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Summary 
 

The built environment has long been considered as a potentially influential factor in 

shaping and changing people’s travel behaviour. However, many gaps still exist in the 

understanding of the direction, size and mechanism of this influence. This thesis 

explores the complexities in the influence of the built environment on daily travel using 

a behaviour-oriented, activity-based modelling approach based on the notion of utility 

maximisation. The model simulates the full process of decision making in daily activity 

participation and travel, which involves the decisions on the type and frequency of 

activity participation, the sequence of activities, the choice of destinations and the time 

and mode of travel. Moreover, the thesis also addresses the lack of understanding on 

the influence of the ‘third dimension’ of the built environment — the street facades. A 

machine learning-based method is proposed to automatically evaluate the qualities of 

street facades from street view images. 

 

Scenario analyses using the proposed model show that, both commute and non-

commute travel are more sensitive to the built environment in proximity to home (in 

my experiment, 500 metre buffer zone). In the context of Beijing, the total car use and 

commute car use of a person is significantly affected by the level of land use mix and 

the continuity of street facades around home, among all built environment features. 

Non-commute car use is significantly affected by employment density, retail density, 

accessibility to commercial clusters, bus coverage, road density and the quality and 

continuity of street facades. Similar effects on the final outcomes of travel behaviour 

(such as total car use) by different built environment features can happen through 

diverse processes and have different implications for people’s actual experience and the 

urban system. Some of the results are consistent with theoretical assumptions and some 

are not, which provides alternative insights into the relationship between the built 

environment and travel behaviour. 
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Chapter 01 Introduction 

1.1  Motivation and objectives 

Transportation is one of the sources of many vexing urban problems, namely, 

congestion, pollution, inequality and reliance to fossil fuels (Hanson & Giuliano, 2004). 

Among the many approaches in tackling transport-related problems, a host of urban 

planning and design philosophies — new urbanism, transit-oriented development, 

traditional town planning—have gained popularity as ways of shaping travel demand 

(Cervero & Kockelman, 1997). The theory of consumer choice is used as the theoretical 

base for the potential influences of the built environment, by assuming that the built 

environment impacts on (relative) trip costs (Boarnet & Crane, 2001). 

 

Despite of the appealing potential of the built environment in modifying travel 

behaviour, the true effects need to be materialised with robust empirical evidences. As 

a consequence, the relationship between the built environment and travel behaviour has 

been extensively examined and become one of the most heavily researched subjects in 

urban planning (Ewing & Cervero, 2010). More than two hundred studies have been 

produced since the 1990s and more are still emerging.  

 

However, existing research tend to focus on the influences of the built environment on 

the synthesised outcomes of travel (e.g. VMT, walking distance, see the meta-analysis 

in Section 2.3), while the behavioural processes that give rise to these outcomes have 

received much less attention. For instance, if a built environment change is found to be 

related with 10% reduction of VMT, then whether the reduction comes from lower 

activity frequency, or the choice of closer destinations, or smaller share of driving, or 

etc. From the practical perspective, different behavioural processes would have 
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different implications for people’s actual experience and can be related with different 

policy goals. Besides, gaps also exist in terms of the quite mixed, sometimes 

contradictory results produced by existing research (Salon, Boarnet, Handy, Spears, & 

Tal, 2012), as well as the lack of research on fast growing, high density Asian cities (P. 

Zhao, Lu, & De Roo, 2011) (see the next section for a detailed description of research 

gaps). Practically, these gaps would also pose challenges to the reliability of the 

research findings for planning policy making, which is particularly an issue considering 

that built environment interventions are often costly and long-standing (Cao, 2015a). 

Therefore, more research efforts are needed in improving the understanding of the 

relationship between the built environment and travel behaviour from both the 

theoretical and practical points of view. 

 

The aim of this thesis is thus to explore the influence of the built environment on travel 

with special emphasis on the behavioural processes and mechanisms. The research will 

use Beijing as the empirical case. The overarching research question is what impacts 

the urban built environment has on people’s daily travel behavior. The thesis is guided 

by the hypothesis that various aspects of daily travel behavior can be influenced by 

the built environment. More detailed hypotheses in terms of the relationship between 

different pairs of built environment features and travel outcomes are put forward 

following a discussion on travel gains and costs in Section 2.1.4. 

1.2  Research gaps and related questions 

As mentioned before, despite of an overwhelming number of existing research on this 

topic, there still exist many research gaps. The gaps are related with multiple facets of 

research, including the methodology adopted, the variables and the cases used and the 

results. Some of the gaps will be further addressed in the literature review. 

 

Gap in findings 
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The gap in the findings of existing research is twofold. First, as mentioned before, a 

large proportion of existing findings are about synthesised outcomes of travel, such as 

VMT, total walking time and so on (see the review by Cervero and Ewing, 2010). It is 

plausible since these are key indicators of travel behaviour that can be linked with more 

general policy goals such as energy consumption, emission reduction and public health. 

However, as explained in the last section, the behavioural processes that give rise to 

these outcomes and influences have received much less attention (e.g. the travel 

frequency, destination choice and mode choice that together lead to the outcome of 

VMT).  

 

Second, there exist a lot of differences in terms of the direction, significance and 

magnitude of the impacts of the built environment on travel behaviour (see Cervero and 

Ewing, 2010 for a summary of empirical results produced before 2010 and Appendix 

A for results produced between 2010 and 2016). It is especially the case in terms of the 

magnitude of the impacts. For instance, the effect size of the population density in one’s 

neighbourhood on VMT can range from -0.01 to -0.31, the effect size of land use 

diversity on VMT can range from -0.10 to -0.36 (these numbers are from only a subset 

of existing research, see Appendix A). Sources for the differences in findings include 

the strategies used for data collection, the measurements of built environment features, 

the statistical models, and more systematically, the varying nature of built environment-

travel relationship in different urban contexts. This inconsistency causes a lot vagueness 

in the understanding on the built environment-travel relationship. Questions remain in 

terms of to which extent the built environment can direct people towards more 

sustainable patterns of daily travel, as well as the relative importance of various built 

environment factors in fulfilling this target (Joh, Nguyen, & Boarnet, 2012; Knuiman 

et al., 2014).  

 

Gap in methodology 

Related to the first gap in findings, a large proportion of existing research is conducted 
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through regressions between synthesised outcomes of travel and a set of socioeconomic 

and built environment explanatory variables (see Appendix A for a summary of 

regressions in prior research). The regressions are methodologically sound and robust 

but when used alone, usually cannot probe into the detailed behavioural processes.  

 

On the other hand, developments in the field of transport simulation and time geography 

gave rise to the activity-based transport modelling approach. It is underpinned by the 

notion that travel is derived from the necessity to participate in activities, which in turn 

reflect needs, desires and commitments of individuals and households, subject to a set 

of spatial, temporal, institutional, spatial–temporal and possibly budget constraints 

(Castiglione, Bradley, & Gliebe, 2015; Rasouli & Timmermans, 2014a). Although 

prototypes began to emerge as early as in the 1970s and substantial progress has been 

made in developing practical models since the 1990s (Rasouli & Timmermans, 2014a; 

Yasmin, Morency, & Roorda, 2015), the built environment factors are seldom 

sufficiently account for in the model systems (see Table 2-5 in Section 2.4 for a 

summary of built environment variables included in existing activity-based models). 

 

Actually, the activity-based modelling approach can be developed into a helpful tool 

for the analysis of built environment-travel relationship. The influences of the built 

environment can be modelled at each detailed choice facet in the activity-travel decision 

making process (e.g. frequency of activity participation, travel distance for a specific 

purpose), which will enable a more nuanced understanding on the behavioural 

mechanisms underlying the observed influences. 

 

Gap in the built environment factors analysed 

Built environment factors analysed in existing research are usually sorted as ‘D’ 

variables, which was first put forward in the seminal work by Cervero and Kockelman 

(1997) as 3 ‘D’s and then extended to 5 ‘D’s or 6’D’s (Ewing & Cervero, 2001, 2010; 

Ewing & Handy, 2009). The ‘D’ variables are:  
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- Density (population density, employment density, building density, etc.) 

- Diversity (land use mix, job-housing balance, etc.) 

- Design (street density, intersection density, percentage of 4-way/3-way intersection, 

percentage of cul-de-sac, etc.) 

- Destination accessibility (distance to the city centre, distance to ‘regional’ sub-

centres, job accessibility by auto/transit in certain time limits, etc.) 

- Distance to transit (distance to bus stops, distance to subway stations, etc.) 

- Demand management (parking supply) 

 

Although these factors already provide a well-rounded account of the built environment, 

they are mainly two-dimensional and land use-related, while the factors related to the 

dimension of street facade have received much less attention. These factors can be 

termed as the seventh ‘D’, the design of street facade. The potential mechanism of the 

these factors’ influence on travel behaviour can be at least both psychical and functional 

(Montgomery, 1998; Southworth, 2005). Psychically, some qualities of the facade 

design may foster positive or negative feelings and thus encourage or discourage 

physical activities in the urban space (Sarkar et al., 2015; Witten et al., 2012). 

Functionally, the design and layout may also have an impact on the level of convenience 

and the utility of travel, e.g. providing much room for street shops at the ground floor. 

Nonetheless, it should be noted that it is not absolutely rigorous to categorise density 

and diversity as two-dimensional, since they can also be related to factors like building 

height or vertical mix. 

 

Gap in empirical cases 

By far, most empirical studies on this topic are from American and European (plus a 

few Oceanian) cities, while evidences from fast growing, high density cities in Asia are 

relatively scarce (Eom & Cho, 2015; Zegras, 2010; P. Zhao et al., 2011). Such a bias 

could also undermine the reliability and generalisability of the conclusions made from 

this line of research, considering that daily travel behaviour involves lots of contextual 
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specificity (Feng, Dijst, Prillwitz, & Wissink, 2013). Contextual differences that may 

affect the relationship between built environment and travel behaviour include the level 

of car ownership, the level of transport service, affordability, social culture, etc. (Feng 

et al., 2013; Giuliano & Dargay, 2006). Therefore, many studies have argued that 

scholars should be careful regarding the temporal and spatial transferability of spatial 

policies (e.g. Badoe and Miller, 1995; Ewing, Tian et al., 2015; Naess, 2015). For 

example, Ewing, Tian et al. (2015) warned that a study using data from, say, Portland 

or Houston, can be challenged for relevance to other regions of the US. 

 

A few studies have reported quite different results on the built environment-travel 

relationship in different countries. For instance, a large number of Asian cities are 

featured by much higher density comparing with American and European cities (H. 

Chen, Jia, & Lau, 2008; Madlener & Sunak, 2011). Eom and Cho (2015) found that the 

impact of high density on reducing car use is greatly reduced when gross density 

reaches beyond a certain threshold, and some other built environment factors also 

demonstrate more or less different effects. Giuliano and Dargay (2006) also pointed out 

that the widespread conviction that higher densities are associated with less travel 

distance is more pronounced in the US than in Britain. Nonetheless, only very limited 

research efforts have been made to query the differences in built environment-travel 

relationship in different urban contexts (e.g. Giuliano and Narayan, 2003; Guiliano and 

Dargay, 2006; Gim, 2013; Milakis, 2008; Senbil et al., 2009; Feng et al., 2013).  

 

In order to fill in the gaps, the research aims to answer the following questions. 

(1) To fill the gap in findings - What conclusions can be drawn regarding to the 

impacts of built environment on travel behaviour from existing empirical studies? 

What are the detailed behavioural processes underlying the built environment’s 

influences on the synthesised travel outcomes? It should be noted that the answer 

to the second question can also be context dependent, thus it is impossible to reach 

an ultimate conclusion in one research alone. However, the contribution lies in 
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raising this issue and proposing a modelling approach to probe into it. 

(2) To fill the gap in findings & methodology - How can the influence of the built 

environment on daily travel behaviour be comprehensively modelled in an activity-

based approach? 

(3) To fill the gap in the built environment factors analysed – How can the street 

facade features be reliably measured? How do they impact travel behaviour? 

(4) To fill the gap in findings & empirical cases – What are the impacts of the built 

environment on travel behaviour in Beijing? How are the findings consistent with 

or different from those from American and European cities? How do the results 

contribute to the theoretical understanding on the relationship of the built 

environment and travel utility? 

1.3  Choice of the case 

The city of Beijing is chosen as the case of study in this research. It is chosen as an 

example of high-density and fast-growing Asian city, which provides a quite different 

urban context comparing with American and European cities that have been extensively 

studied. Since the early 1980s, in parallel with the economic boom, Beijing has been 

undergoing rapid urban growth. The built-up area increased from 1106.1 square 

kilometres in 1990 to 2416.5 square kilometres in 2010 and during the same period, the 

population increased from 5.8 million to 24.2 million. Such growth has made Beijing 

one of the most-densely resided cities in the world (Figure 1-1).  
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Figure 1-1 Urban population densities around the world 

Note: residents per km2, 2015, screen shot at the same scale 

Source: http://luminocity3d.org/WorldPopDen/#9/43.7671/-79.5877 

 

Along with urban growth, the process of motorisation began in Beijing at the end of the 

1990s. Between 1999 and 2009, the number of vehicles registered in the city increased 

rapidly at an annual rate of 17.2%, which was to a large extent contributed by the 

increase of private cars (P. Zhao & Lu, 2011). During the same period, the total length 

of roads in Beijing increased from 2,441 to 6,248 kilometres. These trends inevitably 

changed people’s travel behaviour: the share of driving increased from 5% in 1986 to 

32.6% in 2012, and the share of cycling decreased from 62.7% to 13.9% (Beijing 

Transportation Research Center, 2013). Increasing motorised travel has become a key 

issue of concern for the sustainable urban development in Beijing: gasoline 

consumption increased from 26 to 120 toe (the tonne of oil equivalent) per 1000 
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inhabitants between 1995 and 2004 and road transport accounted for the major share of 

incremental energy consumption and CO2 emissions (P. Zhao & Lu, 2011). At the same 

time, urban growth drove more people out of the city centre to former suburban areas, 

which induced longer commute distances and triggered brisk demand for transportation 

(Z. Wang, Deng, & Wong, 2016). These conditions will provide a quite different urban 

context for the analysis of built environment-travel relationship. Besides, for the case 

itself, it may gain more from such research than the highly urbanised cities since new 

urban structures, forms and designs are quickly emerging, potentially influencing travel 

patterns for decades to come (Zegras, 2010). 

 

 

Figure 1-2 Trends of motorisation in Beijing 

Source: P. Zhao & Lu, 2011 

1.4  General methodology 

The over-arching methodology in this thesis is activity-based travel modelling. It 

simulates activity-travel related decisions such as which activities are conducted when, 

where, for how long, with whom, and the transport mode involved (Arentze & 

Timmermans, 2004; Castiglione et al., 2015; Ma, Arentze, & Timmermans, 2012). The 

strength of the model developed in this research (named as Built Environment Activity-

Travel Integrated Model, BEATIM) lies in the comprehensive incorporation of the built 
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environment conditions in the decision making process. This modelling approach can 

help address the first and the second gaps in Section 1.2 by linking the activity-based 

modelling with the built environment-travel analysis and thus enabling a more 

behavior-oriented and decomposed analysis of the built environment’s influence. 

 

Activity-based models typically fall into one of two paradigms: utility-maximising 

econometric models and computational process models, though this categorisation is 

neither exclusive nor exhaustive (Bhat, Guo, Srinivasan, & Sivakumar, 2004; Pinjari & 

Bhat, 2011; Rasouli & Timmermans, 2014a; Yasmin et al., 2015). Some authors also 

mentioned a type of constraints-based models, which puts more emphasis on checking 

whether any given activity agenda is feasible in a specific space–time context (Rasouli 

& Timmermans, 2014a). The utility-maximising models and the computational process 

models bear different strengths. The former are more advantageous for the examination 

of alternative hypotheses regarding the causal relationships between activity-travel 

patterns, the built environment and socioeconomic characteristics of individuals (Bhat 

et al., 2004; Yasmin et al., 2015), while the latter are better at modelling decision 

making under incomplete information and imperfect rationality, and the learning 

process (Arentze & Timmermans, 2004; Auld & Mohammadian, 2012). The BEATIM 

model developed in this research generally takes the utility-maximising paradigm for 

its strength in examining the influences of the built environment, and also incorporates 

weak computational process features reflected in a series of action rules (see Chapter 5 

for detailed description of the model). 

 

Besides, in order to address the third gap, the machine learning method is employed to 

evaluate the street facade. Usually, this type of built environment features cannot be 

directly measured from various readily-available geodatabases, but by human field 

auditors through manual observation and recording (Brownson, Hoehner, Day, Forsyth, 

& Sallis, 2009). However, the manual nature makes this method inherently expensive 

and derives few economy of scale (Harvey, 2014). The machine learning method 
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proposed in this research leverages state-of-the-art techniques and data sources (i.e. 

online street view images) to realise the automatic evaluation of this type of built 

environment features (see Chapter 4 for detailed descriptions).  

 

Moreover, several sub-methods are also employed in this research, which include: 

- Travel diary survey (implemented by the municipal government), on ca. 116,000 

individuals, to collect information on people’s 24-h activity-travel behaviour; 

- Questionnaire survey (implemented by myself), on 200 individuals, to collect 

information on people’s travel decision making process; 

- GIS-based spatial analysis, on various sources of spatial data, to measure the two-

dimensional, land use-related ‘D’ features of the built environment; 

- Discrete choice regressions, to estimate the weights of built environment features 

on various choice facets of activity-travel (activity participation and organisation, 

location choice for primary destinations and intermediate stops, time of activity and 

mode choice); 

- Scenario analysis, to simulate the impacts of built environment changes on travel 

behaviour with the proposed activity-based model. 

1.5  Research outputs 

The main outputs are on three levels: 

 

Theoretical:  

Link to the first and second gaps – The research will provide an understanding on the 

behavioural processes that give rise to the influences of the built environment on daily 

travel. The results will be examined against the assumptions on the relationship between 

the built environment and travel (dis)utilities. 

 

Link to the third gap – The research will also provide an understanding on the impacts 
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of the street facade design on travel behaviour. 

 

Link to the fourth gap – The results from the case study of Beijing, a high density, fast 

growing Asian city, will be compared with the meta-analysis of the results from 

American and European cities. Theoretical reflections will be made based on the 

comparison. 

 

Methodological: 

Link to the first and second gaps – The research develops an activity-travel model that 

comprehensively incorporates the influences of the built environment on various 

aspects of daily activity-travel. 

 

Policy-related: 

Planning policy suggestions for various transport-related goals can be made from the 

simulation results. 

 

Besides, there are two minor outputs. First, an updated meta-analysis of the effect sizes 

of built environment features in existing research is provided (see Section 2.3). Second, 

a machine learning-based method for the automatic evaluation of the street facade 

design is proposed (see Chapter 4). 

1.6  Thesis organisation and structure 

After this introduction, Chapter 2 provides a review of the theoretical base and the 

empirical findings on the built environment-travel relationship, as well as the 

progresses in activity-based modelling. The theoretical review starts from reviewing 

the urban planning and design philosophies that advocates the use of the built 

environment to influence and modify the travel behaviour. The microeconomic theory 

of utility maximisation is employed to explain the mechanism of this influence, based 
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on which a series of assumptions on the relationship between various built environment 

features and travel (dis)utilities are proposed. It is followed by a general review of 

empirical findings on this topic, and a more quantitative meta-analysis of the effect 

sizes. Last, the progresses in activity-based modelling are reviewed, with an emphasis 

on the treatment of built environment features in the existing model systems. 

 

For this chapter, these detailed research questions will be answered: 

- What are the theoretical bases for the impact of the built environment on travel 

behaviour? 

- What have existing empirical studies found about the impact of the built 

environment on travel behaviour? What are the significance levels and magnitudes 

of the impacts reported by existing studies? 

- How are activity-based models constructed?  

 

Chapter 3 introduces the study area, the data sources and the measurement of the built 

environment features conventionally included in this line of research (the six ‘Ds’). 

Specifically, the data sources involve two field surveys for the collection of travel-

related information, one large travel diary survey on people’s 24h travel behaviour and 

one small questionnaire survey on the processes of travel decision making. 

 

For this chapter, these detailed research questions will be answered: 

- What is the spatial extent of the study area 

- How are the data for my research collected? 

- How are the ‘6D’ features measured from various data sources?  

 

Chapter 4 deals with the measurement of the street facade design, which employs the 

state-of-the-art machine learning techniques. Two specific features are selected as key 

factors that could potentially influence the travel behaviour: the construction and 

maintenance quality of building facade (a building-level feature) and the continuity of 
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street wall (a street-level feature). 

 

For this chapter, these detailed research questions will be answered: 

- What features of street facade design can be considered as key factors that could 

potentially influence the travel behaviour? 

- How can street facade features be measured? How is the performance of machine 

learning algorithms? 

 

Chapter 5 develops the activity-based model, which simulates a sequence of decision 

making related to daily activity participation and travel, and more importantly, the 

impacts of the built environment within the process. The design of the model 

framework, the construction of the four sub-models and the validation results will be 

discussed in detail. 

 

For this chapter, these detailed research questions will be answered: 

- How can an activity-based model be designed to effectively simulate the decision 

making process of daily travel and incorporate the impacts of the built environment? 

- How can the model parameters be estimated?  

- How well can the model perform to approximate the reality? 

- In which situations does the model perform well and in which situations does it 

produce relatively large errors? 

 

Chapter 6 applies the model to simulate the impacts of various built environment 

changes on travel behaviour through scenario analysis. Two types of scenarios are 

designed: ‘local’ scenarios, referring to a built environment change in one single TAZ, 

and ‘regional’ scenarios, referring to the built environment changes in varying buffer 

zones from a TAZ. As emphasised before, the analysis not only examines the 

synthesised travel outcomes, but also the behavioural processes. A few policy 

suggestions are drawn from the simulation results. 
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For this chapter, these detailed research questions will be answered: 

- What are the impacts of various ‘local’ built environment changes on the activity 

participation and travel behaviour of residents at where the changes take place (e.g. 

activity frequency, distance of travel, mode choice, etc.)? Specifically, what are the 

impacts of the two newly-added street facade features? 

- What are the impacts of ‘regional’ built environment changes? 

- How are the results consistent with or different from those from American and 

European cities? 

- How are the results consistent with or different from theoretical assumptions? What 

are the implications? 

- What are the proper policies for various goals, such as reducing total car use or 

reducing the travel distance needed for fulfilling daily needs? 

 

In the end, Chapter 7 concludes and discusses the limitations of this research, and points 

to future directions of research. 
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Figure 1-3 Thesis organisation and structure 
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Chapter 02 Literature review 

2.1 Theories and assumptions 

2.1.1  Philosophies of urban planning and design 

It was observed in many cities, especially in the North America, that the increase in car 

travel has occurred hand in hand with urban sprawl. Consequently, planners plausibly 

assume that a reversal of this relation by compact urbanisation, densification, and 

mixed-use development, will reduce the need to travel—particular by car (Maat, Wee, 

& Stead, 2005). As a result, the idea of using the built environment to influence and 

modify travel behaviour has found their way into and become one of the key concerns 

of diverse urban planning and design concepts ever since the early 20th century (Maat 

et al., 2005; Zegras, 2010). Besides, in the field of transport engineering, the original 

‘predictive’ focus of land development-transport analysis evolved to include an 

increasingly ‘prescriptive’ purpose—i.e. modifying land development patterns 

explicitly to influence travel demand (Boarnet & Crane, 2001; Zegras, 2010). The key 

ideas of some of the most influential planning and design strategies that aim at 

modifying the travel behaviour are briefly reviewed below. 

- Jobs-housing balance: advocates that promoting the spatial matches between 

housing and jobs could help counter the trend of widening separation of suburban 

workplaces and the residences of suburban workers and increasing peak-period 

traffic congestion in the US (Cervero, 1989, 1996). 

- New Urbanist (or neo-traditional) design: calls for a return to compact 

neighbourhoods with a combination of neighbourhood design elements including 

grid-like street patterns, mixed land uses and pedestrian amenities (Lund, 2003; 

Talen, 2013). It is believed that the neighbourhoods designed in such a manner are 
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less oriented toward automobile travel and more conducive to walking, bicycling 

and transit riding, especially for non-commute trips (Cervero & Radisch, 1996; Joh 

et al., 2012).  

- Smart growth: aims to channel new development into existing urban areas and 

away from undeveloped areas and to improve the viability of alternatives to the car 

(Handy, Cao, & Mokhtarian, 2005), which are expected to counteract many of the 

negative effects associated with urban sprawl, including long vehicle travel and 

congestion (Tracy, Su, Sadek, & Wang, 2011). According to the American Planning 

Association, compact, transit accessible, pedestrian-oriented, mixed use 

development patterns and land reuse epitomise the application of the principles of 

smart growth (American Planning Association, 2002). Actually, there are many 

overlaps and common technical features between new urbanism and smart growth, 

as well as other related philosophies such as the walkable city, the compact city and 

so on (Lund, 2003).  

- Compact city: the key idea is to bring activities closer to residents so that they can 

fulfil their needs and, because the distances are smaller, this allows slower modes 

(walking and cycling) and public transport to play a bigger role in their travel 

alternatives and reduces energy consumption and pollution (Aditjandra, Mulley, & 

Nelson, 2013; Neuman, 2005). 

- Walkable city: advocates for better quality of the walking environment in transport 

planning and design to promote movement by foot and bicycle (Southworth, 2005). 

It also involves some of the planning and design doctrines mentioned above such 

as high density, mixed-use, pedestrian-oriented design (further includes high 

connectivity, safety, high quality of path, etc.), which are supposed to be conducive 

to walking (Sarkar et al., 2015; Southworth, 2005). Walkability can also be further 

linked with issues of public health, based on the notion that higher level of physical 

activity could lead to lower obesity and fewer weight-related chronic conditions, 

and better overall health (Doyle, KellySchwartz, Schlossberg, & Stockard, 2006). 

- Transit-oriented development: seeks to maximise access to mass transit and non-
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motorised transportation with centrally located rail or bus stations surrounded 

by relatively high-density commercial and residential developments (Dittmar & 

Ohland, 2004), which is believed to enhance the attractiveness of public transport 

services as a whole over the car (Kamruzzaman, Baker, Washington, & Turrell, 

2013). 

 

These ideas appear to have made a great impact on modern urban planning and design, 

both academically and practically (Crane, 1995). Many of the planning and design 

doctrines have been gradually integrated into the curriculum at the top planning and 

architecture schools and also incorporated into numerous development plans and 

projects (Knaap & Talen, 2005). The large influence has naturally given rise to the need 

for stringent empirical research to testify the promised benefits. As a result, more than 

two hundred studies have been devoted to analysing the influence of the built 

environment on travel, particularly the doctrines advocated by the strategies mentioned 

above. The following sections will provide a review of the relevant research. Section 

2.1.2 and 2.1.3 will focus on the theoretical foundation. Section 2.2 to 2.3 will focus on 

empirical findings. 

2.1.2  The built environment, causality and travel 

Despite of a large number of studies on examining the assumed influence of the built 

environment on travel, Naess (2015) critised that “theories explaining why correlations 

exist between built environment characteristics and travel behaviour are rarely exposed, 

let alone reflected on”. According to Naess, “compared to the efforts spent on applying 

the statistical analyses in an as impeccable way as possible, the literature usually spends 

considerably less space on discussing which variables to include in the statistical 

models and their order in a causal chain”.  

 

The establishment of a causal relationship is a long standing issue of social research, 

since many of them seek to determine what causes what in the complex open system of 
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human society. In fact, the notion of causality itself makes a profound philosophical 

issue and there is still little agreement on the nature of causation (Beebee, Hitchcock, 

& Menzies, 2009, p. 1). For instance, some authors think that causation is a relatively 

non-fundamental feature of the world and can be understood in terms of other more 

fundamental features such as ‘regularities’; some think that in some sense causation is 

not a feature of reality at all; others think that causation is about as fundamental as it 

gets (Beebee et al., 2009, pp. 1-2).  

 

In this thesis, I am not going to dig into the complexity of the philosophical debates on 

causality, but rather take a more practical framework for the understanding of causation 

in social research, which is used in the methodological guidebook by Schutt (2011)  

and Singleton Jr, Straits et al. (1993). According to the framework, there are basically 

two types of causal explanation in social research, which find their roots in the two 

intellectual tendencies to knowledge coined by Wilhelm Windelband, termed as 

nomothetic and idiographic (Schutt, 2011, p. 182). A nomothetic causal explanation 

identifies common influences on a number of cases or events, which is usually 

associated with quantitative methods (Schutt, 2011, p. 182). A causal effect from the 

nomothetic perspective refers to that the variation in one phenomenon leads to or results, 

on average, in the variation in another phenomenon (Schutt, 2011, p. 182). In contrast, 

the idiographic causal explanation is more about concrete, individual sequence of 

events, thoughts, or actions, which can be classified as narrative reasoning and more 

commonly associated with qualitative methods (Richardson, 1990; Schutt, 2011, p. 

184). In the field of built environment-travel research, most existing research are 

conducted in a quantitative manner and can be considered as reflecting the nomothetic 

tendency, except for a few works by Naess and collaborators, who consciously took a 

highly narrative approach from the philosophical position of critical realism (2001, 

2015),.  

 

Schutt (2011, pp. 188-189) put forward five criteria when deciding whether a 

https://en.wikipedia.org/wiki/Wilhelm_Windelband
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nomothetic causal connection exists, which are: (1) empirical association, (2) 

appropriate time order (cause precedes effect), (3) non-spuriousness (a relationship 

between two variables is not due to variation in a third variable), (4) identification of 

causal mechanism, (5) identification of causal context. While the first criterion is easy 

to identify with statistical methods, the second and the third requires more sophisticated 

strategies of research design and data collection. The fourth and the fifth criteria, though 

not necessarily involve methodological complexity, are much less discussed in existing 

research.  

 

To be more specific, the time precedence criterion requires approaches that permit 

multiple directions of causality and/or involve longitudinal measurements. The non-

spuriousness criterion needs explicit inclusion of people’s travel attitudes, which is 

considered to be the major source of spuriousness and the consequence is termed as 

‘self-selection’ in this field of research (Cao, Mokhtarian, & Handy, 2009; Mokhtarian 

& Cao, 2008) (see Cao et al., 2009 for more details in travel attitude-related 

spuriousness). However, constrained by the costs of data collection, only a small 

proportion of existing research have, to some extent, incorporated these approaches and 

more tightly examined the relationship (see Cao et al., 2009 and Mokhtarian et al., 2008 

for a review).  

 

The latter two criteria are more about logical deduction for why and under what 

circumstances the alleged cause should produce the observed effect (Mokhtarian & Cao, 

2008). As mentioned at the beginning of this section, Naess (2015) strongly criticised 

the considerably less research attention on the causal mechanisms. Such a gap may be 

explained by a general attitude of researchers in this field that takes the existence of a 

causal mechanism as granted—as Cao et al. (2009) wrote, that “all the statistical 

methods used in the studies in this field can rely on the travel price changes suggested 

by Boarnet and Crane (2001) as a plausible causal mechanism”. However, the travel 

price-based causal mechanism put forward by Boarnet and Crane (2001) is subject to 
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further refinement in many ways. Therefore, the next section will be spent on reviewing 

and developing the theoretical explanation for the mechanism of the built environment’s 

influence on travel behaviour, which, though insufficient alone for the establishment of 

a causal relationship, could at least help improve the understanding of quantitative 

results. 

2.1.3  Travel as an outcome of utility maximisation 

Basically, the aggregate-level relationships between the built environment and travel 

emerge from a set of transport rationales at the individual-level (Naess, 2015). As 

mentioned before, most existing works tend to resort to the economic consumer theory 

that explains individual behaviour and motivations as a result of utility maximisation 

(Ben-Akiva & Lerman, 1985; Boarnet & Crane, 2001, p. 66; Cervero & Kockelman, 

1997; Domencich & McFadden, 1975; Maat et al., 2005; McFadden, 1974; Zegras, 

2010). Although the notion of ‘rational man’ and utility maximisation is commonly 

questioned, the fact that humans are not entirely rational decision-makers with complete 

information does not imply that they do not at all use instrumental rationality (Naess, 

2013). This behavioral paradigm has served as the basis for a rich production of models 

in transportation-related choice analysis, including the mode of travel, destinations to 

visit, the household residence, etc. (see examples in Ben-Akiva and Lerman, 1985) 

(Goulias, 2009). Besides, the repetitive nature of daily travel indicates that people may 

have already searched and compared many alternatives and optimised their choices 

from day to day, so that the observed behaviour can be considered as an outcome under 

near-complete information. 

 

In the framework by Boarnet and Crane (2001), travellers perform trade-offs among 

available alternatives as in any situation where decisions are made concerning the 

allocation of scarce resources, whether or not they involve actual money (pp. 61-62). 

The built environment influences trip-making through impacts on (relative) trip costs 

(Boarnet & Crane, 2001, pp. 61-62). A later work by Maat et al. (2005) extends this 
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framework including the benefit side of travel, i.e. activity realisation, following the 

notion of transport as a derived demand from activity participation, which has an 

intellectual link with the activity-based approach of travel analysis (Axhausen & 

Garling, 1992) and Hägerstrand's time geography (1970). The main contribution of 

Maat et al.’s framework is twofold. First, it assumes that people do not make separate 

decisions considering only trips, but that they try to schedule activities in a daily pattern, 

and therefore, they do not maximise utility for separate travel choices, but optimise 

their entire activity pattern (Maat et al., 2005). This more integral framework more 

realistically accounts for the possibility that people may use travel time saved from 

better accessibility of one activity on participating more other activities (Maat et al., 

2005). Second, following the key concept of time geography that both space and time 

are scarce resources and constrain daily activity patterns (Axhausen & Garling, 1992; 

Hägerstraand, 1970), the activity-based approach also takes into account the fact that 

individuals are not free to choose any alternative but are constrained by the total amount 

of time in a day (Maat et al., 2005).  

 

However, although these frameworks are helpful in understanding the motivations of 

travel decision making, they do not involve explicit assumptions on the influence of the 

built environment on travel choices. For instance, Maat et al. (2005) merely briefly 

discussed the change of the travel utility curve in a condition that is broadly described 

as ‘compact design’. A related problem is that few published papers in this field ever 

explicitly stated the hypothesis of research in terms of how travel behaviour would be 

influenced by built environment (e.g. see Næss, 2013, Cervero & Kockelman, 1997 as 

examples of those that provided hypothesis) (Naess, 2010). It is especially an issue with 

the activity-based framework. The assumption of ‘overall utility maximisation’ may 

lead to more than one mechanism of influence of the causal powers. Some causal 

mechanisms may amplify each other while others may neutralise or reduce each other’s 

influences (Naess, 2013). Besides, to the best of my knowledge, none of existing 

frameworks mentions the gains from travel itself, such as health gains from walking 
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and cycling, or ‘psychic’ gains from aesthetically pleasing streetscapes (Boarnet & 

Crane, 2001; Naess, 2013). Therefore, building upon existing works, I would like to 

put forward a framework which more comprehensively discusses the gains and costs of 

travel and makes deductions about the influences of the built environment. 

 

Figure 2-1 shows the subdivision of daily activity-travel behaviour based on the 

activity-based framework, and how they together contribute to the synthesised travel 

outcomes such as total travel distance and VMT. First, an individual needs to have a 

general idea about the amount of activity participation in a given day. Activities can be 

categorised into commute activities (work and go to school), which are usually quite 

routine and tend to take place at fixed locations, and non-commute activities (all other 

activities), which are more flexible both in terms of the frequency and the location. For 

each of the activities that one chooses to participate, a location, a travel mode and a 

time of activity need to be further selected. These decisions may not have a clear priority 

and can be mutual influential. For instance, people may perform trip chaining for higher 

efficiency, in which case multiple activities are combined into one tour so that the total 

travel distance could be shorter. Besides, considering that people are constrained by the 

total time budget, the travel costs of one activity (usually more obligatory ones, such as 

working) can also affect the participation of other activities (usually more discretionary 

ones). All these subdivided facets together contribute to the synthesised travel outcomes. 
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Figure 2-1 Subdivision of daily activity-travel behaviour 

 

Maat et al. (2005) analysed the net utility of travel as a function of travel time since 

they thought that individuals are not primarily interested in travel distance, but rather 

in the costs of bridging that distance, particularly the time cost. While totally agree with 

this notion, I still think that it is more appropriate to use travel distance as the 

independent variable. First, travel distance is more straightforward and predictable 

given the built environment conditions of an area, while travel time could vary with the 

traffic speed. Second, travel time is already mediated by the built environment as a 

function of the travel distance and the road network or the placement of public transit 

stations, etc., thus it can be considered as a ‘second-order’ variable while travel distance 

is ‘first-order’.  

 

The diagram in Figure 2-2 illustrates the assumed changes in travel gains and costs as 

functions of travel distance. As mentioned before, two types of travel gains are 

considered, gains from conducting activities and gains from travel itself. For non-

commute activities, the activity gains generally increase with travel distance since the 
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further one travels, the more opportunities are within reach and the bigger the chance 

of being able to reach an opportunity with a higher utility, e.g. cheaper price or more 

specialised goods (Boarnet & Crane, 2001; Maat et al., 2005). It is assumed that the 

increase would slow down as the travel distance gets longer, because the additional 

benefits of travelling longer can be subject to the law of diminishing returns. For 

example, the second-nearest supermarket might be more attractive than the nearest, 

perhaps because of lower prices or more variety in products, but the additional benefits 

of the fifth-nearest compared with the fourth-nearest might be smaller (Maat et al., 

2005). It should be noted that, in reality, due to the heterogeneity of the urban space, 

the curve may not be smooth and continuous but instead bumpy and discontinuous (see 

Maat et al., 2005 for an example of net travel utility in mixed and concentrated uses). 

For commute activities, the relationship between travel gains and travel distance can be 

very bumpy, since the gains can only be realised at places where there are suitable job 

positions. The more professional and specialised a job is, the more heterogeneous is the 

distribution of suitable positions.  

 

The travel gains are shown with dotted line since they may not exist if an individual 

does not value these benefits or does not take a proper travel mode to realise the benefits. 

For instance, the health benefits of travel are mainly related to active travel modes 

(walking and cycling) and slightly related to public transit since the trip to and from 

bus/metro stations may also involve active travel. However they are hardly related to 

driving or taking taxi. Moreover, these benefits may not even be considered if an 

individual does not care about health issues. Similarly, the psychic benefits of travelling 

in an enjoyable urban environment are more experienced if an individual travels in a 

slow mode and may not actually exist if an individual does not appreciate such qualities. 

It is assumed that these travel gains are proportional to the travel distance. 

 

The costs of travel are mainly associated with the time spent, the monetary costs and 

the physical efforts. The curves are differentiated among different travel modes. For 
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simplicity, three types of modes are considered, which are driving, taking public transit 

(bus or subway) and active travel (walking or cycling). For driving and taking public 

transit, the intercepts are above zero since usually some initial actions are required, such 

as walking to the parking lot, starting the engine, finding a parking space at destination 

and traveling to and from the subway/bus station, etc. (Maat et al., 2005). Either of the 

intercepts can be larger than the other, affected by factors such as the distance to public 

transit stations, the availability of parking spaces, etc. The slope is the highest for active 

travel since longer time and more physical energy are needed to cover a same distance. 

Either of the slopes of public transit and driving can be larger than the other, depending 

on the traffic speed and so on. All curves are supposed to be concave because longer 

travel could result in growing tiredness, which is the strongest for active travel, medium 

for taking public transit and the mildest for driving. Another reason for the concave 

shape is that time is scarce resource so there could be a growing marginal cost. In 

practice, the shapes of these lines could be more complicatedly affected by the structural 

conditions of the society, the specific mind set of a person, and the specific conditions 

of a trip (Naess, 2013). For instance, in a circumstance that drivers are rude and careless, 

or a person is particularly sensitive to safety risks, the cost slope of active travel could 

be steeper.  

 

 

Figure 2-2 Gains and costs of travel in relation to travel distance 
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The net utility can then be derived by minusing the costs from the gains as shown in 

Figure 2-3. An individual would choose the combination of travel distance and travel 

mode that produces the highest net utility, if such an alternative is feasible (e.g. not 

inhibited by car ownership or time budget). It should be noted that, as mentioned before, 

the shapes of the curves and the positions of the peaks and intercepts may not take the 

exact form as shown in the figure, but are affected by many factors including the 

institutional conditions, personal preferences, and more importantly for this research, 

the built environment settings. In the next part, the impacts of built environment factors 

on travel gains and costs and the choice outcomes will be discussed.  

 

 

Figure 2-3 Net travel utility in relation to travel distance (an example) 

2.1.4  Assumptions on the influence of the built environment 

In travel research, the built environment have often been described through features 

named with words beginning with D. The ‘three Ds’, coined by Cervero and Kockelman 

(1997), are density, diversity and (road network) design, followed later by destination 

accessibility and distance to transit (Ewing & Cervero, 2001; Ewing et al., 2015). 

Parking supply is also sometimes coined as the sixth ‘D’, namely demand management 

(Ewing & Cervero, 2010). Besides, as mentioned in the introduction, in order to fill in 

the gap that the influence of street facade features is seldom analysed (see Section 1.2), 
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this research also introduces a seventh ‘D’, street facade design. Although these D-

variables are rough categories, divided by ambiguous and unsettled boundaries that may 

involve overlaps, they are still useful for the description of the built environment 

(Ewing & Cervero, 2010). Their assumed effects on travel gains and costs are discussed 

below.  

 

It should be noted that, since people tend to optimise their entire activity pattern, all the 

effects that result in shorter travel distance and travel time may be compensated by 

inducing more activities (Maat et al., 2005). However, the compensation effect cannot 

be explicitly plotted on the diagram but is taken into account in the summary of 

hypotheses in Table 2-1. 

 

(1) Higher density 

- On gains of commute activities: employment density may enhance the gains by 

increasing the chance for an individual to find a suitable job; 

- On gains of non-commute activities: can enhance the gains by increasing the 

amount and, potentially, the quality of goods and services in a given travel distance 

(residential density can exert this influence by expanding the consumer base and 

attracting more businesses); 

- On gains of travel itself: no obvious effect; 

- On costs of driving: may increase the cost by increasing the traffic flow and 

lowering the traffic speed (steeper slope), as well as the competition for parking 

space (larger intercept); 

- On costs of taking public transit: may reduce the cost if the service provider 

enhances the level of service in response to the larger consumer base (smaller 

intercept and gentler slope); 

- On costs of active travel: may reduce the cost if the increased traffic flow lowers 

down the traffic speed and thus improves the road safety (gentler slope). 
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Figure 2-4 Assumed changes in travel gains and costs following enhanced density, 

diversity and destination accessibility 

 

(2) Higher diversity 

- On gains of commute activities: may enhance the gains by providing more office 

space and increasing the chance for an individual to find a suitable job; 

- On gains of non-commute activities: can increase the gains by providing a larger 

variety of activity opportunities in a given distance (Feng et al., 2013); 

- On gains of travel itself: no obvious effect; 

- On costs: similar to the effects of higher density, by attracting more consumers and 

inducing more traffic. 

 

(3) Higher destination accessibility (to city/sub-centres) 

- On gains of commute activities: may enhance the gains by increasing the number 

of jobs available within a given distance, especially professional and specialised 

jobs that tend to agglomerate at central business areas of the city; 

- On gains of non-commute activities: can enhance the gains when the travel distance 

is long enough to reach the city/sub-centres, where there is usually a concentration 

of facilities and services; 

- On gains of travel itself: no obvious effect; 
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- On costs: similar to the effects of higher density and diversity, if a place is close 

enough to the city/sub-centres to be affected by the traffic flow induced by the 

activities at the centres; no obvious effect if not. 

 

(4) Higher road density/connectivity 

- On gains of commute activities: no obvious effect; 

- On gains of non-commute activities: no obvious effect; 

- On gains of travel itself: no obvious effect; 

- On costs of driving: can reduce the cost by providing more direct routes and 

increasing the speed by diverting traffic flow (gentler slope); 

- On costs of taking public transit: may reduce the cost by providing more direct 

routes to and from bus/subway stations (smaller intercept). However, if the increase 

of road density is mainly associated with high-level roads such as express ways or 

primary roads which are less pedestrian/cyclist-friendly, the effect could be inverse 

(larger intercept); 

- On costs of active travel: may reduce the cost by providing more direct routes 

(gentler slope) and also could be inverse for the same reason explained above 

(steeper slope). 

 

 

Figure 2-5 Assumed changes in travel gains and costs following enhanced road 
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density/connectivity 

 

(5) Shorter distance to transit 

- On gains of commute activities: no obvious effect; 

- On gains of non-commute activities: no obvious effect; 

- On gains of travel itself: no obvious effect; 

- On costs of driving: no obvious effect; 

- On costs of taking public transit: can reduce the cost by decreasing the ‘fixed cost’ 

of travelling to the stations (smaller intercept); 

- On costs of active travel: no obvious effect. 

 

 

Figure 2-6 Assumed changes in travel gains and costs following reduced distance to 

transit 

 

(6) More parking provision 

- On gains of commute activities: no obvious effect; 

- On gains of non-commute activities: no obvious effect; 

- On gains of travel itself: no obvious effect; 

- On costs of driving: can reduce the cost by cutting the ‘fixed cost’ of searching for 

parking space (smaller intercept); 
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- On costs of taking public transit: no obvious effect; 

- On costs of active travel: no obvious effect. 

 

 

Figure 2-7 Assumed changes in travel gains and costs following increased parking 

space 

 

(7) Better street facade design 

- On gains of commute activities: no obvious effect; 

- On gains of non-commute activities: no obvious effect; 

- On gains of travel itself: can increase the gains by enhancing psychic enjoyment, 

especially for slow modes (walking/cycling) and trips that involve slow modes (e.g. 

walking/cycling to transit stations); 

- On costs: no obvious effect. 
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Figure 2-8 Assumed changes in travel gains and costs following enhanced street 

facade design 

 

However, these gains and costs can hardly be directly observed and measured. Instead, 

the direct observation is people’s travel behaviour as an optimised choice out of the 

gains and costs. Therefore, the effects of these built environment changes on the 

behavioural outcomes are further deduced based on their expected effects on travel 

gains and costs (see Table 2-1). The behavioural outcomes are represented with two 

main indicators of travel behaviour: total travel distance and VMT. These assumptions 

can be directly examined against the simulation results later in the thesis. 

 

Table 2-1 Assumed effects of built environment changes on travel behaviour 

Built environment 

changes 

Assumed effects on total 

travel distance 

Assumed effects on VMT 

Higher density For one trip: reduce, by 

increasing the gains of non-

commute activities (and 

possibly also commute 

activities) in a given distance 

For total travel in a day: 

ambiguous, since shorter 

travel distance may induce 

more activities 

For one trip: reduce, by 

reducing the travel distance 

and potentially discouraging 

driving 

For total travel in a day: 

ambiguous 

Higher diversity For one trip: reduce, by 

increasing the gains of non-

For one trip: reduce, by 

reducing the travel distance 



35 

 

Built environment 

changes 

Assumed effects on total 

travel distance 

Assumed effects on VMT 

commute activities (and 

possibly also commute 

activities) in a given distance 

For total travel in a day: 

ambiguous, since shorter 

travel distance may induce 

more activities 

and potentially discouraging 

driving 

For total travel in a day: 

ambiguous 

Higher destination 

accessibility 

For one trip: reduce when the 

travel distance exceeds a 

threshold to reach the centres, 

by increasing the gains of non-

commute and commute 

activities  

For total travel in a day: 

ambiguous, since shorter 

travel distance may induce 

more activities 

For one trip: reduce, by 

reducing the travel distance 

and potentially discouraging 

driving 

For total travel in a day: 

ambiguous 

Higher road 

density/connectivity 

For one trip: likely to increase 

by reducing the travel costs 

For total travel in a day: likely 

to increase 

For one trip: ambiguous, since 

both the costs of motorised 

and non-motorised travel are 

reduced 

For total travel in a day: 

ambiguous 

Shorter distance to 

transit 

For one trip: slightly likely to 

increase, if the optimised 

choice is a longer trip with 

public transit 

For total travel in a day: 

slightly likely to increase 

For one trip: reduce, by 

encouraging transit use for 

both commute and non-

commute activities 

For total travel in a day: 

reduce 

More parking provision For one trip: slightly likely to 

increase, if the optimised 

choice is a longer trip by car 

For total travel in a day: 

slightly likely to increase 

For one trip: increase, by 

encouraging driving for both 

commute and non-commute 

activities 

For total travel in a day: 

increase 

Better street facade 

design 

For one trip: slightly likely to 

reduce, if the optimised choice 

involves a nearer destination 

For total travel in a day: 

slightly likely to reduce 

For one trip: likely to reduce, 

by increasing the gains of 

active travel and probably also 

public transit for both 

commute and non-commute 

activities 

For total travel in a day: likely 



36 

 

Built environment 

changes 

Assumed effects on total 

travel distance 

Assumed effects on VMT 

to reduce 

2.2  Summary of empirical research 

2.2.1  Method of literature search 

As mentioned before, large efforts have been made on applying statistical methods and 

evaluating the significance and magnitude of the built environment’s influence on travel 

behaviour. Therefore, as a first step to probe into this research topic, it is necessary to 

obtain an overview of the findings from the existing work.  

 

Two rounds of literature search were conducted, first in October to December 2013 and 

then in April 2016 for an update. The search was conducted through the Web of 

Knowledge and the Google Scholar using ‘travel’, ‘travel behaviour’, ‘transport’, ‘trip’, 

‘activity’, ‘nonwork travel’, ‘non-commute travel’, ‘built environment’, ‘urban form’ 

and ‘land use’ as the keywords. I also used the ‘snowballing’ approach and tracked the 

references of seminal works, as well as the papers that cited those seminal works. 

Considering the rapid expansion of the studies on this topic, an emphasis was given to 

the studies published within five years from when the search was did. The first search 

resulted in approximately two hundred studies. The second search found another 

seventy studies published between 2013 and 2016. Around forty studies were removed 

for various reasons, e.g. they are pure qualitative studies, or they deal with very specific 

topics, such as school travel (e.g. McMillan, 2007; Yarlagadda & Srinivasan, 2007) , 

mode switching behaviour (e.g. Wang & Chen, 2012) , travel of homemakers (e.g. C. 

Chen & McKnight, 2007) . The findings of these approximately two hundred studies 

are briefly summarised below. For a more concrete and quantitative synthesis of the 

findings, please refer to the meta-analysis in Section 2.3. 
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2.2.2  A brief overview of findings 

First of all, most of the large number of studies on this topic employ statistical methods 

and regress between synthesised measurements of travel behaviour (e.g. VMT, total 

walking distance) and built environment and socioeconomic conditions. This 

corresponds to the first gap mentioned in Section 1.2 that the behavioural processes that 

give rise to these synthesised outcomes have received much less attention. 

 

Besides, questions remain about the quantifiable influence of the built environment on 

travel behaviour, since large divergence exists in the findings from existing research 

(Zegras, 2010). For instance, some studies found small to no effect of density on VMT 

(e.g. Ewing et al., 2009; Salon, 2015)  , whereas some reported more prominent effects 

(e.g. Heres-Del-Valle and Niemeier, 2011, reported elasticities between 0.14 and 0.19; 

Guerra, 2014, reported elasticities between 0.21 and 0.31) . Causes for the divergence 

in findings could include the method of data collection, the measurements of the built 

environment features, the analytical approaches and control variables employed, the 

effects of the Modifiable Areal Unit Problem and so on (Zegras, 2010). Besides, 

contextual factors may also play an important role, which could activate or inactivate, 

and influence the relative strength of the multi-mechanisms of the interaction between 

the built environment and travel.  

 

Nonetheless, the findings still share some common features. First, the effect sizes are 

generally small (Ewing et al., 2015; P. Zhao, 2011). According to a meta-analysis by 

Ewing and Cervero (2010), the elasticities between built environment variables and 

travel outcomes are mostly smaller than 0.5, and many are smaller than 0.2. However, 

it does not imply that built environment measures are irrelevant or ineffective in 

modifying the travel behaviour, since multiple measures can be combined and produce 

larger effects (Ewing & Cervero, 2010). Besides, although the influence may seem 

small at the individual level, the increments accumulated over time and across 
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populations could potentially produce large benefits (McCormack et al., 2012).  

 

Another common feature is the small R-squared values of regressions (when applicable). 

For instance, vehicle use models, estimated on data for cities in the U.S. have displayed 

R-squared values in the range of 0.04 to 0.17 (Zegras, 2010). In the seminal work by 

Cervero and Kockelman (1997), the models on VMT have R-squared values in the 

range of 0.17 to 0.20 and only 0.03 to 0.05 is contributed by built environment variables. 

However, for this research topic, such R-squared values can be considered to be fairly 

good explanatory power, particularly considering the disaggregate nature of the data 

and the fact that only a single day’s travel behaviour is predicted (Zegras, 2010). 

 

Besides, the findings share some similarities in terms of the significance and the 

direction of the influences. Generally speaking, built environment features that are 

related to higher accessibility to activity opportunities and a more friendly environment 

for active travel and transit use usually induce shorter travel distance and less car use. 

For instance, the features that are frequently found to significantly reduce VMT include: 

higher accessibility (Ewing & Cervero, 2010; Krizek, 2003; Nasri & Zhang, 2015), 

higher density (Ewing et al., 2015; Guerra, 2014; Nasri & Zhang, 2012), higher mix of 

uses (Cervero & Duncan, 2006; Kockelman, 1997; Nasri & Zhang, 2015), higher street 

connectivity (Chatman, 2008; Salon, 2015), better access to public transit 

(Kamruzzaman et al., 2013; Jie Lin & Long, 2008; Susilo, Williams, Lindsay, & Dair, 

2012) and so on. It should be noted that these relationships may not hold in every 

individual study and even reverse results may occur. For instance, Kamruzzaman et al. 

(2013) found no independent effect of land use diversity on travel and Knuiman et al. 

(2014) found that land use mix could even discourage walking . 

 

It remains controversial to infer causality based on the research design and statistical 

method of a large proportion of existing research, since the criteria of ‘non-spuriousness’ 

(see Section 2.1.2) is usually confronted with the confounding factor of ‘residential self-
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selection’ (Mokhtarian & Cao, 2008). Self-selection refers to that people may choose 

residential locations that are consistent with their travel preference (attitude) or 

capability (e.g. the financial capability of affording a car or physical capability of 

driving a car). In this situation, it may not be the built environment but the preference 

or capability that causes the observed behaviours (Cao, 2015a). If the self-selection 

effect exists but is not controlled for through research design and/or econometric 

models, we may misestimate the impact of the built environment on travel behaviour, 

leading to erroneous policy implications (Cao, 2015a).  

 

However, this caveat may not be as important as it sounds to be (Ewing et al., 2015). A 

review on 38 studies that controlled for self-selection showed that nearly all of these 

studies still found statistically significant associations between the built environment 

and travel, independent of self-selection influences (Cao et al., 2009). Later individual 

studies also had similar findings (e.g. Giles-Corti et al., 2013; McCormack et al., 2012). 

Nonetheless, self-selection does attenuate the effects of the built environment (Cao et 

al., 2009), but the latter still plays a dominant role (Cao, 2015a; Cao & Fan, 2012; 

Ewing et al., 2015). For instance, Bhat and Eluru (2009) found that 87% of the VMT 

difference between households residing in conventional suburban and traditional urban 

neighbourhoods is due to ‘true’ built environment effects (Bhat & Eluru, 2009); Zhou 

and Kockelman (2008) found that the built environment accounted for 58% to 90% of 

the total influence of residential location on VMT (Zhou & Kockelman, 2008); Cao and 

Fan (2012) found that density and self-selection contributed to 72% and 28% of the 

observed impact of density on person miles travelled (Cao & Fan, 2012). Although 

there do exist contradictory findings that preferences and attitudes are more influential 

than the built environment (Kamruzzaman et al., 2013), these studies are relatively 

scarce. Moreover, some studies even find that controlling for self-selection is more 

likely to enhance than diminish built environmental influences (Chatman, 2009; Ewing 

& Cervero, 2010). These findings indicate that, the lack of control for self-selection, 

although prohibits causal inferences, does not seem to substantially affect the validity 
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of the conclusions.  

2.3 A meta-analysis 

2.3.1  Method 

In order to tackle the divergence in the findings and clarify the state of knowledge, some 

researchers have employed the method of meta-analysis and provided synthesised 

analysis of the effect sizes in existing findings. This method can provide more 

generalisable and reliable estimates across studies and help make sense of differing 

results. Among them, Ewing and Cervero’s work (2010) is one of the most 

comprehensive, which involved 62 empirical cases selected from more than 200 works 

published before 2010 and provided weighted average elasticities between the 

outcomes of daily travel and different built environment measures.  

 

In this section, I build on the work of Ewing and Cervero (2010) and expand the meta-

analysis to include studies published afterwards (January 2010 to January 2016), so that 

a more comprehensive and up-to-date overview of existing findings can be made. This 

work follows the statement of Ewing and Cervero that they ‘aimed to seed the meta-

study of built environments and travel, expecting that others would augment and expand 

their database over time’. This update can help people examine whether the findings on 

this topic are stable enough and remain consistent. More importantly, since most of the 

existing research are on non-Asian cities (most North American or European, few 

Oceanian), the synthesised results can be used to compare with the simulation results 

from Beijing later in my research, which could help address the gap of the lack of 

understanding on the regional differences in the built environment-travel relationship. 

For this purpose, the few studies on Chinese and other Asian cities (e.g. Korean) are 

deliberately excluded from this meta-analysis (e.g. Eom & Cho, 2015; Huang et al., 

2016; P. Zhao, 2014; P. Zhao, 2015) . 
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The literature search described in the last section returned around fifty papers published 

after January 2010. The meta-analysis follows the method used by Ewing and Cervero 

(2010), which calculates the weighted average elasticities. An elasticity refers to the 

ratio of the percentage change in one variable associated with the percentage change in 

another variable, which is the most widely used measure of effect size in economic and 

planning research (Ewing & Cervero, 2010). The elasticities are obtained either by 

directly copying them from published articles where they were reported explicitly, or 

calculating them on myself from regression coefficients and the mean values of 

dependent and independent variables (see Table 2-3 for formulas of calculation). More 

than half of the studies are excluded from the meta-analysis for not being able to 

calculate the elasticities (see Table 2-2). The most common reason is not providing the 

mean values of either the dependent or the independent variables. Other reasons include 

using statistical methods, such as structural equation models, from which simple 

summary effect size measures could not be calculated (Ewing & Cervero, 2010), or 

using some special measurements of the built environment that are not comparable to 

other studies (e.g. transform the continuous measure of the built environment into 

categorical variables). 
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Table 2-2 Studies published between Jan 2010 and Jan 2016 

 Study sites Methods Controls Self-

selection  

In meta-analysis?  

(Reason if no) 

(Zegras, 2010) Santiago de Chile, U.S. OLS /MNL SE/OT No Yes 

(Boarnet, Forsyth, Day, & 

Oakes, 2011) 

Irvine Minnesota, U.S. - - - No (does not provide sufficient 

mean values and uses detailed 

descriptors of pedestrian 

environment which are not 

comparable with other studies) 

(Boarnet, Joh, Siembab, 

Fulton, & Nguyen, 2011) 

Los Angeles, U.S. NBR/PRR SE/AT Yes Yes 

(Tracy et al., 2011) Buffalo, New York, U.S. - - - No (does not provide sufficient 

mean values) 

(Cao & Fan, 2012) North Carolina, U.S. - - - No (density is treated as 

categorical - high density/low 

density) 

(De Vos, Derudder, Van 

Acker, & Witlox, 2012) 

Flanders, Belgium - - - No (does not directly analyse the 

influence of the built 

environment) 

(Joh et al., 2012) Los Angeles, U.S. NBR SE/CR No Yes 

(McCormack et al., 2012) Perth, Australia - - - No (built environment features 

not comparable to other studies) 

(Nasri & Zhang, 2012) 6 metropolitan areas, U.S. - - - No (does not provide sufficient 

mean values) 
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 Study sites Methods Controls Self-

selection  

In meta-analysis?  

(Reason if no) 

(Salon et al., 2012) - - - - No (literature review) 

(Susilo et al., 2012) UK - - - No (does not provide sufficient 

mean values) 

(T. Wang & Chen, 2012) Puget Sound, U.S. - - - No (uses structural equation 

models) 

(Witten et al., 2012) Christchurch and 

Wellington and Waitakere 

and North Shore in New 

Zealand 

HLM SE/AT/OT Yes Yes 

(Aditjandra et al., 2013) Tyne and Wear, North East 

England 

- - - No (does not provide sufficient 

mean values) 

(Freeman et al., 2013) New York, U.S. - - - No (uses a combined walkability 

scale) 

(Giles-Corti et al., 2013) Perth, Australia - - - No (built environment changes 

are represented in discrete 

numbers) 

(Gim, 2013) - - - - No (literature review) 

(Kamruzzaman et al., 2013) Brisbane, Australia - - - No (does not provide sufficient 

mean values) 

(Millward, Spinney, & Scott, 

2013) 

Halifax, Canada - - - No (does not include built 

environment variables) 

(Scheiner & Holz-Rau, 2013) Cologne, Germany - - - No (uses structural equation 

models) 
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 Study sites Methods Controls Self-

selection  

In meta-analysis?  

(Reason if no) 

(Song, Preston, & Brand, 

2013) 

Cardiff, Kenilworth and 

Southampton, UK 

FLG SE No Yes 

(Ellder, 2014) Sweden - - - No (uses multilevel regression) 

(Guerra, 2014) Mexico City, Mexico TOR/LGR/OLS SE No Yes 

(Hong, Shen, & Zhang, 

2014) 

Puget Sound, U.S. - - - No (does not provide sufficient 

mean values) 

(Knuiman et al., 2014) Perth, Australia - - - No (uses ‘whether conduct any 

transport walking’ as the 

dependent variable, which is not 

comparable to other studies) 

(Lee, Nam, & Lee, 2014) Houston-Galveston, U.S. MNL SE No Yes 

(Cao, 2015a) Twin city, U.S. OLR SE/AT Yes Yes 

(Cao, 2015b) Twin city, U.S. OLR SE/AT Yes No (uses ‘urban’ and ‘suburban’ 

to indicate the built 

environment) 

(Cho & Rodriguez, 2015a) Twin cities and Montegory 

County, U.S. 

- - - No (uses categorical variables to 

indicate the built environment) 

(Cho & Rodriguez, 2015b) Washington, U.S. - - - No (uses categorical variable to 

indicate the built environment) 

(De Vos, 2015) Flanders and Netherlands - - - No (descriptive analysis) 

(Eom & Cho, 2015) Seoul, Korea - - - No (Asian city) 

(Ewing et al., 2015) 15 regions, U.S. HLM/LGR/OLS/

NBR 

SE No Yes 
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 Study sites Methods Controls Self-

selection  

In meta-analysis?  

(Reason if no) 

(Jahanshahi, Jin, & Williams, 

2015) 

UK - - - No (uses structural equation 

models) 

(Kim & Wang, 2015) Hamilton County, Ohio, 

U.S. 

- - - No (uses multilevel regression 

and does not provide sufficient 

mean values) 

(Lamiquiz & Lopez-

Dominguez, 2015) 

Madrid, Spain - - - No (does not provide sufficient 

mean values) 

(Manaugh & El-Geneidy, 

2015) 

Montreal, Quebec, Canada - - - No (does not include built 

environment variables) 

(Merlin, 2015) U.S. - - - No (does not provide sufficient 

mean values and focuses on 

nonwork activity participation 

only) 

(Naess, 2015) - - - - No (qualitative) 

(Nasri & Zhang, 2015) 19 metropolitan areas, U.S. - - - No (does not provide sufficient 

mean values) 

(Salon, 2015) California, U.S. TOR/ OLS /MNL SE Yes Yes 

(Sarkar et al., 2015) London, UK - - - No (built environment features 

are transformed into quartiles) 

(L. Yang et al., 2015) Missouri, U.S. - - - No (does not provide sufficient 

mean values) 

(Klinger & Lanzendorf, 

2016) 

Germany - - - No (does not provide sufficient 

mean values and the built 
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 Study sites Methods Controls Self-

selection  

In meta-analysis?  

(Reason if no) 

environment features used are 

not comparable with other 

studies) 

Note: I use the following abbreviation 

Method: 

FLG = fractional logit model 

HLM = hierarchical linear modelling 

LGR = logistic regression 

MNL = multinomial logit model 

NBR = negative binomial regression 

OLR = ordered logit regression 

OLS = ordinary least squares 

PRR = probit regression 

TOR = Tobit regression 

Controls: 

AT = attitudinal variables 

CR = crime variables 

OT = other variables 

SE = socioeconomic variables 
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It should be noted that this analysis also runs the common risk of meta-analysis that 

‘put orange and apple in the same basket’, which refers to the problem that dissimilar 

studies and variables are combined (Martinussen & Kroger, 2013). For instance, 

following the practice of Ewing and Cervero (2010), results on walk mode choice and 

walk trips per person are mixed, as well as results with various measurements of land 

use diversity (e.g. job-housing balance, entropy index, distance to nearest store, etc.). 

However, such mix can hardly be avoided, to acquire a reasonable minimum sample 

size. In order to fully inform the readers of potential bias, the elasticities from individual 

studies are also presented, with descriptions of the dependent and independent variables 

(see Appendix A). 

Table 2-3 Elasticity estimation formulas 

Regression specification Elasticity 

Linear 
β ∗

𝑥

𝑦
 

Log-log β 

Log-linear β ∗ 𝑥 

Linear-log β

𝑦
 

Logistica 
β ∗ 𝑥(1 − (

𝑦

𝑛
)) 

Poisson β ∗ 𝑥 

Negative Binomial β ∗ 𝑥 

Tobitb 
β ∗

𝑥

𝑦
 

Reference: (Ewing & Cervero, 2010) 

Note: β is the correlation coefficient on the built-environment variable of interest, 𝑦 the 

mean value of the travel variable of interest, and 𝑥 the mean value of the built environment 

variable of interest. 

a (
𝑦

𝑛
) is the mean estimated probability of occurrence. 

b Applied only to positive values of the Tobit distribution. 

 

Following the practice of Ewing and Cervero (2010), weighted average elasticities are 

calculated from individual studies using sample size as the weighting factor. The 

elasticities are estimated between travel outcomes and built environment features that 

are frequently analysed, so that a sample of at least three studies can be available. For 
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each dependent/independent variable pair, two elasticities are compared: one from 

studies published before 2010 (directly obtained from Ewing & Cervero, 2010) and one 

updated analysis plus studies published between 2010 and 2016. 

2.3.2  Results 

Table 2-4 shows the results of elasticity estimation, which are calculated from the 

individual results presented in Appendix A. The weighted average elasticities on VMT 

turn out to be relatively stable when later studies are added to the estimates. The 

elasticities of five of the ten built environment factors show differences smaller than 

0.02 between the updated estimates and the original ones produced by Ewing and 

Cervero (2010). The largest differences are 0.05, which are the elasticities on the job 

accessibility by auto and the percentage of four-way intersections.  

 

The results turn out to be less stable on walking and transit use. The updated estimates 

can be more than two times of the original estimates or even with an opposite sign. Part 

of the reason could be that the criteria of consistency in the measurement of dependent 

and independent variables is relaxed when dealing with walking and transit use, since 

otherwise there cannot be enough studies to support the analysis. For instance, only 

studies using total VMT as the dependent variable are included in the analysis on VMT, 

while those using commute or non-commute VMT are excluded. However, for walking 

and transit use, studies on commute or non-commute trips are mixed with those on all 

types of trips (see the Appendix of Ewing and Cervero, 2010). Moreover, the instability 

of the influence itself could also be part of the reason. Substantial differences can be 

observed among individual results, even between those using quite consistent 

measurements of dependent and independent variables. For instance, the elasticity of 

population density on walk/bike mode choice for nonwork trips is 0.48 in Lee et al., 

2014, in contrast to 0.01 in Rajamani et al., 2003; the elasticity of job density on transit 

mode choice for work trips is 0.35, in contrast to 0.09 in Zhang, 2004 (see Table A-6 

and Table A-11 in Appendix A).  
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In summary, existing findings seem to be more consistent in the effect sizes of the built 

environment on VMT. Although these results should be only used as ballpark estimates 

(Ewing & Cervero, 2010), we can more confidently draw the results on VMT to make 

further implications. I will not discuss in detail about the relative strongness of various 

built environment features and their applications in the planning practice, since Ewing 

and Cervero (2010) had already written a lot on these issues. My focus will be to use 

these results as the ‘benchmark’, since all the studies included in this meta-analysis are 

based on non-Asian cities (most North American or European, few Oceanian), for a 

comparison with my own empirical results on Beijing later in the thesis. 

 

Table 2-4 Summary of elasticities derived from existing studies 

 All studies Studies before 2010a 

 
Number of 

studies 

Weighted 

average 

elasticity 

Number of 

studies 

Weighted 

average 

elasticity 

On VMT     

Household/population density 14 -0.04 9 -0.04 

Job density 7 -0.03 5b 0 

Land use mix (entropy index) 14 -0.07 10 -0.09 

Jobs-housing balance 5 -0.03 4 -0.02 

Street/intersection density 11 -0.09 6 -0.12 

%4-way intersections 4 -0.07 3 -0.12 

Job accessibility by auto 8 -0.15 5 -0.20 

Job accessibility by transit 4 -0.07 3 -0.05 

Distance to downtown 5 -0.22 2c -0.22 

Distance to nearest transit stop 8 -0.05 5b -0.05 

On walking     

Household/population density 18 0.15 10 0.07 

Job density 11 0.14 6 0.04 

Commercial floor area ratio - - 3 0.07 

Land use mix (entropy index) 19 0.28 7d 0.15 

Jobs-housing balance - - 4 0.19 

Distance to a store - - 5 0.25 

Street/intersection density 12 0.40 7 0.39 

%4-way intersections 8 0.30 5 -0.06 

Job within one mile - - 3 0.15 

Distance to nearest transit stop 4 0.10 3 0.15 
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On transit use     

Household/population density 13 0.15 10 0.07 

Job density 8 0.07 6 0.01 

Land use mix (entropy index) 9 0.26 6 0.12 

Street/intersection density 5 0.41 4 0.23 

%4-way intersections 6 0.48 5 0.29 

Distance to nearest transit stop - - 3 0.29 

a This part is from the work of Ewing and Cervero (2010). 

b Was six in the published paper, however I can only five from the material provided by the 

authors. 

c Was three in the published paper, however I can only two from the material provided by the 

authors. 

d Was eight in the published paper, however I can only seven from the material provided by 

the authors. 

2.4 The built environment in activity-based travel models 

As mentioned in the introduction, the activity-based modelling approach can be 

developed into a helpful tool for the analysis of built environment-travel relationship, 

with special strength in simulating the detailed behavioural processes. Activity-based 

models have been put forward as a superior alternative to the widely-used four-step 

models, which was the dominant method in the field of transport modelling (McNally, 

2007; Rasouli & Timmermans, 2014a; Yasmin et al., 2015; Yasmin, Morency, & 

Roorda, 2017). The four-step model is a kind of spatial interaction model that predicts 

the aggregate trip productions and trip attractions of traffic zones based on the 

propensity to travel and the travel impedance (time and/or cost), which finds its 

theoretical roots in social physics (Batty, 2009; McNally, 2007). The main critique of 

four-step models lies in that it is aggregate in nature and does not involve any 

behavioural mechanism—the unit of measurement is not an individual, but rather the 

number of trips emanating from any particular zone (Rasouli & Timmermans, 2014a). 

As a consequence, the lack of behavioural mechanism also makes four-step models 

patently inadequate when it comes to accounting for the effects of the built environment 

on person travel (Ewing et al., 2015). 
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The major advantage of activity-based model is claimed to be the behavioural realism 

and the integrity, which allows for a comprehensive prediction of the sequence of 

activities and the associated travel, where, when, for how long, subject to a set of spatial, 

temporal and institutional constraints (Acheampong & Silva, 2015; Rasouli & 

Timmermans, 2014a). This modelling approach provides a means of forecasting the 

impacts of a given policy at the disaggregate level, so that a wider set of more detailed 

policies can be tested in ways that are generally infeasible with the conventional four-

step approach (Bhat et al., 2004; Goulias, 2002).  

 

Although practical models in this strand started to increase since the 1990s, particularly 

after 2000, the theoretical underpins can be traced back to the 1970s. Chapin (1968) 

first put forward the idea to relate human activity systems to the spatial structure of the 

city as a critique to the disposition to rely wholly on land rent theory and the market 

mechanism in the study of urban structure and processes. Hägerstrand (1970) 

introduced the time-space concept which also emphasised the importance of 

understanding the micro-situation of human activities in studying the large scale 

aggregate outcomes such as traffic generation.  

 

Activity-based models typically fall into one of two categories: utility-maximising 

econometric models and computational process models. The former involves using 

systems of equations to capture the relationships among activity and travel attributes, 

and to predict the probability of decision outcomes (Bhat et al., 2004). The latter 

approach is, on the other hand, a computer program implementation of a production 

system model, which is a set of rules in the form of condition-action (if-then) pairs that 

specify how a task is solved (Gärling, Kwan, & Golledge, 1994; Shabanpour, 

Javanmardi, Fasihozaman, Miralinaghi, & Mohammadian, 2017). However, it is 

important to note that the above two approaches have been neither exclusive nor 

exhaustive. Several other approaches, including: (a) time-space prisms and constraints, 

(b) operations research/mathematical programming approaches, and (c) agent-based 
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approaches have been employed, either in combination with the above approaches or 

separately, to develop activity-based model systems (Pinjari & Bhat, 2011). 

 

This review is not going into the details of the many paradigms, frameworks and 

techniques in activity-based modelling, which are well reviewed by Henson, Goulias, 

& Golledge (2009), Pinjari & Bhat (2011) and Rasouli & Timmermans (2014), etc. 

Instead, I will particularly focus on the treatment of built environment features in the 

existing model systems, e.g. what built environment features are included and how they 

are accounted for in the behavioural process. This issue is reviewed and summarised 

based on the models that emerged or are actively updated after 2000, which may not be 

exhaustive, but it is not very possible that highly influential and referenced models 

could be left out (see Table 2-5). 

 

It turns out that most existing model systems include only zonal ‘size’ variables in the 

aspect of built environment, such as population, employment by sectors or number of 

commercial establishments. Size variables are usually used to weight the likelihood for 

a zone to be selected as the location of an activity, either through simple statistical 

distribution, or econometric models, or some other functions. This is conceptually 

similar to four-step models which estimate the attractions of traffic zones and distribute 

travel demands based on zonal ‘size’ characteristics (McNally, 2007). When a model 

incorporates a dynamic module of route choice and traffic flow estimation, the road 

network can also be considered as an included built environment feature (e.g. in 

RAMBLAS, MATSIM). The SACSIM model (and probably other models in the same 

‘family’) takes most account of built environment features. It is related to the fact that 

the model system is composed of a series of discrete choice models, which is 

particularly convenient and straightforward for the inclusion of an extended set of 

explanatory variables. Nonetheless, to the author’s knowledge, the ‘D-variables’ in the 

built environment-travel research as mentioned before are never fully accounted for in 

existing model systems.  
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A reason for this gap could be that there are basically two groups of people working in 

the two fields: those interested in the impacts of nuanced built environment features are 

more urban planning and design oriented, while those building models tend to have a 

stronger background in transport planning and civil engineering. Therefore, my 

research will build on this gap and link the activity-based modelling approach with the 

analysis of the built environment-travel relationship. The development of an activity-

based model that takes full account of the built environment will, on one hand, improve 

the comprehensiveness and realism of travel modelling, and on the other hand, enable 

the analysis of the detailed and decomposed influence of the built environment on the 

behavioural processes of daily travel. 

 

Table 2-5 Summary of the inclusion of built environment features in existing activity-

based models 

Model names and key 

references 

What built environment features are included and how 

RAMBLAS 

(Veldhuisen, Timmermans, 

& Kapoen, 2000) 

Features: Land use per zone, population per zone, dwellings 

by type 

How: The destinations for shopping and services are drawn 

based on the distribution of employment in the relevant 

services. The destinations for social participation and social 

contacts are drawn based on the distribution of households.  

SIMAP  

(Kulkarni & McNally, 

2000) 

Features: density by land use 

How: to assign a selection likelihood to candidate activity 

locations. 

CEMDAP  

(Bhat et al., 2004) 

Features: zone-level land use, zonal basic/service/retail 

employment levels 

How: as independent variables in the econometric model for 

household activity-generation and activity location choice. 

PCATS & FAMOS (which 

incorporates PCATS as the 

activity-travel module) 

(Kitamura, 1996; Pendyala, 

Kitamura, Kikuchi, 

Yamamoto, & Fujji, 2005) 

Features: zone size, population density, commercial 

employment 

How: as explanatory variables in the nested logit model of 

destination-mode choice. 

TASHA & ILUTE (which 

incorporates TASHA) 

Features: population per zone, employment per zone, 

whether the zone is the city core 
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(Miller & Roorda, 2003; 

Roorda, Miller, & Habib, 

2008; Salvini & Miller, 

2005) 

How: to estimate the probability of choosing a zone as the 

location of an activity. 

SACSIM  

(Bowman & Bradley, 

2005)b 

 

Features: mixed use density, intersection density, purpose-

specific size in parcels, parking and employment mix, 

accessibility from home, accessibility to nearest transit stop 

How: as explanatory variables in the econometric models 

for car ownership, activity generation, mode choice and 

destination choice. 

AURORA & PUMA 

(which incorporates an 

updated version of 

AURORA)  

(Ettema, de Jong, 

Timmermans, & Bakema, 

2007) 

Features: NA 

How: to calculate the attractiveness of a location, which is 

then used to model the probability of location choice. 

ALBATROSS & 

FEATHERS 

(Arentze & Timmermans, 

2004; Bellemans et al., 

2010) 

Features: total amount of floor space and number of 

employees per sector per zone 

How: input to the decision tree. 

MATSIM  

(Balmer et al., 2009) 

Features: land-use information about the capacities of 

different activity types like ‘work’, ‘shopping’, ‘education’, 

etc. 

How: to indicate potential activity locations. 

ADAPTS  

(Auld & Mohammadian, 

2009; Auld & 

Mohammadian, 2012) 

Features: zonal size variables, including the land-use area 

and employment by various categories. 

How: as explanatory variables in the multinomial logit 

models of destination choices. 

a Note that many published articles do not describe every detail of the model, therefore the 

information in the table may not be absolutely complete. 

b There are several other models in the same ‘family’, which include models for Portland 

Metro I/II, San Francisco SFCTA, New York NYMTC, Columbus MORPC, Atlanta ARC, etc. 

(Bradley & Bowman, 2006). The inclusion of built environment features can be more or less 

different from in SACSIM. However, it is difficult to find detailed technical documents of 

these models as the technical memos for SACSIM (http://jbowman.net/#Implementation). 

c Full names of the models are: 

RAMBLAS - Regional Planning Model based on the Micro-Simulation of Daily Activity 

Patterns 

SIMAP - Microsimulation of Daily Activity Patterns 

CEMDAP - A Comprehensive Econometric Micro-Simulator for Daily Activity-travel 

Patterns 

PCATS - Prism-Constrained Activity Travel Simulator 

http://jbowman.net/#Implementation
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FAMOS - Florida Activity Mobility Simulator 

TASHA - Toronto Area Scheduling Model for Household Agents 

ILUTE - Integrated Land Use, Transportation, Environment 

SACSIM – Sacramento Activity-based Travel Demand Model 

PUMA - Predicting Urbanisation with Multi-Agents 

ALBATROSS - A Learning Based Transportation Oriented Simulation System 

FEATHERS - Forecasting Evolutionary Activity-Travel of Households and their 

Environmental RepercussionS 

MATSIM – Multi-Agent Transport Simulation 

ADAPTS – Agent-based Dynamic Activity Planning and Travel Scheduling 

2.5 Chapter summary 

This chapter provides a glance at the theories, the empirical findings and the progresses 

in the activity-based modelling approach on the topic of the built environment-travel 

relationship. Besides, building on the notion of utility maximisation in travel decision 

making, a conceptual framework of travel utility changes in relation to changes in the 

built environment and a series of assumptions are proposed on the influence of various 

built environment features on the travel behavior (indicated by the total travel distance 

and VMT), which will be examined against the simulation results in Chapter 6.  

 

Most existing research employ statistical methods and regress between synthesised 

measurements of travel behaviour (e.g. VMT, total walking distance) and built 

environment and socioeconomic conditions, which can be termed as a behaviourally 

‘top-down’ analysis. On the contrary, there is hardly any research that takes a 

behaviourally ‘bottom-up’ approach that examines the decomposed influence of the 

built environment on various behavioural facets of daily travel. This corresponds to the 

major gap to be addressed in this research as mentioned in the Introduction. This gap is 

reinforced by the fact that the built environment is usually not sufficiently accounted 

for in existing activity-based models, which have the strength in simulating the 

behavioural process of daily activity-travel. This research will therefore build upon this 

gap and link the activity-based modelling approach with the analysis of the built 

environment-travel relationship, which will enable the analysis of the detailed and 
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decomposed influence of the built environment. 

 

Empirically, significant influence is found of the built environment on daily travel, but 

questions remain about the sizes of the influence and the relative importance of various 

built environment features, which corresponds to the second gap mentioned in the 

Introduction. This gap is partly addressed by the meta-analysis in Section 2.3. The 

meta-analysis updates the work of Ewing and Cervero (2010) and examines the stability 

of the weighted average elasticities from existing research. The results will be further 

used as representation of the built environment-travel relationship in European and 

American cities and be compared with my own simulation results on Beijing later in 

the thesis (see Chapter 6). 
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Chapter 03 Data collection and pre-

processing 

3.1  The study area 

As mentioned in the Introduction, Beijing is selected as the case of study as an example 

of high-density and rapid-growing Asian city, which provides a quite different urban 

context comparing with North American and European cities that have been extensively 

studied. The municipality of Beijing covers an area of 16,410 square kilometres that 

includes both urban and rural lands. The basic urban structure is shaped by circular 

freeways: starting from the 2nd ring road that surrounds the old city core, and expanding 

to the 6th ring road that connects town centres of outer-urban districts (Z. Yang, Cai, 

Ottens, & Sliuzas, 2013). In terms of economic activities, landscape and lifestyle, the 

4th ring road could originally be roughly regarded as the boundary between the urban 

built-up and the peri-urban areas of the municipality. However, the urbanised territory 

has dramatically expanded alongside the 5th ring road since the 1990s (Z. Yang et al., 

2013). Therefore, the area within the 5th ring road is selected as the study area in this 

research, which is approximately 670 square kilometres and covers most of the built-

up area in the city. The study area is home to around nine million people according to 

the Sixth National Population Census (Sixth National Population Census Office of State 

Council, 2010), meaning an average density of 13,400 people per square kilometre. 
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Figure 3-1 Base map of Beijing (coloured area indicates the study area) 

Source: adapted from (P. Zhao, 2011) 

3.2  Data sources 

3.2.1  Data on travel behaviour 

The data on travel behaviour in Beijing come from two field surveys: a large 

government-administered survey on people’s 24-hour travel records and a small 

questionnaire survey on the decision making in daily travel conducted by myself.  

 

The travel diary survey was conducted by the transport branch of the municipal 

government in 2010, as part of a series of large travel diary surveys in Beijing that have 

been conducted successively in 1986, 2000, 2005 and 2010. The survey area was the 

whole city, but a larger sampling weight was assigned to the central city according to 
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the population density. The sample size was approximately 47,000 households 

containing around 116,000 individuals, which corresponds to a sampling rate of 1.5% 

of the total population. Both registered, long-term residents and unregistered migrants 

were included in the survey. The interviewees were selected using systematic sampling. 

The survey took the form of face-to-face survey that was fully administrated by 

interviewers, who read the questions to respondents and recorded the answers. It was 

required that all household members should be present so that the travel of the entire 

household can be recorded. The day of survey was evenly distributed from Monday to 

Sunday. The sampling was carefully controlled so that the samples collected on each 

day were spatially evenly distributed.  

 

The spatial unit of the travel record is the Transport Analysis Zones (TAZ), which 

means that all the trip origins and destinations were recorded in TAZs instead of the 

exact coordinates. The whole city is divided into 1,911 TAZs by the transport authority. 

652 of them are in the study area. The sizes of the TAZs are generally smaller in the 

city centre and larger in the inner and outer suburbs, which range a lot from 0.13 square 

kilometres (sqkm) to 382.03 sqkm. The variance in the sizes of the TAZs is much 

smaller in the study area, from 0.13 sqkm to 5.25 sqkm. The TAZs are delineated based 

on the following principles: 

- They do not conflict with administrative boundaries. 

- They are neither too big so that the traffic OD matrix can be generated in a high 

spatial resolution, nor too small so that there will not be too much random error. 

- They are smaller where the density is high and the road network is dense (in the city 

centre) and larger where the density is low and the road network is sparse (in the 

suburbs). 

- They do not extend across ‘natural boundaries’ such as rivers, railways. 

- They do not extend across main roads and express ways. 

- Special zones are delineated into separate TAZs such as the rail stations, large parks, 

and tourist sites. 
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Figure 3-2 TAZs in the whole city and the study area 

 

Figure 3-3 Spatial distribution of samples 

 

The following information is recorded in the survey: 

Demographic and socioeconomic information (household-level) 

- Home location (in the unit of TAZ); 

- Vehicle ownership, including car, motorcycle, bicycle, electric bicycle; 

- Property right of the apartment/house that the interviewees are living in, choose 
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from self-owned, owned by a state-owned enterprise, rented, borrowed and others; 

- Building type of the apartment/house that the interviewees are living in, choose 

from apartment, informal apartment, detached or semi-detached house and 

courtyard houses; 

- Type of the apartment/house that the interviewees are living in, choose from 

commercial housing, houses built up by state-owned enterprises, affordable housing 

and others; 

- Floor area of the apartment/house that the interviewees are living in; 

- Household annual income. 

 

Demographic and socioeconomic information (individual-level) 

- Gender; 

- Age; 

- Residential registration status1; 

- Employment status, choose from full-time worker, part-time worker, full-time 

student, part-time student, pre-school child, retired, unemployed and others; 

- Level of education, choose from pre-school, primary school, junior school, high 

school, technical school, bachelor and master and above. 

 

Travel diary 

- The start time of each trip in the day; 

- The end time of each trip in the day; 

- The origin of each trip in the day (in the unit of TAZ); 

- The destination of each trip in the day (in the unit of TAZ); 

- The purpose of each trip in the day, choose from sleeping, dining out, working, 

doing business, studying, personal business, housework, entertainment/sports, 

                                                 

1 China imposes a residential registration system, in which each individual is officially registered to a place to 

live. If an individual migrates to a place where he/she is not registered at, he/she may not have access to a same 

level of public service or other rights as registered residents. 
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shopping,  meeting friends, dropping off/picking up people, escorting people, 

dropping off/picking up goods; 

- The travel mode of each trip in the day, choose from on foot, by car, by freight car, 

by motorcycle, by subway, by bus, by taxi, by shuttle bus, by school bus, by illegal 

taxi, by bicycle, by electric bicycle and others. 

 

Table 3-1 Summary of the interviewees 

Demographic and socioeconomic 

characteristics 

Distribution 

Household-level  

Car ownership 29.0% 

Motorcycle ownership 3% 

Bicycle ownership 63.0% 

Electric bicycle ownership 14.0% 

Property right of the apartment/house 

that the interviewees are living in 

Self-owned: 68.9% 

Owned by a state-owned enterprise: 12.8% 

Rented: 16.1% 

Borrowed: 1.6% 

Others: 0.6% 

Building type of the apartment/house 

that the interviewees are living in 

Apartment: 84.4% 

Informal apartment: 2.4% 

Detached or semi-detached house: 0.2% 

Courtyard houses: 13.0% 

Type of the apartment/house that the 

interviewees are living in 

Commercial housing: 30.4% 

Houses built up by state-owned enterprises: 39.1% 

Affordable housing: 4.7% 

Others: 25.8% 

Floor area of the apartment/house 

that the interviewees are living in 

<50: 21.8% 

50-75: 40.3% 

75-100: 22.0% 

>100: 15.9% 

Household annual income <50 thousand RMB: 65.0% 

50-100 thousand RMB: 27.6% 

100-150 thousand RMB: 5.0% 

150-200 thousand RMB: 1.4% 

200-250 thousand RMB: 0.5% 

250-300 thousand RMB: 0.2% 

>300 thousand RMB: 0.3% 

Individual-level  

Gender Male: 47.9% 



63 

 

Female: 52.1% 

Age <=18: 10.7% 

19-40: 33.6% 

41-60: 35.4% 

>60: 20.3% 

Residential registration status Registered in the same district of the current 

residence in Beijing: 72.3% 

Registered in another district in Beijing: 10.1% 

Registered in another place in China: 17.4% 

Foreigner: 0.1% 

Others: 0.1% 

Employment status Full-time worker: 45.9% 

Part-time worker: 1.6% 

Full-time student: 7.3% 

Part-time student: 0.2% 

Pre-school child: 3.9% 

Retired: 29.0% 

Unemployed: 8.3% 

Others: 3.8% 

Level of education Pre-school: 3.9% 

Primary school: 10.1% 

Junior school: 21.6% 

High school: 18.1% 

Technical school: 23.2% 

Bachelor: 17.6% 

Master and above: 3.5% 

No education: 2.0% 

 

It should be noted that although the face-to-face and interviewer-administered survey 

is advantageous in terms of the response rate and the correctness of the contents, it 

could also induce systematic errors. The most common error is that interviewees might 

get impatient and under report deliberately, which could result in an underestimation of 

the total amount of travel, especially short non-motorised trips (Kockelman, 1997). 

Besides, since only a one-day record was taken, occasional trips, which may happen on 

a weekly or monthly basis, are likely to be undersampled (Kockelman, 1997). These 

systematic errors are difficult to be rectified. 

 

The small questionnaire survey was conducted in March and October 2015. The 
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purpose of this survey was to collect information on the process of the decision making 

related to daily activity participation and travel. The sample size was two hundred 

individuals randomly drawn from eight residence compounds, twenty-five interviewees 

in each. The residence compounds were selected at both the city centre and the city 

fringe and covered a housing price range from 24,000 RMB per square metre to 88,000 

RMB per square metre when the survey was conducted, as shown in Figure 3-4 and 

Table 3-2. The sampling of the interviewees aimed to approximate the travel diary 

survey as well as possible. For this purpose, the distributions of gender, age and 

household type were controlled to be consistent with the travel diary survey, as shown 

in Table 3-3. 

 

Figure 3-4 Locations of the selected residences in the small survey 

 

Table 3-2 Housing prices of the selected residences in the small survey 

Residence 
Average Price 

(RMB per square metre) 

Guanghuaxuan 40,000 

Qianmachang Hutong 88,000 

Nanzhugan Hutong 48,000 

Fangqunyuan 39,000 

Xinzhaoyayuan 37,000 

Guanyinjingyuan 24,000 

Fuhuajiayuan 26,000 



65 

 

Huizhongbeili 39,000 

 

Table 3-3 Demographic characteristics of the interviewees in the small survey 

Characteristics Proportion% 

Gender  

  Female 50 

  Male 50 

  Sum 100 

Age  

  19-40 23 

  41-60 38 

  60+ 39 

  Sum 100 

Household type  

Single 12 

Couple 34 

Core family 32 

Others 22 

Sum 100 

 

The questionnaire included two parts: basic information and the information on travel 

decision making. The former included gender, age, household type, car ownership, 

residential registration status, employment status and the level of education. The latter 

was composed of four questions as listed below: 

- What is your first consideration, when you make plans about your activities (except 

work) on weekdays? Choose from ‘what shall I do today’, ‘when shall I go’, ‘shall 

I go by car/subway/bus/walk/..’, ‘where shall I go’ and ‘how far shall I go’. 

What is your second consideration, if you could specify. 

What is your third consideration, if you could specify. 

- What is your first consideration, when you make plans about your activities (except 

work) on weekends? Choose from ‘what shall I do today’, ‘when shall I go’, ‘shall 

I go by car/subway/bus/walk/..’, ‘where shall I go’ and ‘how far shall I go’. 

What is your second consideration, if you could specify. 

What is your third consideration, if you could specify. 

- When deciding about the activity destinations on weekdays, which do you prefer? 



66 

 

Choose from ‘decide all destinations together’ and ‘first decide long-stay/primary 

destinations and then short-stay/intermediate stops’. 

- When deciding about the activity destinations on weekends, which do you prefer? 

Choose from ‘decide all destinations together’ and ‘first decide long-stay/primary 

destinations and then short-stay/intermediate stops’. 

3.2.2  Data on the built environment 

The information on the built environment is drawn from multiple sources, as listed 

below. Section 3.4 will provide detailed explanation on how these data serve the 

measurement of various aspects of the built environment. It should be noted that there 

are time gaps between a few built environment data sets and the travel diary survey due 

to constraints of data availability, which range from one to six years. However, 

considering that the change of the built environment is generally very slow (Batty, 

2013), such time gaps do not seem to pose a major problem for the analysis. The data 

sets are: 

- Population and employment data in 2010 from the Sixth National Population 

Census (Sixth National Population Census Office of State Council, 2010). The 

released data are at the Jiedao (sub-district) level, one of the smallest political 

divisions in China. Jiedao is a larger spatial unit than TAZ, which composes of six 

TAZs in average (there are 109 jiedaos and 652 TAZs within the study area). 
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Figure 3-5 Boundaries of Jiedao and TAZ 

 

- Point of Interest (POI) data in 2011 produced by NavInfo, a digital map producer 

in China. The data include twenty types of interest points, which are government 

buildings, airports/ports, railway and subway stations, bus stops, gas stations, 

parking lots, motorway service areas, highway toll stations, banks, commerce and 

office building, retail facilities, hotels, restaurants and entertainment facilities, 

hospitals, educational institutions, companies, parks and plazas, residences and 

others. Those that are of particular interest for this research are subway stations, bus 

stops, parking lots, retail facilities and restaurants and entertainment facilities. It 

should be noted that, similar to many new types of data, there is not yet thorough 

study on comparing the data with ground truth in the context of China. However, 

an advantage of the NavInfo POI lies in that, unlike voluntarily contributed 

geographic information (VGI), the data collection process was managed and 

controlled by the company and passed the ISO/TS169492 examination (NavInfo, 

                                                 

2 The ISO/TS16949 is an ISO technical specification aimed at the development of a quality management 

system that provides for continual improvement, emphasizing defect prevention and the reduction of variation and 

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/Quality_management_system
https://en.wikipedia.org/wiki/Quality_management_system
https://en.wiktionary.org/wiki/defect
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2009). 

- Land use map in 2004 from the Beijing Master Plan (2004-2020). 

- Open Street Map (OSM) data on road network, retrieved in 2013. Regarding to the 

issue of data quality , a few research have found that OSM information can be fairly 

accurate comparing with Ordnance Survey or ground truth (Haklay, 2010; 

Mashhadi, Quattrone, Capra, & Mooney, 2012). 

- Data on parking lots and parking spaces, obtained from 51Parking in 2013, a service 

provider for real time parking information. 

- Street view images obtained from Baidu Map, the Chinese equivalent of Google 

Map. The images were requested at an interval of 200 metres along all the streets 

in the study area in February 2016, resulting in 360,796 images in total (800*500 

pixels). The treatment of the images will be explained in the next chapter. 

3.2.3  Other data sets 

Two other data sets are employed in this research. The first is the housing prices of 

residence compounds (RMB per square metre) in Beijing in 2011, obtained from the 

largest real estate website in China, Fang.com. The data are used in conjunction with 

the housing information of the interviewees in the travel diary survey to estimate the 

overall socioeconomic well-being of a household, which will be explained in detail in 

Section 3.3.  

 

The second data set is the travel time between all TAZ pairs (652*652/2=212,552 pairs 

in total, measured from the centroids of TAZs), obtained from Baidu map. This 

information is inputted to the model of destination choice and mode choice as the 

expected travel time using different modes between two locations. The travel time of 

four travel modes are provided by the Baidu map, which are driving, taking public 

transport, cycling and walking. Since the travel time provided by Baidu is real time 

                                                 

waste in the automotive industry supply chain.  

https://en.wikipedia.org/wiki/Supply_chain
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estimate based on the traffic conditions and is subject to fluctuations, the data query 

and download was restricted to non-peak hours and was done at different time points 

for three times to calculate the average. 

3.3 Socioeconomic data pre-processing: creating an 

indicator of overall socioeconomic well-being 

In the travel diary survey, several socioeconomic features are collected for each 

individual and household, which include: the residential registration status, the 

occupation, the education level, the annual income of the household, the vehicle 

ownership, the housing condition and the housing property right. Each of these features 

(except for vehicle ownership) does not seem to be explicitly linked with travel 

behaviour. However, the overall socioeconomic well-being indicated by some of these 

features may exert an influence on daily travel, which may be a combined effect of 

budget, pressure, life style and so on. Therefore, an effort is made in creating an 

indicator of overall socioeconomic well-being for the households in the data set. The 

well-being is analysed at the household-level instead of individual-level considering 

the dependency among household members. 

3.3.1  Methods 

Latent class analysis (LCA) is applied to stratify the sample households into different 

levels of socioeconomic well-being. LCA identifies unmeasured class membership 

from multiple observed characteristics. The number and the sizes of classes are taken 

as unknown. It is similar to standard cluster analysis techniques in that the goal is to 

form segments. However, LCA is more preferable for this task for the following reasons. 

First, LCA assumes the existence of a latent variable that induces spurious relationships 

among the observed variables rather than just looking for similarities (Hagenaars & 

McCutcheon, 2002). This corresponds to the notion that there is a latent social class 
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membership that links to the differences in various socioeconomic features. Second, 

LCA is similar to standard cluster analysis techniques in that the allocation of objects 

to clusters should be optimal according to certain criteria. However, the choice of the 

criterion is more arbitrary in standard cluster analysis (Hagenaars & McCutcheon, 

2002), such as a distance measure that is arbitrarily chosen. Other advantages of LCA 

include providing a probabilistic estimate of object class membership and being more 

flexible in terms of the data type. Due to these advantages, LCA is becoming a more 

popular clustering tool (Hagenaars & McCutcheon, 2002). 

 

When specifying the LCA model, different numbers of latent classes and different 

combinations of variables are tested and compared. The best fitting model is selected 

based on performance indicators which include Akaike’s Information Criterion (AIC), 

Bayesian Information Criterion (BIC), log-likelihood and G-square fit statistics (Linzer 

& Lewis, 2011). Models with low AIC, BIC, G-square fit and a high log-likelihood are 

preferred. The interpretability of the identified classes are also considered in the model 

selection process (Byles et al., 2016; Lanza, Flaherty, & Collins, 2010). The analyses 

is performed using R package ‘poLCA’ (Linzer & Lewis, 2011). 

 

According to prior studies, factors related to socioeconomic differentiation in urban 

China include income, occupation, education level, housing condition and so on (Logan, 

Bian, & Bian, 1999; Wu & Li, 2005). Based on these findings and the data availability 

of the transport survey, the following variables are considered in the latent class analysis.  

- Housing condition: Housing property accounts for nearly 70% of the total assets 

of Chinese households (Li, Luo, Lu, Deng, & Gan, 2016). The housing-price-to-

income ratio was up to 15 in Beijing by 2010 (Tan & Zhao, 2012). Therefore, the 

socioeconomic well-being of a household is largely determined and reflected by 

their housing condition. Four variables related to housing condition are considered 

and tested in the analysis: housing type, housing floor area, housing floor area per 

capita and the market value of the property. The market value of the property is 
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estimated from the housing price data obtained from the largest real estate website 

in China, Fang.com. 

- Car ownership: Despite the fast increase in car ownership in the post-reform era, 

the rate of car ownership was still only 25% in Beijing by 2010 (Beijing 

Transportation Research Center, 2011). Therefore, car ownership may also be 

considered as a representation of a household’s socioeconomic capability. 

- Education: Higher education usually indicates a better income and occupation 

(Bian and Logan, 1996) and higher social status (Wu & Li, 2005). Two relevant 

variables are considered in the analysis: the average education level of all adult 

household members and the highest education level among all adult household 

members. 

 

Table 3-4 Variables considered in LCA 

Variables Values 

Housing floor area 

(square meters, sqm) 

<50, 50~75, 75~100, 100~150, 150~200, >200 

Housing floor area per capita 

(sqm) 

<10, 10~20, 20~30, 30~40, 40~50, 50~60, 

60~70, >70 

Housing type Old one-floor housing, affordable housing, 

matchbox housing, commercial housing 

Housing market value 

(million RMB) 

<200, 200~300, 300~400, 400~600, >600 

Car ownership No car, one car, more than one cars 

Highest education in the household No education, primary school, secondary school, 

high school, technical school, junior college, 

bachelor, post-graduate 

Average education in the household No education, primary school, secondary school, 

high school, technical school, junior college, 

bachelor, post-graduate 

3.3.2  Results 

By testing all possible combinations of these variables and different numbers of clusters, 

it is found that the model performs best (produces the lowest AIC, BIC, G-square fit 

statistics and the highest log-likelihood) when the class number is three. The 
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combination of variables that produce the best performance are the highest education 

in the household, car ownership, housing market value and housing floor area. The three 

classes are labelled as ‘the best-off’ (Stratum 1), ‘the middle class’ (Stratum 2), and ‘the 

least well-off’ (Stratum 3). 

 

The profiles of the three social strata are as follows. Households in the first stratum 

usually have at least one member with a bachelor’s degree or higher. More than half of 

these households own at least one private car. Around seventy percent of these 

households live in an apartment/house (owned or rented) with a market value of more 

than four million RMB. Besides, their apartments/houses are all larger than seventy-

five sqm. In the second stratum, less than half of the households have a member with a 

bachelor’s degree or higher. Around thirty percent of them own a private car. About 

ninety percent of these households live in apartments smaller than seventy-five sqm 

and with market values of less than four million RMB. In the third stratum, only less 

than thirty percent of the households have a member with a bachelor’s degree or higher. 

Less than twenty percent of the households own a private car. Most of these households 

live in apartments/houses smaller than fifty sqm and with market values of less than 

two million RMB. 
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Figure 3-6 Socioeconomic characteristics of the three social groups identified by LCA 
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3.4  Built environment data pre-processing: measuring 

land use-related features using GIS 

As mentioned before, in travel research, the built environment have often been 

described through features named with words beginning with ‘D’. Six types of ‘D-

variables’ have been mentioned by existing research as potentially influential to travel 

behaviour, followed by a seventh ‘D’, street facade design, introduced by this research. 

This section will deal with the measurements of the first six D-variables, which are two-

dimensional and land use-related, while the measurement of the street facade design, 

which involves more advanced methods, will be explained in the next chapter. 

3.4.1  Measuring density 

Density is always measured as the variable of interest per unit of area, which can be 

population, employment, dwelling units, or something else (Ewing & Cervero, 2010). 

In this research, four variables of interest are considered, which are population, 

employment, retail facilities and entertainment facilities (including restaurants). The 

data for population and employment density come from the Sixth National Population 

Census (Sixth National Population Census Office of State Council, 2010). The data for 

retail and entertainment density come from the POIs produced by NavInfo. 

 

Actually, for retail and entertainment facilities, the difference between density and 

accessibility is vague, since a high density of facilities in an area is usually related to a 

high accessibility to facilities within this area, which is sometimes terms as ‘local 

accessibility’ (Handy, 1993). Therefore, while the measurements of population and 

employment density are straightforward, five indicators of retail and entertainment 

density/accessibility were tested and compared, which were: 

- Density, calculated as the number of facilities in a TAZ divided by the area of the 

TAZ; 
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- Accessibility to facilities within 400 metres, calculated as the average number of 

facilities within a 400-metre radius from sample points in a TAZ, which are selected 

using a 200m * 200m grid; 

- Accessibility to facilities within 800 metres, calculated as the average number of 

facilities within an 800-metre radius from sample points in a TAZ, which are 

selected using a 200m * 200m grid; 

- Accessibility to facilities within 400 metres at the TAZ centroid, calculated as the 

number of facilities within a 400-metre radius from the centroid of a TAZ; 

- Accessibility to facilities within 800 metres at the TAZ centroid, calculated as the 

number of facilities within an 800-metre radius from the centroid of a TAZ. 

 

The choice of the 400-metre and 800-metre radius is based on previous findings on 

travel behaviour. 400 metres is identified to be the median distance of walking (Porta, 

Romice, Maxwell, Russell, & Baird, 2014). Besides, it is long held belief that a spatial 

scale of 400 metres represents the local walkable neighbourhoods (Appleyard, 1980; 

Sarkar et al., 2015). 800 metres is also a commonly used distance for creating buffers 

in the physical activity literature as an ‘easy walking distance’ (Colabianchi et al., 2007). 

It turns out that all of the five measurements are highly correlated (Pearson’s correlation 

coefficient > 0.8). Therefore, the simplest measure, the density, is chosen. 

 

Table 3-5 Correlation matrix of the five measurements of entertainment density 

 Den Ave_acc_400 Ave_acc_800 Cen_acc_400 Cen_acc_800 

Den 1 0.94 0.89 0.88 0.89 

Ave_acc_400 - 1 0.97 0.93 0.97 

Ave_acc_800 - - 1 0.87 0.99 

Cen_acc_400 - - - 1 0.86 

Cen_acc_800 - - - - 1 
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Figure 3-7 Population density 

 

Figure 3-8 Employment density 
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Figure 3-9 Retail density 

 

Figure 3-10 Entertainment density 

3.4.2  Measuring diversity 

Diversity measures pertain to the number of different land uses in a given area and the 

degree to which they are represented in land area, floor area, or employment (Ewing & 

Cervero, 2010). The measures of diversity range from simple functions of population 

to employment ratios (e.g. Rajamani et al. 2003; Bento et al. 2005) to more complex 

methods, such as zonal entropy-based methods (Greenwald, 2006). In this research, the 
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entropy measure is used since it involves more types of urban functions than the simple 

job-residence mix and is more widely used in travel studies (Ewing & Cervero, 2010). 

The entropy is measured in terms of the land area in this research, which is derived 

from the land use map of 2004 published with the Beijing Master Plan (2004-2020). It 

should be noted that there is a temporal gap between the land use data and the travel 

survey is the largest in this research. However, because the land use information is 

treated as highly confidential in Beijing, the land use map in 2004 is already the most 

recent dataset that is publicly accessible. The seventeen land use types in the map3 are 

collapsed into five functional categories, which are residential, commercial, educational, 

public service, and natural (greenery and waterbody). The entropy is calculated as 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑗=∑ −𝑝𝑖𝑗 ∗ 𝐿𝑛(𝑝𝑖𝑗)5
1  

Where 𝑝𝑖𝑗 denotes the proportion of the land area of function i in 𝑇𝐴𝑍𝑗. The value 

ranges from 0, which indicates single-use environments, to 1.61, which indicates 

perfect mix. 

 

Figure 3-11 Land use mix 

                                                 

3 The seventeen land use types are residence, public facility, commerce and finance, education, sports, industry, 

storage, railway, airport, road, square and parking lot, municipal facilities, greenery, special use, waterbody, 

agriculture, mix use. 
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3.4.3  Measuring destination accessibility 

Destination accessibility measures the ease of access to trip attractions (Ewing & 

Cervero, 2010). It can be ‘local’ or ‘regional’ (Handy, 1993), which corresponds to the 

number of attractions in small or large buffer zones from a location. The measurements 

of accessibility range from simple distance to the nearest attractions to formulas that 

integrate the size of attractions and the impedance of travel for a given location (Handy, 

1993). Although the latter measurements can provide a more comprehensive analysis, 

the indexes created from these formulas are less straightforward for planning policy 

making. Therefore, the simple distance measurement is used in this research. Since 

‘local’ accessibility is already accounted for by the retail and entertainment density, two 

types of more ‘regional’ accessibility are measured here: the accessibility to commercial 

clusters and the accessibility to the city centre (can actually be considered as a ‘global’ 

accessibility). Commercial clusters refer to the concentrations of retail and 

entertainment facilities. This feature is measured in addition to the retail and the 

entertainment densities based on the notion that clusters may provide extra attraction to 

people since multi-tasks can be completed within short distance and a larger variety of 

goods and services can be found. While the measurement of the accessibility to the city 

centre is quite straightforward, which is simply the distance, the measurement of the 

accessibility to commercial clusters needs further explanation. 
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Figure 3-12 Distance to the city centre 

 

First of all, commercial clusters need to be properly defined and identified, for which 

purpose the method of DB-SCAN is employed. DB-SCAN is a density-based method 

for discovering clusters in large spatial databases with noise (Ester et al. 1996). Two 

parameters need to be determined in the process: Eps, the search radius of 

neighbourhood, and MinPts, the minimum number of POIs in an Eps-neighbourhood 

(Ester et al. 1996). The clustering result produced with Eps=x and MinPts=y means 

that each point within a cluster should have at least y points within x distance from it. 

Actually, similar results can be produced by various combinations of Eps and MinPts 

values. A large Eps with a large MinPts may produce similar clustering results as a 

small Eps combined with a small MinPts. Therefore, the strategy used in this research 

is to fix the value of Eps to 200 (metres) and adjust the value of MinPts. The result 

produced with Minpt=40 is selected since the clusters are neither too few and too small 

nor too large and too many. 
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Figure 3-13 Clustering results using different parameters 

Note: coloured points are clusters, grey points are those that do not belong to any cluster, 

colours may be reused 

 

After identifying the commercial clusters, two measurements of the accessibility of a 

TAZ to these clusters are tested and compared. The two measurements are: (1) the 

distance from the centroid of a TAZ to the centroid of the nearest commercial cluster, 

(2) the average distance from a group of sample points in a TAZ, which are also selected 

using a 200m * 200m grid, to the centroids of their nearest clusters. These two 

measurements turn out to be perfectly correlated (Pearson’s correlation coefficient = 1). 
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As a result, the former measurement, which is simpler, is selected. 

 

Figure 3-14 Distance to the nearest commercial cluster 

3.4.4  Measuring (road network) design 

As mentioned before, the ‘design’ factors in existing research are usually actually road 

network design (Ewing & Cervero, 2010). Measures include road density, intersection 

density, proportion of four-way intersections, and occasionally also sidewalk coverage, 

average street widths, street trees, or other physical variables that differentiate 

pedestrian-oriented environments from auto-oriented ones (Ewing & Cervero, 2010). 

However, the features related to the pedestrian environment are usually collected 

through expensive field audits, which take a lot manpower and are difficult to be 

implemented in the entire study area in this research. This problem is compensated by 

differentiating different types of roads when measuring road density. Three types of 

roads are considered based on the road hierarchy labelled in the OSM: primary roads, 

secondary roads and tertiary roads, which correspond to different levels of traffic 

volume and traffic speed. Lower-level roads are usually related to a better pedestrian 

environment. The OSM data include thirty labels in total. The mapping between the 

most commonly used labels and the road type in this research is shown in Table 3-6.  
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Table 3-6 Road classification 

Label in OSM Road type in this research 

Tertiary& tertiary link Secondary 

Residential Tertiary 

Service Tertiary 

Footwaya - 

Platformb - 

Secondary Secondary 

Motorway & motorway 

link 

Primary 

Trunk & trunk link Primary 

Unclassified - 

a Footways are not included in the measurement of road density because most of them are 

foot paths in parks and tourist sites, which are not actually part of the road system. 

b Platforms are not included because they are not real roads. 

 

Figure 3-15 Density of primary roads 
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Figure 3-16 Density of secondary roads 

 

Figure 3-17 Density of tertiary roads 

3.4.5  Measuring distance to transit 

Two main types of public transit in Beijing are considered here: bus and subway. The 

locations of bus stops and subway stations are also from the POI data set. For subway, 

the distance to transit is measured as the distance from the centroid of a TAZ to the 
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nearest subway station. The distance from the TAZ centroid is directly used since it is 

already proved that the direct measure from the centroid of a TAZ and the average 

measure from sample points in the TAZ are highly correlated. In terms of bus service, 

the index of bus coverage is more commonly used, which is calculated as the ratio 

between the area in a TAZ that is covered by a certain size of buffer zones of bus stops 

and the total area of the TAZ. Different buffer distances are tested and compared (see 

Figure 3-18). It turns out that the bus coverages calculated using 100, 200 and 300 

metre buffer zones are highly correlated. The Pearson’s correlation coefficients are 0.96 

(100 metre and 200 metre), 0.87 (100 metre and 300 metre) and 0.96 (200 metre and 

300 metre). The median number—200 metre buffer zone is selected. 

 

 

Figure 3-18 Areas of bus coverage using different buffer distances 
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Figure 3-19 Bus coverage 

 

 

Figure 3-20 Distance to the nearest subway station 

3.4.6  Measuring parking supply (demand management) 

The measurement of parking supply is straightforward, which is calculated as the 

number of parking spaces in a TAZ divided by the area of the TAZ. Particularly, the 

number of parking spaces is used instead of parking lots, which provides more accurate 

estimation of the parking capacity of an urban area. 
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Figure 3-21 Density of parking 

3.5  Chapter summary 

This chapter introduces the study area, the data sources and the pre-processing of 

socioeconomic data and land use-related built environment features in the research. The 

study area is set to be the area within the 5th ring road of Beijing, which covers most 

of the built-up area in the city. Multiple data sources are used in this research. The 

information on travel behaviour is drawn from both a large travel diary survey and a 

small survey on travel decision making. The information on the built environment is 

drawn from both conventional census data and government documents (e.g. the Sixth 

National Population Census, the Beijing Master Plan), and the so-called ‘big data’ (e.g. 

POI data, OSM data, online parking data and street view images). 

 

The pre-processing of the socioeconomic information in the travel survey involves 

creating an indicator of the overall well-being of the household. It is based on the notion 

that individual socioeconomic features may not be explicitly linked with daily travel 

behaviour, however, the overall well-being contributed by these factors may exert a 

significant influence on the pattern of daily travel. Latent class analysis is applied to 
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stratify the sample households into three levels of well-being, namely the best-off, the 

‘middle class’ and the least well-off.  

 

The pre-processing of the built environment information includes the measurement of 

two-dimensional, land use-related features (the six ‘Ds’), as well as the features related 

to the third dimension—the street facade (the seventh ‘D’). The latter task is more 

complicated and described separately in the next chapter. Only the former task is 

described in this chapter. Thirteen features that belong to these six ‘Ds’ are measured, 

which are population density, employment density, retail density, entertainment density, 

land use diversity, distance to the city centre, distance to the nearest commercial cluster, 

primary road density, secondary road density, tertiary road density, distance to the 

nearest subway station, bus coverage and density of parking space.



89 

 

Chapter 04  Advanced data pre-

processing: measuring street facade 

features using machine learning 

algorithms 

4.1  Why include street facade features  

As mentioned in the introduction, the built environment features that have been 

examined in existing research are mostly two-dimensional, land use-related ones. The 

features related to the ‘third dimension’—the street facade, have received much less 

attention. However, the street facade, as an important component of the built 

environment, can also exert an influence on daily travel. The potential mechanisms of 

such influence can be both psychic and functional. Psychically, certain qualities of the 

street facade may foster positive or negative feelings, which connect or disconnect 

individuals to places (Sarkar et al., 2015). Positive feelings to the urban space are 

supposed to create the so-called ‘walkable’ places and induce more physical activity 

and active travel (Witten et al., 2012). Functionally, certain design and layout of the 

street facade may also relate to higher convenience and utility of travel, e.g. facade that 

provides plenty of space for street shops. 

 

For the psychical impact, the fields of architecture and urban design have made many 

efforts in identifying the key qualities that contribute to people’s subjective experience. 

For instance, Moughtin (2003, p. 59) wrote that ‘order, unity, balance, symmetry, scale, 

proportion, rhythm, contrast and harmony are among the important tools used to define 

good architecture’. In urban design, rules of enclosure, coherence, variety and so on are 

widely acknowledged and discussed in many design handbooks as well as governments’ 
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design codes (see for instance, Ewing et al., p. 8; American Planning Association, 2006, 

p. 165; Parolek, Parolek & Crawford, 2008, p. 41 for the narratives on enclosure).   

 

Among the many street facade features, two are selected to be included in this research: 

one building-level feature—the construction and maintenance quality of building 

facade, and one street-level feature—the continuity of street wall. These two features 

are not necessarily more influential on travel behaviour than the other features 

mentioned above. They are just used as the starting points for the analysis on the street 

facade, which can be extended to include other features in the future. The definition 

and justification for the two selected features are discussed below. 

4.1.1  Building level: Construction and maintenance quality of the 

building facade (facade quality) 

The term ‘construction and maintenance quality’ is more commonly used in the context 

of engineering (Atkinson, 2003, p. 4; Brandt & Rasmussen, 2002). In this analysis, I 

shift the focus of this term away from the engineering domain and emphasise the 

specific elements that would affect the final appearance of the street facade. The 

construction- and maintenance-related elements that contribute to the appearance of 

street facade include 

- Building material: whether the materials used are of high quality and fine textured; 

- Industrial precision and craftsmanship: whether the facade is carefully 

constructed with high level of industrial precision and craftsmanship; 

- Maintenance: whether the facade is free from cracks, bulges, broken components, 

deterioration, corrosion, dirt and stain, hanging wires, messy add-ons, etc. 

 

Although this quality seems to be technical oriented, its impacts are not limited to the 

technical realm. In the book ‘Sense of Beauty’, Santayana (1955, p. 51) wrote highly 

of the aesthetic importance of material, saying that ‘the beauty of material is thus the 
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ground work of all higher beauty’. Leading modern architects such as Walter Gropius, 

Le Corbusier and Mies van der Rohe were inspired by what they saw as the great beauty 

of technical perfection (Voordt & Wegen, 2005). The famous saying of ‘God is in the 

details’ is also a reminder of the importance of technical perfection on the overall 

architectural quality. Dilapidation in the environment has been found to be related to 

negative affect frequently, and there is no compelling reason to expect different results 

(Nasar, 1983). 

 

Furthermore, the facade quality also has obvious social effects. According to the 

famous theory of ‘broken window’ on urban appearance and social effects, 

neighbourhood appearances drive the reality of neighbourhood safety: one broken 

window leads to another broken window and, in turn, to future crimes (Quercia, O'Hare, 

& Cramer, 2014). In less extreme situations, deterioration in the physical environment 

may not necessarily lead to crime but may very possibly affect the image and identity 

of a place (Said, Zubir, & Rahmat, 2014) and the economic development potential 

available to it. Therefore, modelling results can not only help understand the physical 

conditions of the urban space but also help identify areas vulnerable to social disorder 

and economic deprivation. 

4.1.2  Street level: Continuity of the street wall (facade continuity) 

The street wall refers to the interface formed by street facade along a street. A 

continuous street wall is formed when buildings stand directly on the edges of their 

parcels (Lehnerer, 2009, p. 28). To be more specific, a continuous street wall requires 

the following: 

- No ‘dead spaces’ between buildings, which include vacant lots, parking lots, drive 

ways or setbacks of a large building (Ewing & Handy, 2009) 

- No solid and blank wall blocking the sight and activities from the street to the 

buildings, specifically in the context of China where most residences and work 

compounds are gated and surrounded by walls. However, if the wall itself is 
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carefully designed and visually attractive, it may also be perceived as a continuous 

flow of the street interface. 

 

Psychically, a continuous street wall offers ‘a sense of enclosure’ (Ewing et al., 2013) 

and ‘majesty and controlled uniformity’ (Lyon, 1978). It positively affects the 

experience of urban space by ‘giving a psychical security’ (Lang, 1994, p. 324), 

‘instilling a sense of position, of identity with the surroundings’ and ‘embodying the 

idea of hereness’ (Cullen, 1961, p. 29). Behaviourally, it draws pedestrians and 

activities and ‘sustains a vital urban district’ (Marcus & Francis, 1997, p. 19), and hence, 

it is considered to be one of the key rules for place making (Bain, Gray, & Rodgers, 

2012, p. 7), which is the development of a built environment in which people want to 

live and relates to larger goals of creating sustainable communities (Rogerson, Sadler, 

Wong, & Green, 2010). 

 

As early as the 15th century, relevant rules had appeared in street design codes in 

Nuremberg, Germany, which required buildings to be lined up to create an ‘undeviating 

building line’ (Kostof, 1999). Presently, it is addressed in numerous planning codes and 

guidelines, e.g. the American Planning Association (APA) Planning and Urban Design 

Standards requires infill projects to ‘maintain ground floor facade to define a consistent 

street edge’ (American Planning Association, 2006). 

4.2  Data and methodology 

4.2.1  Data and framework 

Street view images are used as the data source on the appearance of street facade, which 

are provided by Baidu Map, the Chinese equivalent of Google Map. The images were 

requested at an interval of 200 m along all the streets in the city in February 2016, 

resulting in 360,796 images (800*500 pixels). Different from most existing studies that 



93 

 

focused on the entire streetscape and used images taken with the camera facing the 

street, I emphasised more on the street facade and set the camera facing the buildings 

so that the buildings cover a larger proportion of the image (see Figure 4-1). However, 

approximately 30% of the images are still streetscape images, which are taken around 

street corners or entrances. Therefore, a machine learning model was developed to 

discern streetscape images from building images to screen out unqualified images.  

 

I followed a two-step approach to develop the machine learning models and three 

models were developed in total. In the first step, I randomly sampled 3,500 images from 

the database and manually labelled them as ‘building images’ (2575) and ‘street images’ 

(925) as shown in Figure 4-1. These images were then used to train a ‘qualification’ 

model to decide whether the content of an image is appropriate to be included in the 

analysis. In the next step, the qualified ‘building images’ were labelled through expert 

rating on the two qualities. The two scores were then fed to develop the models of 

facade quality and continuity. I then applied the two models on all the qualified images 

from the entire study area. 

 

Figure 4-1 Camera facing the street (left) and facing the buildings (right) 
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Figure 4-2 Work flow diagram 

4.2.2  Expert rating 

Expert ratings have been frequently employed in research that involves the 

measurement of qualities of the urban environment (Nasar, 1983; Wohlwill, 1976, p. 

61). The judgemental approach is considered a simple way of measuring the qualities 

here (Nasar, 1983). Despite the element of subjectivity in the rating scale and the 

categorisation methods that are relied upon in this approach, the reliability of the 

resulting values has generally been found to be acceptable and, in some cases, quite 

high (Wohlwill, 1976, p. 63). 

 

Ideally, experienced experts in the field should be invited to make judgements. However, 

given the size of the task in this research (each expert needs to rate several hundreds of 

images), it was difficult to invite experienced architects, urban designers or scholars to 

do this job. Therefore, I chose to recruit eight graduate students who have received 

architectural training for more than five years to accomplish this task. Although the 

validity of expert rating is supported by the virtue of their specialised expertise (Ewing 
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& Handy, 2009) and there is usually little reason to expect that their assessments would 

differ systematically from other such professionals (Nasar, 1983), I also took extra 

measures to reduce potential bias as much as possible. First, I held a training and 

discussion session with the recruited students to make an agreement on the rating 

standard for each quality (Table 4-1 and Table 4-2), which linked the judgement of the 

qualities with more concrete features. Second, I held a practice session in which all 

students rated a same sample group of images until in most cases they made same 

judgments. 

 

Table 4-1 Rating standard for facade quality 

Ratings Rating standard 

Three points Built with high quality, fine-textured materials; 

Built with high industrial precision or fine craftsmanship, e.g. building 

components and material pieces are well aligned, small gaps between 

material pieces unless they seem to be designed wide, etc.; 

Well maintained without obvious cracks, breakage, corrosion, dirt and stain 

or messy add-ons such as rusty iron rails on windows, hanging/loose wires 

Two points Built with lower quality, not very fine-textured materials; 

Do not show high level of industrial precision or craftsmanship, e.g. 

material pieces may not be well aligned and may have wide gaps in 

between; 

May have a few obvious cracks, breakage, corrosion, dirt and stain or 

messy add-ons but generally present a neat and clean look 

One point Built with low quality, not very fine-textured materials; 

Built with low-level industrial precision or craftsmanship; 

Show a lot of cracks, breakage, corrosion, dirt and stain or messy add-ons 

Zero point Built with low-quality materials, in many cases, bare cement and colour 

plate4; 

Built with low-level industrial precision or craftsmanship, sometimes seem 

unfinished; 

Seriously deteriorated with a lot of cracks, breakage, corrosion, dirt and 

stain or messy add-ons 

 

Table 4-2 Rating standard for facade continuity 

                                                 

4 I do not mean that these two materials are in themselves of low quality, but they are often used in low-quality 

buildings in Beijing. 
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Ratings Rating standard 

Continuous  Street facades progress through the image without any interruption, 

blockage or significant setback, at least at the eye height. 

Discontinuous There is a wide gap between two adjacent buildings. 

There is a significant setback of a wide building. 

There is a solid wall blocking the building from the street; however, if the 

wall is carefully designed and visually attractive, it can be considered 

continuous. 

 

 

Figure 4-3 Rating examples 

4.2.3  Machine learning 

In the field of computer vision, there are many approaches for image representation. 

For this work, I evaluated three features: the conventional SIFT histogram (Lowe, 1999) 

and two state-of-the-art deep convolutional networks, namely AlexNet (Krizhevsky, 

Sutskever, & Hinton, 2012) and GoogLeNet (Szegedy et al., 2015). AlexNet and 

GoogLeNet outperformed all other features in the 2012 and 2014 ImageNet Large Scale 

Visual Recognition Competition, respectively. Compared with conventional image 

techniques, which are dominated by low-level features such as edges and corners, the 

deep convolutional networks can capture both local- and high-level image 

characteristics. I used the output of the last hidden layer of the two pre-trained neural 

networks and trained a SVR (Support Vector Regression) classifier for each of the scene 

attributes.  

 

The labelled data set was randomly sampled into three subsets: the training set, the 

http://image-net.org/challenges/LSVRC/2014/
http://image-net.org/challenges/LSVRC/2014/
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development set and the test set. For each task, the development set and the test set 

were equally and randomly sampled in each labelled class, and the rest of the images 

were used as the training set. For example, for the visual quality task, forty images were 

randomly sampled in each of the four scoring groups for the development set and sixty 

images each for the test set. The hyper parameters of SVM, namely the regularisation 

constant and the regression epsilon width, were optimised through grid searching on 

the development set. In terms of the evaluation of model performance, I used F1 score 

for the classification models (the qualification model and the continuity model) and 

MSE for the facade quality model, which were calculated using the following equations: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
=

2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑡𝑖)2 

where P (positive), TP (true positive), FP (false positive) and FN (false negative) 

denote the number of the images that are qualified/continuous, both labelled and 

predicted to be qualified/continuous, labelled unqualified/discontinuous but predicted 

to be qualified/continuous and labelled true but predicted to be false, respectively, and 

𝑦𝑖 and 𝑡𝑖 denote the machine rating and expert rating for each image, respectively. 

 

The models with the best performance for the three tasks were chosen to be applied to 

the entire image database of the research area. I then calculated the average scores for 

each street segment and aggregated the results in the spatial unit of TAZs. 
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4.3  Results 

4.3.1  Results of expert rating 

In terms of the facade quality, the expert rating returned 485 three-point images (18.8%), 

1079 two-point images (41.9%), 809 one-point images (31.4%), and 202 zero-point 

images (7.8%). In terms of facade continuity, the expert rating identified 1069 

‘continuous’ images (41.5%) and 1506 ‘discontinuous’ images (58.5%). 

 

Table 4-3 Distribution of expert rating 

Rating criteria Proportion% 

Qualification  

Qualified 73.6 

Unqualified 26.4 

  Total 100 

Facade quality 

  3 points 18.8 

  2 points 41.9 

  1 point 31.4 

  0 point 7.8 

  Total  100 

Facade continuity 

  Continuous 41.5 

  Discontinuous 58.5 

  Total  100 

4.3.2  Machine learning performance 

Table 4-4 shows the performance of the SIFT, AlexNet and GoogLeNet features on the 

test set of the qualification task. The deep convolutional networks, AlexNet and 

GoogLeNet, perform better than the traditional SIFT features. GoogLeNet achieves a 

slightly higher F1 score than AlexNet, which indicates a more balanced performance 

between recall and precision. Table 4-5 and Table 4-6 show the performance on the 

other two tasks. Similar to the task of qualification, deep features outperform the SIFT 
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features. GoogLeNet shows the best capability of generalisation with the lowest MSE 

on the development set on the task of facade quality. GoogLeNet and AlexNet show 

almost the same levels of capability on the task of continuity. Based on these results, I 

chose the GoogLeNet model for large-scale application. 

 

Table 4-4 Performance of the qualification model 

 Accuracy (%) Precision (%) Recall (%) F1 (%) 

SIFTHist + SVR 79.2 45.1 71.3 55.2 

AlexNet + SVR 89.3 48.2 85.9 61.8 

GoogLeNet + SVR 90.0 48.1 86.3 61.8 

 

Table 4-5 Performance of the model on the facade quality (MSE) 

 Training set Development set Test set 

SIFTHist + SVR 0.36 0.84 0.84 

AlexNet + SVR 0.22 0.64 0.62 

GoogLeNet + SVR 0.28 0.61 0.64 

 

Table 4-6 Performance of the model on facade continuity 

 Accuracy% Precision% Recall% F1% 

SIFTHist + SVR 72.0 45.0 72.0 55.4 

AlexNet + SVR 75.0 48.0 72.0 57.6 

GoogLeNet + SVR 75.0 48.0 72.0 57.6 

 

To better estimate the capability of the models, I took a closer look at the machine rating 

results on the test sets and compared with the expert rating scores. Figure 4-4 shows 

that the machine scores generally fall into a narrower range than the expert rating scores 

(average score of ‘zero-point’ images = 2.0, of ‘one-point’ images = 2.3, of ‘two-point’ 

images = 2.9, and of ‘three-point’ images = 3.4). There are a number of overlaps 

between the machine scores within the groups of low-quality street facades (the ‘zero-

point’ and ‘one-point’ images) and high-quality facades (the ‘two-point’ and ‘three-

points’ images). However, there is little overlap between these two big groups (the 

lower quartile of the machine scores for ‘two-point’ images is higher than the higher 

quartile of the machine scores for the ‘one-point’ images). The results indicate that the 
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model performs well in discriminating high quality from low quality but that it tends to 

produce more errors in identifying the nuanced differences within the two big groups.  

 

Figure 4-4 Comparison between machine scores and expert rating scores on the task of 

facade quality 

 

Regarding the task of continuity, I manually analysed sixty images that were wrongly 

classified (false positive or false negative). Two major types of errors for false positive 

and three major types of errors for false negative were identified. For false positive, the 

major types of error are failing to identify an unattractive wall that disrupts the 

continuity (12%) and failing to identify the gap between buildings because of 

perspective (76%). For false negative, the major types of error are failing to identify 

dilapidated buildings as a building (20%), failing to identify a continuous street wall 

because of blockage by trees and cars (30%) and failing to identify a continuous street 

wall when the picture is taken from a distance (35%), usually from the opposite side of 

a wide street. These errors are mainly because of the lack of labelled data to train the 

model to be aware of relevant situations. Although the total number of labelled images 

is more than two thousand, when it comes to a very specific type of situation, the 

relevant sample size could be less than fifty. Therefore, the model performance may be 

further enhanced by collecting more labelled data. 
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Figure 4-5 Examples of errors in the task of facade continuity 

4.3.3  Evaluation results 

By calculating the average score for each street segment, I developed the scoring maps 

for the two street facade features (Figure 4-6 and Figure 4-7). It should be noted that 

although the indicators of the model fit indicates a generally good performance, the 

scores should not be considered absolutely accurate but as estimations with errors. For 

instance, the red coloured street segments may not always be of higher quality than the 

orange ones, but these are in most cases of higher quality than the blue ones. The scores 

are then aggregated to the spatial unit of TAZs. 
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Figure 4-6 Scores on facade quality  

 

 

Figure 4-7 Scores on facade continuity 
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4.4  Chapter summary 

This chapter sets out to develop and test a machine learning method to automatically 

evaluate two street facade features in a large scale, which creates two input variables 

for the activity-based model developed in the next section. This work aims to fill in the 

gap that the built environment features that have been examined in existing research are 

constrained to two-dimensional, land use-related ones, while the features related to the 

‘third dimension’—the street facade, can also exert an influence on daily travel. Two 

features are selected as the starting point of the analysis on the street facade: the 

construction and maintenance quality of building facade and the continuity of street 

wall. The method can be further extended to evaluate other street facade features that 

could be influential to the experience in the urban space, such as the building scale, the 

relationship between adjacent buildings, etc. By applying the state-of-the-art deep 

convolutional networks, a satisfying performance of the machine learning models can 

be achieved on the expert-rated data sets. The MSE for the task of facade quality is 0.61 

on a rating scale of zero to three, and the accuracy for the continuity task is 75%.
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Chapter 05  Activity-based modelling 

on the impacts of the built 

environment on travel behaviour 

5.1  Overview of the model 

As mentioned in the introduction chapter, this research develops an activity-based travel 

model that comprehensively incorporates the influence of the built environment 

conditions in the decision making process of daily activity-travel (named as Built 

Environment Activity-Travel Integrated Model, BEATIM). The development of 

BEATIM model will on one hand, help address the gap that there lacks understanding 

on the composition of the built environment’s influence on travel behavior (e.g. the 

influences on travel frequency, distance of travel for a specific purpose, etc.), and on 

the other hand, help fill in the gap that built environment conditions are usually not 

sufficiently accounted for in existing activity-based models. The travel behaviour and 

built environment data developed in Chapter 03 and 04 will be fed into the model as 

inputs. The model will then be applied in the next chapter to simulate the impacts of 

various scenarios of built environment changes on people’s travel behaviour, from 

which analysis on the composition of the built environment’s influence can be made 

and various policy implications can be drawn. 

5.1.1  The modelling paradigm 

Basically, activity-based models predict which activities are conducted when, where, 

for how long, with whom, and the transport mode involved (Arentze & Timmermans, 

2004; Castiglione et al., 2015; Ma et al., 2012). The strength of the BEATIM model lies 

in the intensive incorporation of the built environment conditions in the decision 
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making process of daily activity-travel. The advantage of this incorporation is, on one 

hand, to enhance the comprehensiveness and behavioural realism of activity-travel 

modelling, and on the other hand, to enable a more detailed and behavior-oriented 

analysis of the influence of the built environment on travel.  

 

In order to realise the promised benefits, a proper modeling paradigm needs to be 

selected. As mentioned in the literature review (Section 1.3), activity-based models 

typically fall into one of two categories: utility-maximising econometric models and 

computational process models. The former is implemented with a system of equations 

based on the assumption of utility maximisation in travel decision making (Bhat et al., 

2004; Yasmin et al., 2015). The latter, on the other hand, is a production system that 

involves a series of condition-action rules (Gärling et al., 1994; Shabanpour et al., 2017). 

The computational process models have special strength in incorporating the idea of 

incomplete information and imperfect rationality, and modelling the learning process, 

which are considered to be cognitively more realistic (Arentze & Timmermans, 2004; 

Auld & Mohammadian, 2012). However, it should be noted again that this 

categorisation is neither exclusive nor exhaustive. Many utility maximisation-based 

models can also be considered as incorporating weak computational process features in 

the form of some sequential or partially sequential decision making process (Arentze 

& Timmermans, 2004). 

 

The BEATIM model developed in this research generally falls in the category of utility 

maximisation models, and with weak computational process features that are reflected 

in the decision sequence and a few action rules. The utility maximisation paradigm is 

chosen for its strength in allowing the examination of alternative hypotheses regarding 

the causal (or correlational) relationships between activity-travel patterns, the built 

environment and socio-demographic characteristics of individuals (Bhat et al., 2004). 

Besides, the simulation results can be directly linked with the assumptions in Section 

2.1.3 which are based on the same notion of utility maximisation.  
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The two main criticisms of the utility-maximising approach are that: (1) individuals are 

not necessarily fully rational utility maximisers, and (2) the approach does not explicitly 

model the underlying decision processes and the behavioral mechanisms that lead to 

the observed activity-travel decisions (Pinjari & Bhat, 2011). Nonetheless, some 

counterarguments can be made. First, most of the behaviours being modelled happen 

repeatedly in daily life (such as commuting, shopping, but activities like meeting a 

friend, going to hospital can be occasional). People may have already searched and 

compared many alternatives and optimised their choices before the observation/survey 

was conducted (though this may not be the case for occasional activities). For instance, 

Auld found that the mode and location choices tend to be quite routine, though the start 

time and especially the duration decisions tend to be impulsive (Auld & Mohammadian, 

2012). Besides, the proliferation of information and communication technologies 

enhances the availability of the information in real time traffic, the locations and 

qualities of facilities, etc. (Kitchin, 2014), so the assumption of complete information 

is more likely to be approached. Although the above statements are subject to further 

proof, they are logically reasonable and suggest that utility maximisation can be taken 

as a feasible assumption for activity-based travel modelling.  

 

The computational process elements of the model are reflected in a sequence of decision 

making and action rules. Like most existing models, BEATIM makes simplified 

assumptions about the scheduling process by using a fixed planning order for specifying 

the activity attributes (time, location, mode of travel, etc.) (Auld & Mohammadian, 

2012). Actually, there has been a trend in activity-based modelling to introduce higher 

level of flexibility to the model framework to account for short-term adjustments and 

rescheduling processes since some activities can be opportunistically planned (e.g. the 

AURORA model, ADAPTS model) (Auld & Mohammadian, 2012). Such features are 

not incorporated in the current model due to the constraints of time and resource. 

Nonetheless, it could be a direction of subsequent research to incorporate a dynamic 



107 

 

activity planning framework to the model when more data and resources are available. 

Besides, the incorporation of decision mechanisms under uncertainty and with 

imperfect rationality could also be a direction of model extension (Rasouli & 

Timmermans, 2014b). 

5.1.2  The focus 

“Entities should not be multiplied unnecessarily.” 

 

The quote above corresponds to the principle of Occam’s razor by William of Occam 

in the 14th century (Rasmussen & Ghahramani, 2001) and is nowadays often referred 

to as the law of parsimony that implies when two theories or models are equal, the 

burden of proof rests with the more complicated model to show it is able to make better 

predictions (Kelly, 2013). Although Occam’s razor is not considered as an irrefutable 

principle and may mistakenly lead to oversimplification (Kelly, 2013), it is useful to 

guide the modelling process. 

 

The activity-travel and related processes generally fall into the land use-transport 

interaction (LUTI) system (Acheampong & Silva, 2015). This system, by nature, 

involves complicated dynamics between system components, ranging from land use 

and building stock changes that are slow and hardly reversible, to activity and travel 

decisions that are updated on a daily basis, to route choices that are subject to instant 

adjustment according to the conditions of traffic flow (Simmonds, Waddell, & Wegener, 

2013) (Table 5-1). When building models within the LUTI system, one could be 

tempted to include more and more components of the system to fully account for 

various mechanisms of interactions. For instance, one can easily make an argument that 

there needs to be a module for home location choice since people may consider move 

their homes if the travel distances for fulfilling their daily needs are longer than certain 

thresholds. However, the pursuit of comprehensiveness can distract the modelling 

efforts away from the key research questions. Therefore, in building this model, the 
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focus on the daily travel behaviour, the ‘very fast’ type of process in the LUTI system 

(see Table 5-1), is carefully kept—other loosely-coupled, slower or faster processes, 

such as the location choices of home and work places, are taken as exogenous and 

constant in the simulation period. These modules can be added to the model system in 

future extensions. 

 

Table 5-1 Components of the LUTI system 

Speed Change 

process 

Stock affected Response 

time 

(years) 

Response 

duration 

(years) 

Reversibility 

Very 

slow 

Transport 

construction 

Transport networks 5-10 >100 Hardly 

reversible 

 Land use 

change 

Land use pattern 5-10 >100 Hardly 

reversible 

Slow Industrial 

construction 

Industrial buildings 3-5 50-100 Very low 

 Residential 

construction 

Residential 

buildings 

2-3 60-80 Low 

Medium 

speed 

Economic 

change 

Employment/firms 2-5 10-20 Reversible 

 Demographic 

change 

Population/ 

households 

0-70 0-70 Partly 

reversible 

Fast Firm 

relocation 

Workplace 

occupancy 

<1 5-10 Reversible 

 Residential 

mobility 

Housing occupancy <1 5-10 Reversible 

Very 

fast 

Change in 

demand 

Goods transport <1 <5 Reversible 

 Change in 

mobility 

Person travel <1 <1 Reversible 

Source: (Simmonds et al., 2013) 

Note: Bold indicates the focus of the BEATIM model. 

 

The focus of the model is also reflected in the treatment of various choice facets. Since 

the main purpose of the BEATIM model lies in the examination of the built 

environment's impacts on activity-travel behaviour, the choice facets that are 

prominently influenced by the built environment are simulated through statistical 
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models (e.g. number of activities, locations of activities, mode of travel), while the other 

choice facets are simulated in a simplified manner with observed probability 

distributions (e.g. the types of non-commute activities conducted in the day, the 

arrangement of activities, see Table C-2 to Table C-4 in Appendix C).  

5.1.3  The decision makers in the model 

The BEATIM model is a microsimulation model in which persons are represented 

explicitly and are capable of perceiving their environment, making decisions and acting 

into their environment. The representative individuals in the model possess some 

features of autonomous agents, but are not the same as typical agents in an agent-based 

model. Below is a comparison of the decision makers in the BEATIM model and typical 

agents, based on a summary by Castle and Crooks (2006). 

- Autonomy: yes, the individuals in the model are autonomous units without any 

centralised control. 

- Heterogeneity: yes, the individuals are highly heterogeneous in terms of the 

socioeconomic profile. They also face highly heterogeneous built environment 

conditions when making travel decisions. However, the model does not account for 

heterogeneous behavioural rules at the current stage. 

- Pro-active/goal-directed: yes, the individuals are utility maximisers. 

- Reactive/perceptive: weakly, the individuals are assumed to have a limited 

‘awareness’ of their environment and choose locations of activities only from a 

random subset of all available alternatives (see Section 5.3 and Section 5.5). 

- Bounded rationality: weakly, the limited ‘awareness’ of the individuals on their 

environment leads to bounded rationality when choosing activity locations. 

- Interactive/communicative: no, the individuals do not directly interact or change 

information with each other. It is also based on the consideration that the focus of 

the model lies in the impacts of the built environment, so the interpersonal 

interactions are not specifically modelled, such as the task allocation among 

household members. 
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- Mobility: no, although the model deals with travel behaviour, the home location, 

where the individuals are affiliated to, does not change. In this sense, the individuals 

are immobile in the model space. 

- Adaptation/learning: weakly, the adaptation/learning is reflected in the 

mechanisms that individuals would expand their knowledge about the environment 

if the highest utility derived from their origin knowledge is below certain a threshold, 

and that they can also adjust the time of activities if any mode choice in the 

originally selected time period does not bring a satisfying utility. However, these 

mechanisms do not turn out to be influential to the modelling results (see Section 

5.3 to Section 5.5). 

5.1.4  The modelling structure 

Activity-based models predict activity-travel behaviour as a ‘full day pattern’ that 

involves an entire chain of trips made between the first time of leaving home in the day 

and finally arriving back at home (Cambridge Systematics, 2002; Liu et al., 2014). The 

full day pattern is composed of primary activities and intermediate stops, and the tours 

and trips that link them up. The definitions of these components, which will be used 

throughout this chapter, are explained below: 

- Primary activities are defined as those with the longest duration among all activities 

conducted in a tour; 

- Intermediate stops refer to the rest of activities with shorter durations; 

- Trips are one-way movements from one location of staying to the next; 

- Tours are chains of linked trips that start from and end at home, the use of which is 

considered to be a key feature of activity-based model systems in contrast to the 

trip-based four-step models (Cambridge Systematics, 2002).  

 

As mentioned in Section 5.1.1, various choice facets of the full day pattern are 

organised in a decision sequence, which is derived from both the results of the small 

questionnaire survey and operational considerations. The survey results show that 44% 
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people chose ‘what shall I do today’ as the first consideration in making activity-travel 

plans on weekdays, 24% chose ‘where shall I go’ or ‘how far shall I go’, 16% chose 

‘shall I go by car/metro/bus’ and 15% chose ‘when shall I go’. The results on weekends 

are similar with those on weekdays, except that the proportion of people choosing 

‘Where shall I go?’ or ‘How far shall I go?’ is higher. This makes sense since people 

are usually faced with less time constraints on weekends, so that they have more 

freedom to choose activity locations that best suits their needs. Regarding to the 

planning of primary destinations and intermediate stops, 60% people chose that they 

‘first decide long-stay/primary destinations and then short-stay/intermediate stops’ and 

40% chose ‘decide all destinations together’. For weekends, the former option was 

more chosen (69%). The survey results suggest that: (1) the priorities that people give 

to these choice facets can be ranked as: the number and type of activities > the location 

of activities > the time of activities/the mode of travel, and (2) the location choice of 

primary activities and intermediate stops tend to be separate decisions, the latter 

dependent on the former.  

 

Table 5-2 Results of the small questionnaire survey 

What is your consideration when you make plans about your activities (except work) 

on weekdays? 

 First consideration Second consideration 

‘What shall I do today?’ 44% 14% 

‘When shall I go?’ 15% 22% 

‘Shall I go by car/metro/bus/walk..?’ 16% 24% 

‘Where shall I go?’ or ‘How far shall I go?’ 24% 40% 

What is your consideration when you make plans about your activities (except work) 

on weekends? 

 First consideration Second consideration 

‘What shall I do today?’ 45% 13% 

‘When shall I go?’ 12% 20% 

‘Shall I go by car/metro/bus/walk..?’ 14% 17% 

‘Where shall I go?’ or ‘How far shall I go?’ 29% 50% 

When deciding about the activity destinations on weekdays, which do you prefer? 

‘Decide all destinations together’ 60%  

‘First decide long-stay/primary destinations 

and then short-stay/intermediate stops’ 

40%  
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When deciding about the activity destinations on weekends, which do you prefer? 

‘Decide all destinations together’ 69%  

‘First decide long-stay/primary destinations 

and then short-stay/intermediate stops’ 

31%  

 

Based on the survey results, the general structure of the model is designed as follows 

(Figure 5-1):  

- First, the number and type of activities to conduct in the simulated day are decided 

and organised into primary destinations and intermediate stops;  

- Second, the locations of primary destinations are selected; 

- Third, the times of activities (in terms of time periods) and modes of tours are 

decided; 

- Last, the locations of intermediate stops are selected.  

These four decision components are simulated in the four sub-models described in 

Section 5.2 to Section 5.5. It should be noted that although a survey was conducted to 

inform the sequencing of decisions, this consequent model structure should not be taken 

as the only way of model construction. Actually, most activity-based models use more 

or less different sequences of decision making and there is no clear evidence that one 

sequence outperforms another (see for instance, the SACSIM ‘family’ of models 

mentioned in Section 2.4).  
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Figure 5-1 Model flow diagram 

Note: The detailed flow diagram of each sub-model will be zoomed in in subsequent sections. 

 

A total of 300,000 individual entities are simulated in the model, which is 

approximately 2% of the population in Beijing. The distributions of gender, age, 

employment status, household type and social status are kept in consistency with the 

travel survey. Other elements of the model include (see Table 5-3): 

- Types of activities: two types of commute activities, which are work and go to 

school; six types of non-commute activities, which are shopping, entertainment, 

dining out, personal business, escorting/picking up/dropping off other people and 

others. The first five types of non-commute activities are modelled separately since 

they took up more than 2% of all activities recorded in the travel diary survey. The 

other activity types in the travel survey are categorised as ‘others’ (see Table C-1 

in Appendix C). 

- Numbers of activities: upper limit three activities per day. Since according to the 
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travel survey, 95% people conducted no more than three activities in a day. 

- Activity plans: eleven most common plans from the travel survey. 

- Time of activity: six time slots. 

- Locations: 652 TAZs in the study area. 

- Modes of travel: four most popular travel modes identified from the survey, which 

together accounted for 96% of all trips. 

 

Table 5-3 Elements of the model 

Choice facets Alternatives 

Types of activities Commute: work, go to school 

Non-commute: shopping, entertainment, dining out, 

personal business, escorting/picking up/dropping off other 

people and others 

Numbers of activities 0-3 

Activity plans a h-d-h, h-d-h-d-h, h-s-d-h, h-d-s-h, h-d-h-d-h-d-h, h-d-s-s-h, 

h-s-d-s-h, h-s-s-d-h, h-s-d-h-d-h, h-d-s-h-d-h, h-d-h-d-s-h 

Time of activity early (3-7am), am peak (7-9 am), before noon (9 am-12 

pm), afternoon (12-17 pm), pm peak (17-19 pm), evening 

(19 pm-3 am) 

Locations 652 TAZs (for each activity, a distance-weighted subset of 

10 TAZs) 

Modes of travel driving, public transit, cycling, walking 

a ‘h’ denotes home, ‘d’ denotes a primary destination, ‘s’ denotes an intermediate stop. ‘h-d-

h’, for instance, means travelling from home to a primary destination and then back to home. 

 

Table 5-4 Information delivery among sub-models 

 Sub-model 1 Sub-model 2 Sub-model 3 Sub-model 4 

Numbers of activities O I I  

Types of activities O I   

Activity plans O I I I 

Locations of primary 

destinations 
 O I I 

Time of activity   O  

Modes of travel   O I 

Locations of intermediate 

stops 
   O 

Note: I = input, O = output 
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There are basically two types of parameters in the model. The first type are parameters 

that reflect the impacts or weights of socioeconomic, built environment and travel-

related factors, which are estimated from statistical regressions (i.e. ordered regression, 

multinomial logit model) or derived directly from the statistical distribution of the 

observed data. The second type are constants or threshold values which are calibrated 

in the model through parameter sweep (Castle & Crooks, 2006). The parameters are 

listed in Table 5-5. Eighty percent of the samples in the travel diary survey are used as 

the training set and the rest twenty percent are used as the test set. 

 

Table 5-5 Parameters in the model 

Sub-models Parameters estimated from 

regressions or statistical distributions 

Parameters calibrated in the 

model 

Sub-model 1 

 

Impacts of socioeconomic and built 

environment variables on the number 

of commute and non-commute 

activities in the day; 

Probabilities of choosing different 

types of non-commute activities; 

Probabilities of choosing an activity 

plan given the total number of 

activities 

Cut-off values for the ordered 

regression models 

Sub-model 2 

 

Weights given to different distance 

bands when drawing a random sample 

of candidate activity locations; 

Impacts of socioeconomic, built 

environment and distance variables on 

the attractiveness of a location 

Extra weights of different 

distance bands on the 

attractiveness of a location 

Sub-model 3 Probability of choosing a certain time 

slot for an activity given the purpose 

and the day activity plan; 

Impacts of socioeconomic, built 

environment and travel variables on the 

attractiveness of a travel mode 

Constants for different travel 

modes 

Sub-model 4 

 

Weights given to different detour 

distance bands when drawing a random 

sample of candidate stop locations; 

Impacts of socioeconomic, built 

environment and travel variables on the 

attractiveness of a location 

Extra weights of different detour 

distance bands on the 

attractiveness of a location 
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5.2  Sub-model 1: Activity participation and organisation 

5.2.1  Introduction to the sub-model 

The making of an activity plan is a multifaceted decision, which involves deciding the 

number of commute and non-commute activities, the purposes of non-commute 

activities (if any) and the organisation of activities. Each of the choice facets can 

potentially be influenced by the built environment. As mentioned in the Chapter 2, 

enhanced accessibility could lead to more activities since people may use travel time 

saved from better accessibility of one activity on participating more (J. Lin & Yang, 

2009; Maat & Timmermans, 2009; Maat et al., 2005; Sperry, Burris, & Dumbaugh, 

2012). The influence can be further complicated by the possibility of trip chaining 

behaviour (i.e. organise an activity into an existing tour as an intermediate stop). On 

one hand, residents of low accessibility areas often compensate for the long distance by 

buying daily necessities along the route home from work (Naess, 2013). On the other 

hand, high accessibility may also encourage trip chaining by offering more activity 

opportunities in adjacent areas. Besides, the built environment can also exert an 

influence on the types of non-commute activities that one conducts. For instance, 

Chudyk et al. (2015) found that living in neighbourhoods with a greater prevalence of 

destinations was associated with making more trips (Chudyk et al., 2015).. 

 

Therefore, statistical models were estimated for all these three choice facets. For the 

numbers of commute and non-commute activities, since the outcomes are ordinal, 

discrete data, two ordinal regression models were developed. In terms of the purposes 

of non-commute activities, six binary logistic models were estimated for whether a type 

of non-commute activity is conducted or not, when there is any non-commute activity 

in the day. For the organisation of activities, two multinomial logit models were built 

to estimate which activity plan would be chosen given the total number of activities in 

the day (2 or 3, if there is only one activity, then the activity plan can only be ‘h-d-h’). 
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It turns out that built environment features are only occasionally significantly correlated 

with the types of non-commute activities and the choice of activity plan. Besides, to 

include built environment features in the models of these two choice facets hardly 

improves the prediction performance (see Table C-2 to Table C-4 in Appendix C). 

Therefore, following the principle of parsimony, the influence of the built environment 

is only modelled at the level of activity numbers. The other two choice facets are instead 

simulated in a simplified manner based on the probability distributions observed from 

the survey data. 

 

The computational process of this sub-model is designed as: 

- First, an individual decides about the numbers of commute (if he/she is a worker or 

student) and non-commute activities based on ordinal regression models, which can 

be interpreted as an outcome of utility maximisation (Agyemang-Duah & Hall, 

1997; Bhat & Pulugurta, 1998). 

- Second, the individual checks whether the total number of activities is within the 

reasonable range (no more than three), as explained before. If not, some non-

commute activities will be randomly drawn and removed from the plan. 

- Third, the types of non-commute activities (if any) are allocated to the activity plan 

based on the frequency distribution of non-commute activities in the travel survey 

(see Table C-5 in Appendix C). 

- Fourth, an activity plan is allocated to the individual based on the probability 

distributions of activity plans given the total number of activities in the day (see 

Table C-6 in Appendix C). 

- Last, the individual fits his/her activities into the plan and checks the feasibility of 

the plan (criteria: commute activities cannot be intermediate stops). If not, this and 

the previous steps are repeated. 
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Figure 5-2 Flow diagram for Sub-model 1 

5.2.2  Method for parameter estimation 

As briefly mentioned before, since the numbers of activities are ordinal, discrete data, 

ordinal regression models (also known as cumulative link model) are applied to 

estimate the influencing weights of built environment and socioeconomic factors. The 

model is for an ordinal response variable, 𝑌𝑖  that can fall in j = 1,…,J categories. Then 

𝑌𝑖  follows a multinomial distribution with parameter π  where 𝜋𝑖𝑗  denotes the 

probability that the ith observation falls in the response category j. The cumulative 

probabilities are defined as (Christensen, 2010): 

𝛾𝑖𝑗 = 𝑃(𝑌𝑖 ≤ 𝑗) = 𝜋𝑖1 + ⋯ + 𝜋𝑖𝑗 

Use F(x) to denote the link function, then  

F(𝛾𝑖𝑗) = 𝜃𝑗 − 𝑥𝑖
𝑇𝛽 

where 𝑥𝑖  is a vector of explanatory variables for the ith observation and 𝛽 is the 

corresponding set of regression parameters. Note that 𝑥𝑖
𝑇𝛽  does not contain an 

intercept, since the {𝜃𝑗} parameters provide each cumulative logit (for each j) with its 

own intercept (Christensen, 2010). Ordinal regression models can both be applied to 

discrete outcomes of a latent continuous measure and ordered choices, as an outcome 
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of utility maximisation, such as car ownership (Bhat & Pulugurta, 1998) and numbers 

of trips (Agyemang-Duah & Hall, 1997). In these cases, the discrete outcomes can be 

interpreted as a reflection of the underlying preference intensity (Greene & Hensher, 

2010).  

 

The influencing factors considered in the model include: 

- Individual’s socioeconomic characteristics, including age, gender, household 

annual income, household type, household’s social well-being, driving license, car 

ownership, motorcycle ownership, e-bicycle ownership;  

- Built environment conditions at home, represented by the fifteen built environment 

features measured in Chapter 3 and 4; 

- Commute distance if the person is a worker or student. This factor reflects the ideas 

of total time constraints and people’s tendency to maximise the entire activity 

pattern in a day (Axhausen & Garling, 1992; Hägerstraand, 1970; Maat et al., 2005). 

It is supposed that long commute distance, and correspondingly long commute time, 

could discourage conducting more activities. 

 

There are five typical link functions for ordered regression models (as shown in Table 

C-7 in Appendix C). The link functions that produce the highest log-likelihoods are 

chosen for the final models. The model is estimated with the ‘ordinal’ package in R 

Studio v0.99.473. The threshold parameters are then calibrated to maximise the 

approximation between the simulated and observed total numbers of activities. 

5.2.3  Results of parameter estimation 

The log-likelihoods of models estimated with the five link functions are shown in Table 

5-6. For commute activities, the “cauchit” function produces the highest log-likelihood. 

For non-commute activities, the “loglog” function produces the highest log-likelihood. 
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Table 5-6 Log-likelihoods with different link functions 

Link function logit probit clog-log log-log cauchit 

Commute       

Log-likelihood -4570.722 -4586.895 -4606.523 -4565.955 -4502.836 

Non-commute      

Log-likelihood -22073.33 22382.98 -24398.22 -21155.41 -22115.93 

 

The model estimation results show that three socioeconomic variables, three built 

environment variables and the commute distance significantly affect the generation of 

commute activities. Older age and motorcycle ownership are positively associated with 

the number of commute activities. Car ownership is negatively associated the number 

of commute activities. It is a bit counter-intuitive that people living farther from the city 

centre tend to conduct more commute activities. However, it can be explained as 

follows: when the commute distance is controlled, people who have the time to go back 

home in the middle of work usually have less working pressure and thus earn less, and 

therefore more likely to live at the outer areas of the city. Other significant built 

environment variables are the density of secondary roads and the facade continuity, 

which are negatively and positively associated with the number of commute activities 

respectively. Besides, longer commute distance decreases the chance of more 

commuting, as one would expect. 

 

There are more significant influencing factors for the generation of non-commute 

activities. Being older or having a household annual income of 100-150 thousand RMB 

and 250-300 thousand RMB are positively associated with the number of non-commute 

activities, comparing with the reference group of having a household annual income of 

less than 50 thousand RMB. Being retired, unemployed or in a status other than full-

time employed increases the chance of conducting more non-commute activities, while 

being a student has the reversed effect. People from non-core-family households tend 

to conduct less non-commute activities, but the relationship is only significant for the 

household types of ‘couple’ and ‘others’. Holding a driving license and owning a car or 

an e-bicycle increase the participation in non-commute activities, as one would expect. 
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Regarding to the built environment characteristics at the home TAZ, higher levels of 

employment density, land use mix and the accessibility to city centres and commercial 

clusters are negatively associated with the number of non-commute activities. Some of 

the effects may be explained by that people can perform multitasks in one move when 

the accessibility is good, which, however, needs to be verified by further research. Other 

indicators of higher accessibility or better services are all positively associated with 

non-commute activities, including retail density, parking density and the accessibility 

to subway stations. These results are different from the finding of Handy (1993) that 

trip frequency is irrelevant with either local or regional accessibility. The quality and 

the continuity of street facade are also positively associated with the frequency of non-

commute activities, which is plausible since they may have the effect of increasing the 

enjoyment of the urban environment. Longer commute distance reduces the chance of 

conducting more activities, which is not surprising. 

 

The threshold coefficients are calibrated to 1.81 and 49.1 for the commute model, and 

1.08, 2.94 and 5.04 for the non-commute model. After calibration, the total numbers of 

both types of activities are almost identical between the prediction and the observed 

data. The confusion matrices can be found in Table C-8 and Table C-9 in Appendix C.  

 

Table 5-7 Ordinal regression results on activity numbers 

 Commute Non-commute 

Variables Coefficient z-value Coefficient z-value 

Threshold: 0|1   1.5*** 8.36 

Threshold: 1|2 3.21** 3.11 3.44*** 18.9 

Threshold: 2|3 49.1*** 8.97 5.04*** 27.5 

Socioeconomic     

Age 0.0326*** 6.7 0.00426*** 4.57 

Gender (Ref=Female)     

  Male -0.0691 -0.642 -0.0326 -1.56 

Annual income (Ref=<50 thousand RMB) 

50-100 thousand RMB -0.219Ψ -1.84 0.0301 1.27 

100-150 thousand RMB -0.161 -0.77 0.0918* 1.99 

150-200 thousand RMB -0.267 -0.693 0.118 1.44 

200-250 thousand RMB 0.435 0.983 -0.00813 -0.057 
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250-300 thousand RMB -1.65 -0.718 0.432* 2.26 

>300 thousand RMB 0.177 0.253 0.0957 0.585 

Employment (Ref=Full-time worker) 

Student   -1.2*** -17.2 

Unemployed   1.99*** 48.1 

Retired   2.12*** 54.8 

Others   0.478*** 7.54 

Household type (Ref=Core family) 

Single -0.252 -1.32 -0.0405 -1.07 

Couple 0.000412 0.00347 -0.0484Ψ -1.91 

Multi-generation -0.375 -1.13 -0.0363 -0.83 

Others -0.107 -0.654 -0.0771* -2.39 

Social well-being (Ref=Best-off)     

Middle -0.0543 -0.32 0.0447 1.4 

Least well-off -0.102 -0.539 0.0306 0.853 

Driving license (Ref=No)     

  Yes -0.205Ψ -1.66 0.19*** 6.86 

Car ownership (Ref=No)     

  Yes -0.489*** -3.43 0.117*** 4.4 

Motor cycle (Ref=No)     

Yes 0.62* 2.39 0.023 0.308 

Electric bicycle (Ref=No)     

Yes 0.0304 0.212 0.0622* 2.08 

Built environment     

Population density 3.64E-06 0.486 1.46E-06 1.07 

Employment density -1.07E-05 -1.55 -7.41E-06*** -5.68 

Distance to the city centre 8.73E-05*** 3.8 1.37E-05** 3.01 

Distance to the nearest 

commercial cluster 
-4.14E-05 -0.639 3.33E-05* 2.43 

Retail density -0.00175 -0.73 0.000973* 2.4 

Entertainment density -0.000499 -0.164 0.000148 0.269 

Land use mix 0.331 1.49 -0.103* -2.46 

Primary road density 2.04E-05 0.401 -1.53E-05 -1.57 

Secondary road density -9.57E-05* -2.48 3.77E-06 0.496 

Tertiary road density -1.60E-05 -0.736 2.81E-06 0.732 

Parking density 5.66E-05Ψ 1.7 1.52E-05* 2.26 

Distance to the nearest subway 

station 
0.000113 1.26 -6.23E-05** -3.16 

Bus coverage 0.0216 0.0569 -0.0408 -0.546 

Facade quality 0.331 0.676 0.314*** 3.5 

Facade continuity 2.89*** 3.83 0.59*** 3.88 

Travel characteristics     

Commute distance -0.000483*** -13.9 -0.000106*** -24 

 Log-likelihood: -4502.84 Log-likelihood: -
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AIC: 9079.67 21155.41 

AIC: 42394.82 

5.2.4  Validation of the sub-model 

The validation result shows that the sub-model is able to produce a good estimation of 

the total number of activities on the test set. The percentage of correct prediction (PCP) 

is 87.3% for commute activities and 62.4% for non-commute activities. The ratios 

between the predicted and simulated total numbers of activities are 97.2% on commute 

activities and 96.8% on non-commute activities. The model is most likely to make 

mistakes in identifying the people who conduct two commute activities or one non-

commute activity in the day. It is tolerable since whether people conduct an activity or 

not on the day of the survey can contain substantial level of stochasticity (Kulkarni & 

McNally, 2000). For instance, a shopping tour might be conducted on the day before or 

after and thus not observed in the survey data. The accuracy of prediction may be 

improved by collecting multi-day travel data in the future. 

 

Table 5-8 Confusion matrix on the number of commute activities 

 1 (sim) 2 (sim) 3 (sim) 

1 (obs) 2905 169 0 

2 (obs) 244 61 0 

3 (obs) 13 3 0 

 

Table 5-9 Confusion matrix on the number of non-commute activities 

 0 (sim) 1 (sim) 2 (sim) 3 (sim) 

0 (obs) 3271 169 10 0 

1 (obs) 592 256 1197 0 

2 (obs) 146 76 499 0 

3 (obs) 18 19 195 0 
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5.3  Sub-model 2: Location choice for primary 

destinations 

5.3.1  Introduction to the sub-model 

The explicit modelling of activity location choice is a process that substantially 

enhances the level of detail and behavioural realism comparing with the direct analysis 

of the synthesised travel outcomes (e.g. VMT) in existing built environment-travel 

research. Through this module, the processes of utility maximisation and the trade-offs 

between gains and costs underlying the observed outcomes can be better understood. 

Besides, a related advantage is the higher level of spatial detail in the examination of 

the built environment’s influence, since one can explicitly model the impacts of built 

environment changes at any location of the modelled region on the travel of people at 

any location. In contrast, most existing research only deal with the built environment 

conditions around one’s home or work places. The level of modelling detail is further 

enhanced by building separate models for different activity purposes, considering that 

the reaction of the travel behaviour to built environment conditions may vary with travel 

purposes (e.g. Song, Preston et al. 2013, Salon 2015). 

 

As explained before, medium and long term conditions, such as the locations of jobs 

and schools, are taken as exogenous and constant in the model developed in this 

research. Therefore, it is the location choice of non-commute activities that needs to be 

simulated. However, this part can be computationally challenging since the universal 

choice set could be very large, consisting of all potential activity locations in the 

modelled region (in this case, 652 TAZs) (Auld & Mohammadian, 2011). Therefore, 

appropriate measures need to be designed to limit the number of alternatives when 

simulating choices (Bowman & Bradley, 2005). In BEATIM, distance is used to weight 

the probability that a TAZ is drawn into the candidate alternative set. For each choice 

situation, all TAZs are stratified into different distance bands using the tour origin 
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(home) as the anchor point. A quota is allocated to each distance band to randomly draw 

a number of alternatives, based on the distance distribution of observed trips in the 

survey data. With the reduced choice set, the utility and probability of choosing each of 

the alternatives are estimated with a multinomial logit model, based on a combination 

of travel impedance (distance/time) and attractiveness variables.  

 

The computational process of this sub-model is designed as: 

- First, for each primary activity, a subset of ten TAZs are drawn as candidate 

locations using the distance weighted sampling method described above. Seven 

distance bands are considered: shorter than one kilometre from the tour origin, one 

to two kilometres, two to three kilometres, three to four kilometres, four to five 

kilometres, five to ten kilometres and farther than ten kilometres. The quota 

allocated to each distance band are shown in Table C-10 in Appendix C. 

- Second, the probability of each candidate TAZ being chosen is calculated. Since the 

choice is a discrete event, multinomial logit model (MNL) is employed to estimate 

the weights of impedance and attractiveness factors. This model is mathematically 

proved to reflect the utility maximising choice behaviour (McFadden, 1972, 1978). 

- Third, the candidate TAZ with the highest selection probability is chosen as the 

activity location. 

- Fourth, the systematic utility component of the chosen location is compared with a 

threshold value. If the utility is lower than the threshold, step one to three are 

repeated and a higher utility location is selected, if possible. As mentioned in 

Section 5.1.3, this mechanism reflects people’s learning and exploration of the 

urban environment when his/her original knowledge does not enable a satisfactory 

travel outcome, and can help avoid unrealistic predictions if all sampled locations 

happen to be very unsuitable for a certain activity. 
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Figure 5-3 Flow diagram of Sub-model 2 

5.3.2  Method for parameter estimation 

The MNL model used to estimate the probability of choices is specified as: 

𝑈𝑗𝑖 = 𝑋𝑗𝛽 + 𝜀𝑗𝑖 

where 𝑈𝑗𝑖  is the utility of destination alternative 𝑗  for a given individual 𝑖 ; 𝑋𝑗𝛽 

represents the systematic component of utility, in which 𝑋𝑗 is a vector of attributes for 

alternative 𝑗  and 𝛽  is a vector of coefficients; 𝜀𝑗𝑖  represents the stochastic 

component of utility. Alternative 𝑗 is chosen if 𝑈𝑗𝑖 is bigger than the utility of any 

other choice. If the independence of irrelevant alternatives (IIA) assumption is met, 𝜀𝑗𝑖 

is Gumbel-distributed and the probability that individual 𝑖 chooses alternative 𝑗 is 

(McFadden, 1978): 

𝑝(𝑖) =
exp (𝜇𝑋𝑗𝛽)

∑ exp (𝜇𝑋𝑗𝛽)𝑖∈𝐿
 

where 𝜇 is a scale parameter; and 𝐿 is the set of available alternatives. 
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There are basically three types of variables and coefficients in MNL (Croissant, 2012): 

- alternative specific variables with a generic coefficient; 

- individual specific variables with alternative specific coefficients; 

- alternative specific variables with alternative specific coefficients. 

Considering that the total number of alternatives under examination can be up to several 

hundreds, all variables and coefficients in the model are specified as the first type. The 

variables considered in the model include: 

- Travel distance measured as the centroid-to-centroid distance from the tour origin 

to the candidate TAZ; 

- Logarithmic travel distance to allow for a diminishing effect of longer distance; 

- Distance band variables to account for non-continuous effect of distance; 

- Distance interacting with gender, driving license ownership and car ownership to 

take into account varying sensitivity to travel distance by individuals with different 

capacity of mobility; 

- Expected travel time by driving and transit; 

- Built environment features of the candidate TAZ. 

 

The model is estimated with the ‘mlogit’ package in R Studio v0.99.473. Six models 

are estimated separately for the six types of activities. Considering that the results of 

parameter estimation may be affected by the random sampling of alternatives, I 

repeated the sampling and model estimation several times. It is found that the average 

values of many coefficients would converge and fluctuate by less than 10% when the 

process is repeated for ten times. The variables whose coefficients do not converge are 

all insignificant at 0.1 level and therefore removed from the model. Wald test is then 

applied to make sure that the model fit is not significantly affected by removing the 

variables. 

 

In the next step, the weights for different distance bands are calibrated to maximise the 

approximation between the simulated and the observed average travel distances. The 
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calibration takes a basic parameter sweep approach (Malleson, 2014). The search starts 

from the values estimated by the MNL model and searches both upwards and 

downwards with an increment of 0.2, then the range of search is manually narrowed 

down based on the model fit and a second round of search is conducted with an 

increment of 0.1. The model fit is judged by both the root mean squared error (RMSE) 

and the ratio between the simulated and the actual travel distances.  

 

Last, the threshold of utility is calibrated using a similar approach. However, the model 

prediction turns out to be insensitive to this parameter— in few cases would an 

individual find a new location that provides a higher utility than the original choice 

within five rounds of resampling. It suggests that the alternative sampling method is 

able to produce an effective representation of the activity opportunities in the modelled 

region. This parameter is therefore excluded from the final model.  

5.3.3  Results of parameter estimation 

The results of the location choice models for the six types of activities are shown in 

Table 5-10. Population density significantly increases the chance of choosing a TAZ as 

the destination for most activities, including shopping, personal business, escorting and 

others. In contrast, employment density is negatively associated with the destination 

choice for most activities (the effects are significant for shopping, entertainment and 

others). Higher retail density encourages the destination choice for shopping and 

personal business, but discourages that for entertainment. Similarly, higher 

entertainment density is positively associated with shopping, dining out and other 

activities, but negatively associated with entertainment and personal business. The 

effects of these two variables on entertainment seem a bit counter-intuitive, but can be 

because many of the entertainment activities reported by the interviewees actually refer 

to physical exercises such as strolling and jogging, which tend to be conducted in a 

more natural environment. For the similar reason, land use mix, which is supposed to 

enhance the activeness of the urban environment and the level of convenience, also 
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shows a positive association with most activities except for entertainment.   

 

In terms of the transport infrastructure, the density of primary roads does not turn out 

as a very influencing factor on destination choice, which is only negatively associated 

with entertainment. The density of secondary roads is positively associated with 

choosing a destination for shopping, but negatively associated with entertainment and 

escorting. Possible explanation could be that people may prefer high connectivity for 

shopping but tend to avoid traffic for the latter two activities. Similarly, higher density 

of tertiary roads increases the chance of choosing a location for shopping and other 

activities, but again discourages the location choice for entertainment. Besides, lower 

accessibility to subway station decreases the chance of choosing a location for most 

activities, while higher bus coverage generally increases the chance of location choice, 

as one would expect.  

 

In terms of the street facade features, the facade quality is negatively associated with 

the destination choice for most activities while the facade continuity has the reversed 

effects. Besides, the interaction terms show that being male, owning a car and holding 

a driving license all increase the chance of choosing a farther destination, among which 

holding a driving license has the largest effect. The calibration of the weights of distance 

bands are shown in Table 5-11.  
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Table 5-10 MNL model results on the location choice for primary destinations 

Variables Shopping Entertainment Dining out Personal business Escorting Others 

 B S.E. B S.E. B S.E. B S.E. B S.E. B S.E. 

Distance - - - - 8.93E-05 8.17E-05 5.82E-05 3.71E-05 - - 5.90E-05 2.95E-05 

In(distance) -1.84 0.0838 -2.09 0.0889 -2.1 0.387 -1.54 0.213 -1.29 0.215 -1.77 0.244 

Distance band (ref=<1000m)             

1000-2000m 1.16 0.0642 1.19 0.0704 1.68 0.296 1.17 0.168 0.714 0.17 1.21 0.204 

2000-3000m 1.8 0.109 2.21 0.115 2.6 0.467 1.81 0.255 1.6 0.267 1.9 0.304 

3000-4000m 2.77 0.14 3.02 0.151 2.88 0.602 2.41 0.308 2.32 0.34 3.25 0.364 

4000-5000m 2.54 0.167 2.79 0.177 3.25 0.664 2.4 0.342 1.87 0.396 3.3 0.404 

5000-10000m 3.81 0.179 3.95 0.196 5.4 0.741 3.16 0.39 2.84 0.452 3.9 0.454 

>10000m 4.91 0.25 4.96 0.261 6.28 1.03 3.54 0.504 3.42 0.569 4.42 0.516 

Expected travel time by 

public transit 
-0.000491 2.85E-05 -0.000392 2.86E-05 -0.00062 0.000105 -0.000209 4.95E-05 -0.00038 6.01E-05 -0.000171 4.66E-05 

Expected travel time by 

driving 
0.000105 6.66E-05 0.000149 6.55E-05 - - - - - - - - 

Population density 1.45E-05 2.29E-06 - - 1.21E-05 8.37E-06 1.37E-05 4.29E-06 1.36E-05 5.16E-06 2.01E-05 3.93E-06 

Employment density -2.13E-05 2.27E-06 -1.54E-05 2.48E-06 - - - - -6.77E-06 4.58E-06 -1.32E-05 3.49E-06 

Retail density 0.00356 0.000494 -0.00731 0.000779 - - 0.00325 0.00085 0.000977 0.00114 - - 

Entertainment density 0.00587 0.000784 -0.00337 0.000999 0.00724 0.00265 -0.0031 0.00154 0.0022 0.0019 0.00582 0.00123 

Land use mix - - -0.255 0.0596 0.541 0.241 0.679 0.125 0.385 0.146 0.448 0.11 

Distance to the nearest 

commercial cluster 
- - - - -0.000242 0.000112 -8.87E-05 5.51E-05 -0.000139 6.58E-05 - - 

Primary road density - - -7.52E-05 1.60E-05 -5.08E-05 5.55E-05 - - - - - - 

Secondary road density 5.29E-05 1.00E-05 -3.47E-05 1.10E-05 - - - - -7.40E-05 2.43E-05 - - 

Tertiary road density 1.40E-05 5.85E-06 -0.00015 6.44E-06 - - 1.92E-05 1.07E-05 1.28E-05 1.30E-05 2.52E-05 8.86E-06 

Parking density -5.20E-05 1.06E-05 2.15E-05 1.11E-05 -3.42E-05 3.42E-05 - - 4.58E-05 2.14E-05 - - 

Distance to the nearest -5.08E-05 3.13E-05 -0.000311 3.33E-05 -0.000451 0.00013 -0.000145 6.01E-05 -0.000171 7.18E-05 -3.65E-05 4.77E-05 
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subway station 

Bus coverage 0.397 0.114 0.31 0.126 0.484 0.451 1.7 0.231 1.74 0.284 0.425 0.195 

Facade quality -0.645 0.136 -0.702 0.0259 -0.213 0.0878 -1.05 0.267 -0.241 0.0881 - - 

Facade continuity 1.29 0.217 5.75 0.211 1.7 0.699 0.656 0.415 1.88 0.453 - - 

In(distance): Gender (male) 0.197 0.0379 - - - - -0.014 0.062 0.0874 0.0812 - - 

In(distance): Car ownership 

(yes) 
- - - - 0.234 0.13 0.131 0.0798 0.0754 0.0916 0.15 0.0707 

In(distance): Driving license 

(yes) 
0.247 0.0455 0.137 0.0552 0.201 0.127 0.381 0.0825 0.514 0.0956 0.0813 0.0707 

 

Table 5-11 Calibrated weights of distance bands 

Distance band (m) Shopping Entertainment Dining out Personal business Escorting Others 

1000-2000 1.94 1.23 2.51 1.60 1.72 2.17 

2000-3000 2.92 2.69 3.63 2.72 1.86 3.05 

3000-4000 3.84 3.43 4.68 3.19 2.04 4.34 

4000-5000 3.65 3.36 5.04 3.29 2.77 3.65 

5000-10000 4.97 4.79 5.72 3.64 3.23 5.18 

>10000 6.49 5.56 6.91 4.38 3.79 5.64 
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5.3.4  Validation of the sub-model 

The results on the test set show that the model is able to produce good estimation of the 

average travel distances for the six types of activities. The largest gap between 

observation and simulation happens on the dining out activities, which can be at least 

partly explained by the small sample size of the test data. When the results are split by 

ring roads, the model is able to capture the trend that residents in outer areas of the city 

generally travel longer distances. In some cases, the model provides quite approximate 

estimations to the observed data, e.g. the average shopping distance of the residents 

living between the 2nd and 3rd ring roads, and that of the residents living between the 

4th and 5th ring roads. The model performs the worst on entertainment activities, which 

suggests that the model may not sufficiently account for the factors related to 

entertainment location choices.  

 

Table 5-12 Simulated and observed travel distances on the test set 

  Simulated Observed Mean (sim)/Mean (obs) 

 N Mean  S.D. Mean  S.D.  

Shopping 1021 1639 1220 1542 1989 1.06 

Entertainment 968 1649 930 1860 2252 0.89 

Dining out 64 2564 1448 3019 3779 0.85 

Personal business 217 3852 4068 3670 3587 1.05 

Escorting 160 2771 1507 2895 3177 0.96 

Others 224 5586 1427 5493 4538 1.02 

 

Table 5-13 Simulated and observed travel distances by ring roads on the test set 

   
Within 2nd 

ring 

2nd-3rd 

ring 

3rd-4th 

ring 
4th-5th ring 

Shopping 

N 262 318 211 230 

obs 1317 1565 1427 2048 

sim 1227 1513 1912 2045 

Entertainment 

N 317 321 184 146 

obs 1625 1586 2020 2791 

sim 1789 1675 1500 1470 

Dining out N 21 17 9 17 
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obs 2290 2605 4486 3336 

sim 1905 2519 2568 3262 

Personal business 

N 58 68 49 42 

obs 2949 3294 4548 4177 

sim 2500 3016 4878 5660 

Escorting 

N 38 36 50 36 

obs 2326 2974 2859 3451 

sim 1916 2423 3057 3589 

Others 

N 60 74 44 46 

obs 5696 4700 5579 6474 

sim 4377 5030 6645 7153 

Note: Underlined numbers do not follow the general trend that residents at outer rings travel 

longer distances, which might be systematic and worth attention, or simply results of large 

random errors due to the small sample sizes. 

5.4  Sub-model 3: Time of activity and mode choice 

5.4.1  Introduction to the sub-model 

The time of activity and the travel mode are modelled jointly since the questionnaire 

survey suggests that people tend to give similar priority to these two choice facets. 

Moreover, the two choices can be mutually influential. For instance, one may take 

subway instead of driving if he/she has to travel in rush hours, or may try to avoid rush 

hour if he/she prefers driving. The time of activity is estimated through the probability 

distribution from the observed data, given the activity type and the position in the 

activity plan. The mode choice is estimated through multinomial logit models, which is 

straightforward. Besides, a mechanism is designed to allow the adjustment of activity 

scheduling if none of the travel modes could provide a satisfactory utility under the 

original schedule. 

 

The 24 hours of a day are divided into six periods in the model: before am peak (03:00-

07:00 am), am peak (07:00-09:00 am), before noon (9:00-12:00 am), afternoon (12:00-

17:00 pm), pm peak (17:00-19:00 pm) and after pm peak (19:00 pm-03:00 am). The 

peak hours are identified from the 24-hour congestion index (annual average) in the 



134 

 

Transportation Report of Beijing 2011 (Figure 5-4). For the ease of computation, if 

more than half of the travel time of a tour falls in a certain time period, the tour is 

considered to be conducted in that period. The key point of travel time prediction is to 

differentiate between peak hour tours and non-peak hour tours, which could influence 

the mode choice.  

 

Figure 5-4 Congestion levels by hour 

Source: Transportation Report of Beijing 2011, pp.52.   

 

The computational process of this sub-model is designed as: 

- First, the individual arranges a time slot for each of the primary activities in his/her 

activity plan based on the observed probabilities of activity time choice (see Table 

C-11 in Appendix C). 

- Second, the individual checks whether the time arrangement is reasonable: (1) 

activities that come later in the activity plan should not take an earlier time than 

previous activities, (2) non-commute activities that take place after commute 

activities should not take a time slot earlier than afternoon. If there is any conflict, 

the first step is repeated until a reasonable time plan is produced. 

- Third, the individual calculates the probabilities of choosing each of the four travel 

modes using multinomial logit models and chooses the mode with the highest 

probability.  
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- Last, the individual compares the systematic utility component of the chosen mode 

with a threshold value. If the utility is lower than the threshold, he/she reschedules 

the activities and repeats the mode choice process.  

 

Figure 5-5 Flow diagram for Sub-model 3 

5.4.2  Method for parameter estimation 

Considering that the mode choice for different types of activities may be subject to 

different considerations, three separate MNL models are estimated for work, school and 

non-commute tours. The influencing factors considered in the models include: 

- Individual’s socioeconomic characteristics; 

- Built environment conditions at the tour origin (home); 

- Built environment conditions at the tour destination; 

- Travel-related variables including the travel distance, expected travel time by each 

mode, whether the tour contains any intermediate stop and whether the tour is 

conducted during peak hours.  

All the variables are estimated with alternative specific coefficients to account for 

varying effects of these variables on different modes. For instance, the same time spent 
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in a car and walking may be valued differently (Bowman & Bradley, 2005). 

 

In the next step, the constants of different modes are further calibrated to maximise the 

approximation between the simulated and the observed mode shares. The parameter 

sweep starts from the values estimated by the MNL models and searches both upwards 

and downwards with an increment of 0.1. The range of search is then manually 

narrowed down based on the model fit and a second round of search is conducted with 

an increment of 0.05. The model fit is judged by both the percentage of correct 

predictions and the mode shares.  

 

Last, the threshold of minimum utility is calibrated. However, similar to the location 

choice, the model results turn out to be insensitive to this parameter—in few cases 

would an individual find a combination of travel time and mode that induces a higher 

utility if the original choice does not meet the threshold. This parameter is therefore 

also excluded from the final model. 

5.4.3  Results of parameter estimation 

The results of MNL models are presented in Table 5-14. For work tours, all 

socioeconomic variables have significant impacts on mode choice. Older age is 

associated with higher chance of cycling, but lower chance of taking public transit, 

which could be a result of the habits of the elder generation. Men are more likely to 

drive than women. Higher income and social status are generally related to higher 

chance of driving than taking public transit and cycling. Both couples and single 

persons are more likely to drive comparing with people from a core family. Holding a 

driving license and owning a private car are positively associated with driving, while 

owning a motorcycle or an e-bicycle are positively associated with cycling, as one 

would expect. 

 

In terms of the built environment characteristics at the tour origin (home), higher 
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population density marginally increases the chance of cycling, which could be because 

higher density can lead to a safer and more active environment for walking/cycling. 

Longer distance to commercial clusters decreases the chance of cycling and taking 

public transit (although insignificant, the p-values are not much above 0.1), possibly by 

reducing the activeness of the environment and the convenience of shopping along the 

way. For similar reasons, retail density and land use mix are positively associated with 

all non-driving modes, although the former is only significant for walking and the latter 

is only significant for cycling. When comes to the transport infrastructure, the density 

of secondary road has a significant effect in discouraging cycling, probably because the 

volume of traffic could pose safety risks for cycling (though the traffic volume is the 

largest on primary roads, cyclers usually ride on secondary and tertiary roads). Besides, 

longer distance to subway stations discourages transit use, as one would expect, but the 

effect is marginal. In terms of the street facade features, the only significant relationship 

is the positive correlation between the facade continuity and public transit use. 

 

In terms of the built environment characteristics at the tour destination (work place), 

higher population density is positively associated with cycling and walking (marginal), 

which is similar to its effects at the tour origin. Longer distance to the city centre 

decreases the chance of public transit use and cycling, which is also reasonable. Similar 

to the results at the tour origin, retail density, entertainment density and land use mix at 

the tour destination also show a generally positive relationship with all non-driving 

modes, although only the effect of entertainment density on walking is significant. 

Regarding to the transport infrastructure, the density of tertiary roads encourages 

cycling, since they are usually more cycling and walking friendly. Besides, higher bus 

coverage decreases the chance of walking and cycling, probably because people may 

take bus as a substitute for walking and cycling. 

 

Regarding to the tour characteristics, longer travel distance decreases the chance of 

cycling and walking, as one would expect. When the travel distance is controlled, travel 
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time is positively associated with taking public transit and walking but negatively 

associated with cycling. Traveling during peak hours increases the chance of taking 

public transit and cycling. Making an intermediate stop along the tour discourages the 

use of all non-driving modes since the automobile is more convenient for making stops 

(Bowman & Bradley, 2005).  

 

School tours are different from work tours in many aspects since most of the travellers 

are young students and are usually escorted and chauffeured by adults. Therefore, the 

influencing mechanism of the mode choice for school tours can be different from adults’ 

commute tours. In terms of socioeconomic variables, older age is associated with higher 

chance of using non-driving modes, which can be explained by the increasing 

independency of older children so there is less need for chauffeuring. For similar 

reasons, male students are more likely to cycle. Unlike in work tours, holding a driving 

license does not show a significant impact on mode choice. Instead, household car 

ownership is positively associated with driving. These results can also be explained by 

the fact that students usually do not drive by themselves but are chauffeured by parents. 

Besides, some of the relationships are similar to those in work tours, which include: 

students from high income families (annual income=250-300 thousand RMB) are less 

likely to walk; couples are more likely to drive; lower social status increases the use of 

all non-driving modes; and owning a motorcycle or e-bicycle increases the chance of 

cycling and walking. 

 

In terms of built environment variables, many of the results are similar with work tours. 

Higher retail density at the tour origin increases the chance of choosing non-driving 

modes. Higher density of secondary roads at the tour origin is negatively associated 

with cycling. Higher density of tertiary roads at the tour destination is positively 

associated walking. Entertainment density and the use of non-driving modes are 

negatively associated at the tour origin but positively associated at the tour destination, 

which is also observed in work tours but not statistically significant. Higher density of 
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parking spaces decreases the chance of choosing non-driving modes, especially the 

public transit, due to the increased convenience of driving.  

 

In terms of tour characteristics, longer travel distance is negatively associated with 

walking and cycling, which is the same as in work tours. When the travel distance is 

controlled, the expected travel time is positively associated with public transit use and 

negatively associated driving. Making an intermediate stop along the tour also reduces 

the possibility of using non-driving modes. 

 

For non-commute tours, older people are more likely to use non-driving mode. Men are 

less likely to take public transit and walk. People from non-core family households are 

all more likely to drive. Lower social status is positively associated with all non-driving 

modes and the relationships are all significant at 0.1 level. Both holding a driving 

license and owning a car significantly increase the chance of driving. Owning a 

motorcycle or an e-bicycle increases the chance of cycling. 

 

In terms of the built environment variables, higher employment density at the tour 

origin and being closer to the city centre are positively associated with walking and 

cycling, which is consistent with the assumptions in Section 2.1.4. The density of 

tertiary roads at the tour origin is negatively associated with the use of all non-driving 

modes, which indicates that driving tends to benefit the most from the enhanced 

connectivity of road network. Higher bus coverage at the tour origin decreases the 

chance of cycling, possibly because people tend to substitute cycling with taking bus 

when the latter is more convenient. When the tour destination is farther from the city 

centre, people are less likely to take public transit. Higher land use mix at the tour 

destination is negatively associated with all non-driving modes and the effect is 

significant for walking. This result is a bit counter-intuitive but could be because that 

the higher level of functional mix makes it more possible to perform multi-tasks, which 

is more convenient by driving. Besides, higher level of facade continuity at the tour 
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destination marginally encourages public transit use and cycling, which, as assumed in 

Section 2.1.4, could be related to the enhanced attractiveness of the urban environment. 

Last, the effects of tour characteristics are generally similar with those in work and 

school tours. 
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Table 5-14 MNL model results on mode choices 

 Work School Non-commute 

 Transit Cycle Walk Transit Cycle Walk Transit Cycle Walk 

Variable B B B B B B B B B 

Constant 4.03*** 5.64*** 8*** 1.66 2.42 4.31* 2.88* 4.48*** 7.78*** 

Socioeconomic          

Age -0.0191*** 0.0224*** 2.20E-05 0.0782*** 0.0635** 0.0725*** 0.0288*** 0.0105** 0.024*** 

Gender (Ref=Female)          

Male -0.819*** -0.188* -0.383*** 0.168 0.727*** 0.351Ψ -0.649*** 0.0119 -0.438*** 

Annual income (Ref=<50 thousand RMB) 

50-100 0.00388 -0.247** 0.0947 -0.293 0.133 -0.107 -0.0675 -0.24Ψ -0.286* 

100-150 -0.192 -0.547*** -0.297Ψ -0.154 0.346 0.324 -0.077 -0.372Ψ -0.52** 

150-200 -0.423* -0.326 0.0653 0.0423 0.299 0.0856 1.07** 0.424 0.503 

200-250 -0.765* -1.46** -0.658 -0.141 -0.634 0.352 1.68* 0.808 0.631 

250-300 -0.525 -0.235 0.408 -0.96 -0.861 -2.69* 0.228 -0.945 -0.858 

>300 -0.98** -1* -0.238 0.0668 -1.55 -0.226 -0.427 -0.959 0.00221 

Life cycle (Ref=Core family) 

Single -1.02*** -1.38*** -0.787*** -2.23Ψ -0.558 0.619 -0.161 -0.622*** -0.316* 

Couple -0.25** -0.513*** -0.118 -2.48** -2.36** -3.55*** -0.101 -0.556* -0.0201 

Multi-generation 0.141 0.03 -0.102 0.332 0.441 0.387 -0.316Ψ -0.799*** -0.425* 

Others -0.253* -0.758*** 0.103 -0.259 -0.31 -0.192 -0.141 -0.494* -0.278 

Social well-being (Ref=Best-off) 

Middle 0.21* 0.198Ψ 0.0242 0.291 0.378 0.335 0.548*** 0.594*** 0.379** 

Least well-off 0.323** 0.351** 0.159 0.715* 0.675* 0.899** 0.614*** 0.542** 0.324Ψ 

Driving license (Ref=No) 

Yes -1.38*** -1.49*** -1.35*** 0.429 0.48 1.04 -1.2*** -1.2*** -1.16*** 

Car ownership (Ref=No) 

Yes -3.81*** -3.98*** -3.62*** -3.97*** -3.96*** -4.07*** -3.07*** -2.9*** -2.92*** 
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 Work School Non-commute 

 Transit Cycle Walk Transit Cycle Walk Transit Cycle Walk 

Variable B B B B B B B B B 

Motor cycle (Ref=No)          

Yes 0.536Ψ 1.09*** 0.553 -0.444 1.59Ψ 1.99* 0.275 0.947* 0.348 

Electric bicycle (Ref=No) 

  Yes -0.328** 1.4*** 0.253Ψ -0.333 0.903*** 0.0868 -0.0726 1.23*** 0.329* 

Built environment at tour origin 

Population density -3.20E-07 1.02E-05Ψ 5.70E-07 -9.78E-06 1.39E-05 -1.69E-06 -6.46E-06 -7.93E-06 -1.42E-05Ψ 

Employment density -3.32E-06 -1.83E-06 -4.71E-06 1.77E-05 2.33E-05Ψ 6.91E-06 1.02E-05 1.82E-05* 1.81E-05* 

Distance to city center 7.17E-06 1.50E-05 -3.79E-05 1.33E-05 -0.000114Ψ -0.000264** 3.16E-05 -0.000124*** -0.00012*** 

Distance to the nearest 

commercial cluster 
-7.26E-05 -0.00015** -1.88E-05 -1.19E-05 4.74E-05 7.21E-05 -0.000122Ψ -6.00E-05 -3.01E-05 

Retail density 0.00113 0.00112 0.00513** 0.00859* 0.0055 0.0127** 0.00431Ψ 0.000631 0.000729 

Entertainment density -0.000536 -0.00257 -0.00102 -0.0156** -0.0081 -0.0177** -0.00189 9.45E-05 -0.00112 

Land use mix 0.192 0.368* 0.354Ψ -0.337 0.083 0.35 -0.292 -0.321 -0.16 

Primary road density 2.13E-05 5.75E-05 5.48E-05 5.21E-05 2.22E-05 0.000173Ψ 2.86E-06 -3.76E-05 -5.15E-05 

Secondary road density 2.81E-05 -6.49E-05* 3.08E-05 -7.43E-05 -0.000138* -0.000127Ψ -3.68E-05 -1.48E-05 -4.38E-05 

Tertiary road density -2.39E-05Ψ -1.05E-05 -3.30E-05Ψ -3.92E-06 -3.02E-06 -5.83E-05 -4.12E-05* -4.34E-05* -8.25E-05*** 

Parking density -2.09E-05 1.33E-05 5.48E-05Ψ -1.66E-05 -4.83E-05 9.45E-06 -1.26E-05 -2.76E-05 4.67E-06 

Distance to the nearest 

subway station 
-0.000112Ψ -5.81E-05 -1.45E-05 -0.000264 -0.000112 -0.000268 4.31E-05 -1.20E-05 6.09E-05 

Bus coverage 0.104 -0.167 -0.109 0.716 -0.842 0.557 -0.171 -0.888* -0.371 

Facade quality 0.512 -0.437 -0.509 0.491 0.443 1.2 0.288 0.401 0.186 

Facade continuity 1.97*** 0.463 0.776 1.37 2.41Ψ 0.045 0.822 0.844 1.06 

Built environment at tour destination 

Population density -2.13E-07 1.15E-05* 1.13E-05Ψ -2.51E-06 -2.53E-05Ψ -1.46E-05 -1.23E-05Ψ -1.03E-05 -8.05E-06 

Employment density 3.56E-06 -5.77E-07 -5.25E-06 -5.45E-06 -4.22E-06 7.42E-06 -5.71E-06 -1.15E-05Ψ -9.92E-06 

Distance to city center -3.74E-05* -4.59E-05* 3.20E-05 -8.73E-06 6.06E-05 0.000264*** -9.21E- 9.57E-07 5.89E-06 
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 Work School Non-commute 

 Transit Cycle Walk Transit Cycle Walk Transit Cycle Walk 

Variable B B B B B B B B B 

05*** 

Distance to the nearest 

commercial cluster 
-2.45E-05 -7.76E-05 -6.07E-05 6.53E-05 -7.63E-05 -4.31E-05 1.71E-05 0.000144 0.000191* 

Retail density 0.000525 0.000343 -0.000371 0.00401 -0.00173 -0.00475 0.00198 0.000169 0.000614 

Entertainment density 0.000957 0.00173 0.00435* 0.01* 0.00904Ψ 0.0112* -0.0014 0.004 -0.000345 

Land use mix 0.146 0.198 0.191 0.408 -0.00203 -0.267 -0.302Ψ -0.057 -0.399* 

Primary road density 1.21E-05 -4.98E-05 2.84E-05 2.65E-05 -4.41E-05 -9.89E-05 -8.59E-06 1.24E-05 8.08E-05 

Secondary road density 2.38E-05 4.03E-05Ψ 1.04E-05 -7.35E-05 -3.60E-05 -7.13E-05 -5.78E-05Ψ -5.65E-05 -1.45E-05 

Tertiary road density 1.56E-05 2.97E-05* 2.69E-05 -3.78E-05 2.75E-05 0.000105** -1.62E-06 3.16E-05 1.91E-05 

Parking density -3.46E-06 -1.51E-05 3.96E-06 -0.000134* -6.23E-05 -7.04E-05 -7.44E-06 -3.08E-05 -1.40E-05 

Distance to the nearest 

subway station 
-0.000198** -9.17E-05 -8.44E-05 1.37E-05 1.57E-05 0.000263 -0.000139 -4.19E-05 -1.82E-05 

Bus coverage -0.122 -0.572* -0.629* -0.865 -0.349 -1.09 0.457 0.227 -0.414 

Facade quality -0.431 -0.418 -0.537 0.335 0.892 0.253 -0.00858 0.528 0.638 

Facade continuity 0.358 0.664 0.504 1.41 0.974 1.45 1.34Ψ 1.42Ψ 0.775 

Tour characteristics          

Travel distance 2.54E-05Ψ -0.000295*** -0.00163*** 7.07E-05 -0.00041*** -0.00195*** -2.98E-05 -0.000514*** -0.00184*** 

Expected travel time 8.33E-05* -0.000243*** 3.82E-05* 0.000213* 0.000236 4.84E-05 0.000203*** 0.000114 2.07E-05 

Travel during peak 

hours: yes 
0.465*** 0.235* -0.148 -0.301 0.166 0.369Ψ 0.176 0.183 0.174 

Include intermediate 

stop(s): yes 
-0.954*** -0.928*** -1.14*** -1.2** -0.904* -1.24** -0.74*** -0.663*** -0.893*** 

 

Expected travel time (drive): B=-6.3952e-05 

Log-Likelihood: -9548.8 

McFadden R2: 0.4612  

Likelihood ratio test: chisq = 16347  

Expected travel time (drive): B=5.5896e-04   

Log-Likelihood: -1858 

McFadden R2: 0.37326  

Likelihood ratio test: chisq = 2213.1  

Expected travel time (drive): B=1.5519e-04 

Log-Likelihood: -9481 

McFadden R2: 0.3987  

Likelihood ratio test : chisq = 12573  
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 Work School Non-commute 

 Transit Cycle Walk Transit Cycle Walk Transit Cycle Walk 

Variable B B B B B B B B B 

(p-value < 2.22e-16) (p.value < 2.22e-16) (p.value < 2.22e-16) 
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By performing the parameter sweep, the constants in the three models are calibrated to 

the values shown in Table 5-15. The percentages of correct prediction (PCP) are 69%, 

66% and 74% after calibration. In a similar work by P. Zhao (2011), the PCP of the 

MNL model for worker’s mode choice is 71.3%, in which only three types of travel 

modes are considered (car, public transport, and foot, bicycle or other modes). If 

walking and cycling are merged as one mode in my model, the PCP can increase to 78% 

(without calibration). Therefore, the model fit can be considered as fairly good.  

 

Table 5-15 Calibrated constants for mode choice 

Work School Non-commute 

Public transit: 4.53 Public transit: 1.51 Public transit: 2.88 

Cycle: 6.14 Cycle: 2.62 Cycle: 4.62 

Walk: 7.60 Walk: 4.06 Walk: 6.69 

PCP = 69% PCP =66% PCP =74% 

5.4.4  Validation of the sub-model 

The simulation performed on the test set shows that the model is able to provide a good 

estimation of mode choice. The shares of the four modes are close between the 

simulation and the observation for all three types of activities. The percentages of 

correct prediction are 71% and 73% for work and non-commute tours and 58% for 

school tours. 

 

Table 5-16 Confusion matrix of the mode choice for work tours on the test set 

 Cycling 

(sim) 

Driving 

(sim) 

Transit 

(sim) 

Walking 

(sim) 
Total 

Cycling (obs) 226 26 103 83 20.0% 

Driving (obs) 17 242 56 19 15.2% 

Transit (obs) 98 72 664 26 39.3% 

Walking (obs) 84 19 31 425 25.5% 

Total 19.4% 16.4% 39.0% 25.2% PCP=71% 

 

Table 5-17 Confusion matrix of mode choice for school tours on the test set 

 Cycling Driving Transit Walking Total 
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(sim) (sim) (sim) (sim) 

Cycling (obs) 52 7 27 22 27% 

Driving (obs) 2 16 16 7 10% 

Transit (obs) 25 12 66 10 28% 

Walking (obs) 32 4 7 102 35% 

Total 27% 10% 29% 35% PCP=58% 

 

Table 5-18 Confusion matrix of the mode choice for non-commute tours on the test set 

 Cycling 

(sim) 

Driving 

(sim) 

Transit 

(sim) 

Walking 

(sim) 
Total 

Cycling (obs) 125 11 83 152 14% 

Driving (obs) 12 84 31 18 6% 

Transit (obs) 63 27 396 58 21% 

Walking (obs) 131 24 84 1295 59% 

Total 13% 5% 23% 59% PCP=73% 

5.5  Sub-model 4: Location choice for intermediate stops 

5.5.1  Introduction to the sub-model 

The choice of intermediate stops is modelled in a similar approach as the choice of 

primary destinations. The major difference lies in that two anchor points are considered 

in measuring the impedance of travel, which is calculated as the detour distance from 

the tour origin to the candidate stop and then to the primary destination minus the direct 

distance from the tour origin to the destination. Besides, the travel mode is already 

decided and therefore taken into account in the choice of intermediate stops, which is 

supposed to enhance the model performance since existing research suggest that long 

detour trips are more likely to happen with certain modes than others (Ho & Mulley, 

2013). The computational process of this sub-model is designed as: 

- First, for each intermediate stop in the activity plan, a subset of ten TAZs are drawn 

as candidate locations using the detour distance as the weighting factor. The quota 

given to each detour distance band is derived from the distribution of detour 

distance for each type of activity in the observed data (see Table C-12 in Appendix 

C). 
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- Second, the probability of each candidate TAZ being chosen is calculated, also 

estimated using multinomial logit models.  

- Third, the candidate TAZ with the highest selection probability is chosen as the 

location of the intermediate stop. 

- Last, the systematic utility component of the chosen location is compared with a 

threshold value. If the utility is lower than the threshold, step one to three are 

repeated and a higher utility location is selected, if possible. 

 

 

Figure 5-6 Flow diagram of Sub-model 4 

5.5.2  Method for parameter estimation 

As mentioned before, the method used in this sub-model is very similar to the second 

sub-model. MNL model is applied to estimate the weights of the influencing factors, 

which include: 

- Detour distance measured as the total distance from the tour origin to the candidate 

TAZ and then to the tour destination, minus the direct distance from the tour origin 

to the tour destination; 

- Logarithmic detour distance to allow for a diminishing effect of distance; 
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- Detour distance interacting with gender and travel mode to take into account 

varying sensitivities to the detour distance by different genders and different modes; 

- Detour distance band variables to account for non-continuous effect of distance 

- Built environment features of the candidate TAZ. 

 

The candidate TAZs are also re-sampled and the model parameters are re-estimated for 

ten times. The variables whose coefficients do not converge (fluctuate by less than 10%) 

are removed (all these variables are not significant at 0.1 level). Wald test is applied to 

make sure that the model fit is not significantly affected by removing the variables. 

After estimating the MNL model, the weights of different detour distance bands are 

calibrated using parameter sweep to maximise the approximation between the 

simulated and the observed average detour travel distances. The threshold of utility also 

turns out to be uninfluential to the modelling results and therefore is removed. 

5.5.3  Results of parameter estimation 

The results of the stop location choice models for the six types of activities are shown 

in Table 5-19. Many of the relationships are similar to those in the location choice of 

primary destinations. Population density is positively associated with the chance of 

choosing a location for most activity types, except for entertainment and ‘other’ 

activities (significant for shopping, dining out and ‘others’). On the contrary, 

employment density has the reversed effects for most activities (significant for 

shopping). Higher retail density and entertainment density both increase the chance of 

choosing a location for all activity purposes except for entertainment, which is also 

observed in the location choice for primary destinations. The effects of retail density 

are significant for shopping, entertainment, dining out and personal business, while the 

effects of entertainment density are significant for shopping, dining out and escorting. 

Higher level of land use mix is positively associated with the location choice for most 

activities, since it could contribute to the availability of activity opportunities as well 

as the activeness of the urban environment.  
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Regarding to the transport infrastructure, the density of primary roads does not play a 

significant role in the stop location choice for any activity purpose, which is similar to 

the results on primary destinations. The density of secondary roads only show a 

significantly positive relationship with the stop location choice for shopping. Higher 

density of tertiary roads significantly increases the chance of the location choice for 

shopping but decreases that for entertainment, which indicates that people prefer high 

connectivity for shopping but tend to avoid traffic for entertainment. Besides, both 

better accessibility to subway stations and higher bus coverage enhance the 

attractiveness of a location for almost all types of activities, which is reasonable. 

 

The two street facade variables do not exert a significant influence in most cases, except 

for the positive relationship between the facade continuity and the location choice for 

entertainment. Regarding to the interaction terms, gender does not show a significant 

relationship with the detour distance. Driving and taking public transit increases the 

chance of choosing a stop that needs a longer detour distance for almost all purposes, 

and walking shows the opposite effects, as one would expect. 
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Table 5-19 MNL model results on the location choice for intermediate stops 

 Shopping Entertainment Dining out Personal business Escorting Other 

Variables B S.E. B S.E. B S.E. B S.E. B S.E. B S.E. 

Detour distance -0.000204 4.25E-05 -0.000199 8.48E-05 -0.000206 4.80E-05 -0.000101 3.63E-05 -0.000195 3.46E-05 -0.000128 3.47E-05 

In(detour distance) 0.038 0.0539 0.345 0.173 - - -0.289 0.127 -0.0481 0.0646 0.111 0.194 

Detour distance band (ref=<1000m) 

1000-2000m -0.372 0.0894 -0.736 0.214 -0.441 0.139 0.222 0.233 -0.317 0.124 -0.578 0.247 

2000-3000m 0.273 0.145 -0.719 0.306 -1.42 0.213 -0.384 0.283 0.00516 0.159 -0.462 0.312 

3000-4000m -0.486 0.199 -0.762 0.458 -1.4 0.279 -0.231 0.385 0.179 0.215 -0.66 0.448 

4000-5000m -0.902 0.248 -0.638 0.494 -2.05 0.372 -0.987 0.52 0.15 0.238 -0.441 0.44 

5000-10000m 0.938 0.325 1 0.7 0.632 0.393 0.285 0.384 0.77 0.274 0.792 0.425 

>10000m 0.887 0.614 0.354 1.38 0.994 0.717 1.43 0.681 2.1 0.507 0.544 0.641 

Population density 2.19E-05 4.24E-06 -6.91E-06 1.12E-05 1.23E-05 6.18E-06 2.48E-06 9.34E-06 6.90E-06 5.21E-06 -2.45E-05 1.02E-05 

Employment density -1.62E-05 3.91E-06 -1.27E-05 1.01E-05 - - -1.07E-05 8.20E-06 -3.26E-06 4.08E-06 -1.52E-05 9.37E-06 

Distance to the nearest 

commercial cluster 
- - -0.000105 0.000145 -3.41E-05 9.42E-05 - - - - - - 

Retail density 0.0033 0.000888 -0.00593 0.0025 0.00355 0.00106 0.00395 0.00178 0.000494 0.00109 0.00196 0.00224 

Entertainment density 0.00811 0.00136 - - 0.00417 0.00177 0.00566 0.00341 0.00744 0.00181 0.00194 0.00367 

Land use mix -0.0521 0.107 0.069 0.253 0.361 0.157 1.12 0.275 0.377 0.147 0.811 0.282 

Primary road density - - -0.000123 7.02E-05 -5.55E-05 3.69E-05 -4.71E-05 6.21E-05 - - - - 

Secondary road density -6.65E-05 1.86E-05 6.51E-05 4.74E-05 -1.43E-05 2.24E-05 - - - - -3.90E-05 4.99E-05 

Tertiary road density 4.48E-05 1.76E-05 -3.84E-05 4.74E-05 1.85E-05 2.28E-05 3.47E-05 3.92E-05 -3.78E-05 2.34E-05 - - 

Parking density 2.85E-05 9.67E-06 -0.000108 2.62E-05 - - - - - - -1.64E-05 2.51E-05 

Distance to the nearest 

subway station 
-0.000157 6.31E-05 -0.000124 0.00015 -9.47E-05 9.40E-05 -0.000236 0.000133 -0.000162 7.28E-05 -0.000143 0.000125 

Bus coverage - - 0.243 0.536 0.599 0.303 - - 1.12 0.28 1.61 0.532 

Facade quality - - - - - - - - -0.279 0.315 -0.29 0.456 

Facade continuity - - 1.42 0.321 - - 0.207 0.32 0.83 0.484 1.13 0.943 
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 Shopping Entertainment Dining out Personal business Escorting Other 

Variables B S.E. B S.E. B S.E. B S.E. B S.E. B S.E. 

In(detour distance): male - - - - 0.0113 0.109 - - - - - - 

In(detour distance): drive 0.473 0.096 0.184 0.23 0.878 0.139 0.584 0.15 0.319 0.0637 0.486 0.181 

In(detour distance): 

transit 
0.335 0.0629 -0.0825 0.178 0.548 0.14 0.56 0.139 0.303 0.0911 0.261 0.175 

In(detour distance): walk -0.122 0.0561 -0.536 0.171 -0.157 0.108 -0.0722 0.152 -0.261 0.0824 -0.214 0.184 

 

Table 5-20 Calibrated weights of detour distance bands 

Distance band (m) Shopping Entertainment Dining out Personal business Escorting Other 

1000-2000 0.20 -0.43 -0.11 0.28 -0.02 0.23 

2000-3000 0.45 -0.8 -0.1 0.1 0.12 0 

3000-4000 0.30 -0.37 0.3 -0.05 0.2 -0.8 

4000-5000 -0.26 -0.46 0.1 -0.49 0 0 

5000-10000 0.43 0.95 0.86 0.18 0.73 1.03 

>10000 0.90 0.64 0.9 1.27 2.02 0.6 
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5.5.4  Validation of the sub-model 

The results on the test set show that the model is able to produce good estimation of the 

average detour distance for the six types of activities (see Table 5-21). The differences 

between the simulation and the observation are smaller than 10% for five of the six 

activity types. The largest gap happens on the activity type of escorting, which require 

further research to improve the modelling performance in the future. Due to the small 

sample size of the test set, the comparison is not done at the ring road level.  

 

Table 5-21 Simulated and observed detour distances on the test set 

  Simulated Observed Mean (sim)/Mean (obs) 

 N Mean  S.D. Mean  S.D.  

Shopping 224 1367 1275 1260 2048 1.08 

Entertainment 41 2033 2340 2142 3365 0.95 

Dining out 185 1379 2136 1513 3268 0.91 

Personal business 45 3078 4498 3432 4866 0.9 

Escorting 146 2312 2966 3050 4059 0.76 

Others 41 3606 3894 3813 4965 0.95 

5.6  Validation of the whole model 

Two indicators of synthesised travel outcomes are selected for the validation of the 

whole model: the total travel distance for non-commute purposes and the VMT. The 

former is the combined outcome of the participation, the organisation and the location 

choice of non-commute activities. The latter is the outcome of all choice facets in the 

activity-travel. Ideally, doing the validation at more disaggregate levels can enhance the 

strength of the results. However, the sample size at more disaggregate levels could be 

small and thus contain large random errors. For instance, the test data have only 21 

samples per TAZ in average. Therefore, the comparison is also done at the ring road 

level. 
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The results show that the model is able to capture the general pattern of the amounts of 

travel—residents living at outer parts of the city tend to both travel longer distances for 

non-commute purposes and drive more. The R2 values between the simulation results 

and the observations are fairly high. However, the model tends to underestimate the 

VMT, especially for residents living between the 4th and the 5th ring roads. 

 

Table 5-22 Validation of the whole model 

  
Within 2nd 

ring road 

2nd-3rd 

ring road 

3rd-4th 

ring road 

4th-5th 

ring road 
R2 

N  1620 1817 1397 1702  

Non-

commute 

distance 

obs 2527 2687 2795 3182 

0.98 
sim 2669 2901 3033 3387 

VMT 
obs 1135 1428 1903 2406 

0.83 
sim 1049 1055 1672 1780 

5.7  Chapter summary 

This chapter proposes a disaggregate activity-travel model, named as BEATIM, which 

has a particular emphasis on the impacts of the built environment on the various aspects 

of daily travel, including activity frequency, activity location choice, mode choice, etc. 

To the best of the author’s knowledge, it is the most comprehensive model that 

explicitly links the activity-based modelling approach, which is mainly developed in 

the field of transport simulation, with the analysis of the built environment-travel 

relationship, which is mainly conducted in the field of urban planning and design. It is 

built on the gap that, on one hand, existing activity-based models usually do not take 

sufficient account of the built environment conditions, and on the other hand, previous 

research on the built environment-travel relationship focus mainly on the synthesised 

outcomes of travel instead of the underlying behavioural processes. 

 

The BEATIM model generally falls in the category of utility maximisation models, and 

takes weak computational process features. It should be noted that the LUTI system is 
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by nature a complicated system with many interrelated components and one could be 

tempted to include more and more behavioural processes to fully account for various 

mechanisms of interactions, when developing models within this system. Therefore, 

special care is taken to keep close focus on the daily travel behaviour and the influence 

of the built environment when building the BEATIM model. The model system contains 

four major components: namely the sub-model for the activity participation and 

organisation, the sub-model for the location choice of primary activities, the sub-model 

for the time of activity and mode choice, and the sub-model for the location choice of 

intermediate stops. 

 

The validation shows that the model is able to produce a good simulation of people’s 

daily travel behaviour. It is acknowledged that there can be large prediction errors at 

the individual level due to the complex, stochastic nature of activity-travel behaviour 

(Kulkarni & McNally, 2000). However, the correlation between the simulation results 

and the observed behaviour at more aggregate levels, such as the ring road level, can 

be fairly high. Besides, the results of model parameter estimation do suggest that the 

built environment factors can play a significant role in many choice facets of activity-

travel and should be accounted for in travel demand forecasting—something which 

currently does not happen a lot (Zegras, 2010). 

 

A major shortcoming of the model lies in that only point estimates of model parameters 

are used. The estimates could be more or less different from the population parameter 

due to chance error, which can accumulate with each modelling step (Cao & Fan, 2012). 

Therefore, future development of the model should consider the confidence intervals of 

the model parameters. 

 

In conclusion, the BEATIM model offers new opportunities for the analysis of the built 

environment-travel relationship. The high level of behavioural detail enables a closer 

examination of the underlying processes that give rise to the observed impacts of the 
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built environment, which can help answer questions such as whether the reduction on 

VMT is caused by smaller share of driving, or shorter travel distance, and if the latter, 

the distance of which types of activities, etc. Such potential is further exploited in the 

next chapter. 
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Chapter 06 Model application and 

simulation results 

6.1  Method 

In this chapter, the BEATIM model developed in Chapter 5 is applied to simulate how 

would people’s travel behaviour change in response to changes in the built environment. 

The simulation involves several scenarios, each assumes a certain amount of change in 

a certain aspect of the built environment and in a certain spatial extent. The simulation 

results will respond to the gap of lack of understanding on how the built environment 

influences the detailed behavioural processes of daily travel (Research Question 1&3 

in Section 1.2). These results will be compared with those from existing research on 

American and European cities and help address the gap of lack of research on fast 

growing Asian cities (Research Question 4 in Section 1.2).  

 

Two types of scenarios are designed for the simulation, namely ‘local’ scenarios and 

‘regional’ scenarios. Local scenarios refer to changing the built environment conditions 

in one TAZ and examining the impacts on the travel behaviour of the residents in that 

TAZ. The results from local scenarios are comparable to many of the existing research 

that focus on the neighbourhood built environment, the spatial extent of which is similar 

to the TAZs. Regional scenarios refer to changing the built environment conditions in 

all TAZs within a buffer distance from a central TAZ (measured in centroid-centroid 

distance) and examining the impacts on the travel behaviour of the residents in that 

central TAZ. This type of scenario probes into the spatial extent of the built 

environment’s influence and answers questions such as whether travel behaviour is 

influenced by the built environment in a narrow 1-kilometre radius or in as large as a 

5-kilometre radius (Aditjandra, Cao, & Mulley, 2012; Pinjari & Bhat, 2011).  
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It should be noted these scenarios are relatively basic and simple. Given the high level 

of spatial and behavioural detail of the model, more complicated scenario designs can 

also be accommodated, such as the simultaneous changes of two or more built 

environment features or more realistic land development patterns. Therefore, the 

potential application of this model can be quite diverse. 

 

More technically, the local scenarios are designed to be a 50% or 100% increase in one 

built environment aspect (except for the distance to the city centre, which is unrealistic 

to be changed), resulting in a total number of 2*14=28 scenarios. 50% and 100% 

increases are selected since the effect sizes of the built environment are usually small 

and these are relatively large changes, so that the consequent impacts on travel 

behaviour can be more prominent. Larger increases are not considered since those 

situations would imply a drastic change of the urban form (e.g. three times of the current 

density), which are not very realistic. The regional scenarios are designed to be a built 

environment change in five different buffer radius, which are 0 (equivalent to a local 

scenario), 500 metres, 1000 metres, 1500 metres and 2000 metres. Considering that the 

five buffer radius and the fourteen built environment features already result in 5*14=70 

scenarios, only 100% increases in the built environment features are tested. Each of the 

local and regional scenarios is tested on all resided TAZs and the average effect sizes 

are calculated. Considering the small sample size of residents in each TAZ, the 

experiment on each TAZ is run for ten times and the average effect size is used.  

 

As mentioned before, a major advantage of the BEATIM model lies in its ability to 

probe into the detailed processes of the built environment’s influence. Therefore, when 

presenting the results of local built environment changes, I will first briefly show the 

results on the integrated indicator of daily travel, the VMT, and then decompose the 

results to the impacts on detailed behavioural aspects, including the activity frequencies, 

travel distances and the mode choices. In a later section, the results on VMT will also 

be compared against the meta-analysis results in Section 2.3. For regional scenarios, 
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since the focus lies in analysing the spatial extent of the influences, only the results on 

synthesised travel indicators are presented, i.e. the total, commute and non-commute 

VMT and the total non-commute travel distance. The simulation results will also be 

compared against the assumptions made from theoretical deductions in Section 2.1.4. 

How the empirical findings support or provide alternative insights into the theoretical 

deductions will be examined. Last, policy suggestions will be drawn from the findings. 

6.2  Results of ‘local’ scenarios 

6.2.1  Overall influences 

Figure 6-1 shows the simulated changes of per capita VMT when the numeric values 

of built environment features increase by 50% and 100%. The shapes of the lines 

indicate a generally linear relationship. The features that are related to large changes of 

VMT (larger than ±10%) are land use mix (-15%), bus coverage (-17%), facade 

quality (-36%) and facade continuity (-27%). The changes related to other features are 

all smaller than 10%. Particularly, the two newly added features (facade quality and 

facade continuity) demonstrate quite large effects. However, it should be noted that 

considering the mean values (0.47 and 0.18) and the standard deviations (0.16 and 0.08) 

of these two features, a 100% increase could mean substantial changes to the current 

condition and be difficult to achieve. The directions of most features’ influences are 

consistent with the theoretical assumptions in Section 2.1.4, except for entertainment 

density and tertiary road density, which will be discussed in the next section by 

examining the detailed influencing process. 
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Figure 6-1 Impacts of built environment changes on VMT per capita 

6.2.2  Detailed influences 

According to the diagram on the ‘components’ of travel behaviour in Section 2.1.3, the 

overall impacts of the built environment on VMT can be traced back and subdivided as 

shown in Figure 6-2 to Figure 6-15. Since the work place is taken as exogenous in the 

model, the results do not involve any change in the commute distance. A common 

finding of all scenarios is that the changes of VMT are numerically closer to the changes 

of commute VMT than those of non-commute VMT, which can be explained by the 

fact that commute VMT contributes to approximately 80% of total VMT according to 

the travel diary survey. This result indicates that the sole focus on the total VMT as a 

key indicator of daily travel may mask relationships that are numerically less dominant. 

Though the total VMT could be a more balanced representation of commute and non-

commute VMT in cities with a generally shorter commute distance, it is still important 

to have a more comprehensive understanding on the influence of the built environment. 

 

Density 

A 100% increase in population density is related to no change in commute VMT and 
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6% decrease in non-commute VMT. The result on commute VMT is a combined 

outcome of 1% increase in activity frequency and 3% decrease in driving mode share. 

The behavioural process that gives rise to the result of non-commute VMT is more 

complicated. It is assumed in Section 2.1.4 that higher population density could lead to 

shorter non-commute travel distance and smaller share of driving, but these effects 

could be compensated by more activity participation. These assumptions are supported 

by the simulation results. Nonetheless, the changes in non-commute travel distance 

vary with different activity purposes: the distance of shopping decreases the most, while 

on the contrary, the distance of entertainment activities increases. The explanation for 

the latter could be that entertainment turns out to be more about physical activities like 

strolling and outdoor physical exercises, which tend to seek natural surroundings and 

avoid crowdedness. 

 

Employment density does not show a prominent effect on commute travel, but is 

associated with 14% less non-commute VMT when it doubles. However, different from 

the effects of population density, the decrease in non-commute VMT is mainly 

accounted for by a decrease in driving mode share, while the travel distance actually 

increases by 7%. More detailed results show that higher employment density is 

associated with longer travel distances for four types of non-commute activities, 

especially shopping. Possible explanation could be that a large proportion of the retail 

facilities at business areas are higher-end and not suitable for the needs of everyday 

shopping. Besides, the compensation mechanism is also observed here—the frequency 

of non-commute activities reduces by 7% in response to the increased travel distance.  

 

When retail density doubles, the commute VMT shows an 8% decrease and the non-

commute VMT shows a 14% decrease. The reductions are mainly contributed by a 

decrease in driving mode share in both the cases of commute and non-commute travel. 

The travel distances for shopping, personal business and escorting all decrease as 

expected, while that of entertainment activities increases significantly, which is not 
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surprising given the explanation mentioned before. 

 

Last, a 100% increase in entertainment density is related with 8% increase in commute 

VMT and a marginal increase in non-commute VMT. The increase in commute VMT 

is mainly contributed by an increase in the share of driving, which is contrary to my 

assumption. Besides, although the combined effect on the total non-commute distance 

is marginal (-2%), there exist some large effects on the travel distances of specific 

purposes, including 15% decrease in shopping distance, 9% increase in entertainment 

distance and 14% decrease in dining out. 

 

 

Figure 6-2 Decomposition of the influence of population density 

 

 

Figure 6-3 Decomposition of the influence of employment density 
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Figure 6-4 Decomposition of the influence of retail density 

 

 

Figure 6-5 Decomposition of the influence of entertainment density 

 

Diversity 

A 100% increase in land use mix is related to 21% decrease in commute VMT and 8% 

increase in non-commute VMT. The decrease in commute VMT is mainly contributed 

by a 29% decrease in driving mode share, which is larger than the effects of all density 

features. The increase in non-commute VMT is a combined outcome of 11% decrease 

in activity frequency, 3% decrease in average travel distance and 26% increase in 

driving mode share. The large increase in non-commute driving mode share contradicts 

the hypothesis that higher diversity may discourage driving. A possible explanation 

could be that higher diversity may induce more trip chaining behaviour since a larger 

variety of activity opportunities are available, and driving could be a more convenient 
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travel mode when there are multitasks. This assumption is supported by the decrease in 

travel frequency. In terms of the travel distance, although again the combined effect on 

the total non-commute distance is marginal (-3%), there exist some large effects on the 

travel distances of specific purposes, including 25% decrease in dining out, 22% 

decrease in personal business, 19% decrease in escorting and 18% increase in 

entertainment.  

 

 

Figure 6-6 Decomposition of the influence of land use mix 

 

Destination accessibility (to sub-centres) 

A 100% increase in the distance to the nearest commercial cluster is related to 7% 

increase in commute VMT and 15% increase in non-commute VMT. The increases 

mainly come from a higher share of driving. The impacts of this change on non-

commute travel distances are generally smaller than the previous scenarios, which is 

plausible since people may only occasionally need to visit these commercial clusters to 

fulfil the daily needs. 
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Figure 6-7 Decomposition of the influence of the distance to commercial clusters 

 

Design of the road network  

Primary road density shows small impacts on both commute and non-commute VMT 

and the other detailed aspects of travel. It is probably because that primary roads are 

mainly expressways and therefore play a smaller role in daily travel. The densities of 

secondary and tertiary roads show stronger impacts, which are mainly reflected in the 

increases in the mode share of driving in both commute and non-commute travel. A 

100% increase in secondary road density is associated with 5% increase in the share of 

driving for commute purposes and 14% increase in the share of driving for non-

commute purposes. A 100% increase in tertiary road density is associated with 9% 

increase in the share of commute driving and 22% increase in the share of non-commute 

driving. Besides, in terms of travel distances, secondary road density is associated with 

longer distances for entertainment and escorting, and a shorter distance for shopping. 

Tertiary road density is only largely associated with longer distance for entertainment. 
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Figure 6-8 Decomposition of the influence of primary road density 

 

 

Figure 6-9 Decomposition of the influence of secondary road density 

 

 

Figure 6-10 Decomposition of the influence of tertiary road density 

 

Distance to transit 
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Both higher bus coverage and shorter distance to subway stations show significant 

impacts on reducing commute VMT, mainly through reducing the share of driving. The 

effect of bus coverage is comparatively larger. Bus coverage also shows a larger impact 

on non-commute travel. When bus coverage doubles, the non-commute VMT would 

decrease by 11%, which is a combined outcome of 2% increase in travel frequency, 13% 

decrease in travel distance and 10% increase in the share of driving. When the distance 

to the nearest metro station doubles, the non-commute VMT would decrease by 5%, 

which is a combined outcome of 4% decrease in travel frequency, 5% increase in travel 

distance and 2% decrease in the share of driving. Besides, more detailed observation 

on the travel distances shows that all types of non-commute activities tend to be 

conducted at nearer places when the accessibility to public transit is enhanced. 

 

 

Figure 6-11 Decomposition of the influence of bus coverage 
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Figure 6-12 Decomposition of the influence of bus coverage 

 

Demand management (parking supply) 

A 100% increase in parking density is related to 3% increase in commute VMT and 6% 

increase in non-commute VMT. The effect on non-commute VMT mainly comes from 

a 5% increase in the mode share of driving. The result indicates that the hypothesised 

effect of parking density in encouraging driving is more obvious on non-commute 

travel than on commute travel. 

 

 

Figure 6-13 Decomposition of the influence of parking density 

 

Design of street facade 

As found in the last section, both of the two newly added features demonstrate large 

effects on travel behaviour. When the score of facade quality doubles, there would be 

50% decrease in commute VMT, induced from 28% decrease in the share of driving 

and 9% increase in the travel frequency; and 12% increase in non-commute VMT, 

induced from 27% increase in activity frequency, 37% increase in average travel 

distance and 10% decrease in the share of driving. While the directions of changes in 

travel frequency and mode choice are consistent with the theoretical assumptions, the 

changes in travel distances are quite reversed. These changes can be traced back to the 

results of parameter estimation in Section 5.3.3 that higher quality of street facade is 

negatively correlated with the attractiveness of destinations for all types of non-
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commute activities except ‘others’. Therefore, an increase in the facade quality score 

in the home TAZ would result in more residents choosing farther locations. This 

negative correlation counters the assumption that high quality street facades can arouse 

positive feelings and contribute to the attractiveness of an area. A possible explanation 

is that, in the context of Beijing, high quality buildings (residences, offices, etc.) are 

usually more private and gated and have stricter control on accommodating small 

businesses, in order to avoid messiness. As a result, though good facade quality may 

bring an extra psychic gain for travellers, the level of convenience (the utilitarian value) 

can be largely undermined in the context of Beijing. 

 

In terms of the facade continuity, when the score doubles, there would be 32% decrease 

in commute VMT, which is a combined effect of 30% decrease in the share of driving 

and 10% increase in the travel frequency; and 13% decrease in non-commute VMT, as 

a combined effect of 6% increase in activity frequency, 13% decrease in average travel 

distance and 20% decrease in the share of driving. Besides, the travel distances of all 

types of non-commute activities decrease with enhanced continuity. These changes are 

all in consistency with the theoretical assumptions. 

 

 

Figure 6-14 Decomposition of the influence of facade quality 
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Figure 6-15 Decomposition of the influence of facade continuity 

6.3  Results of ‘regional’ scenarios 

Figure 6-16 to Figure 6-19 show the changes in four major indicators of travel 

behaviour, i.e. total, commute and non-commute VMT and total non-commute travel 

distance, under regional scenarios with different buffer sizes. As described in Section 

6.1, the regional scenarios are designed to be a built environment change in five 

different buffer radius around a central TAZ and examining the impacts on the travel 

behaviour of the residents in the central TAZ. The buffer radius are 0 (equivalent to a 

local scenario), 500 metres, 1000 metres, 1500 metres and 2000 metres. 

 

The results on the total and the commute VMT are similar, since as explained before, 

approximately 80% of the total VMT is accounted for by the commute VMT. Generally 

speaking, there are significant changes in these two types of VMT when the scenario 

switches from BAU to ‘built environment change only in the central TAZ’ (Scenario 1) 

and then to ‘built environment change in the 500 metre buffer zone’ (Scenario 2). The 

latter (from Scenario 1 to Scenario 2) induces more drastic changes in VMT than the 

former (from BAU to Scenario 1). The changes are then much gentler afterwards (from 

Scenario 2 to Scenario 5).  
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Figure 6-16 Changes in VMT under different regional scenarios 

 

 

Figure 6-17 Changes in commute VMT under different regional scenarios 

 

The patterns of results are more complicated for non-commute VMT and non-commute 

distance, since the location and mode choice of non-commute activities are more likely 
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to be influenced by the built environment in the proximate areas from home. Comparing 

with the total and the commute VMT, these two indicators show larger fluctuations 

when the built environment changes extend beyond the 500 metre buffer zone (Scenario 

3 to 5). Nonetheless, the travel behaviour changes from BAU to Scenario 2 are also 

generally more drastic than those between Scenario 2 and Scenario 5. 

 

In terms of the non-commute distance, some built environment features show 

monotonous impacts of increasing or decreasing the distance, including population 

density, retail density, land use mix, accessibility to commercial clusters, tertiary road 

density and bus coverage. The other built environment features demonstrate fluctuating 

impacts as the buffer zone expands. For instance, as the distance to the nearest subway 

station increases across the buffer zones, the non-commute distance first increases from 

BAU to Scenario 1 and decreases from Scenario 1 to Scenario 2, then increases again 

from Scenario 3 to Scenario 5. These fluctuations can be understood as outcomes of the 

changing trade-offs between the attractiveness and the travel impedance of near and far 

destinations. Decreases in the travel distance indicate that nearer destinations become 

generally more attractive under certain built environment conditions, and vice versa. 

The results on non-commute VMT involve even more fluctuations, since it is a 

combined outcome of non-commute distance (as mentioned before, influenced by the 

relative attractiveness of near and far destinations) and mode choice (influenced by the 

built environment at trip origins and destinations). However, it is still the case that the 

trends of changes become much gentler after Scenario 2. 

 

The main conclusions from these results are 

- When the work place and the related commute distance are taken as exogenous, 

people’s travel behaviour is mainly influenced by the built environment in the near 

neighbourhood (in my experiment, within the 500 metre buffer zone). 

- Built environment measures will not be very effective in reducing the VMT or travel 

distance of the residents at a place if the measures are not taken in the near 
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neighbourhood. In other words, there are diminishing returns in terms of the spatial 

extent of built environment measures. 

 

 

Figure 6-18 Changes in non-commute distance under different regional scenarios 

 

 

Figure 6-19 Changes in non-commute VMT under different regional scenarios 
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6.4  Comparing with theoretical assumptions 

A particular feature of this research is that it involves a large bundle of assumptions on 

how daily travel would respond to the built environment conditions, since both daily 

travel behaviour and the built environment are defined and measured in multiple aspects. 

Therefore, this section deals with the comparison of the simulation results against the 

assumptions made from the theoretical deductions (see Table 2-1 in Section 2.1.4) and 

examines how the results support or provide alternative insights into the theoretical 

assumptions. Since the directions of the influences of regional changes are generally 

consistent with local changes (though the effect sizes might vary), the comparison is 

mainly based on the results of local scenarios in Section 6.2. Considering that the 

responses of commute and non-commute travel to the built environment conditions can 

be quite different, the comparison is made separately for these two types of travel and 

also separately for the VMT and the travel distance (non-commute only, since commute 

distance is taken as exogenous). The simulation results that are inconsistent with the 

assumptions are underlined and highlighted in Table 6-1. These differences are 

discussed below, from which implications for the understanding on the built 

environment-travel relationship are made. 

 

First, the results seem to indicate that whether higher density relates to enhanced travel 

gains and thus shorter travel distance could depend on the matchness between the types 

of density and people’s needs. The densities of retail and entertainment facilities have 

merely marginal effects since they are only relevant to limited types of activities. 

Besides, the types of goods and services that come with the higher density may also 

matter. As explained before, higher employment density is related with longer shopping 

distance probably because a large proportion of the retail facilities at business areas are 

higher-end and not suitable for everyday shopping.  

 

Second, tertiary roads, which are supposed to be low-speed and pedestrian friendly, turn 
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out to be associated with more driving for both commute and non-commute purposes. 

A possible explanation lies in people’s preference towards driving in China so that the 

increased road density is more likely to be taken advantage for car use. The preference 

for driving can be further linked to a social culture of ‘car pride’, which associates 

positive self-representation with driving beyond the functional purpose (Z. Zhao & 

Zhao, 2017). Such an emotional tendency can distort the travel (dis)utility curves and 

make driving more likely to be chosen. 

 

Third, as discussed before, the facade quality shows largely reversed effect on non-

commute travel distance and VMT. The likely explanation is that, in the context of 

Beijing, high quality buildings are usually more private and gated and have stricter 

control on accommodating small businesses, in order to avoid messiness. As a result, 

though good facade quality may bring an extra ‘psychic’ gain for travellers, as assumed 

in Section 2.1.4, the level of convenience (the utilitarian gain) can be largely 

undermined. To a certain extent, this result indicates that since travel is basically an 

activity for fulfilling needs, utilitarian considerations tend to overweigh psychic 

enjoyments. 

 

Fourth, the ‘compensation’ mechanism between travel distance and frequency is 

observed in many cases. For instance, when the employment density doubles, 7% 

decrease in non-commute travel frequency is observed with 7% increase in travel 

distance; when the score of facade continuity doubles, 6% increase in non-commute 

travel frequency is observed with 13% decrease in travel distance. However, in all 

scenarios, the changes in the total travel in a day are in the same direction as in 

individual trips, which indicates that the ‘compensation’ mechanism is not likely to be 

stronger than the original effect. This finding is consistent with some previous research, 

for instance, Feng et al. (2013) mentioned that any rebound effects are considerably 

smaller than the reduced travel distances resulting from a compact urban structure 

(Feng et al., 2013). 
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Table 6-1 Assumptions and simulation results 

Built 

environment 

feature 

Effect on distance 

travelled 

(non-commute) 

Effect on VMT 

(commute) 

Effect on VMT 

(non-commute) 

Higher density On individual trips 

Assumption: decrease 

Result: depending on 

the type of density, 

decrease with 

population density, 

increase with 

employment density, 

the effects of retail 

and entertainment 

density are marginal 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: depending on 

the type of density, 

decrease with retail 

density, increase with 

entertainment density, 

the effects of 

population and 

employment density 

are marginal 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: decrease 

except for 

entertainment density 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

Higher diversity On individual trips 

Assumption: decrease 

Result: marginally 

decrease 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: decrease 

On individual trips 

Assumption: decrease 

Result: decrease  

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: increase 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

Higher 

accessibility to 

district centres 

On individual trips 

Assumption: decrease 

Result: marginally 

decrease 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: decrease 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: decrease 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

Higher road 

density 

On individual trips 

Assumption: likely to 

increase 

On individual trips 

Assumption: 

ambiguous 

On individual trips 

Assumption: 

ambiguous 
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Built 

environment 

feature 

Effect on distance 

travelled 

(non-commute) 

Effect on VMT 

(commute) 

Effect on VMT 

(non-commute) 

Result: depending on 

the type of road, 

increase with tertiary 

road, primary and 

secondary roads have 

almost no effect 

On total travel in a 

day 

Assumption: likely to 

increase 

Result: same as above 

Result: increase with 

tertiary road, primary 

and secondary roads 

have marginal effects 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

Result: increase with 

secondary and 

tertiary road, primary 

road has almost no 

effect 

On total travel in a 

day 

Assumption: 

ambiguous 

Result: same as above 

Higher transit 

accessibility 

On individual trips 

Assumption: slightly 

likely to increase 

Result: both decrease, 

but the effect of metro 

accessibility is 

marginal 

On total travel in a 

day 

Assumption: slightly 

likely to increase 

Result: same as above 

On individual trips 

Assumption: decrease 

Result: decrease  

On total travel in a 

day 

Assumption: decrease 

Result: decrease 

On individual trips 

Assumption: decrease 

Result: decrease with 

bus coverage, the 

effect of metro 

accessibility is 

marginal 

On total travel in a 

day 

Assumption: decrease 

Result: same as above 

More parking 

provision 

On individual trips 

Assumption: slightly 

likely to increase 

Result: almost no 

effect 

On total travel in a 

day 

Assumption: slightly 

likely to increase 

Result: marginally 

increase 

On individual trips 

Assumption: increase 

Result: almost no 

effect 

On total travel in a 

day 

Assumption: increase 

Result: almost no 

effect 

On individual trips 

Assumption: increase 

Result: marginally 

increase 

On total travel in a 

day 

Assumption: increase 

Result: increase 

Better building 

design 

On individual trips 

Assumption: slightly 

likely to decrease 

Result: depending on 

the specific feature, 

decrease with facade 

On individual trips 

Assumption: likely to 

decrease 

Result: decrease 

On total travel in a 

day 

On individual trips 

Assumption: likely to 

decrease 

Result: decrease 

On total travel in a 

day 
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Built 

environment 

feature 

Effect on distance 

travelled 

(non-commute) 

Effect on VMT 

(commute) 

Effect on VMT 

(non-commute) 

continuity, increase 

with facade quality 

On total travel in a 

day 

Assumption: slightly 

likely to decrease 

Result: same as above 

Assumption: likely to 

decrease 

Result: decrease 

Assumption: likely to 

decrease 

Result: decrease with 

facade continuity, 

increase with facade 

quality 

a Travel behaviour changes≦5% are considered to be ‘marginal’, ≦1% are considered to be 

‘almost no effect’ 

b Results that are inconsistent with assumptions are underlined. 

6.5  Comparing with findings from American and 

European cities 

In this section, the simulation results on VMT will be compared against the meta-

analysis of existing findings on American and European cities. The differences in the 

findings will be discussed. It should be noted that this comparison is quite rough for at 

least two reasons. First, the meta-analysis itself should be used only as ballpark 

estimates, considering the sample size and the fact that dissimilar studies and variables 

were combined in producing the results. Second, the behavioural process under 

examination is slightly different. The commute distance is taken as exogenous in the 

BEATIM model, but most of the estimates in the meta-analysis are from direct 

regressions between VMT and the built environment features and therefore include the 

effects of the built environment on commute distance. Therefore, caution needs to be 

taken in interpreting and generalising the results. However, rather than omitting this 

comparison, I aim in this analysis to seed the cross-regional study of built environment 

and travel, expecting that others would expand and strengthen the results over time. 

 

Besides the meta-analysis results on total VMT presented in Section 2.3, I also provide 

extra results on commute and non-commute VMT so that the comparison can be made 
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in more detail. However it should be noted that many of the extra results are based on 

very small sample sizes, or even only one study. Therefore these extra results are just 

presented for the readers’ reference. 

 

Generally speaking, the effects of population density, job density and retail accessibility 

are similar between the meta-analysis on American and European cities and my study 

on Beijing (differences between the effect sizes <= 0.03). The effects of population 

density and job density in Beijing are slightly smaller than those in the meta-analysis. 

It corresponds to the finding of Eom and Cho (2015) in Seoul that the impact of higher 

density on reducing car use is greatly reduced when the gross density is already high, 

which is the situation in many Asian cities (Eom & Cho, 2015). Diversity shows a larger 

effect in Beijing, which is mainly accounted for by its effect in reducing commute car 

use. Transit accessibility also shows a larger effect, indicating that improving the level 

of service of public transit can induce more returns in Beijing. Street density, however, 

shows opposite effects in American and European cities and in Beijing. The direction 

of influence from the meta-analysis is consistent with the theoretical assumption while 

that in Beijing is reversed, as discussed in the last section. But since the results on 

American and European cities are from only one study, this finding cannot be taken as 

quite concrete. Possible explanation to this difference can also be associated with the 

culture of ‘car pride’ and the preference for driving in China, in which situation the 

increased streets are more likely to be taken advantage for driving instead of for walking 

or cycling.  

 

In summary, this preliminary cross-regional comparison shows that the impacts of the 

built environment on VMT are neither perfectly consistent nor completely different in 

different urban contexts. The effects of density-related features are more similar than 

transport infrastructure-related features in the comparison between American and 

European cities and Beijing. Possible explanations for this difference could lie in 

people’s preference towards different travel modes, which can be further associated 
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with the social cultural contexts. 

 

Table 6-2 Comparison between the impacts of built environment features on VMT 

Built 

environment 

features 

American and European cities Beijing 

 Total Commute Non-

commute 

Total Commute Non-

commute 

Population 

density 

-0.04 NA -0.09a -0.01 0 -0.06 

Job density -0.03 NA -0.23b -0.01 0.02 -0.14 

Diversity -0.07 -0.07c -0.05c -0.15 -0.21 0.08 

Transit 

accessibility 

-0.05 NA NA -0.18 

(bus) 

-0.19  

(bus) 

-0.11 (bus) 

    -0.06 

(sub

way) 

-0.10 

(subway) 

-0.05 

(subway) 

Retail 

accessibility 

-0.01d NA -0.17e 
-0.03 -0.01 -0.14 

Street density -0.04f -0.06g -0.12g 0.01 -0.01 0.10 

a Based on the works of Boarnet et al., 2004, Chatman, 2003, Chatman, 2008, Salon, 2015. 

b Based on the works of Boarnet et al., 2004, Chatman, 2003, Chatman, 2008. 

c Only the work of Salon, 2015 is used. 

d Only the work of Cervero & Duncan, 2006 is used. 

e Only the work of Bhat & Eluru, 2009 is used. 

f Only the work of Hedel & Vance, 2007 is used. 

g Only the work of Salon, 2015 is used. 

6.6  Policy implications 

The making and reshaping of the built environment is closely related to the policies of 

urban planning and management. The results could help to inform policy debate and 

encourage more effective critical thinking about spatial processes and impacts, and 

alternative policy scenarios (Wong, Baker, Webb, Hincks, & Schulze-Baing, 2015). 

Many policy implications can be drawn from the simulation results. Basically, the 

results provide evidence for the effectiveness of planning measures in affecting the 

travel behaviour of city residents and the potential of various planning strategies in 
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alleviating various transport-related urban problems. First of all, a toolkit of planning 

measures for various policy goals can be derived from the simulation results: 

- For the goal of reducing total car use, effective measures include increasing the 

retail density, the mix of uses and the accessibility to sub-centres, enhancing the 

coverage of bus services and improving the quality and continuity of street facades 

(effective measures here refer to those with an effect size larger than 0.05). 

- For the goal of reducing non-commute car use, effective measures include 

increasing the population density, employment density, retail density and the 

accessibility to sub-centres, enhancing the coverage of bus services, decreasing the 

parking space and improving the continuity of street facade. 

- For the goal of reducing the total travel distance needed for non-commute purposes, 

effective measures include increasing the population density, enhancing the 

coverage of bus services and improving the continuity of street facade. 

- For other policy goals, one can refer to Figure 6-2 to Figure 6-15. 

 

It should be noted that there can be substantial differences in the effects of built 

environment measures that belong to a same type (e.g. increasing density), therefore 

policies need to be specific enough to be effective. For instance, the four density 

features all have different effects on travel behaviour. For another instance, bus 

coverage shows a larger effect in both reducing the car use and travel distance than the 

distance to subway station, though they are both indicators of public transit accessibility. 

Therefore, it is not enough to simply state ‘high density’ or ‘good accessibility to public 

transit’ as a planning measure. Instead, policies should fully refer to the detailed 

findings and be effectively specific. 

 

Moreover, policies could also aim at the mediating factors that intervene the 

relationship between the built environment and travel. For instance, the comparison 

between the simulation results with the theoretical assumptions and meta-analysis 

results suggest that the preference towards driving and the culture of ‘car pride’ might 
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be a reason for the positive correlation between road density and car use in Beijing. For 

another example, the quality of street facade is positively correlated with the travel 

distances of non-commute activities, which is supposed to be mediated by the fact that 

high quality areas are usually more private and gated and thus less convenient for 

conducting activities. Besides, employment density is also found to be positively 

associated with the travel distances of most non-commute activities, especially 

shopping, possibly explained by the mismatch between the types of goods and services 

at business areas and the everyday needs. Policies that aim at these mediating conditions 

include: 

- Alter people’s preference towards driving and the thinking of ‘car pride’ by 

improving the pedestrian environment and improving the image of walking and 

cycling; 

- Increase the space for street shops in the areas where the street facade is good in 

quality but does not provide many activity opportunities; 

- Increase the number of facilities that serve everyday needs, probably in medium-to 

low-price, in business areas. 

 

However, since the effect sizes are generally small, policy making should also consider 

a cost-benefit analysis to ascertain whether changes to the built environment are a cost-

effective way to modify travel behaviour, given the opportunity costs of spending 

resources in another way (Mokhtarian & Cao, 2008). For instance, policy makers 

should consider the energy consumption or carbon emission in the process of the 

deconstruction and reconstruction of buildings and other structures in order to realise a 

built environment change, and compare with the amount of energy and carbon emission 

saving in a given period. 

 

Last, the differences between the results from Beijing and other cities suggest that 

special care needs to be taken when transferring the above mentioned policies to 

elsewhere. One needs to closely scrutinise the urban and social contexts and evaluate 
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whether there is any factor, such as the mediating factors mentioned above, that would 

distort the relationship between the built environment and travel in another city.  

6.7 Chapter summary 

This chapter sets out to simulate the changes of travel behaviour in response to various 

scenarios of built environment changes using the BEATIM model. Many of the 

conclusions drawn from the simulations can be identified through careful observation 

of the diagrams in Figure 6-2 to Figure 6-19. A key note is that the effects of the built 

environment on VMT, which is the subject of analysis of many existing research, are to 

a large extent accounted for by the effects on commute travel. As a result, the 

relationship between the built environment and non-commute and other aspects of daily 

travel would be masked if only this synthesised indicator is used. For some built 

environment features that show similar impacts on VMT, their impacts on detailed 

behavioural aspects can be very different, e.g. on the mode choices for commute and 

non-commute activities, the travel distances for various non-commute purposes, etc. 

Besides, both commute and non-commute travel is shown to be more sensitive to the 

built environment in the near neighbourhood of one’s home (in my experiment, 500 

metre buffer zone), when the work place is taken as exogenous.  

 

The simulation results are partly consistent with theoretical assumptions and partly not. 

The comparison with the meta-analysis also shows that the impacts of the built 

environment are neither perfectly consistent nor completely different in various urban 

contexts. Four major implications can be made from the inconsistent results: (1) 

whether higher density relates to enhanced travel gains and thus shorter travel distance 

could depend on the matchness between the types of density and people’s needs; (2) 

social cultural factors (in the case of Beijing, the ‘car pride’) can play a non-negligible 

role in shaping the (dis)utility of travel choices and distort the relationship between the 

built environment and travel; (3) in the context of Beijing, high (construction and 
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maintenance) quality of street facade can related to lower utilitarian values, when that 

happens, utilitarian considerations tend to overweigh the psychic enjoyments, thus 

making a location less attractive; (4) the ‘compensation’ mechanism between travel 

distance and frequency does exist, but is not likely to be stronger than the original effect. 
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Chapter 07  Conclusions and final 

remarks 

7.1  Summary of findings 

This work sets out to investigate how people’s daily travel behaviour would be 

influenced by the built environment conditions. Travel utility maximisation is used as 

the theoretical base for the possible influences and a series of assumptions on the 

relationship between various built environment features and travel behaviour. It is 

argued in the first chapter that despite of a large number of studies on this topic, there 

still exist many research gaps. The gaps include: 

- First of all, a major gap lies in that a large proportion of existing research focus on 

the synthesised outcomes of the complex process of travel decision making, while 

the behavioural processes that give rise to these outcomes have received much less 

attention. It is related to the gap in methodology that many existing research use 

regressions between the synthesised outcomes and a set of socioeconomic and built 

environment explanatory variables, which usually cannot probe into the detailed 

behavioural processes. 

- Second, there is a lot of inconsistency in existing findings in terms of the directions 

and sizes of the influences, which undermines the reliability and generalisability of 

the findings. 

- Third, the built environment features that have been studied are mainly two-

dimensional and land use-related. The features related to the dimension of street 

facade have received much less attention. 

- Last, most existing studies are based on American and European (plus a few 

Oceanian) cities, while evidences from Asian cities are relatively scarce. 
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In order to address the first gap, an overarching methodology is designed by linking the 

activity-based modelling approach, which is mainly developed in the field of transport 

simulation, with the analysis of the built environment-travel relationship. Activity-

based models simulate the full process of decision making in daily activity participation 

and travel, including which activities are conducted when, where, for how long, and the 

transport mode involved. Although the development of activity-based models has 

progressed substantially since the 1990s, the built environment factors are seldom 

sufficiently account for in the model systems. Therefore, this research is novel in 

developing an activity-based model that fully takes into account the built environment 

contexts and using this model to scrutinise the impacts of the built environment on 

travel behaviour at much greater detail. 

 

After the introduction, Chapter 2 provides a review of related theoretical and empirical 

works and partly addresses the second gap with a meta-analysis of existing works. A 

comprehensive conceptual framework is developed on the relationship between the 

built environment and the travel costs and gains. Based on this, a series of assumptions 

are made regarding to the influences of various built environment changes on the 

integrated outcomes of activity-travel (e.g. total travel distance, total car use) based on 

utility maximisation. The review of empirical studies and activity-based model 

developments provides evidences for the gaps mentioned above. Besides, the meta-

analysis shows that the effect sizes of the built environment are more consistent across 

studies on VMT than on walking and transit use. Therefore, the results on VMT are 

used to compare with my own findings in Beijing, from which the second gap can be 

further addressed. 

 

Chapter 3 and Chapter 4 describe the study area and the process of data collection and 

pre-processing. Particularly, Chapter 4 deals with the third gap that features related to 

the dimension of street facade are seldom studied. I proposed a novel method that 

automatically evaluate the street facade in a large-scale by leveraging state-of-the-art 
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machine learning techniques and online street view images. Two specific features are 

selected based on architecture and urban design theories, which are the construction 

and maintenance quality of building facade and the continuity of street wall. The 

performance indicators show that the machine learning models are able to produce 

acceptably good approximation to the expert ratings. 

 

The data pre-processed in Chapter 3 and 4 are fed to Chapter 5, which develops the 

BEATIM model. The model generally takes the paradigm of utility-maximising 

econometric models, coupled with weak features of computational process models. 

Special care is taken to keep close focus on the daily travel behaviour and the influence 

of the built environment when building the model. The model system contains four 

major components: namely the sub-models for the activity participation and 

organisation, the location choice for primary activities, the time of travel and mode 

choice, and the location choice for intermediate stops. The validation shows that the 

model is able to provide a reasonably good prediction of people’s daily travel. It is 

acknowledged that there can be many prediction errors at the individual level due to the 

complex, stochastic nature of activity-travel behaviour (Kulkarni & McNally, 2000). 

However, the correlation between simulation results and observed travel behaviour at 

more aggregate levels, such as by ring roads, can be high (R2=0.8-1). To the best of the 

author’s knowledge, it is the most comprehensive model that explicitly links the 

activity-based modelling approach from the field of transport simulation with the 

analysis of the built environment-travel relationship in the field of urban planning and 

design. 

 

Scenario analysis is conducted in Chapter 6 with the BEATIM model. Two types of 

scenarios are designed, namely local scenarios and regional scenarios. The former 

analyse the impacts of the built environment in the immediate neighbourhood of one’s 

home (the home TAZ). The latter explore the impacts of the built environment in the 0-

to-2000-metre buffer zones from one’ home. The findings from the scenario analysis 
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include 

- In the case of Beijing, total VMT is prominently affected by land use mix, bus 

coverage, facade quality and facade continuity. 

- The influences of the built environment on total VMT are to a large extent 

accounted for by the influences on commute VMT. Therefore, a sole focus on this 

indicator, which is the case in many existing research, could mask the understanding 

of the influence on many other aspects of daily travel. 

- Both commute and non-commute travel are more sensitive to the built environment 

in proximity to home place (in my experiment, 500 metre buffer zone), if the work 

place is taken as exogenous. 

- For a full description of the effects of the built environment on detailed aspects of 

activity-travel, please refer to Figure 6-2 to Figure 6-15. 

 

The simulation results are partly consistent with the theoretical assumptions put 

forward in Chapter 2 and partly not. The comparison with the meta-analysis also shows 

that the impacts of the built environment are neither perfectly consistent nor completely 

different between Beijing and European and American cities. The implications include 

- Whether higher density relates to enhanced travel gains and thus shorter travel 

distance could depend on the matchness between the types of density and people’s 

needs. 

- Social cultural factors (in the case of Beijing, the ‘car pride’) can play a non-

negligible role in shaping the (dis)utility of travel choices and distort the 

relationship between the built environment and travel.  

- In the context of Beijing, high street facade quality can related to lower utilitarian 

value, when that happens, utilitarian considerations tend to overweigh the psychic 

enjoyments, thus making a location less attractive.  

- The ‘compensation’ mechanism between travel distance and frequency does exist, 

but is not likely to be stronger than the original effect.  

It should be noted that the first three implications are based on assumed explanations 
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for the results that are inconsistent with theoretical assumptions and existing findings. 

Further empirical evidence is needed to testify these explanations, which is beyond the 

scope of this research but can be an important topic for future research.  

7.2 Limitations and future research 

The BEATIM model developed in this research can work as a helpful tool in answering 

a multitude of questions about the influence of the built environment on travel 

behaviour. However, there remain many ways to refine or extend the model so that the 

complex nature of the urban system and travel behaviour can be better understood.  

 

First, this research started at a time when urban big data began to emerge and be applied 

in the field of urban studies. In this research, a few types of big data are applied in the 

measurement of several built environment features, including the street view images 

for the measurement of the street facade, the Point of Interest (POI) data for the 

measurement of the density of facilities, etc. However, the data source for people’s 

travel behaviour is still the conventional travel diary survey. The survey data are limited 

in several ways: (1) they rely on the self-report of the interviewees, which can be subject 

to dishonesty, retrospective errors, misunderstanding and other types of errors (Hoskin, 

2012); (2) the locations of activities are recorded in the spatial unit of TAZs instead of 

the exact coordinates; (3) the travel routes are not recorded; (4) constrained by the costs 

and willingness of the interviewees, only a one-day travel diary is recorded, in which 

occasional activities may be underrepresented. With the growing availability of human 

mobility data (e.g. the cellular network data), the information on people’s travel 

behaviour can be obtained at a finer scale and over a longer period with a low cost 

(although this type of data may not contain the rich socioeconomic information as in 

the travel survey). The high spatial resolution can enable a more precise analysis on not 

only the travel behaviour but also the built environment. For instance, the modelling of 

mode choice can also take into consideration the built environment conditions along 
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the route. 

 

Besides, the quality of some of the data used this research is constantly improving and 

more data sources are emerging in recent years, so that the measurement of the built 

environment can be further improved. For instance, the POI data can now be combined 

with the data of customers’ ratings from the Dazhongdianping website (similar to 

Foursquare). As a result, I am able to measure not only the number of various types of 

facilities, but also the quality of the goods and services, which could further enhance 

the behavioural realism of the model.  

 

As mentioned before, the BEATIM model focuses on the short-term decisions in the 

complex system of land use and transport. The model can be extended both upwards 

and downwards to include other relevant longer-term or shorter-term interactions within 

this system, so that more comprehensive examination can be conducted on the interplay 

between the built environment and travel. For instance, the residence and work 

locations are taken as pre-determined and exogenous in my model. Future research 

could incorporate sub-models of home and work location choices, to take into account 

the long-term interactions between the built environment and the spatial distribution of 

households and businesses. Similarly, the expected travel time between locations, 

which is now taken as exogenous, can also be replaced with real-time travel time 

estimated from a module of route assignment and traffic flow, which corresponds to the 

‘very short-term’ changes in the LUTI system. 

 

Last, the cross-regional differences in the built environment-travel relationship are 

subject to further research. Both the review of existing findings and the findings from 

this research suggest that there are non-negligible differences between the results 

derived from different urban contexts. A better understanding on the factors that give 

rise to these differences could contribute to a more systematic understanding of this 

issue and enhance the generalisability of individual studies.
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Appendix A  Results from individual studies in the meta-analysis 

Table A-1 Elasticity of VMT with respect to density 

Study N y x e 
In meta-

analysis? 

(Zegras, 2010)a 14,729 Household VKT Dwelling unit density -0.04 Y 

(Guerra, 2014) 20,075 Latent VKT (1994) Population (100s) per hectare -0.21***  

(Guerra, 2014) 33,282 Latent VKT (2007) Population (100s) per hectare -0.31***  

(Guerra, 2014) 20,075 Latent VKT (1994) Jobs (100s) per hectare -0.11***  

(Guerra, 2014) 33,282 Latent VKT (2007) Jobs (100s) per hectare -0.11***  

(Guerra, 2014) 20,075 VKT (if any) (1994) Population (100s) per hectare -0.04** Y 

(Guerra, 2014) 33,282 VKT (if any) (2007) Population (100s) per hectare -0.04** Y 

(Guerra, 2014) 20,075 VKT (if any) (1994) Jobs (100s) per hectare -0.01Ψ Y 

(Guerra, 2014) 33,282 VKT (if any) (2007) Jobs (100s) per hectare -0.01Ψ Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) 
Activity density within one mile (pop + emp per 

square mile in 1000s) 
-0.05* 

Y 

(Salon, 2015)b 130,901 Weekday nonwork VMT Population density  -0.03**  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 

a Elasticities from this paper are combined elasticities for car ownership and car use via simulation and therefore do not contain a significance level. 

b Only the elasticities of significant variables are provided in this paper. 
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Table A-2 Elasticity of VMT with respect to diversity 

Study N y x e 
In meta-

analysis? 

(Zegras, 2010) 14,729 Household VKT Diversity index -0.01 Y 

(Guerra, 2014) 20,075 Latent VKT (1994) Destination diversity 0.17***  

(Guerra, 2014) 33,282 Latent VKT (2007) Destination diversity 0.17***  

(Guerra, 2014) 20,075 VKT (if any) (1994) Destination diversity -0.06*** Y 

(Guerra, 2014) 33,282 VKT (if any) (2007) Destination diversity -0.06*** Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) 
Job-population balance within one-

quarter mile 
-0.03* Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) Land use entropy within one mile -0.10*** Y 

(Salon, 2015) 130,901 Weekday nonwork VMT Activity mix at home -0.05**  

(Salon, 2015) 60,346 One-way commute VMT Activity mix at home -0.07**  

(Salon, 2015) 60,346 One-way commute VMT Activity mix at work 0.36**  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself 

 

Table A-3 Elasticity of VMT with respect to destination accessibility 

Study N y x e 
In meta-

analysis? 

(Zegras, 2010) 14,729 Household VKT Distance to CBD -0.23a Y 

(Guerra, 2014) 20,075 Latent VKT (1994) 

Car accessibility (the number of jobs accessible by car to a 

household weighted by a negative exponential decay function 

for travel time) 

0.38***  
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(Guerra, 2014) 33,282 Latent VKT (2007) 

Car accessibility (the number of jobs accessible by car to a 

household weighted by a negative exponential decay function 

for travel time) 

0.28***  

(Guerra, 2014) 20,075 VKT (if any) (1994) 

Car accessibility (the number of jobs accessible by car to a 

household weighted by a negative exponential decay function 

for travel time) 

-0.27*** Y 

(Guerra, 2014) 33,282 VKT (if any) (2007) 

Car accessibility (the number of jobs accessible by car to a 

household weighted by a negative exponential decay function 

for travel time) 

-0.21*** Y 

(Guerra, 2014) 20,075 Latent VKT (1994) Kilometres (10s) to Zocalo -0.20*** Y 

(Guerra, 2014) 33,282 Latent VKT (2007) Kilometres (10s) to Zocalo -0.22*** Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) Percentage of regional employment within 10 min by car -0.05*** Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) Percentage of regional employment within 30 min by transit -0.07*** Y 

(Salon, 2015) 130,901 Weekday nonwork VMT Regional job access at home 0.07**  

(Salon, 2015) 130,901 Weekday nonwork VMT Local job access at home -0.06**  

(Salon, 2015) 60,346 One-way commute VMT Local job access at home -0.16**  

(Salon, 2015) 60,346 One-way commute VMT Regional job access at home 0.15**  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 

a Sign reversed. 
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Table A-4 Elasticity of VMT with respect to road network 

Study N y x e 
In meta-

analysis? 

(Zegras, 2010) 14,729 Household VKT 4-way intersections per km -0.02 Y 

(Zegras, 2010) 14,729 Household VKT 3-way intersections per km 0.14 Y 

(Guerra, 2014) 20,075 Latent VKT (1994) Intersections per hectare -0.07** Y 

(Guerra, 2014) 33,282 Latent VKT (2007) Intersections per hectare -0.06** Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) Intersection density within one mile -0.21*** Y 

(Ewing et al., 2015)† 58,011 Household VMT (if any) Percentage 4-way intersections within one mile -0.06*** Y 

(Salon, 2015) 130,901 Weekday nonwork VMT Road density at home -0.12**  

(Salon, 2015) 60,346 One-way commute VMT Road density at home -0.06**  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 

 

Table A-5 Elasticity of VMT with respect to public transport service 

Study N y x e 
In meta-

analysis? 

(Zegras, 2010) 14,729 Household VKT Distance to Metro -0.20a Y 

(Guerra, 2014) 20,075 Latent VKT (1994) Within a half kilometre of the metro -0.02*** Y 

(Guerra, 2014) 33,282 Latent VKT (2007) Within a half kilometre of the metro -0.02*** Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

a Sign reversed. 
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Table A-6 Elasticity of walk trips with respect to density 

Study N y x e 
In meta-

analysis? 

(Boarnet, Joh, et al., 

2011)† 
1,370 Walking trips per person per day Residential units per acre -0.78  

(Boarnet, Joh, et al., 

2011)† 
1,370 Walking trips per person per day Neighbourhood business per acre 0.59 Y 

(Joh et al., 2012)† 825 
Walking trips per person per day (‘high-walk’ 

attitude group) 
Business per acre 0.23* Y 

(Joh et al., 2012)† 605 
Walking trips per person per day (‘low-walk’ 

attitude group) 
Business per acre 0.27 Y 

(Witten et al., 2012)† 1,315 
Self-report time of leisure physical activity 

(if any) 
Dwelling density 0.19  

(Witten et al., 2012)† 1,575 Self-report time of walking (if any) Dwelling density 0.17  

(Witten et al., 2012)† 1,619 
Accelerometer-measured counts of physical 

activity (weekday) 
Dwelling density 0.15*  

(Witten et al., 2012)† 1,512 
Accelerometer-measured counts of physical 

activity (weekend) 
Dwelling density 0.13*  

(Song et al., 2013) 2,676 
Ratio of active travel time to total time 

(obligatory trips) 
Population density 0.17** Y 

(Song et al., 2013) 2,676 
Ratio of active travel distance to total 

distance (obligatory trips) 
Population density 0.18** Y 

(Song et al., 2013) 3,309 
Ratio of active travel time to total time 

(discretionary trips) 
Population density 0.05 Y 

(Song et al., 2013) 3,309 
Ratio of active travel distance to total 

distance (discretionary trips) 
Population density 0.03 Y 
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Study N y x e 
In meta-

analysis? 

(Lee et al., 2014) 6,246 
Walk/bike mode choice for home-based work 

trips 

Population density in the one-quarter mile 

buffer area of D 
0.31 Y 

(Lee et al., 2014) 6,246 
Walk/bike mode choice for home-based work 

trips 

Employment density in the one-quarter mile 

buffer area of O 
0.35 Y 

(Lee et al., 2014) 6,246 
Walk/bike mode choice for home-based work 

trips 

Employment density in the one-quarter mile 

buffer area of D 
0.13 Y 

(Lee et al., 2014) 10,413 
Walk/bike mode choice for home-based other 

trips 

Population density in the one-quarter mile 

buffer area O 
0.29 Y 

(Lee et al., 2014) 10,413 
Walk/bike mode choice for home-based other 

trips 

Population density in the one-quarter mile 

buffer area D 
0.48 Y 

(Ewing et al., 2015)† 14,627 Household walk trips (if any) 
Activity density within one-quarter mile 

(pop + emp per square mile in 1000s) 
0.01Ψ Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself 

 

Table A-7 Elasticity of walk trips with respect to diversity 

Study N y x e 
In meta-

analysis? 

(Witten et al., 2012)† 1,315 Self-report time of leisure physical activity Mixed land use 0.27  

(Witten et al., 2012)† 1,575 Self-report time of walking Mixed land use 0.22  

(Witten et al., 2012)† 1,619 
Accelerometer-measured counts of physical 

activity (weekday) 
Mixed land use 0.08  

(Witten et al., 2012)† 1,512 Accelerometer-measured counts of physical Mixed land use 0.11  
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Study N y x e 
In meta-

analysis? 

activity (weekend) 

(Song et al., 2013) 2,676 
Ratio of active travel time to total time 

(obligatory trips) 

Land-use balance (inverse of the distance 

between each area’s functionality mix and 

the national norm in a geometric space) 

0.13 Y 

(Song et al., 2013) 2,676 
Ratio of active travel distance to total 

distance (obligatory trips) 
Land-use balance (same as above) 0.11** Y 

(Song et al., 2013) 3,309 
Ratio of active travel time to total time 

(discretionary trips) 
Land-use balance (same as above) 0.01 Y 

(Song et al., 2013) 3,309 
Ratio of active travel distance to total 

distance (discretionary trips) 
Land-use balance (same as above) 0.07 Y 

(Song et al., 2013) 2,676 
Ratio of active travel time to total time 

(obligatory trips) 

Neighbours’ land-use balance (same as 

above) 
0.35* Y 

(Song et al., 2013) 2,676 
Ratio of active travel distance to total 

distance (obligatory trips) 

Neighbours’ land-use balance (same as 

above) 
0.40** Y 

(Song et al., 2013) 3,309 
Ratio of active travel time to total time 

(discretionary trips) 

Neighbours’ land-use balance (same as 

above) 
0.02 Y 

(Song et al., 2013) 3,309 
Ratio of active travel distance to total 

distance (discretionary trips) 

Neighbours’ land-use balance (same as 

above) 
0.09 Y 

(Lee et al., 2014) 6,246 
Walk/bike mode choice for home-based 

work trips 

Entropy index at O in the one-quarter mile 

buffer area 
1.15 Y 

(Lee et al., 2014) 10,413 
Walk/bike mode choice for home-based 

other trips 

Dissimilarity index at O in the one-quarter 

mile buffer area 
0.16 Y 

(Lee et al., 2014) 10,413 
Walk/bike mode choice for home-based 

other trips 

Dissimilarity index at D in the one-quarter 

mile buffer area 
0.91 Y 
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Study N y x e 
In meta-

analysis? 

(Ewing et al., 2015)† 14,672 Household walk trips (if any) Land use entropy within one-half mile 0.10*** Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself using formula in Table 

 

Table A-8 Elasticity of walk trips with respect to accessibility 

Study N y x e 
In meta-

analysis? 

(Witten et al., 2012)† 1,315 
Self-report time of leisure physical 

activity (if any) 

Neighbourhood Destinations Accessibility Index 

(density of facilities) 
0.31* 

 

(Witten et al., 2012)† 1,575 Self-report time of walking (if any) 
Neighbourhood Destinations Accessibility Index 

(density of facilities) 
0.31 

 

(Witten et al., 2012)† 1,619 
Accelerometer-measured counts of 

physical activity (weekday) 

Neighbourhood Destinations Accessibility Index 

(density of facilities) 
0.17* 

 

(Witten et al., 2012)† 1,512 
Accelerometer-measured counts of 

physical activity (weekend) 

Neighbourhood Destinations Accessibility Index 

(density of facilities) 
0.12 

 

(Song et al., 2013) 3,309 
Ratio of active travel time to total time 

(discretionary trips) 
Retail centre–home distance -0.31** 

 

(Song et al., 2013) 3,309 
Ratio of active travel distance to total 

distance (discretionary trips) 
Retail centre–home distance -0.46** 

 

(Cao, 2015a)a 1,194 
Probability of conducting ‘a lot more 

walking’ 

Change in accessibility (from principal axis 

factoring) 
0.04 

 

(Ewing et al., 2015)† 14,672 Household walk trips (if any) 
Percentage of regional employment within 30 

min by transit 
0.07* 
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Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself 

a This study employed a 5-point ordinal scale of changes in walking and biking after relocation, from ‘a lot less now’ to ‘a lot more now’. Since these 

responses are interrelated, only the elasticities on the probability of choosing ‘a lot more’ is included. 

 

Table A-9 Elasticity of walk trips with respect to road network design 

Study N y x e 

In meta-

analysis

? 

(Boarnet, Joh, et al., 

2011)† 
1,370 Walking trips per person per day Percentage intersections 4-way 0.13 Y 

(Joh et al., 2012)† 825 
Walking trips per day (‘high-walk’ 

attitude group) 
Intersection density 0.47 Y 

(Joh et al., 2012)† 605 
Walking trips per day (‘low-walk’ 

attitude group) 
Intersection density -2.54* Y 

(Joh et al., 2012)† 825 
Walking trips per day (‘high-walk’ 

attitude group) 
Four-way intersections -0.04 Y 

(Joh et al., 2012)† 605 
Walking trips per day (‘low-walk’ 

attitude group) 
Four-way intersections -0.28 Y 

(Witten et al., 2012)† 1,315 
Self-report time of leisure physical 

activity (if any) 

Street connectivity (number of intersections with ≥ 3 

intersecting streets per square kilometre within a 

meshblock) 

0.30*  

(Witten et al., 2012)† 1,575 Self-report time of walking (if any) Street connectivity (same as above) 0.14  

(Witten et al., 2012)† 1,619 
Accelerometer-measured counts of 

physical activity (weekday) 
Street connectivity (same as above) 0.16*  



199 

 

Study N y x e 

In meta-

analysis

? 

(Witten et al., 2012)† 1,512 
Accelerometer-measured counts of 

physical activity (weekend) 
Street connectivity (same as above) 0.16*  

(Lee et al., 2014)a 10,413 
Walk/bike mode choice for home-

based other trips 

Total roadway length divided by total area in the one-

quarter mile buffer area at D 
0.69 Y 

(Lee et al., 2014) 10,413 
Walk/bike mode choice for home-

based other trips 

Number of intersections divided by total number of 

intersections and dead ends in the one-quarter mile 

buffer area at O 

0.99 Y 

(Ewing et al., 2015)† 14,672 Household walk trips (if any) Percentage 4-way intersections within one quarter mile 0.03** Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself 

a Only significant elasticities (at least at 0.1 level) are provided in this paper. 

 

Table A-10 Elasticity of walk trips with respect to public transport service 

Study N y x e 
In meta-

analysis? 

(Cao, 2015a) † 1,194 Probability of conducting ‘a lot more walking’ Change in transit (from principal axis factoring) 0.06  

(Ewing et al., 2015)† 14,672 Household walk trips (if any) Transit stop density within one-half mile 0.04*** Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 
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Table A-11 Elasticity of transit trips with respect to density 

Study N y x e 
In meta-

analysis? 

(Lee et al., 2014) 6,246 Transit mode choice for home-based work trips Population density at D in the one-quarter mile buffer 0.28 Y 

(Lee et al., 2014) 6,246 Transit mode choice for home-based work trips Employment density at O in the one-quarter mile buffer  0.35 Y 

(Lee et al., 2014) 6,246 Transit mode choice for home-based work trips Employment density at D in the one-quarter mile buffer  0.22 Y 

(Lee et al., 2014) 10,413 Transit mode choice for home-based other trips Population density at O in the one-quarter mile buffer  0.24 Y 

(Lee et al., 2014) 10,413 Transit mode choice for home-based other trips Population density at D in the one-quarter mile buffer  0.44 Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

 

Table A-12 Elasticity of transit trips with respect to diversity 

Study N y x e 
In meta-

analysis? 

(Lee et al., 2014) 6,246 
Transit mode choice for home-based 

work trips 
Entropy index at O in the one-quarter mile buffer 1.19 Y 

(Lee et al., 2014) 10,413 
Transit mode choice for home-based 

other trips 
Dissimilarity at O in the one-quarter mile buffer 0.14 Y 

(Lee et al., 2014) 10,413 
Transit mode choice for home-based 

other trips 
Dissimilarity at D in the one-quarter mile buffer 0.83  

(Ewing et al., 2015)† 6,719 Household transit trips (if any) Land use entropy within one-half mile 0.07 Y 

(Ewing et al., 2015)† 6,719 Household transit trips (if any) Job-population balance within one mile 0.12*  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 
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Table A-13 Elasticity of transit trips with respect to road network design 

Study N y x e 

In meta-

analysis

? 

(Lee et al., 2014) 10,413 
Transit mode choice for home-

based other trips 

Total roadway length divided by total area in the one-quarter mile 

buffer area at D 
0.60 Y 

(Lee et al., 2014) 10,413 
Transit mode choice for home-

based other trips 

Number of intersections divided by total number of intersections 

and dead ends in the one-quarter mile buffer area at O 
0.85 Y 

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

 

Table A-14 Elasticity of transit trips with respect to destination accessibility 

Study N y x e 
In meta-

analysis? 

(Ewing et al., 2015)† 6,719 Household transit trips (if any) Percentage of regional employment within 30 min by transit 0.04*  

Ψp < .10, * p < .05, ** p < .01, *** p < .001 

† Elasticities calculated by myself. 
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Appendix B  Summary of built environment features 

Table B-1 Descriptive statistics of built environment features 

 All  
Within 2nd ring 

road 

2nd to 3rd ring 

road 

3rd to 4th ring 

road 

4th to 5th ring 

road 
 Mean SD Mean SD Mean SD Mean SD Mean SD 

 Min Max Min Max Min Max Min Max Min Max 

Population density 15435 9478 21643 7656 22114 8478 17709 8634 9361 6630 
 1396 40500 11450 40500 3169 40363 3169 40363 1396 32305 

Employment density 10105 11456 14856 9220 16975 13613 12567 13714 4260 5034 
 343 72114 2817 33475 1702 72114 1249 72114 343 38597 

Distance to the city center 8882 3622 3042 1131 5976 1121 8503 1482 12109 1853 
 409 16890 409 5120 3676 9123 5832 12044 8502 16890 

Distance to the nearest commercial cluster 1540 1295 888 507 1054 582 1121 614 2167 1633 
 30 7319 178 2760 161 2674 51 2977 30 7319 

Retail density 41 40 71 60 56 40 46 33 23 26 
 0 389 0 389 0 213 0 226 0 152 

Entertainment density 35 34 54 29 54 35 42 33 18 24 
 0 247 0 130 0 179 1 247 0 142 

Land use mix 1.01 0.37 1.20 0.28 1.15 0.32 1.08 0.34 0.86 0.38 
 0 1.74 0.33 1.64 0.00 1.74 0.00 1.66 0 1.72 

Primary road density 1416 1251 1863 1346 1825 1339 1587 1155 1009 1098 
 0 7274 0 7273 0 6176 0 7274 0 5632 

Secondary road density 4068 2489 4205 1943 4820 2113 4988 2559 3206 2476 
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 All  
Within 2nd ring 

road 

2nd to 3rd ring 

road 

3rd to 4th ring 

road 

4th to 5th ring 

road 
 Mean SD Mean SD Mean SD Mean SD Mean SD 

 Min Max Min Max Min Max Min Max Min Max 
 0 15623 0 9511 0 14705 0 15623 0 13794 

Tertiary road density 2981 3167 8150 3767 3594 2445 2037 2072 1697 1962 
 0 17235 2 17235 0 16110 0 14764 0 13056 

Parking density 1145 1968 1612 2085 1804 2475 1650 2474 446 835 
 0 14668 0 9351 0 14515 0 14668 0 5709 

Distance to the nearest subway station 1381 1063 660 372 952 624 1135 791 1915 1214 
 25 5863 236 1794 86 3276 25 3445 158 5863 

Bus coverage 0.46 0.23 0.65 0.16 0.57 0.20 0.53 0.17 0.32 0.21 
 0.00 1.00 0.17 1.00 0.08 0.95 0.11 0.95 0.00 0.94 

Facade quality 1.47 0.16 1.42 0.14 1.51 0.12 1.53 0.13 1.45 0.18 
 0.87 1.92 1.11 1.75 1.11 1.87 1.04 1.90 0.87 1.93 

Facade continuity 0.18 0.08 0.27 0.10 0.19 0.06 0.19 0.07 0.15 0.07 
 0.01 0.52 0.04 0.52 0.04 0.40 0.04 0.43 0.01 0.36 

 

Table B-2 Correlation matrix of built environment features 

 Den_

pop 

Den_

emp 

Dist_

city 

Dist_ 

comclu 

Den_ 

retail 

Den_

ent 
Mix 

Den_

road

_pri 

Den_

road

_sec 

Den_

road

_ter 

Den_ 

parking 

Dist_

sub 

Cov_

bus 

Facade_

qua 

Facade_ 

conti 

Den_pop 1 0.43 -0.58 -0.48 0.37 0.48 0.41 0.13 0.35 0.35 0.25 -0.46 0.56 0.24 0.24 

Den_emp - 1 -0.47 -0.37 0.43 0.62 0.31 0.25 0.42 0.24 0.53 -0.41 0.44 0.26 0.14 

Dist_centre - - 1 0.55 -0.47 -0.5 -0.31 -0.28 -0.29 -0.54 -0.32 0.52 -0.55 -0.07 -0.38 
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Dist_comclu - - - 1 -0.43 -0.5 -0.23 -0.19 -0.39 -0.22 -0.3 0.39 -0.49 -0.26 -0.2 

Den_retail - - - - 1 0.74 0.29 0.12 0.33 0.36 0.48 -0.31 0.52 0.14 0.23 

Den_ent - - - - - 1 0.36 0.18 0.49 0.35 0.56 -0.42 0.63 0.26 0.17 

Mix - - - - - - 1 0.21 0.33 0.24 0.14 -0.21 0.49 0.2 0.12 

Den_road_pri - - - - - - - 1 0.18 0.13 0.19 -0.19 0.24 0.13 0.22 

Den_road_sec - - - - - - - - 1 0.07 0.44 -0.41 0.56 0.33 0.05 

Den_road_ter - - - - - - - - - 1 0.19 -0.3 0.35 -0.02 0.32 

Den_parking - - - - - - - - - - 1 -0.3 0.3 0.25 0.08 

Dist_sub - - - - - - - - - - - 1 -0.47 -0.25 -0.21 

Cov_bus - - - - - - - - - - - - 1 0.24 0.22 

Facade_qua - - - - - - - - - - - - - 1 -0.12 

Facade_conti - - - - - - - - - - - - - - 1 
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Appendix C  Supplementary results for 

Chapter 5 

Table C-1 Distribution of activity purposes 

Type Purpose Percentage 

Commute Work 21.7% 

School 3.7% 

Non-commute Sleep 0.1% 

 Dine out 2.4% 

 Personal business 2.7% 

 Housekeeping 0.1% 

 Entertain 6.8% 

 Shopping 10.8% 

 Visit friends 1.7% 

 Escorting 4.6% 

 Fetching goods 0.4% 

 Others 0.6% 

Back home Back home 44% 

Total  100.0% 

 

Table C-2 Confusion matrix of the predictions of activity plans with and without built 

environment variables (two activities in the day) 

Independent variables: socioeconomic, built environment (accuracy=61.2%) 

 h-d-h-d-h (obs) h-d-s-h (obs) h-s-d-h (obs) 

h-d-h-d-h (sim) 3888 1522 806 

h-d-s-h (sim) 170 222 92 

h-s-d-h (sim) 21 18 44 

Independent variables: socioeconomic only (accuracy=61.1%) 

h-d-h-d-h (sim) 3908 1539 829 

h-d-s-h (sim) 156 213 88 

h-s-d-h (sim) 15 10 25 

Note: Multinomial logit model is used. 
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Table C-3 Confusion matrix of the predictions of activity plans with and without built 

environment variables (three activities in the day) 

Independent variables: socioeconomic, built environment (accuracy=39.2%) 

 1 (obs) 2 (obs) 3 (obs) 4 (obs) 5 (obs) 6 (obs) 7 (obs) 

1 (sim) 588 117 278 75 213 104 81 

2 (sim) 3 4 2 6 1 2 1 

3 (sim) 31 4 40 5 10 5 7 

4 (sim) 19 7 14 37 7 19 13 

5 (sim) 4 1 1 0 4 0 0 

6 (sim) 84 54 45 58 50 220 63 

7 (sim) 0 0 1 1 1 5 5 

Independent variables: socioeconomic only (accuracy=39.2%) 

1 (sim) 625 123 326 81 233 108 83 

2 (sim) 3 3 0 3 0 2 1 

3 (sim) 4 0 3 1 1 2 1 

4 (sim) 17 11 6 37 4 15 17 

5 (sim) 1 0 0 0 0 0 0 

6 (sim) 79 50 46 59 48 226 64 

7 (sim) 0 0 0 1 0 2 4 

Note: 1=h-d-h-d-h-d-h, 2=h-d-h-d-s-h, 3=h-d-s-h-d-h, 4=h-d-s-s-h, 5=h-s-d-h-d-h, 6= 

h-s-d-s-h, 7= h-s-s-d-h. Multinomial logit model is used. 

 

Table C-4 AUCs for the prediction of whether a non-commute activity purpose is 

included in the activity plan with and without built environment variables (given that 

the number of non-commute activities > 0) 

Activity types 

AUC (built 

environment variables 

included) 

AUC (built 

environment variables 

not included) 

Shopping 0.56 0.55 

Entertainment 0.52 0.60 

Dining out 0.48 0.55 

Personal business 0.51 0.51 

Escorting/picking 

up/dropping off 
0.47 0.55 

Others 0.48 0.52 

Note: Binary logistic regression is used. 
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Table C-5 Frequency distribution of non-commute activities 

Purposes Percentages 

Shopping 36% 

Entertainment 22% 

Dining out 8% 

Personal business 9% 

Escorting 15% 

Others 9% 

Sum 100% 

 

Table C-6 Frequency distribution of activity plans 

# activities = 1 (62.2%) # activities = 2 (24.9%) # activities = 3 (7.2%) 

h-d-h 100% h-d-h-d-h 68% h-d-h-d-h-d-h 38% 

Sum 100% h-s-d-h 11% h-d-s-s-h 9% 

  h-d-s-h 21% h-s-d-s-h 15% 

  Sum 100% h-s-s-d-h 7% 

    h-s-d-h-d-h 15% 

    h-d-s-h-d-h 16% 

    Sum 100% 

 

Table C-7 Link functions for ordinal regression model 

Name Distribution Link function Inverse link Density 

Logit Logistic Log[
γ

1 − γ
] 1/[1 + exp(θ)] exp(−θ) /[1 + exp(−𝜃)]2 

Probit Normal Ф
−1

(𝛾) Ф(θ) ∅(θ) 

Log-log 
Gumbel 

(max) 
−log [− log(γ)] exp (− exp(−θ)) exp (− exp(−θ) − θ) 

Clog-log 
Gumbel 

(min) 
−log [− log(1 − γ)] 1 − exp (− exp(θ)) exp [− exp(θ) + θ] 

Cauchit Cauchy Tan[π(γ − 0.2)] 
arctan(θ)

π
+ 0.5 1/[π(1 + 𝜃2)] 

Source: (Christensen, 2010) 
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Table C-8 Confusion matrix on the number of commute activities 

 1 (sim) 2 (sim) 3 (sim) 

1 (obs) 9927 (10936) 1022 (13) 0 (0) 

2 (obs) 936 (1330) 413 (19) 0 (0) 

3 (obs) 60 (84) 25 (1) 0 (0) 

Percentage of correct prediction=83.5% 

Sim total/obs total= 100.4% 

    Note: Uncalibrated results are shown in parentheses. 

 

Table C-9 Confusion matrix of the number of non-commute activities 

 0 (sim) 1 (sim) 2 (sim) 3 (sim) 

0 (obs) 11547 (12265) 800 (114) 33 (1) 0 (0) 

1 (obs) 2595 (3170) 925 (5362) 5060 (48) 0 (0) 

2 (obs) 610 (915) 476 (2866) 2736 (41) 0 (0) 

3 (obs) 107 (202) 147 (1000) 968 (20) 0 (0) 

Percentage of correct prediction=58.5% 

Sim total/obs total= 99.7% 

Note: Uncalibrated results are shown in parentheses. 

 

Table C-10 Quota of alternative sampling for distance bands 

Distance band 

(km) 
Shop Entertain Dine out 

Personal 

business 
Escort Others 

0-1 4.5 3.5 4 2.5 3 1 

1-2 2.5 2.5 2 1.5 2.5 1 

2-3 1 1 1 1 1 1 

3-4 0.5 0.5 0.5 1 1 0.5 

4-5 0.5 0.5 0.5 0.5 0.5 0.5 

5-10 0.5 1 1 2 1 2 

>10 0.5 1 1 1.5 1 3 

 

 

 

 

 

 

 

 



209 

 

Table C-11 Distribution of travel time given the activity type and position in the activity 

plan 

Type Position Before 

am peak 

Am 

peak 

Before 

noon 
Afternoon 

Pm 

peak 

After pm 

peak 

Work 

1st tour 12% 74% 7% 6% 0% 0% 

2nd tour 0% 5% 3% 90% 2% 0% 

3rd tour 0% 0% 1% 64% 23% 12% 

School 

1st tour 34% 60% 1% 4% 0% 0% 

2nd tour 0% 0% 1% 97% 2% 0% 

3rd tour 0% 0% 0% 29% 36% 36% 

Shopping 

1st tour 4% 47% 38% 9% 1% 0% 

2nd tour 0% 6% 20% 57% 10% 7% 

3rd tour 0% 0% 1% 46% 29% 24% 

Entertain 

1st tour 26% 49% 17% 5% 1% 1% 

2nd tour 0% 2% 4% 46% 18% 29% 

3rd tour 0% 0% 0% 19% 26% 55% 

Dining out 

1st tour 5% 19% 44% 18% 12% 2% 

2nd tour 0% 2% 19% 20% 42% 18% 

3rd tour 0% 0% 0% 0% 76% 24% 

Personal 

business 

1st tour 10% 49% 26% 14% 0% 0% 

2nd tour 0% 4% 15% 74% 4% 2% 

3rd tour 0% 0% 6% 70% 8% 17% 

Escorting 

1st tour 15% 61% 9% 12% 1% 1% 

2nd tour 0% 1% 5% 77% 11% 5% 

3rd tour 0% 0% 1% 71% 23% 6% 

Others 

1st tour 8% 40% 38% 13% 1% 1% 

2nd tour 0% 3% 19% 61% 9% 8% 

3rd tour 0% 0% 3% 40% 27% 31% 

Total  12% 50% 14% 18% 3% 3% 

 

Table C-12 Quota of alternative sampling for detour distance bands 

Distance range 

(km) 
Shop Entertain Dine out 

Personal 

business 
Escort Others 

0-1 7 6 8 5 4.5 4 

1-2 1.5 1.5 
1 

1.5 1.5 1 

2-3 0.5 1 0.5 1 1 

3-4 
0.5 0.5 0.5 

0.5 0.5 0.5 

4-5 0.5 0.5 0.5 

5-10 
0.5 

0.5 
0.5 

1 1 1.5 

>10 0.5 1 1 1.5 
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