necrosis factor-alpha (TNF-alpha) from increasing oxidative stress and apoptosis (284). The 

enrichment of GO terms, angiogenesis (GO:0001525), blood vessel morphogenesis 

(GO:0048514), and epidermal growth factor receptor signalling pathway (GO:0030098) are 

indicative of significant angiogenesis-related proteins being part of the network. Altogether, 

these biological processes indicate that SBP compounds were predicted to modulate targets of 

the pathways that are important in either angiogenesis or CHD. 

 

4.3.2 Evaluating topological properties of the network 

The final representative network of angiogenesis and CHD (Figure 4.2) was composed of 

2,371 nodes and 16,336 edges, of which 396 nodes were angiogenesis and CHD associated 

genes. The 2,371 nodes were annotated to 332 enriched GO biological processes (Table 

A4.2). A total of 259 SBP predicted targets were mapped onto the final network, in addition 
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to 13 targets from the literature that were associated with the MOA of SBP compounds. For 

clarity, the 13 targets (Table A4.3) were also regarded as SBP predicted targets for the rest of 

the analysis.  

 

 
Figure 4.2: The visualisation of the representative network of CHD and angiogenesis, which 

the angiogenesis and CHD annotated nodes (blue and red circle) are mostly aggregated in the 

middle of the network. The observation suggests that these two conditions are in the 

biological context of the network. The SBP targets and their degree (green circle and line) are 

observed to link many of the nodes suggesting the targets could provoke the desired 

therapeutic effects. 
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The topological properties of the network were first evaluated by its degree distribution 

(Figure 4.3) (285). The degree distribution based on the nodes’ attributes shows that the 

median values of two groups, angiogenesis and CHD annotated nodes and angiogenesis, CHD 

and SBP annotated nodes, are higher than the remaining two groups and the median values 

are closer to the upper quartile. The observation indicates that many of the annotated 

angiogenesis/CHD proteins are highly linked nodes suggesting that the two conditions are 

governing the conformation of the network. The highly linked nodes are also known as hub 

proteins. The associations of the top ten hub proteins to either angiogenesis or CHD were 

described in Table 4.4. The results demonstrate that six hub proteins were predicted to be 

modulated by the SBP compounds. Despite the low median value of the SBP predicted 

targets, some of the SBP targets are observed to be distributed outside the upper quartile. The 

observation demonstrates that the SBP compounds were predicted to modulate some of the 

hub proteins, which could be responsible for producing the desirable phenotypes. In addition 

to degree distribution, the properties of the network were analysed by measuring its average 

clustering coefficient, average betweenness and average path length. These properties were 

compared to 1,000 random graphs with the same number of nodes and edges as can be seen in 

Table 4.5. The higher average clustering coefficient and shorter average path length of the 

original network than the random graphs demonstrated that the network is a scale-free 

network.  
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Figure 4.3: The degree distribution of different node attributes in the network. Many of the 

SBP predicted targets and angiogenesis and CHD annotated proteins are highly linked nodes. 

The observation indicates that the two conditions are governing the conformation of the 

network.  

 

 

 

Table 4.5: The comparison of topological properties between a representative network of 

angiogenesis and CHD and 1,000 random graphs.  

Properties Original network 1,000 random networks 

Number of nodes 2,371 2,371 

Number of edges 16,336 16,336 

Average clustering coefficient 0.136 0.00581 ± 0.00029 

Average path length 3.072 3.246 ± 0.00087 
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Table 4.4: The top ten hub proteins in the representative network of angiogenesis and CHD. Six proteins were predicted to be modulated by SBP 

compounds. 

 

Symbol Protein Name Attribute Degree Protein 

Family 

Supporting literature 

CTNNB1 Catenin beta-1 SBP/ 

Angiogenesis 

408 Beta-

catenin 
It was reported that the overexpression of CTNNB1 enhances 

endothelial cells proliferation through cell cycle propagation and 

induces vascular endothelial growth factor (VEGF) in skeletal 

myocytes (286) 

JUN Transcription factor AP-1 SBP/ 

Angiogenesis 

356 Jun The activation of JUN has been showed to mediate VEGF-induced 

endothelial cells proliferation and migration (287). 
RHOA Transforming protein RhoA SBP/ 

Angiogenesis 

299 Rho RHOA has been documented to activate VEGF-induced endothelial 

cells (288). 

MAPK14 Mitogen-activated protein 

kinase 14 

Angiogenesis 290 Kinase MAPK14 is also referred as p38 MAPK, which the inhibition of p38 

MPK has been reported to enhance angiogenesis in VEGF-induced cell 

proliferation (289). 

PIK3CA Phosphatidylinositol 4,5-

bisphosphate 3-kinase catalytic 

subunit alpha isoform 

Angiogenesis 264 Kinase The PIK3CA has been frequently reported in cancer pathogenesis, 

which the mutation of PIK3CA induces angiogenesis and malignant 

cell growth (290). 

RELA Transcription factor p65 SBP/ 

Angiogenesis 

239 Not 

available 

The activation of RELA has been demonstrated to either promote or 

impair angiogenesis through matrix metalloproteinase (291). 

AKT1 RAC-alpha serine/threonine-

protein kinase 

Angiogenesis 221 Kinase AKT1 has been documented to exhibit pro-angiogenic and anti-

angiogenic effects under different conditions (292). 

SHC1 SHC-transforming protein 1 Angiogenesis 214 Not 

available 

It has been reported that the activation of SHC1 induces the 

downstream pathways of epidermal growth factor receptor (EGFR) 

(293). 

EGFR Epidermal growth factor 

receptor 

SBP/CHD 211 Kinase In addition to EGFR’s implication in angiogenesis, the protein has 

been reported to regulate blood pressure by either promoting 

vasodilation or vasoconstriction (294). 

PTK2B Protein-tyrosine kinase 2-beta SBP/ 

Angiogenesis 

208 Kinase The activation of PTK2Bhas been implicated in wound healing by 

stimulating the Src family kinase/EGFR signalling pathway (295). 
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4.3.3 Comparison to previously published network 

A few studies of biological network generation of angiogenesis or CVD have been reported in 

the literature. These studies used different methods in order to generate the biological 

network. In this section, we compare the 2,371 genes of the constructed network to the genes 

of the three angiogenesis networks and one CVD network that were previously published 

(Table 4.5). The comparison discovers that in many cases, the annotated genes that were used 

in the current network were also part of the networks published previously. 

 

Table 4.6: The comparison of overlapped genes of angiogenesis/CHD related networks 

discovered from previous studies. 

Number of 

nodes 

Number of 

edges 

Method Number of 

overlapped genes 

1,233 5,736 

Extracted angiogenesis genes from 

multiple sources; Gene  Ontology, 

SABiosciences, and Gene Cards and used 

GeneHit to expand the  network of 

angiogenesis dynamically (296). 

382 (580 

angiogenesis 

genes) 

362 1,195 

Extracted angiogenesis genes from 

multiple sources to generate an 

angiogenesis network ; 1. Database (Gene 

Ontology, Reactome, Uniprot), 2. 

computational and experimental tools 

(Protein lounge, Ingenuity Pathway, 

Agilent Literature search), 3.commercial 

experimental sets (G-Arrays) (297). 

57 (79 

angiogenesis 

genes) 

unknown 262 

Used ClusteEx method: identifies groups 

of differentially expressed genes and 

connects the genes’ products using shortest 

path in VEGF stimulated human umbilical 

vein endothelial cells (HUVECs) to 

represent inflammation and angiogenesis 

models (298) 

51 (92 

angiogenesis 

genes) 

3,412 13,164 

Used gene co-expression data to extract 

related CVD genes and Gene Ontology to 

develop the interactions between genes 

(299) 

269 (705 CVD 

genes) 

 

 

4.3.4 The modelling of synergy score measurement and the score distribution  

The hypothesis behind the synergy score measurement was to relate the topological 

relations between two sets of predicted targets of a two-compound combination. These 

predicted targets were assumed to be part of different pathways with a small distance between 

them. The TS measurement considered the importance of predicted targets based on their 

connections and attributes in the network. The negative exponential function was utilised to 

normalise the different scales of betweenness, degree and weigh attribute. The sum of the 

products of the three scales was divided by the number of predicted targets due to the high 
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variance from only six to 180 predicted targets. Therefore, TS gave the results that stronger 

desired effects could be achieved from a set of predicted targets with higher connections and 

annotated with high-value attributes.  

The PDS was derived from the analysis of the similarity of predicted SBP targets. 

Many of the SBP compounds were shown to be structurally similar (Table 4.1), for example, 

six types of ginsenoside and four cholic acid derivatives. Based on the “Molecular Similarity 

Principle” (41), these compounds are likely to modulate a similar set of targets. The heatmap 

of Figure 4.4 shows that structurally similar compounds were predicted to modulate similar 

targets, and these compounds are clustered together. Only a few compounds are structurally 

different such as muscone, benzyl benzoate and borneol. The similarity of the predicted 

targets was considered to affect similar pathways; hence compounds with high structure 

similarity would dominate the top ranked combinations. These observations were more likely 

to identify combinations with additive effects than synergistic effects because the compounds 

were expected to modulate the same targets. By considering dissimilar pathways, the synergy 

score calculations accounted for the different targets of two compounds, hence, identifying 

synergistic combinations. These different pathways are still functionally related as only 332 

GO terms (Table A4.3) were enriched from 2,371 genes. 

 

Figure 4.4: The heatmap of predicted target similarities between SBP compounds. Many of 

the SBP compounds are structurally similar such as ginsenoside and cholic acid derivatives. 

These compounds were predicted to modulate similar targets, thus, acting on the same 

pathways. Due to high-predicted targets similarities, the SS measurements considered 

dissimilar pathways annotated to the compounds. 
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 The final element in the SS measurement was the mean distance measured from the 

pairwise distance of all predicted targets of two compounds. A study by Wang et al., indicates 

that combinatorial drugs tend to affect a smaller radius in the gene network in order to 

produce their therapeutic effects (300). In the study, it was found that 62% of the 

combinatorial drugs had a shorter effect radius of 3 and less. Given the result of the previous 

study, the final SS was determined by the mean distance of the predicted targets of both 

compounds. A combination with a smaller mean distance was estimated to show higher 

synergistic effects.  

Spearman Rank Correlation Coefficient (SRCC) was calculated to determine the 

relationships between TS, PDS and MDS and SS, which is visualised in the multi-plots in 

Figure 4.5. Both TS (r = 0.83, p-value < 0.001) and PDS (r = 0.71, p-value < 0.001) show 

strong correlation with that of SS, whereas MDS (r = 0.12, p = 0.072) showed weak 

correlation with that of SS. The results suggest that the weak correlation of MDS with that of 

SS has prioritised combinations with targets that were close to each other (< 2.8). Therefore, 

the evaluation of synergy prioritises combinations that contain targets are close to each other, 

have many high degree nodes and belong to different pathways. 

 
Figure 4.5: The SRCC between TS, PDS and MDS and SS. Both TS and PDS are highly 

correlated with that of SS and MDS is weakly correlated with that of SS. Combinations with 

higher SS are estimated to contain many highly linked predicted targets and both sets of the 

predicted targets are located in smaller radius, which belong to different pathways.  
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4.3.5 Robustness of Synergy Score Evaluation 

It was found that all the combinations were enriched with a p-value of zero. All SS of 231 

combinations measured from the original network were higher than the 1,000 SS of 231 

combinations measured from 1,000 random networks. The boxplot in Figure 4.6 compares 

four types of score distributions, where the scores of the random group are the average scores 

measured from 1,000 random networks. It is observed that all three elements influence the SS. 

The large mean difference of TS between the original and random groups suggesting the 

topological properties, degree, betweenness, and weight attribute, are important factors in 

evaluating synergy of a combination. Combinations with high SS measured from the original 

network are estimated to modulate hub proteins, which in the same combinations in the 

random networks, the edges of these hub proteins were permutated. The PDS distribution of 

the random networks is higher than the original network because the randomised targets of 

each combination are part of different pathways. Similar to the PDS, the MDS distribution of 

the random group is higher than the MDS distribution of the original group but with smaller 

variance. The result implies that a mean distance between set of targets of two compounds is 

an important parameter to emphasise synergistic effects. Hence, the synergy score evaluation 

is robust by emphasising combinations that are modulating high-degree nodes.  

 

Figure 4.6: The boxplot compares four types of score distribution. The lower SS measured 

from 1,000 random networks are observed to be influenced by all three elements. The finding 

indicates that topological properties of predicted targets of a combination are significant 

factors for estimating synergy.  
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4.3.6 Predicted synergy combinations 

231 combinations were arranged in descending order based on the SS (Table A4.4). What can 

be seen throughout in Table A4.4 is that the pairs of compounds of the same or different 

scaffolds are randomly distributed. In most cases, combinations that contain ginsenoside are 

observed in the first half of the rank, while the second half of the rank contains combinations 

of simple structures such as borneol, cinnamic acid and cholic acid derivatives. These small 

molecules were predicted to modulate many targets, however, the targets were found to have 

less impact on the network topology. In many cases, the values of a nodes’ attributes of the 

targets are low, resulting in a small SS of these combinations. Overall, the rank aimed to 

prioritise combinations that were predicted to produce synergistic effects in vitro. 

 

4.3.7 Validation of predicted synergy combinations 

To validate the rank of the combinations, the top and bottom 20 combinations of each 

category were validated using HUVEC cells by quantifying the promotion of cell growth. The 

top 20 combinations were estimated to show higher synergistic effects than the bottom 20 

combinations. At the time of thesis submission, only five combinations from each category 

were validated experimentally and their Bliss scores were calculated (Table 4.7 and Table 

4.8). Three combinations of the 20 top-ranked combinations are combinations of ginsenoside, 

which are ginsenoside Rb3 and ginsenoside Rb2 (SS=9.97E-04), ginsenoside Rg1 and 

ginsenoside Rb2 (SS=8.64E-04) and ginsenoside Rd and ginsenoside Rb2 (SS=8.60E-04). 

The remaining two combinations are ginsenoside Rb3 and cholic acid (SS=1.10E-03) and 

ginsenoside Rb3 and 11-hydroxyprogesterone (SS=9.09 E-04). Three combinations of the 20 

bottom-ranked combinations are combinations of cholic acid derivatives. The combinations 

are cholic acid and chenodeoxycholic acid (SS=4.51E-05), deoxycholic acid and 

chenodeoxycholic acid (SS=3.54E-05) and hyodexycholic acid and chenodeoxycholic acid 

(SS=2.52E-05). One combination contains compounds from Venenum Bufonis (toad venom), 

which is gamabufotalin and bufalin (SS=9.61E-06). One remaining combination is muscone 

and benzyl benzoate (SS=4.00E-04). Overall, Bliss synergy scores of the combinations in the 

top rank are higher than the combinations in the bottom rank except for ginsenoside Rg1 and 

ginsenoside Rb2. The synergistic combinations of dose-response matrices can be found in 

FigureA4.1. The MOAs of the synergistic combinations were proposed in the next section. 
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Table 4.7: The list of top 20 combinations, which are estimated to show synergistic effects. 

Compound i Compound j TDS PDS MDS SS Estimation 

Score 

Bliss 

score 

Ginsenoside Rb3 Cholic acid 6.14E-03 5.10E-01 2.85 1.10E-03 0 6.51 

Ginsenoside Rc Cholic acid 5.51E-03 5.71E-01 2.89 1.09E-03 0 - 

Ginsenoside Re Ginsenoside Rb3 6.79E-03 4.23E-01 2.65 1.09E-03 0 - 

Ginsenoside Rc Ginsenoside Rb3 9.50E-03 3.10E-01 2.82 1.05E-03 0 - 

Ginsenoside Rb3 Ginsenoside Rb1 9.77E-03 3.02E-01 2.95 1.00E-03 0 - 

Ginsenoside Rb3 11-hydroxyprogesterone 5.96E-03 4.83E-01 2.88 1.00E-03 0 - 

Ginsenoside Rb3 Ginsenoside Rb2 6.48E-03 4.05E-01 2.63 9.97E-04 0 13.99 

Ginsenoside Rb1 Ginsenoside Rb3 6.96E-03 4.12E-01 2.94 9.74E-04 0 - 

Ginsenoside Rb1 Cholic acid 5.79E-03 4.77E-01 2.92 9.46E-04 0 - 

Ginsenoside Rb3 Deoxycholic acid 6.03E-03 4.40E-01 2.92 9.09E-04 0 - 

Ginsenoside Rb3 11-hydroxyprogesterone 5.96E-03 5.08E-01 3.33 9.09E-04 0 7.67 

Ginsenoside Rd Ginsenoside Rb3 9.32E-03 2.74E-01 2.86 8.93E-04 0 - 

Ginsenoside Rb3 Gamabufotalin 5.84E-03 4.49E-01 2.94 8.91E-04 0 - 

Ginsenoside Rc 17-hydroxyprogesterone 5.34E-03 4.90E-01 2.96 8.85E-04 0 - 

Ginsenoside Rg1 Ginsenoside Rb2 3.32E-03 7.19E-01 2.76 8.64E-04 0 -10.29 

Ginsenoside Rd Ginsenoside Rb2 5.68E-03 4.10E-01 2.71 8.60E-04 0 -3.71 

Ginsenoside Rb3 Bufalin 5.83E-03 4.23E-01 2.92 8.46E-04 0 - 

Ginsenoside Rg1 Ginsenoside Rc 6.34E-03 3.85E-01 2.91 8.39E-04 0 - 

Ginsenoside Rb3 Cinobufagin 5.93E-03 4.22E-01 2.99 8.38E-04 0 - 

Ginsenoside Rc Chenodeoxycholic acid 5.41E-03 4.52E-01 2.94 8.31E-04 0 - 
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Table 4.8: The list of bottom 20 combinations, which are estimated to show lower synergistic effects. 

Compound i Compound j TDS PDS MDS SS Estimation 

Score 

Bliss 

score 

Gamabufotalin Cinnamic acid 1.25E-03 1.14E-01 3.01 4.73E-05 0 - 

Cinnamaldehyde Bufalin 1.33E-03 1.03E-01 2.97 4.63E-05 0 - 

Deoxycholic acid Cholic acid 2.04E-03 6.16E-02 2.72 4.61E-05 0 - 

Cholic acid Chenodeoxycholic acid 2.04E-03 6.02E-02 2.72 4.51E-05 0 -6.65 

Muscone Cinnamaldehyde 1.40E-03 9.20E-02 2.92 4.40E-05 0 - 

Bufalin Cinnamic acid 1.25E-03 1.02E-01 3.00 4.26E-05 0 - 

Borneol Gamabufotalin 1.54E-03 7.94E-02 2.89 4.22E-05 0 - 

Muscone Benzyl benzoate 1.46E-03 8.32E-02 3.03 4.00E-05 0 -17.12 

Muscone Cinnamic acid 1.31E-03 8.43E-02 2.96 3.74E-05 0 - 

Borneol Bufalin 1.54E-03 6.82E-02 2.88 3.64E-05 0 - 

Deoxycholic acid Chenodeoxycholic acid 1.93E-03 5.11E-02 2.78 3.54E-05 0 -21.71 

17-hydroxyprogesterone 11-hydroxyprogesterone 1.80E-03 5.51E-02 3.19 3.10E-05 0 - 

Hyodeoxycholic acid Chenodeoxycholic acid 1.92E-03 3.73E-02 2.85 2.52E-05 0 -19.83 

Cinnamaldehyde Benzyl benzoate 1.18E-03 6.27E-02 3.13 2.37E-05 0 - 

Borneol Cinnamaldehyde 1.32E-03 4.79E-02 2.97 2.13E-05 0 - 

Benzyl benzoate Cinnamic acid 1.10E-03 6.07E-02 3.17 2.11E-05 0 - 

Borneol Cinnamic acid 1.24E-03 4.87E-02 3.00 2.01E-05 0 - 

Hyodeoxycholic acid Deoxycholic acid 1.92E-03 2.78E-02 2.85 1.87E-05 0 - 

Gamabufotalin Bufalin 1.54E-03 1.79E-02 2.87 9.61E-06 0 -6.57 

Cinnamaldehyde Cinnamic acid 1.04E-03 1.44E-02 3.07 4.87E-06 0 - 
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4.3.8 Suggested modes-of-action of synergistic combinations from a target-network 

perspective 

In this section, the MOAs of four synergistic combinations were suggested from the highly 

linked targets of the compounds.  

The first combination that shows the highest SS (SS=1.10E-03) is ginsenoside Rb3 

and cholic acid. Ginsenoside Rb3 was predicted to modulate four targets, in addition to three 

targets (Caspase-3 (CASP3) (301), Caspase-8 (CASP8) (301) and Caspase-9 (CASP9) (301)), 

which were extracted from literature. In total, 201 GO BP were annotated to these seven 

targets. Cholic acid was predicted to modulate 18 targets, which were annotated with 197 GO 

biological processes. The list of predicted targets of all combinations per discussion can be 

found in Table 4.9. The combination did not share any common predicted targets (Figure 

4.7a). However, it was found that both compounds shared 143 common GO BP. Studies have 

been reported on the implications of some of the predicted targets and GO BP in cell 

proliferation. The highest degree node of cholic acid, androgen receptor (AR) (k=206) has 

been reported to modulate androgen-mediated vascular endothelial functions by interacting 

with the VEGF receptor signalling pathway upon androgen treatment (302). AR is also shown 

to recruit Src and activate both the MAPK pathway and the PI3K-Akt cascade leading to cell 

survival and proliferation (MAPK cascade, GO:0000165, p-value=2.4E-165) (303). The next 

highly connected predicted targets of cholic acid were glucocorticoid receptor (NR3C1) 

(k=126) (304), estrogen receptor (ESR1) (k=45) (305), nitric oxide synthase, inducible 

(NOS2) (k=38) and tyrosine-protein phosphatase non-receptor type 1 (PTPN1) (k=26) (306), 

which have been reporter for their activities in vascular angiogenesis. Fibroblast growth factor 

1 (FGF1) (k=41), the highest degree node of ginsenoside Rb3, is involved in tissue repair and 

regeneration, with FGF-induced signalling mainly mediated via the MAPK pathway (307). 

The Bliss score is 6.51. Therefore, the synergy of ginsenoside Rb3 and cholic acid is 

suggested to arise from the modulation of different targets of related pathways. 

Combination of ginsenoside Rb3 and ginsenoside Rb2 shows an SS of 9.97E-04, with 

both compounds predicted to modulate four identical targets (Figure 4.7b). From literature, 

three additional targets were associated to the MOA of ginsenoside Rb3 and four additional 

targets were associated to the MOA of ginsenoside Rb2. 195 GO BP were linked to targets of 

ginsenoside Rb3, while 201 GO BP were associated with ginsenoside Rb2. The combinations 

shared 163 common GO BP. The four additional targets of ginsenoside Rb2 were epidermal 

growth factor receptor (EGFR) (k=211), fibronectin (FN1) (k=143), pro-epidermal growth 

factor (EGF) (k=108) and interstitial collagenase (MMP1) (k=32), which were extracted from 

a study of the wound healing effects of ginsenoside Rb2 (308). CASP3 (k=27), CASP8 (k=17) 
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and CASP9 (k=5) were also extracted from literature. Ginsenoside Rb3 has been shown to 

increase cell viability in ischemic model by significantly attenuated the increase of caspase 

activities in a dose-dependent manner (301). In addition, FGF1 (k=41), one of the predicted 

targets of ginsenoside Rb3, also promotes cell proliferation (307). EGFR, EGF, and FN1 were 

annotated with regulation of angiogenesis (GO:0045765, p-value=5.5E-51), while the caspase 

targets were annotated with positive regulation of cell death (GO:0010942, p-value=1.6E-

103). The inverse actions by two groups of targets might contribute to the large Bliss score of 

13.99, despite the combinations sharing many common GO BPs. Therefore, the combination 

of ginsenoside Rb3 and ginsenoside Rb2 is proposed to exhibit synergy through modulating 

different targets at unrelated pathways. 

 The third combination, ginsenoside Rb3 and 11-hydroxyprogesterone (SS= 9.09E-04) 

shows two sets of different predicted targets (Figure 4.7c). 11-hyrxyprogesterone was 

predicted to modulate 39 targets that were associated with 274 GO BP. 201 GO BP were 

associated with ginsenoside Rb3. The combination shared 185 common GO BP. In addition to 

AR in the list of 39 predicted targets of 11-hydroxyprogesteron and some of the highly linked 

targets such as AR (k=206), retinoic acid receptor RXR-alpha (RXRA) (k=157) (309),  

hypoxia-inducible factor 1-alpha (HIF1A) (k=124) (310), estrogen receptor (ESR1) (k=45) 

(305), nuclear factor erythroid 2-related factor 2 (NFE2L2) (k=20) (311) are implicated in 

cardiac vascular angiogenesis. Similar to the previous discussion, FGF1 of ginsenoside Rb3 is 

implicated in cell proliferation (307) and the inhibition of CASP3, CASP8, and CASP9 has 

been reported to induce angiogenesis (301). FGF1, HIF1A, and NFE2L2 were annotated with 

angiogenesis (GO:0001525, p-value= 2.2E-91) and blood vessel development (GO:0001568, 

p-value= 2E-111). The Bliss score of the combination is 7.67. Thus, the synergy between 

ginsenoside Rb3 and 11-hydroxyprogestrones is believed to be from the modulation of 

different targets of related pathways. 

 The fourth combination from Table 4.7 that shows synergy is between ginsenoside Rd 

and ginsenoside Rb2 (SS=8.60-4) (Figure 4.7d). Ginsenoside Rd was predicted to modulate 

12 targets that were annotated to 288 GO BP, of which 183 GO BP were common for both 

compounds in the combination. The combinations shared two common predicted targets, 

heparanase (HPSE) (k=4) and GBA ((k=1), which might not play significant roles in 

vasculogenesis from the lower k value, but one common highly linked node, FGF1 (k=41). A 

few of the highly linked predicted targets of ginsenoside Rd are associated to vascular 

angiogenesis such as FGF1 (k=41), tyrosine-protein phosphatase non-receptor type 1 

(PTPN1) (k=46) (306), SIRT1 (k=25) (312), apoptosis regulator Bcl-2 (BCL2) (k=22) (313) 

and apoptosis regulator BAX (BAX) (k=19). The association of ginsenoside Rb2’s predicted 
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targets with cell proliferation have been discussed previously. Many of the highly connected 

predicted targets of both were compounds sharing common GO biological processes such as 

angiogenesis (GO:0001525, p-value=2.2E-91), blood vessel morphogenesis (GO:0048514, p-

value=2.6E-100) and cell migration (GO:001647, p-value= 6.7E-133). The Bliss score of the 

combination is -3.71, which is still higher compare to the SS values of combinations in the 

bottom 20. Therefore, the synergy of the combination is suggested from the modulation of 

different targets of related pathways.  

(a) 

 

(b) 

 
 

(c) 

 

(d) 

 

Figure 4.7: The networks of predicted synergistic combinations, which also show synergistic 

effects in vitro. Each network is composed of compounds that are linked to their predicted 

targets. In general, the predicted targets of both compounds (green circle) are observed to be 

linked by at least one target from one of the compounds (such in (a)) or shared predicted 

targets (both (b) and (d)) (red circle).  
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Table 4.9: The list of predicted targets of four combinations with measured Bliss synergy values from the top-ranked group. 

Compound  i Compound j Predicted target i Predicted target j 

Ginsenosise Rb3 Cholic acid Fibroblast growth factor 1 (FGF1) Androgen receptor (AR) 

  

Tyrosine-protein kinase Mer (MERTK)  Glucocorticoid receptor (NR3C1) 

  

Heparanase (HPSE) Estrogen receptor (ESR1) 

  

Glucosylceramidase (GBA) Nitric oxide synthade, inducible (NOS2) 

  

Caspase-3 (CASP3) Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) 

  

Caspase-8 (CASP8) Estrogen receptor beta (ESR2) 

  

Caspase-9 (CASP9)  Ephrin type-A receptor 4 (EPHA4) 

   

Zinc finger protein GLI1 (GLI1) 

   

Mineralocorticoid receptor (NR3C2) 

   

Vitamin D3 receptor (VDR) 

   

Glutamate receptor ionotropic, NMDA 2D (GRIN2D) 

   

Nuclear receptor subfamily 1 group I member 2 (NR1I2) 

   

M-phase inducer phosphatase 1 (CDC25) 

   

Bile acid receptor (NR1H4) 

   

Fatty acid-binding protein, liver (FABP1) 

   

DNA polymerase alpha catalytic subunit (POLA1) 

   

Prostaglandin F2-alpha receptor (PTGFR) 

   

Prostaglandin E2 receptor EP4 subtype (PTGER4) 

      

Prostaglandin E2 receptor EP2 subtype (PTGER2) 

 

Ginsenoside Rb3 Ginsenoside Rb2 Fibroblast growth factor 1 (FGF1) Epidermal growth factor receptor (EGFR) 

  

Tyrosine-protein kinase Mer (MERTK)  Fibronectin (FN1) 

  

Glucosylceramidase (GBA) Pro-epidermal growth factor (EGF) 

  

Caspase-3 (CASP3) Fibroblast growth factor 1 (FGF1 

  

Caspase-8 (CASP8) Interstitial collagenase (MMP1) 

  

Caspase-9 (CASP9) Tyrosine-protein kinase Mer (MERTK) 

   

Heparanase (HPSE) 

   

Glucosylceramidase (GBA) 

 

Ginsenoside Rb3 11-hydroxyprogesterone Fibroblast growth factor 1 (FGF1) Androgen receptor (AR) 

  

Tyrosine-protein kinase Mer (MERTK)  Retinoic acid receptor RXR-alpha (RXRA) 

  

Glucosylceramidase (GBA) Glucocorticoid receptor (NR3C1) 

  

Caspase-3 (CASP3) Hypoxia-inducible factor 1-alpha (HIF1A) 
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Caspase-8 (CASP8) Mitogen-activated protein kinase 3 (MAPK3) 

  

Caspase-9 (CASP9) Nuclear factor NF-kappa-B p105 subunit (NFKB1) 

   

Estrogen receptor (ESR1) 

   

Nuclear factor erythroid 2-related factor 2 (NFE2L2) 

   

Gamma-aminobutyric acid receptor subunit alpha-1 (GABRA1) 

   

Interleukin-8 (CXCL8) 

   

Estrogen receptor beta (ESR2) 

   

Progesterone receptor (PGR) 

   

Ephrin type-A receptor 4 (EPHA4) 

   

Zinc finger protein GLI1 (GLI1) 

   

Gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2) 

   

Phosphatidylinositol 5-phosphate 4-kinase type-2 beta (PIP4K2B) 

   

Mineralocorticoid receptor (NR3C2) 

   

Vitamin D3 receptor (VDR) 

   

Nuclear receptor ROR-alpha (RORA) 

   

Nuclear receptor subfamily 0 group B member 1 (NR0B1) 

   

Nuclear receptor subfamily 1 group I member 2 (NR1I2) 

   

Gamma-aminobutyric acid receptor subunit beta-1 (GABRB1) 

   

Mitogen-activated protein kinase kinase kinase 13 (MAP3K13) 

   

Serine/threonine-protein kinase OSR1 (OXSR1) 

   

Fatty acid-binding protein, liver (FABP1) 

   

Gamma-aminobutyric acid receptor subunit alpha-5 (GABRA5) 

   

Gamma-aminobutyric acid receptor subunit beta-2 (GABRB2) 

   

Nuclear receptor subfamily 1 group I member 3 (NR1I3) 

   

Gamma-aminobutyric acid receptor subunit gamma-1 (GABRG1) 

   

Calcium/calmodulin-dependent protein kinase kinase 2 

(CAMKK2) 

   

Serine/threonine-protein kinase Nek6 (NEK6) 

   

Gamma-aminobutyric acid receptor subunit theta (GABRQ) 

   

Gamma-aminobutyric acid receptor subunit gamma-3 (GABRG3) 

   

Death-associated protein kinase 2 (DAPK2) 

   

DNA polymerase alpha catalytic subunit (POLA1) 

   

Acetylcholine receptor subunit beta(CHRNB1) 

   

Corticosteroid 11-beta-dehydrogenase isozyme 1 (HSD11B1) 

   

Gamma-aminobutyric acid receptor subunit alpha-4 (GABRA4) 
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Gamma-aminobutyric acid receptor subunit alpha-6 (GABRA6) 

 

Ginsenoside Rd Ginsenoside Rb2 Fibroblast growth factor 1 (FGF1) Epidermal growth factor receptor (EGFR) 

  

Tyrosine-protein phosphatase non-receptor type 1 (PTPN1) Fibronectin (FN1) 

  

NAD-dependent protein deacetylase sirtuin-1 (SIRT1) Pro-epidermal growth factor (EGF) 

  

Apoptosis regulator Bcl-2 (BCL2) Fibroblast growth factor 1 (FGF1) 

  

Apoptosis regulator BAX (BAX) Interstitial collagenase (MMP1) 

  

Voltage-dependent L-type calcium channel subunit alpha-1C 

(CACNA1C) Tyrosine-protein kinase Mer (MERTK) 

  

DNA topoisomerase 2-alpha (TOP2A) Heparanase (HPSE) 

  

Heparanase (HPSE) Glucosylceramidase (GBA) 

  

Nuclear receptor subfamily 1 group I member 2 (NR1I2) 

  

Bile acid receptor (NR1H4) 

 

  

Glucosylceramidase (GBA) 

 

    

Galectin-3 (LGALS3) 
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4.3.9 Discussion on the suggested MOA of synergistic combinations 

 To this end, four combinations with SS values agree with Bliss scores measured from 

the response of cell growths of HUVEC. The synergistic effects of these combinations are 

suggested from the highly connected predicted targets of both compounds. In general, three 

combinations are suggested to exhibit synergistic effects by modulating different targets of 

related pathways and one combination is estimated to exert synergy by modulating different 

targets of unrelated pathways. The proposed types of MOA of compound combinations have 

been reported before; synergistic drug combinations can exert their activities by modulating 

similar/different targets of similar/different pathways (314). For ginsenoside Rb3, the 

synergistic MOA was proposed by modulating FGF1 and inhibiting the activation of 

caspases. Ginsenoside Rb2 was estimated to exhibit synergy from the modulation of growth 

factor related targets such as EGFR and EGF. Both cholic acid and 11-hydroxprogestereone 

were proposed to induce synergy from modulating AR. From the four synergistic 

combinations, the combination that contains either ginsenoside Rb2 and ginsenoside Rb3 was 

discovered to promote cell proliferation when they are combined with each other or 11-

hydorxyprogesterone, cholic acid and ginsenoside Rd. The synergistic effect of ginsenoside 

Rb3 and ginsenoside Rb2 combination seems to be suggested from literature rather than the 

predicted targets but the information from such studies is not always available for other 

components of SBP. For example, many studies have been conducted independently relating 

to ginsenoside Rb1 and ginsenoside Re (315, 316), hence the network-based approach could 

provide an opportunity to identify the synergy between these compounds from a protein-

protein interaction perspective. 

In this study, some of the highly connected predicted targets such as mitogen-activated 

protein kinase 3 (MAPK3) (k=77) and protein kinase C eta type (PRKCH) (k=20) have a 

limited number of studies to link their associations with angiogenesis. In a few cases, low 

connected predicted targets, such as galectin-3 (LGALS3) (k=1) (317) and HPSE (k=4) (318) 

have been implicated in vascular angiogenesis implying the targets might be important 

players in a real biological network but the significance of these predicted targets are not 

captured in the network. The network is only a small representation of a real biological 

network, where a lot of information is not included (319). However, the combinations of the 

bottom rank group, which have lower SS values correspond to the Bliss synergy scores, 

suggest the network is still robust to the set of predicted targets of the compound combination.  

 Despite the proposed MOAs of the combinations from the top-ranked group, one 

combination in the group did not agree with the experimental results. The combination, 

ginsenoside Rb2 and ginsenoside Rg1 with SS value of 8.64E-04 was determined to show no 
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synergy based on Bliss score. The measured Bliss score was -10.29.  From the single dose 

response curve in Appendices (Figure A4.1), ginsenoside Rg1 has already inhibited cell 

growth at a low concentration. The observation disagrees with a study that reports ginsenoside 

Rg1 increases the interactions between glucocorticoid receptor (NR3C1) and FGF1, which 

activate PI3K/Akt/eNOS signalling and eventually enhancing angiogenesis (320). Both of 

these targets are among the highly connected predicted targets of both compounds. However, 

the validation can be further confirmed by repeating the experiment. Therefore, to confirm the 

MOAs of the compounds by modulating the predicted targets, it is necessary to perform 

subsequent experiment such as Western blotting to detect expression of the predicted targets. 
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4.4 Conclusion 

In this work, the evaluation of the synergy of 231 pairs of combinations from 22 SBP were 

measured from a representative network of angiogenesis and CHD. The representative 

network of angiogenesis and CHD was constructed using a knowledge-based approach which 

is demonstrated to be feasible in estimating synergistic SBP compound combinations. In the 

first part of the study, the representative network was built by integrating different data 

sources to identify genes annotated with angiogenesis and CHD. By utilising information of 

PPI extracted from Reactome and Signalink2.0, the network was shown to be a scale free 

network and represented the “desired” biological context where the top ten hub genes were 

related to the biological process of angiogenesis/CHD. In the second part of the study, three 

elements were formulated into an equation to measure synergy of two-compound 

combinations. The three elements were topological properties, pathway dissimilarity and 

mean distance of all the predicted targets of a combination. The integration of the three 

elements are reasonable to measure how the predicted targets are linked to each other in the 

network with their related pathways to produce synergy. The model was robust when 

compared to the background distribution of random networks with permutated edges and 

random targets. In the third part of the study, the results from experimental validation indicate 

four combinations from the 20 top-ranked combinations agree with the SS. These 

combinations are ginsenoside Rb3 and cholic acid, ginsenoside Rb2 and ginsenoside Rb3, 

ginsenoside Rb3 and 11-hydroxyprogesterone and ginsenoside Rb2 and ginsenoside Rd. The 

Bliss scores were higher than the scores of five combinations in the bottom ranks. The MOA 

of the three synergistic combinations were proposed from the modulation of predicted targets 

of related pathways. One synergistic combination showed synergy from modulating the 

different targets of unrelated pathways. Despite one combination in the top-ranked group 

disagreeing with experimental result, the approach of utilising systems biology provides the 

opportunity to identify simplified combinations with a desirable “network” effect. 
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Chapter 5:  
Concluding Remarks 

 

 

This thesis concentrated on understanding the MOA of TM compounds by applying an in 

silico target prediction. A chemogenomic database of ligand-target pairs is developed from 

bioactivity databases that form a training set of the model. The model learns the pattern of 

chemical spaces of the ligands to their protein targets via two machine learning models, Naïve 

Bayes Classifier and Random Forest. To predict a target class of a new compound, the model 

compares the structural similarity of the new compound to those compounds in the model 

based on the “Molecular Similarity Principle”. Hence, the in silico target prediction has the 

ability to correlate the chemical descriptor of TM compounds to their protein targets, which 

the MOA can be rationalise from associating the indications of the TM compounds (plants) to 

their predicted targets.  

In Chapter 2, we showed that the applicability of an in silico target prediction 

improved mechanistic understanding of the relationship between 46 TCM therapeutic action 

classes and subclasses, which are not apparent from the name given to the (sub-)class itself, 

via the dendrogram of 14 clusters. Despite different names are given to the subclasses, the 

frequent enriched predicted targets and annotated pathways are related to immune related 

proteins and digestive system respectively. The findings could be linked to the view of TCM, 

where symptoms are usually regarded as the invasion of pathogenic factors, thus sensitizing 

the immune system to response and the important treatment principle is “the foundation of 

acquired constitution” that includes spleen and stomach. The results from the study can be 

further developed by studying the connections between predicted targets from the significant 

clusters of protein family and pathway motif. This study could help to better understand the 

MOAs of TCM compounds in maintaining a healthy body system by relating the digestive 

system to immune-related targets of the GPCR or protein kinase family. 

In Chapter 3, we explored the similarity and differences of the chemical space and 

bioactivity space of TCM, Ayurveda and Malay TM for treating cancer. The key findings 

indicated that they shared six frequent scaffolds and protein kinase was the most significant 

target class in all three TMs. The small similarity suggested that many of the remaining 

compounds are worth exploring for their anti-cancer activities, as additional nine frequent 

scaffolds are found to abundance in the anti-cancer plants and the compounds were predicted 

to modulate additional 13 targets classes. The comparison of the bioactivity space discovered 

the majority of the plants were not phylogenetically related except for eight pairs of plants. 

The findings of the large compound diversity and high similarity of MOAs could lead to new 
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knowledge of the cancer pathogenesis by identifying which biological pathways these targets 

are annotated with. It is suggested that the chemical and bioactivity space exploration 

strategies could be a stepping-stone to compare more TM datasets of different countries. The 

study could provide an opportunity discover more compound diversity for treating cancer. 

In Chapter 4, we evaluated the synergy of pairwise compound combinations of 22 

SBP compounds by extending the target prediction and pathway annotation to network 

topology in order to understand the MOA of SBP for CHD by promoting angiogenesis. The 

integration of three parameters, topology, pathway dissimilarity and mean distance of the set 

of predicted targets of a compound combination to measure synergy is reasonable to measure 

how the predicted targets are linked to each other in the network with their related pathways 

The findings of four synergistic combinations that agreed with experimental results 

demonstrate that the method can be potentially applied to explore compound combinations of 

other TCM formulations with limited bioactivity data to start with. To confirm the predicted 

targets are responsible for the MOAs of the synergistic combinations, further experimental 

studies such as gene expression analysis and Western blotting are proposed. 

Although the studies have successfully explained the link of predicted targets and 

pathways in suggesting the MOAs of TM compounds, the studies are still limited to targets 

that are only available in the in silico target prediction. For example, the protein kinase family 

is the biggest group of protein family in the model. Thus, extending protein targets of other 

protein families could provide a more comprehensive overview of targets that are implicated 

for the indications of the TM compounds. The available chemical space of the model is 

limited to the version of ChEMBL used when the model was developed. In addition, natural 

compounds only represent approximately 3.85% of the total compounds available. Therefore, 

the limited coverage of chemical space leads to no predicted targets for one of the TCM 

therapeutic action subclasses, “tranquilizing, settling” in Chapter 1. Despite the limitations, 

our in silico target prediction was able to describe a reasonable MOA of the TM compounds, 

hence, the analyses could be beneficial in providing testable hypotheses to guide towards 

finding new molecular entities. 
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Machine-Learning Models of Protein-Ligand Interaction. Current Topics in Medicinal 

Chemistry 11, 1978-1993 (2011). 

37. N. P. Savchuk, K. V. Balakin and S. E. Tkachenko, Exploring the chemogenomic knowledge 

space with annotated chemical libraries. Current Opinion in Chemical Biology 8, 412-417 

(2004). 

38. E. Jacoby, Computational chemogenomics. WIREs Computational Molecular Science 1, 57-67 

(2011). 

39. H. Strömbergsson and G. J. Kleywegt, A chemogenomics view on protein-ligand spaces. 

BMC Bioinformatics 10, 1-11 (2009). 

40. A. R. Leach and V. J. Gillet, An Intoruduction to Chemoinformatics.  (Springer, The 

Netherlands, 2007), pp. 255. 

41. A. Bender and R. C. Glen, Molecular similarity: a key technique in molecular informatics. 

Organic Biomolecular Chemistry 2, 3204-3218 (2004). 

42. J. B. O. Mitchell, Machine learning methods in chemoinformatics. WIREs Computational 

Molecular Science 4, 468-481 (2014). 

43. V. Poroikov, D. Filimonov, A. Lagunin, T. Gloriozova and A. Zakharov, PASS: identification 

of probable targets and mechanisms of toxicity. SAR and QSAR in Environmental Research 

18, 101-110 (2007). 

44. Nidhi, M. Glick, J. W. Davies and J. L. Jenkins, Prediction of Biological Targets for 

Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics 

Databases. Journal of Chemical Information and Modeling 46, 1124-1133 (2006). 

45. M. J. Keiser, B. L. Roth, B. N. Armbruster et al., Relating protein pharmacology by ligand 

chemistry. Nature Biotechnology 25, 197-206 (2007). 

46. J. Mestres, L. Martín-Couce, E. Gregori-Puigjané, M. Cases and S. Boyer, Ligand-Based 

Approach to In Silico Pharmacology:  Nuclear Receptor Profiling. Journal of Chemical 

Information and Modeling 46, 2725-2736 (2006). 

47. F. M. Fauzi, A. Koutsoukas, R. Lowe et al., Chemogenomics Approaches to Rationalizing the 

Mode-of-Action of Traditional Chinese and Ayurvedic Medicines. Journal of Chemical 

Information and Modeling 53, 661-673 (2013). 

48. D. Rogers and M. Hahn, Extended-Connectivity Fingerprints. Journal of Chemical 

Information and Modeling 50, 742-754 (2010). 

49. A. Bender, D. W. Young, J. L. Jenkins et al., Chemogenomic Data Analysis: Prediction of 

Small-Molecule Targets and the Advent of Biological Fingerprints. Combinatorial Chemistry 

& High Throughput Screening 10, 719-731 (2007). 

50. X. Chen, C. Y. Ung and Y. Chen, Can an in silico drug-target search method be used to probe 

potential mechanisms of medicinal plant ingredients? Natural Product Reports 20, 432-444 

(2003). 



 119 

51. S. Zhang, W. Lu, X. Liu et al., Fast and effective identification of the bioactive compounds 

and their targets from medicinal plants via computational chemical biology approach. 

Medicinal Chemistry Communication 2, 471-477 (2011). 

52. J. L. Jenkins, A. Bender and J. W. Davies, In silico target fishing: Predicting biological targets 

from chemical structure. Drug Discovery Today: Technologies 3, 413-421 (2006). 

53. A. E. Cleves and A. N. Jain, Robust Ligand-Based Modeling of the Biological Targets of 

Known Drugs. Journal of Medicinal Chemistry 49, 2921-2938 (2005). 

54. T. Cheng, Q. Li, Y. Wang and S. H. Bryant, Identifying Compound-Target Associations by 

Combining Bioactivity Profile Similarity Search and Public Databases Mining. Journal of 

Chemical Information and Modeling 51, 2440-2448 (2011). 

55. H. Kitano, Systems Biology: A Brief Overview. Science 295, 1662-1664 (2002). 

56. E. C. Butcher, Can cell systems biology rescue drug discovery? Nature Reviews Drug 

Discovery 4, 461-467 (2005). 

57. G. Apic, T. Ignjatovic, S. Boyer and R. B. Russell, Illuminating drug discovery with 

biological pathways. FEBS Letters 579, 1872-1877 (2005). 

58. A. Pujol, R. Mosca, J. Farrés and P. Aloy, Unveiling the role of network and systems biology 

in drug discovery. Trends in Pharmacological Sciences 31, 115-123 (2010). 

59. M. E. Cusick, H. Hu and A. Smolyar, Literature-curated protein interaction datasets. Nature 

Methods 6, 39-46 (2009). 

60. T. Klingström and D. Plewczynski, Protein–protein interaction and pathway databases, a 

graphical review. Briefings in Bioinformatics 12, 702-713 (2010). 

61. H. Hermjakob, L. Montecchi-Palazzi and C. Lewington, IntAct: An open source molecular 

interaction database. Nucleic Acids Research 32, D452-D455 (2004). 

62. T. S. Keshava Prasad, R. Goel, K. Kandasamy et al., Human Protein Reference Database—

2009 update. Nucleic Acids Research 37, D767-D772 (2009). 

63. C. Stark, B. J. Breitkreutz and T. Reguly, BioGRID: A general repository for interaction 

datasets. Nucleic Acids Research 34, D535-D539 (2006). 

64. A. Zanzoni, L. Montecchi-Palazzi and M. Quondam, MINT: A Molecular INTeraction 

database. FEBS Letters 513, 135-140 (2002). 

65. M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 

Research 28, 27-30 (2000). 

66. D. Fazekas, M. Koltai, D. Türei et al., SignaLink 2 – a signaling pathway resource with multi-

layered regulatory networks. BMC Systems Biology 7, 1-7 (2013). 

67. G. Joshi-Tope, M. Gillespie, I. Vastrik et al., Reactome: a knowledgebase of biological 

pathways. Nucleic Acids Research 33, D428-D432 (2005). 

68. S. Liggi, G. Drakakis, A. Henry et al., Extensions to In Silico Bioactivity Predictions Using 

Pathway Annotations and Differential Pharmacology Analysis: Application to Xenopus laevis 

Phenotypic Readouts. Journal of Molecular Informatics 32, 1009-1024 (2013). 

69. J. Liu, K. Sun, C. Zheng et al., Pathway as a Pharmacological Target for Herbal Medicines: 

An Investigation from Reduning Injection. PLoS ONE 10, e0123109 (2015). 

70. N. Le Novere, Quantitative and logic modelling of molecular and gene networks. Nature 

Reviews Genetics 16, 146-158 (2015). 

71. K. Shahzad and J. J. Loor, Application of Top-Down and Bottom-up Systems Approaches in 

Ruminant Physiology and Metabolism. Current Genomics 13, 379-394 (2012). 

72. R. Liu, C.-X. Guo and H.-H. Zhou, Network-based approach to identify prognostic 

biomarkers for estrogen receptor–positive breast cancer treatment with tamoxifen. Cancer 

Biology & Therapy 16, 317-324 (2015). 

73. W. Zhu, L. Yang and Z. Du, Layered Functional Network Analysis of Gene Expression in 

Human Heart Failure. PLoS ONE 4, e6288 (2009). 

74. G. M. Maggiora, On Outliers and Activity Cliffs Why QSAR Often Disappoints. Journal of 

Chemical Information and Modeling 46, 1535 (2006). 

75. T. Kalliokoski, C. Kramer, A. Vulpetti and P. Gedeck, Comparability of Mixed IC50 Data – A 

Statistical Analysis. PLoS ONE 8, e61007 (2013). 

76. K. Chan, Progress in traditional Chinese medicine. Trends in Pharmacological Sciences 16, 

182-188 (1995). 

77. J. B. Waldram, The Efficacy of Traditional Medicine: Current Theoretical and Methodological 

Issues. Medical Anthropology 14, 603-605 (2008). 



 120 

78. K. Chen and H. Xu, The integration of traditional Chinese medicine and Western medicine. 

European Review 11, 225-235 (2003). 

79. E. Chan, M. Tan, J. Xin, S. Sudarsanam and D. E. Johnson, Interactions between traditional 

Chinese medicines and Western therapeutics. Current Opinion Drug Discovery & 

Development 13, 50-65 (2010). 

80. Y. Wang and A. Xu, A systems biology approach to diagnosis and treatments. Science 346, 

S13-S15 (2014). 

81. X. Zhao, X. Zheng, T.-P. Fan et al., A novel drug discovery strategy inspired by traditional 

medicine philosophies. Science 347, S38-S40 (2015). 

82. R. Liu, R. Runyon, Y. Wang et al., Deciphering ancient combinatorial formula-The Shexiang 

Baoxin pill. Science 347, S40-S42 (2015). 

83. W. Lam, S.-H. Liu, Z. Jiang and Y.-C. Cheng, Lessons from the development of the 

traditional Chinese medicine formula PHY906. Science 347, S43-S44 (2015). 

84. H. Sheriden, B. Kopp, L. Krenn, D. Guo and J. Sendker, Traditional Chinese herbal medicine 

preparation: Invoking the butterfly effect. Science 350, S64-S66 (2015). 

85. S. Li, Mapping ancient remedies: Applying a network approach to traditional Chinese 

medicine. Science 350, S72-S74 (2015). 

86. B. He, C. Lu, M. Wang et al., Drug discovery in traditional Chinese medicine: From herbal 

fufang to combinatory drugs. Science 350, S74-S76 (2015). 

87. J. K. Chen and T. T. Chen, Chinese Medical Herbalogy and Pharmacology. L. Crampton, Ed.,  

(Art of Medicine Press, Inc., City of Industry, California, 2004), pp. 1619. 

88. C. Y. Chen, TCM Database@Taiwan: the world's largest traditional Chinese medicine 

database for drug screening in silico. PLoS ONE 6, e15939 (2011). 

89. J. Zhao, P. Jiang and W. Zhang, Molecular networks for the study of TCM Pharmacology. 

Briefings in Bioinformatics 11, 417-430 (2009). 

90. M. Zhao, Q. Zhou, W. Ma and D.-Q. Wei, Exploring the Ligand-Protein Networks in 

Traditional Chinese Medcine: Current Databases, Methods, and Applications. Evidance-Based 

Complementary and Alternative Medicine 2013, 1-15 (2013). 

91. J. Qiu, A culture in the balance. Nature 448, 126-128 (2007). 

92. L. Wang, G.-B. Zhou, P. Liu et al., Dissection of mechanisms of Chinese medicinal formula 

Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proceedings of 

the National Academy of Sciences 105, 4826-4831 (2008). 

93. T.-P. Fan, J.-C. Yeh, K. W. Leung, P. Y. K. Yue and R. N. S. Wong, Angiogenesis: from 

plants to blood vessels. Trends in Pharmacological Sciences 27, 297-309 (2006). 

94. S. Ma, C. Feng, X. Zhang et al., The multi-target capabilities of the compounds in a TCM 

used to treat sepsis and their in silico pharmacology. Complementary Therapies in Medicine 

21, 35-41 (2013). 

95. Z. Xu, Modernization: One step at a time. Nature Outlook 480, S90-S92 (2011). 

96. T. W. Carson and C. M. Crews, Molecular Understanding and Modern Applications of 

Traditional Medicines: Triumphs and Trials. Cell 130, 769-774 (2007). 

97. Y. Cai, Q. Luo, M. Sun and H. Corke, Antioxidant activity and phenolic compounds of 112 

traditional Chinese medicinal plants associated with anticancer. Life Sciences 74, 2157-2184 

(2004). 

98. Q. Wang, H. Kuang, Y. Su et al., Naturally derived anti-inflammatory compounds from 

Chinese medicinal plants. Journal of Ethnopharmacology 146, 9-39 (2013). 

99. Y. J. Kang, Herbogenomics: From Traditional Chinese Medicine to Novel Therapeutics. 

Experimental Biology and Medicine 2033, 1059-1065 (2008). 

100. S. Zahler, S. Tietze, F. Totzke et al., Inverse In Silico Screening for Identification of Kinase 

Inhibitor Targets. Chemistry & Biology 14, 1207-1214 (2007). 

101. A. A. Lagunin, R. K. Goel, D. Y. Gawande et al., Chemo- and bioinformatics resources for in 

silico drug discovery from medicinal plants beyond their traditional use: a critical review. 

Natural Product Reports 31, 1585-1611 (2014). 

102. Molecular Operating Environemnt (MOE), 2013.08, Chemical Computing Group ULC, 1010 

Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, (2013). 

103. A. Koutsoukas, R. Lowe, Y. Kalantar-Motamedi et al., In silico target predictions: comparing 

multiclass Naïve Bayes and Parzen-Rosenblatt Window and the definition of a benchmarking 



 121 

dataset for target prediction. Journal of Chemical Information and Modeling 53, 1957–1966 

(2013). 

104. A. Bender, H. Y. Mussa, R. C. Glen and S. Reiling, Similarity Searching of Chemical 

Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of 

Performance. Journal of Chemical Information and Computer Sciences 44, 1708-1718 (2004). 

105. P. A. Flach and N. Lachiche, Naive Bayesian Classification of Structured Data. Machine 

Learning 57, 233-269 (2004). 

106. M. Olah, R. Rad, L. Ostopovici et al., in Chemical Biology. (Wiley-VCH Verlag GmbH, 

2007), pp. 760-786. 

107. G. Drakakis, A. Koutsoukas, S. C. Brewerton et al., Comparing Global and Local Likelihood 

Score Thresholds in Multiclass Laplacian-Modified Naive Bayes Protein Target Prediction. 

Combinatorial Chemistry & High Throughput Screening 18, 323-330 (2015). 

108. M. Kanehisa, S. Goto, Y. Sato et al., Data, information, knowledge and principle: back to 

metabolism in KEGG. Nucleic Acids Research 42, D199-D205 (2014). 

109. S. Liggi, G. Drakakis, A. Koutsoukas et al., Extending in silico mechanism-of-action analysis 

by annotating targets with pathways: application to cellular cytotoxicity readouts. Future 

Medicinal Chemistry 6, 2029-2056 (2014). 

110. E. E. Bolton, Y. Wang, P. A. Thiessen and S. H. Bryant, PubChem: Integrated Platform of 

Small Molecules and Biological Activities. Chapter 12 IN Wheeler RA and Spellmeyer DC, 

eds. Annual Reports in Computational Chemistry 4 217-241 (2008). 

111. J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad and R. G. Coleman, ZINC: A Free Tool 

to Discover Chemistry for Biology. Journal of Chemical Information and Modeling 52, 1757-

1768 (2012). 

112. W. Liu and D. E. Johnson, Clustering and its application in multi-target prediction. Current 

Opinion Drug Discovery & Development 12, 98-107 (2009). 

113. R. D. Browne and Y. C. Martin, Structure-Activity Data Compare Structure-Based Clustering 

Methods and Descriptors for Use in Compound Selection. Journal of Chemical Information 

and Computer Sciences 36, 572-584 (1996). 

114. RStudio Team (2016). RStudio: Integrated development environment for R, RStudio, Inc., 

Boston, MA 

115. J. H. Ward, Hierarchical Grouping to Optimize an Objective Function. Journal of American 

Statistical Association 58, 236-244 (1963). 

116. The UniProt Consortium, Activties at the Universal Protein Resource (UniProt). Nucleic Acids 

Research 42, D191-D198 (2014). 

117. P. Nussbaumer and A. Billich, Steroid Sulfatase Inhibitors. Medicinal Research Reviews 24, 

529-576 (2004). 

118. K. M. Doody, A. Bourdeau and M. L. Tremblay, T-cell protein tyrosine phosphatase is a key 

regulator in immune cell signaling: lessons from the knockout mouse model and implications 

in human disease. Immunological Reviews 228, 325-341 (2009). 

119. A. M. Cameron, J. Frederick C. Nucifora, E. T. Fung et al., FKBP12 Binds the Inositol 1,4,5-

Trisphosphate Receptor at Leucine-Proline (1400–1401) and Anchors Calcineurin to this 

FK506-like Domain. Journal of Biological Chemistry 272, 27582-27588 (1997). 

120. S. A. Jabbour and B. J. Goldstein, Sodium glucose co-transporter 2 inhibitors: blocking renal 

tubular reabsorption of glucose to improve glycaemic control in patients with diabetes. 

International Journal of Clinical Practice 62, 1279-1284 (2008). 

121. J. L. Nitiss, Investigating the biological functions of DNA topoisomerases in eukaryotic cells. 

Biochimica et Biophysica Acta 1400, 63-81 (1998). 

122. S. Andersson, W. M. Geissler, L. Wu et al., Molecular genetics and pathophysiology of 17 

beta-hydroxysteroid dehydrogenase 3 deficiency. The Journal of Clinical Endocrinology & 

Metabolism 81, 130-136 (1996). 

123. C. Bařinka, C. Rojas, B. Slusher and M. Pomper, Glutamate Carboxypeptidase II in Diagnosis 

and Treatment of Neurologic Disorders and Prostate Cancer. Current Medicinal Chemistry 19, 

856-870 (2012). 

124. B. E. Shan, K. Zeki, T. Sugiura, Y. Yoshida and U. Yamashita, Chinese Medicinal Herb, 

Acanthopanax gracilistylus, Extract Induces Cell Cycle Arrest of Human Tumor Cells in vitro. 

Japanese Journal of Cancer Research 91, 383-389 (2000). 



 122 

125. L. Zhang, A. S. Ravipati, S. R. Koyyalamudi et al., Antioxidant and Anti-inflammatory 

Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid Compounds. 

Journal of Agricultural and Food Chemistry 59, 12361-12367 (2011). 

126. Chinese Herbal Medicine Materia Medica 3rd Edition.  (Eastlan Press, Inc., Seattle, WA, 

2004). 

127. T. N. Hilton, L. J. Tuttle, K. L. Bohnert, M. J. Mueller and D. R. Sinacore, Excessive Adipose 

Tissue Infiltration in Skeletal Muscle in Individuals With Obesity, Diabetes Mellitus, and 

Peripheral Neuropathy: Association With Performance and Function Physical Therapy 88, 

1336-1344 (2008). 

128. A. Giordano, M. Calvani, O. Petillo et al., Skeletal Muscle Metabolism in Physiology and in 

Cancer Disease. Journal of Cellular Biochemistry 90, 170-186 (2003). 

129. P. Pouliot, S. Bergeron, A. Marette and M. Olivier, The role of protein tyrosine phosphatases 

in the regulation of allergic asthma: implication of TC-PTP and PTP-1B in the modulation of 

disease development. Immunology 128, 534-542 (2009). 

130. A. B. Hocaoglu, O. Karaman, D. O. Erge et al., Glycyrrhizin and Long-Term Histopathologic 

Changes in a Murine Model of Asthma. Current Therapeutic Research, Clinical and 

Experimental 72, 250-261 (2011). 

131. J. H. Choi, Y. P. Hwang, H. G. Kim et al., Saponins from the Roots of Platycodon 

grandiflorum Suppresses TGFβ1-Induced Epithelial-Mesenchymal Transition Via Repression 

of PI3K/Akt, ERK1/2 and Smad2/3 Pathway in Human Lung Carcinoma A549 Cells. 

Nutrition and Cancer 66, 140-151 (2013). 

132. S. R. Kim, H. S. Seo, H.-S. Choi et al., Trichosanthes kirilowii Ethanol Extract and 

Cucurbitacin D Inhibit Cell Growth and Induce Apoptosis through Inhibition of STAT3 

Activity in Breast Cancer Cells. Evidence-Based Complementary and Alternative Medicine 

2013, 1-9 (2013). 

133. X.-Q. Zhang, F. C. F. Ip, D.-M. Zhang et al., Triterpenoids with neurotrophic activity from 

Ganoderma lucidum. Natural Product Research 25, 1607-1613 (2011). 

134. T. Kawakami, Y. Kawakami and J. Kitaura, Protein Kinase Cβ (PKCβ): Nomal Functions and 

Dieases. Journal of Biochemistry 132, 677-682 (2002). 

135. M. Kashiwagi, M. Ohba, K. Chida and T. Kuroki, Protein Kinase Cη (PKCη): Its Involvement 

in Keratinocyte Differentiation. Journal of Biochemistry 132, 853-857 (2002). 

136. N. Saito and Y. Shirai, Protein Kinase Cγ (PKCγ): Function of Neuron Specific Isotype. 

Journal of Biochemistry 132, 683-687 (2002). 

137. R. Karodi, M. Jadhav, R. Rub and A. Bafna, Evaluation of the wound healing activity of a 

crude extract of Rubia cordifolia L. (Indian madder) in mice. International Journal of Applied 

Research in Natural Products 2, 12-18 (2009). 

138. L. Cao, Y. Zou, J. Zhu, X. Fan and J. Li, Ginsenoside Rg1 attenuates concanavalin A-induced 

hepatitis in mice through inhibition of cytokine secretion and lymphocyte infiltration. 

Molecular and Cellular Biochemistry 380, 203-210 (2013). 

139. R. X. Zhang, Z. P. Jia, L. Y. Kong et al., Stachyose extract from Rehmannia glutinosa 

Libosch. to lower plasma glucose in normal and diabetic rats by oral administration. 

Pharmazie 59, 552-556 (2004). 

140. W. L. Li, H. C. Zheng, J. Bukuru and N. D. Kimpe, Natural medicines used in the traditional 

Chinese medical system for therapy of diabetes mellitus. Journal of Ethnopharmacology 92, 

1-21 (2004). 

141. W. L. W. Hsiao and L. Liu, The Role of Traditional Chinese Herbal Medicines in Cancer 

Therapy – from TCM Theory to Mechanistic Insights. Planta Medica 76, 1118-1131 (2010). 

142. V. I. Polshakov, Dihydrofolate reductase: structural aspects of mechanism of enzyme catalysis 

and inhibition. Russian Chemical Bulletin 50, 1733-1751 (2001). 

143. F.-M. Hsu, S. Zhang and B. P. C. Chen, Role of DNA-dependent protein kinase catalytic 

subunit in cancer development and treatment. Translational Cancer Research 1, 22-34 (2012). 

144. P. E. Wakefield, W. D. James, C. P. Samlaska and M. S. Meltzer, Tumor necrosis factor 

Journal of the American Academy of Dermatology 24, 675-685 (1991). 

145. W.-M. Chu, Tumor necrosis factor. Cancer Letters 328, 222-225 (2013). 

146. M. Adetumbi, G. T. Javor and B. H. S. Lau, Allium sativum (Garlic) Inhibits Lipid Synthesis 

by Candida albicans. Antimicborial Agents and Chemotherapy 30, 499-501 (1986). 



 123 

147. H.-D. Ma, Y.-R. Deng, Z. Tian and Z.-X. Lian, Traditional Chinese Medicine and Immune 

Regulation. Clinical Review Allergy Immunology 44, 229-241 (2013). 

148. S.-L. Tan and P. J. Parker, Emerging and diverse roles of protein kinase C in immune cell 

signalling. Biochemical Journal 376, 545-552 (2003). 

149. R. P. Heaney and C. M. Weaver, Newer Perspectives on Calcium Nutrition and Bone Quality. 

Journal of the American College of Nutrition 24, 574S-581S (2005). 

150. M. Bielohuby, M. Matsuura, N. Herbach et al., Short-term exposure to low-carbohydrate, 

high-fat diets induces low bone mineral density and reduces bone formation in rats. Journal of 

Bone and Mineral Research 25, 275-284 (2010). 

151. R. E. Mebius and G. Kraal, Structure and function of the spleen. Nature Reviews Immunology 

5, 606-616 (2005). 

152. F. Zhang, N. K. Altorki, Y.-C. Wu et al., Duodenal reflux induces cyclooxygenase-2 in the 

esophageal mucosa of rats: Evidence for involvement of bile acids. Gastroenterology 121, 

1391-1399 (2001). 

153. D.-W. Perng, K.-T. Chang, K.-C. Su et al., Exposure of airway epithelium to bile acids 

associated with gastroesophageal reflux symptoms: a relation to transforming growth factor-

β1 production and fibroblast proliferation. Chest 132, 1548-1556 (2007). 

154. C.-H. Guo, P.-J. Liu, S. Hsia, C.-J. Chuang and P.-C. Chen, Role of certain trace minerals in 

oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic 

patients. Annals of Clinical Biochemistry 48, 344-351 (2011). 

155. W. Morse, TCM Treatment of Bronchiol Asthma in Clinical Practice, 

(http://www.acupuncture.com/newsletters/m_feb08/TCM and Asthma.htm), (2008). 

156. N. Bishop, G. J. Walker, M. Gleeson, F. A. Wallace and C. R. Hewitt, Human T lymphocyte 

migration towards the supernatants of human rhinovirus infected airway epithelial cells: 

influence of exercise and carbohydrate intake. Exercise Immunology Review 15, 42-59 (2009). 

157. M. P. Rayman, The importance of selenium to human health. The Lancet 356, 233-241 

(2000). 

158. M. Orth and S. Bellosta, Cholesterol: Its Regulation and Role in Central Nervous System 

Disorders. Cholesterol 2012, 1-19 (2012). 

159. Y. Lim, M. Levy and T. M. Bray, Dietary Zinc Alters Early Inflammatory Responses during 

Cutaneous Wound Healing in Weanling CD-1 Mice. Journal of Nutrition 134, 811-816 

(2004). 

160. Y.-J. Shiao, J.-C. Chen, C.-N. Wang and C.-T. Wang, The mode of action of primary bile salts 

on human platelets. Biochimica et Biophysica Acta 46, 282-293 (1993). 

161. R. K. Rao and G. Samak, Bile duct epithelial tight junctions and barrier function. Tissue 

Barriers 1, e25718 (2013). 

162. D. Chaudhary, R. Sharma and D. Bansal, Implications of Magnesium Deficiency in Type 2 

Diabetes: A Review. Biological Trace Element Research 134, 119-129 (2010). 

163. J. Guo, H. Chen, J. Song et al., Syndrome Differentiation of Diabetes by the Traditional 

Chinese Medicine according to Evidence-Based Medicine and Expert Consensus Opinion. 

Evidance-Based Complementary and Alternative Medicine 2014, 1-7 (2014). 

164. J. F. Oram and A. M. Vaughan, ATP-Binding Cassette Cholesterol Transporters and 

Cardiovascular Disease. Circulation Research 99, 1031-1043 (2006). 

165. M. Blanc, W. Y. Hsieh, K. A. Robertson et al., Host Defense against Viral Infection Involves 

Interferon Mediated Down-Regulation of Sterol Biosynthesis. PLoS Biology 9, e1000598 

(2011). 

166. J. L. Wylie, G. M. Hatch and G. McClarty, Host cell phospholipids are trafficked to and then 

modified by Chlamydia trachomatis. American Society for Microbiology 179, 7233-7242 

(1997). 

167. D. W. Good, T. George and B. A. Watts, Lipopolysaccharide directly alters renal tubule 

transport through distinct TLR4-dependent pathways in basolateral and apical membranes. 

American Journal of Physiology - Renal Physiology 297, F866-F874 (2009). 

168. A. Cuenda and S. Rousseau, p38 MAP-Kinases pathway regulation, function and role in 

human diseases. Biochimica et Biophysica Acta 1773, 1358-1375 (2007). 

169. Y. Li and P. Agarwal, A Pathway-Based View of Human Diseases and Disease Relationships. 

PLoS ONE 4, e4346 (2009). 

http://www.acupuncture.com/newsletters/m_feb08/TCM%20and%20Asthma.htm


 124 

170. G. Manning, D. B. Whyte, R. Martinez, T. Hunter and S. Sudarsanam, The Protein Kinase 

Complement of the Human Genome. Science 298, 1912-1934 (2002). 

171. K. L. Pierce, R. T. Premont and R. J. Lefkowitz, Seven-transmembrane receptors. Nature 3, 

640-650 (2002). 

172. T. M. Ehrman, D. J. Barlow and P. J. Hylands, Phytochemical Informatics of Traditional 

Chinese Medicine and Therapeutic Relevance. Journal of Chemical Information and 

Modeling 47, 2316-2334 (2007). 

173. P. A. Williams, J. Cosme, V. Sridhar, E. F. Johnson and D. E. McRee, Mammalian 

Microsomal Cytochrome P450 Monooxygenase: Structural Adaptations for Membrane 

Binding and Functional Diversity. Molecular Cell 5, 121-131 (2000). 

174. C. T. Supuran and A. Scozzafava, Carbonic anhydrase as targets for medicinal chemistry. 

Bioorganic & Medicinal Chemistry 15, 4336-4350 (2007). 

175. J. L. Boyer, Bile Formation and Secretion. Comprehensive Physiology 3, 1035-1078 (2013). 

176. J. Chen, TCM and Infectious Disease, 

(http://www.acupuncturetoday.com/mpacms/at/article.php?id=32393), (2011). 

177. A. E. Brady and L. E. Limbird, G protein-coupled receptor interacting proteins: Emerging 

roles in localization and signal transduction. Cellular Signalling 14, 297-309 (2002). 

178. W.-J. Bei, J. Guo, H.-Y. Wu and Y. Cao, Lipid-Regulating Effect of Traditional Chinese 

Medicine: Mechanisms of Actions. Evidence-Based Complementary and Alternative Medicine 

2012, 1-10 (2012). 

179. H. K. Ghayee and R. J. Auchus, Basic concepts and recent developments in human steroid 

hormone biosynthesis. Reviews in Endocrine and Metabolic Disorders 8, 289-300 (2007). 

180. M. C. Garcia-Alvarez, I. Moussa, P. Njomnang Soh et al., Both plants Sebastiania chamaelea 

from Niger and Chrozophora senegalensis from Senegal used in African traditional medicine 

in malaria treatment share a same active principle. Journal of Ethnopharmacology 149, 676-

684 (2013). 

181. M.-J. R. Howes and P. J. Houghton, Plants used in Chinese and Indian traditional medicine for 

improvement of memory and cognitive function. Pharmacology Biochemistry and Behavior 

75, 513-527 (2003). 

182. C. C. Lee and P. Houghton, Cytotoxicity of plants from Malaysia and Thailand used 

traditionally to treat cancer. Journal of Ethnopharmacology 100, 237-243 (2005). 

183. D. E. Fairbrothers, T. J. Mabry, R. L. Scogin and B. L. Turner, The Bases of Angiosperm 

Phylogeny: Chemotaxonomy. Annals of the Missouri Botanical Garden 62, 765-800 (1975). 

184. N. Rønsted, V. Savolainen, P. Mølgaard and A. K. Jäger, Phylogenetic selection of Narcissus 

species for drug discovery. Biochemical Systematics and Ecology 36, 417-422 (2008). 

185. M. Wink and G. I. A. Mohamed, Evolution of chemical defense traits in the Leguminosae: 

mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred 

from nucleotide sequences of the rbcL gene. Biochemical Systematics and Ecology 31, 897-

917 (2003). 

186. E. Pichersky and E. Lewinsohn, Convergent Evolution in Plant Specialized Metabolism. 

Annual Review of Plant Biology 62, 549-566 (2011). 

187. D.-X. Kong, X.-J. Li and H.-Y. Zhang, Convergent Evolution of Medicines. ChemMedChem 

3, 1169-1171 (2008). 

188. L. G. Ranilla, Y.-I. Kwon, E. Apostolidis and K. Shetty, Phenolic compounds, antioxidant 

activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and 

hypertension of commonly used medicinal plants, herbs and spices in Latin America. 

Bioresource Technology 101, 4676-4689 (2010). 

189. F. Lopez-Vallejo, M. A. Giulianotti, R. A. Houghten and J. L. Medina-Franco, Expanding the 

medicinally relevant chemical space with compound libraries. Drug Discovery Today 17, 718-

726 (2012). 

190. A. B. Yongye, J. Waddell and J. L. Medina-Franco, Molecular Scaffold Analysis of Natural 

Products Databases in the Public Domain. Chemical Biology & Drug Design 80, 717-724 

(2012). 

191. A. Sudhakar, History of Cancer, Ancient and Modern Treatment Methods. Journal of Cancer 

Science & Therapy 1, 1-4 (2010). 

192. Y. Ling, Traditional Chinese medicine in the treatment of symptoms in patients with advanced 

cancer. Annals of Palliative Medicine 2, 141-152 (2013). 

http://www.acupuncturetoday.com/mpacms/at/article.php?id=32393


 125 

193. S. Jain, V. Gill, N. Vasudeva and N. Singla, Ayurvedic medicines in treatment of cancer. 

Journal of Chinese Inetgrative Medicine 7, 1096-1099 (2009). 

194. P. Balachandran and R. Govindarajan, Cancer—an ayurvedic perspective. Pharmacological 

Research 51, 19-30 (2005). 

195. P. R. Manohar, Descriptions and Claasifications of Cancer in the Classical Ayurvedic Texts. 

Indian Journal of History of Science 20, 187-195 (2015). 

196. J. A. Jamal, Malay traditional medicine. Tech Monitor, 37-49 (2006). 

197. A. S. Ahmad, Warisan perubatan Melayu.  (Dewan Bahasa dan Pustaka, Kementerian 

Pelajaran Malaysia, 1982). 

198. P. Garodia, H. Ichikawa, N. Malani, G. Sethi and B. B. Aggarwal, From Ancient Medicine to 

Modern Medicine: Ayurvedic Concepts of Health and Their Role in Inflammation and Cancer. 

Journal of the Society for Integrative Oncology 5, 1-16 (2009). 

199. J. Duke, Dr Duke's  Phytochemical and Ethnobotanical Databases, 

(https://phytochem.nal.usda.gov/phytochem/search/list), (1995). 

200. D. S. Wishart, T. Jewison, A. C. Guo et al., HMDB 3.0-The Human Metabolome Database 

2013. Nucleic Acids Research 41, D801-D807 (2013). 

201. H. A. Wahab, Natural Product Discovery System (NADI), (http://www.nadi-

discovery.com/), (2007). 

202. E. W. Sayers, T. Barrett, D. A. Benson et al., Database resources of the National Center for 

Biotechnology Information. Nucleic Acids Research 37, D5-D15 (2009). 

203. phyloT, A phylogenetic tree generator, based on NCBI taxonomy, 

(http://phylot.biobyte.de/index.html), (2015). 

204. I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and 

annotation of phylogenetic and other trees. Nucleic Acids Research 44, W242–W245 (2016). 

205. RDKit: Cheminformatics and Machine Learning Software, (http://www.rdkit.org), (2013). 

206. M. R. Berthold, N. Cebron, F. Dill et al., KNIME – The Konstanz Information Miner, Version 

2.0 and Beyond. SIGKDD Explorations Newsletter 11, 26-31 (2009). 

207. T. Sander, J. Freyss, M. von Korff and C. Rufener, DataWarrior: An Open-Source Program 

For Chemistry Aware Data Visualization And Analysis. Journal of Chemical Information and 

Modeling 55, 460-473 (2015). 

208. G. W. Bemis and M. A. Murcko, The Properties of Known Drugs. 1. Molecular Frameworks. 

Journal of Medicinal Chemistry 39, 2887-2893 (1996). 

209. J. L. Medina-Franco, K. Martinez-Mayorga, A. Bender and T. Scior, Scaffold Diversity 

Analysis of Compound Data Sets Using an Entropy-Based Measure. QSAR & Combinatorial 

Science 28, 1551-1560 (2009). 

210. ChemAxon Standardizer (6.0.2), http://www.chemaxon.com, (2013). 

211. L. H. Mervin, A. M. Afzal, G. Drakakis et al., Target prediction utilising negative bioactivity 

data covering large chemical space. Journal of Cheminformatics 7, 1-16 (2015). 

212. Y. Wang, J. Xiao, T. O. Suzek et al., PubChem: a public information system for analyzing 

bioactivities of small molecules. Nucleic Acids Research 37, W623–W633 (2009). 

213. L. H. Mervin, K. C. Bulusu, L. Kalash et al., Orthologue chemical space and its influence on 

target prediction. Bioinformatics, btx525 (2017). 

214. J. C. Platt, Probabilistic Outputs for Support Vector Machines and Comparisons to 

Regularized Likelihood Methods. Advances in Large Margin Classifiers 10, 61-74 (1999). 

215. The CTTV Target Validation Platform, (http://www.targetvalidation.org), (2015). 

216. C. H. Saslis-Lagoudakis, B. B. Klitgaard, F. Forest et al., The Use of Phylogeny to Interpret 

Cross-Cultural Patterns in Plant Use and Guide Medicinal Plant Discovery: An Example from 

Pterocarpus (Leguminosae). PLoS ONE 6, e22275 (2011). 

217. S. López, J. Bastida, F. Viladomat and C. Codina, Acetylcholinesterase inhibitory activity of 

some Amaryllidaceae alkaloids and Narcissus extracts. Life Sciences 71, 2521-2529 (2002). 

218. M. Wink, Evolution of secondary metabolites from an ecological and molecular phylogenetic 

perspective. Phytochemistry 64, 3-19 (2003). 

219. A. Wadood, M. Ghufran, S. B. Jamal et al., Phytochemical Analysis of Medicinal Plants 

Occurring in Local Area of Mardan. Biochemistry & Analaytical Biochemistry 2, 1-4 (2013). 

220. S. Jasial, Y. Hu, M. Vogt and J. Bajorath, Activity-relevant similarity values for fingerprints 

and implications for similarity searching. F1000Research 5(Chem Inf Sci), 1-14 (2016). 

https://phytochem.nal.usda.gov/phytochem/search/list
http://www.nadi-discovery.com/
http://www.nadi-discovery.com/
http://phylot.biobyte.de/index.html
http://www.rdkit.org/
http://www.chemaxon.com/
http://www.targetvalidation.org/


 126 

221. F. M. Huennekens, The methotrexate story: A paradigm for development of cancer 

chemotherapeutic agents. Advances in Enzyme Regulation 34, 397-419 (1994). 

222. R. Leuchtenberger, C. Leuchtenberger, D. Laszlo and R. Lewisohn, The Influence of "Folic 

Acid" on Spontaneous Breast Cancers in Mice. Science 101, 46 (1945). 

223. F. Arcamone, G. Cassinelli, G. Fantini et al., Adriamycin, 14-hydroxydaimomycin, a new 

antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and Bioengineering 11, 

1101-1110 (1969). 

224. A. Čihák, Biological Effects of 5-Azacytidine in Eukaryotes. Oncology 30, 405-422 (1974). 

225. A. Peer, M. Gottfried, V. Sinibaldi et al., Comparison of Abiraterone Acetate Versus 

Ketoconazolein Patients with Metastatic Castration Resistant Prostate Cancer Refractory to 

Docetaxel. The Prostate 74, 433-440 (2014). 

226. T. A. Yap, C. P. Carden, G. Attard and J. S. de Bono, Targeting CYP17: established and novel 

approaches in prostate cancer. Current Opinion in Pharmacology 8, 449-457 (2008). 

227. L. Yin and Q. Hu, CYP17 inhibitors-abiraterone, C17,20-lyase inhibitors and multi-targeting 

agents. Nature Reviews Urology 11, 32-42 (2014). 

228. Y. H. Ju, L. M. Clausen, K. F. Allred, A. L. Almada and W. G. Helferich, β-Sitosterol, β-

Sitosterol Glucoside, and a Mixture of β-Sitosterol and β-Sitosterol Glucoside Modulate the 

Growth of Estrogen-Responsive Breast Cancer Cells In Vitro and in Ovariectomized Athymic 

Mice. Journal of Nutrition 134, 1145-1151 (2004). 

229. A. M. S. Mayer, K. B. Glaser, C. Cuevas et al., The odyssey of marine pharmaceuticals: a 

current pipeline perspective. Trends in Pharmacological Sciences 31, 255-265 (2010). 

230. S. M. Ogbourne and P. G. Parsons, The value of nature's natural product library for the 

discovery of New Chemical Entities: The discovery of ingenol mebutate. Fitoterapia 98, 36-

44 (2014). 

231. R. R. Sidambaram, M. G. Dinesh and E. T. Jayalaksmi, An in vitro study of cytoxtoxic 

activity of Euphorbia hirta on Hep-2 cell of human epithelioma of larynx. International 

Journal of Pharmacy and Pharmaceutical Sciences 3, 101-103 (2011). 

232. M. A. Jordan and L. Wilson, Microtubules as a target for anticancer drugs. Nature Reviews 

Cancer 4, 253-265 (2004). 

233. M. J. Siddiqui, Z. Ismail, A. F. A. Aisha and A. M. S. A. Majid, Cytotoxic Activity of 

Catharanthus roseus (Apocynaceae) Crude Extracts and Pure Compounds and Pure 

Compounds Against Human Colorectal Carcinoma Cell Line. Inernational Journal of 

Pharmacology 6, 43-47 (2010). 

234. L. P. Jordheim, D. Durantel, F. Zoulim and C. Dumontet, Advances in the development of 

nucleoside and nucleotide analogues for cancer and viral diseases. Nature Reviews Drug 

Discovery 12, 447-464 (2013). 

235. H. Hussain, A. Al-Harrasi, A. Al-Rawahi et al., A fruitful decade from 20015 to 2014 for 

anthraquinone patents. Expert Opinion on Therapeutic Patents 25, 1053–1064 (2015). 

236. A. Thakur, R. Singla and V. Jaitak, Coumarins as anticancer agents: A review on synthetic 

strategies, mechanism of action and SAR studies. European Journal of Medicinal Chemistry 

101, 476-495 (2015). 

237. J.-J. Shie and J.-M. Fang, Phosphonate Congeners of Oseltamivir and Zanamivir as Effective 

Anti-influenza Drugs: Design, Synthesis and Biological Activity. Journal of the Chinese 

Chemical Society 61, 127-141 (2014). 

238. M. Singh, M. Kaur and O. Silakari, Flavones: An important scaffold for medicinal chemistry. 

European Journal of Medicinal Chemistry 84, 206-239 (2014). 

239. T. A. Woyengo, V. R. Ramprasath and P. J. H. Jones, Anticancer effects of phytosterols. 

European Journal of Clinial Nutrition 63, 813-820 (2009). 

240. E. E. Rufino-Palomares, A. Pérez-Jiménez, F. J. Reyes-Zurita et al., Anti-Cancer and Anti-

Angiogenic Properties of Various Natural Pentacyclic Triterpenoids and some of their 

Chemical Derivatives. Current Organic Chemistry 19, 919-947 (2015). 

241. M. M. M. Pinto, M. E. Sousa and M. S. J. Nascimento, Xanthone Derivatives: New Insights in 

Biological Activities. Current Medicinal Chemistry 12, 2517-2538 (2005). 

242. C.-N. Lin, S.-J. Liou, T.-H. Lee, Y.-C. Chuang and S.-J. Won, Xanthone Derivatives as 

Potential Anti-cancer Drugs. Journal of Pharmacy and Pharmacology 48, 539-544 (1996). 

243. C. U. Kim, X. Chen and D. B. Mendel, Neuraminidase inhibitors as anti-influenza virus 

agents. Antiviral Chemistry & Chemotherapy 10, 141-154 (1999). 



 127 

244. X. Shang, X. He, X. He et al., The genus Scutellaria an ethnopharmacological and 

phytochemical review. Journal of Ethnopharmacology 128, 279-313 (2010). 

245. C. Tsatsanis and D. Spandidos, The role of oncogenic kinases in human cancer (Review). 

International Journal of Molecular Medicine 5, 583-673 (2000). 

246. B. Barneda-Zahonero and M. Parra, Histone deacetylases and cancer. Molecular Oncology 6, 

579-589 (2012). 

247. S. Ropero and M. Esteller, The role of histone deacetylases (HDACs) in human cancer. 

Molecular Oncology 1, 19-25 (2007). 

248. D. Sarrouilhe, J. Clarhaut, N. Defamie and M. Mesnil, Serotonin and Cancer: What Is the 

Link? Current Molecular Medicine 15, 62-77 (2015). 

249. S. S. Lange, K.-i. Takata and R. D. Wood, DNA polymerases and cancer. Nature Reviews 

Cancer 11, 96-110 (2011). 

250. World Health Organization Technical Report Series, Media Center: Cardiovascular diseases 

(CVDs), (http://www.who.int/mediacentre/factsheets/fs317/en/), (2017). 

251. A. Handerson, Coronary heart disease: Overview. The Lancet 348, s1-s4 (1996). 

252. C. J. Pepine and W. W. Nichols, The pathophysiology of chronic ischemic heart disease. 

Clinical Cardiology 30, I-4-I-9 (2007). 

253. E. G. Nabel and E. Braunwald, A Tale of Coronary Artery Disease and Myocardial Infarction. 

New England Journal of Medicine 366, 54-63 (2012). 

254. M. Simons and J. A. Ware, Therapeutic angiogenesis in cardiovascular disease. Nature 

Reviews Drug Discovery 2, 863-872 (2003). 

255. L. Deveza, J. Choi and F. Yang, Therapeutic Angiogenesis for Treating Cardiovascular 

Diseases. Theranostics 2, 801-814 (2012). 

256. H. Guo and G. Cheng, Effects of Shexiang Baoxin Pill and Isosorbide Dinitrate on Angina of 

Coronary Heart Disease: A Meta-Analysis. Journal of Pharmaceutical and Biomedical 

Sciences 16, 557-563 (2016). 

257. P. Jiang, R. Liu, S. Dou et al., Analysis of the constituents in rat plasma after oral 

administration of Shexiang Baoxin pill by HPLC-ESI-MS/MS. Biomedical Chromatography 

23, 1333-1343 (2009). 

258. S. Yan, Y. Yang, Y. Wu, R. Liu and W. Zhang, Chemical fingerprinting and quantitative 

analysis of volatiles in Shexiang Baoxin Pill by gas chromatography with flame ionization and 

mass spectrometric detection. Journal of Analytical Chemistry 64, 149-155 (2009). 

259. S.-K. Yan, W.-D. Zhang, R.-H. Liu and Y.-C. Zhan, Chemical Fingerprinting of Shexiang 

Baoxin Pill and Simultaneous Determination of Its Major Constituents by HPLC with 

Evaporative Light Scattering Detection and Electrospray Mass Spectrometric Detection. 

Chemical and Pharmaceutical Bulletin 54, 1058-1062 (2006). 

260. L. Xiang, P. Jiang, C. Zhan et al., The serum metabolomic study of intervention effects of the 

traditional Chinese medicine Shexiang Baoxin Pill and a multi-component medicine polypill 

in the treatment of myocardial infarction in rats. Molecular BioSystems 8, 2434-2442 (2012). 

261. L. Xiang, P. Jiang, S. Wang et al., Metabolomic Strategy for Studying the Intervention and the 

Synergistic Effects of the Shexiang Baoxin Pill for Treating Myocardial Infarction in Rats. 

Evidence-Based Complementary and Alternative Medicine 2013, 1-11 (2013). 

262. P. Jiang, P. Fu, L. Xiang et al., The effectiveness of borneol on pharmacokinetics changes of 

four ginsenosides in Shexiang Baoxin Pill in vivo. Biomedical Chromatography 28, 419-427 

(2014). 

263. W.-Y. Jiang, Therapeutic wisdom in traditional Chinese medicine: a perspective from modern 

science. Trends in Pharmacological Sciences 26, 558-563 (2005). 

264. X. Li, G. Qin, Q. Yang, L. Chen and L. Xie, Biomolecular Network-Based Synergistic Drug 

Combination Discovery. BioMed Research International 2016, 1-11 (2016). 

265. M. C. Berenbaum, What is synergy? Pharmacological Reviews 41, 93-141 (1989). 

266. S. Loewe, The problem of synergism and antagonism of combined drugs. 

Arzneimittelforschung 3, 285-290 (1953). 

267. C. I. Bliss, The toxicity of poisions applied joitnly. Annals of Applied Biology 26, 585-615 

(1939). 

268. K. C. Bulusu, R. Guha, D. J. Mason et al., Modelling of compound combination effects and 

applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug 

Discovery Today 21, 225-238 (2016). 

http://www.who.int/mediacentre/factsheets/fs317/en/


 128 

269. D. Chen, X. Liu, Y. Yang, H. Yang and P. Lu, Systematic synergy modeling: understanding 

drug synergy from a systems biology persepective. BMS Systems Biology 9, 1-10 (2015). 

270. S. Li, B. Zhang and N. Zhang, Network target for screening synergistic drug combinations 

with application to traditional Chinese medicine. BMC Systems Biology 5, 1-13 (2011). 

271. L. Huang, F. Li, J. Sheng et al., DrugComboRanker: drug combination discovery based on 

target network analysis. Bioinformatics 30, i228-i236 (2014). 

272. E. Boutet, D. Lieberherr, M. Tognolli, M. Schneider and A. Bairoch, UniProtKB/Swiss-Prot: 

The Manually Annotated Section of the UniProt KnowledgeBase. Methods in Molecular 

Biology 406, 89-112 (2007). 

273. A. P. Davis, C. J. Grondin, K. Lennon-Hopkins et al., The Comparative Toxicogenomics 

Database's 10th year anniversary: update 2015. Nucleic Acids Research 43, D914-D920 

(2015). 

274. Gene Ontology Consortium: going forward. Nucleic Acids Research 43, D1049-D1056 

(2015). 

275. G. Wu, X. Feng and L. Stein, A human functional protein interaction network and its 

application to cancer data analysis. Genome Biology 11, 1-23 (2010). 

276. P. Shannon, A. Markiel, O. Ozier et al., Cytoscape: A Software Environment for Integrated 

Models of Biomolecular Interaction Networks. Genome Research 13, 2498-2504 (2003). 

277. G. Csardi and T. Nepusz, The igraph software package for complex network research. 

InterJournal Complex Systems, 1695 (2006). 

278. G. Bindea, B. Mlecnik, H. Hackl et al., ClueGO: a Cytoscape plug-in to decipher functionally 

grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093 

(2009). 

279. L. He, E. Kulesskiy, J. Saarela et al., Methods for High-Throughput Drug Combination 

Screening and Synergy Scoring. BioRxiv, 1-14 (2016). 

280. P. Libby, A. H. Lichtman and G. K. Hansson, Immune Effector Mechanisms Implicated in 

Atherosclerosis: From Mice to Humans. Immunity 38, 1092-1104 (2013). 

281. X. Meng, J. Yang, M. Dong et al., Regulatory T cells in cardiovascular diseases. Nature 

Reviews Cardiology 13, 167-179 (2016). 

282. F. Mor, F. J. Quintana and I. R. Cohen, Angiogenesis-Inflammation Cross-Talk: Vascular 

Endothelial Growth Factor Is Secreted by Activated T Cells and Induces Th1 Polarization. 

Journal of Immunology 172, 4618-4623 (2004). 

283. B. A. Rose, T. Force and Y. Wang, Mitogen-Activated Protein Kinase Signaling in the Heart: 

Angels Versus Demons in a Heart-Breaking Tale. Physiological Reviews 90, 1507-1546 

(2010). 

284. S. Dhingra, A. K. Sharma, R. C. Arora, J. Slezak and P. K. Singal, IL-10 attenuates TNF-α-

induced NFκB pathway activation and cardiomyocyte apoptosis. Cardiovascular Research 82, 

59-66 (2009). 

285. M. Newman, The Structure and Function of Complex Networks. SIAM Review 45, 167-256 

(2003). 

286. K.-i. Kim, H.-J. Cho, J.-Y. Hahn et al., β-Catenin Overexpression Augments Angiogenesis 

and Skeletal Muscle Regeneration Through Dual Mechanism of Vascular Endothelial Growth 

Factor–Mediated Endothelial Cell Proliferation and Progenitor Cell Mobilization. 

Arteriosclerosis, Thrombosis, and Vascular Biology 26, 91-98 (2005). 

287. J. Jia, T. Ye, P. Cui et al., AP-1 transcription factor mediates VEGF-induced endothelial cell 

migration and proliferation. Microvascular research 105, 103-108 (2016). 

288. G. P. van Nieuw Amerongen, P. Koolwijk, A. Versteilen and V. W. M. van Hinsbergh, 

Involvement of RhoA/Rho Kinase Signaling in VEGF-Induced Endothelial Cell Migration 

and Angiogenesis In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology 23, 211-217 

(2003). 

289. K. Issbrücker, H. H. Marti, S. Hippenstiel et al., p38 MAP Kinase - a molecular switch 

between VEGF-induced angiogenesis and vascular hyperpermeability. FASEB Journal 17, 

262-264 (2003). 

290. A. G. Bader, S. Kang and P. K. Vogt, Cancer-specific mutations in PIK3CA are oncogenic in 

vivo. Proceedings of the National Academy of Sciences 103, 1475-1479 (2006). 

291. S. P. Tabruyn and A. W. Griffioen, NF-κB: a new player in angiostatic therapy. Angiogenesis 

11, 101-106 (2008). 



 129 

292. P. R. Somanath, O. V. Razorenova, J. Chen and T. V. Byzova, Akt1 in Endothelial Cell and 

Angiogenesis. Cell cycle 5, 512-518 (2006). 

293. K. H. Wrighton, Cell signalling: EGF signalling - it's all in SHC1's timing. Nature Reviews 

Cell Biology 14, 463 (2013). 

294. N. Makki, K. W. Thiel and F. J. Miller, The Epidermal Growth Factor Receptor and Its 

Ligands in Cardiovascular Disease. International Journal of Molecular Sciences 14, 20597-

20613 (2013). 

295. E. R. Block, M. A. Tolino and J. K. Klarlund, Pyk2 Activation Triggers Epidermal Growth 

Factor Receptor Signaling and Cell Motility after Wounding Sheets of Epithelial Cells. 

Journal of Biological Chemistry 285, 13372-13379 (2010). 

296. L.-H. Chu, C. G. Rivera, A. S. Popel and J. S. Bader, Constructing the angiome: a global 

angiogenesis protein interaction network. Physiological Genomics 44, 915-924 (2012). 

297. R. Montañez, F. Sánchez-Jiménez, A. R. Quesada and M. Á. Medina, Exploring and 

challenging the network of angiogenesis. Scientific Reports 1, 1-6 (2011). 

298. J. Gu, Y. Chen, S. Li and Y. Li, Identification of responsive gene modules by network-based 

gene clustering and extending: application to inflammation and angiogenesis. BMC Systems 

Biology 4, 1-18 (2010). 

299. A. Camargo and F. Azuaje, Linking Gene Expression and Functional Network Data in Human 

Heart Failure. PLoS ONE 2, e1347 (2007). 

300. Y.-Y. Wang, K.-J. Xu, J. Song and X.-M. Zhao, Exploring drug combinations in genetic 

interaction network. BMC Bioinformatics 13, 1-7 (2012). 

301. J.-r. Zhu, Y.-f. Tao, S. Lou and Z.-m. Wu, Protective effects of ginsenoside Rb3 on oxygen 

and glucose deprivation-induced ischemic injury in PC12 cells. Acta Pharmacologica Sinica 

31, 273-280 (2010). 

302. S. Yoshida, K.-i. Aihara, Y. Ikeda et al., Androgen receptor promotes sex-independent 

angiogenesis in response to ischemia and is required for activation of vascular endothelial cell 

growth factor receptor signaling. Circulation 128, 60-71 (2013). 

303. S. Kousteni, T. Bellido, L. I. Plotkin et al., Nongenotropic, Sex-Nonspecific Signaling through 

the Estrogen or Androgen Receptors: Dissociation from Transcriptional Activity. Cell 104, 

719-730 (2001). 

304. B. R. Walker, Glucocorticoids and Cardiovascular Disease. European Journal of 

Endocrinology 157, 545-559 (2007). 

305. S. Mahmoodzadeh, J. Leber, X. Zhang et al., Cardiomyocyte-specific Estrogen Receptor 

Alpha Increases Angiogenesis, Lymphangiogenesis and Reduces Fibrosis in the Female 

Mouse Heart Post-Myocardial Infarction. Journal of cell science & therapy 5, 1-10 (2014). 

306. A. A. Lanahan, D. Lech, A. Dubrac et al., PTP1b Is a Physiologic Regulator of Vascular 

Endothelial Growth Factor Signaling in Endothelial Cells. Circulation 130, 902-909 (2014). 

307. V. Sørensen, Y. Zhen, M. Zakrzewska et al., Phosphorylation of Fibroblast Growth Factor 

(FGF) Receptor 1 at Ser777 by p38 Mitogen-Activated Protein Kinase Regulates 

Translocation of Exogenous FGF1 to the Cytosol and Nucleus. Molecular and Cellular 

Biology 28, 4129-4141 (2008). 

308. S. Choi, Epidermis proliferative effect of the Panax ginseng Ginsenoside Rb2. Archives of 

Pharmacal Research 25, 71-76 (2002). 

309. L. Lai, B. L. Bohnsack, K. Niederreither and K. K. Hirschi, Retinoic acid regulates endothelial 

cell proliferation during vasculogenesis. Development 130, 6465-6474 (2003). 

310. B. L. Krock, N. Skuli and M. C. Simon, Hypoxia-Induced Angiogenesis: Good and Evil. 

Genes & Cancer 2, 1117-1133 (2011). 

311. L. Kuang, J. Feng, G. He and T. Jing, Knockdown of Nrf2 Inhibits the Angiogenesis of Rat 

Cardiac Micro-vascular Endothelial Cells under Hypoxic Conditions. International Journal of 

Biological Sciences 9, 656-665 (2013). 

312. M. Potente, L. Ghaeni, D. Baldessari et al., SIRT1 controls endothelial angiogenic functions 

during vascular growth. Genes & Development 21, 2644-2658 (2007). 

313. J. Cai, S. Ahmad, W. G. Jiang et al., Activation of Vascular Endothelial Growth Factor 

Receptor-1 Sustains Angiogenesis and Bcl-2 Expression Via the Phosphatidylinositol 3-

Kinase Pathway in Endothelial Cells. Diabetes 52, 2959-2968 (2003). 

314. J. Jia, F. Zhu, X. Ma et al., Mechanisms of drug combinations: interaction and network 

perspectives. Nature Reviews Drug Discovery 8, 111-129 (2009). 



 130 

315. F. He, R. Guo, S.-L. Wu, M. Sun and M. Li, Protective Effects of Ginsenoside Rb1 on Human 

Umbilical Vein Endothelial Cells In Vitro. Journal of Cardiovascular Pharmacology 50, 314-

320 (2007). 

316. G. I. Scott, P. B. Colligan, B. H. Ren and J. Ren, Ginsenosides Rb(1) and Re decrease cardiac 

contraction in adult rat ventricular myocytes: role of nitric oxide. British Journal of 

Pharmacology 134, 1159-1165 (2001). 

317. A. I. Markowska, K. C. Jefferies and N. Panjwani, Galectin-3 Protein Modulates Cell Surface 

Expression and Activation of Vascular Endothelial Growth Factor Receptor 2 in Human 

Endothelial Cells. Journal of Biological Chemistry 286, 29913-29921 (2011). 

318. A. Zetser, Y. Bashenko, E. Edovitsky et al., Heparanase Induces Vascular Endothelial Growth 

Factor Expression: Correlation with p38 Phosphorylation Levels and Src Activation. Cancer 

Research 66, 1455-1463 (2006). 

319. D. Diez, A. M. Wheelock, S. Goto et al., The use of network analyses for elucidating 

mechanisms in cardiovascular disease. Molecular BioSystems 6, 289-304 (2010). 

320. L. W. T. Cheung, K. W. Leung, C. K. C. Wong, R. N. S. Wong and A. S. T. Wong, 

Ginsenoside-Rg1 induces angiogenesis via non-genomic crosstalk of glucocorticoid receptor 

and fibroblast growth factor receptor-1. Cardiovascular Research 89, 419-425 (2011). 

321. L. d. S. Monteiro, K. X. Bastos, J. Barbosa-Filho et al., Medicinal Plants and Other Living 

Organisms with Antitumor Potential against Lung Cancer. Evidence-Based Complementary 

and Alternative Medicine 2014, 1-15 (2014). 

322. A. Khodorova, B. Navarro, L. S. Jouaville et al., Endothelin-B receptor activation triggers an 

endogenous analgesic cascade at sites of peripheral injury. Nature Medicine 9, 1055-1061 

(2003). 

323. Z.-G. Yang, H.-X. Sun and Y.-P. Ye, Ginsenoside Rd from Panax notoginseng Is Cytotoxic 

towards HeLa Cancer Cells and Induces Apoptosis. Chemistry & Biodiversity 3, 187-197 

(2006). 

324. K. W. Leung, L. W. T. Cheung, Y. L. Pon et al., Ginsenoside Rb1 inhibits tube-like structure 

formation of endothelial cells by regulating pigment epithelium-derived factor through the 

oestrogen β receptor. British Journal of Pharmacology 152, 207-215 (2007). 

325. Y. J. Lee, Y. R. Jin, W. C. Lim et al., Ginsenoside Rc and Re stimulate c-Fos expression in 

MCF-7 human breast carcinoma cells. Archives of Pharmacal Research 26, 53-57 (2003). 

326. Y. Nakaya, K. Mawatari, A. Takahashi et al., The phytoestrogen ginsensoside Re activates 

potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide 

pathways. Journal of Medical Investigation 54, 381-384 (2007). 

327. T. T. Hien, N. D. Kim, Y. R. Pokharel et al., Ginsenoside Rg3 increases nitric oxide 

production via increases in phosphorylation and expression of endothelial nitric oxide 

synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated 

protein kinase. Toxicology and Applied Pharmacology 246, 171-183 (2010). 

328. K. W. Leung, F. P. Leung, Y. Huang, N. K. Mak and R. N. S. Wong, Non-genomic effects of 

ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Letters 581, 2423-2428 

(2007). 

329. Y. Lee, E. Chung, K. Youl Lee et al., Ginsenoside-Rg1, one of the major active molecules 

from Panax ginseng, is a functional ligand of glucocorticoid receptor. Molecular and Cellular 

Endocrinology 133, 135-140 (1997). 

 

  



 131 

 

 

 

 

 

 

 

APPENDICES



 132 

Chapter 2: 

Table A2.1: Top three enriched targets across 14 clusters 

Cluster 
TCM Therapeutic Action 

class 
TCM Therapeutic Action subclass Top three enriched targets  

Target function reported 

by literatures 

I Purgative medicinal Offensive purgative 

Protein kinase C beta type immunomodulation 

Protein kinase C delta type immunomodulation 

Sodium/glucose cotransporter 2 glucose homeostasis 

II 

Purgative medicinal Laxative medicinal 

DNA topoisomerase 1 cancer 

Oxysterols receptor LXR-alpha lipid homeostasis 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Hemostatic medicinal Astringent hemostatic 

DNA topoisomerase 1 cancer 

Telomerase reverse transcriptase cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

Liver-pacifying and wind 

extinguishing 
Liver yang calming 

Telomerase reverse transcriptase cancer 

DNA topoisomerase 1 cancer 

Wee1-like protein kinase cancer 

III 

Anti-malarial medicinal Anti-malarial medicinal 

Oxysterols receptor LXR-alpha lipid homeostasis 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Astringent 
Secure essence, reduce urination, and 

check vaginal discharge 

Oxysterols receptor LXR-alpha lipid homeostasis 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Dampness resolving Water draining and anti-icteric 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 2 glucose homeostasis 

Sodium/glucose cotransporter 1 glucose homeostasis 

Tonifying and replenishing Yang tonifying 

Sodium/glucose cotransporter 2 glucose homeostasis 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

Heat clearing medicinal Heat clearing and detoxicating DNA topoisomerase 1 cancer 
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Sodium/glucose cotransporter 2 glucose homeostasis 

Sodium/glucose cotransporter 1 glucose homeostasis 

Tonifying and replenishing Yin tonifying 

Sodium/glucose cotransporter 2 glucose homeostasis 

DNA topoisomerase 1 cancer 

Oxysterols receptor LXR-alpha lipid homeostasis 

Exterior releasing Wind heat dispersing 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 2 glucose homeostasis 

Wind-dampness dispelling Heat clearing 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

Heat clearing medicinal Heat clearing and fire purging 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Oxysterols receptor LXR-alpha lipid homeostasis 

DNA topoisomerase 1 cancer 

Dampness resolving 
Water draining and strangury 

resolving 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Oxysterols receptor LXR-alpha lipid homeostasis 

IV 

Heat clearing medicinal Heat clearing and dampness drying 

Sodium/glucose cotransporter 2 glucose homeostasis 

DNA topoisomerase 1 cancer 

Protein kinase C beta type immunomodulation 

Blood activating and stress 

resolving 
Blood activating trauma curing 

Leukotriene B4 receptor 1 lipid homeostasis 

DNA topoisomerase 1 cancer 

Estrogen receptor cancer 

Liver-pacifying and wind 

extinguishing 

Extinguish wind to resolve 

convulsion 

Oxysterols receptor LXR-alpha lipid homeostasis 

Leukotriene B4 receptor 1 immunomodulation 

Glutamate carboxypeptidase 2 central nervous system 

Blood activating and stress 

resolving 

Blood activating menstruation 

resolving 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Oxysterols receptor LXR-alpha lipid homeostasis 

DNA topoisomerase 1 cancer 
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Cough suppressing and 

panting-calming 

Cough suppressing and panting 

calming 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Leukotriene B4 receptor 1 immunomodulation 

Worm expelling medicinal Worm expelling medicinal 

Leukotriene B4 receptor 1 immunomodulation 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Sodium/glucose cotransporter 2 glucose homeostasis 

V 

Astringent Lung-intestine astringent 

Protein kinase C beta type immunomodulation 

Endothelin B receptor cardio vasodilation 

DNA topoisomerase 1 cancer 

Digestant medicinal Digestant medicinal 

Oxysterols receptor LXR-alpha lipid homeostasis 

Leukotriene B4 receptor 1 immunomodulation 

DNA topoisomerase 1 cancer 

Cough suppressing and 

panting-calming 
Cold phlegm resolving and warming 

DNA topoisomerase 1 cancer 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Telomerase reverse transcriptase cancer 

VI Emetic medicinal 

  Integrin alpha-L immunomodulation 

 

Poly [ADP-ribose] polymerase 1 inflammation 

  Multidrug resistance-associated protein 1 cytotoxicity 

VII 

Heat clearing medicinal Heat clearing and blood cooling 

Protein kinase C beta type immunomodulation 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 2 glucose homeostasis 

Hemostatic medicinal Stasis-resolving hemostatic 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Protein kinase C eta type immunomodulation 

Protein kinase C gamma type immunomodulation 

Tonifying and replenishing Blood tonifying 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Protein kinase C beta type immunomodulation 

Protein kinase C eta type immunomodulation 

VIII Orifice opening Orifice opening 
Steryl-sulfatase immunomodulation 

Testosterone 17-beta-dehydrogenase 3 reproduction system 
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Ileal sodium/bile acid cotransporter bile  

IX 

Purgative medicinal Drastic (purgative) water-expelling 

Protein kinase C beta type immunomodulation 

Protein kinase C delta type immunomodulation 

Protein kinase C eta type immunomodulation 

Dampness resolving 
Water draining and swelling 

dispersing 

Glutamate carboxypeptidase 2 central nervous system 

Protein kinase C beta type immunomodulation 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Wind-dampness dispelling Cold dispersing 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

X 

Wind-dampness dispelling Bone(sinew) strengthening 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

Steryl-sulfatase immunomodulation 

Tonifying and replenishing Qi tonifying 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Sodium/glucose cotransporter 2 glucose homeostasis 

Sodium/glucose cotransporter 1 glucose homeostasis 

Cough suppressing and 

panting-calming 
Clearing and Heat phlegm resolving 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

DNA topoisomerase 1 cancer 

Testosterone 17-beta-dehydrogenase 3 reproductive system 

Tranqulizing Heat nourishing tranquilizing 

Peptidyl-prolyl cis-trans isomerase FKBP1A immunomodulation 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Glutamate carboxypeptidase 2 central nervous system 

XI Astringent Anhidrotic 

Beta-1 adrenergic receptor cardiac contraction 

5-hydroxytryptamine receptor 2A central nervous system 

Glutamate [NMDA] receptor subunit epsilon-2 central nervous system 

XII 

Parasite destroying, dampness 

eliminating and itchiness 

relieving 

  

Dihydrofolate reductase cancer, bacterial infection 

DNA-dependent protein kinase catalytic subunit cancer 

Tumor necrosis factor cancer, bacterial infection 

XII Hemostatic medicinal Meridian warming hemostatic Peptidyl-prolyl cis-trans isomerase FKBP1A immunomodulation 
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Multidrug resistance protein 1 cytotoxicity 

Steryl-sulfatase immunomodulation 

Exterior releasing Wind cold dispersing 

Steryl-sulfatase immunomodulation 

Endothelin B receptor cardio vasodilation 

cAMP-specific 3',5'-cyclic phosphodiesterase 4B immunomodulation 

Interior warming Interior warming 

Protein kinase C delta type immunomodulation 

Multidrug resistance protein 1 cytotoxicity 

Steroid hormone receptor ERR1 relate to estrogen receptor 

XIV 

Heat clearing medicinal Deficiency 

Sodium/glucose cotransporter 2 glucose homeostasis 

DNA topoisomerase 1 cancer 

Sodium/glucose cotransporter 1 glucose homeostasis 

Qi regulating Qi regulating 

DNA topoisomerase 1 cancer 

Glutamate receptor,  ionotropic kainate 1 central nervous system 

Steryl-sulfatase immunomodulation 

Blood activating and stress 

resolving 
Blood activating analgesic 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Tyrosine-protein phosphatase non-receptor type 1 immunomodulation 

Prostaglandin E2 receptor EP2 subtype bone metabolism 

Hemostatic medicinal Blood cooling hemostatic 

Oxysterols receptor LXR-alpha lipid homeostasis 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 

Leukotriene B4 receptor 1 lipid homeostasis 

Blood activating and stress 

resolving 
Blood breaking mass eliminating 

Oxysterols receptor LXR-alpha lipid homeostasis 

Leukotriene B4 receptor 1 immunomodulation 

Tyrosine-protein phosphatase non-receptor type 2 immunomodulation 
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Table A2.2: Top three enriched pathways across 14 clusters 

Cluster 
TCM Therapeutic Action 

class 
TCM Therapeutic Action subclass Top three enriched pathways 

Pathway motif according to 

KEGG 

I Purgative medicinal Offensive purgative 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04530  Tight junction Cellular commiunity 

II 

Purgative medicinal Laxative medicinal 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

Hemostatic medicinal Astringent hemostatic 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

Liver-pacifying and wind 

extinguishing 
Liver yang calming 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

III 

Anti-malarial medicinal Anti-malarial medicinal 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

Astringent 
Secure essence, reduce urination, and 

check vaginal discharge 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

Dampness resolving Water draining and anti-icteric 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

Tonifying and replenishing Yang tonifying 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

Heat clearing medicinal Heat clearing and detoxicating 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Tonifying and replenishing Yin tonifying hsa04978  Mineral absorption Digestive system 
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hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Exterior releasing Wind heat dispersing 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Wind-dampness dispelling Heat clearing 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Heat clearing medicinal Heat clearing and fire purging 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Dampness resolving 
Water draining and strangury 

resolving 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

IV 

Heat clearing medicinal Heat clearing and dampness drying 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

Blood activating and stress 

resolving 
Blood activating trauma curing 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

Liver-pacifying and wind 

extinguishing 

Extinguish wind to resolve 

convulsion 

hsa04976  Bile secretion Digestive system 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa04966  Collecting duct acid secretion Excretory system 

Blood activating and stress 

resolving 

Blood activating menstruation 

resolving 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Cough suppressing and 

panting-calming 

Cough suppressing and panting 

calming 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 
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hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

Worm expelling medicinal Worm expelling medicinal 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

V 

Astringent Lung-intestine astringent 

hsa04976  Bile secretion Digestive system 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa04530  Tight junction Cellular commiunity 

Digestant medicinal Digestant medicinal 

hsa04976  Bile secretion Digestive system 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

Cough suppressing and 

panting-calming 
Cold phlegm resolving and warming 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa04520  Adherens junction Cellular commiunity 

VI Emetic medicinal 

  hsa03410  Base excision repair Replication and repair 

 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

  hsa04976  Bile secretion Digestive system 

VII 

Heat clearing medicinal Heat clearing and blood cooling 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa02010  ABC transporters Membrane transport 

Hemostatic medicinal Stasis-resolving hemostatic 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Tonifying and replenishing Blood tonifying 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04530  Tight junction Cellular commiunity 

VIII Orifice opening Orifice opening 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

hsa04976  Bile secretion Digestive system 

hsa00900  Terpenoid backbone biosynthesis 

Metabolism of terpenoids and 

polyketides 

IX Purgative medicinal Drastic (purgative) water-expelling hsa04978  Mineral absorption Digestive system 
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hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04530  Tight junction Cellular commiunity 

Dampness resolving 
Water draining and swelling 

dispersing 

hsa00900  Terpenoid backbone biosynthesis 

Metabolism of terpenoids and 

polyketides 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04530  Tight junction Cellular commiunity 

Wind-dampness dispelling Cold dispersing 

hsa04530  Tight junction Cellular commiunity 

hsa05143  African trypanosomiasis Infectious diseases 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

X 

Wind-dampness dispelling Bone(sinew) strengthening 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Tonifying and replenishing Qi tonifying 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Cough suppressing and 

panting-calming 
Clearing and Heat phlegm resolving 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa04976  Bile secretion Digestive system 

Tranqulizing Heat nourishing tranquilizing 

hsa04978  Mineral absorption Digestive system 

hsa04973  Carbohydrate digestion and absorption Digestive system 

hsa00900  Terpenoid backbone biosynthesis 

Metabolism of terpenoids and 

polyketides 

XI Astringent Anhidrotic 

hsa04540  Gap junction Cellular commiunity 

hsa04970  Salivary secretion Digestive system 

hsa04020  Calcium signaling pathway Signal transduction 

XII 

Parasite destroying, dampness 

eliminating and itchiness 

relieving 

  

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa00564  Glycerophospholipid metabolism Lipid metabolism 

hsa04966  Collecting duct acid secretion Excretory system 

XII Hemostatic medicinal Meridian warming hemostatic 

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa05143  African trypanosomiasis Infectious diseases 
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Exterior releasing Wind cold dispersing 

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa00564  Glycerophospholipid metabolism Lipid metabolism 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

Interior warming Interior warming 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa05143  African trypanosomiasis Infectious diseases 

hsa05110  Vibrio cholerae infection Infectious diseases 

XIV 

Heat clearing medicinal Deficiency 

hsa04978  Mineral absorption Digestive system 

hsa00040  Pentose and glucuronate interconversions Carbohydrate metabolism 

hsa00561  Glycerolipid metabolism Lipid metabolism 

Qi regulating Qi regulating 

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

hsa04612  Antigen processing and presentation Immune system 

Blood activating and stress 

resolving 
Blood activating analgesic 

hsa00100  Steroid biosynthesis Lipid metabolism 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

Hemostatic medicinal Blood cooling hemostatic 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

hsa04520  Adherens junction Cellular commiunity 

Blood activating and stress 

resolving 
Blood breaking mass eliminating 

hsa04961  Endocrine and other factor-regulated 

calcium reabsorption 
Excretory system 

hsa00140  Steroid hormone biosynthesis Lipid metabolism 

hsa05143  African trypanosomiasis Infectious diseases 
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Chapter 3: 

 

Table A3.1: The list of 28 anti-cancer compounds that shows to be structurally similar to TM 

compounds. 

 

Anti-cancer 

Drug 

DrugBank 

ID TM Compound Plant Source of TM 

Tc 

value 

1 Abiraterone DB05812 Brassicasterol Houttuynia cordata TCM 0.339 

    

Moringa oleifera Ayurveda, MalayTM 

 

   

Beta-Sitosterol Abrus precatorius Ayurveda, MalayTM 0.331 

    

Alpinia officinarum TCM 

 

    

Angelica sinensis TCM 

 

    

Artemisia argyi TCM 

 

    

Astragalus complanatus TCM 

 

    

Azadirachta indica Ayurveda 

 

    

Brucea javanica TCM 

 

    

Capparis spinosa Ayurveda 

 

    

Carthamus tinctorius TCM 

 

    

Centipeda minima TCM 

 

    

Chrysanthemum indicum TCM 

 

    

Cornus officinalis TCM 

 

    

Cuscuta chinensis TCM 

 

    

Drynaria fortunei TCM 

 

    

Foeniculum vulgare TCM 

 

    

Forsythia suspensa TCM 

 

    

Gynostemma pentaphyllum TCM 

 

    

Imperata cylindrica TCM 

 

    

Inula britannica TCM 

 

    

Isatis tinctoria TCM 

 

    

Lycopus lucidus TCM 

 

    

Ocimum tenuiflorum Ayurveda 

 

    

Oldenlandia diffusa TCM 

 

    

Paeonia suffruticosa TCM 

 

    

Persicaria orientalis TCM 

 

    

Polygonum aviculare TCM 

 

    

Polygonum cuspidatum TCM 

 

    

Portulaca oleracea TCM 

 

    

Prunella vulgaris TCM, MalayTM 

 

    

Pulsatilla chinensis TCM 

 

    

Raphanus sativus Ayurveda 

 

    

Ricinus communis Ayurveda 

 

    

Scutellaria baicalensis TCM 

 

    

Scutellaria barbata TCM 

 

    

Sophora japonica TCM 

 

    

Spatholobus suberectus TCM 

 

    

Terminalia arjuna Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

    

Zanthoxylum nitidum TCM 

 

    

Zingiber officinale 

TCM, Ayurveda 

 

 



 143 

   

24-

Methylcholesta-

5,24-Dien-

3Beta-Ol Withania somnifera Ayurveda 0.331 

   

Cholesterol Allium sativum Ayurveda, MalayTM 0.328 

    

Vitis vinifera Ayurveda 

 

   

Campesterol Abrus precatorius Ayurveda, MalayTM 0.325 

    

Curcuma longa 

TCM, Ayurveda, 

MalayTM 

 

    

Curcuma longa TCM 

 

    

Cuscuta chinensis TCM 

 

    

Senna tora TCM, MalayTM 

 

    

Spatholobus suberectus TCM 

 

    

Vitis vinifera Ayurveda 

 

   

(3S,8S,9S,10R,1

3R,14S,17R)-

17-[(1R,4R)-

1,4-

Dimethylhexyl]-

10,13-Dimethyl-

2,3,4,7,8,9,11,1

2,14,15,16,17-

Dodecahydro-

1H-

Cyclopenta[A]P

henanthren-3-Ol Eclipta prostrata TCM 0.323 

   

Daucosterol Spatholobus suberectus TCM 0.321 

   

Fucosterol Cymbopogon citratus Ayurveda, MalayTM 0.320 

    

Gynostemma pentaphyllum TCM 

 

    

Cuscuta chinensis TCM 

 

    

Withania somnifera Ayurveda 

 

   

(3S,8S,9S,10R,1

3R,14S,17R)-

17-[(E,1R,4R)-

1,4-

Dimethylhex-2-

Enyl]-10,13-

Dimethyl-

2,3,4,7,8,9,11,1

2,14,15,16,17-

Dodecahydro-

1H-

Cyclopenta[A]P

henanthren-3-Ol Eclipta prostrata TCM 0.320 

   

Stigmasterol Abrus precatorius Ayurveda, MalayTM 0.315 

    

Angelica sinensis TCM 

 

    

Artemisia argyi TCM 

 

    

Carthamus tinctorius TCM 

 

    

Centipeda minima TCM 

 

    

Cornus officinalis TCM 

 

    

Curcuma longa 

TCM, Ayurveda, 

MalayTM 

 

    

Drynaria fortunei TCM 

 

    

Eurycoma longifolia MalayTM 

 

    

Foeniculum vulgare TCM 

 

    

Imperata cylindrica TCM 
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Isatis tinctoria TCM 

 

    

Oldenlandia diffusa TCM 

 

    

Prunella vulgaris TCM, MalayTM 

 

    

Pulsatilla chinensis TCM 

 

    

Ricinus communis Ayurveda 

 

    

Scutellaria barbata TCM 

 

    

Senna tora TCM, MalayTM 

 

    

Spatholobus suberectus TCM 

 

    

Vitis vinifera Ayurveda 

 

   

Clerosterol Moringa oleifera Ayurveda, MalayTM 0.313 

2 

Aminolevulinic 

Acid DB00855 Glycine Allium sativum Ayurveda, MalayTM 0.450 

    

Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

   

Succinic Acid Allium sativum Ayurveda, MalayTM 0.450 

    

Angelica sinensis TCM 

 

    

Carthamus tinctorius TCM 

 

    

Forsythia suspensa TCM 

 

    

Isatis tinctoria TCM 

 

    

Oldenlandia diffusa TCM 

 

    

Portulaca oleracea TCM 

 

    

Ricinus communis Ayurveda 

 

    

Spatholobus suberectus TCM 

 

    

Vitis vinifera Ayurveda 

 

   

Gamma-

Aminobutyric 

Acid Annona squamosa Ayurveda 0.400 

    

Isatis tinctoria TCM 

 

    

Vitis vinifera Ayurveda 

 
3 Azacitidine DB00928 Guanosine Allium sativum Ayurveda, MalayTM 0.407 

    

Carthamus tinctorius TCM 

 

   

Adenosine Allium sativum Ayurveda, MalayTM 0.385 

   

Uridine Isatis tinctoria TCM 0.361 

4 Choline C 11 DB09277 Choline Allium sativum Ayurveda, MalayTM 1.000 

    

Capparis spinosa Ayurveda 

 
5 Clofarabine DB00631 Adenosine Allium sativum Ayurveda, MalayTM 0.367 

   

Guanosine Allium sativum Ayurveda, MalayTM 0.344 

    

Carthamus tinctorius TCM 0.344 

6 Cytarabine DB00987 Uridine Isatis tinctoria TCM 0.420 

   

Guanosine Allium sativum Ayurveda, MalayTM 0.357 

    

Carthamus tinctorius TCM 

 

   

Adenosine Allium sativum Ayurveda, MalayTM 0.333 

7 Decitabine DB01262 Thymidine Eurycoma longifolia MalayTM 0.368 

8 Epirubicin DB00445 Glutathione Allium sativum Ayurveda, MalayTM 0.545 

9 Floxuridine DB00322 Thymidine Eurycoma longifolia MalayTM 0.591 

10 Fludarabine DB01073 Adenosine Allium sativum Ayurveda, MalayTM 0.324 

   

Guanosine Allium sativum Ayurveda, MalayTM 0.318 

    

Carthamus tinctorius TCM 

 
11 Hydroxyurea DB01005 Urea Aloe vera Ayurveda, MalayTM 0.455 
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12 Idarubicin DB01177 Glutathione Allium sativum Ayurveda, MalayTM 0.411 

13 

Ingenol 

Mebutate DB05013 

Ingenol-

Triacetate Euphorbia hirta Ayurveda 0.456 

14 Melphalan DB01042 Tyrosine Abrus precatorius Ayurveda, MalayTM 0.436 

    

Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

   

Phenylalanine Albizia lebbeck Ayurveda 0.389 

    

Carthamus tinctorius TCM 

 

    

Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

   

Levodopa Spatholobus suberectus TCM 0.317 

    

Portulaca oleracea 

  
15 Mesna DB09110 Taurine Allium sativum Ayurveda, MalayTM 0.474 

16 Methotrexate DB00563 Folacin Aloe vera Ayurveda, MalayTM 0.388 

    

Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

17 

Methyltestoster

one DB06710 

4-Campesten-3-

One Melia azedarach Ayurveda 0.367 

   

Stigmast-4-En-

3-One Melia azedarach Ayurveda 0.360 

    

Scutellaria barbata TCM 

 

    

Isatis tinctoria TCM 

 
18 Nelarabine DB01280 Guanosine Allium sativum Ayurveda, MalayTM 0.456 

    

Carthamus tinctorius TCM 

 

   

Adenosine Allium sativum Ayurveda, MalayTM 0.420 

19 Pemetrexed DB00642 Folacin Aloe vera Ayurveda, MalayTM 0.379 

    

Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 
20 Pralatrexate DB06813 Folacin Aloe vera Ayurveda, MalayTM 0.367 

    

Raphanus sativus Ayurveda 0.367 

    

Vitis vinifera Ayurveda 0.367 

21 

Sodium 

phenylbutyrate DB06819 

Hydrocinnamic 

acid Aloe vera Ayurveda, MalayTM 0.541 

    

Vitis vinifera Ayurveda 

 

   

Benzyl-acetone Aloe vera Ayurveda, MalayTM 0.439 

    

Alpinia officinarum TCM 

 

   

Phenylethanol Lawsonia inermis MalayTM 0.405 

    

Vitis vinifera Ayurveda 

 

   

2-phenylethyl-

amine Vitis vinifera Ayurveda 0.368 

   

Benzyl alcohol Albizia lebbeck Ayurveda 0.333 

    

Lawsonia inermis MalayTM 

 

    

Vitis vinifera Ayurveda 

 

   

Tetra-

decylbenzene Aloe vera Ayurveda, MalayTM 0.327 

   

Tridecylbenzene Aloe vera Ayurveda, MalayTM 0.327 

   

Phenethyl 

isobutyrate Alpinia officinarum TCM 0.327 

   

Isoamylbenzene Angelica sinensis TCM 0.326 

   

Phenylalanine Albizia lebbeck Ayurveda 0.304 

    

Carthamus tinctorius TCM 
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Raphanus sativus Ayurveda 

 

    

Vitis vinifera Ayurveda 

 

   

Benzyl-acetate Melia azedarach Ayurveda 0.304 

   

Hyacinthin Artemisia argyi TCM 0.300 

    

Carthamus tinctorius TCM 

 

    

Cinnamomum aromaticum TCM 

 

    

Gynostemma pentaphyllum TCM 

 

    

Magnolia officinalis TCM 

 

    

Scutellaria barbata TCM 

 

22 

Uridine 

Triacetate DB09144 Uridine Isatis tinctoria TCM 0.361 

23 Valrubicin DB00385 Glutathione Allium sativum Ayurveda, MalayTM 0.446 

24 Vinblastine DB00570 

Leurosidine 

(Vinrosidine) Catharanthus roseus MalayTM 1.000 

   

Vincaleukoblast

ine 

 

MalayTM 0.883 

   

Leurocristine 

 

MalayTM 0.758 

   

Vinblastine 

(Vincaleucoblas

tine) 

 

MalayTM 0.702 

   

3’,4’-

Anhydrovinblas

tine 

 

MalayTM 0.682 

   

N-

Deformylvincris

tine 

 

MalayTM 0.634 

   

Catharine 

 

MalayTM 0.623 

   

Leurosinone 

 

MalayTM 0.579 

   

Pleurosine 

 

MalayTM 0.500 

   

Vincathicine 

 

MalayTM 0.469 

   

Vindolicine 

 

MalayTM 0.454 

   

Vindoline 

 

MalayTM 0.409 

   

Deacetylvindoli

ne 

 

MalayTM 0.300 

25 Vincristine DB00541 Leurocristine Catharanthus roseus MalayTM 1.000 

   

Leurosidine 

(Vinrosidine) 

 

MalayTM 0.758 

   

Vincaleukoblast

ine 

 

MalayTM 0.687 

   

N-

Deformylvincris

tine 

 

MalayTM 0.652 

   

Vinblastine 

(Vincaleucoblas

tine) 

 

MalayTM 0.525 

   

3’,4’-

Anhydrovinblas

tine 

 

MalayTM 0.507 

   

Catharine 

 

MalayTM 0.491 

   

Leurosinone 

 

MalayTM 0.438 

   

Pleurosine 

 

MalayTM 0.384 

   

Vindoline 

 

MalayTM 0.342 

   

Vindolicine 

 

MalayTM 0.342 

   

Vincathicine 

 

MalayTM 0.342 
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26 Vincristine DB00541 Leurocristine Catharanthus roseus MalayTM 1.000 

   

Leurosidine 

(Vinrosidine) 

 

MalayTM 0.758 

   

Vincaleukoblast

ine 

 

MalayTM 0.687 

   

N-

Deformylvincris

tine 

 

MalayTM 0.652 

   

Vinblastine 

(Vincaleucoblas

tine) 

 

MalayTM 0.525 

   

3’,4’-

Anhydrovinblas

tine 

 

MalayTM 0.507 

   

Catharine 

 

MalayTM 0.491 

   

Leurosinone 

 

MalayTM 0.438 

   

Pleurosine 

 

MalayTM 0.384 

   

Vindoline 

 

MalayTM 0.342 

   

Vindolicine 

 

MalayTM 0.342 

   

Vincathicine 

 

MalayTM 0.342 

27 Vindesine DB00309 

Leurosidine 

(Vinrosidine) Catharanthus roseus MalayTM 0.773 

   

Vincaleukoblast

ine 

 

MalayTM 0.754 

   

Leurocristine 

 

MalayTM 0.641 

   

N-

Deformylvincris

tine 

 

MalayTM 0.562 

   

Vinblastine 

(Vincaleucoblas

tine) 

 

MalayTM 0.537 

   

Leurosine 

 

MalayTM 0.537 

   

3’,4’-

Anhydrovinblas

tine 

 

MalayTM 0.518 

   

Catharine 

 

MalayTM 0.475 

   

Leurosinone 

 

MalayTM 0.436 

   

Pleurosine 

 

MalayTM 0.377 

   

Vincathicine 

 

MalayTM 0.351 

   

Deacetylvindoli

ne 

 

MalayTM 0.351 

   

Catharosine 

 

MalayTM 0.349 

   

Vindolicine 

 

MalayTM 0.307 

28 Vinorelbine DB00361 

3’,4’-

Anhydrovinblas

tine Catharanthus roseus MalayTM 0.765 

   

Leurosidine 

(Vinrosidine) 

 

MalayTM 0.603 

   

Vinblastine 

(Vincaleucoblas

tine) 

 

MalayTM 0.583 

   

Catharine 

 

MalayTM 0.577 

   

Leurosinone 

 

MalayTM 0.572 

   

Vincaleukoblast

ine 

 

MalayTM 0.532 

   

Pleurosine 

 

MalayTM 0.474 
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Vincathicine 

 

MalayTM 0.462 

   

Vindolicine 

 

MalayTM 0.461 

   

Leurocristine 

 

MalayTM 0.440 

   

Vindoline 

 

MalayTM 0.400 

   

N-

Deformylvincris

tine 

 

MalayTM 0.363 
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Chapter 4:  

Table A4.1: The list of enriched GO biological processes based on SBP predicted targets. 

GOID GO Term 
Term  

p-value 
GO Levels 

% 

Associated 

Genes 

GO:0000187 activation of MAPK activity 65.0E-15 [7, 8, 9, 10, 11, 12, 13] 13.55 

GO:0032872 regulation of stress-activated MAPK cascade 270.0E-18 [5, 6, 7, 8, 9, 10, 11] 12.75 

GO:0051403 stress-activated MAPK cascade 28.0E-21 [5, 6, 7, 9, 10] 12.10 

GO:0002224 toll-like receptor signaling pathway 2.4E-12 [6, 8, 9, 10, 11] 12.05 

GO:0043406 positive regulation of MAP kinase activity 7.1E-15 [6, 7, 8, 9, 10, 11, 12] 11.16 

GO:0051091 

positive regulation of sequence-specific DNA 

binding transcription factor activity 130.0E-15 [4, 6, 7, 8, 9, 10, 11, 12] 10.37 

GO:0018108 peptidyl-tyrosine phosphorylation 9.4E-18 [7, 8, 9] 9.72 

GO:0043405 regulation of MAP kinase activity 6.0E-24 [6, 7, 8, 9, 10, 11] 9.62 

GO:0006367 

transcription initiation from RNA polymerase II 

promoter 36.0E-15 [7, 8, 9, 10, 11] 9.52 

GO:0006352 DNA-templated transcription, initiation 4.3E-15 [6, 7, 8, 9, 10] 9.14 

GO:0002758 

innate immune response-activating signal 

transduction 320.0E-15 [4, 6, 7, 8, 9] 9.09 

GO:0051090 

regulation of sequence-specific DNA binding 

transcription factor activity 99.0E-18 [3, 6, 7, 8, 9, 10, 11] 9.02 

GO:0032147 activation of protein kinase activity 10.0E-21 [7, 8, 9, 10, 11] 8.94 

GO:0071902 

positive regulation of protein serine/threonine 

kinase activity 270.0E-15 [7, 8, 9, 10, 11] 8.78 

GO:0018105 peptidyl-serine phosphorylation 47.0E-12 [7, 8, 9] 8.71 

GO:0070371 ERK1 and ERK2 cascade 60.0E-12 [5, 6, 7, 9, 10] 8.61 

GO:0071900 

regulation of protein serine/threonine kinase 

activity 1.0E-24 [7, 8, 9, 10] 8.46 

GO:0070372 regulation of ERK1 and ERK2 cascade 620.0E-12 [6, 7, 8, 9, 10, 11] 8.43 

GO:0000186 activation of MAPKK activity 2.6E-9 [6, 7, 8, 9, 10, 11, 12] 8.20 

GO:0033674 positive regulation of kinase activity 10.0E-24 [5, 6, 7, 8, 9] 8.08 

GO:0045860 positive regulation of protein kinase activity 370.0E-24 [6, 7, 8, 9, 10] 7.98 

GO:0045859 regulation of protein kinase activity 240.0E-33 [6, 7, 8, 9] 7.95 

GO:0043408 regulation of MAPK cascade 120.0E-30 [5, 6, 7, 8, 9, 10] 7.95 

GO:0043410 positive regulation of MAPK cascade 9.7E-21 [5, 6, 7, 8, 9, 10, 11] 7.74 

GO:0000165 MAPK cascade 14.0E-30 [4, 5, 6, 8, 9] 7.70 

GO:0007173 epidermal growth factor receptor signaling pathway 18.0E-12 [8, 9] 7.39 

GO:0008286 insulin receptor signaling pathway 390.0E-12 [7, 8, 9] 7.20 

GO:0006606 protein import into nucleus 12.0E-9 [4, 5, 6, 7, 8, 9] 7.14 

GO:0001525 angiogenesis 15.0E-12 [3, 4, 5, 7, 8, 9, 10] 6.74 

GO:0001934 positive regulation of protein phosphorylation 640.0E-27 [6, 7, 8, 9] 6.56 

GO:0030098 lymphocyte differentiation 65.0E-9 [4, 6, 7, 8, 9] 6.48 

GO:0006816 calcium ion transport 5.6E-9 [8, 9] 6.33 

GO:0048514 blood vessel morphogenesis 13.0E-12 [3, 4, 6, 7, 8, 9] 6.22 

GO:0045944 

positive regulation of transcription from RNA 

polymerase II promoter 2.5E-21 [6, 7, 8, 9, 10, 11, 12] 6.00 

GO:0007411 axon guidance 1.1E-9 [5, 6, 7, 8, 9, 10, 11, 12, 13] 5.37 

GO:0006874 cellular calcium ion homeostasis 1.5E-6 [8, 9] 5.34 

GO:0045893 positive regulation of transcription, DNA-templated 63.0E-24 [5, 6, 7, 8, 9, 10, 11] 5.30 

GO:0048666 neuron development 260.0E-15 [4, 5, 6, 8, 9] 4.44 

GO:0031175 neuron projection development 10.0E-12 [4, 5, 6, 7, 9, 10] 4.43 

GO:0042110 T cell activation 37.0E-6 [4, 6, 8, 9] 4.34 

GO:0048667 

cell morphogenesis involved in neuron 

differentiation 51.0E-9 [5, 6, 7, 8, 9, 10] 4.20 

 

GO Levels = Level of term specificity  

% Associated Genes = Percentage of the genes from the SBP predicted targets that were associated 

with the term, com-pared with all the genes associated with the term.   
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Table A4.2: The list of 332 GO term that were used in calculating Pathway Distance 

Similarity (PDS) 

GOID GO Term Term p-value 

Term p-value 

Corrected 

with 

Bonferroni 

step down 

GO Levels 

% 

Associated 

Genes 

GO:0006468 protein phosphorylation 430.0E-264 140.0E-261 [6, 7] 43.38 

GO:0071310 

cellular response to organic 

substance 180.0E-261 59.0E-258 (321) 40.12 

GO:0044093 

positive regulation of molecular 

function 450.0E-237 140.0E-234 [3] 41.74 

GO:1902531 

regulation of intracellular signal 

transduction 51.0E-216 16.0E-213 [4, 5, 6] 41.55 

GO:0043085 

positive regulation of catalytic 

activity 620.0E-210 200.0E-207 (321) 42.97 

GO:0009967 

positive regulation of signal 

transduction 12.0E-198 4.1E-195 [3, 4, 5, 6] 43.60 

GO:0031399 

regulation of protein modification 

process 6.6E-195 2.1E-192 [5, 6, 7] 40.74 

GO:0023056 positive regulation of signaling 600.0E-192 190.0E-189 [2, 3, 4] 41.37 

GO:0010647 

positive regulation of cell 

communication 700.0E-192 220.0E-189 [3, 4, 5] 41.45 

GO:0019220 

regulation of phosphate metabolic 

process 380.0E-186 120.0E-183 [5, 6] 40.31 

GO:0042325 regulation of phosphorylation 39.0E-183 12.0E-180 [6, 7] 42.95 

GO:0051247 

positive regulation of protein 

metabolic process 15.0E-180 4.8E-177 [4, 5, 6] 41.25 

GO:0010941 regulation of cell death 1.1E-177 350.0E-177 [3, 4] 40.84 

GO:0001932 

regulation of protein 

phosphorylation 4.9E-174 1.5E-171 [6, 7, 8] 43.45 

GO:0043067 

regulation of programmed cell 

death 39.0E-174 12.0E-171 [4, 5] 41.61 

GO:0023014 

signal transduction by protein 

phosphorylation 17.0E-171 5.4E-168 [3, 4, 5, 7, 8] 50.05 

GO:0032270 

positive regulation of cellular 

protein metabolic process 33.0E-171 10.0E-168 [4, 5, 6, 7] 41.55 

GO:0042981 regulation of apoptotic process 430.0E-171 130.0E-168 [5, 6] 41.42 

GO:0000165 MAPK cascade 2.4E-165 750.0E-165 [4, 5, 6, 8, 9] 50.27 

GO:0031401 

positive regulation of protein 

modification process 480.0E-165 140.0E-162 [5, 6, 7, 8] 44.61 

GO:0045937 

positive regulation of phosphate 

metabolic process 41.0E-156 12.0E-153 [5, 6, 7] 45.22 

GO:0007167 

enzyme linked receptor protein 

signaling pathway 3.1E-153 960.0E-153 [5, 6] 46.58 

GO:0071495 

cellular response to endogenous 

stimulus 390.0E-150 120.0E-147 [3] 42.35 

GO:0042327 

positive regulation of 

phosphorylation 5.9E-147 1.8E-144 [6, 7, 8] 46.72 

GO:0001934 

positive regulation of protein 

phosphorylation 1.7E-141 530.0E-141 [6, 7, 8, 9] 46.90 

GO:0051338 regulation of transferase activity 26.0E-141 7.9E-138 (321) 45.56 

GO:0072359 circulatory system development 28.0E-138 8.4E-135 [4, 5] 45.05 

GO:0014070 

response to organic cyclic 

compound 60.0E-135 18.0E-132 (321) 45.41 

GO:0016477 cell migration 670.0E-135 200.0E-132 [3, 4, 5] 40.09 

GO:0022603 

regulation of anatomical structure 

morphogenesis 20.0E-132 6.1E-129 [3, 4] 44.18 

GO:0048646 

anatomical structure formation 

involved in morphogenesis 7.7E-129 2.3E-126 [2, 3, 4] 43.47 

GO:0098609 cell-cell adhesion 17.0E-129 5.2E-126 [3] 40.66 

GO:0051094 

positive regulation of 

developmental process 68.0E-129 20.0E-126 [2, 3, 4] 40.33 

GO:0007169 

transmembrane receptor protein 

tyrosine kinase signaling pathway 53.0E-126 15.0E-123 [6, 7] 50.28 

GO:1902533 

positive regulation of intracellular 

signal transduction 650.0E-126 190.0E-123 [4, 5, 6, 7] 44.13 
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GO:0043549 regulation of kinase activity 10.0E-123 3.0E-120 [5, 7, 8] 46.83 

GO:1901701 

cellular response to oxygen-

containing compound 45.0E-123 13.0E-120 (321) 43.41 

GO:0051347 

positive regulation of transferase 

activity 6.8E-120 2.0E-117 [5] 50.52 

GO:0033993 response to lipid 22.0E-120 6.6E-117 (321) 44.10 

GO:0060548 negative regulation of cell death 430.0E-117 120.0E-114 [3, 4, 5] 42.84 

GO:0051345 

positive regulation of hydrolase 

activity 640.0E-117 180.0E-114 [5] 42.87 

GO:0009887 animal organ morphogenesis 66.0E-114 19.0E-111 [3, 4, 5, 6] 41.30 

GO:0045859 

regulation of protein kinase 

activity 590.0E-114 170.0E-111 [6, 7, 8, 9] 46.64 

GO:0001568 blood vessel development 2.0E-111 570.0E-111 [3, 5, 6, 7, 8] 50.64 

GO:0009725 response to hormone 4.2E-111 1.2E-108 [3, 4] 43.50 

GO:0048729 tissue morphogenesis 45.0E-111 12.0E-108 [3, 4] 49.17 

GO:0072358 

cardiovascular system 

development 940.0E-111 260.0E-108 [4, 5, 6] 49.08 

GO:0043069 

negative regulation of 

programmed cell death 12.0E-108 3.5E-105 [4, 5, 6] 43.15 

GO:1901698 response to nitrogen compound 90.0E-108 25.0E-105 [3] 42.11 

GO:0098602 single organism cell adhesion 160.0E-108 45.0E-105 [2, 3] 44.23 

GO:0043066 

negative regulation of apoptotic 

process 1.8E-105 500.0E-105 [5, 6, 7] 43.05 

GO:0043068 

positive regulation of 

programmed cell death 12.0E-105 3.3E-102 [4, 5, 6] 49.84 

GO:0009611 response to wounding 21.0E-105 5.9E-102 [3] 47.70 

GO:0010942 positive regulation of cell death 160.0E-105 45.0E-102 [3, 4, 5] 48.52 

GO:0043065 

positive regulation of apoptotic 

process 250.0E-105 69.0E-102 [5, 6, 7] 49.75 

GO:0033674 

positive regulation of kinase 

activity 2.5E-102 700.0E-102 [6, 7, 8, 9] 52.15 

GO:0043408 regulation of MAPK cascade 74.0E-102 20.0E-99 [5, 6, 7, 8, 9, 10] 45.87 

GO:0016337 

single organismal cell-cell 

adhesion 120.0E-102 34.0E-99 [3, 4] 44.58 

GO:0048514 blood vessel morphogenesis 260.0E-102 70.0E-99 [3, 4, 6, 7, 8, 9] 51.68 

GO:0034097 response to cytokine 820.0E-102 220.0E-99 (321) 43.05 

GO:0001775 cell activation 3.1E-99 830.0E-99 [3] 40.50 

GO:0051270 

regulation of cellular component 

movement 4.7E-99 1.2E-96 [3, 4] 42.75 

GO:0045597 

positive regulation of cell 

differentiation 530.0E-99 140.0E-96 [3, 4, 5, 6] 41.50 

GO:0008284 

positive regulation of cell 

proliferation 790.0E-99 210.0E-96 [3, 4, 5] 41.38 

GO:0010243 

response to organonitrogen 

compound 2.2E-96 580.0E-96 [3, 4] 42.58 

GO:0018108 peptidyl-tyrosine phosphorylation 3.3E-96 880.0E-96 [7, 8, 9] 58.35 

GO:0071407 

cellular response to organic cyclic 

compound 7.8E-96 2.0E-93 [5] 50.27 

GO:0045860 

positive regulation of protein 

kinase activity 800.0E-96 210.0E-93 [7, 8, 9, 10] 51.91 

GO:2000145 regulation of cell motility 2.4E-93 630.0E-93 [3, 4, 5] 43.13 

GO:0030334 regulation of cell migration 8.6E-93 2.2E-90 [4, 5, 6] 44.24 

GO:0002009 morphogenesis of an epithelium 90.0E-93 23.0E-90 [4, 5] 49.01 

GO:0040012 regulation of locomotion 210.0E-93 56.0E-90 [2, 3] 41.41 

GO:0001525 angiogenesis 220.0E-93 58.0E-90 [3, 4, 5, 7, 8, 9, 10] 53.42 

GO:0071396 cellular response to lipid 4.1E-90 1.0E-87 [5] 49.17 

GO:0042060 wound healing 73.0E-90 18.0E-87 (321) 48.30 

GO:0032870 

cellular response to hormone 

stimulus 240.0E-90 62.0E-87 [4, 5] 45.30 

GO:0030155 regulation of cell adhesion 280.0E-90 71.0E-87 [2, 3] 44.25 

GO:0070848 response to growth factor 300.0E-90 76.0E-87 (321) 44.64 

GO:0071363 

cellular response to growth factor 

stimulus 4.5E-87 1.1E-84 [5] 45.19 

GO:1905114 

cell surface receptor signaling 

pathway involved in cell-cell 

signaling 130.0E-87 32.0E-84 [4, 5, 6] 47.19 
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GO:0071900 

regulation of protein 

serine/threonine kinase activity 200.0E-87 50.0E-84 [7, 8, 9, 10] 50.10 

GO:0031347 regulation of defense response 310.0E-87 76.0E-84 [4, 5] 43.35 

GO:0043410 

positive regulation of MAPK 

cascade 1.8E-84 460.0E-84 [5, 6, 7, 8, 9, 10, 11] 49.12 

GO:0071345 

cellular response to cytokine 

stimulus 3.5E-84 850.0E-84 [5] 42.45 

GO:0016055 Wnt signaling pathway 700.0E-84 170.0E-81 [5, 6, 7] 48.62 

GO:0019221 

cytokine-mediated signaling 

pathway 22.0E-81 5.5E-78 [5, 6] 46.05 

GO:1901699 

cellular response to nitrogen 

compound 510.0E-78 120.0E-75 (321) 44.60 

GO:2000027 

regulation of organ 

morphogenesis 280.0E-75 68.0E-72 [4, 5, 6, 7] 60.36 

GO:0043087 regulation of GTPase activity 28.0E-72 6.7E-69 [5] 40.14 

GO:0043405 regulation of MAP kinase activity 140.0E-72 33.0E-69 [6, 7, 8, 9, 10, 11] 53.76 

GO:0032147 

activation of protein kinase 

activity 130.0E-72 33.0E-69 [8, 9, 10, 11] 56.05 

GO:0071417 

cellular response to 

organonitrogen compound 660.0E-72 150.0E-69 [4, 5] 45.98 

GO:0043547 

positive regulation of GTPase 

activity 23.0E-69 5.4E-66 (322) 40.76 

GO:0070482 response to oxygen levels 25.0E-69 5.8E-66 [3] 54.46 

GO:0046649 lymphocyte activation 100.0E-69 24.0E-66 [3, 5] 40.24 

GO:0060070 canonical Wnt signaling pathway 200.0E-69 46.0E-66 [6, 7, 8] 55.34 

GO:0007159 leukocyte cell-cell adhesion 320.0E-69 75.0E-66 [4, 5] 44.66 

GO:0002764 

immune response-regulating 

signaling pathway 530.0E-69 120.0E-66 [4, 5] 42.51 

GO:0051272 

positive regulation of cellular 

component movement 1.0E-66 230.0E-66 [3, 4, 5] 47.30 

GO:0045088 

regulation of innate immune 

response 7.2E-66 1.6E-63 [4, 5, 6] 51.10 

GO:0051056 

regulation of small GTPase 

mediated signal transduction 14.0E-66 3.2E-63 [5, 6, 7] 53.73 

GO:0050878 regulation of body fluid levels 14.0E-66 3.2E-63 [3] 43.69 

GO:0031400 

negative regulation of protein 

modification process 20.0E-66 4.7E-63 [5, 6, 7, 8] 41.98 

GO:0040017 positive regulation of locomotion 130.0E-66 31.0E-63 [2, 3, 4] 45.81 

GO:0097190 apoptotic signaling pathway 170.0E-66 38.0E-63 [4, 5, 6] 40.57 

GO:0006935 chemotaxis 340.0E-66 76.0E-63 [3, 4] 41.60 

GO:0061061 muscle structure development 370.0E-66 82.0E-63 [3] 41.05 

GO:0036293 

response to decreased oxygen 

levels 500.0E-66 110.0E-63 (321) 54.43 

GO:0007507 heart development 1.0E-63 240.0E-63 [3, 4, 5, 6] 42.75 

GO:0050852 T cell receptor signaling pathway 8.5E-63 1.8E-60 [6, 8, 9, 10] 66.84 

GO:0001666 response to hypoxia 11.0E-63 2.5E-60 [3, 5] 54.55 

GO:0048545 response to steroid hormone 45.0E-63 9.7E-60 [4, 5] 47.55 

GO:0070486 leukocyte aggregation 750.0E-63 160.0E-60 [5, 6] 44.17 

GO:0018105 peptidyl-serine phosphorylation 1.2E-60 250.0E-60 [7, 8, 9] 56.39 

GO:0048732 gland development 1.8E-60 390.0E-60 [3, 4, 5, 6] 44.54 

GO:0002521 leukocyte differentiation 2.0E-60 420.0E-60 [5, 6, 7, 8] 43.83 

GO:0042110 T cell activation 3.2E-60 690.0E-60 [4, 6, 8, 9] 44.28 

GO:0002768 

immune response-regulating cell 

surface receptor signaling 

pathway 11.0E-60 2.5E-57 [5, 6] 45.17 

GO:0051090 

regulation of sequence-specific 

DNA binding transcription factor 

activity 45.0E-60 9.4E-57 [3, 6, 7, 8, 9, 10, 11] 47.67 

GO:0046777 protein autophosphorylation 68.0E-60 14.0E-57 [7, 8] 57.49 

GO:0002757 

immune response-activating 

signal transduction 78.0E-60 16.0E-57 [3, 5, 6, 7] 41.35 

GO:0018209 peptidyl-serine modification 100.0E-60 21.0E-57 [7, 8] 54.48 

GO:0070997 neuron death 150.0E-60 30.0E-57 (321) 52.10 

GO:1901652 response to peptide 390.0E-60 81.0E-57 [4, 5] 43.97 

GO:0045785 

positive regulation of cell 

adhesion 1.0E-57 200.0E-57 [2, 3, 4] 45.89 
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GO:0050851 

antigen receptor-mediated 

signaling pathway 1.1E-57 220.0E-57 [5, 7, 8, 9] 56.57 

GO:0031349 

positive regulation of defense 

response 1.3E-57 280.0E-57 [3, 4, 5, 6] 45.99 

GO:1901342 

regulation of vasculature 

development 7.9E-57 1.6E-54 [4, 5, 6, 7, 8] 55.64 

GO:0030111 

regulation of Wnt signaling 

pathway 8.6E-57 1.7E-54 [4, 5, 6, 7, 8] 49.85 

GO:0060537 muscle tissue development 12.0E-57 2.5E-54 (321) 47.00 

GO:0030198 extracellular matrix organization 20.0E-57 4.1E-54 (321) 48.99 

GO:0007599 hemostasis 33.0E-57 6.5E-54 (321) 47.68 

GO:0035239 tube morphogenesis 41.0E-57 8.1E-54 [3, 4, 5] 47.44 

GO:0043434 response to peptide hormone 100.0E-57 20.0E-54 [4, 5, 6] 44.81 

GO:0050817 coagulation 190.0E-57 38.0E-54 [3] 47.41 

GO:1901214 regulation of neuron death 260.0E-57 51.0E-54 [4, 5] 53.68 

GO:0050900 leukocyte migration 740.0E-57 140.0E-54 [2, 4, 5, 6] 45.82 

GO:0022407 regulation of cell-cell adhesion 840.0E-57 160.0E-54 [3, 4, 5] 45.12 

GO:0050673 epithelial cell proliferation 2.5E-54 480.0E-54 [3] 46.21 

GO:0071902 

positive regulation of protein 

serine/threonine kinase activity 2.7E-54 510.0E-54 [8, 9, 10, 11] 50.00 

GO:1905330 

regulation of morphogenesis of 

an epithelium 42.0E-54 8.0E-51 [4, 5, 6] 61.58 

GO:0014706 

striated muscle tissue 

development 66.0E-54 12.0E-51 [5] 46.47 

GO:2001233 

regulation of apoptotic signaling 

pathway 68.0E-54 12.0E-51 [4, 5, 6, 7] 44.23 

GO:0007156 

homophilic cell adhesion via 

plasma membrane adhesion 

molecules 89.0E-54 16.0E-51 [5] 66.25 

GO:0060562 epithelial tube morphogenesis 150.0E-54 28.0E-51 [4, 5, 6] 48.20 

GO:0001667 ameboidal-type cell migration 170.0E-54 32.0E-51 [4, 5, 6] 47.16 

GO:0045862 positive regulation of proteolysis 380.0E-54 69.0E-51 [5, 6, 7, 8] 46.20 

GO:0007265 Ras protein signal transduction 630.0E-54 110.0E-51 [6, 7] 47.01 

GO:0045765 regulation of angiogenesis 5.5E-51 1.0E-48 

[4, 5, 6, 7, 8, 9, 10, 

11] 55.36 

GO:0034330 cell junction organization 6.9E-51 1.2E-48 [3] 52.04 

GO:0048017 inositol lipid-mediated signaling 17.0E-51 3.0E-48 [5, 6] 56.62 

GO:0002429 

immune response-activating cell 

surface receptor signaling 

pathway 21.0E-51 3.7E-48 [4, 6, 7, 8] 43.48 

GO:0031589 cell-substrate adhesion 45.0E-51 8.0E-48 [3] 47.43 

GO:0048015 

phosphatidylinositol-mediated 

signaling 78.0E-51 13.0E-48 [6, 7] 56.74 

GO:0001763 

morphogenesis of a branching 

structure 87.0E-51 15.0E-48 [3, 4] 57.42 

GO:0043406 

positive regulation of MAP 

kinase activity 350.0E-51 61.0E-48 

[6, 7, 8, 9, 10, 11, 

12] 54.51 

GO:0050730 

regulation of peptidyl-tyrosine 

phosphorylation 350.0E-51 61.0E-48 [7, 8, 9, 10] 54.51 

GO:0098742 

cell-cell adhesion via plasma-

membrane adhesion molecules 350.0E-51 61.0E-48 (321) 54.51 

GO:0061138 

morphogenesis of a branching 

epithelium 430.0E-51 74.0E-48 [4, 5, 6] 58.67 

GO:0014065 

phosphatidylinositol 3-kinase 

signaling 1.3E-48 230.0E-48 [7, 8] 61.99 

GO:0002223 

stimulatory C-type lectin receptor 

signaling pathway 1.7E-48 290.0E-48 [6, 8, 9, 10, 11] 75.93 

GO:0051348 

negative regulation of transferase 

activity 1.7E-48 290.0E-48 [5] 45.05 

GO:0014066 

regulation of phosphatidylinositol 

3-kinase signaling 4.9E-48 830.0E-48 [5, 6, 7, 8, 9] 65.33 

GO:0003012 muscle system process 5.0E-48 840.0E-48 [3] 43.07 

GO:0002218 

activation of innate immune 

response 5.3E-48 880.0E-48 [3, 5, 6, 7, 8] 51.75 

GO:0060828 

regulation of canonical Wnt 

signaling pathway 14.0E-48 2.3E-45 [5, 6, 7, 8, 9] 51.98 

GO:0051402 neuron apoptotic process 14.0E-48 2.4E-45 [5, 6] 54.42 
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GO:0097191 

extrinsic apoptotic signaling 

pathway 66.0E-48 10.0E-45 [5, 6, 7] 52.02 

GO:0071383 

cellular response to steroid 

hormone stimulus 80.0E-48 13.0E-45 [5, 6] 51.37 

GO:1903037 

regulation of leukocyte cell-cell 

adhesion 100.0E-48 16.0E-45 [4, 5, 6] 45.83 

GO:0001933 

negative regulation of protein 

phosphorylation 160.0E-48 26.0E-45 [6, 7, 8, 9] 42.82 

GO:0038093 Fc receptor signaling pathway 250.0E-48 40.0E-45 [6, 7] 49.64 

GO:0050678 

regulation of epithelial cell 

proliferation 280.0E-48 44.0E-45 [4, 5] 46.56 

GO:0002237 

response to molecule of bacterial 

origin 300.0E-48 47.0E-45 [4, 6] 45.32 

GO:0045089 

positive regulation of innate 

immune response 340.0E-48 53.0E-45 [4, 5, 6, 7] 47.83 

GO:0042326 

negative regulation of 

phosphorylation 560.0E-48 87.0E-45 [6, 7, 8] 41.15 

GO:1901653 cellular response to peptide 1.6E-45 250.0E-45 [5, 6] 45.62 

GO:0032496 response to lipopolysaccharide 2.2E-45 340.0E-45 [4, 5, 7] 45.73 

GO:0035567 

non-canonical Wnt signaling 

pathway 2.4E-45 370.0E-45 [6, 7, 8] 61.88 

GO:0048738 

cardiac muscle tissue 

development 2.6E-45 400.0E-45 [4, 5, 6, 7] 56.63 

GO:0043401 

steroid hormone mediated 

signaling pathway 2.8E-45 420.0E-45 [5, 6, 7] 56.99 

GO:0030098 lymphocyte differentiation 3.4E-45 510.0E-45 [4, 6, 7, 8, 9] 46.23 

GO:0090130 tissue migration 14.0E-45 2.1E-42 [3] 50.39 

GO:0070371 ERK1 and ERK2 cascade 22.0E-45 3.3E-42 [5, 6, 7, 9, 10] 48.39 

GO:0009755 

hormone-mediated signaling 

pathway 22.0E-45 3.3E-42 [4, 5, 6] 51.68 

GO:0007517 muscle organ development 75.0E-45 10.0E-42 [4, 5, 6] 42.52 

GO:0031098 

stress-activated protein kinase 

signaling cascade 80.0E-45 11.0E-42 [4, 5, 6] 49.24 

GO:0050863 regulation of T cell activation 79.0E-45 11.0E-42 [5, 6, 7, 9, 10] 45.48 

GO:0030178 

negative regulation of Wnt 

signaling pathway 100.0E-45 14.0E-42 [4, 5, 6, 7, 8, 9] 54.03 

GO:0071375 

cellular response to peptide 

hormone stimulus 120.0E-45 17.0E-42 [5, 6, 7] 45.98 

GO:0001503 ossification 170.0E-45 23.0E-42 [3] 42.30 

GO:0051403 stress-activated MAPK cascade 220.0E-45 30.0E-42 [5, 6, 7, 9, 10] 49.42 

GO:0060326 cell chemotaxis 390.0E-45 54.0E-42 [4, 5, 6] 48.18 

GO:0048754 

branching morphogenesis of an 

epithelial tube 560.0E-45 77.0E-42 [4, 5, 6, 7] 60.25 

GO:0030177 

positive regulation of Wnt 

signaling pathway 560.0E-45 77.0E-42 [4, 5, 6, 7, 8, 9] 60.25 

GO:0030168 platelet activation 590.0E-45 80.0E-42 [4, 5, 6] 58.38 

GO:0043523 

regulation of neuron apoptotic 

process 610.0E-45 83.0E-42 [5, 6, 7] 54.73 

GO:0090132 epithelium migration 970.0E-45 130.0E-42 (321) 50.00 

GO:0050867 

positive regulation of cell 

activation 3.0E-42 400.0E-42 [3, 4, 5] 43.60 

GO:0050731 

positive regulation of peptidyl-

tyrosine phosphorylation 4.8E-42 640.0E-42 [7, 8, 9, 10, 11] 56.98 

GO:0090090 

negative regulation of canonical 

Wnt signaling pathway 10.0E-42 1.4E-39 [5, 6, 7, 8, 9, 10] 57.47 

GO:0042176 

regulation of protein catabolic 

process 12.0E-42 1.6E-39 [4, 5, 6] 41.62 

GO:0022409 

positive regulation of cell-cell 

adhesion 19.0E-42 2.4E-39 [3, 4, 5, 6] 48.11 

GO:0038095 

Fc-epsilon receptor signaling 

pathway 27.0E-42 3.4E-39 [7, 8] 53.14 

GO:0002696 

positive regulation of leukocyte 

activation 27.0E-42 3.4E-39 [3, 4, 5, 6] 43.71 

GO:0045216 cell-cell junction organization 47.0E-42 6.0E-39 (321) 50.00 

GO:0042692 muscle cell differentiation 81.0E-42 10.0E-39 [4, 5] 41.60 

GO:0051091 

positive regulation of sequence-

specific DNA binding 

transcription factor activity 88.0E-42 10.0E-39 

[2, 3, 4, 7, 8, 9, 10, 

11, 12] 49.19 
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GO:0070372 

regulation of ERK1 and ERK2 

cascade 90.0E-42 11.0E-39 [6, 7, 8, 9, 10, 11] 48.08 

GO:0060759 

regulation of response to cytokine 

stimulus 100.0E-42 12.0E-39 [3, 4, 5] 60.13 

GO:0031329 

regulation of cellular catabolic 

process 280.0E-42 34.0E-39 [4, 5] 40.77 

GO:0001655 urogenital system development 370.0E-42 45.0E-39 [4, 5] 42.73 

GO:0071453 cellular response to oxygen levels 470.0E-42 56.0E-39 (321) 58.86 

GO:0007160 cell-matrix adhesion 1.1E-39 130.0E-39 (321) 51.90 

GO:0034612 response to tumor necrosis factor 1.1E-39 130.0E-39 [5] 45.94 

GO:1903039 

positive regulation of leukocyte 

cell-cell adhesion 1.4E-39 160.0E-39 [4, 5, 6, 7] 49.57 

GO:1904018 

positive regulation of vasculature 

development 2.0E-39 230.0E-39 [3, 4, 5, 6, 7, 8, 9] 59.60 

GO:0051251 

positive regulation of lymphocyte 

activation 4.1E-39 470.0E-39 [4, 5, 6, 7] 44.16 

GO:0003007 heart morphogenesis 5.6E-39 640.0E-39 [4, 5, 6, 7] 48.75 

GO:0034329 cell junction assembly 6.7E-39 750.0E-39 (321) 51.17 

GO:1901215 

negative regulation of neuron 

death 7.9E-39 880.0E-39 [4, 5, 6] 54.01 

GO:0001959 

regulation of cytokine-mediated 

signaling pathway 8.9E-39 980.0E-39 [4, 5, 6, 7] 59.86 

GO:0060071 

Wnt signaling pathway, planar 

cell polarity pathway 10.0E-39 1.1E-36 [6, 7, 8, 9] 66.38 

GO:0071356 

cellular response to tumor 

necrosis factor 14.0E-39 1.5E-36 (322) 46.77 

GO:0043542 endothelial cell migration 58.0E-39 6.2E-36 [6, 7, 8] 55.56 

GO:0007178 

transmembrane receptor protein 

serine/threonine kinase signaling 

pathway 120.0E-39 12.0E-36 [6, 7] 42.09 

GO:0043281 

regulation of cysteine-type 

endopeptidase activity involved 

in apoptotic process 130.0E-39 14.0E-36 [6, 7, 8, 9, 10] 50.23 

GO:0050870 

positive regulation of T cell 

activation 200.0E-39 21.0E-36 [5, 6, 7, 8, 9, 10, 11] 49.12 

GO:0045766 

positive regulation of 

angiogenesis 320.0E-39 32.0E-36 

[4, 5, 6, 7, 8, 9, 10, 

11, 12] 61.19 

GO:2001236 

regulation of extrinsic apoptotic 

signaling pathway 320.0E-39 32.0E-36 [5, 6, 7, 8] 53.89 

GO:0001738 

morphogenesis of a polarized 

epithelium 360.0E-39 37.0E-36 [5, 6] 59.44 

GO:0009896 

positive regulation of catabolic 

process 420.0E-39 42.0E-36 [3, 4, 5] 41.52 

GO:0036294 

cellular response to decreased 

oxygen levels 780.0E-39 77.0E-36 [5] 58.50 

GO:0051098 regulation of binding 840.0E-39 82.0E-36 [3] 43.04 

GO:0001736 establishment of planar polarity 1.3E-36 130.0E-36 [4, 5, 6, 7] 61.54 

GO:0032943 mononuclear cell proliferation 1.8E-36 170.0E-36 (321) 44.77 

GO:0070661 leukocyte proliferation 2.9E-36 270.0E-36 [3] 43.69 

GO:0034332 adherens junction organization 5.6E-36 520.0E-36 [5] 61.90 

GO:0071456 cellular response to hypoxia 7.2E-36 670.0E-36 [4, 6] 58.87 

GO:0030099 myeloid cell differentiation 9.1E-36 840.0E-36 [5, 6, 7, 8] 40.75 

GO:0071559 

response to transforming growth 

factor beta 13.0E-36 1.1E-33 [3, 5] 48.02 

GO:2001234 

negative regulation of apoptotic 

signaling pathway 15.0E-36 1.4E-33 [4, 5, 6, 7, 8] 47.06 

GO:0090263 

positive regulation of canonical 

Wnt signaling pathway 25.0E-36 2.3E-33 [5, 6, 7, 8, 9, 10] 61.60 

GO:0031331 

positive regulation of cellular 

catabolic process 31.0E-36 2.8E-33 [4, 5, 6] 44.20 

GO:2000116 

regulation of cysteine-type 

endopeptidase activity 42.0E-36 3.6E-33 [7, 8, 9] 46.67 

GO:0070302 

regulation of stress-activated 

protein kinase signaling cascade 59.0E-36 5.0E-33 [4, 5, 6, 7] 49.28 

GO:0007259 JAK-STAT cascade 87.0E-36 7.4E-33 [6, 7] 51.61 

GO:0010565 

regulation of cellular ketone 

metabolic process 110.0E-36 9.4E-33 [4, 5] 53.53 
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GO:0006936 muscle contraction 250.0E-36 21.0E-33 (321) 40.79 

GO:0000187 activation of MAPK activity 390.0E-36 32.0E-33 

[7, 8, 9, 10, 11, 12, 

13] 55.13 

GO:0097193 

intrinsic apoptotic signaling 

pathway 570.0E-36 46.0E-33 [5, 6, 7] 42.28 

GO:1900180 

regulation of protein localization 

to nucleus 910.0E-36 73.0E-33 [5, 6, 7] 46.55 

GO:0090257 

regulation of muscle system 

process 950.0E-36 75.0E-33 [4, 5] 49.75 

GO:1903050 

regulation of proteolysis involved 

in cellular protein catabolic 

process 1.4E-33 110.0E-33 [6, 7, 8] 46.35 

GO:0090287 

regulation of cellular response to 

growth factor stimulus 2.8E-33 220.0E-33 [3, 4, 6] 44.98 

GO:1903706 regulation of hemopoiesis 7.1E-33 540.0E-33 [3, 4, 5, 6, 7, 8] 40.43 

GO:0050679 

positive regulation of epithelial 

cell proliferation 8.9E-33 660.0E-33 [4, 5, 6] 51.72 

GO:0030278 regulation of ossification 9.6E-33 710.0E-33 [3, 4] 49.74 

GO:0007266 Rho protein signal transduction 13.0E-33 950.0E-33 [7, 8] 51.12 

GO:0046822 

regulation of nucleocytoplasmic 

transport 38.0E-33 2.7E-30 [5, 6, 7] 45.85 

GO:1903362 

regulation of cellular protein 

catabolic process 64.0E-33 4.5E-30 [5, 6, 7] 43.75 

GO:0045732 

positive regulation of protein 

catabolic process 77.0E-33 5.4E-30 [4, 5, 6, 7] 43.18 

GO:1903320 

regulation of protein modification 

by small protein conjugation or 

removal 160.0E-33 11.0E-30 [6, 7, 8] 41.75 

GO:0006367 

transcription initiation from RNA 

polymerase II promoter 210.0E-33 14.0E-30 [7, 8, 9, 10, 11] 49.73 

GO:0001649 osteoblast differentiation 260.0E-33 17.0E-30 [4, 5] 46.51 

GO:1904589 regulation of protein import 280.0E-33 18.0E-30 [5, 6, 7] 49.20 

GO:0001101 response to acid chemical 1.1E-30 75.0E-30 [3] 41.03 

GO:0061448 connective tissue development 1.3E-30 84.0E-30 (321) 43.55 

GO:0010632 

regulation of epithelial cell 

migration 1.6E-30 100.0E-30 [3, 4, 5, 6, 7, 8] 49.44 

GO:0042306 

regulation of protein import into 

nucleus 2.2E-30 140.0E-30 [6, 7, 8, 9, 10] 48.91 

GO:0030217 T cell differentiation 2.3E-30 140.0E-30 [5, 7, 8, 9, 10] 45.83 

GO:0033209 

tumor necrosis factor-mediated 

signaling pathway 3.4E-30 200.0E-30 [6, 7] 51.55 

GO:1903052 

positive regulation of proteolysis 

involved in cellular protein 

catabolic process 4.5E-30 270.0E-30 [6, 7, 8, 9] 49.71 

GO:1903364 

positive regulation of cellular 

protein catabolic process 4.9E-30 280.0E-30 [5, 6, 7, 8] 48.15 

GO:0051146 striated muscle cell differentiation 5.4E-30 300.0E-30 [5, 6] 42.47 

GO:0033673 

negative regulation of kinase 

activity 11.0E-30 620.0E-30 [6, 7, 8, 9] 42.41 

GO:0072001 renal system development 11.0E-30 620.0E-30 [4, 5, 6] 40.00 

GO:0006352 

DNA-templated transcription, 

initiation 14.0E-30 750.0E-30 [6, 7, 8, 9, 10] 44.16 

GO:0042063 gliogenesis 15.0E-30 780.0E-30 [6, 7] 42.80 

GO:0007179 

transforming growth factor beta 

receptor signaling pathway 17.0E-30 910.0E-30 [5, 7, 8] 48.62 

GO:0006606 protein import into nucleus 23.0E-30 1.1E-27 [5, 6, 7, 8, 9] 40.14 

GO:0001822 kidney development 32.0E-30 1.6E-27 [3, 4, 5, 6, 7] 40.64 

GO:0046578 

regulation of Ras protein signal 

transduction 36.0E-30 1.7E-27 [6, 7, 8] 44.59 

GO:0031396 

regulation of protein 

ubiquitination 39.0E-30 1.8E-27 [7, 8, 9, 10] 41.92 

GO:0006469 

negative regulation of protein 

kinase activity 57.0E-30 2.6E-27 [7, 8, 9, 10] 43.28 

GO:0060485 mesenchyme development 78.0E-30 3.5E-27 [4, 5, 6] 42.13 

GO:1903322 

positive regulation of protein 

modification by small protein 

conjugation or removal 140.0E-30 6.3E-27 [6, 7, 8, 9] 45.81 
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GO:0050920 regulation of chemotaxis 190.0E-30 8.3E-27 [3, 4, 5] 46.00 

GO:0032944 

regulation of mononuclear cell 

proliferation 190.0E-30 8.3E-27 [5, 6] 45.02 

GO:2000377 

regulation of reactive oxygen 

species metabolic process 360.0E-30 15.0E-27 [4, 5] 49.40 

GO:0070663 

regulation of leukocyte 

proliferation 400.0E-30 16.0E-27 [4, 5] 44.09 

GO:0043524 

negative regulation of neuron 

apoptotic process 410.0E-30 16.0E-27 [5, 6, 7, 8] 52.05 

GO:0072073 kidney epithelium development 1.5E-27 59.0E-27 [4, 5, 6, 7, 8] 50.32 

GO:0010810 

regulation of cell-substrate 

adhesion 2.2E-27 83.0E-27 [3, 4] 45.45 

GO:0042113 B cell activation 3.5E-27 120.0E-27 [4, 6] 41.27 

GO:0071216 

cellular response to biotic 

stimulus 4.0E-27 140.0E-27 [3] 45.83 

GO:0002263 

cell activation involved in 

immune response 5.6E-27 190.0E-27 [3, 4] 42.61 

GO:0002573 myeloid leukocyte differentiation 8.8E-27 290.0E-27 [6, 7, 8, 9] 44.78 

GO:0007254 JNK cascade 8.8E-27 290.0E-27 [6, 7, 8, 10, 11] 44.78 

GO:0070374 

positive regulation of ERK1 and 

ERK2 cascade 9.7E-27 310.0E-27 

[6, 7, 8, 9, 10, 11, 

12] 46.45 

GO:0010952 

positive regulation of peptidase 

activity 10.0E-27 330.0E-27 [6, 7, 8, 9] 48.77 

GO:2001235 

positive regulation of apoptotic 

signaling pathway 11.0E-27 350.0E-27 [4, 5, 6, 7, 8] 45.99 

GO:0072593 

reactive oxygen species metabolic 

process 23.0E-27 690.0E-27 [3] 40.47 

GO:0046425 regulation of JAK-STAT cascade 29.0E-27 810.0E-27 [6, 7, 8] 49.04 

GO:1903034 

regulation of response to 

wounding 38.0E-27 1.0E-24 [4, 5] 48.45 

GO:0031398 

positive regulation of protein 

ubiquitination 40.0E-27 1.0E-24 [7, 8, 9, 10, 11] 45.70 

GO:1902105 

regulation of leukocyte 

differentiation 47.0E-27 1.1E-24 [4, 5, 6, 7, 8, 9] 40.89 

GO:0043393 regulation of protein binding 53.0E-27 1.2E-24 (321) 45.90 

GO:0006140 

regulation of nucleotide 

metabolic process 56.0E-27 1.3E-24 [5, 6, 7, 8] 42.11 

GO:0030595 leukocyte chemotaxis 180.0E-27 4.1E-24 [3, 5, 6, 7] 43.27 

GO:0051216 cartilage development 240.0E-27 5.2E-24 [4, 5, 6] 44.74 

GO:0042180 cellular ketone metabolic process 430.0E-27 8.2E-24 [3, 4] 40.66 

GO:0043122 

regulation of I-kappaB 

kinase/NF-kappaB signaling 430.0E-27 8.2E-24 [5, 6, 7] 40.66 

GO:2000146 

negative regulation of cell 

motility 420.0E-27 8.4E-24 [3, 4, 5, 6] 40.93 

GO:0048762 mesenchymal cell differentiation 1.0E-24 16.0E-24 [5, 6, 7] 43.65 

GO:0071219 

cellular response to molecule of 

bacterial origin 940.0E-27 16.0E-24 [4, 5, 7] 46.20 

GO:0071229 cellular response to acid chemical 1.2E-24 16.0E-24 (321) 46.43 

GO:0030336 

negative regulation of cell 

migration 1.1E-24 16.0E-24 [4, 5, 6, 7] 41.52 

GO:0003205 cardiac chamber development 1.3E-24 16.0E-24 [3, 4, 5, 6, 7] 47.20 

GO:0042098 T cell proliferation 1.1E-24 17.0E-24 [5, 6, 7, 9, 10] 44.62 

GO:0071222 

cellular response to 

lipopolysaccharide 1.0E-24 17.0E-24 [5, 6, 8] 46.95 

GO:0046328 regulation of JNK cascade 2.0E-24 22.0E-24 

[6, 7, 8, 9, 10, 11, 

12] 46.15 

GO:0097529 myeloid leukocyte migration 2.8E-24 28.0E-24 [3, 5, 6, 7] 45.20 

GO:0002685 regulation of leukocyte migration 5.7E-24 51.0E-24 [3, 4, 5, 6, 7] 46.34 

GO:0060541 respiratory system development 6.9E-24 55.0E-24 [4, 5] 41.78 

GO:0051147 

regulation of muscle cell 

differentiation 8.1E-24 57.0E-24 [4, 5, 6] 45.35 

GO:1900542 

regulation of purine nucleotide 

metabolic process 10.0E-24 64.0E-24 [6, 7, 8, 9] 41.28 

GO:0045637 

regulation of myeloid cell 

differentiation 62.0E-24 310.0E-24 [4, 5, 6, 7, 8, 9] 43.48 

GO:0031960 response to corticosteroid 340.0E-24 1.0E-21 [5, 6] 43.93 

GO:0030323 respiratory tube development 330.0E-24 1.3E-21 [3, 4, 5, 6] 42.55 
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GO:0010001 glial cell differentiation 1.5E-21 3.1E-21 [5, 7, 8] 42.02 

GO:0032869 

cellular response to insulin 

stimulus 5.4E-21 5.4E-21 [6, 7, 8] 40.70 

 

Table A4.3: The list of additional thirteen targets from literature, which ginsenoside 

compounds are found to be implicated in the modulation of the targets. 

 

Gene ID Protein name SBP compound Ref. 

BAX Apoptosis regulator BAX ginsenoside Rd (323) 

BCL2 Apoptosis regulator Bcl-2 ginsenoside Rd (323) 

CASP3 Caspase-3 ginsenoside Rb3 (301) 

CASP8 Caspase-8 ginsenoside Rb3 (301) 

CASP9 Caspase-9 ginsenoside Rb3 (301) 

EGF Pro-epidermal growth factor ginsenoside Rb2 (308) 

EGFR Epidermal growth factor receptor ginsenoside Rb2 (308) 

ESR2 Estrogen beta receptor ginsenoside Rb1 (324) 

FN1 Fibronectin ginsenoside Rb2 (308) 

FOS Proto-oncogene c-Fos ginsenoside Rc (325) 

FOS Proto-oncogene c-Fos ginsenoside Re (325) 

MMP1 Interstitial collagenase ginsenoside Rb2 (308) 

NOS3 Nitric oxide synthase ginsenoside Re (326) 

NOS3 Nitric oxide synthase ginsenoside Rg3 (327) 

NR3C1 Glucocorticoid receptor ginsenoside Re (328) 

NR3C1 Glucocorticoid receptor ginsenoside Rg1 (329) 

 

 

Table A4.4: The values of SS, TS, PDS and MDS of 231 combinations of SBP. 

ID compound i compound j TS PDS MDS SS 

108 Ginsenoside Rb3 Cholic acid 0.0061373 0.5104493 2.849 0.00109953 

119 Ginsenoside Rc Cholic acid 0.0055149 0.5713448 2.889 0.00109070 

153 Ginsenoside Re Ginsenoside Rb3 0.0067909 0.4234194 2.646 0.00108676 

128 Ginsenoside Rc Ginsenoside Rb3 0.0095032 0.3102916 2.821 0.00104547 

115 Ginsenoside Rb3 Ginsenoside Rb1 0.0097747 0.3023365 2.949 0.00100222 

117 Ginsenoside Rb3 17-hydroxyprogestrone 0.0059602 0.4826925 2.876 0.00100025 

116 Ginsenoside Rb3 Ginsenoside Rb2 0.0064827 0.4052489 2.635 0.00099714 

170 Ginsenoside Rg1 Ginsenoside Rb3 0.0069584 0.4119944 2.944 0.00097363 

89 Ginsenoside Rb1 Cholic acid 0.0057864 0.4769261 2.916 0.00094643 

112 Ginsenoside Rb3 Deoxycholic acid 0.0060271 0.4404201 2.920 0.00090906 

113 Ginsenoside Rb3 11-hydroyprogesterone 0.0059610 0.5081140 3.333 0.00090866 

140 Ginsenosde Rd Ginsenoside Rb3 0.0093223 0.2742955 2.864 0.00089277 

114 Ginsenoside Rb3 Gamabufotalin 0.0058351 0.4490800 2.940 0.00089116 

129 Ginsenoside Rc 17-hydroxyprogestrone 0.0053377 0.4900444 2.956 0.00088502 

169 Ginsenoside Rg1 Ginsenoside Rb2 0.0033154 0.7187246 2.758 0.00086397 

139 Ginsenosde Rd Ginsenoside Rb2 0.0056794 0.4104020 2.710 0.00086019 

107 Ginsenoside Rb3 Bufalin 0.0058343 0.4229923 2.916 0.00084633 

171 Ginsenoside Rg1 Ginsenoside Rc 0.0063359 0.3852619 2.911 0.00083851 

111 Ginsenoside Rb3 Cinobufagin 0.0059342 0.4222491 2.990 0.00083809 

120 Ginsenoside Rc Chenodeoxycholic acid 0.0054058 0.4518561 2.940 0.00083083 

123 Ginsenoside Rc Deoxycholic acid 0.0054047 0.4511290 2.953 0.00082557 

124 Ginsenoside Rc 11-hydroyprogesterone 0.0053386 0.5110724 3.423 0.00079706 

208 Hyodeoxycholic acid Ginsenoside Rb3 0.0060221 0.3907532 2.972 0.00079171 



 159 

109 Ginsenoside Rb3 Chenodeoxycholic acid 0.0060282 0.3770864 2.886 0.00078773 

209 Hyodeoxycholic acid Ginsenoside Rc 0.0053997 0.4339484 3.032 0.00077271 

127 Ginsenoside Rc Ginsenoside Rb2 0.0058602 0.3387305 2.578 0.00077006 

190 Ginsenodie Rg3 Ginsenoside Rb3 0.0077555 0.2819174 2.851 0.00076696 

168 Ginsenoside Rg1 Ginsenoside Rb1 0.0066075 0.3369864 2.956 0.00075337 

96 Ginsenoside Rb1 17-hydroxyprogestrone 0.0056093 0.4004635 2.994 0.00075017 

131 Ginsenosde Rd Cholic acid 0.0053340 0.3926011 2.798 0.00074841 

29 Borneol Ginsenoside Rb3 0.0058267 0.3746318 2.940 0.00074237 

152 Ginsenoside Re Ginsenoside Rb2 0.0031479 0.5823789 2.491 0.00073599 

155 Ginsenoside Re Ginsenosde Rd 0.0059876 0.3211465 2.675 0.00071884 

90 Ginsenoside Rb1 Chenodeoxycholic acid 0.0056773 0.3744867 2.973 0.00071505 

225 Muscone Ginsenoside Rb3 0.0058999 0.3404798 2.836 0.00070839 

93 Ginsenoside Rb1 Deoxycholic acid 0.0056762 0.3695216 2.967 0.00070701 

94 Ginsenoside Rb1 11-hydroyprogesterone 0.0056101 0.4240120 3.433 0.00069281 

105 Ginsenoside Rb2 Ginsenoside Rb1 0.0061318 0.2894868 2.667 0.00066565 

206 Hyodeoxycholic acid Ginsenoside Rb1 0.0056712 0.3600544 3.069 0.00066525 

122 Ginsenoside Rc Cinobufagin 0.0053118 0.3862229 3.089 0.00066408 

142 Ginsenosde Rd 17-hydroxyprogestrone 0.0051569 0.3698512 2.877 0.00066284 

61 Cinnamaldehyde Ginsenoside Rb3 0.0056234 0.3413805 2.959 0.00064868 

118 Ginsenoside Rc Bufalin 0.0052119 0.3730060 3.056 0.00063624 

125 Ginsenoside Rc Gamabufotalin 0.0052127 0.3735706 3.065 0.00063537 

11 Benzyl benzoate Ginsenoside Rb3 0.0056860 0.3370369 3.026 0.00063323 

136 Ginsenosde Rd 11-hydroyprogesterone 0.0051577 0.4028853 3.310 0.00062769 

98 Ginsenoside Rb2 Cholic acid 0.0024944 0.6611088 2.639 0.00062490 

189 Ginsenodie Rg3 Ginsenoside Rb2 0.0041126 0.4024809 2.649 0.00062477 

135 Ginsenosde Rd Deoxycholic acid 0.0052238 0.3369640 2.855 0.00061650 

110 Ginsenoside Rb3 Cinnamic acid 0.0055391 0.3304779 2.996 0.00061099 

172 Ginsenoside Rg1 Ginsenosde Rd 0.0061551 0.2827583 2.879 0.00060449 

141 Ginsenosde Rd Ginsenoside Rc 0.0086999 0.1922611 2.896 0.00057767 

30 Borneol Ginsenoside Rc 0.0052042 0.3397520 3.086 0.00057302 

95 Ginsenoside Rb1 Gamabufotalin 0.0054842 0.3215150 3.116 0.00056592 

210 Hyodeoxycholic acid Ginsenosde Rd 0.0052188 0.3172761 2.932 0.00056466 

223 Muscone Ginsenoside Rb1 0.0055490 0.3035850 3.013 0.00055920 

88 Ginsenoside Rb1 Bufalin 0.0054834 0.3104770 3.102 0.00054890 

226 Muscone Ginsenoside Rc 0.0052775 0.3032066 2.942 0.00054397 

27 Borneol Ginsenoside Rb1 0.0054758 0.3055238 3.120 0.00053629 

132 Ginsenosde Rd Chenodeoxycholic acid 0.0052249 0.2926457 2.852 0.00053616 

92 Ginsenoside Rb1 Cinobufagin 0.0055833 0.2983934 3.131 0.00053211 

62 Cinnamaldehyde Ginsenoside Rc 0.0050010 0.3224239 3.050 0.00052873 

59 Cinnamaldehyde Ginsenoside Rb1 0.0052725 0.3083327 3.115 0.00052195 

151 Ginsenoside Re Ginsenoside Rb1 0.0064400 0.2047906 2.667 0.00049457 

138 Ginsenosde Rd Ginsenoside Rb1 0.0089714 0.1550928 2.910 0.00047807 

9 Benzyl benzoate Ginsenoside Rb1 0.0053351 0.2793350 3.131 0.00047601 

12 Benzyl benzoate Ginsenoside Rc 0.0050636 0.2850652 3.077 0.00046912 

102 Ginsenoside Rb2 Deoxycholic acid 0.0023841 0.5240455 2.710 0.00046103 

121 Ginsenoside Rc Cinnamic acid 0.0049167 0.2897426 3.094 0.00046049 

106 Ginsenoside Rb2 17-hydroxyprogestrone 0.0023172 0.5427370 2.738 0.00045941 

180 Ginsenodie Rg3 Cholic acid 0.0037672 0.3401296 2.791 0.00045910 
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99 Ginsenoside Rb2 Chenodeoxycholic acid 0.0023853 0.5176688 2.700 0.00045732 

91 Ginsenoside Rb1 Cinnamic acid 0.0051882 0.2761886 3.158 0.00045381 

137 Ginsenosde Rd Gamabufotalin 0.0050318 0.2695963 3.000 0.00045219 

103 Ginsenoside Rb2 11-hydroyprogesterone 0.0023181 0.6164160 3.160 0.00045214 

134 Ginsenosde Rd Cinobufagin 0.0051310 0.2669244 3.039 0.00045068 

173 Ginsenoside Rg1 Ginsenoside Re 0.0036236 0.3389415 2.731 0.00044976 

167 Ginsenoside Rg1 Gamabufotalin 0.0026679 0.4949464 2.955 0.00044692 

154 Ginsenoside Re Ginsenoside Rc 0.0061685 0.1912693 2.658 0.00044390 

197 Ginsenodie Rg3 17-hydroxyprogestrone 0.0035900 0.3469515 2.839 0.00043866 

130 Ginsenosde Rd Bufalin 0.0050311 0.2596079 2.982 0.00043800 

207 Hyodeoxycholic acid Ginsenoside Rb2 0.0023791 0.5085757 2.799 0.00043235 

191 Ginsenodie Rg3 Ginsenoside Rc 0.0071331 0.1689280 2.836 0.00042483 

144 Ginsenoside Re Cholic acid 0.0028026 0.3885680 2.605 0.00041806 

150 Ginsenoside Re Gamabufotalin 0.0025004 0.4493520 2.757 0.00040753 

159 Ginsenoside Rg1 Bufalin 0.0026671 0.4468832 2.946 0.00040462 

186 Ginsenodie Rg3 11-hydroyprogesterone 0.0035909 0.3639052 3.288 0.00039744 

143 Ginsenoside Re Bufalin 0.0024996 0.4315939 2.746 0.00039280 

175 Ginsenoside Rg1 Muscone 0.0027327 0.4093855 2.909 0.00038456 

31 Borneol Ginsenosde Rd 0.0050234 0.2286708 2.992 0.00038392 

145 Ginsenoside Re Chenodeoxycholic acid 0.0026935 0.3722801 2.647 0.00037876 

228 Muscone Ginsenoside Re 0.0025652 0.3803266 2.692 0.00036245 

32 Borneol Ginsenoside Re 0.0024919 0.4029976 2.781 0.00036113 

194 Ginsenodie Rg3 Ginsenoside Rg1 0.0045883 0.2263224 2.880 0.00036056 

158 Ginsenoside Rg1 Borneol 0.0026594 0.4035820 2.978 0.00036047 

227 Muscone Ginsenosde Rd 0.0050967 0.2056309 2.912 0.00035986 

195 Ginsenodie Rg3 Hyodeoxycholic acid 0.0036520 0.2861029 2.922 0.00035763 

148 Ginsenoside Re Deoxycholic acid 0.0026924 0.3535186 2.676 0.00035564 

161 Ginsenoside Rg1 Chenodeoxycholic acid 0.0028610 0.3504024 2.832 0.00035393 

185 Ginsenodie Rg3 Deoxycholic acid 0.0036570 0.2722805 2.850 0.00034935 

160 Ginsenoside Rg1 Cholic acid 0.0029701 0.3236896 2.766 0.00034758 

165 Ginsenoside Rg1 Deoxycholic acid 0.0028598 0.3433353 2.827 0.00034727 

187 Ginsenodie Rg3 Gamabufotalin 0.0034650 0.2985135 2.983 0.00034671 

176 Ginsenoside Rg1 17-hydroxyprogestrone 0.0027929 0.3509641 2.828 0.00034664 

147 Ginsenoside Re Cinobufagin 0.0025995 0.3731483 2.799 0.00034655 

174 Ginsenoside Rg1 Hyodeoxycholic acid 0.0028549 0.3525642 2.916 0.00034520 

211 Hyodeoxycholic acid Ginsenoside Re 0.0026874 0.3518738 2.744 0.00034461 

101 Ginsenoside Rb2 Cinobufagin 0.0022913 0.4275393 2.879 0.00034021 

193 Ginsenodie Rg3 Ginsenoside Re 0.0044208 0.2069379 2.692 0.00033979 

181 Ginsenodie Rg3 Chenodeoxycholic acid 0.0036581 0.2612411 2.842 0.00033624 

224 Muscone Ginsenoside Rb2 0.0022570 0.4059781 2.734 0.00033510 

156 Ginsenoside Re 17-hydroxyprogestrone 0.0026254 0.3388738 2.659 0.00033464 

188 Ginsenodie Rg3 Ginsenoside Rb1 0.0074046 0.1253121 2.836 0.00032714 

64 Cinnamaldehyde Ginsenoside Re 0.0022887 0.3990170 2.796 0.00032660 

179 Ginsenodie Rg3 Bufalin 0.0034642 0.2787548 2.966 0.00032553 

63 Cinnamaldehyde Ginsenosde Rd 0.0048201 0.2032004 3.015 0.00032488 

162 Ginsenoside Rg1 Cinnamic acid 0.0023719 0.4170929 3.051 0.00032421 

164 Ginsenoside Rg1 Cinobufagin 0.0027670 0.3495501 2.986 0.00032386 

184 Ginsenodie Rg3 Cinobufagin 0.0035641 0.2727763 3.011 0.00032291 
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146 Ginsenoside Re Cinnamic acid 0.0022044 0.4110862 2.831 0.00032012 

163 Ginsenoside Rg1 Cinnamaldehyde 0.0024562 0.3813532 3.018 0.00031039 

157 Ginsenoside Rg1 Benzyl benzoate 0.0025188 0.3799268 3.115 0.00030717 

14 Benzyl benzoate Ginsenoside Re 0.0023513 0.3734563 2.881 0.00030475 

192 Ginsenodie Rg3 Ginsenosde Rd 0.0069522 0.1231611 2.874 0.00029794 

10 Benzyl benzoate Ginsenoside Rb2 0.0020430 0.4130322 2.850 0.00029609 

166 Ginsenoside Rg1 11-hydroyprogesterone 0.0027938 0.3452908 3.261 0.00029579 

133 Ginsenosde Rd Cinnamic acid 0.0047358 0.1872005 3.050 0.00029071 

28 Borneol Ginsenoside Rb2 0.0021837 0.3700235 2.805 0.00028809 

149 Ginsenoside Re 11-hydroyprogesterone 0.0026263 0.3263788 3.107 0.00027588 

196 Ginsenodie Rg3 Muscone 0.0035298 0.2237633 2.902 0.00027215 

13 Benzyl benzoate Ginsenosde Rd 0.0048827 0.1716580 3.094 0.00027092 

215 Muscone Cholic acid 0.0019116 0.3942771 2.801 0.00026913 

60 Cinnamaldehyde Ginsenoside Rb2 0.0019805 0.3815768 2.831 0.00026697 

97 Ginsenoside Rb2 Bufalin 0.0021914 0.3402093 2.819 0.00026450 

104 Ginsenoside Rb2 Gamabufotalin 0.0021921 0.3271152 2.840 0.00025247 

183 Ginsenodie Rg3 Cinnamaldehyde 0.0032533 0.2287672 2.994 0.00024855 

178 Ginsenodie Rg3 Borneol 0.0034566 0.2123170 2.975 0.00024670 

182 Ginsenodie Rg3 Cinnamic acid 0.0031690 0.2091304 3.034 0.00021844 

2 Benzyl benzoate Cholic acid 0.0016977 0.3797622 2.997 0.00021515 

100 Ginsenoside Rb2 Cinnamic acid 0.0018962 0.3240599 2.860 0.00021482 

177 Ginsenodie Rg3 Benzyl benzoate 0.0033159 0.1969754 3.069 0.00021280 

81 Gamabufotalin Cholic acid 0.0018468 0.3129027 2.828 0.00020431 

41 Cholic acid Cinnamic acid 0.0015508 0.3732538 2.933 0.00019734 

220 Muscone Deoxycholic acid 0.0018014 0.3025681 2.834 0.00019232 

230 Muscone 17-hydroxyprogestrone 0.0017345 0.2999613 2.835 0.00018350 

52 Cinnamaldehyde Cholic acid 0.0016351 0.3230877 2.898 0.00018226 

126 Ginsenoside Rc Ginsenoside Rb1 0.0091523 0.0538366 2.710 0.00018184 

39 Cholic acid Bufalin 0.0018460 0.2688748 2.811 0.00017654 

221 Muscone 11-hydroyprogesterone 0.0017353 0.3254281 3.213 0.00017578 

16 Benzyl benzoate 17-hydroxyprogestrone 0.0015205 0.3453838 3.036 0.00017301 

216 Muscone Chenodeoxycholic acid 0.0018025 0.2634202 2.810 0.00016898 

229 Muscone Hyodeoxycholic acid 0.0017964 0.2696328 2.874 0.00016856 

19 Borneol Cholic acid 0.0018384 0.2555726 2.834 0.00016579 

7 Benzyl benzoate 11-hydroyprogesterone 0.0015214 0.3449843 3.424 0.00015330 

86 Gamabufotalin 11-hydroyprogesterone 0.0016705 0.2856633 3.240 0.00014726 

6 Benzyl benzoate Deoxycholic acid 0.0015875 0.2811236 3.045 0.00014658 

25 Borneol 11-hydroyprogesterone 0.0016621 0.2826002 3.230 0.00014542 

48 Cinnamic acid 11-hydroyprogesterone 0.0013745 0.3524914 3.350 0.00014462 

49 Cinnamic acid 17-hydroxyprogestrone 0.0013737 0.3122880 2.969 0.00014448 

3 Benzyl benzoate Chenodeoxycholic acid 0.0015886 0.2662406 3.023 0.00013989 

68 Cinobufagin Cholic acid 0.0019459 0.2060480 2.867 0.00013984 

37 Bufalin 11-hydroyprogesterone 0.0016697 0.2652003 3.230 0.00013710 

85 Gamabufotalin Deoxycholic acid 0.0017366 0.2227425 2.876 0.00013448 

66 Cinnamaldehyde 17-hydroxyprogestrone 0.0014580 0.2701721 2.938 0.00013409 

57 Cinnamaldehyde 11-hydroyprogesterone 0.0014588 0.3016150 3.324 0.00013238 

205 Hyodeoxycholic acid Gamabufotalin 0.0017316 0.2155613 2.910 0.00012828 

35 Borneol 17-hydroxyprogestrone 0.0016612 0.2209447 2.865 0.00012811 
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76 Deoxycholic acid Cinnamic acid 0.0014406 0.2603647 2.974 0.00012613 

82 Gamabufotalin Chenodeoxycholic acid 0.0017377 0.2048424 2.856 0.00012462 

15 Benzyl benzoate Hyodeoxycholic acid 0.0015825 0.2425826 3.086 0.00012438 

87 Gamabufotalin 17-hydroxyprogestrone 0.0016696 0.2087172 2.850 0.00012226 

56 Cinnamaldehyde Deoxycholic acid 0.0015249 0.2314236 2.940 0.00012001 

38 Bufalin 17-hydroxyprogestrone 0.0016689 0.1953745 2.846 0.00011458 

45 Chenodeoxycholic acid Cinnamic acid 0.0014417 0.2343363 2.952 0.00011443 

214 Muscone Bufalin 0.0016086 0.1982825 2.845 0.00011212 

73 Deoxycholic acid Bufalin 0.0017358 0.1824320 2.864 0.00011058 

222 Muscone Gamabufotalin 0.0016094 0.1949796 2.851 0.00011008 

201 Hyodeoxycholic acid Cinnamic acid 0.0014356 0.2294984 3.015 0.00010927 

53 Cinnamaldehyde Chenodeoxycholic acid 0.0015260 0.2082235 2.917 0.00010894 

219 Muscone Cinobufagin 0.0017085 0.1852218 2.917 0.00010848 

198 Hyodeoxycholic acid Bufalin 0.0017308 0.1763738 2.901 0.00010524 

24 Borneol Deoxycholic acid 0.0017281 0.1737789 2.866 0.00010479 

44 Chenodeoxycholic acid Bufalin 0.0017369 0.1706277 2.835 0.00010453 

65 Cinnamaldehyde Hyodeoxycholic acid 0.0015199 0.1970686 2.982 0.00010043 

8 Benzyl benzoate Gamabufotalin 0.0013955 0.2207313 3.080 0.00010002 

5 Benzyl benzoate Cinobufagin 0.0014946 0.2093215 3.139 0.00009968 

69 Cinobufagin Chenodeoxycholic acid 0.0018368 0.1535312 2.902 0.00009719 

46 Chenodeoxycholic acid 11-hydroyprogesterone 0.0018636 0.1605815 3.162 0.00009464 

33 Borneol Hyodeoxycholic acid 0.0017231 0.1587758 2.911 0.00009400 

1 Benzyl benzoate Bufalin 0.0013947 0.2052891 3.075 0.00009311 

77 Deoxycholic acid Cinobufagin 0.0018357 0.1411650 2.919 0.00008878 

71 Cinobufagin 11-hydroyprogesterone 0.0017696 0.1627538 3.282 0.00008776 

20 Borneol Chenodeoxycholic acid 0.0017293 0.1432727 2.850 0.00008694 

23 Borneol Cinobufagin 0.0016353 0.1572838 2.960 0.00008690 

202 Hyodeoxycholic acid Cinobufagin 0.0018307 0.1390198 2.958 0.00008604 

55 Cinnamaldehyde Cinobufagin 0.0014320 0.1816085 3.035 0.00008569 

72 Cinobufagin 17-hydroxyprogestrone 0.0017688 0.1364611 2.883 0.00008371 

70 Cinobufagin Cinnamic acid 0.0013477 0.1875296 3.070 0.00008233 

47 Chenodeoxycholic acid 17-hydroxyprogestrone 0.0018628 0.1163772 2.764 0.00007842 

212 Hyodeoxycholic acid 17-hydroxyprogestrone 0.0018566 0.1182700 2.830 0.00007760 

34 Borneol Muscone 0.0016010 0.1341892 2.856 0.00007522 

204 Hyodeoxycholic acid 11-hydroyprogesterone 0.0018575 0.1251134 3.229 0.00007197 

43 Cholic acid 17-hydroxyprogestrone 0.0019719 0.0968127 2.709 0.00007047 

42 Cholic acid 11-hydroyprogesterone 0.0019727 0.1109740 3.117 0.00007023 

79 Deoxycholic acid 17-hydroxyprogestrone 0.0018616 0.1010832 2.768 0.00006798 

84 Gamabufotalin Cinobufagin 0.0016437 0.1142128 2.939 0.00006387 

199 Hyodeoxycholic acid Cholic acid 0.0020338 0.0869326 2.796 0.00006324 

78 Deoxycholic acid 11-hydroyprogesterone 0.0018625 0.1039276 3.182 0.00006082 

17 Borneol Benzyl benzoate 0.0013870 0.1329471 3.087 0.00005974 

58 Cinnamaldehyde Gamabufotalin 0.0013329 0.1227309 2.978 0.00005492 

67 Cinobufagin Bufalin 0.0016429 0.0914737 2.930 0.00005129 

83 Gamabufotalin Cinnamic acid 0.0012486 0.1140554 3.010 0.00004731 

51 Cinnamaldehyde Bufalin 0.0013321 0.1032419 2.968 0.00004633 

74 Deoxycholic acid Cholic acid 0.0020388 0.0615986 2.724 0.00004611 

40 Cholic acid Chenodeoxycholic acid 0.0020399 0.0601707 2.721 0.00004511 
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218 Muscone Cinnamaldehyde 0.0013977 0.0919643 2.918 0.00004405 

36 Bufalin Cinnamic acid 0.0012478 0.1024529 3.001 0.00004260 

26 Borneol Gamabufotalin 0.0015361 0.0794001 2.889 0.00004221 

213 Muscone Benzyl benzoate 0.0014603 0.0832178 3.034 0.00004005 

217 Muscone Cinnamic acid 0.0013134 0.0842688 2.956 0.00003744 

18 Borneol Bufalin 0.0015354 0.0682438 2.879 0.00003639 

75 Deoxycholic acid Chenodeoxycholic acid 0.0019297 0.0510757 2.783 0.00003541 

231 17-hydroxyprogestrone 11-hydroyprogesterone 0.0017956 0.0550709 3.191 0.00003099 

200 Hyodeoxycholic acid Chenodeoxycholic acid 0.0019247 0.0372885 2.849 0.00002519 

50 Cinnamaldehyde Benzyl benzoate 0.0011838 0.0627316 3.132 0.00002371 

22 Borneol Cinnamaldehyde 0.0013245 0.0479287 2.974 0.00002135 

4 Benzyl benzoate Cinnamic acid 0.0010995 0.0606778 3.167 0.00002107 

21 Borneol Cinnamic acid 0.0012402 0.0487210 3.004 0.00002011 

203 Hyodeoxycholic acid Deoxycholic acid 0.0019236 0.0277914 2.853 0.00001874 

80 Gamabufotalin Bufalin 0.0015438 0.0178793 2.873 0.00000961 

54 Cinnamaldehyde Cinnamic acid 0.0010369 0.0143999 3.065 0.00000487 
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Figure A4.1: The dose response matrices of five combinations from the 20 top-ranked combinations. 
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