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Abstract 

This thesis introduces low-cost implementations for the next generation distributed antenna 

system (DAS) using analogue radio over fibre. A multiple-input-multiple-output (MIMO) 

enabled radio over fibre (RoF) system using double sideband (DSB) frequency translation 

system is proposed. In such a system, the 2x2 MIMO signals can be transmitted to the remote 

antenna units (RAUs) from the base station via a single optical link. By using the DSB 

frequency translation, the original single-input-single-output (SISO) DAS can be upgraded into 

the MIMO DAS without implementing parallel optical links. Experimentally, the DSB 

frequency translation 2x2 MIMO RoF system transmits 2x2 LTE MIMO signals with 20MHz 

bandwidth in each channel via a 300m MMF link. The condition number of the system is 

<10dB within the power equaliser bandwidth which means the MIMO system is well-

conditioned and the crosstalk between the channels can be compensated by the MIMO signal 

processing.  

To install the DSB frequency translation system in a wideband service-agnostic DAS, the 

original MIMO signals need to be translated into unoccupied frequency bands over the DAS, 

which are usually occupied by specific applications that are not to be transmitted over the DAS. 

The frequency spectrum allocation of the wireless services is analysed showing that by 

choosing a particular LO frequency (2.2GHz in the UK), in the DSB frequency translation 

system, the original MIMO signals can always be translated into unoccupied frequency bands 

so that the same infrastructure can support multiple services.  

The idea of DSB frequency translation system can not only support MIMO radio over fibre but 

can also improve the SFDR of a general radio over fibre system. Because when the upper 

sideband and the lower sideband of the signal after translation are converted back to the original 

frequency band, the noise adds incoherently but the signals add-up coherently, this gives the 

system theoretically 2dB 3rd order SFDR improvement. If the idea of the DSB frequency 

translation is extended into a higher number of sidebands, the system SFDR can be further 

improved. Experimentally, the system 3rd order SFDR can be improved beyond the intrinsic 



v 

   

optical link by 2.7dB by using quadruple sideband (QSB) frequency translation. It means the 

optical bandwidth in a general RoF system can be traded for the electrical SFDR.  

By integrating the analogue and the digital RoF systems, a hybrid DAS has been demonstrated, 

showing that the EVM dynamic range for the 4G LTE service (using digital RoF link) can be 

improved to be similar to the 3G UMTS service (using analogue RoF link), so that fewer 

number of RAUs for the LTE services are needed.  
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Chapter 1 Introduction 

1.1 MIMO-enabled RoF for Indoor Wireless Coverage 

1.1.1 A brief historical background of modern wireless communication 

 

Figure 1.1 Milestones of wireless communication [1] 

In several years following 1894, the commercial wireless telegraphy system was invented by 

Guglielmo Marconi, and human voice was first transmitted wirelessly in 1900 [1]. In the past 

century, wireless communication grew rapidly. Particularly in recent decades, the development 
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of cellular networks has revolutionised many lives and is still experiencing fast growth. Figure 

1.1 shows some of the milestones of the wireless communication.  

In fact, the revolutionary change in wireless communication is happening in every decade, and 

the overall trend of the development is to a higher frequency and higher data rate. Nowadays, 

the wireless communication has been a critical part of people’s daily lives. Currently, there are 

6.9 billion mobile cellular subscriptions worldwide [2].  

Various of wireless standards have been defined and deployed rapidly to satisfy the demand on 

the wireless capacity, including the 1st generation (1G) to the 4th generation (4G) cellular 

networks and other wireless services, such as IEEE 802.11 series (Wi-Fi) and IEEE 802.16 

series (WiMAX). After the cellular concept was raised by researchers in the Bell Laboratories 

in the 1970s [1], the booming of cellular networks became one of the most revolutionary events 

in human’s communication history.  

 

Figure 1.2 Evolution of cellular networks from the 1980s [4] 

The 1G standards were introduced in the 1980s but limited by the high cost, low capability and 

few users, it is only deployed in some restricted regions. However, the 2G global system for 

mobile communications (GSM) lowered the price to a level that major public consumers can 
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accept. Since then, the 2G networks have been spreading into all over the world [3]. Compared 

with the analogue 1G services, the digital 2G services can support not only the voice 

communication but also messaging and low-speed data services, as shown in Figure 1.2. At the 

same period with the 2G network, the code-division multiple access (CDMA) has been 

specified in Qualcomm® IS-95 and IS-2000 standards. These two standards have enhanced the 

commercialisation of the 2G system [4]. 

To cope with the wideband multi-media data communication, a higher speed network was 

developed. The wideband code division multiple access (WCDMA) became one of the key 

technologies in the 3rd generation cellular network [4]. The first release of the 3GPP long-term 

evolution (LTE) technology has been deployed as one of the key 4G candidate systems in 2009. 

The 4G network can provide much higher data rate (>10Mbps) than previous generations of 

cellular networks.  

1.1.2 Need and challenges for indoor wireless coverage of MIMO signals 

 

 

Figure 1.3: Cisco’s forecast on mobile data generated per month globally [5] 

 

Following the 4G mobile deployment, an enormous amount of mobile data is now being made. 

Cisco® predicts that by 2020, 30.6 Exabytes wireless data will be produced per month [5], as 
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shown in Figure 1.3. And by 2020, the number of portable devices will be beyond 10 billion 

and 40% of them will be smartphones (Figure 1.4).  By 2018, 4G will make up 15% of 

connections and 51% of total traffic [5]. In the 4G standards, such as long-term evolution (LTE) 

and LTE-advanced, the use of MIMO techniques can increase data throughput and improve 

transmission reliability without increasing the occupied spectrum. 

 

Figure 1.4: Cisco’s forecast on global mobile device growth [5] 

However, 80-90% of wireless data traffic originates in the indoor environments [6], where 

propagation conditions are usually poor with a high degree of multipath. The users suffer from 

a bad data connection or the drop of call in the inbuilding area. Non Line-of-sight (LoS) 

propagation and high attenuation through the building structure seriously lower the quality of 

service (QoS) for wireless services users inside buildings. 

Therefore, it is necessary to find a cost-effective way to cover the indoor area by LTE and 

MIMO services.  
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1.1.3 Solutions for indoor wireless coverage 

Various solutions have been developed to improve indoor wireless coverage, such as signal 

repeaters, femtocells (or small cells), and distributed antenna systems (DAS).  

The signal repeater is a straightforward and the lowest cost solution. It is a bi-directional 

amplifier, which picks up and amplifies off-air downlink signals as signal sources, and also 

delivers users’ uplink signal back to free space. However, the signal repeater can only provide 

service via a line-of-sight radio link to a neighbouring macro base station, as shown in Figure 

1.5. The signal quality of the repeater is poorer than the small cells and distributed antenna 

systems. All these factors make the signal repeater unsuitable for most indoor environments, 

for example, buildings with complicated structures and large stadiums/shopping malls with 

high user density.  

 

Figure 1.5: Architecture of a signal repeater [7] 

 

The small cell delivers baseband signals from the operator core network to remote access 

points (APs). Typically, there are two types of small cell structures.  
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As in Figure 1.6, the traditional stand-alone small cell system is a smaller version of macro 

basestation. It connects the access point to the internet, then to the operator’s core network. 

Although it has a direct connection with the existing internet protocol (IP) network, this kind 

of system requires high-cost small cell APs and is usually designed for a single operator and a 

limited number of users. Because the stand-alone small cells are not related to each other, inter-

cell interference occurs at the cell borders. Usually, this small cell system is provided by mobile 

operators for homes without mobile signal coverage, such as the Home Signal Box from Three 

UK® and the Sure Signal from Vodafone® [8] [9]. 

 

Figure 1.6 Architecture of a stand-alone small cell [9] 

Figure 1.7 shows the layout of the small cell system using a remote radio head (RRU). 

Compared with the stand-alone small cell product, the RRU small cell system centralises some 

of the signal processing from remote ends to the baseband controller. Because the centralised 

controller controls all the RRUs, there is no inter-cell interference. Thus it can provide wider 

signal coverage area to end users than the stand-alone small cell product. However, because of 

the complex digital data processing at both baseband controllers and RRUs, the RRU small cell 

system is a relatively high-cost solution.  
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Figure 1.7 Architecture of a small cell system using RRUs [10] 

 

In modern small cell systems, there are many attempts to lower the cost, such as using power 

over Ethernet (PoE) which makes the RRUs very easy to install, for example, Ericsson® 

RadioDotTM [10], Huawei® LampSiteTM [11] and ZTE® QCellTM [12]. The small cell is now 

considered as a competitive solution for indoor wireless coverage, especially for office use. 

However, limited by the complexity of the signal processing and the requirement for the 

opening of the baseband ports from the mobile operator, the small cell system usually supports 

only a single operator. Thus it is not suitable for high user density areas where multiple 

operators and multiple services are required, such as sports stadiums, airports and shopping 

malls.  

The DAS delivers base station signals, either in digital or in analogue forms, to remote antenna 

units (RAUs), as shown in Figure 1.8. Many indoor DASs use radio-over-fibre (RoF) 

technology to transmit signals between a base station and remote antenna units because of its 

versatility, flexibility, scalability and low cost [13].  It is predicted that by 2022, the DAS 

market will worth 10.78 billion US dollars [14].  
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Figure 1.8 Typical architecture of a DAS [15] 

 

 

Figure 1.9 Typical Layout of a single link DAS: (a) Digital DAS; (b) Analogue DAS [16] [17] 
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Digital DAS (DDAS), as shown in Figure 1.9 (a), converts original base station RF signals into 

a lower intermediate frequency (IF), and then digitises IF signals using an ADC. In some 

DDASs, an FPGA follows the ADC to do digital data processing, such as data rate compression 

[17] [18]. The digital data after the FPGA is then transmitted via optical links to the RAUs 

where it is reconverted to the original basestation RF signal. Compared with analogue DASs, 

the DDAS has larger tolerance to long distance RF performance degradation and is easy to be 

controlled by system administrators, but the massive amount of data generated by sampling 

base station signals make the DDAS approach hard to cope with very high capacity 

applications, such as MIMO and future 5G network.  

Analogue DASs, as shown in Figure 1.9 (b), transmit RF signals from base stations to RAUs 

via a directly modulated optical link without any digitisation [19]. The simplicity makes the 

analogue DAS low-cost and capable of handling large bandwidth signals. However, because 

the signal quality can be degraded by the nonlinearity and noise of active devices in the 

analogue DAS, such as such as power amplifiers and optical components in the link, the system 

needs to be very carefully designed to make sure it has satisfactory RF performance.  

Table 1.1 Comparison among different indoor signal coverage solutions 

 Repeater Stand-alone 

Small Cell 

RRU Small 

Cell 

Digital 

DAS 

Analogue 

DAS 

Coverage area Small Small Medium Large Large 

Multi-operator No No No Yes Yes 

Multi-service No No Yes Yes Yes 

Capacity Low Medium High High High 

Cost/m2   * High High Medium Medium Low 

* Indicates the cost for large area signal coverage per remote unit per service.  

Table 1.1 gives a brief comparison among different indoor signal coverage solutions. Repeaters 

and stand-alone small cells are suitable for a single operator and small area coverage, such as 
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home use. Although RRU small cell and DDAS can be used for large area signal coverage, 

because of the DSP complexity, they are high cost and not suitable for wide bandwidth and 

multi-operator multi-service signal coverage. Especially when in the scenarios that MIMO RoF 

is required, the huge data rate generated in the DDAS occupies wide optical bandwidth and 

leads to high cost in digital signal processing and optical transceiver components. All these 

reasons the make analogue DAS be a potential solution for next-generation indoor broadband 

MIMO signal coverage. 

In this thesis, the author will discuss the topics relating to transmitting broadband MIMO 

signals using analogue DAS.  

1.2 Thesis Scope 

The aim of this dissertation is to study the challenges and solutions to the transmission of 

MIMO signals over a single optical fibre in a low-cost and high-quality way for indoor 

analogue distributed antenna systems.  

Chapter 2 introduces fundamentals of a MIMO radio over fibre system. From an intrinsic RoF 

link to the architecture of an analogue DAS, the implementation of a MIMO-enabled DAS is 

illustrated. Technical challenges to build such a system and state-of-the-art of current solutions 

are described.  

Chapter 3 discusses a cost-effective MIMO radio over fibre system using double sideband 

(DSB) frequency translation multiplexing scheme. Models have been built to simulate the link 

performance and the origins of system noise, nonlinearity and crosstalk. Experiments have 

been carried out to exam the system characteristics.  

Chapter 4 extends the narrowband implementation in chapter 3 into a broadband solution. 

Frequency bands of all the services to be transmitted over DAS have been investigated. In the 

experiment, system EVM performance has been tested using commercial LTE bands. The 
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throughput of an IEEE 802.11n 2x2 MIMO signal is measured, showing that the system can 

work under real-life conditions.  

Chapter 5 theoretically and experimentally demonstrates that the DSB frequency translation 

system can effectively improve the system 3rd order SFDR. If the number of sidebands is 

increased, say to quadruple sidebands (QSB), the SFDR can be further improved. By using 

DSB and QSB frequency translation, the system SFDR can be higher than the intrinsic optical 

link itself.  This research shows the potential to trade optical bandwidth for SFDR improvement.  

Chapter 6 proposes a hybrid system using analogue and digital radio over fibre. By using the 

hybrid system, the dynamic range of the SISO LTE service can be improved, so that fewer 

number of RAUs are required for the LTE coverage. Compared with the pure analogue or pure 

digital system, the hybrid system can lower the system cost.  

The conclusions and potential future works are discussed in Chapter 7.  

 

1.3 Novel Contributions  

The novel contributions in this thesis are included below: 

 A simple power equaliser has been designed to make the DSB frequency translation system 

capable of transmitting wideband LTE MIMO service over MMF optical link.  

 The broadband operation of a MIMO RoF system using DSB frequency translation 

technique has been proposed and investigated, showing that by selecting certain LO 

oscillator frequencies (for example, 2.2GHz in the UK), the original MIMO signal can 

always be translated into the free spectrum over the DAS, giving the DSB frequency 

translation system the capability to support broadband operation.  

 It is shown that the optical bandwidth of a RoF system can be traded for the SFDR. The 

DSB frequency translation technique has been extended to a higher number of sidebands. 
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By using double sideband and quadruple sidebands frequency translation, it is shown that 

the SFDR of an RoF link can be improved beyond the intrinsic optical link. 

 A hybrid analogue and digital radio over fibre system have been proposed and 

demonstrated. The low-cost hybrid system has higher dynamic range than the traditional 

analogue system and simpler DSP than the traditional system.  
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Chapter 2 Fundamentals of a Radio over Fibre 

Systems and Literature Reviews 

2.1 Intrinsic Analogue RoF Link 

2.1.1 Benefits of using radio over fibre 

The idea of analogue radio over fibre was introduced in the 1990s [20]. The analogue radio 

over fibre system delivers the radio frequency (RF) microwave signals by modulating them 

onto the lightwave carrier and transmitted over optical fibres. In this sense, the RoF link is 

serving as an active RF waveguide. In recent decades, there has been an explosion in the 

number of applications of analogue optical links. Compared with traditional microwave cables, 

such as coaxial cables and twisted pairs, the optical fibre has many benefits, such as: 

i) The smaller size and lighter weight: a conventional coated optical fibre has 250µm 

diameter [21]. This allows the optical fibre links much easier to be installed and 

maintained.  

ii) Much wider bandwidth:  The combination bandwidth of 850nm, 1310nm and 

1550nm window is >50THz [22]. It allows systems’ multi-service and wide 

bandwidth operation.  

iii) Lower attenuation loss:  The attenuation loss for a single mode fibre operating at 

the 1550nm wavelength is 0.2dBo/km [23], which is much lower than the coaxial 

cable loss. RG6 coaxial cable, for instance, has ~214dB/km loss at 1GHz frequency 

[24].  
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All these properties make the optical link suitable for wide bandwidth RF transmission, 

especially in long distance.  

In the DAS, multiple wireless services from multiple operators are to be transmitted from the 

centralised hub to remote units. The transmitting range is a few hundred metres to 1 kilometre, 

depending on the size of the building. Compared with the passive DAS which uses coaxial 

cables, the DAS using radio over fibre has higher bandwidth and can cover larger areas. It is 

also easier to be installed and maintained.  

2.1.2 The architecture of an intrinsic analogue RoF link 

A. Detection of lightwave  

To deliver RF signals over an optical link, the lightwave needs to be modulated and detected 

using one of its parameters, such as amplitude (power), frequency or phase. Direct detection of 

an intensity-modulated lightwave is straightforward using a photodiode [25].  The photodiode 

has a square law characteristic, producing a photocurrent (Ipd), which is proportional to the 

incident optical power (P) and its responsivity(R).  

𝐼𝑝𝑑 = 𝑅𝑃 

On the other hand, the detection of phase or frequency modulated lightwave needs a coherent 

optical receiver [26]. Although coherent detection has higher sensitivity than direct detection 

[27], it requires a much more complicated receiver structure than direct detection. Direct 

detection performance can satisfy the performance requirement for current commercial mobile 

services, as will be explained in the following chapters. Here, in this thesis, we use direct 

intensity detection in the optical receiver.  

The PIN photodiodes and avalanche photodiodes (APD) are two types of commonly used 

photodiodes.  A brief comparison between the InGaAs PIN photodiodes and the InGaAs APD 

is shown in Table 2.1. Here the Si photodiodes are not included because the 1310nm and 

1550nm wavelength windows are more widely used in the radio over fibre systems for indoor 

DAS.  
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Table 2.1 Performance comparison between the PIN photodiode and the APD [28] [29] 

 InGaAs PIN photodiode InGaAs APD 

Typical operating wavelength 1100 - 1700 nm 1100 - 1700 nm 

Responsivity 0.5 – 0.8 A/W 0.5 – 0.8 A/W 

Multiplication factor 1 20-400 

RF bandwidth  Up to 40GHz Up to 40GHz 

Reverse bias voltage  5 – 10 V 25 – 400 V 

Both the InGaAs PIN photodiode and the InGaAs APD have a wide optical bandwidth from 

1100nm to 1700nm, meaning that if 1310 nm and the 1550 nm optical signals exist in the same 

optical link, both of them can be detected by the same photodiode. In the radio-over-fibre 

applications, the primary difference between the PIN photodiodes and APDs are the 

multiplication factor and the reverse bias voltage.  

The avalanche effect does not happen in the PIN photodiode. However, in the APDs, the 

detected optical signal is converted into electrical signal and then amplified by the avalanche 

effect, in which additional carriers are injected into an area with a high electrical field. The 

carriers then collide with neutral semiconductor atoms generating other carriers. This collision 

process repeats, again and again, giving the effectively amplified number of carriers in the free 

carrier generation [30]. Therefore, compared with the PIN photodiode, the APD produces 

multiplication factor giving additional gain. It can be used various of applications with high 

sensitivity requirement [31].   

However, the APDs require much higher reverse bias voltage than the PIN photodiodes [32], 

meaning harder to be implemented in the DAS remote units. Moreover, as the APD 

multiplication factor changes with the reverse bias voltage, the vibration in the power source 

may affect the output RF performance. Therefore, a higher cost power source is required in an 

APD system. The PIN photodiode, on the other hand, is much easier to be installed into a low 

power system and has a lower cost than the APD. In this thesis, because the application is for 
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indoor wireless communication, in which the typical transmission distance is in hundred metre 

range, we use the PIN photodiode in the intrinsic optical link.  

B. Intensity modulation  

Because direct intensity detection is used, the optical carrier must be modulated in intensity. 

Broadly the optical intensity modulation can be categorised into two means - direct modulation 

and external modulation [33], as shown in Figure 2.1.  

 

Figure 2.1 Intensity modulation of RF signal over optical link: (a) Direct Modulation; (b) 

External Modulation 

 

Figure 2.2 Concept of direct modulation of a laser diode 
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In direct modulation (Figure 2.1(a)), a DC bias current is applied to the laser diode to make it 

operate in the linear region, as shown in Figure 2.2. Usually, the highest dynamic range can be 

achieved when the laser diode is biased at the middle point of the linear region. As shown in 

Figure 2.2, in the linear region, laser diode output optical power follows to the variation of its 

driving current. The electrical RF modulation signal is inside the linear region and produces a 

modulated output optical signal. As the RF signal is directly applied to the laser diode, the 

modulation signal must be within the laser’s modulation bandwidth, which can be limited by 

the relaxation oscillation frequency [27] and chirping [28]. 

 

Figure 2.3 Concept of external intensity modulation 

In external modulation (Figure 2.1(b)), the laser diode emits continuous wave (CW) light, 

and the modulation is done in an external optical modulation device, such as a Mach-Zehnder 

Modulator (MZM) or Electro-absorption (EA) modulator. As shown in Figure 2.4, if the MZM 

is biased at the Vpi/2, it has an approximately linear transfer function which does not rely on 

the laser diode modulation frequency. The output optical intensity follows the MZM driving 

voltage. In the external modulation, the modulation bandwidth is not limited by the laser diode 
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relaxation frequency. Therefore, compared with the direct modulation, the external modulation 

has higher modulation bandwidth.  

A brief comparison between the direct modulation and the external modulation has been shown 

in Table 2.2. The external modulation has advantages over the direct modulation regarding RF 

noise figure, SFDR and bandwidth. However, in the external modulation, an additional optical 

component is required, so it has a higher cost than the direct modulation.  

Table 2.2 Comparison between direct modulation and external modulation  

 Direct Modulation External Modulation 

 Modulate in electric domain Modulate in optical domain 

Lowest Noise Figure 17.8 dB [34] 2.5 dB [35] 

Greatest SFDR 128 dB*Hz-2/3 [36] 132 dB*Hz-2/3 [37] 

Bandwidth 20GHz to 40GHz depends 

on laser [38] [39] [40] 

MZM:70GHz [41] 

EA: 60GHz [42] 

Complexity Simple Complex 

Cost Cheap Expensive needs optical 

modulator 

  

C. Laser diodes for direct modulation  

Nowadays, the development of semiconductor lasers enables the direct modulation at high 

frequencies. It has been reported that the modulation bandwidth of a distributed feedback 

(DFB) laser can be 35GHz [40] and this is enough for current commercial wireless services. 

And the cost for a packaged DFB laser has been lowered to less than a hundred dollars in mass 

production [43].  

A brief comparison among the DFB, Fabry-Perot and vertical-cavity surface-emitting 

(VCSEL) laser has been shown in Table 2.3 [44]. The DFB laser is a preferable type laser in 
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the directly modulated RoF link regarding the SFDR, relative intensity noise (RIN) and stable 

single-mode operation at high frequencies [16]. For some short-range RoF, or for the scenarios 

in which the noise and linearity performance is not critically required, the FP laser and the 

VCSEL can be a replacement.  

Table 2.3 a brief comparison among DFB, F-P and VCSEL lasers [45] 

 DFB Laser FP Laser VCSEL 

Operating 

Wavelength 

1300nm,1550nm 1300nm, 1550nm 800-1000nm (where fibre 

characteristics are less 

desirable) 

Slope Efficiency 

(Greatest) 

0.44 W/A [40] 0.38 W/A [46] 0.61 W/A [47] 

Bandwidth 

(Greatest) 

20 GHz [40] 40GHz [48] 36 GHz [38] 

Slop Efficiency*BW 

(Greatest) 

8.8(W/A) *GHz [40] 10(W/A) *GHz [46] 8.0 (W/A) *GHz [47] 

SFDR 128 dB*Hz^2/3 [36] 

(temperature controlled)  

>104 dB*Hz^2/3 [49] 

(20GHz, uncooled)  

107-117 dB*Hz^2/3 

[50] 

95-100dB*Hz^2/3 (5GHz) 

[50] 

RIN (dBc/Hz) -160— -150 dBc/Hz -140— -130 dBc/Hz <-130 dBc/Hz 

Cost High production cost, 

but <$100 each in mass 

production [43] 

Lower than DFB Lower than DFB  

In this thesis, we focus on the RoF link with 500m to 1km distance range and the system 

dynamic range need to satisfy the standards requirements.  

Thus, by considering the trade-off between cost and performance, we define the intrinsic 

optical link as an intensity-modulated-direct-detection (IM-DD) link using a direct modulated 

DFB laser, an SMF and a PIN photodiode, as shown in Figure 2.4.  
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Figure 2.4 Intrinsic analogue radio over fibre link 

D. Fibre Path 

The single mode (SMF) fibre and the multi-mode fibre (MMF) are two commonly used types 

of optical fibres. Both types of fibres typically have 125 µm outer diameter which is similar to 

the size of the human hairs. The single-mode fibre has typically 9 µm core diameter which 

allows the light to be transmitted in only in the fundamental mode, while other modes are 

removed. However, the multi-mode fibre has a larger core (typically 50 µm or 62.5 µm) so that 

multiple modes can be transmitted [51].  

Theoretically, the multimode fibre has better light gathering ability than the single mode fibre. 

However, the severe dispersion problem in the MMF make it hard to be used in the long-

distance transmission, and the RF bandwidth can be limited by the dispersion effect. The 

MMFs are easier to be manufactured than the SMFs, so have a lower price, although compared 

with other parts of the system and the engineering cost, the price of the optical fibres is 

negligible. Historically, many buildings’ ethernet backbones use MMFs, so it is still 

meaningful to do RoF over the MMF in some scenarios. Because of SMFs’ higher bandwidth 

* distance product, the single mode fibres are preferred in the new infrastructures [52].  

2.2 Performance Measurement of a RoF Link  

2.2.1 Link intrinsic gain  

The power of the intrinsic RoF link (the LD-Fibre-PD link) is defined as the ratio between the 

output RF power at the load following the photodiode and the input RF power to be modulated 
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at the RoF link input (direct modulated onto the laser diode). The intrinsic link power gain is 

usually negative and dominated by the electrical to optical (E/O) conversion loss and the optical 

to electrical (O/E) conversion loss. A comprehensive analysis can be carried out using the small 

signal model as shown in Figure 2.5.  

 

Figure 2.5 Small signal model of the intrinsic RoF link [16] 

A DC-biased RF signal source (Vs) with impedance Rs is input into an impedance matching 

circuit and then to a laser diode. There is voltage loss, because of the impedance mismatch 

between RL and RS. Assuming the laser diode has slope efficiency Sl (W/A) and the photodiode 

has responsitivity rd (A/W), the current and the voltage across the load are: 

𝑖𝑜𝑢𝑡 =
𝑉𝑠

𝑅𝑠+𝑅𝑀𝑎𝑡𝑐ℎ+𝑅𝐿
𝑠𝑙𝑟𝑑  (2.1) 

𝑣𝑜𝑢𝑡 =
𝑉𝑠

𝑅𝑠+𝑅𝑀𝑎𝑡𝑐ℎ+𝑅𝐿
𝑠𝑙𝑟𝑑𝑅𝐿𝑜𝑎𝑑  (2.2) 

Considering the input side, 

𝑖𝑖𝑛 =
𝑉𝑠

𝑅𝑠+𝑅𝑀𝑎𝑡𝑐ℎ+𝑅𝐿
 (2.3) 

𝑣𝑖𝑛 = 𝑉𝑠 (2.4) 

The intrinsic power gain of the link yields, 
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𝑔𝑖 =
𝑣𝑖𝑛𝑖𝑖𝑛

𝑣𝑜𝑢𝑡𝑖𝑜𝑢𝑡
=

𝑠𝑙
2𝑟𝑑

2𝑅𝐿𝑜𝑎𝑑

𝑅𝑠+𝑅𝑀𝑎𝑡𝑐ℎ+𝑅𝐿
  (2.5) 

It can be seen in (2.5) that 𝑔𝑖 ∝ 𝑠𝑙
2𝑟𝑑

2. When 𝑅𝐿𝑜𝑎𝑑 = 𝑅𝑠 + 𝑅𝑀𝑎𝑡𝑐ℎ + 𝑅𝐿,  

𝑔𝑖 = 𝑠𝑙
2𝑟𝑑

2  (2.6) 

For a typical 1.3µm DFB laser, the diode laser fibre-coupled slope efficiency ranges from 0.035 

to 0.32 W/A, and the photodiode responsivity ranges from 0.5 to 0.8 A/W [16]. Thus, from 

(2.6), the intrinsic link gain should be between -35 and -12dB.  

Considering the components cascaded before and after the intrinsic optical link, the overall 

gain of the system follows the equation below: 

𝑔𝑠𝑦𝑠𝑡𝑒𝑚 = (∏ 𝑔𝑝𝑟𝑒 𝑖𝑖 ) ∗ 𝑔𝑖 ∗ (∏ 𝑔𝑝𝑜𝑠𝑡 𝑖𝑖 )  (2.7) 

in which, 𝑔𝑝𝑟𝑒 is the gain of the components before the intrinsic optical link and 𝑔𝑝𝑜𝑠𝑡1is the 

gain the components after the intrinsic optical link. The gain of the intrinsic optical link is 𝑔𝑖.  

2.2.2 Error Vector Magnitude  

The quadrature amplitude modulation (QAM) is a commonly used modulation scheme in 

mobile wireless networks. It takes digital data and separates it into in-phase (I) and quadrature 

(Q) data streams. The I and Q signals are then modulated onto a passband carrier (fc) in 

quadrature by a QAM transmitter, as shown in Figure 2.6.  
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Figure 2.6 Typical layout for a QAM transmitter  

The QAM receiver (Figure 2.7), takes the QAM signal and demodulates it by multiplying it 

with two sine waves with the 90-degree phase difference. A low-pass filter is then used to 

obtain the baseband information.  

Because the QAM uses the phase of the signal, it has high spectrum efficiency, and it is 

included in many wireless standards, such as IEEE 802.11 series and 3G/4G cellular standards.  

 

Figure 2.7 Typical layout for a QAM receiver  

The demodulated QAM signal can be shown in a constellation diagram. Because of the noise 

and interference, the demodulated signal does not necessarily locate to the position of the 

reference constellation point. The shift between the demodulated QAM signal and the ideal 

constellation point results in an error vector. The average amplitude of the error vector 

(normalised to the ideal symbol vector) is the EVM (Figure 2.8), which can be expressed in the 

equation below: 

𝐸𝑉𝑀(%) =  √
1

𝑁
∑

|𝐸𝑟𝑟𝑜𝑟 𝑉𝑒𝑐𝑡𝑜𝑟|2

|𝐼𝑑𝑒𝑎𝑙 𝑆𝑦𝑚𝑏𝑜𝑙 𝑉𝑒𝑐𝑡𝑜𝑟 |2
𝑁
𝑛=1 × 100%   (2.8) 
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In an analogue RoF system, the signal’s EVM directly relates to the signal to noise and 

interference ratio (SNIR) at the receiving end [49]: 

𝐸𝑉𝑀(%) =  √
1

𝑠𝑛𝑖𝑟(1)
   (2.9) 

 

Figure 2.8 Error vector magnitude 

 

Figure 2.9 Constellation diagrams with (a) low EVM; (b) high EVM (measured by a vector signal analyser in 

the experiment) 
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As shown in Figure 2.9, when the system has low EVM, the constellation points can be clearly 

distinguished. On the other hand, when the EVM is high, each of the constellation diagrams 

can no longer be distinguished. The EVM requirement has been described in various of 

standards. 3GPP, for example, has defined EVM requirement for the LTE PDSCH as shown in 

Table 2.4. IEEE has defined the EVM requirement for Wi-Fi devices as shown in Table 2.5 

The EVM requirement depends on the modulation schemes and coding rate. In a higher 

modulation scheme, the relative distance between each of the reference constellation points to 

the signal power is smaller than that of the lower dimension modulation scheme. Therefore, 

the EVM requirement for higher dimension modulation scheme is lower, for example, in the 

LTE PDSCH, the EVM requirement for the QPSK is 17.5%, but it is only 8% for the 64QAM. 

In modern wireless communication standards, such as 3GPP LTE and IEEE 802.11 series, if 

the communication environment is not suitable for the dimension high modulation scheme, the 

system will be forced to operate in a lower dimension modulation scheme, so that the EVM 

requirement can be satisfied.  

 

Table 2.4 3GPP defined EVM requirement for QAM in LTE PDSCH [53] [54] 

Modulation Scheme for PDSCH EVM requirement (%) 

QPSK 17.5% 

16QAM 12.5% 

64QAM 8% 
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Table 2.5 EVM requirement for IEEE 802.11a/g legacy devics and 802.11n devices [55] 

Modulation Coding Rate EVM (dB) for 

legacy devices 

EVM (dB) for 

802.11 devices  

BPSK 1/2 -5 -5 

BPSK 3/4 -8 -8 

QPSK 1/2 -10 -10 

QPSK 3/4 -13 -13 

16QAM 1/2 -16 -16 

16QAM 3/4 -19 -19 

64QAM 2/3 -22 -22 

64QAM 3/4 -25 -25 

64QAM 5/6 -- -28 

2.3 Architecture of an Analogue SISO DAS  

An analogue single-input-single-output(SISO) DAS can be built by combining multiple optical 

links. They distribute basestation signals to each of the RAUs and also collect users’ signal 

from the RAUs to the basestation. Figure 2.10 shows two downlink layouts for inbuilding 

analogue DASs. To save the cabling cost, many DASs use multi-stage splitting. Taking the 

Zinwave® UNItivity solution as an example, two stages of DAS hubs are implemented, as 

shown in Figure 2.10(a). The primary hub separates the basestation signal into n ways, and 

each of the secondary hubs further amplifies and split the signal into m ways. Therefore, n*m 

RAUs can be supported by the system. Compared with the active secondary hub (Figure 

2.10(a)), the passive secondary hub (Figure 2.10(b)) saves the cost of active components.  
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Figure 2.10 Typical downlink layout of an in-building analogue DAS: (a) active secondary hub; (b) passive 

secondary hub 
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2.4 Challenges to Implement DAS and Integrate MIMO 

Services into an Analogue DAS 

Currently, the DAS has been one of the most commonly used solutions to cover and extend 

wireless services in large venues like shopping malls, stadiums, undergrounds, airports. Soon, 

the DAS will be more implemented in areas such as universities, healthcare, multi-functional 

buildings, and in urban areas for offloading data traffic.  

As a service-agnostic system, the DAS needs to transmit all different services to users within 

one infrastructure. Nowadays, there is a range of wireless services and services providers, such 

as 3G/4G cellular services (O2, 3, Vodafone, …), Wi-Fi, public safety and others. All these 

services and service providers use different standards and occupy different frequency bands. 

Delivering these various things together to users become one of the key challenges to the DAS. 

To do this, the DAS needs to be broadband, covering all frequency bands from 700MHz to 

3.5GHz [56]. In a future 5G network, this frequency range may be extended up to 80GHz [57]. 

From a business perspective, the cost and complexity is a challenge to DAS deployment. The 

installation of a DAS requires long optical fibres and power supplies at each of the RAUs. The 

cabling from the central unit to the RAUs is complicated (as shown in Figure 2.11) and the 

installation cost can be enormous. Due to the complicity of the system and the lack of ready 

solutions for rack elevation drawings, cabling installation guidance, and other system design 

elements, the installation of a DAS needs experienced RF engineers and technicians.  
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Figure 2.11 Cabling of a Commscope® DAS: (a) central hub; (b) inbuilding cabling [58] 

 

As mentioned in Chapter 1, the MIMO technology has now been widely included in many 

wireless standards. There is a strong driver to upgrade traditional SISO DAS to MIMO DAS. 

However, the MIMO-type signals overlap in frequency bands, which makes them not able to 

be transmitted directly on the traditional SISO DAS infrastructure. A straightforward solution 

is to build parallel systems to transmit MIMO signals over DAS. This makes the system 

components increase linearly with the MIMO channel number and results in a high upgrade 

and maintenance cost. Therefore, a solution which can upgrade existing DAS to MIMO DAS 

without installing additional optical fibres will be very much needed.  

(a) (b)
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2.4.1 Nonlinearity  

A. The 2nd and the 3rd order intermodulation products 

The linearity of the RoF is a critical parameter, which influences the system dynamic range. 

The nonlinearity of a RoF link can cause intermodulation distortion (IMD), and unwanted RF 

harmonics will be generated. Nonlinear products can make the system RF performance degrade 

significantly [59].  

 

Figure 2.12 Frequency distribution of 2nd and 3rd order IMD products 

 

Assuming there are two pure sine waves (f1 and f2) at the input of a nonlinear system, at the 

system’s output, the spectrum consists of fundamental tones (f1, f2) and high order IMD 

products.  

Figure 2.12 shows the frequency spectrum at the output of the nonlinear system with 

fundamental tones and the second order and the third order distortion harmonics. The 

fundamental tone appears at the same frequency as the input signals, but the 2nd order and 3rd 

order harmonics appear at the following frequencies, as shown in Table 2.6.  
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Table 2.6 Frequency distribution of IMD harmonics 

Harmonic 

order 

m n frequencies 

2 -1 1 -f1+f2 

 0 2 2f2 

 1 1 f1+f2 

 2 0 2f1 

3 -1 2 -f1+2f2 

 0 3 3f2 

 1 2 f1+2f2 

 2 -1 2f1-f2 

 2 1 2f1+f2 

 3 0 3f1 

Now consider the input signal has bandwidth Δf, as shown in Figure 2.13. At the output of the 

nonlinear system, some of the 3rd order intermodulation distortion harmonics (IMD3) creates 

inband interference. Therefore, IMD3 can affect the performance of a RoF even if it is 

operating in the single-service mode. Thus, IMD3 becomes one of the most significant 

nonlinearity factors needs to be considered in the RoF link design. 

 

Figure 2.13 Passband signal going through a nonlinear system 

However, the 2nd order intermodulation distortion harmonics do not overlap with the 

fundamental signal and can be filtered out. If filters have been properly installed, the IMD2 

does not influence the performance of a single service RoF link. On the other hand, if multiple 
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services need to be supported in the RoF link, the 2nd order harmonics of one service can 

overlap with the frequency bands of the other services.  

As many RoF systems are designed for multiple-service operation, the linearity requirements 

need to be satisfied in a wide range of frequencies [60].  

B. nth order interception point and SFDR 

The nth order intermodulation distortion (IMDn) product of an RoF link can be estimated by 

nth order interception point (IPn) and nth order spurious-free dynamic range (SFDRn). The nth 

order interception point determines the system’s nth order nonlinearity, and the SFDRn takes 

both the nonlinearity and system signal to noise ratio (SNR) into account.  

 

Figure 2.14 nth order IMD, IIP, OIP and SFDR 

Figure 2.14 shows a plot of the output power vs input power in log scale. The output power of 

the fundamental signal and nth order IMD product increase proportionally with input signal 

power, and the slope rate (k) equals to the order numbers. For example, the slop rate for the 3rd 

order IMD product is equal to 3.  
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IPn is defined as the crossing point between the nth order IMD product curve and the 

fundamental signal power curve. IIPn and OIPn are respectively defined as the input power 

and the output power at the nth order interception point.  

SFDRn is defined as the power difference between the fundamental signal and the nth order 

IMD product when the power of the nth order IMD product equals to system output noise floor 

(per Hz).  

2.5 State-of-the-Arts of MIMO-enabled RoF System  

2.5.1 Interleaved MIMO DAS and co-located MIMO DAS 

The MIMO DAS can be broadly categorised into interleaved MIMO DAS and co-located 

MIMO DAS. The interleaved DAS (Figure 2.15(a)) separates MIMO antennas by relatively 

large distance (at least a few metres), and each of the MIMO antennas work with each other. 

The MIMO services can achieve nearly full MIMO performance at the overlapped areas among 

MIMO antennas [61]. The Co-located MIMO DAS (Figure 2.15(b)), on the other hand, place 

MIMO antenna from each channel at every RAU, so that MIMO service can be achieved in all 

signal coverage areas.  

Because there is only one signal channel to be transmitted to the interleaved MIMO DAS 

RAUs, while there are multiple MIMO signal channels to be transmitted to the co-located DAS 

RAU, the interleaved DAS has relatively lower cost than the co-located DAS. However, 

previous research [62, 63] have shown that the co-located MIMO DAS has better QoS than 

interleaved DAS. Practically, the co-located MIMO DAS can offer better MIMO signal 

coverage than the interleaved DAS. Moreover, in the future mobile wireless network, large 

scale MIMO is desirable to provide users with large capacity [64]. It is meaningful to 

investigate the methods to deliver MIMO signals over co-located DAS. Therefore, the co-

located DAS is the structure we discuss in this thesis.  
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Figure 2.15 Interleaved 2x2 MIMO DAS and co-located 2x2 MIMO DAS 

 (green lines indicate MIMO coverage areas) 

 

2.5.2 Multiplexing Schemes 

As MIMO signal channels overlap in the frequency domain, a multiplexing scheme is required 

to transmit them together. A straightforward solution to tackle the problem is to install as many 

optical fibres as the number of MIMO channels (spatial multiplexing), as mentioned in Section 

2.4. However, this leads to high optical component and fibre installation cost. 

Some solutions, including wavelength division multiplexing (WDM) [65], subcarrier 

multiplexing (SCM) [66] and mode division multiplexing (MDM) [67], are capable of 

transmitting MIMO signals over a single optical fibre. However, they can be expensive and 

complicated to implement.  

In a WDM system, as shown in Figure 2.16, an optical source and photodetector are required 

for each MIMO channel. And additional optical multiplexer and demultiplexers have to be used 

to combine and separate each of the lightwave channels [68, 69].  
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Figure 2.16 Typical Layout for a WDM RoF system 

In an SCM system [66], as shown in Figure 2.17, each of the MIMO channels is shifted into 

different frequency bands by local oscillators (LO) and mixers. n-1 LOs are required for n 

MIMO signal channels.  

 

Figure 2.17 Typical layout of an SCM RoF system  

In other words, the number of optical or electrical components increases linearly with the 

number of MIMO signal channels in WDM systems and SCM systems. In an MDM system, 

an expensive spatial light modulator is required. 

Digital time division multiplexing (TDM) can also be a potential solution. However, here radio 

frequency signals need to be digital before transmission and this requires high-speed digital 

signal processing modules, which add cost and significant power consumption. Although some 
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research has been done on lowering the digital RoF bit rate [70], the high-cost components, 

such as analogue-to-digital and digital-to-analogue converters, are unavoidable. 

To reduce the cost of MIMO-enabled RoF system, two alternative analogue RoF systems using 

double sideband (DSB) frequency translation [71] and single sideband (SSB) frequency 

translation [72] techniques have been proposed by researchers. The operating principle of these 

two systems is similar to a traditional SCM system, but here two MIMO channels share the 

same LO so that the number of LOs can be halved. However, in [71] and  [72], the authors find 

that the DSB system does not have such good performance as the SSB system and cannot work 

when the upper band and the lower band of the translated signal are widely separated. 

Moreover, a narrow band notch filter is required in the DSB frequency translation system which 

results in the system only carry a single service. 

Some researchers have improved the SSB system to support multiple services by translating 

signals to different bands [73] and lower its cost using directly modulated lasers and MMF [74, 

75, 76]. However, due to the filtering process required by the SSB frequency translation 

system, it unavoidably wastes the power of one of the upper sideband and the lower sideband 

of the signal, and it requires many filters at the basestation side and the RAU side of the system. 

There are also researchers working on low-cost MDM systems [67], WDM systems [65], as 

well as polarisation-multiplexing systems [77]. Although all these systems can support 

multiple-service, none of them is likely to fundamentally be lower cost than the system using 

frequency translation technique. 

Some of the previous literatures about the multiplexing schemes for the MIMO-RoF have been 

shown in Table 2.7.  
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Table 2.7 Previous researches in commercial analogue MIMO-enabled RoF systems 

Year Technique Transmitted Signals Carrier Frequency 

Channel bandwidth or 

throughput or data rate 
Fibre Limitations Ref 

2008 DSB Freq Translation, 

Direct Mod 
PRBS, QAM16, 3×3 2.4GHz 

1 MSymb/s 

 

SMF 2.2km Cannot multiple services, narrow band filter [71] 

2010 
SSB Freq Translation, 

Direct Mod 
PRBS, QAM16, 3×3 2.44GHz 11 MSymb/s MMF 550m Power of lower sideband is lost [72] 

2010 
SSB Freq Translation, 

External Mod 
PRBS, AM, 3×3 0.5GHz-3GHz & 60 GHz 100Mb/s SMF 10km Power of lower sideband is lost [73] 

2011 
WDM-PON, VCSEL, 

Direct Mod 
PRBS, QAM4, 2×2 5.6GHz 198.5Mb/s SMF 20km High cost [75] 

2012 WDM, Direct Mod 802.11n, 2×2 2.4GHz 

~15 Mbit/s for single channel 

to ~22 Mbit/s max for 

MIMO 

MMF 5.4km High cost [76] 

2013 
SSB Freq Translation, 

Direct Mod 
802.11n, 2×3 2.4 GHz ~22 Mbit/s MMF 100m Power of upper sideband is lost [74] 

2014 MDM 802.11n, 3×3 2.4GHz 20MHz channel, 43.3Mbps MMF 30m High cost [78] 

2014 Polarization-Multiplex LTE-A, 2×2 0.8GHz, 2.6GHz 10MHz, 20MHz channel SMF 10km-50km High cost [77] 

2016 

DSB Freq Translation, 

Direct Mod 

LTE, 2×2,  

802.11g, 

0.7GHz & 2.4GHz 
20MHz LTE channel, 

54Mbps 802.11g 
MMF 300m 

Limited by the speed of laser, original 

carrier frequency cannot be very high.  
[79] 
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2.6 Summary and Conclusion 

In this chapter, we have defined the intrinsic analogue RoF link in this thesis as a directly 

modulated DFB laser followed by a short single mode fibre and a PIN photodiode with direct 

detection.  

The e/o and o/e conversion gain contributes to the most to the gain of an intrinsic RoF link, 

which is typically -35 to -12 dB. Other performance measurement terms, such as nonlinearity 

and EVM are also introduced in this chapter. 

By extending the intrinsic RoF link, typical layouts of an analogue SISO DAS are described in 

this chapter, showing that using a passive secondary DAS hub is a more cost-effective solution 

than the active secondary hub when the number of RAUs is <64.  

Because MIMO-type signals overlap in the frequency domain, a multiplexing scheme has to 

be used to implement a co-located MIMO-enabled DAS. The SSB and DSB frequency 

translation systems are considered to be relatively low-cost solutions among state-of-the-art 

technologies.   

 



3.1 Introduction 51 

 

 

Chapter 3 2x2 MIMO RoF System using DSB 

Frequency Translation Technique 

3.1 Introduction  

This chapter introduces the modelling of the SISO RoF optical link and then extends it to the 

SSB and the DSB MIMO RoF system. Experiments are then carried out to demonstrate the 

feasibility of transmitting MIMO type signals to remote units.  

3.2 SISO RoF System 

3.2.1.1 Basic modelling of a general cascaded system  

 

Figure 3.1 Layout for a general cascaded system  

Consider a general cascaded system, as shown in Figure 3.1. The gain, noise factor and ip3 

(in linear units) of a cascaded system can be expressed as below [80]: 

Device 1 Device 2 Device 3 Device n
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𝑔𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑔1 ∗ 𝑔2 ∗ …∗ 𝑔𝑛   (3.1) 

𝑛𝑓𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑛𝑓1 +
𝑛𝑓2−1

𝑔1
+

𝑛𝑓3−1

𝑔1∗𝑔2
+⋯+

𝑛𝑓𝑛−1

𝑔1∗𝑔2∗…∗𝑔𝑛−1
   (3.2) 

𝑖𝑖𝑝3
𝑠𝑦𝑠𝑡𝑒𝑚

= (
1

𝑖𝑖𝑝31

+
𝑔1

𝑖𝑖𝑝32

+
𝑔1𝑔2

𝑖𝑖𝑝33

+ ⋯+
𝑔1∗𝑔2∗…𝑔𝑛−1

𝑖𝑖𝑝3𝑛

)
−1

 (3.3) 

𝑜𝑖𝑝3
𝑠𝑦𝑠𝑡𝑒𝑚

= 𝑖𝑖𝑝3
𝑠𝑦𝑠𝑡𝑒𝑚

∗ 𝑔
𝑠𝑦𝑠𝑡𝑒𝑚

 (3.4) 

Assuming system input noise is the thermal noise, system output noise floor follows the 

equation below: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑟 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑁𝑜𝑖𝑠𝑒 ∗ 𝑔𝑠𝑦𝑠𝑡𝑒𝑚 ∗ 𝑛𝑓𝑠𝑦𝑠𝑡𝑒𝑚  (3.5) 

The system 3rd order SFDR in dB can be expressed as below: 

𝑆𝐹𝐷𝑅3𝑆𝑦𝑠𝑡𝑒𝑚(  ) =
2

3
(𝑂𝐼𝑃3(  𝑚) − 𝑂𝑢𝑡𝑝𝑢𝑡 𝑁𝑜𝑖𝑠𝑒 𝐹𝑙𝑜𝑜𝑟(  𝑚)) (3.6) 

To compensate the loss in a RoF link, a pre-amplifier and a post-amplifier are installed in a 

SISO RoF system, as shown in Figure 3.2. It can be considered as a cascaded system, in which 

the intrinsic RoF link has the dominant noise figure.    

 

Figure 3.2 SISO RoF System  

3.2.2 Pre-amplifier and post-amplifier in a SISO RoF system  

A simulation has been performed to show the contributions of the pre-amplifier and the post-

amplifier to the performance of the SISO RoF link. It is assumed that the intrinsic optical link 

Optical Fibre

Intrinsic RoF link
Pre-amplifier Post-amplifier
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has -33dB gain, 37.5dBm IIP3 and 57.3dB noise figure. These values are the same as those in 

the experimental measurement as described in Section 3.2.3.  

 

Figure 3.3 3rd order SFDR vs pre-amplifier gain for a SISO RoF system when pre-amplifier noise figure=0dB 

 

Figure 3.4 3rd order SFDR vs pre-amplifier gain for a SISO RoF system when pre-amplifier noise figure=10dB 

Figure 3.3 shows the 3rd order SFDR of a SISO RoF system with different pre-amplifier gain 

and IIP3. The 3rd order SFDR of the intrinsic optical link used in the simulation is 102.8dB*Hz-

2/3. The system 3rd order SFDR raises with the pre-amplifier gain until it reaches the SFDR of 

the intrinsic optical link (without amplifier). This is because the intrinsic optical link has the 

dominant noise figure. When the pre-amplifier gain is higher than the optimum value, the noise 
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from the pre-amplifier overshoots the noise from the intrinsic optical link, and thus the system 

SFDR drops.  

Typically, commercial RF amplifiers have IIP3>0dBm [81]. Without considering the noise 

figure of the pre-amplifier, the IIP3 of the pre-amplifier decreases the maximum system SFDR3 

by <1dB, as shown in the zoomed-in figure in Figure 3.3.  

However, if the noise figure of the pre-amplifier is considered, the pre-amplifier has a greater 

influence on the system maximum 3rd order SFDR as shown in Figure 3.4. In the simulation, 

the pre-amplifier noise figure = 10 dB, which is a typical value for a high gain RF amplifier. If 

a low noise amplifier is used, the noise figure can be as low as ~2 dB [82], but the bandwidth 

and gain can be limited. Figure 3.5 describes the influence of the pre-amplifier IIP3 and the NF 

on the system optimum SFDR. Both parameters lower the system optimum SFDR.  

 

Figure 3.5 Influence of the pre-amplifier on the cascaded 3rd order SFDR of a SISO RoF link: (a) cascaded 

SFDR3 vs Pre-amplifier IIP3; (b) cascaded SFDR3 vs pre-amplifier noise figure 

Different from the pre-amplifier case, the effect of the post-amplifier nonlinearity on the system 

overall performance is more straightforward. As shown in Figure 3.6, the system’s 3rd order 

SFDR does not rely on the post-amplifier gain, but increases with its IIP3 (Figure 3.7(a)) and 

drops with its NF (Figure 3.7(b)). Whilst the post-amplifier IIP3 plays a major role in the 

system SFDR3, the post-amplifiers noise figure does not significantly reduce the system’s 

SFDR3 when it is lower than 15dB. This is because, for a component with noise figure = 

𝑛𝑓𝑐𝑜𝑚𝑝 and input noise = 𝑛𝑖𝑛, its output noise follows: 
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𝑛𝑜𝑢𝑡 = [𝑛𝑖𝑛 + 𝑛𝑡ℎ(𝑛𝑓𝑐𝑜𝑚𝑝 − 1)]𝑔𝑐𝑜𝑚𝑝 

 

Figure 3.6 3rd order SFDR vs post-amplifier gain for a SISO RoF system when post-amplifier noise figure=10dB 

 

Figure 3.7 Influence of the post-amplifier on the cascaded 3rd order SFDR of a SISO RoF link: (a) cascaded 

SFDR3 vs post-amplifier IIP3; (b) cascaded SFDR3 vs post-amplifier noise figure 

In the SISO RoF link, the input noise of the post-amplifier is much greater than the thermal 

noise, and therefore, its noise figure does not critically raise the system’s output noise floor 

until it reaches a certain level (30dB in this case). Normally, the noise figure of a high gain 

amplifier is much smaller than 30dB.  

90

92

94

96

98

100

102

104

0 10 20 30 40 50 60

C
a

sc
a

d
ed

 3
rd

 o
rd

er
 

S
F

D
R

 (
d

B
*

H
z^

-2
/3

)

Post-amplifier gain (dB)

 Post-amp IIP3 = 0dBm  Post-amp IIP3 = 8dBm

 Post-amp IIP3 = 16dBm  Post-amp IIP3 = 999dBm

98

99

100

101

102

103

104

0 5 10 15 20C
a

sc
a

d
ed

 3
rd

 o
rd

er
 S

F
D

R

(d
B

*
H

z^
-2

/3
)

Post-amp IIP3(dBm)
 Pre-amp NF = 0dB  Pre-amp NF = 10dB
 Pre-amp NF = 5dB  Pre-amp NF = 15dB

98

99

100

101

102

103

104

0 3 6 9 12 15

C
a

sc
a

d
ed

 3
rd

 o
rd

er
 S

F
D

R

(d
B

*
H

z^
-2

/3
)

Post-amp NF(dB)
 Post-amp IIP3 = 0dBm  Post-amp IIP3 = 8dBm

 Post-amp IIP3 = 16dBm  Post-amp IIP3 = 999dBm

(a) (b)



3.2 SISO RoF System 56 

 

 

3.2.3 Basic experimental measurements of a SISO RoF system  

A. Laser diode L-I characteristic  

 

Figure 3.8 Experiment setup for laser diode L-I characteristic test 

The light-current characteristic of the Mitsubishi® FU-68-PDF Direct modulated DFB laser at 

20 °C has been tested using a lightwave multimeter as shown in Figure 3.8. The laser diode 

temperature is controlled by a thermoelectric cooler (TEC) inside the laser diode’s package. In 

the experimental results in Figure 3.9, the slope rate for the L-I curve is ~0.2W/A. And the 

curve starts to be nonlinear when laser diode bias current >80 mA. The laser diode threshold 

current ~10 mA. Therefore, if the laser diode is biased at the ~45 mA point, the RoF link will 

have the best linearity performance in direct modulation. Moreover, if this laser is directly 

modulated, severe distortion will happen when the RF signal peak current >35 mA, which is 

~15dBm in power if it is 50 ohms matched.  

 

Figure 3.9 L-I characteristic of the Mitsubishi® FU-68-PDF DFB laser 
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B. S21 parameter of the optical link 

 

Figure 3.10 Experimental layout for 300m MMF link S21 parameter test 

The S21 parameter of the 300m MMF optical link has been tested using an Anritsu® 37347A 

vector signal analyser (VNA), as shown in Figure 3.10. The VNA is calibrated from 40MHz 

to 4GHz 

 

Figure 3.11 S21 amplitude-frequency response of the optical link using Mitsubishi® FU-68-PDF DFB laser 
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It is shown in Figure 3.11 that for the direct modulated DFB laser under test (Mitsubishi® FU-

68-PDF DFB), the 6dB RF bandwidth of the optical link is ~2.5GHz. RF resonance in the laser 

diode package causes the dips in the plot.  

C. SFDR 

The 3rd order SFDR of the system can be measured by the two-tone test (Figure 3.12). Two 

signal generators generate two sine waves with respectively 800MHz and 801MHz carrier 

frequencies. A power coupler then combines signals from two signal generators, and the 

comobined signals are directly modulated to a DFB laser. The power of the fundamental tones 

and 3rd order tones at the output of the intrinsic optical link have been measured using a 

spectrum analyser, as plotted in Figure 3.13. The interception point between the fundamental 

tone and the 3rd order harmonics (IP3) shows the optical link has 37.5dBm IIP3 and 8dBm 

OIP3. The output noise floor of the optical link is measured -145dBm/Hz. Therefore, the 3rd 

order SFDR can be calculated using equation (3.6): 102dBm/Hz2/3.  

 

 

Figure 3.12 General layout of the two-tone test to measure the SFDR of a nonlinear system  
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Figure 3.13 3rd order SFDR test result for intrinsic optical link 

 

3.3 Modelling of SSB and DSB MIMO-enabled RoF System 

The single sideband (SSB) and double sideband (DSB) frequency translation systems convert 

original MIMO signals into different electrical sidebands as shown in Figure 3.14 and Figure 

3.15. The two MIMO channels share the same local oscillator. Therefore, half the number of 

local oscillators are required than the number of channels. In both systems, the local oscillator 

translates the original MIMO signals into upper and lower sidebands, respectively at 𝑓𝑙𝑜𝑤 =

|𝑓𝐿𝑂 − 𝑓𝑐| and 𝑓𝑢𝑝 = 𝑓𝐿𝑂 + 𝑓𝑐.  
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Figure 3.14 Schematic of a single sideband frequency translation system for 2x2 MIMO RoF [72] 

In an SSB frequency translation system, one of the sidebands of each MIMO channel is filtered 

out. As shown in Figure 3.14, after the mixers, the upper sideband of channel 1 has been filtered 

out, while the lower sideband of channel 2 has been filtered. Both channels are then combined 

by an electrical coupler and transmitted through the optical link. Each of sidebands contains 

the information from only one of the MIMO channels. At the RAU side, another pair of low 

pass/high pass filters is required to de-multiplex the MIMO signals.  

In a DSB frequency translation system, as illustrated in Figure 3.15, each of the MIMO 

channels is mixed with the same local oscillator frequency, but with a 90-degree phase shift. 

Therefore, both MIMO channels can be multiplexed with each other in quadrature and power 

in both sidebands can be kept. Two pairs of high-pass and low-pass filters at the base station 

and RAU sides are avoided.  
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Figure 3.15 Schematic of a double sideband frequency translation system for 2x2 MIMO RoF [71] 

3.3.1 Third order SFDR of the SSB and the DSB frequency translation 

system  

Different from the SISO RoF link, the SSB and DSB frequency translation system involves RF 

mixers, which usually have poor IIP3 and high conversion loss. For example, the frequency 

mixer used in the experiment and simulation has ~25dBm IIP3 and ~8dB conversion loss. This 

will influence the system’s overall performance.  

In the SSB frequency translation system, if the input noise of the mixer is thermal noise, the 

noise figure of a mixer equals to its conversion loss. In a DSB frequency translation system, at 

the RAU side, when the mixer translates upper and lower sidebands back to the original 

frequency, the signal power adds coherently but the noise power adds in-coherently, giving the 

DSB system higher SNR than the SSB system (if two systems use the same optical link and 

the same pre-amplifier).  

Simulations have been performed in spreadsheet model by calculating the link power budget 

as shown in Figure 3.16. Detailed mathematical theory will be described in Chapter 5. 
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(a)                                                                    (b) 

 

(c)                                                                    (d) 

Figure 3.16 Simulation results comparing DSB with SSB frequency translation system: (a)IIP3; (b) OIP3; 

(c)output noise floor; (d) 3rd order SFDR.  

The SSB and DSB system have the same IIP3 (Figure 3.16(a)). However, as the double 

sideband system uses the power from both sidebands, its OIP3 is 6dB higher than the SSB 

system (Figure 3.16(b)). In the DSB system, the noise from both sidebands adds in-coherently, 

thus the output noise floor is 3dB higher than the SSB system (Figure 3.16(c)).  

Thus, overall, the DSB system has 2/3*(6dB-3dB) = 2dB higher 3rd order SFDR than the SSB 

system (Figure 3.16 (d)). This property makes the DSB system’s dynamic range superior to the 

SSB system and means that the optical bandwidth can be traded for the electrical SFDR.  
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3.3.2 Crosstalk in the DSB frequency translation system 

Two major factors contribute to the crosstalk between the two MIMO channels in a DSB 

frequency translation system – phase error of the 90-degree hybrid coupler and the amplitude 

imbalance between the upper sideband and the lower sideband.  

 

Figure 3.17 Schematic of the model of MIMO-enabled RoF system using DSB frequency translation. 

To simplify the model, we model the optical link as a low-pass filter and time delay (∆𝑡), as 

shown in Figure 3.17. Assuming there are two MIMO channels, they respectively contain 

information 𝑚1 and 𝑚2. And they are modulated to the same carrier angle frequency 𝜔, but 

the initial phases are different – respectively 𝛼 and 𝛽. The 90-degree hybrid couplers have 𝜎1 

and 𝜎2  phase error. The local oscillators at the basestation side and the RAU side are not 

synchronised and they have phase difference 𝜃, but with the same angle frequency 𝜃. It is 

assumed that the phase of the local oscillator at the BS side is the reference phase.  

The multiplexing and de-multiplexing process can be expressed as the equations shown below: 

   𝑀𝑚𝑢𝑥 = 𝑚1 sin(ωt + α) sin(𝜔𝐿𝑂t) + 𝑚2 sin(ωt + β) cos(𝜔𝐿𝑂t + 𝜎1) 

= 𝑀𝑝𝑟𝑒,𝜔−𝜔𝐿𝑂
(𝑡) + 𝑀𝑝𝑟𝑒,𝜔+𝜔𝐿𝑂

(𝑡)      (3.7) 
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𝑀𝑝𝑟𝑒,𝜔−𝜔𝐿𝑂
(t) =

1

2
{𝑚1 cos[(𝜔 − 𝜔𝐿𝑂)𝑡 + 𝛼] + 𝑚2sin [(𝜔 − 𝜔𝐿𝑂)𝑡 + 𝛽 − 𝜎1]}    (3.8) 

  𝑀𝑝𝑟𝑒,𝜔+𝜔𝐿𝑂
(𝑡) =

1

2
{−𝑚1 cos[(𝜔 + 𝜔𝐿𝑂)𝑡 + 𝛼] + 𝑚2sin [(𝜔 + 𝜔𝐿𝑂)𝑡 + 𝛽 + 𝜎1]}  (3.9)                               

 

After the RoF link,  

  𝑀𝑝𝑜𝑠𝑡,𝜔−𝜔𝐿𝑂
(t) = 𝐺𝜔−𝜔𝐿𝑂

𝑀𝑝𝑟𝑒,𝜔−𝜔𝐿𝑂
(t + ∆t)  (3.10) 

  𝑀𝑝𝑜𝑠𝑡,𝜔+𝜔𝐿𝑂
(t) = 𝐺𝜔+𝜔𝐿𝑂

𝑀𝑝𝑟𝑒,𝜔+𝜔𝐿𝑂
(t + ∆t) (3.11) 

 

then, the de-multiplexed signal, 

𝑀𝑑𝑒𝑚𝑢𝑥1 = [𝑀𝑝𝑜𝑠𝑡,𝜔−𝜔𝐿𝑂
(t) + 𝑀𝑝𝑜𝑠𝑡,𝜔+𝜔𝐿𝑂

(t)] ∙ sin (𝜔𝐿𝑂t + θ)   (3.12) 

𝑀𝑑𝑒𝑚𝑢𝑥2 = [𝑀𝑝𝑜𝑠𝑡,𝜔−𝜔𝐿𝑂
(t) + 𝑀𝑝𝑜𝑠𝑡,𝜔+𝜔𝐿𝑂

(t) ∙ cos (𝜔𝐿𝑂t + θ + 𝜎2)] (3.13) 

 

Considering only the components at 𝜔 in channel 1, 

      𝑀𝑑𝑒𝑚𝑢𝑥1 = 𝑀𝑠𝑖𝑔𝑛𝑎𝑙1 +𝑀𝑐𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘1         (3.14) 

𝑀𝑠𝑖𝑔𝑛𝑎𝑙1 =
𝑚1𝐺𝜔−𝜔𝐿𝑂

4
sin(𝜔𝑡 + 𝛼 + 𝛿1 + 𝜃) +

𝑚1𝐺𝜔+𝜔𝐿𝑂

4
sin (𝜔𝑡 + 𝛼 + 𝛿2 − 𝜃)  (3.15) 

   

                          𝑀𝑐𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘1 = −
𝑚2𝐺𝜔−𝜔𝐿𝑂

4
cos(𝜔𝑡 + 𝛽 − 𝜎1 + 𝛿1 + 𝜃) 

                            +
𝑚2𝐺𝜔+𝜔𝐿𝑂

4
cos (𝜔𝑡 + 𝛽 + 𝜎1 + 𝛿2 − 𝜃) (3.16) 

 

If no crosstalk, 𝑀𝑐𝑟𝑜𝑠𝑠𝑡𝑎𝑙𝑘1 = 0. Then, 

 𝐺𝜔−𝜔𝐿𝑂
= 𝐺𝜔+𝜔𝐿𝑂

  (3.17) 

and 

𝛽 − 𝜎1 + 𝛿1 + 𝜃 = 𝛽 + 𝜎1 + 𝛿2 − 𝜃 + 2𝑛𝜋  (3.18) 
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(3.18) can be rearranged into: 

θ =  𝜎1 +ωLO∆t + 𝑛 (3.19)                      

 

Similarly, if we consider channel 2, when no crosstalk, 

                             θ = ωLO∆t − 𝜎2 + 𝑛𝜋  (3.20) 

and 𝐺𝜔−𝜔𝐿𝑂
= 𝐺𝜔+𝜔𝐿𝑂

 

 

All the symbols used from (3.7) to (3.20) are shown in  

Table 3.1 Symbols used from (3.7) to (3.20) 

Symbol Quantity 

𝐦𝟏,𝐦𝟐 Message contained in MIMO channel 1 and channel 2 

𝛚 Angle frequency of MIMO signals 

𝛚𝐋𝐎 Angle frequency of LO signal 

𝛂, 𝛃 Initial phase of MIMO channel 1 and channel 2 signal 

𝛔𝟏, 𝛔𝟐 Phase error of the 90-degree splitter at the BS and the RAU side  

𝛉 Phase difference between two LOs  

∆𝐭 Delay time between the BS side and RAU side 

𝛅𝟏, 𝛅𝟐 Respectively (ω − ωLO)∆t and (ω + ωLO)∆t 

𝐌𝐦𝐮𝐱 Multiplexed signal, before the laser, but after the power combiner at 

the BS side.  

𝐌𝐩𝐫𝐞,𝛚±𝛚𝐋𝐎
 Frequency component at ω±ωLO of Mmux 

𝐌𝐩𝐨𝐬𝐭,𝛚±𝛚𝐋𝐎
 Frequency component at ω±ωLO of the signal after the optical link 

(low-pass filter) 
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𝐆𝛚±𝛚𝐋𝐎
 Gain of the optical link (low-pass filter) at ω±ωLO 

𝐌𝐝𝐞𝐦𝐮𝐱𝟏 De-multiplexed signal of channel 1 and channel 2 after the frequency 

mixer at RAU side 

𝐌𝐬𝐢𝐠𝐧𝐚𝐥𝟏 Effective signal contained in Mdemux1 

𝐌𝐜𝐫𝐨𝐬𝐬𝐭𝐚𝐥𝐤𝟏 Crosstalk contained in Mdemux1 

 

Equations (3.17) to (3.20) show that three major factors contribute to the crosstalk: (i) phase 

mismatch caused by the microwave transmission time (∆t); (ii) phase error of the 90-degree 

hybrid couplers (σ1, σ2); (iii) amplitude imbalance between two bands (Gω−ωLO
, Gω+ωLO

). To 

eliminate the crosstalk between two channels, Equations (3.17) to (3.20) have to be satisfied.  

Due to the group delay of the link (∆t), the upper band and the lower bands arrive at the 

frequency mixers with different phases (δ1and δ2). If there is no phase error in the 90-degree 

hybrid couplers (σ1 = 0, σ2 = 0), the effect of δ1and δ2 can be eliminated by adjusting the 

phase difference between the mux and demux LOs via a delay line, which sets the value of θ =

ωLO∆t + nπ.  

However, if there is a phase error in the 90-degree hybrid couplers, Equation (3.19) and (3.20) 

can never be fully satisfied at the same time, and this becomes one of the major factors which 

results in the system crosstalk.  

The amplitude imbalance between the upper band and the lower band is another important 

factor that causes crosstalk. As shown in equation (3.17), when the signals are demultiplexed 

at the RAU side, the signal from the unwanted channel has to be cancelled which requires that 

the two sidebands of the DSB signal have the same amplitude. 

The simulation results in Figure 3.18 show the crosstalk caused by the phase error of the 90-

degree hybrid coupler and the amplitude imbalance between two frequency bands. Typically, 

the phase error of a 90-degree hybrid coupler can be within 2°, but the amplitude imbalance of 
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the two sidebands caused by the variation in the S21 frequency response of the optical link can 

be >1dB. 

 

Figure 3.18 Simulation of the crosstalk caused by the phase error of 90-degree hybrid couplers, and amplitude 

imbalance between two sidebands. 

3.3.3 EVM simulation for a DSB frequency translation system  

A simulation is performed to show the EVM performance of a DSB frequency translation 

system in VPItransmissionMaker® as shown in Figure 3.19. Two channels each of 20MHz 

bandwidth 64QAM signal at 800MHz carrier bandwidth have been used at the input of the 

system. The input signal power is -20dBm. The mixer is modelled as an ideal multiplier 

followed by a nonlinear component, whose IIP3 has been defined the same as the mixer used 

in the experiment. An attenuator represents the mixers' conversion loss. The phase error of the 

90-degree hybrid coupler is <2°, which is a typical value for a commercial product [83]. The 

optical link used in the simulation consists of a direct modulated DFB laser and a PIN 

photodiode. The optical fibre is a 300m MMF.  
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Figure 3.19 Simulation layout for 2x2 DSB MIMO RoF system in VPItranmissionMaker® 

 

Figure 3.20 Simulation result: constellation diagram of two channels of 64QAM 20MHz BW 

signal transmitted over 300m MMF link using DSB frequency translation. Left: channel 1 

EVM=3.1%; right: channel 2 EVM = 3.8% 

The model has included the noise and the crosstalk in the system. The constellation diagrams 

of two channels at the receiving ends are shown in Figure 3.20. It can be seen that the signals 

from both channels can be demodulated and EVM is around ~3.5%.  
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3.4 Experiments for MIMO-enabled RoF using DSB frequency 

translation  

3.4.1 Experimental Setup  

 

Figure 3.21 Experimental layout of MIMO-enabled RoF system using DSB frequency translation technique 

(local oscillator frequency = 2.2GHz and LTE carrier frequency = 800MHz ). 

Figure 3.21 shows the experimental layout of the MIMO-enabled RoF system using the DSB 

frequency translation technique. At the BS side two MIMO signal channels are mixed using 

the same local oscillator but with a 90° phase difference. In order to show the multi-service 

operation of the system, the mixed signals are summed with an independent IEEE 802.11g 

signal by a power combiner and then directly modulated onto a DFB laser (3dB RF 

bandwidth=2GHz), emitting at 1550 nm. In most of the building backbones, the MMF is a 

commonly pre-installed type of optical fibre for Ethernet communication [84]. Making use of 

the existing MMFs to transmit base station signals to each RAU can be a cost-effective way to 

build a DAS.  Here, we use a 300m length of MMF in the optical link, because it is a typical 

length for the in-building wireless signal coverage.  

At the RAU side, after the photodiode, followed by a trans-impedance amplifier (TIA), a simple 

equaliser is used to equalise the amplitude of the upper band and the lower band of the mixed 
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signals. Here, the filters in the equaliser also prevent the leakage of IEEE 802.11g signal to the 

frequency mixers. Following the equaliser, a symmetry layout as the transmitting side is used 

to de-multiplex the MIMO signals. 

In this experiment, the BS side and the RAU side share the same LO to save one test device. 

In reality, there should be two phase-locked LOs, one for each side of the link. To show the 

difference between two LOs and to provide the necessary phase shift (θ, explained in Section 

3.3.2), a delay line is used.  

 

Figure 3.22 EVM test layout for MIMO-enabled multi-service RoF system  

Figure 3.22 shows the experimental layout for the EVM test. Rohde & Schwarz® vector signal 

generators and an Anritsu® signal generator are used to generate two channels of LTE signals 

(centred at 700MHz) and a channel of an IEEE 802.11g signal (centred at 2.4GHz). A Rohde 

& Schwarz® vector signal analyser is used to analyse the de-multiplexed LTE MIMO signals 

and received Wi-Fi signal at the RAU side separately. MIMO processing, which can lower the 

EVM by doing EVM compensation, is not used. The system is tested for 5MHz, 10MHz and 

20MHz LTE channel bandwidths. 
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Figure 3.23 Experimental setup for condition number test. 

 

The experimental setup for condition number measurement is shown in Figure 3.23. A vector 

network analyser (VNA) is scanning from 600MHz to 1GHz, and 1600 points are taken in this 

range. The S21 parameters are logged to measure each element of the channel matrix 

individually. 

3.4.2 Experimental Results 

A. 2×2 LTE along with IEEE 802.11g over RoF Link Test 

The system is tested using LTE channels at a 700MHz carrier frequency, and 3MHz, 10MHz 

and 20MHz channel bandwidths. In the experiment, two LTE channels are independently 

transmitted over 300m OM1 MMF using a temperature controlled DFB laser (RF 

bandwidth=2GHz). Due to limitations of the test and measurement equipment, the EVM of 

each channel can only be measured independently, meaning that the recorded results are 

pessimistic compared to a full MIMO EVM since MIMO processing compensation is not 

employed. Figure 3.24 shows EVM vs carrier frequency curves and constellation diagrams. 

The average EVM measurement for 3MHz, 10 MHz and 20 MHz channel bandwidths are 

respectively 1.7%, 2.3% and 5.1%. These values are well within the 8% EVM requirement for 

Vector Signal Analyser

Port 1 Port 2
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Switch Switch
(see Fig. 3.21)
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64QAM in LTE Physical Downlink Shared Channel (PDSCH) standard. It can be seen in 

Figure 3.24(a) that for the 3MHz channel bandwidth, the EVM vs carrier frequency curve 

remains relatively flat, while at the 20MHz channel bandwidth, the EVM at two sides of the 

band increases. This is due to the crosstalk caused by the amplitude mismatch. As illustrated 

in Section 3.3.2, the power equaliser needs to be changed to make the upper band, and the 

lower band has the same amplitude. However, the frequency response of optical link changes 

with frequency. In the experiment, the power equaliser can only equalise the amplitude at a 

particular carrier frequency (700MHz). At frequencies around it, the amplitudes of two bands 

no longer match with each other. It is intended in future that the crosstalk caused by this be 

compensated by MIMO EVM compensation, which will be illustrated in the next section. 

 

Figure 3.24 Experimental test result for 2×2 LTE MIMO-enabled radio over 300m MMF, using double sideband 

frequency translation technique. Central carrier frequency=700MHz Upper: EVM vs. carrier frequency 

(normalized); Lower: constellation diagram. (a) channel bandwidth=5MHz; (b) channel bandwidth=10MHz; (c) 

channel bandwidth= 20MHz  

 

(a) (b) (c)
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Figure 3.25 Experimental test result for IEEE 802.11g signal (54Mbps) transmitting along with 2×2 LTE MIMO 

signals. Mean EVM=1.16%. 

Simultaneously with the LTE channels, a channel of a 64QAM IEEE 802.11g signal is 

transmitted. It can be seen in Figure 3.25 that when the system input power (at the system input 

as shown in Figure 3.21) is at the optimum level which is -5dBm, the received Wi-Fi signal 

has a very low EVM (~1.2%) and the MIMO signals can exhibit the same EVM both with and 

without the 802.11g signal, showing that the 802.11g signal and the MIMO signals do not 

influence each other. However, when the signal input power is high (>3 dBm for LTE in this 

case), intermodulation distortion between the Wi-Fi channel and the MIMO channels can occur 

due to nonlinear effects in the RoF link. The experiment shows that this effect can be minimised 

by carefully controlling the input power of the Wi-Fi signal. In the experimental layout, an 

attenuation of 10dB is required to compensate the conversion loss of frequency mixer. In a 

practical system, an automatic gain control (AGC) unit could fulfil this function. 

The RoF signals over MMF suffer from dispersion and distortion effects. Thus the link 

performance of an MMF RoF link should be worse than for an SMF link. An EVM performance 

comparison for four different types of optical fibres is shown in Figure 3.26. It can be seen that 

the proposed system is also suitable for both 1km SMF and 600m OM1 MMF. EVM results 

for both are within LTE PDSCH standard requirement. 
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Figure 3.26 EVM comparison for four different types of optical fibres (carrier frequency = 700MHz ) 

 

B. Condition number test  

The unitary of the channel matrix can be measured by the condition number, which is expressed 

as 

Condition number =  
𝜎𝑚𝑎𝑥( )

𝜎𝑚𝑖𝑛( )
= ‖ −1‖‖ ‖ 

in which 𝜎𝑚𝑎𝑥( ) and 𝜎𝑚𝑖𝑛( ) represents the maximum and minimum singular values of the 

channel matrix H. 

Figure 3.27 shows the measured channel matrix elements and the calculated condition numbers 

shown in dB. The system is adjusted to operate at a carrier frequency of 700MHz. It can be 

seen that at frequencies from 610MHz to 750MHz, the condition number is lower than 10dB, 

which shows the system is well-conditioned and the EVM will be compensated in a 140MHz 

bandwidth if MIMO signal processing is used [85]. This bandwidth is enough to support intra-

band carrier aggregation. For the case of inter-band carrier aggregation, multiple power 

equalisers need to be used. 
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Figure 3.27 Measurement of channel matrix elements (phase is not shown) and calculated condition number vs 

carrier frequency. 

Limited by the phase error of the 90-degree hybrid couplers, the minimum value of the h12 and 

h21 parameters are not at the same frequency (Figure 3.27). The minimum points for both the 

h12 and h21 curves occur when one of the equation (11) and (13) is satisfied, and the 

intersection of the two curves occurs when θ is chosen to be an optimum value between 𝜎1 +

ωLO∆t + 𝑛𝜋 and θ = ωLO∆t − 𝜎2 + 𝑛𝜋, such that h12 and h21 are both small. At this point, 

the condition number is the lowest (0.27dB) and the EVM can be well compensated by MIMO 

processing. 

At the frequencies out of the bandwidth of the power equaliser, which is 610MHz to 750MHz 

in this experiment, the condition number increases and the system become ill-conditioned. In 

this case, the power equaliser needs to be adjusted. 

 

C. Noise Figure, SFDR and EVM Dynamic Range Test 

In the DSB system, when the upper and lower band signals are translated back to their original 

frequency, they sum in the field. Thus there will theoretically be a 6dB signal power increase 

over an SSB system. In contrast, the independent noise power will only be increased by 3dB. 

Experimentally, it is shown that, compared with the SSB system, the DSB system can increase 
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the output signal power by 5.8dB and output noise power by only 3.0dB, and thus the system 

NF is lowered from 46.0dB to 43.2dB. This approximately agrees with theory and the 0.2dB 

impairment can be attributed to the phase mismatch of the 90° hybrid coupler.   

 

Figure 3.28  SFDR test for MIMO-enabled RoF system using DSB frequency translation 

 

The SFDR of the MIMO-enabled DSB frequency translation system is measured. In Figure 

3.28, it is shown that by adjusting the pre-amplifier gain, the system SFDR increases from 101 

dB·Hz2/3 to above 107 dB·Hz2/3. This is because when pre-amplifier gain <22dB, the optical 

link has the dominant noise figure in the whole system. Higher pre-amplifier gain can give 

system higher OIP3 without significantly increasing output noise floor. When the pre-amplifier 

gain >22dB, the noise introduced by the amplifier becomes dominant, thus the SFDR drops. 

The detailed illustration will be shown in Chapter 5.  

In Figure 3.29, a comparison between the system using DSB frequency translation and 

conventional SSB frequency translation is made when using 3.84MHz channel bandwidth.  A 

variable attenuator is added at the output of the pre-amplifier to adjust the system dynamic 

range. In the SSB system, two MIMO channels always have different EVM curves. This is due 

to the bandwidth of the optical link – the upper band of the translated signal suffers from a 
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much higher RF loss than the lower band, which results in a lower SNR. However, in the DSB 

system, as the two MIMO channels are orthogonally multiplexed, they occupy the same 

spectrum and thus in principle have the same EVM performance. This leads to a much larger 

effective EVM dynamic range. 

  

Figure 3.29 EVM dynamic range improvement of DSB frequency translation from SSB frequency translation 

3.5 Summary and Conclusion  

In this chapter, a SISO RoF system was modelled and then extended into a MIMO RoF system. 

The SISO RoF system can be modelled as a cascaded system, consisting of a pre-amplifier, an 

optical link and a post-amplifier. The pre-amplifier’s gain needs to be chosen to be a suitable 

value to get optimum system SFDR, but the gain of the post-amplifier does not significantly 

affect system SFDR.  

The DSB frequency translation system is an effective solution to transmit MIMO signals over 

a single optical link. Compared with SSB frequency translation system, theoretically, the DSB 

system has 2dB higher 3rder order SFDR. However, there are two major factors that contribute 

to the crosstalk in the DSB frequency translation system, which can reduce the performance: i. 

the phase error in 90-degree hybrid couplers; ii. the amplitude imbalance between the upper 

and lower sidebands of the mixing products. In the simulation, if the crosstalk between two 
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MIMO channels is required to be <-10dB, the amplitude variation in the S21 response of the 

optical link should be <1dB and the phase error of the 90-degree hybrid coupler should be <4°. 

Experimentally, a power-equaliser is installed to overcome the problem of the amplitude 

imbalance between two sidebands of the mixing products. Therefore, 20MHz bandwidth LTE 

MIMO radio over fibre system can be demonstrated beyond optical link’s 3dB RF bandwidth.  

An IEEE 802.11g (Wi-Fi) and a 2x2 LTE MIMO service are transmitted together using the 

DSB frequency translation. The optimum average EVM test result for the Wi-Fi service is 1.16% 

and for LTE service is 1.7% (for 3MHz channels), 2.3% (for 10MHz channels) or 5.1% (for 

20MHz channels). All these values are within the standard requirement.  

The experimental results show the DSB frequency translation system has improved effective 

dynamic range than the SSB frequency translation system because both of the MIMO channels 

are symmetric and have the same EVM performance.  
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Chapter 4 Broadband Implementation for MIMO 

RoF using DSB Frequency Translation  

4.1 Introduction  

There is a range of wireless services that we transmit over distributed antenna systems, and all 

these wireless services have different service providers. A service agnostic DAS needs to be 

broadband and each of the services should not influence the others. 

In a DSB frequency translation system, all services are transmitted through the same optical 

link. Two major factors may cause crosstalk among services – i) the upper sideband and the 

lower sideband after frequency translation may overlap with other services over the optical 

link; ii) the second order harmonic of the service may influence the others.  

In this chapter, the broadband implementation of a 2x2 MIMO RoF system using DSB 

frequency translation technique will be investigated.  

4.2 Services to be transmitted over a DAS 

For a commercial DAS, various wireless services are required to be transmitted to users, 

including 2G, 3G, 4G and Wi-Fi. On the other hand, not all the spectral regions need to be 

transmitted over DAS, for example, the spectral regions for space to earth communication, 

aeronautical mobile and aeronautical radio navigation.  In a DSB frequency translation system, 

the original MIMO signal is translated into the upper sideband and the lower sideband. The 

system designer needs to make sure the sidebands after frequency translation occupy the 

regions that are not used for other services on the DAS.   
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Figure 4.1 Typical services to be transmitted over a DAS in the UK 

Figure 4.1 shows the frequency spectrum allocation for the 2G/3G/4G, Wi-Fi and WiMax 

services in the UK. These services are typically required to be transmitted over a DAS. In the 

UK, the LTE frequency bands are occupied by four major service providers – 3 mobile, EE, 

O2, and Vodafone. They occupy 800MHz, 1800MHz, 2100MHz, 2600MHz and 3500MHz 

frequency bands.  For the UMTS services, the UK service providers are in 900MHz and 

2100MHz bands. For the GSM services, the standard has defined several frequency bands, such 

as GSM450, GSM800, GSM900, GSM1800, but only GSM900 and GSM1800 are used in the 

UK [86, 87, 88, 89, 90]. 

 

Figure 4.2 Typical frequency bands that are not occupied in the DAS in the UK (reserved for space to earth 

communication and aeronautical communication) 

 

Although these services occupy many frequency bands, there are still empty spectral regions 

on the DAS. These empty regions are usually occupied by military communication, satellite 

communication and aeronautical communication [91], as shown in Figure 4.2. For example, 

the spectrum from 470MHz to 790MHz cannot be assigned to civilian use, but “Ofcom may 

agree to the use of these frequencies for military purposes with the Ministry of Defence” [91]; 

the wide band from 960MHz to 1350MHz is reserved for aeronautical mobile, aeronautical 

radio navigation, radio navigation satellite, earth exploration satellite and space research [91]. 

~

LTE IEEE802.11 series IEEE802.16 seriesUMTSGSM
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These empty spectral regions can be used to transmit the frequency translated MIMO signals 

over the DAS. Detailed frequency spectrum allocation in the UK can be found in [91] and is 

not listed here.  

4.3 Local oscillator frequency selection 

In a DSB frequency translation system, to translate original MIMO signals into unoccupied 

frequency bands in a DAS, the local oscillator frequency needs to be carefully selected.  

 

Figure 4.3 Example frequency translation map to translate 800MHz and 1.8GHz LTE channels into unoccupied 

frequency bands on a DAS 

Figure 4.3 shows an example frequency translation map. The 800MHz LTE channel, for 

instance, can be translated into 1.4GHz and 3.0GHz bands by a 2.2GHz local oscillator and 

both sidebands are then in the empty spectral region as shown in Figure 4.2.  

As shown in Table 4.1 and Figure 4.3, by using a 2.2GHz local oscillator, the LTE services in 

the UK can always be translated into unused spectral regions over the DAS. For the case outside 

the UK, similar situations can be found. The 2.2GHz local oscillator frequency can be used in 

many major countries in the world. The frequency translation maps using 2.2GHz LO for the 

US and China are shown in  

Translate to upper sidebandTranslate to lower sideband upper sidebandlower sideband LO
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Table 4.2 and Table 4.3. For some special cases, the same principle can be applied, but different 

local oscillator frequency needs to be used. In Japan, for instance, a 2GHz local oscillator can 

be used.  

Table 4.1 Detailed LTE frequency translation table in the UK when using DSB frequency translation and 

2.2GHz LO frequency [92] 

LTE 

band 

Mobile 

operators 

FDD/TDD LTE band 

frequency 

LO 

frequency 

Upper 

sideband 

Lower 

sideband 

3 3, EE, O2, 

Vodafone 

FDD 

Uplink  

1710 – 

1785MHz 

2200MHz 3910 – 

3985MHz 

415 – 490 

MHz 

FDD 

Downlink 

1805 -

1880MHz 

4005 – 

4080 MHz 

320 – 395 

MHz 

7 EE, 

Vodafone 

FDD 

Uplink  

2620 – 

2690MHz 

2200MHz 4620 – 

4890 MHz 

420 – 490 

MHz 

FDD 

Downlink 

2500 – 

2570MHz 

4700 – 

4770 MHz 

300 -

370MHz 

20 3, EE, O2, 

Vodafone 

FDD 

Uplink 

832 – 862 

MHz 

2200MHz 3032 – 

3062 MHz 

1338 - 

1368 

FDD 

Downlink 

791 – 821 

MHz 

2291 – 

3021 MHz 

1379 – 

1409 MHz 

38 Vodafone TDD 2570 – 2620 

MHz 

2200MHz 4770 – 

4820 MHz 

370 – 

400MHz 

42 3 TDD 3400 – 3600 

MHz 

2200MHz 5600 – 

5800 MHz 

1200 – 

1400 MHz 

43 3 TDD 3600 – 3800 

MHz 

2200MHz 5800 – 

6000 MHz 

1400 – 

1600 MHz 
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Table 4.2 Detailed LTE frequency translation table in the USA when using DSB frequency translation and 

2.2GHz LO frequency  

LTE 

band 

Mobile 

operators 

FDD/TDD LTE band 

frequency 

LO 

frequency 

Upper 

sideband 

Lower 

sideband 

2 AT&T, 

iWireless,  

T-Mobile, 

C Spire [93] 

FDD 

Uplink  

1850-1910 

MHz 

2200MHz 4050 - 

4110MHz 

350 - 

290MHz 

FDD 

Downlink 

1930 -1990 

MHz 

4130 - 

4190MHz 

270 - 

210MHz 

5 AT&T, U.S. 

Cellular, C 

Spire, T-

Mobil [94] 

FDD 

Uplink  

 824 – 849 

MHz 

2200MHz 3024 - 

3049MHz 

1376 - 

1351MHz 

FDD 

Downlink 

869 – 894 

MHz  

3069 - 

3094MHz 

1331 - 

1306MHz 

12 AT&T (via 

MFBI), T-

Mobile, U.S. 

Cellular [95] 

FDD 

Uplink  

699 – 716 

MHz 

2200MHz 2899 - 

2916MHz 

1501 - 

1484MHz 

FDD 

Downlink 

729 – 746 

MHz 

2929 - 

2946MHz 

1471 - 

1454MHz 

13 Verizon FDD 

Uplink 

777 – 787 

MHz 

2200MHz 2977 - 

2987MHz 

1423 - 

1413MHz 

FDD 

Downlink 

746 – 756 

MHz 

2946 - 

2956MHz 

1454 - 

1444MHz 

17 AT&T, 

Adams 

Networks, 

Evolve 

Broadband 

FDD 

Uplink 

704 – 716 

MHz 

2200MHz 2904 - 

2916MHz 

1496 - 

1484MHz 

FDD 

Downlink 

734 – 746 

MHz 
2934 - 

2946MHz 

1466 - 

1454MHz 
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24 Ligado 

Networks 

FDD 

Uplink 

1626.5 – 

1660.5 

MHz 

2200MHz 

3826.5 - 

3860.5MHz 

573.5 - 

539.5MHz 

FDD 

Downlink 

1525 – 

1559 MHz 

3725 - 

3759MHz 

675 - 

641MHz 

25 Sprint FDD 

Uplink 

1850 – 

1915 MHz 

2200MHz 4050 - 

4115MHz 

350 - 

285MHz 

FDD 

Downlink 

1930 – 

1995 MHz 

4130 - 

4195MHz 

270 - 

205MHz 

26 Sprint FDD 

Uplink 

814 – 849 

MHz 

2200MHz 3014 - 

3049MHz 

1386 - 

1351MHz 

FDD 

Downlink 

859 – 894 

MHz 

3059 - 

3094MHz 

1341 - 

1306MHz 

30 AT&T FDD 

Uplink 

2305 – 

2315 MHz 

2200MHz 4505 - 

4515MHz 

105 - 

115MHz 

FDD 

Downlink 

2350 – 

2360 MHz 

4550 - 

4560MHz 

150 - 

160MHz 

41 Sprint TDD 2496 – 

2690 MHz 

2200MHz 4696 - 

4890MHz 

296 - 

490MHz 

71 T-Mobile FDD 

Uplink 

663 – 698 

MHz 

2200MHz 2863 - 

2898MHz 

1537 - 

1502MHz 

FDD 

Downlink 

617 – 652 

MHz 

2817 - 

2852MHz 

1583 - 

1548MHz 
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Table 4.3 Detailed LTE frequency translation table in P. R. China when using DSB frequency translation and 

2.2GHz LO frequency [96, 97, 98] 

LTE 

band 

Mobile 

operators 

FDD/TDD LTE band 

frequency 

LO 

frequency 

Upper 

sideband 

Lower 

sideband 

3 China Mobile, 

China Unicom 

FDD Uplink 1710 – 

1785 MHz 

2200MHz 3910 – 

3985 MHz 

490 – 415 

MHz 

FDD 

Downlink 

1805 - 

1880 MHz 

4005 – 

4080 MHz 

395 – 320 

MHz 

38 China Mobile TDD 2570 - 

2620 MHz 

2200MHz 4770 – 

4820 MHz 

370 – 420 

MHz 

39 China Mobile TDD 1880 - 

1920 MHz 

2200MHz 4080 – 

4120 MHz 

320 – 280 

MHz 

40 China Mobile, 

China Telecom, 

China Unicom 

TDD 2300 - 

2400 MHz 

2200MHz 4500 – 

4600 MHz 

100 – 200 

MHz 

41 China Mobile, 

China Telecom, 

China Unicom 

TDD 2496 - 

2690 MHz 

2200MHz 4696 – 

4890 MHz 

296 – 490 

MHz 
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4.4 Experiment for broadband EVM test 

4.4.1 Experimental setup  

The broadband performance of a DSB frequency translation 2x2 MIMO RoF system is tested 

using an optical link with >10GHz RF bandwidth. A directly modulated DFB laser emitting at 

1310nm wavelength and a 500m SMF link is used. The pre-amplifier used in the system has 

been chosen to be a broadband amplifier, which can provide the system with a relatively flat 

S21 amplitude-frequency response.   

 

Figure 4.4 Experiment setup for S21 parameter measurement for broadband RoF optical link 

 

Figure 4.5 S21 magnitude response for broadband optical link and pre-amplifier+optical link 

The system S21 amplitude-frequency response has been tested using the setup shown in Figure 

4.4. As shown in Figure 4.5, the S21 magnitude slowly decays with some fluctuation in the 

required frequency bands (0.1GHz to 5.8GHz). The roll off at high frequencies is <5dB. 
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As illustrated in Section 3.3.2, to lower the crosstalk in the DSB frequency translation system, 

a power equaliser needs to be used to balance the amplitude difference of the lower sideband 

and the upper sideband after the frequency translation. 

 

Figure 4.6 Experimental layout for 2×2 MIMO-enabled broadband RoF using DSB frequency translation 

technique and frequency spectrum (700MHz carrier frequency LTE shown by way of example). 

As shown in Figure 4.6, a power equaliser consisting of a low-pass filter and a high-pass filter 

with 3dB cut-off frequencies at 2.2GHz and a variable attenuator is employed to compensate 

any imbalance between the upper and lower bands of the signal after the optical link. A 2.2GHz 

cut-off frequency is chosen to allow the upper and the lower bands to be separated without 

affecting any of the frequency-translated LTE signals shown in Table 4.1. LTE MIMO-type 

signals with 20MHz channel bandwidths are presented to the system input. The electrical 

spectrums at different positions in the system are shown in Figure 4.6. 

Figure 4.7 shows the experimental layout for the error vector magnitude (EVM) measurement. 

A Rohde & Schwarz® SMW200A vector signal generator is used to generate an LTE channel, 

while another Rohde & Schwarz® FMQ06B vector signal generator is used to generate a 

64QAM signal with the same bandwidth and centre frequency to create an LTE-like signal at 

the same RF frequency due to the availability of only one LTE signal source. A Rohde & 

Schwarz® FSQ26 vector signal analyser (VSA) is used to receive and analyse the signal at the 

RAU side.  

 

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

-2.5E+7 -1.5E+7 -5.0E+6 5.0E+6 1.5E+7 2.5E+7

A
m

p
li

tu
d

e 
(d

B
m

)

Offset Frequency

-90

-80

-70

-60

-50

-40

-30

-20

-10

5.0E+8 1.0E+9 1.5E+9 2.0E+9 2.5E+9 3.0E+9

A
m

p
li

tu
d

e(
d

B
m

)

Frequency (Hz)

-110

-100

-90

-80

-70

-60

-50

-40

-2.5E+7 -1.5E+7 -5.0E+6 5.0E+6 1.5E+7 2.5E+7

A
m

p
li

tu
d

e 
(d

B
m

)

Offset Frequency (Hz)

Upper sidebandLower sideband

Local oscillator Leakage

Original Signal 

Leakage

20MHz Bandwidth LTE

20MHz Bandwidth LTE

0

∏/2

0

∏/2

MIMO1

MIMO2

MIMO1

MIMO2

LO

0 0

Pre-Amp 

+ ATT

Delay line

500m SMF

Direct modulated 

DFB laser

Power 

equalizer

ATT

LPF

HPF

Basestation(BS) Remote Antenna Unit(RAU)



4.4 Experiment for broadband EVM test  88 

 

 

 

Figure 4.7  2x2 LTE MIMO EVM measurement setup  

The system has been tested using LTE carrier frequencies from 700MHz to 2.6GHz, covering 

most of the commercial LTE bands, other than 3.5 and 3.6GHz bands. This is because the 

Rohde & Schwarz® SMW200A vector signal generator used in the experiment has a maximum 

RF frequency of 3GHz, so it was not possible to generate test signals in these bands. If the 

original carrier frequency is 3.5-3.6GHz, when using 2.2GHz LO, the upper sideband of the 

signal after translation is at 5.7-5.8GHz respectively. As shown in Figure 4.5, these frequencies 

are within 6dB RF bandwidth of the pre-amplifier + optical link. Therefore, the system can be 

expected to also work for 3.5 and 3.6GHz bands.   

4.4.2 Experimental results  

 

Figure 4.8 Broadband EVM test result for 2×2 LTE MIMO-enabled RoF using DSB 

frequency translation. 
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Figure 4.8 presents the experimental results for a broadband EVM test when the channel 

bandwidths are 3MHz and 20MHz. Both channels have similar EVM performance. When the 

channel bandwidth was 3MHz, the EVM remains around 2%; and was 5% for the 20MHz 

channel bandwidth. Crosstalk between two channels is the dominant factor, which contributes 

to the elevated EVM. When the bandwidth increases from 3MHz to 20MHz, the power 

equaliser is less able to match the amplitude of the side, so the EVM has been increased.  

The EVM vs input signal power curve is shown in Figure 4.9. The EVM input power dynamic 

range for 20MHz bandwidth LTE test model E-TM3.1 (64QAM) is ~30-35dB at two typical 

UK mobile operator frequency bands (800MHz and 1800MHz) without automatic gain control 

(AGC). If AGC were to be applied, the system dynamic range is expected to be further 

improved. 

 

Figure 4.9 EVM input power dynamic range tested at 800MHz and 1800MHz  
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Figure 4.10 Constellation diagrams for 800MHz carrier frequency 20MHz BW LTE: (a) 

input power = -27dBm; (b) input power =-11dBm; (c) input power = 3dBm 

4.5 Demonstration for local oscillator signal remote delivery and 

real-life 2x2 MIMO RoF  

In the experimental setup in Section 4.4.1 and Figure 4.6, the base station side and the RAU 

side share the same local oscillator. In a real system, however, the local oscillator signal needs 

to be remotely delivered to each RAU. Limited by the available equipment, the MIMO signal 

processing is not included in the experiments in the previous sections. In this section, a real-

life 2x2 MIMO radio over fibre system will be demonstrated using an IEEE 802.11n 2x2 

MIMO Wi-Fi signal.  

4.5.1 Local oscillator signal remote delivery.  

First of all, a simple experiment has been performed in the laboratory environment. As shown 

inFigure 4.11, before the optical link, a local oscillator is split, and half of the signal power is 

used to translate a 700MHz LTE signal into another carrier frequency (here 1.5GHz); the other 

half of LO signal is combined with the LTE signal after the frequency translation and then 

transmitted together via the optical link. The electrical spectrum after the photodiode is shown 

in Figure 4.11, the LO signal and the LTE signal can be clearly seen in the diagram. After the 

(a) (b) (c)
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photodiode, the LO signal is filtered out then fed back to translate the LTE signal back to the 

original frequency using the mixer.  

The EVM performance of the transmitted signal by using LO remote delivery is compared with 

the ideal case (both the mixers from both sides of the optical link share the same local oscillator 

source), as shown in Figure 4.12. The EVM performance of the system using remote LO 

delivery is comparable to the ideal case.  

 

Figure 4.11Experimental setup for LO remote delivery in an SCM system.  

Because the LO is transmitted at relatively high RF power on the optical link, the high order 

harmonics of the LO signal occur in the received spectrum. Because the LO signal used here 

is 2.2GHz, as illustrated in Section 4.3, the LO high-order harmonic products (at 4.4GHz, 

6.6GHz…) do not overlap with any of the other services to be transmitted over DAS. However, 

it is still possible that the beating products of the LO and service signals on the optical link 

influence the system performance. Therefore, the LO signals need to be attenuated before the 

optical link to reduce or prevent distortion. 
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Figure 4.12 EVM performance comparison between the LO remote delivery and the ideal case when using SCM 

 

Figure 4.13 LO oscillator phase noise in LO remote delivery 
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The LO phase noise has been tested for the LO remote delivery as shown in Figure 4.13.The 

local oscillator signal at the RAU side (after the optical link) has 10dB higher phase noise when 

offset frequency >1MHz.    

Now we extend the system into a 2x2 MIMO RoF system using the DSB frequency translation 

technique. As shown in Figure 4.14, two vector signal generators are used at the system input 

for two channels of MIMO type signals at the 700MHz carrier frequency, and they are 

multiplexed together using the DSB frequency translation technique. A sine wave at 2.2GHz 

frequency and 18dBm electrical power is generated as the LO signal at the base station side 

(before the optical link). A power splitter follows the LO signal generator to split the LO signal 

two ways – one is used to feed the mixers at the base station side, the other is attenuated by 

20dB and then transmitted to the RAU side. At the RAU side, the LO signal from the optical 

link is filtered out and amplified to feed the mixers.  

 

Figure 4.14 Experimental layout for DSB 2x2 MIMO RoF system using LO remote delivery.  
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Figure 4.15 EVM test result for both MIMO channels when using LO remote delivery  

 

 

Figure 4.16 Constellation and EVM vs. carrier frequency diagrams for the LO remote delivery in 2x2 DSB 

MIMO RoF system: (a) at -35dBm input signal power; (b) at -12dBm input signal power; (c)at -3dBm input 

signal power 

Figure 4.15 shows the EVM test result for both MIMO channels. As both channels have 

identical EVM performance, only one curve has been presented here. It can be seen that the 

LO has been effectively delivered to the RAU. The EVM result is well below the standard 

requirement for 64QAM in ~35dB range, and if an AGC is used, the dynamic range can be 

further improved. Also, the EVM performance for using LO remote delivery is comparable to 
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the ideal case (when the BS side and the RAU side share the same LO). The constellation 

diagrams at -35dBm, -12dBm and -3dBm input power are shown in Figure 4.16.  

 

4.5.2 Real-life Wi-Fi 2x2 MIMO RoF test with free-space propagation 

In the previous sections, the MIMO signal processing and the free-space propagation has not 

been included. Although the MIMO signal processing can improve the previous EVM test 

results, a real-life 2x2 MIMO RoF system test is done to show the feasibility of using the DSB 

frequency translation RoF system. 

Limited by the equipment, an experiment has been carried out using IEEE 802.11n MIMO 

signal. As shown in Figure 4.17, a computer with an IEEE 802.11n 2x2 MIMO wireless card 

with has been used as a server, which is shielded inside a metal cupboard and no signal leak 

out. The downlink MIMO signal from the server is transmitted to the remote antennas using 

SSB and DSB frequency translation via a 500m SMF link. The layout of the SSB and the DSB 

systems are as shown in Figure 3.14 and Figure 3.15. Another computer with an IEEE802.11 

MIMO wireless card and antennas are used as a client to receive MIMO signals from the free 

space. The uplink is connected directly using coaxial cables with gain control to maintain the 

same gain with the downlink.  
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Figure 4.17 Experiment setup for Wi-Fi 2x2 MIMO RoF throughput test  

The throughput test is done by TamoSoft® Throughput Test software using UDP and IPv4 

protocols. The downlink throughput is tested and 100 data points have been collected 

respectively for the SISO back-to-back and SSB/DSB frequency translation system. The 

throughput cumulative distribution function is as shown in Figure 4.18. It can be seen that the 

Wi-Fi MIMO signal can be delivered to the client. When the DSB 2x2 MIMO RoF system is 

used the system can achieve ~1.5 times throughput as the SISO back-to-back result. There are 

some points in the SSB/DSB frequency translation system that has low throughput. This is 

because the Wi-Fi transceiver used here is operating in the EVM margin, some degradation in 

the optical link can cause the system in operation in the lower dimension modulation scheme.  
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Figure 4.18 Throughput cumulative distribution function for MIMO RoF system using SSB/DSB frequency 

translation 

4.6 Summary and Conclusion  

To use the DSB frequency translation system in a service-agnostic DAS, it should be able to 

have a broadband operation. In this chapter, we have investigated the frequency bands that are 

to be transmitted over DAS in the UK, showing that there are many empty spectral regions in 

the DAS. Most of these empty spectral regions are reserved for aeronautic radio or space-to-

earth communication, which are not usually required to be transmitted over a DAS. The upper 

and lower sidebands in the DSB frequency translation system can occupy these spectrums so 

that they do not overlap with other services on the DAS. In many major countries, such as the 

UK, the US and China, using a 2.2GHz LO can translate all LTE bands into unoccupied spectral 

regions on the DAS. Although there are some individual cases, such as Japan, different LO 

frequencies need to be chosen, but the same principle can be applied.   

The LO signal can be delivered to the RAUs via the analogue optical link, but the LO signal 

power needs to be carefully adjusted to prevent additional high order distortion products. 
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Experimentally, the LO signal at the base station side needs to be attenuated by ~10dB before 

the optical link. The EVM performance of the LO remote delivery in the DSB frequency 

translation system is <2% higher than the ideal LO delivery (using the LO signal is split to feed 

the BS side and the RAU side). A real-life WiFi MIMO radio over fibre system has been 

demonstrated using LO remote delivery, showing that the system can successfully deliver Wi-

Fi MIMO signal from the central unit to the client. The throughput is tested using the SSB and 

DSB frequency translation for 2x2 MIMO RoF. The SSB system gives >60 Mbps throughput, 

and the DSB system offers >70 Mbps throughput.  
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Chapter 5 SFDR improvement using multiple-

sideband frequency translation 

5.1 Introduction  

In the previous sections, we have described a DSB frequency translation system; two MIMO 

channels are multiplexed onto sidebands with a 90° phase shift. At the RAU side, the signals 

are de-multiplexed back to the original frequency. The noise from the upper and lower 

sidebands adds incoherently, but the wanted signals add coherently at the output. As a result, 

the DSB system can theoretically have a 2dB higher SFDR than the SSB system. The SFDR is 

a particularly important metric and one of the performance limiting factors for RF services on 

RoF links. 

In this chapter, we extend this concept to a general quadrature-multiplexed frequency 

translation system and show that if the original RF signal is translated into more than two 

sidebands, for instance, quadruple sidebands (QSB), the system is not only MIMO-capable but 

can also exceed the 3rd order SFDR limit of the intrinsic optical link. This shows that in a 

general radio over the fibre system, the RF bandwidth in the optical link can be traded for 

electrical SFDR by increasing the number of sidebands onto which the original RF signal is 

modulated.  
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5.2 Theory of 3rd order SFDR improvement in a quadrature-

multiplexed frequency translation system 

A model has been built to analyse the 3rd order SFDR performance when original MIMO signal 

has been translated into different numbers of sidebands by using multiple frequency mixers. In 

a DSB frequency translation system, at the base station side, the original signal is translated 

into two sidebands using a frequency mixer. In the case for more than two sidebands, multiple 

mixers are cascaded. After the optical link, the frequency mixers combine all the sidebands 

back together, making the signal add coherently, but the noise adds incoherently. Figure 5.1 

shows the layout for translating the RF signal into double sidebands (DSB), quadruple 

sidebands (QSB) and octuple sidebands (OSB). In the QSB system, two pairs of frequency 

mixers are used at each side of the optical link, while in the OSB system, three pairs are used.  

 

Figure 5.1 Translate signal into different numbers of sidebands, DSB: two sidebands; QSB: four sidebands; 

OSC: eight sidebands 
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Mathematically, we consider a radio over fibre system has thermal noise as input noise (𝑛𝑡ℎ). 

The total cascaded output noise floor can be represented as, 

𝑛𝑜𝑢𝑡 = 𝑛𝑡ℎ𝑔𝑜𝑝𝑡𝑔𝑚𝑖𝑥2(𝑛𝑓𝑜𝑝𝑡 − 1 + 𝑔𝑎𝑚𝑝𝑛𝑓𝑎𝑚𝑝 − 𝑔𝑎𝑚𝑝) 𝑚 (5.1) 

where 𝑛𝑡ℎ is thermal noise; 𝑔𝑜𝑝𝑡, 𝑔𝑚𝑖𝑥2 and 𝑔𝑎𝑚𝑝 are respectively the gains of the optical link, 

the mixers at the RAU side and the  pre-amplifier; 𝑛𝑓𝑜𝑝𝑡 and 𝑛𝑓𝑎𝑚𝑝 are the noise factors of the 

intrinsic optical link and pre-amplifier; 𝑚 is the number of sidebands that the system uses, for 

example, 𝑚 = 4 if it is a quadruple sideband system.  

The total cascaded iip3 is, 

𝑖𝑖𝑝3𝑇 = (
1

𝑖𝑖𝑝 𝑚𝑖𝑥1
+

𝑔𝑚𝑖𝑥1

𝑖𝑖𝑝 𝑎𝑚𝑝
+

𝑔𝑚𝑖𝑥1𝑔𝑎𝑚𝑝

𝑖𝑖𝑝 𝑜𝑝𝑡
+

𝑔𝑚𝑖𝑥1𝑔𝑎𝑚𝑝𝑔𝑜𝑝𝑡

𝑖𝑖𝑝 𝑚𝑖𝑥2
)
−1

 ( 5.2) 

Therefore, the total 3rd order sfdr is, 

𝑠𝑓 𝑟3 = (
𝑜𝑖𝑝 𝑇

𝑛𝑜𝑢𝑡
)2  = (

𝑔𝑇∗𝑖𝑖𝑝 𝑇

𝑛𝑜𝑢𝑡
)2    (5.3) 

in which,  

𝑔𝑇 = 𝑔𝑚𝑖𝑥1 ∗ 𝑔𝑎𝑚𝑝 ∗ 𝑔𝑜𝑝𝑡 ∗ 𝑔𝑚𝑖𝑥2  (5.4) 

𝑚𝑖𝑥1 and 𝑚𝑖𝑥2 respectively represents the overall effect of the mixers at the basestation side 

and the RAU side.  

Combining equations (5.1), (5.2) and (5.3) 
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𝑜𝑖𝑝3𝑇
𝑛𝑜𝑢𝑡

= 𝑚 [𝑛𝑡ℎ (𝐴 +
 

𝑔𝑎𝑚𝑝

) (𝐶 + 𝐷𝑔𝑎𝑚𝑝)] 

=  𝑚 [𝑛𝑡ℎ(𝐴𝐷𝑔𝑎𝑚𝑝 +
𝐵𝐶

𝑔𝑎𝑚𝑝
+ 𝐴𝐶 +  𝐷)]     (5.5) 

                       

in which, 𝐴 =
1

𝑖𝑖𝑝 𝑜𝑝𝑡
+

𝑔𝑜𝑝𝑡

𝑖𝑖𝑝 𝑚𝑖𝑥2
;  =

1

𝑖𝑖𝑝 𝑚𝑖𝑥1𝑔𝑚𝑖𝑥1
+

1

𝑖𝑖𝑝 𝑎𝑚𝑝
; 𝐶 = 𝑛𝑓𝑜𝑝𝑡 − 1; 𝐷 = 𝑛𝑓𝑎𝑚𝑝 − 1 

System 3rd order SFDR has the maximum value when equation (5.3) is at a maximum, and 

this happens when, 

𝑔𝑎𝑚𝑝 = √
𝐵𝐶

𝐴𝐷
= √

(
1

𝑖𝑖𝑝3𝑚𝑖𝑥1𝑔𝑚𝑖𝑥1
+

1

𝑖𝑖𝑝3𝑎𝑚𝑝
)(𝑛𝑓𝑜𝑝𝑡−1)

(
1

𝑖𝑖𝑝3𝑜𝑝𝑡
+

𝑔𝑜𝑝𝑡

𝑖𝑖𝑝3𝑚𝑖𝑥2
)(𝑛𝑓𝑎𝑚𝑝−1)

 (5.6) 

and, 

𝑠𝑓 𝑟3(𝑚𝑎𝑥) = [
𝑚

𝑛𝑡ℎ(√𝐴𝐶+√𝐵𝐷)
2]

2

3
 (5.7) 

Because 𝑛𝑓𝑜𝑝𝑡 ≫ 𝑛𝑓𝑎𝑚𝑝, so C>>D, 

𝑠𝑓 𝑟3(𝑚𝑎𝑥) ≈ [
𝑚

𝐴𝐶𝑛𝑡ℎ
]

2

3
  

≈ [
𝑛𝑡ℎ

𝑚
(

1

𝑖𝑖𝑝 𝑜𝑝𝑡
+

𝑔𝑜𝑝𝑡

𝑖𝑖𝑝 𝑚𝑖𝑥2
) 𝑛𝑓𝑜𝑝𝑡]

−
2

3
  (5.8) 

In (5.8), if 𝑚 ≥ 2 and  
1

𝑖𝑖𝑝 𝑜𝑝𝑡
>

𝑔𝑜𝑝𝑡

𝑖𝑖𝑝 𝑚𝑖𝑥2
’        (5.9) 

𝑠𝑓 𝑟3(𝑚𝑎𝑥) > (𝑛𝑡ℎ ∗
𝑛𝑓𝑜𝑝𝑡

𝑖𝑖𝑝 𝑜𝑝𝑡
)
−
2

3
= 𝑠𝑓 𝑟3 𝑜𝑓 𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑙𝑖𝑛𝑘 (5.10) 

It can be seen from (5.10) that if the conditions in (5.9) can be satisfied by selecting suitable 

frequency mixers and pre-amplifier, the 3rd order SFDR of the system using quadrature-
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multiplexed multiple sideband frequency translation technique can be higher than the intrinsic 

optical link. 

5.3 Simulation results and link trade-offs  

Using the layout as shown in Figure 5.1, simulations have been performed, assuming the 

intrinsic optical link has -33dB gain, 57.3 dB noise figure and 37.5dBm IIP3; each frequency 

mixer has 22dBm IIP3 and -8dB conversion gain.  These values are the same with the 

experimental measurements in previous sections.  

  

Figure 5.2 Simulation result: the system maximum possible 3rd order SFDR and pre-amplifier gain required to 

achieve maximum SFDR [99]         

As shown in Figure 5.2, when the pre-amplifier has low noise figure, the system has to increase 

SFDR with the number of frequency bands.  This is because the original MIMO signal has 

been spread into more frequency sidebands in the optical domain. And when these bands are 

combined back, the noise adds incoherently, but the signal adds coherently. As shown in 

equation (5.8),  𝑠𝑓 𝑟3(𝑚𝑎𝑥) rises with the number of sidebands (m).  
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On the other hand, to achieve the maximum SFDR, the required gain of pre-amplifier becomes 

higher with the number of frequency bands. This is because the overall mixers’ conversion loss 

increases with the number of mixers used in the system and higher pre-amplifier gain is 

required to compensate the conversion loss of the mixers before the optical link. As shown in 

equation (5.6), because of using multiple frequency mixers, the mixers’ overall conversion gain 

(gmix1and gmix2 ) and IIP3 ( iip3mix1  and iip3mix2 ) will be lowered, meaning higher pre-

amplifier gain (gamp) will be required.  

It can also be seen in Figure 5.2 that the pre-amplifier noise figure affects the maximum system 

SFDR. If the pre-amplifier noise figure>10dB, the maximum system SFDR does not increase 

much when there are more than eight bands. This is because, if the pre-amplifier has high noise 

figure, the output noise of the amplifier overtakes the optical link’s noise floor in lower gain. 

5.4 Experiment on the 3rd order SFDR improvement by trading 

optical bandwidth 

A proof-of-principle experiment has been carried out using DSB and QSB frequency 

translation. A two-tone test has been performed at the 800MHz centre frequency, with a 1MHz 

frequency separation on one of the input channels with the other terminated, as shown in Figure 

5.3. If both MIMO channels are occupied, the optimum pre-amplifier gain is lower so that the 

same composite power is presented to the optical link. However, the maximum SFDR is only 

slightly reduced since the optical ink is the most significant noise source, so the output noise is 

largely unaffected by the change in amplifier gain.  
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Figure 5.3 Experiment layout: two-tone test for 3rd order SFDR measurement of a 2x2 MIMO RoF system 

 

 

Figure 5.4 Layout for quadrature-multiplexed frequency translation system.  

(a)DSB system (b)QSB system (dash line part is not used in SFDR test) 

 

The layouts for the DSB and QSB systems are as shown in Figure 5.4 (a)(b). The optical link 

in the experiment uses a directly modulated DFB laser, a 500m SMF link and a PIN photodiode 
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with a transimpedance amplifier (TIA). The RF pre-amplifier has 40dB maximum gain and 

10dB NF. 

The experimental results for the SFDR measurement are shown in Figure 5.5. The 3rd order 

SFDR of the DSB and the QSB systems are 104.5 dB·Hz-2/3 and 105.5 dB·Hz-2/3 respectively, 

while the 3rd order SFDR of the intrinsic optical link is 102.8 dB·Hz-2/3. Therefore, by using 

DSB and QSB frequency translation, the system 3rd order SFDR has been improved by 1.7dB 

and 2.7dB beyond that of the intrinsic optical link respectively. The results are achieved using 

a pre-amplifier gain of 30dB for the DSB system and 35dB for the QSB system. These results 

are in line with the theory presented above. 

 

Figure 5.5 Experimentally measured 3rd order SFDR of DSB and QSB system at 800MHz centre frequency, 

comparing with intrinsic optical link 

5.5 Simulation on the capability to transmit MIMO-type signals 

using QSB frequency translation 

To show the system’s MIMO capability, a simulation has been performed in 

VPItransmissionMakerTM with the same QSB system layout as in Figure 5.4(b). The optical 
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link used in the simulation is identical to the experimental parameters in the SFDR 

measurement. 

Two MIMO channels, with 20MHz bandwidth at the 800MHz carrier frequency and with 

0dBm power have been simulated at the system input. The preamplifier gain has been chosen 

to be 30dB in the simulation. The mixer nonlinearity has been considered in the simulation by 

using nonlinear components with the same IIP3 (22dBm) as in the experiment. By selecting 

LO1 = 50MHz, LO2 = 1.0GHz, two MIMO channels are orthogonally multiplexed into four 

frequency bands, respectively centred at 150MHz, 250MHz, 1.75GHz and 1.85GHz. The 90° 

hybrid couplers used in the simulation have 3° phase error, which is a typical worst value in a 

commercial product [83]. Figure 5.6 shows the constellation diagram of the received 64QAM 

signals. The optimum EVM for both channels are ~1%, which is well below requirement in the 

LTE standard.  

 

Figure 5.6 Simulation result: received 64QAM constellation diagram using QSB, (a)channel 1 EVM = 2.45% 

(b)channel 2 EVM = 2.50% 

 

(a) (b)
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Figure 5.7 System crosstalk vs phase error in 90-degree hybrid couplers for a QSB system. 

The crosstalk between two MIMO channels depends on the phase error in the 90-degree hybrid 

couplers and the amplitude variance among four sidebands as shown in Figure 5.7. If the phase 

error of the 90-degree hybrid coupler <3°, the crosstalk due to the coupler <-10dB. If the 

amplitude difference among four sidebands after frequency translation need to be within 1dB, 

the crosstalk due to the amplitude imbalance <-10dB.   

5.6 Summary and conclusion  

In a quadrature-multiplexed frequency translation system, two MIMO channels are translated 

into several frequency bands and multiplexed with each other in quadrature. When the signals 

from these frequency bands are converted back to the original MIMO signal, the signal power 

adds up coherently, but the noise power adds in-coherently, giving system higher SNR. Thus 

the SFDR can be improved. This shows that the optical link bandwidth can be traded for the 

system SFDR. 

In this chapter, the theory for the SFDR improvement in a quadrature-multiplex frequency 

translation system has been mathematically illustrated. By increasing the number of sidebands 

in the optical link, the system SFDR can be improved. The major limitations of the 
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improvement include: i) higher pre-amplifier gain is required to compensate the mixers’ 

conversion loss when the original RF signal is translated into more sidebands; ii) the pre-

amplifier noise figure limits system’s the highest SFDR; iii) frequency mixers introduce 

additional nonlinearity products and conversion loss.  

Simulations and experiments have been performed, showing that by using DSB and QSB 

frequency translation, the system can be improved beyond the intrinsic link. The DSB system 

can improve the system 3rd order SFDR from 102.8dB/Hz2/3 to 104.5 dB/Hz2/3, while the QSB 

system has 105.5dB/Hz2/3 SFDR3. If the pre-amplifier noise figure>10dB, it is not worth to 

translate the original RF signal into more than eight sidebands.  
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Chapter 6 Hybrid DAS using Digital and 

Analogue RoF 

6.1 Introduction  

In an analogue RoF system, the loss of SNR and linearity occurs in most of the system stages. 

In a digital RoF system, however, because the RF signal is digitised, as long as the receiver can 

recognise the digital signal, the signal quality is not critically affected by the analogue 

degradation in the optical link. Thus, the digital radio over fibre system has higher dynamic 

range than the analogue RoF system, but because of the analogue-to-digital (ADC) and digital-

to-analogue (DAC) conversion, the digital RoF has higher component cost [100]. However, 

the comparison between the prices of these two systems is not straightforward. Although the 

digital DAS has a higher price in ADC and DAC, its greater dynamic range means that each of 

the RAUs can cover larger areas than the analogue DAS [101]. Moreover, in the digital DAS, 

standard SFP transceivers can be used [102], making the system’s transceivers lower cost than 

the analogue DAS. On the other hand, in the digital DAS, the high data rate after sampling 

occupies a high bandwidth [103]. It makes the system hard to cope with the MIMO signals.  

In a service-agnostic DAS, multiple wireless services need to be transmitted to the RAUs. In 

the digital DAS, every service needs to be down-converted and digitised (as illustrated in 

Section 1.1.3 Figure 1.9), meaning that the system cost increases with the number of services. 

The digital RoF system has a dynamic range advantage over the analogue RoF, especially for 

the wide bandwidth services, such as 4G LTE. However, because the 2G/3G services have the 

relatively narrower bandwidth, the improvement of using digital RoF over analogue RoF is less 

critical. It is meaningful to have a hybrid digital and analogue DAS to remove narrow 

bandwidth services from the digital link to the analogue link to lower system’s overall cost.  
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In this chapter, an analogue and digital hybrid DAS is proposed, in which the 3G services are 

transmitted over the analogue RoF link, and the 4G SISO LTE service is transmitted over the 

digital RoF link. The proposed hybrid DAS has a lower cost than both the digital DAS and the 

analogue DAS.  

6.2 Proposed hybrid DAS system  

 

Figure 6.1 Architecture of a hybrid DAS using digital and analogue RoF 

The idea of hybrid DAS is to use both the analogue RoF and the digital RoF in the same DAS 

infrastructure, as shown in Figure 6.1. Different wireless services are connected to the points 

of interface (POI) or the analogue input port in the central unit (CU) of the hybrid system, as 

shown in Figure 6.2. The 2G and 3G services are routed through the analogue RoF link, while 

the 4G LTE service is sent through the digital RoF link. Inside the hybrid central unit, each of 

the services is delivered by separate service cards. Each of the service cards consists of the 

signal processing units and optical transceivers. The analogue signal and the digital data are 

then combined in the CU and sent to the secondary hubs over the same optical fibre. At the 

secondary hub, the digital and the analogue services are separated and respectively delivered 

to the analogue/digital remote units (RUs). 
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At the digital remote units, FPGAs and DACs are required to convert digitised service signal 

back to the original form, while at the analogue remote units, no digital signal processing is 

needed. As shown in Figure 6.1, the analogue RUs are more sparsely installed than the digital 

RUs, in which 4G services are transmitted. This is because the coverage area for the 2G/3G 

services is much wider than the 4G service at the same power level.  

 

Figure 6.2 Concept for the analogue and digital hybrid RoF [104] 

Compared with the traditional analogue or digital RoF system, the cost advantage of the 

hybrid system is driven by three aspects, which are: 

a) The reduction in the number of service cards inside the D-RUs by removing the 

2G/3G services from the digital link. 

b) Compared with traditional analogue DAS, the fewer number of A-RUs is required. 

c) Lower number of 4G signal sources (or base stations) is needed, compared with 

analogue DAS.  
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6.3 Signal processing in the digital link 

The 3GPP LTE standard defines the LTE with large bandwidth (up to 20MHz) [105] for a 

single user, meaning that the LTE service suffers from greater performance degradation than 

the UMTS service when transmitted over an analogue radio over fibre system. Practically, the 

DAS needs to send service signals from various mobile operators. Take China as an example, 

as shown in Table 4.3, the total LTE bandwidth from three major mobile operators in China is 

>400MHz. In a digital radio over fibre system, by using the common public radio interface 

(CPRI), the data rate generated after digitising is ~20 to 30Gbps [106]. In the proposed digital 

RoF system, 3-time data compression ratio can be achieved, meaning that the data rate 

generated by the DRoF system is <10Gbps for all LTE SISO services in China.  

In the proposed digital link, the RF service signals are first down-converted to an intermediate 

frequency (IF) band, which is 31.25MHz here [107]. This IF band is chosen because an ADC 

samples it with 125 MSPS sampling rate and the IF band is at the centre of the Nyquist zone.  

The ADC used here has 14-bit resolution. 

 

Figure 6.3 Digital signal processing in the DRoF link [104] 

After the ADC, digital signal processing is done in an FPGA, in which data rate is compressed 

using the sampling and quantisation compression [107] as shown in Figure 6.3. A resolution 

compression is done to compress 14-bit digitised IF signal to the 8-bit data stream while 

maintaining the signal quality. A digital down conversion (DDC) is then applied to convert 

compressed IF signal to baseband. Following the DDC, the baseband signal is re-sampled at 

lower clock rate – 25MHz here. The whole data compression process compresses the data rate 

from 125MSPS*14bit = 1.75Gbps (at the ADC output) to 25M*8*2 Mbps =400 Mbps for a 
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20MHz bandwidth LTE channel. The compressed data is coded and then transmitted in serial 

by an SFP optical transceiver.   

At the receiver side, another SFP optical transceiver is used to convert the optical baseband 

signal back to the electrical domain. After interpolation, the baseband digital signal is digital 

up-converted to the IF band (in the digital domain). Then the 14-bit data is reconstructed 

according to the compression bit width by adding the least significant bits (LSB) [107].  

The recovered digital data is converted back to the analogue IF band by an analogue to digital 

converter (ADC) and then upconverted to the original service signal an analogue signal 

upconverter.  

6.4 Simulation of the analogue link 

In the analogue and digital hybrid RoF system, because two systems are combined using optical 

couplers, the loss from the optical coupler can lower the RF performance in the analogue link. 

A simulation is done in the VPItransmittionMaker®, comparing the analogue RoF link 

performance in the traditional analogue RoF system (Figure 6.4 (a)) and the hybrid RoF system 

(Figure 6.4 (b)). A CW DFB laser emitting at a 1530nm wavelength and 10dBm optical power 

has been used to create the interference from the digital link. The analogue input signal has 

been pre-amplified before it is directly modulated onto a DFB laser, emitting at a 1550nm 

wavelength and 6dBm optical power. The DFB laser performance used in the analogue link 

simulation is identical to the laser used in the experiment. Two optical couplers in the optical 

link have a 3.5dB loss for each.  
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Figure 6.4 Simulation layout for the analogue RoF link: (a) in the traditional analogue RoF system; (b) in the 

hybrid RoF system 

A two-tone test is performed in the simulation at 1800MHz UMTS frequency band. Giving the 

0dBm input signal power, the spectrum at analogue link output is as shown in Figure 6.5. The 

OIP3 for the traditional analogue SISO RoF link can be calculated to be -3.23dBm. If the hybrid 

system is used, the OIP3 of the analogue link drops to -17.25dBm in the simulation. This is 

caused by the 7dB optical power loss in the optical link.  
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Figure 6.5 Two-tone test simulation result: (a) traditional analogue RoF link; (b) analogue RoF link in the 

hybrid system (7dB loss for two couplers included) 

The output noise floor at the analogue link output is -147.1dBm/Hz for the traditional SISO 

system and -160.9dBm/Hz for the hybrid system. The 3rd order SFDR of both systems can be 

derived respectively to be 95.91 dB*Hz-2/3 and 95.76 dB*Hz-2/3.  

Similarly, the second order output interception point (OIP2) for the analogue link in the 

traditional system and the hybrid system are respectively -9.6 dBm and -23.4 dBm. The SFDR2 

for both systems are 68.75 dB*Hz-1/2 and 68.74 dB*Hz-1/2.  

Both systems have similar the 3rd order SFDR and the 2nd order SFDR. This is because the 

noise of the directly modulated laser is the dominant noise source in the optical link. When the 

optical power loss from the optical couplers is small, it lowers the RF power and the system 

RF noise floor simultaneously. Thus it does not decrease the system SFDR, and the optical 

amplifier is not required in the system.  

As shown in Figure 6.6, the optical loss does not significantly influence the value for OIP2 – 

output noise floor when it is <10dB. If the optical loss >14dB, an EDFA can be used to improve 

the system’s linearity.  

(a) (b)
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Figure 6.6 OIP2-Noise floor vs optical link loss 

 

6.5 Experimental layout and test results 

The analogue and digital hybrid RoF has been demonstrated experimentally, as shown in 

Figure 6.7. Vector signal generators have been used to produce the 3G and 4G service signals 

at the input end of the system. The 3G signal used here is WCDMA QPSK with 1800MHz 

carrier frequency and 3.84MSymbol/s symbol rate. The 4G signal used here is LTE test model 

3.1, with 20MHz channel bandwidth.  

In the analogue link, a pre-amplifier with 35dB power gain is used to provide the system with 

optimum performance. The amplified 3G signal is then directly modulated onto a 1550nm 

wavelength DM DFB laser emitting at ~6dBm optical power.  

In the digital link, at the transmitting side, the 4G LTE signal is sampled by an analogue to 

digital converter (ADC) and to the FPGA, in which a data compression algorithm as illustrated 

in section 6.5 has been performed, including resolution compression and sampling compression 

as shown in Figure 6.7. The compressed digital data is then transmitted via the optical link by 

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50

O
IP

2
-N

o
is

e 
Fl

o
o

r 
(d

B
*H

z)

Attenuation in optical link

Only optical couplers (No optical amplifier)
Use EDFA in the optical link



6.5 Experimental layout and test results  118 

 

 

a DFB laser emitting at 1530nm wavelength. Both the analogue link and the digital link are 

combined in optical domain by an optical coupler, then sent to the remote end via a 500km 

SMF.  

At the remote end, the optical signals of the analogue and digital link are split and filtered out 

into two ways and separately received by photodetectors. They are then converted back to the 

original 3G and 4G signals at the remote end. A vector signal analyser is used to test the 

recovered signals. A picture showing the experimental setup has been presented in Figure 6.8. 

 

Figure 6.7 Experimental layout for analogue and digital hybrid RoF system.  
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Figure 6.8 Experiment setup for hybrid RoF link 

 

Figure 6.9 EVM dynamic range of the analogue and digital RoF system  

Experimentally, the EVM dynamic range for both the analogue RoF link and the digital RoF 

link have been tested as shown in  Figure 6.9. The 3G WCDMA service has ~42dB EVM 

DM DFB laser in 
the ARoF link

SFP transceiver 
in the DRoF link

FPGA in the 
DRoF linkOptical coupler

0

5

10

15

20

25

30

35

-80 -70 -60 -50 -40 -30 -20 -10 0 10

EV
M

 (
%

)

Input Power (dBm)

Hybrid DAS Performance (500m Fibre Link) 

4G LTE with Data Compression 4G ARoF only 2GHz WCDMA TM3

LTE Req. 8% WCDMA Req. 17.5%



6.6 Summary and Conclusion  120 

 

 

dynamic range without using AGC, and the 4G LTE service has ~43dB EVM dynamic range 

without using AGC. By using digital RoF, the link dynamic range of the 4G LTE service has 

been improved to be a comparable value as the 3G service. Meaning that, if the hybrid system 

is compared with the analogue system, the users can get better service for the 4G system. If it 

is compared with traditional digital RoF system, the hybrid system only does the DSP for the 

4G service, but leave the other services in analogue, meaning that the cost for the ADC/DAC 

and FPGA can be lowered.  

6.6 Summary and Conclusion  

In a DAS, if the 4G signals and the 3G signals are treated equally, the 4G services will have 

poorer coverage. By using the analogue and digital hybrid RoF system, the system can have 

improved QoS without critically increase the cost.  

In this chapter, we have proposed a layout for the analogue and digital RoF hybrid DAS. In the 

digital link, resolution and sampling rate compression have been used, giving the system 3-

time compression ratio compared with CPRI. The digital and analogue RoF links are combined 

using optical couplers.  

Simulations show that the optical couplers give the system 7dB optical power loss. However, 

system’s 2nd order and 3rd order SFDR is not significantly lowered (<0.5 dB). This is because 

the laser diode’s RIN is dominant noise source in the system and the optical loss decreases the 

signal power and noise power simultaneously. Experiments have been carried out transmitting 

the 4G signal over the DRoF link and the 3G signal over the ARoF link. The experiment result 

shows that the 4G LTE and 3G WCDMA services have comparable EVM dynamic range in 

the proposed hybrid RoF system, respectively 43dB and 42dB. 

The hybrid DAS potentially has a lower cost than traditional digital or analogue DAS because 

of three reasons: i) it reduces the number of service cards in the DDAS; ii) reduces the number 

of RAUs in the ADAS; iii) it reduces the number of signal sources required in the ADAS.  
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Chapter 7 Conclusion and Future Work 

7.1 Thesis Summary  

A. Motivations  

Nowadays the 3G and 4G services are widely deployed, and in the future 5G era, the high 

capacity wireless communication techniques, such as MIMO will be broadly implemented. 

Indoor areas, where 80% of the wireless data traffic originates, are difficult to be covered using 

wireless signal [108]. It is, therefore, necessary to find a cost-effective solution to cover the 

indoor area by multiple wireless services.  

This thesis aims to develop a low-cost solution for next-generation indoor wireless coverage. 

Among currently available solutions, such as signal repeaters, small cells and distributed 

antenna systems, the DAS has many benefits: i. Each of the RAUs works together so no inter-

cell interference; ii. It delivers the RF signals and does not require the baseband information 

from the mobile service operators so that it can be operated by neutral hosts, such as the owners 

of public infrastructure, commercial real estate and enterprises; iii. the DAS is also service-

agnostic and broadband, making it suitable for extensive public areas with high user density.  

Nowadays, a straightforward solution to transmit MIMO signals over the DAS is to deliver 

each of the MIMO channels using different strands of fibres (space division multiplexing). This 

solution gives the system high installation cost, makes it difficult to upgrade current SISO DAS 

into the MIMO DAS.   

B. Principles of DSB frequency translation 2x2 RoF system  

For all these reasons, the author developed a low-cost DSB frequency translation system, which 

can upgrade the current SISO DAS infrastructure into MIMO DAS without installing parallel 

optical fibres. In the DSB frequency translation system, two MIMO channels were multiplexed 
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with each other in quadrature, so that the powers in both sidebands after frequency mixing can 

be kept. The author investigated the performance of the system. The following problems can 

cause the crosstalk in the MIMO RoF system using DSB frequency translation: 

i. The phase error of the 90-degree hybrid coupler; 

ii. The amplitude imbalance between the upper sideband and the lower sideband of the 

frequency mixing products, which is caused by the S21 vibration in the pre-

amplifier and the optical link;  

iii. The signal’s group delay when transmitting from the BS station to the RAUs. 

The first problem is caused by the component quality. Usually, the phase error for a commercial 

90-degree hybrid coupler can be <2°. The second problem is caused by the modulation 

bandwidth of the DM DFB laser and the dispersion if it is in an MMF link. A power equaliser 

has been designed to compensate some of the amplitude imbalance in two sidebands so that 

the system can operate in LTE bandwidth. The third problem can be overcome by adding a 

phase shifter to adjust the LO phase at the RAUs.  

Experimentally, the DSB frequency translation system was demonstrated to work for LTE 

signals, and compared with the traditional SSB frequency translation system, the DSB system 

has higher 1.7dB 3rd order SFDR and effective EVM dynamic range. The system is well 

conditioned in the power equaliser bandwidth, which is 610MHz to 750MHz in the experiment, 

meaning the crosstalk between two MIMO channels can be well compensated in this range.  

 

 

C. Broadband implementation of DSB frequency translation MIMO RoF system  

To make the DSB frequency translation system service-agnostic, the author investigated the 

frequency spectrums in the major countries in world, finding that there are some frequency 

spectral regions that are reserved for particular uses, such as aeronautical communication and 

satellite communication. Signals from these frequency bands are not usually required to be 



7.1 Thesis Summary  124 

 

 

delivered over the DAS. By translating the original MIMO signals into these frequency bands 

can avoid the overlap between the signals after the frequency translation and other services in 

the DAS, so that the system can be broadband and service-agnostic. In the UK, US and China, 

a 2.2 GHz LO can be used to make sure all the LTE frequency bands to be translated into 

unoccupied bands over DAS. In the other countries, similar but different LO frequencies can 

be found.  

To show the feasibility of the system, a demonstration was made using a 2x2 Wi-Fi MIMO. 

The MIMO signals and the LO signal was successfully delivered from the central unit to the 

RAU via a 500m SMF link using the DSB frequency translation. The client can receive the 

MIMO signals from the RAU with high throughput.  

D. SFDR improvement using multiple sidebands quadrature-multiplexed frequency 

translation technique  

By extending the idea of the DSB frequency translation, the MIMO signal can be converted 

into more than two sidebands so that the SFDR of the RoF system can be further improved. It 

has been theoretically shown that the DSB and QSB system can improve the system 3rd order 

SFDR beyond the intrinsic optical link. If an ideal pre-amplifier and mixer are used, the DSB 

and QSB system can give the system respectively 2dB and 3dB 3rd order SFDR improvement. 

If the original signals are translated into more sidebands, higher pre-amplifier gain is required 

to compensate the conversion loss of the frequency mixers. Limited by the noise figure of the 

high gain amplifier, if the amplifier NF>10dB, the 3rd order SFDR improvement does not 

increase when the original signals are translated into more than eight sidebands.  

Experimentally, the DSB system gives ~1.7dB improvement, while the QSB system can give 

~2.7dB increase. The degradation comes from the pre-amplifier noise figure and the 

nonlinearity of the mixers and the pre-amplifier. The simulation shows the system can support 

MIMO radio over fibre.  

This shows that the optical bandwidth can be traded for the RF SFDR and at the same time, 

MIMO operation can be supported. 
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E. Hybrid DAS using analogue and digital RoF 

The 3GPP standards have defined wider bandwidth in 4G services than the 3G. Thus if they 

are treated equally, the wideband 4G services can cover less area than the 3G. Traditional 

digital radio over fibre system has higher dynamic range than the analogue system but 

generates a large amount of data when digitising the RF signals. Because the 3G services have 

relatively narrow bandwidth, the dynamic range improvement by using DDAS is not critical. 

However, if all the 3G services are to be transmitted using the DDAS, many service cards will 

be required, giving the system high-cost. Therefore, it is meaningful to transmit 2G and 3G 

services in the analogue DAS to lower the system cost.  

The hybrid analogue and digital radio over fibre system transmit the 4G LTE services in digital 

while keeping the 3G services in analogue. Compared with the traditional digital DAS and 

analogue DAS, the hybrid DAS reduces the cost in three means: i) reduces the number of 

service cards in the DDAS; ii) lowers the number of RAUs in the ADAS; iii) reduces the 

number of the signal sources required in the ADAS.  

The hybrid DAS combines and separates the DRoF and the ARoF links in optical domain by 

using optical couplers. Simulation shows that the optical power loss introduced by the optical 

couplers does not significantly decrease the signal SFDR (<0.5dB). Experimentally, by using 

the hybrid system, the EVM dynamic ranges of the 20MHz bandwidth LTE service in the 

digital link and 3G WCDMA service in the analogue link are respectively 43 and 42 dB.   

7.2 Potential future work 

While this thesis has introduced low-cost solutions for next-generation indoor wireless 

coverage, more research can be carried out to achieve an ultimate deployment of the future 

DAS. 

A. Higher MIMO dimensions on RoF 
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The 5G era is coming in 2020 and now is the critical transition time from 4G to 5G technology. 

One of the important solutions to get high capacity in the 5G era is to use a large number of 

MIMO channels. In the mobile world congress in 2017 (MWC 2017), mobile device vendors 

have demonstrated their attempts to achieve high dimension MIMO communication. For 

example, ZTE® has demonstrated their massive MIMO macro basestation solutions with 128 

antennas [109]. However, limited by the size of the mobile devices and the wavelength of the 

mobile signal carrier frequency, it is hard to install high dimension MIMO receivers inside the 

mobile devices. The current ZTE® Gigabit Phone use 4x4 MIMO and carrier aggregation to 

achieve Gbps wireless communication [110]. 

In this thesis, a low-cost 2x2 MIMO RoF system using DSB frequency translation has been 

demonstrated. There is a strong driver to extend the 2x2 MIMO RoF system into higher 

dimensions. There are several challenges: 

i. In [64], the authors have proposed a 3x3 MIMO RoF system by using DSB 

frequency translation for two of the MIMO channels, while keeping the third MIMO 

channel at its original frequency, as shown in Figure 7.1. Practically, because of the 

RF signal leakage in the frequency mixers, the signal leakage from the first and the 

second MIMO channels remains in the same frequency band with the 3rd MIMO 

channels. Therefore, filters must be used to prevent the 3rd MIMO channel from the 

crosstalk.   

However, because the LTE frequency bands cover from 700MHz to 3.5GHz, 

different filters need to be installed for different LTE frequency bands. These filters 

will prevent the system from being agnostic. A method needs to be found out to 

address this problem. 
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Figure 7.1 3x3 MIMO RoF system using DSB frequency translation [64] 

 

Figure 7.2 4x4 MIMO RoF system using DSB frequency translation  
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ii. For the case of 4x4 MIMO radio over fibre system, two pairs of LOs need to be 

used, as shown in Figure 7.2. Each of the local oscillators translates and quadrature-

multiplex two MIMO channels. The four MIMO signals after the frequency 

translation respectively occupy the frequency bands at fc+fLO1, |fc-fLO1|, fc+fLO2 and 

|fc-fLO2 |.  

Compared with the 2x2 system, the LOs and MIMO signal channels are more likely 

to create nonlinear products in the 4x4 system. Therefore, the system needs to be 

more carefully designed.  

iii. As mentioned in Chapter 4, many frequency bands are not transmitted over the 

DAS. 2x2 MIMO signals can be translated into these frequency bands to avoid the 

overlap with other services over the DAS. However, when there is a higher number 

of MIMO channels, it is harder to translate all MIMO signal channels into the 

limited unoccupied frequency bands. Thus, a new frequency map needs to be 

designed. For the case of massive MIMO, the techniques such as WDM and SCM 

hybrid system can be used to extend the system bandwidth in the optical domain 

[111].  

 

B. The convergence of multiple networks including MIMO and IoT networks. 

The next generation mobile network (5G) not only have higher capacity than the 4G network 

but also provides better device-to-device (D2D) connectivity [112]. It has been predicted that 

entire internet of things (IoT) market will be over $1.7trillion by 2019 [113]. The IoT 

infrastructure revenue generated in 2015 was approximately $330 billion and is projected to 

reach $453 billion by 2020 with a CAGR of 6.2% [114]. For the future indoor wireless signal 

coverage, the traditional cellular network can no longer satisfy users’ requirements. The DAS 

should be a transparent and seamless platform for various of wireless standards, including the 

IoT services.  

The integration of the IoT services over the DAS is necessary. This will include: 

i. The integration of multiple-operator cellular networks.  
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ii. Analogue and digital hybrid DAS, including MIMO: In chapter 6, a hybrid analogue 

and digital DAS for SISO signals have been proposed. However, as the DRoF 

generates high data rate when digitising, it is a very high cost to transmit MIMO 

signals using DRoF. Integrating MIMO analogue RoF system with the DRoF can 

be a cost-effective way for next-generation indoor wireless coverage.  

iii. The integration of the IP interfaces from the IoT services to the DAS: The analogue 

DAS has many advantages in some certain scenarios. However, many IoT services 

are transmitted through the IP networks [115]. Thus, it is necessary future indoor 

wireless coverage infrastructure to support both the mobile cellular networks and 

IP networks on the same infrastructure.  
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