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Methods for Determining the Genetic Causes of Rare
Diseases

Daniel Greene

Thanks to the affordability of DNA sequencing, hundreds of thousands of individuals with
rare disorders are undergoing whole-genome sequencing in an effort to reveal novel disease
aetiologies, increase our understanding of biological processes and improve patient care.
However, the power to discover the genetic causes of many unexplained rare diseases is
hindered by a paucity of cases with a shared molecular aetiology. This thesis presents
research into statistical and computational methods for determining the genetic causes of
rare diseases. Methods described herein treat important aspects of the nature of rare diseases,
including genetic and phenotypic heterogeneity, phenotypes involving multiple organ systems,
Mendelian modes of inheritance and the incorporation of complex prior information such as
model organism phenotypes and evolutionary conservation.

The complex nature of rare disease phenotypes and the need to aggregate patient data
across many centres has led to the adoption of the Human Phenotype Ontology (HPO) as
a means of coding patient phenotypes. The HPO provides a standardised vocabulary and
captures relationships between disease features. The use of such ontologically encoded data
is widespread in bioinformatics, with ontologies defining relationships between concepts
in hundreds of subfields. However, there has been a dearth of tools for manipulating and
analysing ontological data. I developed a suite of software packages dubbed ‘ontologyX’ in
order to meet these needs, simplify visualisation of such data, and enable them to be incor-
porated into complex analysis methods. An important aspect of the analysis of ontological
data is quantifying the semantic similarity between ontologically annotated entities, which
is implemented in the ontologyX software. We employed this functionality in a phenotypic
similarity regression framework, ‘SimReg’, which models the relationship between ontologi-
cally encoded patient phenotypes of individuals and rare variation in a given genomic locus.
It does so by evaluating support for a model under which the probability that a person carries
rare alleles in a locus depends on the similarity between the person’s ontologically encoded
phenotype and a latent characteristic phenotype which can be inferred from data. A proba-
bility of association is computed by comparison of the two models, allowing prioritisation
of candidate loci for involvement in disease with respect to a heterogeneous collection of
disease phenotypes. SimReg includes a sophisticated treatment of HPO-coded phenotypic
data but dichotomises the genetic data at a locus. Therefore, we developed an additional
method, ‘BeviMed’, standing for Bayesian Evaluation of Variant Involvement in Mendelian
Disease, which evaluates the evidence of association between allele configurations across



rare variants within a genomic locus and a case/control label. It is capable of inferring the
probability of association, and conditional on association, the probability of each mode of
inheritance and probability of involvement of each variant. Inference is performed through a
Bayesian comparison of multiple models: under a baseline model disease risk is independent
of allele configuration at the given rare variant sites and under an alternate model disease
risk depends on the configuration of alleles, a latent partition of variants into pathogenic
and non-pathogenic groups and a mode of inheritance. The method can be used to analyse
a dataset comprising thousands of individuals genotyped at hundreds of rare variant sites
in a fraction of a second, making it much faster than competing methods and facilitating
genome-wide application. The thesis concludes by describing an analysis pipeline and web
application called ‘Gene-docs’ that utilises ontologyX, SimReg and BeviMed to perform
inferences and makes the results and the underlying data available to collaborating biologists
and clinicians.
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Chapter 1

Background

It is important that the underlying genetic causes of rare diseases are identified in order
to further our understanding of biology, identify affected relatives and improve patient
management. Analysis of cosegregation between genetic markers and disease within large
disease-affected families has led to the identification of the genes involved in thousands
of rare diseases over the last few decades. However, the aetiologies of many diseases
have not yet been discovered. Recently, high-throughput sequencing has been used to
call genetic variants — specific sequences of nucleotides at specific locations relative to a
reference genome — in all genes, Whole-Exome Sequencing (WES), or across the entire
genome Whole-Genome Sequencing (WGS), facilitating association-based study designs.
Consequently, large genomic sequencing studies attempting to solve unexplained diseases
are underway. For example, the 100,000 Genomes project [67], which was established to
create a genomic medicine service for the United Kingdom National Health Service, will
sequence the genomes of 50,000 individuals with rare diseases and their close relatives.
Genome-wide association studies (GWAS) have identified thousands of common variants
marginally associated with common diseases or quantitative traits. However, methods that
test for marginal association are underpowered for identifying the determinants of rare
diseases. This is because rare diseases are typically caused by combinations of only one or
two rare alleles, each of which may be observed in only a very small number of individuals
in a study. Borrowing of information across variants, at least those within particular genomic
regions — also known as loci — is therefore an important requirement of any good statistical
association method for rare diseases. In order to boost power in the context of such genetic
heterogeneity, methods that combine genotype data across many variants in a locus have
been developed. ‘Burden tests’ borrow information across variants in a region by aggregating
alleles within loci, and test for association between the phenotype and the aggregated allele
count. However, the majority of rare variants are neutral with respect to severe disease
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Fig. 1.1 Top: the distribution of the number of rare alleles observed per gene by open reading
frame length. There is a clear linear relationship between gene length and number of rare
alleles observed, suggesting that the majority of rare variants are benign. Bottom: histogram
of open reading frame length for human genes.

(see Figure 1.1), which reduces the power of such methods due to the inclusion of benign
variants in the aggregation. There exist statistical methods which are designed for identifying
associations between complex traits and rare variants, but these do not explicitly model the
modes of inheritance typical of rare diseases. Furthermore, rare disease phenotypes are
often composite, involving features affecting multiple organ systems and which manifest
stochastically and with variable severity. Thus, many disease phenotypes are not effectively
represented by existing models.
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1.1 A portrait of rare Mendelian diseases

The majority of rare genetic diseases are ‘Mendelian’ in the sense that they are caused by the
presence of pathogenic alleles on one or two chromosomes, and can therefore be inherited
respectively ‘dominantly’ or ‘recessively’. They are so called because the first evidence
for traits being transmitted in such a way was presented using the colour and shape of pea
pods by Gregor Mendel, an Austrian monk who lived in the 19th century. There are over
7,000 known Mendelian diseases [77] and a genetic aetiology has been found for at least
half of them. Between them, they affect approximately 1 in every 20 people, and all organ
systems in the body. Despite their overall prevalence, individual Mendelian diseases are
rare due to the effects of negative selection pressure and low mutation rate during meiosis
(the de novo mutation rate depends on factors including genomic location and paternal age,
but is approximately 1.3×10−8 nucleotides per generation [26]). Consequently, deleterious
alleles responsible for rare diseases have typically arisen recently in the population and
presently have a very low population allele frequency. An allele that causes severe disease in
childhood in everyone who carries it would result only from de novo mutation and would
occur with frequency no greater than the prevalence of the disease. On the other hand, a mild
disease or a disease with late onset may be caused by alleles with higher frequencies. In
recessive diseases, individuals who carry a pathogenic allele on only one chromosome are
unaffected, and there is therefore weaker negative selection against the allele. For example,
Bernard-Soulier syndrome is an autosomal recessive disease which causes reduced platelet
count, increased mean platelet volume and abnormal bleeding tendency. It has a prevalence
estimated to be less than one in a million live births, whilst variants which cause the disease
can have a population allele frequency as high as 0.06% [17, 55]. Population-specific factors
may also play a role. Sickle-cell disease, which causes red blood cells to be malformed
and results in anaemia, is also recessively inherited. However, in regions where malaria is
endemic, heterozygotes have a reproductive advantage due to the fact that alleles responsible
for sickle-cell disease confer malaria resistance. Hence, the most common pathogenic variant
has persisted at frequencies in excess of 15% in some West African populations, where
prevalence of the disease can be as high as 4% [62].

Rare diseases are often caused by variants in or affecting protein-coding genes — seg-
ments of the genome which are transcribed to RNA and then translated to sequences of amino
acids from which proteins are formed — because of the potential for major disruption of cell
biology which depends on proteins functioning correctly. Variants in genes may have various
impacts on protein formation, depending on the how they affect the sequence of ‘codons’,
nucleotide triplets in the DNA which directly translate to amino acids. Due to redundancy of
codon translations to amino acids, some variants, termed ‘synonymous’ do not alter amino
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acid sequence and therefore generally do not affect protein formation. ‘Non-synonymous’
variants generate codons which do lead to an amino acid change, and therefore are considered
more likely to be pathogenic. ‘Frame-shift’ variants cause a shift in the Open Reading Frame
(ORF) — the sequence of codons that gets translated — for the gene by inserting or deleting a
non-multiple of three nucleotides, therefore leading all subsequent codons to be mistranslated.
A ‘Stop-gain’ variant is a Single Nucleotide Variant (SNV) which results in a codon being re-
placed with a stop-codon, which discontinues translation, and therefore results in a truncated
protein product. Splicing is part of the process whereby RNA molecules transcribed from
DNA are converted to mRNA molecules, which can then be translated to generate proteins.
It consists of removing the ‘introns’, untranslated sequences of nucleotides between ‘exons’,
translated sequences of nucleotides, from the RNA. ‘Splice-variants’ are variants which
interfere with splicing, for example causing exons to be omitted from or introns retained
abnormally in the resultant mRNA. The regions which lie immediately upstream of the
start-codon and downstream of the stop-codon for a gene do not get translated and are known
as the 5′ untranslated region (UTR) and 3′ UTR respectively. Variants which lie in these
regions have the potential to disrupt translation by affecting the binding or unbinding of the
translational machinery. There is often substantial genetic heterogeneity amongst individuals
with the same rare disease, typically due to different variants in the same gene or functional
unit leading to the same consequences. For example, there are over 2,000 distinct variants
in the CFTR gene that can cause cystic fibrosis [14], an autosomal recessive disease which
progressively damages the lungs.

To discover the cause of disease, affected individuals would ideally be grouped a priori
into clusters with a shared (though unknown) genetic aetiology, whilst all other individuals
could be treated as controls. Unfortunately, the nature of rare diseases and collection of
rare disease phenotype data means it is often difficult to separate rare disease cases into
such groups. This is because the majority of rare diseases are phenotypically heterogeneous,
indeed, most affect more than one organ system as is shown in Figure 1.2. Additionally,
many rare diseases exhibit substantial phenotypic variability with respect to the presence
and severity of disease features. In the past, this has led to diseases subsequently found to
have a common genetic cause being given a multitude of names. For example, MYH9-related
disease has been called May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome and
Epstein syndrome [97]. Even the same pathogenic variant — a serine to leucine substitution
at position 96 of the MYH9 gene — appears to cause hearing loss, renal dysfunction and
cataracts stochastically and with low correlation [74]. Moreover, phenotypic heterogeneity
can be sufficiently large to induce significant overlap of clinical phenotypes between dif-
ferent diseases. For example, a low platelet count and abnormal bleeding are both typical
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characteristics of MYH9-related disease, but they are also present in patients with the aetio-
logically distinct Wiskott-Aldrich syndrome. Similarly, abnormal bleeding and abnormal
platelet granules typically manifest in Wiskott-Aldrich patients, but these phenotypes are
also present in cases with the aetiologically distinct Hermansky-Pudlak syndrome. See Feng
et al. [23], Anikster et al. [4], Suzuki et al. [111], Zhang et al. [125], Morgan et al. [71], Li
et al. [57], Cullinane et al. [18] and Beaulieu et al. [7] for further examples. Furthermore,
pathogenic variants may not have complete ‘penetrance’, that is they do not always cause the
symptoms of the disease to be manifested. For example, variants in BRCA1 responsible for
dominantly inherited breast cancer confer only a 54% risk of developing breast cancer by
age 60 [20].

The power of case/control association tests is likely to be compromised by misspecifi-
cation of the disease status label, and thus such tests are not well suited to a heterogeneous
collection of rare disease cases. Tests which summarise the clinical manifestations of a
disease with a single variable (e.g. see methods described in Lee et al. [51]), lose power when
multiple phenotypic traits contain complementary information about the same causal geno-
type, which is often the case for rare diseases. Although methods for modelling pleiotropy
of variants — the property of influencing multiple traits — have proven successful in the
context of genome-wide association studies [9, 78, 107], they are ill-suited for rare disease
studies in which the phenotype data are often of mixed type, contain correlated components
and are collected with variable detail and completeness.

The HPO addresses the need for a standardised vocabulary for rare disease phenotypes
and is being used to encode the disease phenotypes of participants for several large inter-
national projects [119, 24, 81, 33]. It is a directed acyclic graph (DAG) representing over
10,000 phenotypic abnormalities as nodes connected to each other through ‘is-a’ relations,
represented as edges. The HPO was created with the support of experts in many areas of
medicine to accommodate coding of phenotypic data derived from diverse sources, such as
laboratory assays, images, graphs and clinical interpretations. Methods exist that compare
HPO phenotypes with HPO-coded profiles corresponding to known diseases for the purpose
of differential diagnosis [47, 6]. The HPO-coded profiles can be supplemented with func-
tional gene-specific information to prioritise genes [100, 121]. If genotype data are available,
these and other methods [93, 124] can be used to prioritise variants and potentially suggest
new causes of disease [44, 100, 121]. However, there have been no statistical association
methods which share information between the HPO-encoded phenotypes of rare disease
cases and relate the phenotype to the genetic variant data.
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Fig. 1.2 Distribution of organ systems co-affected by rare diseases for each organ system
(rows). The bar chart on the right shows the total number of diseases affecting each organ
system. A total of 6,911 rare diseases are represented, with phenotype data downloaded
from the HPO website [117].
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1.2 The impact of high-throughput sequencing on rare dis-
ease research

The revolution of high-throughput sequencing technology has seen the cost of sequencing
a human genome fall from $1 billion to $1,000 since it began in 2005 with the launch
of the Roche 454 sequencing machine. The state of the art in 2017 is the Illumina dye
sequencing technique, which was selected for use in the 100,000 Genomes Project. The
technology is based on sequencing by synthesis, recording the sequence of bases in short
single-stranded DNA molecules by detecting flourescently tagged nucleotides as they are
incorporated onto the complementary strand. This procedure can be performed in parallel on
tens of millions of fragments with the latest Illumina sequencing machines, which are able
to sequence 45 human genomes to a depth averaging 30 reads per base in a day at a cost of
$1,000 per genome [66]. The output of such high throughput short read sequencing is a set
of nucleotide sequences of some given length, corresponding to sections of the genome of
the sequenced individual. The reads must then be aligned to the human reference genome to
allow comparison between them and for genetic variants to be called.

The use of high-throughput sequencing to study rare diseases began with WES because
rare diseases are often caused by exonic variants and exomes are much smaller than genomes
(an exome is approximately 60 megabases, which is 2% of the size of a whole genome [75]),
therefore making them cheaper to sequence. In WES, sample exonic DNA fragments are
selected from amongst genomic DNA fragments using an oligonucleotide hybridisation
technique [5]. The selected fragments can then be sequenced using a high-throughput
sequencing technique. WES opened up new opportunities for determining the genetic
causes of rare diseases as rare diseases are often caused by exonic variants, and unlike with
the standard Single Nucleotide Polymorphism (SNP) genotyping arrays, any number of
rare exonic variants can be observed. There is therefore the potential to unlock clinical
benefits: many individuals with rare diseases suffer years of futile clinical and genetic tests,
misdiagnosis, and lack of properly informed treatment in a so-called ‘diagnostic odyssey’.
However, approximately 15,000–20,000 variants are observed per sequenced exome [108],
motivating prefiltering in order to increase power to identify which variants are pathogenic.
Typically, analysis proceeds by filtering variants for allele frequency against databases of
variation for the healthy population [65], for example ExAC and gnomAD [55], enabling
many variants to be ruled out because their allele frequency is too high to be consistent
with their involvement in a rare heritable disorder. Furthermore, interpretation of specific
exonic sequence variants is aided by prediction of consequences for protein sequence and
formation [69]. For example, synonymous variants are typically removed from consideration.
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Depending on the exact parameters of the filtering, this often leaves hundreds of candidate
variants. Further analysis consists of either looking at cosegregation of variants with disease
amongst exome sequenced family members or by applying tests of association between rare
variation and disease status for unrelated people. Rare variants are much more numerous
than common variants across the genome, which renders the hypothesis space in rare disease
research much larger than in GWAS of complex traits. Therefore, variants in the same locus
need to be modelled jointly to achieve adequate power.

In exome sequencing studies of rare diseases, the proportion of affected participants for
whom a pathogenic or likely pathogenic variant is identified is usually quite low. For instance,
the Deciphering Developmental Disorders (DDD) project is an exome sequencing project
which was set up to determine the genetic cause of developmental disorders. It sequenced
13,600 affected individuals and a further 20,000 of their parents, and has revealed 30 novel
associations between genes and developmental disorders. As of April 2015, a pathogenic
or likely pathogenic variant was identified for only 27% of participants, comprising 1,133
previously investigated undiagnosed children with developmental disorders [120].

The falling cost of WGS has led to it substituting WES as the standard tool for investigat-
ing rare diseases as it provides more uniform coverage across exons and has the potential to
reveal the involvement of non-exonic variants. However, variation in the non-exonic regions
of the genome is comparatively harder to interpret in terms of its biological impact. The
non-exonic regions of the genome are also much larger, and millions of variants are called
per individual. Cohorts for deriving population allele frequencies are also currently smaller:
ExAC contains 123,136 exome sequences compared with 15,496 whole-genome sequences
for gnomAD as of May 2017.

1.3 The National Institute for Health Research BioResource–
Rare Diseases project dataset

The National Institute for Health Research BioResource–Rare Diseases (NBR–RD) project
was established as a pilot study for the 100,000 Genomes project to test the feasibility of
applying uniform sequencing to a large number of individuals, obtain molecular diagnoses for
participants, and ultimately uncover novel aetiologies of genetic diseases. The data generated
by this project were used in the development of the methods presented in this thesis. It
has sequenced over 7,000 probands — original disease-affected members of the families
participating in the study — and about 2,000 additional affected and unaffected relatives as
of 2017, with genetic diseases falling into one of 15 broad disease categories (see Table 1.1).
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Fig. 1.3 Left: the distribution of the number of HPO terms used to encode the phenotypes
of HPO-coded individuals in the NBR–RD project. Right: the number of individuals coded
with each high-level phenotypic abnormality term.

The data for each disease category are analysed by a specialised team comprising experts
in the particular disease phenotype, geneticists and bioinformaticians. Given a particular
disease category, individuals assigned to different disease categories can generally be treated
as controls. This is sometimes complicated by phenotypic overlap between projects: for
example, thrombocytopenia — a pathologically low platelet count — is a phenotype which
manifests in some individuals enrolled to the Primary Immune Disorder (PID) project and
some to the Bleeding and Platelet Disorders (BPD) project. Participant phenotypes have
been encoded using HPO terms where applicable. Amongst the patients whose phenotypes
have been encoded, the number of terms used had a mode of one and mean of four per
person. The top-level phenotype abnormalities — HPO terms which descend from the term
‘Phenotypic abnormality’ — mostly correspond to abstract abnormalities of different organ
systems, but also to developmental processes (e.g. Growth abnormality) and tissue types
(e.g. Abnormality of connective tissue). Figure 1.3 shows the distribution of the number of
terms used per individual and the prevalence of top-level phenotypic abnormalities amongst
the cases in the collection. The most frequent top-level phenotypic abnormality term was
‘Abnormality of blood and blood-forming tissues’, annotated to 1,766 individuals.

The participants were sequenced using Illumina’s short read sequencing platform and
resultant reads were aligned to the human reference genome hg19 using the Isaac aligner [90].
Variants were called with the ‘Northstar’ pipeline, involving SNV caller Starling and Struc-
tural Variant (SV) callers Manta and Canvas. The variants were then filtered to create a
subset for use in downstream analysis by retaining those which had an allele frequency of
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at most 0.1% in any of the reference cohorts (including 1000 Genomes [1], UK10K [115],
ExAC and gnomAD [55]), were classified as non-synonymous, frame-shift, splice-site or
stop-gain/stop-loss, or located in the 5′ UTR or 3′ UTR regions of a gene. After filtering,
3,863,577 variants were retained, observed across 9,632 people.

Testing for association between so many genetic variants in so many individuals affected
by one of so many different rare diseases is challenging. Powerful new methods which are
robust to phenotypic heterogeneity, genetic heterogeneity within and across loci, and which
are computationally efficient will be required if large projects focusing on sequencing and
analysing probands such as the NBR–RD project are to yield the best possible results.

Sub project Sequenced individuals
Bleeding and Platelet Disorders (BPD) 1167
Cerebral small vessel disease (CSVD) 244

Ehlers-Danlos and Ehlers-Danlos like syndromes (EDS) 15
Genomics England pilot (GEL) 1963

Hypertrophic Cardiomyopathy (HCM) 241
Intrahepatic Cholestasis of Pregnancy (ICP) 261

Leber Hereditary Optic Neuropathy (LHON0 71
Multiple Primary Malignant Tumours (MPMT) 521

Neuropathic Pain Disorders (NPD) 168
Pulmonary Arterial Hypertension (PAH) 1131

Primary Immune Disorders (PID) 1308
Primary Membranoproliferative Glomerulonephritis (PMG) 151

Stem Cell and Myeloid Disorders (SMD) 221
Specialist Pathology: Evaluating Exomes in Diagnostics (SPEED) 1384

Steroid Resistant Nephrotic Syndrome (SRNS) 249
Table 1.1 NBR–RD breakdown of sequenced individuals by project

1.4 The ThromboGenomics platform

The ThromboGenomics platform [99] was designed in order to improve the rate of diagnosis
of BPDs. It is a high-throughput sequencing assay targeting a panel of 63 genes known to be
involved in BPDs selected by expert clinicians and researchers. The panel of genes tested is
updated annually based on the results of ongoing research into the genetic causes of BPDs.
Targeting such a small genomic area allows for cost-effective high-depth sequencing of the
gene panel, leading to highly confident identification of variants. SNV/indels and structural
variants are called using GATK [68] and ExomeDepth [83] respectively, and are filtered for
low frequency against control populations, at most 10% minor allele frequency amongst other
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ThromboGenomics samples to guard against systematic artefacts and predicted consequence
according to SnpEff (retaining only those with a predicted translational impact of MODERATE
or HIGH, or lying within a splice region). The filtered variants are then assessed for clinical
significance by a multi-disciplinary team (MDT) comprising a mixture of clinical, genetics
and bioinformatics experts. The platform was validated against 300 samples from individuals
comprising a mixture of BPD cases with a previously identified causal variant, BPD cases
with a suspected disorder but without knowledge of causal variants, BPD cases whose
phenotypes could not be matched to a known BPD, and unaffected relatives. The average
number of potentially significant variants retained affecting the 63 genes per individual
across the 300 samples was 5.34. When the targeted sequencing assay was applied to the
159 samples from cases with a previously identified causal variant, all such variants were
recapitulated by the platform, demonstrating its efficacy. However, when applied to 76
samples from the cases whose phenotypes could not be matched to a known BPD, only eight
molecular diagnoses were reached, emphasising the need for further investigation into the
causes of BPDs.

1.5 Overview of thesis

Chapter 2 begins with a description of the software which I developed in order to lay the
foundations for analysing ontologically encoded phenotypes. The software, dubbed ‘ontol-
ogyX’ [39], constitutes a suite of R packages which enables sets of ontological terms to
be represented, visualised and compared to other sets using semantic similarity measures,
operations which were previously difficult to perform. It then continues to describe applica-
tions of quantifying the phenotypic similarity of HPO-coded individuals, including testing
hypotheses about the involvement of variants harboured by particular genes in disease and
using phenotypic similarity to prioritise candidate variants for a given case. It concludes by
describing an approach for testing association between phenotypically similar individuals
and presence of rare alleles in the same genes by partitioning HPO-coded individuals into
clusters based on phenotypic similarity. Unsupervised clustering of phenotypes is used to
generate clusters, and the members and non-members of each cluster in turn are respectively
treated as the cases and controls upon which association tests can be performed.

Chapter 3 describes work which builds upon the phenotype similarity methods introduced
in Chapter 2 by incorporating it into a Bayesian model for the relationship between rare
alleles and disease. The method, named ‘SimReg’, enables prior information to be taken
into account whilst testing a specific alternative model, whereby similarity between an
individual’s HPO phenotype and a latent characteristic disease phenotype predicts disease
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risk. The method allows the disease phenotype to be estimated from the data, is powerful to
detect pleiotropy, robust to phenotypic variability and is the first disease association method
which is applicable to phenotype data encoded using HPO terms. We then show that the
method is effective by applying it to over 2,000 individuals with various rare diseases for
whom high-throughput sequencing data was available, recovering numerous true associations
between diseases and genes, including a novel disease-gene association [109]. Allele counts
at rare variant sites are aggregated in SimReg, and therefore power is reduced by inclusion of
non-pathogenic variants in the aggregation. In order to increase power for testing association
between a set of rare variants containing both pathogenic and non-pathogenic varieties, and
a disease for which cases are clearly distinguishable from controls, we developed another
method called ‘BeviMed’, presented in Chapter 4.

In BeviMed, a Bayesian comparison of a baseline model where disease risk is independent
of allele configuration at given rare variant sites and an alternate model where it depends
on the configuration of alleles at a latent subset of pathogenic variants is used to infer a
probability of association, and conditional on association, the probability of involvement
of each variant. We compare BeviMed with other methods for testing association between
allele counts at rare variant sites and disease status, and demonstrate that BeviMed is more
powerful, particularly for recessive diseases, using a simulation study. We then apply
BeviMed to the NBR–RD project data and recover numerous true associations between
genes and thrombocytopenia. Chapter 5 describes a web-application which was developed
alongside the methods described in earlier chapters, and makes the results of systematic
application of these methods and the raw data used to generate them available to clinicians.

The current chapter concludes by introducing the literature on quantifying similarity of
sets of ontological terms and describing the various methods for analysing HPO data and
statistical association methods for rare variants, which are referred to in later chapters.

Publications

During my PhD I have contributed to several publications, upon which the majority of this
thesis is based. For completeness I list them here, including my contribution and where
applicable the chapter or section in which they are discussed.

• D. Greene, S. Richardson and E. Turro (2017). “ontologyX: A suite of R packages for
working with ontological data”. Bioinformatics, 33(7):1104-1106.
Methodological development, discussed in Section 2.1.

• S. K. Westbury†, E. Turro†, D. Greene†, C. Lentaigne†, A. M. Kelly†, T. K. Bariana†,
et al. (2015). “Human phenotype ontology annotation and cluster analysis to unravel
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genetic defects in 707 cases with unexplained bleeding and platelet disorders”. Genome
Med, 7(1):36.
Methodological development and data analysis, discussed in Section 2.2.

• I. Simeoni, J. C. Stephens, F. Hu, S. V. Deevi, K. Megy, T. K. Bariana, . . . , D. Greene
et al. (2016). “A high-throughput sequencing test for diagnosing inherited bleeding,
thrombotic, and platelet disorders”. Blood, 127(23):2791–2803.
Data analysis, discussed in Section 2.3.

• E. Turro, D. Greene, A. Wijgaerts, C. Thys, C. Lentaigne, T. K. Bariana, et al. (2016).
“A dominant gain-of-function mutation in universal tyrosine kinase SRC causes throm-
bocytopenia, myelofibrosis, bleeding, and bone pathologies”. Science Translational
Medicine, 8(328):328ra30.
Data analysis, discussed in Section 2.4.

• D. Greene, NIHR BioResource–Rare Diseases Consortium, S. Richardson and E.
Turro (2016). “Phenotype similarity regression for identifying the genetic determinants
of rare diseases”. The American Journal of Human Genetics, 98(3):490–499.
Methodological development and data analysis, discussed in Chapter 3.

• S. Stritt, P. Nurden, E. Turro, D. Greene, S. B. Jansen, S. K. Westbury, et al. (2016).
“A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and
hearing loss”. Blood, 127(23):2903–2914.
Data analysis, discussed in Chapter 3.

• D. Greene, NIHR BioResource–Rare Diseases Consortium, S. Richardson and E.
Turro (2017). “A fast association test for identifying pathogenic variants involved in
rare diseases”. The American Journal of Human Genetics, 101(1):104–114.
Methodological development and data analysis, discussed in Chapter 4.

• S. Sivapalaratnam, S. K. Westbury, J. C. Stephens, D. Greene, K. Downes, A. M.
Kelly, et al. (2017). “Rare variants in GP1BB are responsible for autosomal dominant
macrothrombocytopenia”. Blood, 129(4):520–524.
Data analysis.

• N. Pontikos, J. Yu, I. Moghul, L. Withington, F. Blanco-Kelly, T. Vulliamy, . . . , D.
Greene et al. (2017). “Phenopolis: an open platform for harmonization and analysis
of genetic and phenotypic data”. Bioinformatics.
Data analysis.
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• S. K. Westbury, M. Canault, D. Greene, E. Bermejo, K. Hanlon, M. P. Lambert, et al.
(2017). “Expanded repertoire of RASGRP2 variants responsible for platelet dysfunction
and severe bleeding”. Blood.
Data analysis.

• P. Tuijnenburg†, H. L. Allen†, S. O. Burns, D. Greene, M. H. Jansen, E. Staples, et al.
“Whole-Genome Sequencing identifies NFKB1 haploinsufficiency as the commonest
monogenic cause of Common Variable Immunodeficiency”. Journal of Allergy and
Clinical Immunology (under review).
Data analysis.

† indicates equal contribution.

1.6 Current methods and software for analysing rare dis-
ease data

Ontologically encoded data

Phenotype data are increasingly being encoded using ontological terms, for example from
the HPO and Mammalian Phenotype Ontology (MPO). If such data are to be analysed
effectively, methods for manipulating ontological terms which account for the structure of the
‘ontology’ in which they belong are required. In information science, an ontology is a formal
description of a set of entities, called ‘terms’, their properties, and the relationships between
them. They therefore support systematic reasoning about the entities they describe. Typically,
ontologies specify ‘is a’/‘subclass of’ relations between terms forming a DAG, although
arbitrary relations can be represented. Ontologies may be encoded in Open Biomedical
Ontologies (OBO) format or Web Ontology Language (OWL) format (with OWL format
the more expressive, supporting more complex relationships and reasoning). There exist
ontologies describing over 100 biomedical subjects which can be downloaded in either format
from the OBO Foundry’s website [103].

Ontological annotation is used to describe many biological phenomena, including gene
function [34], variant effects [116] and human phenotype abnormalities [48], with many
annotation datasets publicly available. Sets of ontological terms annotating the same entity
will be assumed to be non-redundant, hereafter referred to as minimal. Formally, a set
of terms is said to be non-redundant/minimal if and only if it lacks elements implied by
other terms in the set through directed edges in the ontology. The terms highlighted blue in
Figure 1.4 comprise such a set, as there is no directed path between any pair of blue nodes.
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Fig. 1.4 Example HPO coding of the disease phenotype of an individual with Wiskott-Aldrich
syndrome. The nodes in blue imply the presence of the more general ancestral phenotypes
depicted as grey-filled nodes. No blue node has a directed path to any other, which means
that the blue nodes comprise a minimal set of HPO terms.

Semantic similarity measures

A semantic similarity measure is a metric on terms or sets of terms where the distance
between entities reflects how similar their meanings are. Semantic similarity measures
for terms belonging to ontologies are often defined with respect to the structure of their
ontologies, so we discuss such measures here. There are various methods for evaluating the
similarity of two terms, which typically fall into categories: edge-based similarity measures,
based on the edges connecting the terms in the ontology; vector-based similarity measures,
for example the Jaccard metric (the size of the intersection divided by the size of the union)
and node-based similarity measures. Here we refer to the ‘ancestors’ of a term in an ontology
to mean the set of terms for which it satisfies the transitive ‘is-a’ relation encoded in the DAG
structure of the ontology.

Pesquita et al. [80] argues that edge-based methods, which define similarity between
two terms based on the number of edges between them or between them and their common
ancestors, are unsuited to biomedical ontologies. Nodes and edges at the same depth (i.e.
number of edges away from the root terms — terms with no parents) in biomedical ontologies
do not generally have the same specificity and do not represent the same semantic distance
respectively. Vector-based methods, although simple to implement, do not leverage the
structure of the ontology. We therefore discuss only node-based similarity measures here.
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Node-based measures typically define the similarity between two terms in terms of the
‘information content’. The information content is defined with respect to the frequency p of
the term within some set of ontologically annotated objects:

IC(t) =− log p

Resnik’s ‘similarity’ [91] of two terms is defined as the information content of the most
informative common ancestor of two terms:

sResnik(t1, t2) = max
t∈anc(t1)∩anc(t2)

IC(t). (1.1)

where anc(t) denotes the union of the term t and set of ancestor terms of t. Lin et al. [59]
proposed an alternative expression for the similarity of two terms. A maximum value of 1 is
obtained when two terms are the same (unlike Resnik’s measure, where the similarity is just
that of their most informative common ancestor).

sLin(t1, t2) =
maxt∈anc(t1)∩anc(t2) IC(t)

IC(t1)+ IC(t2)
(1.2)

There are several ways of defining the frequency of terms, from which the information
content can be computed. For example, the frequency could be defined as the frequency
of annotation within some collection of ontologically annotated entities, such as the HPO
annotated diseases in Online Mendelian Inheritance in Man (OMIM). There exist other
methods for evaluating the similarity of two ontological terms, but they are not reviewed here
(see Lee et al. [54] for more details).

Similarity between sets of terms

The expressions for the similarity of terms can be extended to give the similarity between sets
of terms in different ways. A popular approach is the ‘best match’ method. This method is
based on taking an expression for between-term similarity, s, and for each term in term set A,
using it to select the best-matching term in term set B. The similarities of these best matches
are then pooled and aggregated, for example by taking the mean, producing a similarity score.
The same procedure is then applied to the swapped term sets, and the two aggregated scores
are combined by taking the average or product. Thus, the similarity S of term sets A and B
can be defined in terms of asymmetric best match function S′:
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S′(A → B) =
1
|A| ∑

tA∈A
max
tx∈B

s(tA, tx)1tA∈anc(tx),

Smean(A,B) =
S′(A → B)+S′(B → A)

2
,

Sproduct(A,B) = S′(A → B)×S′(B → A) (1.3)

The best choice of measure depends on the particular application [80]. For instance, if
sensitivity to sharing rare ancestral terms when evaluating the similarity of two sets of terms
is desired, a best match average measure based on Resnik’s expression for the similarity of
two terms is appropriate as it is equal to the information content of the most informative
ancestral term, and therefore sharing a rare term contributes substantially to the similarity.
On the other hand, a best match average measure based on Lin’s expression is more robust,
as two terms have a maximum similarity of 1, which occurs if they are the same. Therefore,
averaging over the similarities of multiple terms in a set strongly reduces the contribution of
rare terms present because of noise.

Software for working with ontological data

The ontoCAT R package enables simple querying and traversal of ontologies, but many
of its key functions are slow and dependency on Java hinders its portability. There are
software packages enabling manipulation and plotting of graphs, for example the R packages
graph [35] and Rgraphviz [40] respectively, which can be used to view sections of ontolo-
gies. However, their functions are low level, which makes procedures such as plotting of
ontological term sets and fine-grained control of graphical parameters quite involved. There
are R packages which provide procedures for computing semantic similarities between terms
and sets of terms for specific ontologies [31, 122, 123] but they do not support semantic
similarity computation for arbitrary ontologies. The the majority of these packages, including
the primary ones GOSim and GOSemSim, depend on the GO.db package [13], which stores
information about the Gene Ontology (GO) and GO gene annotations in a precompiled
SQLite databases and is accessed through the DBI [89] package. This makes it inflexible —
for example, by preventing the user from using a custom information content upon which to
base semantic similarity calculations. They also do not allow the computation of semantic
similarity between arbitrary term sets, in spite of this being a critical task for many appli-
cations, instead, only allowing semantic similarity between annotated genes specified (by
default) through Entrez IDs. Furthermore, the methods provided by these packages are quite
slow applied large datasets comprising hundreds or thousands of sets of terms.
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In summary, there is a paucity of flexible routines for calculating semantic similarities
in R, and there has been no software which enables ontological data relating to arbitrary
ontologies to be manipulated, easily visualised and used in semantic similarity calculations
in mainstream statistical languages.

Methods for analysing ontologically encoded phenotypes

Phenomizer Phenomizer [47] is a differential diagnosis tool which uses semantic similarity
to rank HPO encoded disease phenotypes derived from OMIM by their relevance to a query
set of HPO terms. The similarities are computed using the best-match average based
on Resnik’s expression. There is a tendency for semantic similarity measures to exhibit
annotation bias whereby high similarity is observed for sets of terms containing many terms.
Therefore, instead of using the raw semantic similarity, a p-value is estimated by permutation,
i.e. the similarity to the query set of HPO terms is compared to the distribution of similarities
between the query set and randomly selected sets of the same number terms. Diseases are
then ranked by the p-values obtained.

BOQA BOQA [6], which stands for ‘Bayesian Ontology Query Algorithm’, is an algorithm
for differential diagnosis designed to be noise and imprecision tolerant by modelling a query
phenotype as an outcome which depends on a latent disease state. It uses a three-layer
Bayesian network: the bottom layer is the configuration of rare diseases for a given individual
(i.e. a Boolean vector corresponding to disease status for each disease), the middle layer is the
configuration of ontological phenotype terms which depends on the configuration of diseases,
and the top layer is the query layer which depends on the second layer. Ontological structure
is modelled by propagating parent-child relations through the ontology in the phenotype
configuration and query layers. Noise (nuisance terms) and imprecision (missing/less specific
terms) are each modelled using a constant probability of occurrence. Marginal probabilities
of each disease are then inferred and used to rank differential diagnoses.

Exomiser Exomiser [102] is an application which ranks candidate variants for a disease-
affected individual or family by combining various sources of information relevant to the
likely pathogenicity. Information used includes a phenotypic relevance score based on
semantic similarity between the individual’s ontologically encoded phenotype and any
phenotype terms associated with the genes in which the candidate variants lie.
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Statistical methods for relating rare variants to rare diseases

Probability of loss-of-function intolerance Haploinsufficiency for a particular gene oc-
curs when disease is caused by having only a single functional copy of a gene, although not
all genes are prone to haploinsufficiency. The probability of loss-of-function intolerance
score (pLI) [55] for a gene is an estimated probability of haploinsufficiency given an observed
number of protein truncating alleles across samples. The estimate is based on modelling the
protein truncating allele count for each gene using a Poisson distribution whose rate depends
on a latent class of the gene (haploinsufficient, recessive or Protein Truncating Variant (PTV)
tolerant). The rates are estimated a priori based on the observed number of protein truncating
alleles for genes whose class is known. Notably, virtually all genes which are known to cause
disease through haploinsufficiency score highly (pLI > 0.9), and 72% of genes with pLI > 0.9
have no known disease phenotype, despite the strong evidence of constraint against PTVs.

Burden testing A typical genome differs from the human reference genome at approx-
imately 4 million sites, with 40,000-200,000 of these variants having frequencies below
0.5% [1]. Thus, even after filtering variants (for example based on population allele frequency
and predicted consequence as described earlier), there will be many benign candidate variants
and allele counts will be too low to have good power by testing marginally for association.
Burden tests aggregate rare variants within a genomic locus in order to boost power when
testing for association with a disease phenotype. An example of a Burden test is the ‘cohort
allelic sums test’ [72] which uses a genetic score that is equal to 1 if an individual carries at
least 1 (or 2) alleles at the filtered variant sites under a dominant (or recessive) inheritance
model, and 0 otherwise. A Fisher exact test is then used to compute a p-value of association
between a dichotomous phenotype and the genetic score.

SKAT SKAT specifies a random effect for each variant and performs a score test under
the null hypothesis that the variance of the random effects is zero. The variance-covariance
structure of the random effects under the alternative hypothesis is determined by a kernel
function, which would typically be a weighted genetic correlation across the variants in
the locus. SKAT can incorporate nuisance covariates, accounts for linkage disequilibrium
between variants under consideration and is well-powered for traits whereby many different
variants in a locus with varying effect sizes and allele frequencies contribute to the phenotype.
The following model for disease risk conditional on genotypes is employed by the test:

logit P(y = 1) = α0 +Xα +Gβ ,
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where y is the disease status of n individuals (yi = 1 if individual i is affected, 0 otherwise),
X is a matrix of covariates, G is the genotypes of the individuals at the variant sites in some
genetic locus (i.e. Gi j ∈ {0,1,2} equalling the number of copies of the rare allele at variant
site j carried by individual i) for homozygous, α0 is the background rate of disease, and α

and β are random effects. The SKAT test is performed by assuming that the β values follow
a distribution with a mean of zero and variance of τ . Testing the null hypothesis that there
is no association with disease (i.e. β = 0) is therefore equivalent to testing τ = 0. This can
be done using a variance-component score test, and thus only requires the null model to be
fitted. The score statistic is:

Q = (y− µ̂)′K(y− µ̂),

where µ̂ is the estimated mean of y under the null, and K is an n×n matrix whose entries
depend on the kernel function K, Kii′ = K(Gi·,Gi′·), giving the genetic similarity of indi-
viduals i and i′. K should be chosen depending on the kinds of effects which are modelled.

By default, the weighted linear kernel is used, i.e. K(Gi·,Gi′·) =
p
∑
j=1

w jGi jGi′ j, where w j

is the weighting for variant j. Epistatic effects can be modelled by using the weighted

Identity By State (IBS) kernel, i.e. K(Gi·,Gi′·) =
p
∑
j=1

w j(2− |Gi j −Gi′ j|), and all main

effects and pairwise interaction effects can be modelled using the quadratic kernel, i.e.

K(Gi·,Gi′·) =
p
∑
j=1

w j(1+Gi jGi′ j)
2.

The score statistic follows a mixture Chi-square distribution under the null, for which
p-values can be computed efficiently using the Davies method [19]. When the weighted
linear kernel is used, Q can be computed given only the individual variant test statistics for
marginal involvement, S j:

Q =
p

∑
j=1

w jS2
j ,

S j = G· j(y− µ̂).

Thus K need not be evaluated, and the value of the statistic can be computed rapidly. How-
ever, if a non-linear kernel is used, this is no longer possible and SKAT quickly becomes
computationally expensive, with complexity at least O(n2). In the available implementa-
tions [53, 95] K is evaluated explicitly, requiring memory for an n×n dense matrix to be
allocated, therefore leading to a prohibitively large memory footprint when the sample size
is large.
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SKAT is more powerful than the Burden test when the proportion of variants in the
analysis which are pathogenic is lower, or when the effect directions of the variants is mixed,
and vice-versa when the proportion of pathogenic variants is close to 1 and the effect sizes
are in the same direction. SKAT-O [52] maximises power by forming a test statistic which is
a linear combination of the SKAT and Burden test statistics, estimated adaptively from the
data.

Methods which identify likely pathogenic variants For scientific follow-up, it is impor-
tant to infer which variants are likely to be pathogenic, conditional on an association being
present in a given locus. The backwards elimination [43] procedure removes individual
variants iteratively from the predictors as long as this increases a test statistic of association
(either Burden or SKAT). The adaptive combination of p-values (ADA) [60] algorithm ranks
variants by p-value obtained using Fisher’s exact test and selects a threshold on p-value
that maximises an aggregate test statistic. As these algorithms prune variants in a step-wise
fashion, they do not explore the full space of possible combinations of pathogenic variants.
It is also important that inference can be performed sufficiently quickly to enable application
across tens of thousands of regions, with tens to hundreds of variants in each one. ADA
and backwards elimination SKAT/Burden rely on permutations to obtain empirical p-values,
rendering them too computationally expensive to apply in these scenarios.

In principle, Bayesian inference lends itself well to rare variant association analysis be-
cause it provides a coherent framework for sharing information across variants and provides
a natural way of incorporating prior information on variant pathogenicity. The variational
Bayes discrete mixture (vbdm) method [63], the Bayesian risk index (BRI) [87], the inte-
grative Bayesian model uncertainty method (iBMU) and the Bayesian rare variant detector
(BRVD) [58] all model a mixture of pathogenic and non-pathogenic variants in a locus. The
iBMU method includes a hierarchical model for the probabilities that individual variants
contribute to disease risk given a set of predictor-level covariates. However these models
employ additive models of disease risk or severity suited to complex diseases rather than
rare diseases caused by dominant or recessive inheritance of one or two pathogenic alleles.
Typically, Bayesian methods are slow, due to the necessity of averaging over prior distribu-
tions, and often depend on Markov chain Monte Carlo (MCMC) inference procedures. This
is particularly so in variable selection scenarios, such as selecting a set of involved variants.
The vbdm method uses a variational Bayes inference technique, derived by factorising the
likelihood of model parameters over the indicators of pathogenicity for each variant, which
makes inference rapid. However, the derivation of the algorithm depends on an additive
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model for a quantitative trait, hence it cannot be extended to a model for Mendelian modes
of inheritance.



Chapter 2

Methods for ontological data and
applications

Ontologies are widely used in bioinformatics, but the absence of simple, general tools for
manipulating ontological data has made analysis of such data unnecessarily difficult. In
particular, in order to develop complex methods which utilise rare disease phenotype data
encoded using HPO terms, a solid software layer upon which to build them is required.
This chapter begins by presenting ‘ontologyX’ [39], a suite of R packages which simplify
and harmonise the manipulation, analysis and visualisation of ontological data for arbitrary
ontologies. The ontologyIndex package enables arbitrary ontologies to be read into R,
supports representation of ontological objects by native R types, and provides a parsimonius
set of performant functions for querying ontologies. ontologySimilarity and ontologyPlot
extend ontologyIndex with functionality for straightforward visualization and semantic
similarity calculations respectively. Methods for analysing collections of ontologically
annotated entities are then discussed, including assessment of the statistical significance of
ontological similarity within-group ontological similarity of groups of term sets, prioritisation
of variants based on similarity between HPO-encoded phenotype and disease HPO profiles,
comparison of ontologically encoded rare disease phenotypes with those of model organisms
and analysis of clusters generated using unsupervised clustering algorithms.

The description of the ontologyX software given in this Chapter is based on that given
in: D. Greene, S. Richardson and E. Turro (2017). “ontologyX: A suite of R packages for
working with ontological data”, Bioinformatics, 33(7):1104-1106.
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2.1 ontologyX

ontologyIndex

ontologyIndex is an R package which I developed in order to provide a low-level set of
functions for exploiting the structure of ontologies. Ontologies can be read into R from files
in OBO format, with most commonly used ontologies available in this format on the OBO
Foundry’s website [103]. Ontologies which are only available in a OWL format may be used
by first converting them into OBO format, for example using the ROBOT command line
tool [79]. OWL format allows expression of relationships which can’t be expressed in OBO
format, so therefore information may be lost in conversion to OBO format. For example, OWL
enables quantified relationships between terms and relationships with arbitrary cardinalities
to be represented, for example, ‘insect has 6 legs’. However, the functionality exposed by
ontologyIndex only depends on the is-a relationship being defined, so does not depend on
any of these more complex relationships, and hence it is always sufficient to convert to OBO
format beforehand. A custom internal representation of ontologies — the ontology_index
class — stores properties of terms. An ontology_index object is a list containing named
slots corresponding to term properties. Each slot is then a vector or list containing one
value per term, depending on the cardinality of the property: vectors are used where the
cardinality of the property is exactly one, for example $id, as each term has exactly one
ID, and lists otherwise. This enables properties of individual terms or sets of terms to be
looked up in the ontology_index using base R functions, in a way which is identical to
using data.frames, which are widely used amongst R users. The get_ontology function
is used to read ontologies into R. By default, only the minimal properties used by the
main functions in the package are read in from a given OBO file. These are the id, name,
parents, children and ancestors properties (the latter two derived from the parents

field). However, all properties which are present in the file can be read by passing the
argument extract_tags="everything" to get_ontology. Although the ancestors slot
depends on the parents slot, storing the ancestors of each term enables considerable speed-
up of ontological operations that depend on term ancestry, such as collecting the full set of
ancestors or descendants for a set of terms (see Table 2.1). Ontologies are usually ‘wide’ in
the sense that the average number of child terms is relatively high compared to the average
number of parent terms and therefore the additional memory required to store the ancestor
terms for each term is relatively low. For example, the average number of child terms per
term with children in the HPO is 3.72 whilst the average number of parent terms for terms
with parents is 1.32.
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Fig. 2.1 Visualisation of ontological set operations in ontologyIndex. In this diagram, the
set of terms ‘Autosomal dominant inheritance’, ‘Abnormality of the nervous system’ and
‘Abnormality of the skeletal system’ — coloured green in the top left panel — are subsetted
in three different ways with respect to a given root term (here ‘Phenotypic abnormality’,
highlighted with a red circle). The remaining terms after applying the operations are shown
in the other three panels labelled by the corresponding operation name.

ontologyIndex uses native R types to represent ontological terms and sets of terms (i.e.
character vectors of term IDs), enabling simple integration with R’s features, high-level
functions, and other packages. It includes functions for performing set operations respecting
the structure of the ontology, for example: exclude_descendants, which given term sets A
and B, excludes terms in B and their descendants from set A; prune_descendants, which
preserves terms in B that are ancestors of terms in A after applying exclude_descendants),
and minimal_set, which maps a set of ontological terms onto a non-redundant set. Figure 2.1
depicts example outcomes of applying ontologyIndex functions.

ontologyIndex is lightweight, fast, and readily extended by other packages. For exam-
ple, my R package gsEasy [36] facilitates gene-set enrichment analysis [110] using the
get_ancestors function to propagate parent-child relations through the GO.
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Table 2.1 Mean execution time for retrieving descendants and ancestors for individual terms
in the Human Phenotype Ontology.

Descendants (ms) Ancestors (ms)
ontoCAT 11.99 12.75

ontologyIndex 0.38 0.14

gsEasy

Gene Set Enrichment Analysis (GSEA) is a procedure for assessing whether a given set of
genes is over-represented within the highest ranks of a larger containing set of genes with
respect to a given gene scoring, e.g. the log fold change in expression. p-values are calculated
based on an ‘enrichment score’ (ES), representing over-representation of the given set of
genes, by comparing it to the null distribution of the score derived by permutation. ES is
obtained by computing the maximum value of Phit −Pmiss, defined as:

Phit(S, i) = ∑
j∈S, j≤i

|r j|p

NR
, where NR = ∑

g j∈S
|r j|p

Pmiss(S, i) = ∑
g j /∈S, j≤i

1
N −|S|

,

ES(S) = max
i

Phit(S, i)−Pmiss(S, i),

where ri is a score for the gene with the ith highest score amongst all included N genes, S is
the set of ranks for the genes in the test set, and p is a fixed constant which powers the scores.

In spite of its conceptual simplicity, its considerable popularity (the introductory paper,
Subramanian et al. [110], has been cited over 11,000 times), and the ubiquity of R amongst
bioinformaticians, it has been difficult to perform in R because of the absence of simple
functions which execute rapidly and difficulty in defining gene sets corresponding to GO
annotation. gsEasy [36] is a software package which I developed in order to make GSEA
straightforward, flexible and fast in R. It extends functionality in the ontologyIndex package
in order to derive sets of genes which are annotated with particular ontological terms. Use of
native R types as parameters, independence from external databases and implementation in
C++ facilitates simple, effective application across large numbers of gene sets using R’s high
level functions.

It has a function, gset for calculating p-values based on ES, employing the same
terminology and variable naming for its function arguments as are used in the original paper
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[110]. In order to test a set of five genes which appeared at the top five ranks out of 1000, the
command to calculate an enrichment p-value using gset can be given as:

> gset(S=1:5, N=1000)

[1] 9.9999e-06

Note that if the total number of genes N is specified in place of the scores for the genes r,
then the value of ri is set to N−i+1

N .
In contrast to other GSEA packages, it does not require laborious manipulations of

input data. Sets of genes annotated with the same GO term are derived from the GO term
annotations of genes using ontologyIndex [39] by selecting the set of genes which are
annotated explicitly or implicitly using each term. To achieve this, gsEasy has a func-
tion get_ontological_gene_sets for creating lists of gene sets defined by ontological
annotations of genes, which also works for ontologies other than the GO.

ontologyPlot

ontologyPlot extends ontologyIndex with functions which simplify the task of plotting sets
of terms and the ‘is-a’ relations between terms contained by them through allowing the user
to pass only an ontology_index and a vector of term IDs as the terms argument in the
plotting function, onto_plot. ontologyPlot utilises the Rgraphviz package’s interface to
the graphviz [32] graphical layout engine. ontologyPlot also allows graphs to be exported
in standard DOT format using the function write_dot without constraining the graphical
parameters included. Thus, users can take full advantage of options in any rendering software
(e.g. graphviz). Possible graphical options which the user can set using the standard
Rgraphviz engine include colour of node borders (color), colour of nodes (fillcolor),
node labels (label), label font size (fontsize), node shape (shape), and node size (width).
Arguments controlling the graphical parameters can be given as single values (setting all
nodes to have the same value for the parameter), vectors (where the components correspond
to the values of the parameter for each term), or functions, which determine how to set
the parameters after the plotting function is called in the context of the other arguments
given. Such functions supplied with the package include label_by_term_set which sets
the labels of the nodes to the name of the term and a comma-separated list of the names of
sets of terms the term is included in, either explicitly (because the term belongs to the set)
or implicitly (because a descendant term belongs to the set), in the term_sets argument (if
one is given). This makes it simple to generate informative plots for a set of ontologically
annotated entities. Another function, width_by_significance can automatically set the
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Fig. 2.2 Plot of terms descending from the cellular_component term in the GO, ex-
tracted using the exclude_descendants function from ontologyIndex, for genes QPCTL
and CRNN using ontologyPlot. The left panel shows the full set of ancestral terms used
in the annotation of the genes, while the right panel shows only those remaining after
remove_uninformative_terms has been called. Terms annotated to both genes, either
implicitly or explicitly, are shown in light blue, while those annotated only QPCTL and
CRNN are shown in green and dark blue respectively. The size of the nodes has been set to
be proportional to the information content (i.e. negative log frequency) of the terms with
respect to gene annotation downloaded from the GO website.

size of terms. It requires a list of term sets, term_sets, and a vector of term population
frequencies, frequencies to also be supplied to onto_plot. The widths of the nodes are
then set to the minus log p-values of their corresponding terms’ significance of occurrence
amongst term_sets under the null hypothesis that the frequency within the term sets is
the same as the population frequency. This enables visualisations which highlight the most
significant terms to be generated.

It includes several functions for transforming sets of terms to distill the important features
for particular visualisations. For example, given a set of ontologically annotated objects,
the function remove_uninformative_terms removes terms whose children are annotated
to the same objects, leading to simpler diagrams. Another such function is remove_links,
which given a set of terms, removes those terms which only link two other terms in the
set together, i.e. terms which have exactly one parent and one child within the given set.
Figure 2.2 demonstrates how ontologyPlot can be used to visualise GO annotation for QPCTL
and CRNN, and the effect of using remove_uninformative_terms to simplify the figure.
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ontologySimilarity

Semantic similarity quantifies similarity between ontological terms and sets of terms. ontolo-
gySimilarity extends ontologyIndex to enable similarities between ontological objects to be
computed given an ontology_index and sets of term IDs. It facilitates the calculation of
similarity at three levels: between ontological terms (ID strings), between ontologically anno-
tated objects (ID string vectors), and within groups of ontologically annotated objects (lists of
ID string vectors). It implements Resnik’s [91] and Lin’s [59] expressions for the similarity
of terms. Unlike other packages for calculating semantic similarities, ontologySimilarity
does not depend on static, pre-built SQLite databases or Bioconductor annotation packages
and works with arbitrary term annotations. Furthermore, it offers inferential procedures
such as get_sim_p, which assesses the strength of similarity between groups of objects (see
Section 2.2). Flexible functions facilitate use in complex methods, for example as in my R
package SimReg [37] described in Chapter 3, which implements a semantic similarity based
regression algorithm. All similarity routines are written in C++ and called from R [21], and
the user can balance performance and memory usage for downstream analysis by selecting
whether to store similarities between terms or term sets, or store an index for fast similarity
lookups. I compared the performance of ontologySimilarity against other packages offering
functions for calculating pairwise term and gene similarities, the results of which are shown
in Table 2.2. The results indicate that ontologySimilarity executes substantially faster, in
some scenarios thousands of times so, making it much more convenient for use with large
datasets.

Table 2.2 Execution times for computing pairwise similarity matrices for 1000 randomly
selected GO terms and 100 randomly selected sets of GO terms annotating genes.

Term sim (s) Gene sim (s)
GOSim 1075.43 298.34

GOSemSim 1.71 116.72
ontologySimilarity 0.31 0.06

ontologySimilarity (indexed) 0.04

The following versions of software packages were used to generate the results presented
in this section: ontologyIndex 2.2, ontologyPlot 1.4, ontologySimilarity 2.1, GOSim 1.11,
GOSemSim 1.99.4 and ontoCAT 1.26.0.
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2.2 Statistical significance of within-group ontological sim-
ilarity

Work described in this Section is based on content from: S. K. Westbury†, E. Turro†, D.
Greene†, C. Lentaigne†, A. M. Kelly†, T. K. Bariana†, et al. (2015). “Human phenotype ontol-
ogy annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained
bleeding and platelet disorders”. Genome Med, 7(1):36 († indicates equal contribution).

In this section I describe methods for evaluating the statistical significance of the similarity
between members in a group of ontologically annotated entities. The methods for computing
the within-group ontological similarity of a group of term sets presented here will be based on
expressions for the similarity of pairs of terms (Equations 1.1 and 1.2) and for the similarity
of pairs of term sets (Equation 1.3). The within-group ontological similarity of the group
will then be the mean or minimum similarity across the pairs of objects. The similarity S of
group of term sets g with respect to between-term set similarity s could then be evaluated
respectively using the expressions:

Smean =

(
|g|
2

)−1

∑
a,b∈g

s(a,b),

Smin = min
a,b∈g

s(a,b).

Using the minimum, Smin as opposed to the mean, Smean, leads to a high similarity only if all
pairs of term sets in the group have high similarity. The group similarity does not give an
indication of the significance of the similarity of a group of term sets. I therefore developed a
statistical test for assessing the within-group ontological similarity of a group, g, contained
in a larger collection of term sets, G, through the computation of a p-value by permutation
test. The method works by comparing the group similarity of g to the group similarity of
the subsets of G with the same size as g. Typically |G| would be large enough so as to make
computing the group similarity of all

(|G|
|g|
)

prohibitively computationally expensive. Hence,
in practice the p-value would be approximated using Monte Carlo simulation: N subsets
of G with size |g|, A, are randomly sampled, and the proportion with at least as high group
similarity as g is an unbiased estimate of the p-value:

1
N ∑

g′∈A
1S(g′)≥S(g). (2.1)
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This procedure is implemented in the ontologySimilarity package by the function
get_sim_p. For efficiency in the situation where only statistically significant results are of
interest, get_sim_p allows the user to configure a threshold triggering the sampling to stop
early, should the strength of evidence against it being significant become strong enough. To
be precise, this is done by specifying the minimum and maximum number of samples to draw,
the maximum p-value considered ‘significant’ and a threshold probability of significance,
below which sampling stops. The probability that the function would return a significant
p-value is computed using a normal approximation to the binomial.

Application to bleeding and platelet disorders

One of the subprojects of the NBR–RD is the BPD study. Seven hundred and seven partici-
pants were recruited from over 30 different centres worldwide under the inclusion criteria
of unexplained bleeding and/or platelet abnormality affecting count, volume, morphology
or aggregation. Eighty novel HPO terms were created in order to capture phenotypic ab-
normalities of those recruited, with the majority being subclasses of ‘Abnormality of blood
and blood-forming tissue’ [119]. The phenotypic data gathered for each participant includes
the HPO-encoded phenotype, full blood counts including 15 quantitative measurements
(including platelet, leukocyte and red-blood cell counts), and family history. Diagnosis of
BPD currently requires detailed clinical evaluation, but a defective coagulation factor or
specific platelet pathway is implicated in only 40-60% of cases [88] and the unknown genetic
basis of many BPDs means the rate of genetic diagnosis is low. BPD disease phenotypes
are quite heterogeneous, frequently involving combinations of abnormalities of platelet
aggregation, blood cell counts, and blood vessel walls as well as other organ systems, for
example, the skeleton in thrombocytopenia absent radius syndrome. Figure 2.3 shows the
distribution of comorbidities across individuals with each qualifying phenotype. Hence,
establishing high-throughput sequencing as a diagnostic tool for BPDs presents an interesting
and important challenge for methodological development.

In order to demonstrate that ontological similarity measures provide useful quantification
of phenotypic similarity, we calculated the ontological similarity between the phenotypes
of all pairs of BPD cases. The Resnik expression for the similarity of terms (Equation 1.1)
and ‘best match average’ expression for the similarity of term sets were used in order to
be more sensitive to the co-occurrence of rare terms within groups. Figure 2.4 shows a
symmetric heatmap of case-case phenotype similarity, where the rows and columns represent
cases grouped by family and clinically diagnosed syndrome where available. Inspection
of the main diagonal indicates members of the same group, either based on pedigree or
provisional clinical diagnosis, tend to have increased phenotypic similarity. Significance of
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Fig. 2.3 Heatmap of the relative frequencies of HPO terms related to bleeding and platelet
abnormalities annotating patients with abnormalities affecting other organ systems for 707
BPD index cases [119]. The numbers in the brackets and the bar plots indicate the number
of index cases with at least one HPO term pertinent to abnormality in the organ or disease
area after removal of overlapping terms. *indicates that the distribution of terms pertinent to
enrolment for a particular column is significantly different compared to the sum (along rows)
of all other columns (p-value < 0.05 after Bonferroni correction by chi-squared test). The
columns are ordered by the number of cases having a term in each abnormality class.
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Fig. 2.4 Symmetric heatmap of similarity between pairs of BPD cases grouped by pedigree
and clinical diagnosis (labelled on y-axis). The scatter plot on the left shows the p-values
(x-axis) for similarity of these groups (y-axis) computed using the expression in Equation ??.
The histogram superimposed shows the distribution of these p-values.

group similarity for each group was assessed by computation of p-values using the expression
in Equation 2.1. These p-values are shown in the histogram on the left in Figure 2.4. The
majority (43/56) are less than 0.05. Indeed, a meta-analysis using Fisher’s method to assess
whether these groups clustered closely together as a whole yielded a p-value less than the
numerical resolution of the analysis software.

2.3 Rare variant prioritisation for genetic diagnostics

Work described in this Section is based on content from: I. Simeoni, J. C. Stephens, F. Hu,
S. V. Deevi, K. Megy, T. K. Bariana, . . . , D. Greene et al. (2016). “A high-throughput
sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders”. Blood,
127(23):2791–2803.
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The MDT meetings which are held to interpret results generated by the ThromboGe-
nomics platform, described in Section 1.4, are time-consuming and expensive. We therefore
used a sample of the output data to assess whether HPO-based phenotypic similarity could
help prioritise variants identified by targeted sequencing assays. We used phenotypic similar-
ity measures to compare phenotypes linked to the diseases associated with the 63 BPD genes
curated by a team of clinical experts and transcribed into HPO terms, and the phenotypes
of 109 cases under investigation with the platform were HPO-encoded. The phenotypic
similarities between the curated gene HPO profiles and the observed case HPO phenotypes
were computed using Lin’s expression for the similarity between terms (Equation 1.2) and the
‘best match average’ expression for the similarity between term sets. Here, Lin’s expression
was employed instead of Resnik’s in order to achieve an even weighting for the importance of
terms in the curated gene HPO profile, rather than have it strongly depend on the information
content. For each case, the gene in which they carried a variant passing the ThromboGe-
nomics filters having the highest phenotypic similarity to the case phenotype was selected.
As an example, a case with Bernard-Soulier syndrome was coded with six HPO terms and
subsequently found to carry candidate variants in four genes. The homozygous variant
in GP1BB, identified independently by the MDT as likely pathogenic, was chosen by the
prioritisation as the top candidate because the HPO profile linked to GP1BB was more similar
to the HPO phenotype of the case than the curated gene HPO profiles of any of the other
three genes in which the case had a candidate variant (left-hand panel of Figure 2.5). The
right-hand panel of Figure 2.5 shows the overall results, which indicate that in 85% (93/109)
of cases, the correct gene, as previously identified by the MDT, scored the highest similarity
to the case phenotype out of all the candidate variants (p < 10−6). Furthermore, where the
top-ranked gene did not correspond to the MDT-designated gene, the difference tended to be
smaller than when there was concordance, as shown in Figure 2.6. Thus, prioritisation based
on phenotypic similarity may be a useful tool for supporting the MDT review process.

2.4 Similarity to model organism phenotypes

Work described in this Section is based on content from: E. Turro, D. Greene, A. Wijgaerts,
C. Thys, C. Lentaigne, T. K. Bariana, et al. (2016). “A dominant gain-of-function mutation
in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone
pathologies”. Science Translational Medicine, 8(328):328ra30.

Variants in orthologous genes often manifest in similar phenotypes, therefore model
organisms are used to study phenotype-gene associations. These associations are typically
studied using mouse models, as the mouse is an established experimental tool and almost



2.4 Similarity to model organism phenotypes 35

Phenotypic
abnormality

Abnormality of
blood and blood
forming tissues

Abnormality of
thrombocytes

Decreased
platelet

glycoprotein Ib
IX V

Increased mean
platelet volume

Abnormal
platelet

morphology

Abnormality of
leukocytes

Hearing
impairment

Coronary artery
disease

Thrombocytopenia

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Similarity

F5 G
P1

BB

PL
A2

G
4A

VW
F

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Case index

Si
m

ila
rit

y

Fig. 2.5 Left: the HPO profile of a specific individual with GP1BB-related Bernard-Soulier
syndrome, and beneath, the phenotypic similarity to the disease profiles of each gene in
which the individual carried a filtered variant. Right: the phenotypic similarities between 109
thrombogenomics cases and the disease profiles corresponding to genes in which they carried
filtered variants. The similarities to disease profiles of the genes containing the variants
determined to cause individuals’ diseases are shown in red, whilst the similarities to the
disease profiles of other genes in which individuals carried filtered variants are shown in
grey.
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Similarity to HPO profile of MDT−designated gene minus similarity to highest−ranking non−MDT−designated gene
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Fig. 2.6 Histogram summarising the data shown in Figure 2.5. The x-axis represents the
difference of the similarities between the case HPO phenotype and the HPO profiles of the
‘MDT designated’ and ‘most similar non-MDT designated’ genes.

all mouse genes have a human ortholog, with an average of 85% sequence identity [42].
Genes are inactivated or ‘knocked-out’ by artificially introducing mutations which lead
to dysfunctional gene products. Attempts to generate comprehensive datasets on mouse
models are currently underway by various organisations. The Knockout Mouse Project
(KOMP) is an American initiative set up to create cell lines containing null mutations in
all genes in the mouse genome. The International Mouse Phenotyping Consortium (IMPC)
is an international organisation which, amongst other objectives, aims to phenotype all of
these mouse lines, systematically recording phenotype abnormalities using MPO terms. The
Monarch Initiative [73] is a web-based platform which aggregates model organism data from
many sources (including the IMPC), relating genotype and phenotype across multiple species
and enabling researchers to explore genotype-phenotype associations across species. Data
exposed by the platform include the phenotypic annotation of model organisms for orthologs
of 14,779 of the 19,008 protein coding human genes (78%), where only half of these have
phenotypic annotation for humans.

Using cross-species phenotype ontologies [46], one can map these MPO encoded mouse
knockout phenotypes to HPO profiles, facilitating similarity comparisons with human pheno-
types. Thus, given candidate variants for explanation of a disease affecting a given family, the
variants can be prioritised by phenotypic similarity between the HPO profile of the knockout
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mouse model for the genes harbouring the variants and the HPO encoded phenotypes of the
affected family members.

This approach was used to analyse candidate variants for a three-generation family
presenting with dominantly inherited thrombocytopenia, myelofibrosis, bleeding, platelet
dysfunction with abnormal α-granules, and bone pathologies [114]. DNA from two of the
affected cases was sequenced and a set of candidate variants was formed by retaining shared
rare variants (with respect to frequency in reference collections) predicted to affect amino
acid sequence. The resulting set consisted of 67 plausible causal variants in 67 candidate
genes.

To obtain the ranking by phenotypic relevance of the candidate variants, we constructed
HPO profiles for each of the corresponding genes and computed the mean phenotypic similar-
ity to three HPO-coded affected individuals in the family. The gene-based HPO profiles were
constructed by combining HPO terms associated with each gene (genes were assigned terms
belonging to the HPO profiles of diseases [92] with which there were associated through
OMIM) and HPO terms derived from mapping MPO terms associated with mouse models [8]
for the knocked-out orthologous gene using a cross-species ontology [46]. The phenotypic
similarity measure used was the Resnik best match average approach, where the information
content assigned to each term was derived from its frequency among 856 unrelated HPO-
coded individuals from the NBR–RD BPD subproject, in order to be sensitive to the case
phenotypes sharing rare phenotype terms with the gene HPO profiles. ontologySimilarity
was used to compute the phenotypic similarities between the HPO-coded phenotypes and the
gene HPO profiles.

This approach ranked SRC at the top of the 31 candidate genes for which phenotype term
data were available (shown in Figure 2.7B). SRC encodes the proto-oncogene tyrosine protein
kinase SRC. The affected family members carried a variant encoding amino acid substitution
E527K, and modelling the effect of the substitution on protein structure suggested it to be
a gain-of-function variant due to the predicted loss of SRC’s self-inhibitory capacity, later
confirmed by in vitro studies.

Knockout of its highly homologous ortholog in mice, Src, showed no bleeding and
apparently normal platelets [105]. However, the mouse model presented with increased bone
density (osteopetrosis) (see the HPO-translated phenotypic profile in Figure 2.7C, generated
using ontologyPlot), which is the opposite of the osteoporosis of the pedigree cases [50]. The
semantic similarity of these two related but opposing terms contributed towards SRC scoring
the highest phenotypic similarity (Figure 2.7 B and C). The SRC variant had a Combined
Annotation Dependent Depletion (CADD) Phred score [45] of 34 (Figure 2.7D) and was
among only 24 of the 67 candidates to be unobserved in the ExAC (Exome Aggregation
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Consortium) database and in 2,974 further subjects from our in-house collection. Results
of sequencing of RNA from blood stem and progenitor cells, including megakaryocytes
(MKs) [15], showed that the SRC transcript ranked among the highest according to the
probability of being overexpressed in MKs compared to the other seven cell types (posterior
probability = 0.47) (Figure 2.7E). These independent sources of evidence contributed to
establishing the variant coding glutamic acid (E) 527 lysine (K) in SRC’s kinase domain as
the primary causative candidate for this novel syndrome.

Table 2.3 Abbreviations used for HPO terms in Figure 2.7

Abbreviation HPO term name
Abdom. Orgs. Abnormality of the abdominal organs

AG Abnormal α-granules
AGD Abnormal α-granule distribution

BBFT Abnormality of blood and blood-forming tissues
Bleeding Abnormal bleeding

BMT Bleeding with minor or no trauma
Bone Min. Density Abnormality of bone mineral density

Endo. Sys. Abnormality of the endocrine system
Erythrocytes Abnormality of erythrocytes

Face Abnormality of the face
Gen. Sys. Abnormality of the genital system

Giant Plts. Giant platelets
Hemoglobin Abnormal hemoglobin

IMPV Increased mean platelet volume
Integument Abnormality of the integument

MCLBM Abnormality of multiple cell lineages in the bone marrow
NAG Abnormal number of α-granules
OCS Abnormal surface-connected open canalicular system

PA Phenotypic abnormality
Plt Morph. Abnormal platelet morphology

Plt Shape Abnormal platelet shape
Recur. Frac. Recurrent fractures

Skel. Sys. Abnormality of the skeletal system
Spleen Abnormality of the spleen

Subcut. Hem. Subcutaneous hemorrhage
TCP Thrombocytopenia

Teeth Abnormality of the teeth
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Fig. 2.7 Selection of the c.1579G>A mutation in SRC as a candidate pathogenic variant. (A)
Pedigree showing male (square) and female (circle) members who have macrothrombocy-
topenia (blue), are unaffected (empty), or are without clinical information (grey), some of
whom are deceased (slash). Cases carry the c.1579G>A mutation in SRC (M) in variant
calling done by whole-genome sequencing (WGS) (#), whole-exome sequencing (WES)
(*), and/or Sanger sequencing (all genotyped subjects). (B) Bar plot showing the mean
phenotypic similarity of cases 13, 31, and 35 to OMIM/Mouse Phenotype Ontology (MPO)
phenotypes associated with each gene, truncated at the top 20 genes, with novel variants
absent from control data indicated by * and SRC highlighted in blue (as in D and E). (C) The
numbers inside each node indicate which cases were coded with the corresponding HPO
term. Abbreviations given in Table 2.3. Terms in green are also present in the OMIM/MPO
entries for SRC/Src. The size of each node is determined by its contribution to the mean
phenotype similarity score between the three cases and the OMIM/MPO terms for SRC/Src.
Abbreviations given in main text. The cases of this pedigree were the only ones enrolled in
the BRIDGE Bleeding and Platelet Disorders (BRIDGE-BPD) study coded with “Thrombo-
cytopenia”, “Myelofibrosis” and “Abnormality of the skeletal system.” (D) Bar plot showing
the CADD Phred score of the rare variant for each candidate gene. (E) Probability that each
candidate gene is specifically overexpressed in MKs compared to blood stem cells and six
other hematopoietic progenitors.
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2.5 Unsupervised clustering of ontological phenotypes

In order to compare cases and controls statistically to identify candidate genes and variants
in a collection of phenotypically heterogeneous HPO-coded cases one must first group the
cases based on a potential shared genetic aetiology. Manually partitioning many hundreds or
thousands of cases into such groups is difficult and time consuming. Unsupervised clustering
methods based on pairwise phenotypic similarity could therefore be useful in generating such
groups. Many such methods are available, some of which are sketched here, where ‘distance
matrix’ refers to the negative of the similarity matrix.

Partitioning Around Medoids (PAM) Given a number of clusters and a similarity matrix,
and initialising with an arbitrary partition of entities into clusters and an arbitrarily
chosen ‘exemplar’ for each cluster, the examplars are iteratively updated by a pair of
steps: (1) assign each point to a cluster corresponding to its most similar exemplar,
and (2) update exemplars to minimise the total intra-cluster distance. These steps are
repeated until convergence is achieved.

Affinity Propagation (AP) Clustering [27] Similar to PAM in that it selects exemplars to
represent clusters. It does not require the number of clusters to be specified a priori.

Hierarchical Clustering Iteratively create a hierarchy of objects by agglomerating the most
similar pairs of objects and or groups of objects, based on a pairwise similarity matrix.
Different methods of measuring the similarity of a single object to a group are possible.
One such method is the ‘averaging’ approach, where the average similarity of the object
to objects in the group is used. Another method is the ‘complete linkage’ approach,
where the minimum similarity of the object to the objects in the group is used. The
method is implemented as the hclust function in R’s stats package.

Given a partition of the collection into phenotype clusters, we are faced with the challenge
of searching for associations between membership of clusters and presence of rare variants
in genes. One could test for associations between each gene and each cluster. For example, a
Burden test could be used to assess whether presence of a rare variant in a gene is associated
with membership of a cluster. However, with approximately twenty thousand genes to
test, and potentially tens or hundreds of clusters, the number of competing hypotheses is
huge. Here, I outline an approach which incorporates model organism data that is more
powerful for detecting associations between genes and clusters when models for orthologous
genes have phenotypes overlapping phenotypes enriched amongst members of a cluster. The
procedure uses a clustering algorithm to generate a partition of HPO-encoded phenotypes
of unrelated cases, selects a limited number of ‘key’ terms enriched in each cluster, then



2.5 Unsupervised clustering of ontological phenotypes 41

Case HPO
phenotypes

Clustering
algorithm

(e.g. PAM)

Partition
of cases

Calculate
association
p-values of

genes per cluster

Assoc
p-values

Identify key
terms (e.g.
Fisher’s

exact test)

Key terms
per cluster

Case
genotypes

Gene-set
enrichment

analysis
(e.g. ARTP)

Define gene-set
(e.g. annotated
with key terms)

Gene-sets
to test per

cluster

OMIM

Mouse
models

Enrichment
p-values

Fig. 2.8 Schematic representation of enrichment test strategy for phenotype clustering

uses an enrichment set analysis (e.g. GSEA), to test whether the set of genes known to
be associated with the term through the literature (i.e. based on aggregating ontological
annotation from OMIM and model organism databases) is enriched amongst those genes
most strongly associated with the cluster (i.e. using a test statistic, from the Burden test for
example). A flow-chart depicting the approach is shown in Figure 2.8.

Each of the three clustering methods described at the start of this section were used to
generate clusters. Initially, a pairwise phenotype similarity matrix based on the HPO-encoded
phenotypes of 940 sequenced probands belonging to the BPD project was generated. Lin’s
expression for the similarity of terms and the best match product expression was employed
to evaluated the similarity between term sets. Information content was set with respect to the
940 probands. The number of clusters for the PAM and hierarchical clustering methods was
set to 30, as approximately this many clusters led to the most clinically consistent clusters
being produced [119]. The number of clusters generated by the AP algorithm was 88. The
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Fisher’s exact test was used to rank phenotypic terms by the strength of their associations
with each cluster, and the top three terms were selected for each. Fisher’s exact test was then
used again to assign p-values for each gene/cluster pair, where the test was for association
between the cluster membership and presence of at least one rare allele in the gene. The
Adaptive Rank-Truncated Product (ARTP) was used to evaluate the enrichment of gene sets
amongst the scored genes in each cluster, in preference to the standard GSEA [110]. This
was because the ARTP method has been shown to be more powerful when the number of
involved genes is small [22], and in this scenario only a handful of genes are likely to be
involved in the diseases represented within each cluster.

To calculate the ARTP p-value for a given set of genes G with respect to a given cluster,
the Rank-Truncated Product (RTP) statistics for the one, two, three, four and five most
strongly associated genes were computed by applying Fisher’s combined p-value statistic
to their p-values of association. This relies upon independence of the p-values, which is a
reasonable assumption in this scenario because of the low linkage between rare variants. The
minimum of these five statistics is then used as the enrichment score S for G. The p-value
pG for enrichment is then calculated by permutation of gene labels for N permutations,
G′

1,G
′
2, ...,G

′
N (N = 1000 was used).

S (G) = mini∈{1,..,5}

[
−2

i

∑
j=1

logg( j)

]
,

pG =
N

∑
i=1

1S(G′
i)≤S(G),

where g( j) is the Fisher exact test’s p-value of association between presence of rare alleles in
the jth ranked gene and membership of the given cluster. The ARTP p-values were calculated
for each of the key terms in each cluster. The sets of clusters generated by the hierarchical
and PAM clustering algorithms led to 2 and 1 significant cluster/phenotype term associations
being found at a significance threshold of 0.05. The AP clustering results contain numerous
significant associations, also containing several known ones, including associations between
‘Reduced factor IX activity’ and F9 (p = 0.002), ‘Epistaxis’ and F7 (p = 0.049), ‘Increased
mean platelet volume’ and GP9 (p = 0.012), and ‘Abnormal platelet shape’ and TUBB1 (p =
0.012).

The method of using data from model organisms gives a substantial increase in power to
detect true associations in comparison with testing association with each gene marginally. A
drawback of the method is that it can only identify associations between genes and clusters
when the gene is already associated with some of the enriched terms in the cluster through
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model organisms. Furthermore, due to the multiple intuition-based steps in this procedure,
it is not clear what alternative hypotheses the method is powerful under. We therefore
developed a model-based approach which would allow us to harness phenotypic similarity
of HPO phenotypes, restrict against a carefully defined alternative model and enable more
control over how prior information is incorporated. This development led to the ‘Phenotype
similarity regression’ method, which is described in the following Chapter.





Chapter 3

Phenotype similarity regression

Rare genetic diseases are often caused by high-penetrance rare variants and characterised by
abnormalities spanning multiple organ systems ascertained with variable clinical precision.
Existing methods for identifying genes with variants responsible for rare diseases summarise
phenotypes with unstructured binary or quantitative variables. The Human Phenotype
Ontology allows composite phenotypes to be represented systematically but association
methods accounting for the ontological relationship between HPO terms do not exist. This
chapter describes a Bayesian method, called SimReg, which models the association between
HPO-encoded disease phenotypes and genotype. The method enables inference of the
probability of an association together with a latent characteristic HPO phenotype for the
disease. It thus formalises a clinical approach to phenotyping that is lacking in standard
regression techniques for rare disease research. We demonstrate the power of the method
by uncovering a number of true associations in a large collection of genome-sequenced and
HPO-coded cases with rare diseases.

The description of the method given in this Chapter is based on that given in: D. Greene,
NIHR BioResource–Rare Diseases Consortium, S. Richardson and E. Turro (2016). “Phe-
notype similarity regression for identifying the genetic determinants of rare diseases”. The
American Journal of Human Genetics, 98(3):490–499.

3.1 Introduction

Modelling sparse and ontologically structured phenotype data as a response directly is
difficult due the logical dependency between terms induced by the structure of the ontology.
Additionally, terms can be correlated due to biological factors. SimReg overcomes these
difficulties by treating the HPO-encoded phenotypes of the subjects as explanatory variables,
and their corresponding genotypes as the response. This is an example of ‘inverse regression’,
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an idea also employed in the context of genome-wide association studies O’Reilly et al. [78],
and is adequate in our setting because we are not interested in interpreting the regression
coefficients per se but only on evaluating the probability of association. We define a subject’s
‘genotype’ y as a binary label that can take on the values ‘rare’ (1) or ‘common’ (0) according
to a pre-specified function of the genetic data. For example, we could define the label
‘rare genotype’ to mean that there is at least one rare variant in a particular gene (dominant
inheritance), or at least two rare variants in a particular gene (recessive inheritance).

Our method then seeks to compare two models for the data, indexed by γ:

• Under the baseline model (γ = 0), the probability of observing the rare genotype is the
same for each case.

• Under the alternate model (γ = 1), the probability of observing the rare genotype
depends on the phenotypic similarity S (to be defined later) of the case to a latent
characteristic HPO phenotype φ .

Figure 3.1 gives a graphical representation of the models. We adopt a Bayesian inference
framework, where the model selection indicator γ and characteristic phenotype φ are esti-
mated through their posterior distributions. Of particular interest is the posterior mean of γ ,
which represents the probability that γ = 1, thus indicating the strength of evidence for an
association. A crucial element of our approach is the construction of an appropriate function
for quantifying the semantic similarity of the characteristic phenotype φ to the phenotypes
of the subjects. The choice of function is motivated by the need to optimally discriminate
between subjects having clinical features which are pertinent to a disease from those having
overlapping or unrelated phenotypes due to a different disease. To achieve this, we have
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chosen a function which accounts for the ontological structure of the HPO and induces a
parsimonious characteristic phenotype: it selects the required terms to distinguish patient
groups while avoiding overfitting and is robust to coding of patients with spurious or sporadic
terms. Importantly, the function is flexible with respect to the phenotypic variability of
disease and robust to the HPO coding practices of clinicians.

Our Bayesian approach provides a natural means of incorporating information from the
scientific literature into our prior belief about the characteristic phenotype. In this work,
we focus on gene-specific inference and up-weight the prior probability of characteristic
phenotypes that are similar to clinical [48] and murine phenotypes [8] relevant to the gene.

We demonstrate the effectiveness of our method in identifying associations between
genotype and phenotype through a simulation study, whereby phenotypes are simulated
given genotypes in such a way as to emulate the effect of a hypothetical set of pathogenic
variants. We go on to apply our inference procedure to data representing over 2,000 unrelated
individuals enrolled to subprojects of the NBR–RD project. We show that our method, im-
plemented in the SimReg software package, can identify genes with rare variants responsible
for a diverse set of pathologies in a single application and can estimate recognised disease
phenotypes.

3.2 Model specification

We use a logistic regression framework to specify the two models under comparison:

yi ∼ Bernoulli(pi),

γ = 0 : log
(

pi

1− pi

)
= α + ĥi,

γ = 1 : log
(

pi

1− pi

)
= α + ĥi +βS(φ ,xi).

(3.1)

Here, y1, . . . ,yN are the genotypes of the N subjects in the collection, where yi = 1 if subject i
possesses the rare genotype and yi = 0 if subject i possesses the common genotype. x1, . . . ,xN

are the corresponding phenotypes of the subjects, where xi comprises the minimal set of
HPO terms required to describe the phenotypic abnormalities of subject i. The parameter ĥi

is a log odds offset for each individual which can take into account batch effects and factors
affecting the background rate of rare genotypes.

The term S(φ ,xi) denotes a chosen measure of phenotypic similarity between the charac-
teristic phenotype and subject i’s phenotype. Note that our response and predictor are inverted
compared to classical regression methods to avoid having to treat sparse and structured HPO
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data as the response. Under the baseline model, the intercept α is the global rate of rare
genotypes. Under the alternate model, there is an additional parameter β , which is strictly
positive and captures the effect of a unit increase in phenotypic similarity to the characteristic
phenotype φ on the log odds of having the rare genotype. Thus, the probability that γ = 1 is
greater in expectation when S(φ ,xi) is larger if yi = 1 than if yi = 0.

Similarity measure

Our chosen similarity measure S is built with consideration for:

• quantification of the similarity of terms,

• quantification of the similarity of a patient phenotype xi to the characteristic phenotype
φ ,

• flexible transformation of the similarity between phenotypes.

We use Lin’s [59] similarity function to compare two different terms (see Equation 1.2),
hereafter represented by function s. As terms cannot have a higher information content than
their descendants, the similarity s between two terms can range between zero and one. Next,
we consider asymmetric measures of similarity between a case phenotype and φ inspired by
the best match average function described in Section 1.6. The expressions used for semantic
similarity between the case phenotype and φ are:

Sφ (φ → xi) =
1
|φ | ∑

tφ∈φ

max
tx∈xi

s(tφ , tx)1tφ∈anc(tx),

Sx(xi → φ) =
1
|xi| ∑

tx∈xi

max
tφ∈φ

s(tx, tφ )1tφ∈anc(tx).

The standard best match average function does not include the indicator variable above, which
evaluates to 1 only if the node in φ is amongst the ancestors of the node in xi. We prefer to
include this restriction, which penalises similarity to φ when it includes over-specific terms,
in order to concentrate the posterior weight of φ preferentially on nodes which are present
amongst the subjects. The presence of a term in φ that is absent from xi has the effect of
lowering Sφ , while the presence of a term in xi that is absent from φ has the effect of lowering
Sx. Summation of two asymmetric similarities, as used in the best match average, would allow
reasonably high overall similarities to be obtained even when one of the two asymmetric
similarities is close to zero. We prefer to multiply rather than add up the two similarity
measures to obtain an expression for the overall similarity function used in Equation 3.1,
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as it ensures that the overall similarity can only be high when there is a high asymmetric
similarity in both directions. However, as the values of Sx and Sφ are influenced by factors
such as how frequent terms are in the reference database (which affects nodal IC) and the
structure of the HPO graph, there is no guarantee that a linear function of their product
optimally distinguishes subjects with objectively distinct clinical features. For example if
two distinct phenotypic features always manifest together with a given disease caused by a
particular rare genotype, presence of only one of these features would contribute positively
to Sφ , but would not be informative of presence of the rare genotype. To ensure the model is
robust to the choice of S, we allow modulation of the shapes of the similarity parameters, Sφ

and Sx, through transformations f and g, respectively. A reasonable choice for f and g is
the beta cumulative distribution function (CDF), as it maps [0,1] to [0,1] monotonically (i.e.
enforcing that S increases as Sx and Sφ increase), and allows a wide variety of shapes:

f (z,a f ,b f ) = Iz(a f ,b f ),

g(z,ag,bg) = Iz(ag,bg),

Iz(a,b) =
∫ z

0 ta−1(1− t)b−1dt∫ 1
0 ta−1(1− t)b−1dt

where Iz is the regularised incomplete beta function, and a f ,ag,b f ,bg are unknown parame-
ters to be estimated. Finally, the overall similarity function is given by:

S(φ ,xi) = f (Sφ (φ → xi),a f ,b f ) ·g(Sx(xi → φ),ag,bg). (3.2)

Priors

We propose the following prior distributions for the model indicator and the regression
parameters:

γ ∼ Bernoulli(π),

α ∼ Normal(mean = 0,sd = 5),

logβ ∼ Normal(mean = 2,sd = 1).

The value of π indicates how likely we believe a priori that there is a true association. All
of the analyses in this paper assume π = 0.05. We place a vague prior on α around 0. The
prior distribution on β is positive because the probability of yi = 1 increases with S(φ ,xi),
given γ = 1. Different diseases have a wide variety of genetic heterogeneity across loci. If
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only variants in one locus can cause a particular disease, then β could be very high, and the
converse would be true if many different loci contain variants causal for the same disease.
Thus, the prior variance of β allows for a wide range of effect sizes given the range of S.

Prior on similarity transformations f and g We choose the prior for f in order to favour
parsimonious characteristic phenotypes and the prior for g to allow for an indeterminate
number of nodes appearing sporadically among patients. The presence of a term in the char-
acteristic phenotype φ that is absent from the patient phenotype xi has the effect of lowering
Sφ , while the presence of a term in xi that is absent from φ has the effect of lowering Sx (see
Equation 3.2). For example, if φ has one HPO term and it is also present in xi, then Sφ = 1.
However, the presence of one or two additional spurious terms can reduce Sφ to as low as
0.5 or 0.33 respectively. In order to discourage non-parsimonious characteristic phenotypes,
we place a high prior weight on f transformations whose corresponding probability density
functions have means above 0.5 (i.e. a f

a f+b f
> 0.5) as this ensures that a value of f (Sφ ) cannot

be obtained if the value of Sφ is low. Specifically, we specify the priors on the parameters of
f . The resultant distribution of transformations f and g are represented in Figure 3.2 (left).
However, in order to allow for patients coded with sporadic terms that are not part of the
core disease phenotype, we specify a more flexible prior distribution on g than we do on f ,
as illustrated in Figure 3.2 (right).

The prior distribution for the transformation f is specified by independent priors for
the logarithms of the ratio and sum of its parameters, a f and b f : log a f

b f
and log(a f + b f ),

which respectively correspond to the logit of the mean (i.e. logit a f
a f+b f

) and a measure of
the steepness of the resultant beta CDF. The prior distribution for the transformation g is
specified equivalently. The following priors for the log ratio and sum of a f ,b f and ag,bg for
similarity transformations f and g respectively are used:

log
a f

b f
∼ Normal(µ f ,σ

2
f ),

log(a f +b f )∼ Normal(µ f ′,σ
2
f ′),

log
ag

bg
∼ Normal(µg,σ

2
g ),

log(ag +bg)∼ Normal(µg′,σ
2
g′) (3.3)

Our choice of hyperparameter values was informed by a sensitivity analysis assessing
the model’s performance on data for ACTN1. We found that not using a transformation at
all (i.e. not modulating the similarity with f and g, which is equivalent to using the identity
function obtained by setting a f = b f = ag = bg = 1), or using an overly flexible prior on
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Fig. 3.2 The distribution of shapes for the incomplete beta function transformation of
phenotype similarities Sφ and Sx for select values of the parameters, given the hyperparameter
values in Equation 3.3. The thickness and opacity of each line is proportional to the prior
probability of the corresponding parameterisation of the transformation.

f , discourages inclusion of the essential ‘Thrombocytopenia’ term relative to inclusion of
spurious alternative terms, conditional on inclusion of the other essential term, ‘Increased
mean platelet volume’. This occurs because if the value of a f

a f+b f
has high posterior weight

near 0.5, then spurious terms can be accommodated by mapping values near 0.5 to near 1. As
more prior weight is shifted to f transformations with a value of a f

a f+b f
greater than 0.5, the

probability of joint inclusion of the two key nodes of this disease is increased (Figure 3.3).

Prior probability for φ By default, our prior distribution on the characteristic phenotype
φ places a uniform prior probability on all minimal sets of terms of size less than or equal to
k. In consultation with clinical colleagues, we chose k = 3 on the grounds that three nodes
should adequately distinguish between the primary features of most rare diseases. If y is set
based on variants in a particular feature, such as a gene, then our prior can up-weight HPO
phenotypes comprising terms annotated to that feature on the basis of reports in the scientific
literature. Thus, the prior on φ is given by

P(φ) =


1

|Φ(k)| No literature phenotype
S′(M→φ)

∑

ψ∈Φ(k)
S′(M→ψ) Literature phenotype M (3.4)
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Fig. 3.3 Graphical representation of the posterior distribution of φ when no f /g transforma-
tions are used and for different values of µ f (with σ2

f = 1,µg = 0,σ2
g = 1.5) using the data

for ACTN1. Each node shows the marginal probability of inclusion in φ . Without the f /g
transformations, the essential ‘Thrombocytopenia’ term carries low posterior weight. If the
f /g transformations are included, as the value of µ f is increased, from 0 through 0.5 to 1, the
probability of inclusion of the term ‘Thrombocytopenia’ increases.

where Φ(k) denotes the set of all minimal sets of up to k HPO terms and S′ is an unstandardised
similarity function:

S′(M → τ) =
1
|τ| ∑t∈τ

max
m∈M

exp(sResnik(m, t)) ,

where sResnik is Resnik’s definition for the similarity between terms, defined in Equation 1.1.
Resnik’s definition was chosens in order to attach greater prior weight to rare phenotype
terms shared with the literature phenotype. In practice, the literature phenotype could be
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obtained from OMIM or from the Mouse Genome Informatics (MGI) database [8] after
mapping murine phenotypes coded using the ‘Mammalian Phenotype Ontology’ [104] to
HPO terms through a cross-species phenotype ontology [46].

Our inference procedure, described in Section 3.3, requires sampling model parameters
from their posterior distributions. Conditional on γ = 1, it is not straightforward to sample
from the space of minimal sets Φ(k), because not all possible HPO term combinations
comprise such a minimal set. To overcome this difficulty, we propose an unrestricted vector
of k HPO terms φ̃ , and then derive the associated underlying phenotype φ by applying a
mapping function υ . We therefore need to impose a prior distribution on the unrestricted
space which is compatible with the desired prior for φ (Equation 3.4) on the restricted space.
To be precise, the prior on φ̃ is given by:

P(φ̃) =
P
(
υ(φ̃)

)∣∣{φ̃ ′ ∈ Hk : υ(φ̃ ′) = υ(φ̃)
}∣∣ ,

where Hk is the space of all vectors of k HPO terms and υ maps an arbitrary such vector
of terms to its corresponding minimal set. The denominator accounts for the number of
unrestricted vectors that map to the same minimal set.

In order to calculate p(φ) when using a uniform distribution over Φ(k), we need to
calculate the number of distinct minimal sets

∣∣∣Φ(k)
∣∣∣. This is trivial when k = 1, as

∣∣∣Φ(k)
∣∣∣= |H|.

However it becomes more computationally intensive as k increases, so in our implementation
we use the approximation

(|H|
k

)
. This approximation works well in practice when k is small.

It has no effect on the update of the φ̃ parameter, as the
∣∣∣Φ(k)

∣∣∣= |H| expression cancels out

in the acceptance probability for φ̃ ′, but it does affect the update of γ as it penalises the model
γ = 1 slightly by overestimating the size of

∣∣∣Φ(k)
∣∣∣.

When using an informative prior distribution, weighted by similarity to the literature
phenotype, we need to calculate ∑ψ∈Φ(k) S′ (M → ψ). In order to avoid having to sum over

the entire space Φ(k), we employ the approximation
∣∣∣Φ(k)

∣∣∣× k×meanψ∈HS′(M → ψ).

Finally, to compute p(φ̃), we also need to calculate the number of alternative unrestricted
vectors that map to the same minimal set, i.e.

∣∣{φ̃ ′ ∈ Hk : υ(φ̃ ′) = υ(φ̃)
}∣∣, where ν maps

an unrestricted vector to a minimal set. We use the following expression for the number of
representations:∣∣∣∣∣∣ ⋃t∈υ(φ̃)

anc(t)

∣∣∣∣∣∣
k

+
|υ(φ̃)|

∑
i=1

(−1)i
(
|υ(φ̃)|

i

)∣∣∣∣∣∣ ⋃t∈υ(φ̃)

anc(t)

∣∣∣∣∣∣− i

k
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3.3 Inference

We perform model comparison using the Markov chain Monte Carlo (MCMC) based method
of Carlin and Chib [12].

The method of Carlin and Chib is a means of inferring the parameters in two models and
computing a Bayes factor comparing them. Instead of targeting the posterior distribution of
each model individually, the following function is targeted:

(γ,θ (0),θ (1)) 7→ (1− γ)L(0)
y (θ (0))p0(θ

(0)) f1(θ
(1))+ γL(1)

y (θ (1))p1(θ
(1)) f0(θ

(0)).

Here, θ (0) and θ (1) are vectors of the parameters of models 0 and 1 respectively and p0(θ
(0))

and p1(θ
(1)) are their respective priors. The likelihood functions under model 0 and 1 are

given by L(0)
y (θ (0)) and L(1)

y (θ (1)) respectively. The functions f0(θ
(0)) and f1(θ

(1)) are
arbitrary probability density functions called ‘pseudopriors’, representing the conditional
probability distributions of the parameters of one model given the alternate model is true,
i.e. θ (0)|γ = 1 and θ (1)|γ = 0 respectively. The conditional posterior distributions of the
parameters θ (0)|γ = 0 and θ (1)|γ = 1 can be estimated from MCMC samples made at
iterations when γ = 0 and γ = 1, respectively, and the posterior probability that model 1 is
true can be estimated from the proportion of iterations in which γ = 1.

Let α∗ be the intercept parameter under γ = 0 and α be the intercept parameter under
γ = 1 so that they may be distinguished. For convenience, we perform inference of φ̃ , which
is on the unrestricted space of vectors of HPO terms, rather than φ , because it is difficult to
propose uniformly from the space of minimal sets Φ(k). However, φ can be recovered from
φ̃ easily by mapping to the corresponding minimal set. The MCMC algorithm proceeds to
target the following distribution:

P(γ,α,β ,a f ,b f ,ag,bg, φ̃ |y) ∝

(1− γ)L(0)
y (α∗)p0(α

∗) f1(α) f1(β ) f1(a f ) f1(b f ) f1(ag) f1(bg) f1(φ̃)

+γL(1)
y (α,β ,a f ,b f ,ag,bg, φ̃)p1(α)p1(β )p1(a f )p1(b f )p1(ag)p1(bg)p1(φ̃) f0(α

∗).

For optimal mixing of the Markov chain, the pseudopriors should approximate the respec-
tive conditional posterior distribution given the model, that is, f0(θ

(0)) ∝ L(0)
y (θ (0))p0(θ

(0))

and f1(θ
(1)) ∝ L(1)

y (θ (1))p1(θ
(1)). Without tuning the pseudopriors, accepting proposed

updates to γ will happen very infrequently due to a poor fit of the data to the alternate
model. To achieve this, we tune the pseudopriors using empirical summary statistics ob-
tained by running initial Markov chains under each model separately. For parameters α∗

and α , Normal pseudopriors are used, while for the strictly positive parameters β ,a f ,b f ,ag
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and bg, Log-Normal pseudpriors are used. The hyperparameters of these pseudopriors are
obtained using maximum likelihood estimation based on the MCMC samples. We compose
a pseudoprior for φ̃ by counting the number of appearances of HPO terms in any of the k
slots of φ̃ throughout the tuning iterations:

P(t) =
∑

I
i=1 ∑

k
j=11(φ̃i j = t)+ ε

Ik+ ε|H|
, (3.5)

where I is the number of MCMC tuning iterations, t is a term in the set of HPO terms H and
φ̃i j is the jth element of φ̃ in the ith iteration. We allow a non-zero probability of inclusion of
terms which have not been sampled at all during the tuning batch by setting ε = 1. Using the
above expression, we define the pseudoprior on φ̃ as

f1
(
φ̃
)
=

k

∏
j=1

P
(
φ̃ j
)
.

The updates for each iteration of the MCMC algorithm are given below. Note that here we
drop the model subscript on the true prior distributions p and pseudoprior distributions f
because each parameter belongs to only one model.

1. An update of α∗:

γ = 0 Propose an update of α∗ by drawing from

α
∗′ ∼ Normal(α∗,s2

α)

and accepting with probability

min

(
1,

L(0)
y (α∗′)p(α∗′)

L(0)
y (α∗)p(α∗)

)
.

γ = 1 Sample α∗′ from the pseudoprior distribution for α∗:

α
∗′ ∼ Normal(µ̂α∗,sd = σ̂

2
α∗).
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2. An update of α:

γ = 0 Sample α ′ from the pseudoprior distribution for α:

α
′ ∼ Normal(µ̂α , σ̂

2
α).

γ = 1 Propose an update of α by drawing from

α
′ ∼ Normal(α,s2

α)

and accepting with probability

min

(
1,

L(1)
y (α ′,β ,a f ,b f ,ag,bg, φ̃)p(α ′)

L(1)
y (α,β ,a f ,b f ,ag,bg, φ̃)p(α)

)
.

3. An update of β :

γ = 0 Sample logβ ′ from the pseudoprior distribution for logβ

logβ
′ ∼ Normal(µ̂β , σ̂

2
β
).

γ = 1 Propose an update of logβ by drawing from

logβ
′ ∼ Normal(β ,s2

β
)

and accepting with probability

min

(
1,

L(1)
y (α,β ′,a f ,b f ,ag,bg, φ̃)p(β ′)

L(1)
y (α,β ,a f ,b f ,ag,bg, φ̃)p(β )

)
.

4. An update of the shape parameters a f ,b f ,ag and bg analagously as is done for β .
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5. An update of φ̃ :

γ = 0 Sample φ̃ from the pseudoprior distribution for φ̃ by sampling all k terms indepen-
dently from the distribution described in Equation 3.5.

γ = 1 Propose updating φ̃ to φ̃ ′ by setting component t =
[
φ̃
]

j (where j is chosen at random
from 1, . . . ,k) to a random term t ′, selected with probability πt . Hence φ̃ ′ can be
specified as

[
φ̃
′]

h =

t ′ h = j[
φ̃
]

h otherwise.

The proposal is accepted with probability

min

(
1,

L(1)
y (y|α,β ,a f ,b f ,ag,bg, φ̃

′)p(φ̃ ′)πt

L(1)
y (α,β ,a f ,b f ,ag,bg, φ̃)p(φ̃)πt ′

)
.

We set the proposal distribution of the new term {πt : t ∈ H} to equal that of the
individual components of φ̃ under its pseudoprior (see Equation 3.5). An alternative
approach that does not rely on a tuning chain is to propose a new term proportionally to
the number of subjects having yi = 1 whose phenotypes include the term or one of its
descendants in the HPO:

πt ∝

N

∑
i=1

1yi=11t∈
⋃

t′∈xi
anc(t ′).

6. An update of γ by Gibbs sampling:

γ
′ ∼ Bernoulli

(
ω(1)

ω(0)+ω(1)

)
,

where

ω
(0) = (1−π)L(0)

y (α∗) f (α) f (β ) f (a f ) f (b f ) f (ag) f (bg) f (φ̃)p(α∗),

ω
(1) = π L(1)

y (α,β ,a f ,b f ,ag,bg, φ̃)p(α)p(β )p(a f )p(b f )p(ag)p(bg)p(φ̃) f (α∗),

where π is the prior probability that γ = 1.
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3.4 Simulation study

We assessed the performance of SimReg by analysing datasets generated under two scenarios,
labelled by γ̃ . Under γ̃ = 1, the HPO phenotypes x1,...,N were simulated conditional on the
genotypes y1,...,N of N individuals while under γ̃ = 0 they were simulated independently of
the genotypes. The phenotypes are simulated conditional on the genotypes, rather than by
generating genotype data conditional on phenotypes. Therefore, we only assess our estimates
of the model indicator γ in relation to γ̃ . Although the simulation setup does not match
the model, it has the advantage of more closely resembling the natural process by which
phenotypes depend on genotypes according to easily interpretable parameters. When γ̃ = 1,
phenotypes for all subjects having yi = 1 were formed by selecting terms from an arbitrar-
ily chosen disease template (‘Decreased mean platelet volume’, ‘Thrombocytopenia’ and
‘Autism’). Each term was selected with a pre-specified probability r, termed ‘expressivity’,
and m further noise terms drawn at random from a set of approximately 1,000 HPO terms
were appended, where m ∼ Poisson(λ = 5). The set of terms from which the noise terms
were drawn was created by selecting 200 HPO terms at random, taking the union with the
disease template terms, and then aggregating all the ancestral terms. Phenotypes for subjects
having yi = 0 were drawn at random using terms from the above set with λ = 8, and then
mapped to minimal sets. When γ̃ = 0, all phenotypes were sampled from the noise term set
with λ = 8. This ensures that on average individuals have approximately 8 terms, irrespective
of yi and γ̃ . The simulation was performed with the set of disease template terms and set
of noise terms fixed but with different numbers of individuals carrying the rare genotype
(∑i yi ∈ {2,4,6,8,10,20} out of N = 1,000) and varied levels of expressivity r ∈ {1

3 ,
2
3 ,1}.

The low expressivity set-ups capture situations in which a fraction of the individuals having
a rare genotype can be considered to carry a neutral variant with respect to the disease in
question because they have none of the template terms. For the same reason, they capture
scenarios of incomplete penetrance of a subset of the underlying rare variants. Furthermore,
a degree of genetic heterogeneity is built into our simulation setup, as there is a non-zero
probability of a template phenotype term being randomly allocated to an individual with the
common genotype.

The results of repeating the simulation 64 times for each value of γ̃ and combination
of r and ∑i yi, depicted in Figure 3.4, show that power to detect a true association, as
assessed by the posterior mean of γ , increases with the expressivity of the disease terms r
and also with the frequency of the rare genotype in the study sample ∑i yi (red points). Under
γ̃ = 0, the posterior mean of γ remains very close to zero in all circumstances (grey dots).
Specifically, we find that 2, 6, and 20 cases out of 1,000 subjects are sufficient to obtain
perfect or near perfect discrimination between the two models when the expressivity is 1, 2

3
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and 1
3 respectively. When the number of subjects with the rare genotype is equal to 6 and

the expressivity is 2
3 , which implies that any two individuals with the rare genotype only

have a 0.17 chance of having exactly the same template terms, our method can achieve a
positive predictive value of 1, even when the negative predictive value is as high as 0.95, by
thresholding at P(γ = 1|y)≥ 0.25. Under this set-up, we expect 1.78 of the 6 individuals with
the rare genotype to have none of the template terms at all, which indicates that the method
has some resilience to the presence of yi = 1 induced by neutral rather than pathogenic
variants.

Genetic heterogeneity We performed a different version of the simulation study described
above to assess the performance of our method when genetic heterogeneity is controlled
explicitly. Here, we vary a parameter representing the extent of genetic heterogeneity, v, so
that for each individual having yi = 1, there were v additional individuals with phenotypes
simulated from the same distribution but having yi = 0.

We applied the inference to datasets generated with v ∈ {0,1,3,9}. Thus, the simulations
where v = 0 correspond to the scenario of the simulations described above, and those where
v = 9 represent situations where only one tenth of the cases having a phenotype arising from
the disease template have yi = 1.

The results of the simulation, given as box plots of the estimated posterior means of γ

under the various scenarios (Figure 3.5), demonstrate that although power goes down as
genetic heterogeneity increases, the sensitivity of the method, thresholding on γ > 0.25,
approaches 100% when expressivity r is 1 and ∑i yi is at least 6, and also when expressivity r
is 2

3 and ∑i yi is at least 10, irrespective of v. When v = 3 and r = 1
3 , which means the HPO

terms have very low expressivity and only a quarter of individuals drawn from the template
phenotype carry the rare genotype, γ exceeded 0.25 in 87.5% of our simulations as long
as 20 out of 1,000 individuals carried the genotype. Thus we conclude that our method is
powerful even in challenging scenarios in which there is substantial genetic heterogeneity
and low phenotypic expressivity.

Specificity The simulation study shows that if the phenotypes are homogeneously selected
from a wide range of HPO nodes, then our method is unlikely to produce high posterior
estimates of γ . However, the simulation study presented above is based on only 64 repetitions
for each simulation set-up (shown as 64 grey dots in each panel). In order to more accurately
assess the specificity of our method we simulated 20,000 independent sets of phenotypes,
simulated with a total of 6 cases having the rare genotype. The distribution of the posterior
mean values of γ inferred for the datasets are shown in the left panel of Figure 3.6. There
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Fig. 3.4 Results of inference using SimReg on simulated data. Phenotype data were simulated
using three levels of expressivity r of the disease terms. The plots within each panel
correspond to different frequencies ∑i yi of the rare genotype. In each plot, the red dots
mark the estimated posterior mean of γ for 64 datasets simulated under γ̃ = 1 and the grey
dots show an equivalent set of estimates for datasets simulated under γ̃ = 0 (i.e. whereby
phenotypes for subjects having yi = 1 are sampled from the same distribution as for subjects
having yi = 0). The position of points on the x-axis within a plot is arbitrary.
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Fig. 3.5 Box plots showing the distribution of the posterior estimates of γ at various levels of
phenotypic expressivity, r, for various sample frequencies of the rare genotype, ∑i yi and with
different levels of genetic heterogeneity as captured by v. The boxes contain the inter-quartile
range, with whiskers extending to the extreme values up to 1.5 times the inter-quartile range
from the box.

were a total of 7 simulated datasets for which the value was greater than 0.25, with the
highest estimate being equal to 0.86, which equates to a specificity of 99.97%. The dataset
for which the highest value was obtained contained four (out of six) individuals with the rare
genotype, labelled, 3–6, who had a high mean posterior similarity (> 0.3) to the characteristic
phenotype (middle panel of Figure 3.6). By chance, these four individuals had been assigned
highly specific terms relating to bone ossification, the toe and long bone morphology (right
panel of Figure 3.6). This coincidental sharing of HPO terms by these individuals who also
carried the rare genotype led to the abnormally high posterior estimate of γ . However, this
is a desirable property of our method because in practice it is not possible to know whether
such a correlation is causal or spurious.

Overall, the results of our simulation study show that our method produces accurate
results even in the presence of significant phenotypic or genetic heterogeneity and low
expressivity of the rare genotype’s characteristic terms. As these are typical hallmarks of
many rare disease studies, our evaluation substantiates the utility of our approach.

Computational performance We applied the inference procedure to simulated datasets
to assess the performance of SimReg. We varied the number of phenotyped individuals
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Fig. 3.6 The distribution of posterior γ for applications of the inference to the 20,000 repeats
of the simulation is shown as a box plot. The box contains the inter-quartile range, with
whiskers extending between the lowest posterior γ obtained and 0.25. For the simulated
dataset for which the highest posterior mean value of γ was inferred, the posterior mean
similarities to φ , xi, for the 1,000 simulated patient phenotypes are shown as a histogram,
with those of the individuals with the rare genotype, i|yi = 1, marked by red lines. The
inferred characteristic phenotype φ for this dataset is shown as a graph. Each node is labelled
with a) the HPO term b) the number of simulated individuals out of 1,000 who had the term
c) which individuals with the rare genotype had the term (as labelled in the middle panel)
and d) the posterior probability of inclusion in φ conditional on γ = 1 (also represented by
node size).

and the number of terms (sampled from a preset collection of approximately 1,000 terms)
allocated to each individual, and programmed the algorithm to generate 20,000 MCMC
samples (of which 10,000 are tuning iterations). The results of the performance test are
shown in Table 3.1.

3.5 Application to real data

Our dataset comprises HPO phenotypes and corresponding variant call data for 2,045 unre-
lated individuals enrolled to the NBR–RD study. At the time the analysis was performed,
detailed HPO data were available only for cases enrolled to the BPD project [119]. A set
of genes within which variants are known to be implicated in each class of diseases was
provided by BRIDGE collaborators to assess the performance of the model.
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N 2 terms 4 terms 8 terms
100 7.31 9.03 11.55

1,000 47.38 65.70 91.74
10,000 451.54 627.75 879.78

Table 3.1 Completion times in seconds for applications of the SimReg procedure. The
rows indicate the total number of individuals included in the inference, and the columns
indicate the number of HPO phenotype terms allocated to each individual. These results
were obtained by running SimReg on a single CPU of a computer with 2.40GHz processors.

We used variant call data from 686 sequenced exomes and 1,359 sequenced whole
genomes. To account for biases that may alter the baseline rate of rare genotypes (e.g.
sequencing platform), we use a plug-in offset in the regression equations (3.1), estimated
a priori (see Appendix). Variants were retained only if they were predicted to alter protein
sequence and were either absent from ExAC [55] or had an allele frequency therein below
1/1,000 or 1/10,000 respectively when a recessive or dominant mode of inheritance was
assumed in the analysis. Rare variants were aggregated within genes to account for genetic
heterogeneity and increase power. We defined the binary genotypes y based on three different
aggregation approaches corresponding to the following hypothetical modes of inheritance:

• Dominant: presence of at least one rare allele,

• Recessive: presence of at least two rare alleles,

• High-impact dominant: presence of at least one rare allele predicted [16] to introduce
a splice site aberration, frameshift, start loss or stop gain.

Estimation of the offset ĥi In order to accommodate prior beliefs about the background
rate of observing the rare genotype for a particular gene, we obtained point estimates of
the effects of gene length and sequencing platform on the log odds of observing the rare
genotype. We fitted a logistic regression model linking these variables to the genotype data
across all genes for all 2,045 sequenced unrelated individuals. The model used was:

yi j ∼ Bernoulli(pi j),

log
(

pi j

1− pi j

)
= λ l j +ω

T zi·,

where yi j = 1 indicates presence of the rare genotype in gene j for individual i, which
occurs with probability pi j, l j is the length in base pairs of the coding region of gene j and
zik = 1 if individual i was sequenced on sequencing platform k and 0 otherwise. Thus, λ is
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interpretable as the effect size of gene length and ω1, . . . ,ωK as the effect sizes of sequencing
platforms 1, . . . ,K. We found that certain sequencing platforms led to gene-specific biases
in variant calls. To ensure robustness to these biases, we only used data for genes having a
Fisher exact p-value of association between the rare genotype and the sequencing platform
greater than 0.05. Under a model of no association, the offset for gene j is given by:

yi ∼ Bernoulli(pi),

log
(

pi

1− pi

)
= α + ĥi,

where ĥi = λ̂ l j + ω̂T zi·. The ĥi was obtained for all genes in all the hypothetical modes of
inheritance described above.

ACTN1 as exemplar gene

We now describe the properties of SimReg’s output by focussing on the results for ACTN1, a
gene that has recently been reported to harbour rare variants responsible for reduced platelet
number and increased platelet size (macrothrombocytopenia) [49]. We note that data for
ACTN1 were used to inform and motivate our choice for the similarity measure given in
Equation 3.2. Once learnt on the ACTN1 data, this choice has then been used universally
for all genes. We observe strong evidence that the rare genotype for ACTN1 is associated
with similarity to a characteristic phenotype (P(γ = 1|y) = 1), as expected. The estimated
characteristic phenotype focuses primarily on phenotypes that include ‘Thrombocytopenia’
and ‘Increased mean platelet volume’ (Figure 3.7), which together correspond to macrothrom-
bocytopenia. The slightly more general terms ‘Abnormal platelet count’ and ‘Abnormal
platelet volume’ also have substantial marginal posterior weight while the rest of the nodes in
the HPO have a marginal posterior probability of inclusion less than 0.02. As can be seen in
a two-dimensional matrix of the marginal posterior on pairs of terms, there is a high degree
of co-occurrence of the two primary terms representing the ACTN1-related phenotype, which
implies that they are not alternatives but rather complements that together produce a good
model fit.

DIAPH1 and RASGRP2

Under the high impact dominant mode of inheritance described above, one of the genes with
the highest estimated value of γ that also has a BPD-like inferred phenotype is DIAPH1 (γ =

0.87). We recently showed, through an application of our similarity regression approach, that
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Abnormal platelet count
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Fig. 3.7 Results of applying SimReg to phenotype data for all individuals and corresponding
genotype data for ACTN1. There were 43 individuals in our dataset coded with the rare
genotype for this gene, of which 22 were coded with ‘Thrombocytopenia’ and ‘Increased
mean platelet volume’. The graph shows the estimated probabilities of inclusion of individual
terms in φ (only the 7 terms with the highest probabilities of inclusion and their ancestors are
shown). The acronym ‘BBFT’ refers to Abnormality of blood and blood-forming tissues’.
The heat map shows the estimated probabilities of pairs of terms co-occurring in φ , for pairs
composed from the 10 most frequently included individual terms.
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the introduction of a premature stop codon present in two unrelated individuals in the BPD
project truncates DIAPH1’s 3′ auto-inhibitory domain and causes macrothrombocytopenia,
hearing loss and mild bleeding [109]. As shown in Figure 3.8 (left), the salient terms in φ

relate to hearing impairment and abnormality of blood and blood-forming tissues, with the
latter driven mainly by thrombocytopenia and bleeding. The high posterior estimate of γ

was obtained in part because a sensorineural hearing loss phenotype had previously been
reported in the literature [64], which up-weighted hearing abnormality terms in the prior
for φ (Table 3.2). However, even without using an informative prior on φ , a high posterior
probability of an association (γ = 0.59) could be found for DIAPH1.

RASGRP2 was recently implicated in a new form of Glanzmann’s-like thrombasthenia
based on data from a single pedigree [11]. Glanzmann’s is characterised by impaired platelet
aggregation, leading to excessive bleeding. Under a recessive mode of inheritance, our simi-
larity regression successfully detects an association (γ = 0.75) for RASGRP2 and estimates a
characteristic phenotype concentrated around ‘Abnormal platelet aggregation’ (Figure 3.8). It
is characteristic of Glanzmann’s that platelet aggregation is impaired in response to multiple
agonists because their common downstream effect—the binding of platelets to fibrinogen—is
impeded by the presence of reduced numbers of fibrinogen receptors. Here we also observe
this phenomenon but only collagen-induced platelet aggregation carries significant weight in
the characteristic phenotype because it is the only specific aggregation term that is shared
by all the cases of this recently discovered disorder. There is also a very low probability
of inclusion of two rare terms which are not related to the disease—‘Atypical scarring of
skin’ and ‘Intracranial meningioma’—because of a chance comorbidity in one of the affected
cases.

Overall results

Finally, we turn our attention to the overall results of applying the inference procedure to
data for all genes under the three modes of inheritance considered, subject to ∑i yi ≥ 2.
In total, we applied the inference to 19,573, 3,134 and 9,733 genes respectively for the
dominant, recessive and high impact dominant modes of inheritance. The estimates of
P(γ = 1|y) are shown as vertical density plots in Figure 3.9. For the majority of genes
(65%), P(γ = 1|y)< P(γ = 1) = 0.05, which implies that no characteristic phenotype can be
found that helps distinguish carriers of the rare genotype from other subjects. This result is
consistent with the expectation that variants in only a small proportion of genes are implicated
in these rare diseases and indicates that specificity is largely controlled.

Strikingly, under all three assumed modes of inheritance, most of the highly confident
results (i.e. the genes for which the estimates of P(γ = 1|y) are close to one) are for genes
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Fig. 3.8 Estimated posterior probabilities of individual terms being included in the char-
acteristic phenotype φ using phenotype data for all subjects and variant data for DIAPH1
(∑i yi = 2) encoded under a high impact dominant model and RASGRP2 (∑i yi = 7) encoded
under a recessive model. The 10 terms with the highest marginal posterior probability are
shown. The estimated posterior probability that γ = 1 is equal to 0.872 and 0.750 for DIAPH1
and RASGRP2 respectively.

known to be relevant to the pathologies of the patients (indicated by red labels). In all but
one case (KIF1A), where a gene had P(γ = 1|y)> 0.25 and was in one of the projects’ set
of known genes, a characteristic phenotype similar to the known phenotype was inferred
(Table 3.2). Above a threshold of P(γ = 1|y) = 0.25, there was a significant enrichment
for known genes (Fisher exact test p = 2.39× 10−4,1.98× 10−4 and 2.23× 10−7 for the
dominant, recessive and high impact dominant modes of inheritance, respectively). Some
of the inferred known genes are highlighted more than once across the three modes of
inheritance in Figure 3.9 because there is power to detect the association even when the mode
of inheritance is misspecified. For example, RASGRP2-related Glanzmann’s is recessive, yet
P(γ = 1|y)> 0.25 even if a high impact dominant mode of inheritance is assumed.

The black dashes in Figure 3.9 correspond to unknown genes for which the inferred
P(γ = 1) is greater than 0.25, of which there were 8, 1 and 5 found for the dominant, recessive
and high impact dominant model of inheritance, respectively. These candidates are genes
with potentially novel roles in disease and are being actively explored.
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Fig. 3.9 Distributions of the estimated posterior means of γ obtained by applying the SimReg
method to each gene under three different modes of inheritance. The estimated values greater
than 0.25 are marked by dashes. The genes known to be associated with each of the NBR–
RD subproject disorders having P(γ = 1|y)> 0.25 and a compatible inferred phenotype are
labelled and coloured in red. An asterisk indicates that a posterior mean of γ greater than
0.25 was estimated only with the use of a prior on φ that was informed by the literature of
human and murine heritable disorders.
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Gene Mode of Inheritance Known P(γ = 1|y) Highest Marginal Posterior Probability Terms in φ

ACTN1 Dominant BPD 1.00 Increased Mean Platelet Volume (0.79), Thrombocytopenia (0.56), Platelet Count (0.44)
BMPR2 Dominant PAH 1.00 Pulmonary Hypertension (0.34), Elevated Pulmonary Artery Pressure (0.31), Pulmonary Artery (0.11)
ABCA4 Recessive RD 0.99 Retinal Dystrophy (0.22), Retina (0.22), Fundus (0.16)
USH2A Recessive RD 0.99 Retina (0.23), Retinal Dystrophy (0.2), Fundus (0.17)
CRB1 Recessive RD 0.97 Retinal Dystrophy (0.21), Retina (0.18), Fundus (0.18)
F11 High Impact Dominant BPD 0.95 Reduced Factor XI Activity (0.89), Intrinsic Pathway (0.11), Platelet Aggregation (0.07)
RASGRP2 Recessive BPD 0.75 Platelet Aggregation (0.67), Collagen-induced Platelet Aggregation (0.2), Platelet Function (0.1)
EYS High Impact Dominant RD 0.70 Retinal Dystrophy (0.2), Retina (0.17), Fundus (0.14)
F7 High Impact Dominant BPD 0.68 Extrinsic Pathway (0.5), Reduced Factor VII Activity (0.46), White Hair (0.1)
RPGR High Impact Dominant RD 0.42 Retina (0.2), Retinal Dystrophy (0.17), Posterior Segment Of The Eye (0.16)

Table 3.2 Genes for which P(γ = 1|y) > 0.25 and the inferred phenotype was compatible
with the known disease. We display the mode of inheritance under which the association was
found, the known disease, the probability of association and the top three HPO terms in the
inferred phenotypes. The marginal posterior probability of inclusion in the characteristic
phenotype is shown in brackets next to each term. When an association was found under
multiple modes of inheritance, only the true mode is shown. Note that the inferred phenotypes
are influenced by prior phenotypic information in the form of OMIM and MGI annotations.
The following abbreviations were used for the known disease classes: BPD - Bleeding and
Platelet Disorder, RD - Retinal Dystrophy, PAH - Pulmonary Arterial Hypertension.

3.6 Discussion

We have described a method for identifying the genetic determinants of rare diseases that
does not require the disease phenotype to be specified a priori. The method uncovers
associations between rare genotypes and the similarities between patient phenotypes and a
latent characteristic phenotype. Throughout this paper, rare variants have been aggregated
within genes according to a hypothesised mode of inheritance in order to define presence
or absence of a rare genotype. However, the unit of analysis could be a set of interacting
domains or any other arbitrary genomic grouping. As the inference would typically be applied
to each unit independently, it is important to set the priors on the model indicator γ with care
in order avoid generating unrealistically high posterior probabilities of association. During
final review of this work, a prioritisation procedure was proposed that combines a standard
measure of strength of phenotypic clustering amongst individuals having two loss-of-function
variants in a gene and the probability of the variants appearing in opposite haplotypes in an
outbred population [2]. In contrast, our inference procedure is based on statistical principles
and the formulation of a model which is flexible with regards to phenotypic expressivity and
genetic architecture, and robust to noisy clinical coding and moderate genetic heterogeneity.
Our Bayesian model naturally accounts for prior evidence of disease phenotypes associated
with variants in particular genes by differentially weighting the prior probability of inclusion
of HPO terms in the characteristic phenotype. Our finding that variants in DIAPH1 can cause
macrothrombocytopenia is an example of how this up-weighting can improve the inference.
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The approach we have described is a natural and powerful way of modelling many rare
disease phenotypes because it accounts for phenotypic abnormalities across all organ systems
encoded with variable precision. Studies of syndromic diseases in particular may benefit
from this way of uncovering associations. Our model can also be used for predicting the log
odds of the rare genotype using solely phenotype data by means of a function implemented in
our SimReg software. This could be used to aid diagnosis by indicating which of a patient’s
genes should be prioritised for sequencing based on his of her HPO terms. Finally, our
regression approach may prove useful for performing inference using notions of similarity
between terms in other ontologies where a binary response can be encoded.

In summary, our work represents an advancement in the statistical modelling of onto-
logical heterogeneity which may prove useful at a time in which large collections of deeply
phenotyped and sequenced cases are being assembled to uncover hitherto elusive causes
of rare heterogeneous diseases. Although our method improves significantly on modelling
of phenotypic heterogeneity, our treatment of genetic heterogeneity can still be refined, as
we currently rely on aggregation of genetic information into single binary variables. In the
following Chapter we explore improved modelling of genetic heterogeneity, in which the
possibility of a mixture of pathogenic and neutral variants is accounted for explicitly.



Chapter 4

Bayesian evaluation of variant
involvement in Mendelian disease

In this chapter, we present a fast and powerful inference procedure for identifying loci
associated with rare hereditary diseases using Bayesian model comparison. Under a baseline
model, disease risk is fixed across all individuals in a study. Under an association model,
disease risk depends on a latent bipartition of rare variants in a locus into pathogenic
and non-pathogenic, the number of pathogenic alleles that each individual carries and the
mode of inheritance. A parameter indicating presence of an association and the parameters
representing the pathogenicity of each variant and the mode of inheritance can be inferred
in a Bayesian framework. Variant-specific prior information derived from allele frequency
databases, consequence prediction algorithms or genomic datasets, can be integrated into
the inference. Association models can be fitted to different subsets of variants in a locus and
compared using a model selection procedure. This procedure can improve inference if only
a particular class of variants confers disease risk and suggest particular disease etiologies
related to that class. We show that our method, called BeviMed, is more powerful and
informative than existing rare variant association methods in the context of dominant and
recessive diseases. The high computational efficiency of BeviMed makes it feasible to test for
associations in many loci, including regions in the large non-exonic fraction of the genome.
We have applied BeviMed to whole-genome sequencing data from 6,586 individuals enrolled
to the NBR–RD study. We show that it can identify multiple loci involved in rare diseases,
while correctly inferring the modes of inheritance, the likely pathogenic variants and the
variant classes responsible.

The description of the method given in this Chapter is based on that given in: D. Greene,
NIHR BioResource–Rare Diseases Consortium, S. Richardson and E. Turro (2017). “A fast
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association test for identifying pathogenic variants involved in rare diseases”. The American
Journal of Human Genetics, 101(1):104–114.

4.1 Introduction

The statistical association methods required to identify loci relevant to rare diseases need to
fulfil several criteria. Firstly, they need to allow some sharing of information across variants
because rare diseases are often genetically heterogeneous. Secondly, they need to account
for the presence of pathogenic rare variants that act upon disease risk in a dominant or a
recessive manner alongside benign rare variants that do not affect disease risk. Thirdly, they
must be capable of integrating prior information into the inference regarding the plausibility
of a locus being implicated in a disease and variant-level co-data on pathogenicity. Such
co-data can be derived from population allele frequency databases, consequence predictions,
conservation-based predictions or genomic datasets, for example. Lastly, methods need to
have efficient implementations that enable fast application across a large number of regions
in the genome.

Section 1.6 discusses currently available methods for rare variant association testing in
the context of rare disease: Burden tests lose power due to the inclusion of neutral variants
in aggregated rare variant counts; methods modelling complex traits lose power due to not
modelling Mendelian modes of inheritance and methods which infer the likely pathogencity
of variants are not applicable to dichotomous phenotypes or too slow to be applied to large
genomic regions for large case/control cohorts.

Here we present a Bayesian model in which disease risk depends on the genotypes at
rare variants in a locus, a latent mode of inheritance and a latent partition of variants into
pathogenic and non-pathogenic subsets. Different modes of inheritance are modelled by
conditioning the probability of case status on the number of pathogenic alleles and the ploidy
for each individual at the variants. Thus, disease risk due to compound heterozygosity or
X-linked inheritance is explicitly accommodated. Prior belief on variant pathogenicity can be
incorporated in the form of shifts in the log odds of pathogenicity relative to a global mean.
By placing a vague prior distribution on the scale of these shifts, the usefulness or otherwise
of these co-data is accounted for flexibly to maximise power.

For a given set of variants, inference is performed by comparing the model described
above with a baseline model in which disease risk is independent of the genotypes. The
mode of inheritance and the pathogenicity of each variant, conditional on an association, can
be inferred through the posterior distributions of parameters in the model. Particular classes
of variants in a locus may be the only ones which confer disease risk. For example, only
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variants in the 5′ UTR region or only high-impact coding variants may be involved. Our
method can compare models fitted to different classes of variants in order to infer which
ones are responsible for disease. Typically the inference process would be repeated over
many sets of variants selected from different loci throughout the genome. The procedures are
implemented in an efficient R package called BeviMed, which stands for Bayesian evaluation
of variant involvement in Mendelian disease.

4.2 Model specification

Let y be a binary vector of length N indicating whether individual i is a case (yi = 1) or
a control (yi = 0) with respect to a particular disease. Suppose k rare variants are under
consideration (typically in a particular genomic region) and the genotype for individual i at
variant j is coded in the ith row and jth column of the genotype matrix G. A genotype of
0 or 2 denotes homozygosity for the common or minor allele respectively and a genotype
of 1 denotes heterozygosity. Under a baseline model, labelled γ = 0, y is independent of
G and all individuals have a probability of being a case τ0. Under the association model,
labelled γ = 1, individuals either have or do not have a pathogenic configuration of alleles,
and have probabilities of being a case π and τ respectively. Note that this leads to a slightly
different interpretation of model parameters τ and τ0: τ is the probability of observing case
status given that there is no association with the locus, and τ0 is the probability of observing
the case status given that there is an association with the locus, but conditional upon the
individual having a non-pathogenic configuration of alleles. Whether or not an individual
has a pathogenic configuration of alleles depends on a function f of the genotypes Gi· of that
individual, a latent binary vector z indicating which of the k variants are pathogenic, a value
si equal to the ploidy of the individual at the variant sites, and a variable m representing the
mode of inheritance governing the disease etiology though the k variants:

γ = 0 : P(yi = 1) = τ0,

γ = 1 : P(yi = 1) =

τ if f (Gi·,z,si,m) = 0,

π if f (Gi·,z,si,m) = 1.
(4.1)

The function f can represent a dominant inheritance model or a recessive inheritance
model that accounts for sex-dependent differences in ploidy on the X chromosome (i.e.
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X-linked recessive inheritance), depending on variable m ∈ {mdom,mrec}:

f (Gi·,z,si,mdom) = 1∑ j Gi jz j≥1,

f (Gi·,z,si,mrec) = 1∑ j Gi jz j≥si.

Thus, the interpretation of z depends on the mode of inheritance. In order to have a
pathogenic allele configuration, individual i requires at least 1 allele at a variant for which
z j = 1 under a dominant model, but si alleles under a recessive model, where si would
typically be inferred beforehand from the sequencing data. If genotypes are phased, then a
requirement that the si pathogenic alleles are on different haplotypes can be imposed. Recent
relatedness is a potential confounder because it is correlated with both case/control status
and genotype and, therefore, only unrelated individuals should be included in the model.

We place beta priors on all three parameters representing risk of disease:

τ0 ∼ Beta(α0,β0),

τ ∼ Beta(ατ ,βτ),

π ∼ Beta(απ ,βπ).

The mean risk of disease for individuals without a pathogenic combination of alleles in
the variants under consideration is uncertain under both models, and thus we place uniform
priors on τ0 and τ by default. However, as pathogenic combinations of alleles typically confer
a high disease risk, we suggest setting the hyperparameters for π to απ = 6 and βπ = 1. This
prior has a mean of 6/7 and almost 90% of the support lies in the interval between 0.5 and 1,
allowing for penetrance levels as low as 50% and as high as 100%. However, the prior mean
could be adapted, for example, to reflect the consistency with which the disease manifests
within families. Our model comparison framework is preferable to logistic regression with a
spike-and-slab prior on the regression coefficient because it allows for specification of prior
distributions and inference of posterior distributions conditional on γ .

We adopt a logistic regression framework (similar to the probit framework described in
Quintana and Conti [86]) for the prior probability that the variants are pathogenic. The logit
of the prior probabilities are shrunk towards a common mean, ω . If prior information which
discriminates between the likely pathogenicity of variants is available, it can be incorporated
in the form of a covariate c with regression coefficient φ in the regression equation:

z j ∼ Bernoulli(p j),

logit p j = ω +φc j.
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One would typically place a Gaussian prior on the intercept ω but, for computational pur-
poses, we prefer to use a logit-beta prior with hyperparameters αω and βω (see Section 4.3).
The prior mean of ω should reflect the expected proportion of variants that are pathogenic,
conditional on an association, and may depend on the filtering procedures used to select the
variants to include in the model. By default, p(ω) reflects a prior expectation that 20% of
variants are pathogenic and a prior probability of only 0.01 that the proportion of pathogenic
variants exceeds 0.54. This prior is well suited to missense variants but a distribution with
a higher mean should be specified if most variants are expected to be pathogenic. This
would be the case if the variants under consideration are all protein-truncating and thought to
be functionally equivalent to each other. To ensure that ω can be interpreted as the global
mean log odds of pathogenicity, the c are required to sum to zero. Thus, any user-supplied
weights, c̃ j, are centred such that c j = c̃ j − 1

k ∑l c̃l . By default, if not all weights are identical,
they are also standardised by dividing by their standard deviation. By standardising the
weights, a prior on the regression coefficient phi can be chosen so that the offsets to the log
odds, φc j, have realistic magnitudes given the capabilities of standard methods to predict
the relative impacts of different rare variants on disease risk. We place a log-normal prior
on the regression coefficient φ to force the effects of the c j to be the same as their signs.
The prior mean of φ is set to 1 so that the c j are interpretable as prior shifts in the log odds
of pathogenicity relative to the mean. A prior variance on φ of 0.35 ensures that there is
enough probability mass close to zero so that the effect of the co-data can be diminished if
the co-data are not informative and increased if they improve the model fit.

Finally, the prior probability on the mode of inheritance parameter m and the model
indicator parameter γ need to be specified. By default, we set the prior probabilities for each
mode of inheritance given an association to be the same, i.e. P(m = mdom|γ = 1) = 0.5, and
we assume that there is only a 1% chance a priori of an association, i.e. P(γ = 1) = 0.01.
However, for a particular set of variants, the choice of values for these parameters could be
based on the scientific literature or reference variant databases, for example.

4.3 Inference

Inference on presence of an association is based on the posterior probability of the model
indicator γ , which can be derived from the evidence under each model and the prior on γ:

P(γ = 1|y) = P(y|γ = 1)P(γ = 1)
∑

u∈{0,1}
P(y|γ = u)P(γ = u)

.
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Closed-form expressions exists for the evidence under models γ = 0 and γ = 1. The evidence
for model γ = 0 can be computed efficiently, irrespective of y, using the beta function:

B(α0 +∑i yi,β0 +N −∑i yi)

B(α0,β0)
.

The evidence for model γ = 1, P(y|γ = 1), can be expressed by conditioning on the different
modes of inheritance and summing:

P(y|γ = 1) = P(P(y|γ = 1,m = mdom)+P(y|γ = 1,m = mrec),

The evidence under γ = 1 conditioning on mode of inheritance m, P(y|γ = 1,m), contains a
sum over every possible value of z:

∑
z∈{0,1}k

∞∫
−∞

∞∫
−∞

p(y|z,m)p(z|ω,φ)p(ω)p(φ)dω dφ .

For brevity, we have omitted the hyperparameters ατ , βτ , απ and βπ from the conditioning
in p(y|z,m) above.
The likelihood p(y|z,m) factorises into two components corresponding to individuals with
and without a pathogenic combination of alleles, where the rate parameters τ and π can be
integrated out analytically. Thus the likelihood can be expressed in closed form:

B
(

ατ +∑i yi

(
1− x(z)i

)
,βτ +∑i (1− yi)

(
1− x(z)i

))
B(ατ ,βτ)

×
B
(

απ +∑i yix
(z)
i ,βπ +∑i (1− yi)x(z)i

)
B(απ ,βπ)

,

(4.2)

where x(z)i = f (Gi·,z,si,m).
As noted in the model specification, we use a logit-beta prior on ω , that is:

expit(ω)∼ Beta(αω ,βω).

Thus, when c j = 0 ∀ j ∈ {1, . . . ,k}, z is independent of φ , and both ω and φ can be integrated
out:

p(z) =
B(αω +∑ j z j,βω + k−∑ j z j)

B(αω ,βω)
.

By default, αω = 2 and βω = 8.
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The space of z grows exponentially with the number of variants k, which can run into the
dozens or hundreds. Therefore, despite the formulation of the model enabling many of the
parameters to be integrated out analytically, the expression for the integrated likelihood
cannot be evaluated in practice.

To tackle this problem, we reviewed various methods for estimating the evidence of a
model [30] and chose the method of power posteriors [29], which enables the evidence to be
estimated by Markov chain Monte Carlo (MCMC) sampling. In this method, the MCMC
is tempered, which is helpful in a variable selection setting such as ours because it makes
exploration of the space of sets of pathogenic variants more efficient. Samples are drawn
from a series of related distributions of the parameters called power posteriors, P(z|y,m)tP(z),
at temperatures t ∈ {t0 = 0, . . . , tL = 1} using MCMC. Let z̃(b)l be the bth sample drawn at
temperature tl . These samples can be combined to obtain an estimate of the log integrated
likelihood, logP(y|γ = 1,m):

L−1

∑
l=0

log

(
1
|z̃l|

|z̃l |

∑
b=1

e(tl+1−tl) logP
(

y|z̃(b)l ,m
))

. (4.3)

Running Markov chains at different temperatures concurrently allows exchanges of state
between chains at adjacent temperatures, which encourages good mixing. If the Kullback-
Leibler divergence between adjacent power posterior distributions is large, the resulting
estimates of P(y|γ = 1,m) may be susceptible to substantial numerical error. The method
that minimises this error involves tuning the temperatures using a procedure such as interval
bisection [28] and subsequently re-generating the chains to allow mixing between them. By
default we use a pre-selected set of temperatures t =

( l
6

)2
for l ∈ {0,1, . . . ,6}, and draw

1,000 samples from each chain. This works well in practice and avoids the need to discard
an initial set of MCMC samples for tuning the temperatures.

The use of MCMC to tackle this overall inference problem is in contrast to other methods
designed for similar purposes [61, 51], probably because of the stringent requirements
for computational speed. However, our algorithm contains features which makes MCMC
sampling efficient.

In each chain, Gibbs sampling is used to update each individual component of z in turn.
An update to z j consists of sampling from its full conditional distribution:

Bernoulli

(1+
p(y|z(0),m)p(z(0)|ω,φ)

p(y|z(1),m)p(z(1)|ω,φ)

)−1
 ,
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where z(0)j′ = z(1)j′ = z j′ for j′ ̸= j and z(0)j = 0,z(1)j = 1. During the course of the algorithm, we
keep track of xi = f (Gi·,z,si,m) for each individual. Given an update of a single component
of z, only individuals for whom Gi j > 0 need to have their corresponding value of xi updated.
G is often sparse as it typically represents rare allele counts, allowing this operation to be
performed quickly. If values for c are specified then ω and φ are updated using a Metropolis
Hastings within Gibbs.

Averaging over the space of all variant/variable sets using MCMC is a daunting challenge,
in particular in circumstances such as these where non-additive models for the interaction
effects of the variables are used. However, in practice, there is little collinearity between rare
variant allele counts in unrelated individuals, rare allele count matrices are sparse because
each individual is unlikely to have more than a handful of rare alleles in a given locus, and
the interaction effects in dominant and recessive inheritance are quite simple, leading to low
correlation between the elements of z. This means that the sampling procedure can explore
the space of z efficiently.

However, when k is large and the mode of inheritance is recessive, with some cases being
compound heterozygous, mixing of the MCMC sampler could potentially be poor if only one
element of z is updated at a time. In particular, it could be very rare for the Markov chain to
transition from a state satisfying z j1 = z j2 = 0 for some truly pathogenic variants j1, j2, to a
state where z j1 = z j2 = 1, as there may be no intermediate state that would lead to an increase
in likelihood. This is particularly problematic if the prior on ω is concentrated near 0. Thus,
under m = mrec, we propose updates to elements of z corresponding to variants occurring
in the same individuals in tandem, which overcomes the potential rarity of sampling a state
with a high likelihood.

The likelihood shown in Equation 4.2 can be expressed in terms of ratios of gamma
functions with arguments which differ by integer amounts less than or equal to the number
of individuals. Hence, the differences between all possible return values of logΓ that are
required by the procedure can be computed before commencing the sampling and stored to
avoid evaluating the logΓ function repeatedly. Evaluating logΓ is computationally expensive,
so replacing it with look-ups in the pre-computed values tables results in significant speed-
ups.

To improve computational efficiency whilst maintaining adequate precision, the imple-
mentation provides an option to stop sampling once the estimated evidence lies within a
given confidence interval, or once there is sufficient confidence that the log evidence is below
a given threshold. This behaviour is implemented based on the method of consistent batch
means [25]. The log evidence is the sum of the logarithms of expectations taken with respect
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to the power posteriors (Equation 4.3), so the central limit theorem does not apply and we
estimate the confidence interval by simulation.

By default, if variant weights are either all zero or not specified, φ and ω are integrated
out. Otherwise, they are estimated using Metropolis-within-Gibbs sampling, based on a
random walk proposals with fixed variance. The BeviMed package includes options allowing
the user to control whether and how the proposal variance is adapted in order to achieve a
desired acceptance ratio. Fixed-length sequences of values for φ and or ω are drawn from the
Markov chain using fixed proposal variances. Based on the proportion of proposals which
were accepted in the sequence, the proposal variance is then increased or decreased in order
to direct the acceptance rate towards a given interval (see Appendix C for more details).

The posterior probability of γ provides a natural means of ranking sets of variants from
different loci across the genome. The marginal posterior probability of z given γ and m can be
obtained directly from the samples drawn from the MCMC routine at the temperature t = 1
and used for ranking variants by their likely pathogenicity. The expected posterior number of
cases whose disease risk was due to their pathogenic configuration of alleles and the expected
number of pathogenic variants contributing to the explanation of those cases, given γ = 1,
can also be computed using the samples drawn at temperature t = 1. The expected number
of cases is computed using the expression Ez|y ∑

i
yix

(z)
i , and the expected number of variants

involved is computed using the expression Ez|y ∑ j∈
{

j′:∑i Gi j′yix
(z)
i >0

} z j.

The model γ = 1 assumes that the prior probabilities of variant pathogenicity are condi-
tionally independent. However, particular classes of variants in a locus may confer disease
risk, while others may be benign. We can impose a prior correlation structure on the z
reflecting these competing hypotheses by fitting a different association model for each class
of variant. If one of the hypotheses matches the true etiology of disease, then this modelling
approach can improve model fit and thus increase power. Let γ ∈ {1,2, . . . ,g} index the
association models and let Iuv indicate whether variant v is included in association model u.
Then, we can compute the probability of association across the competing models as:

P(γ > 0|y,G,c, I) =
∑

g
u=1P(y|γ = u,G(u),c(u))P(γ = u)

∑
g
u=0P(y|γ = u,G(u),c(u))P(γ = u)

,

where G(u) = G·{v:Iuv=1} and c(u) = c{v:Iuv=1}. The prior on the model indicator, P(γ), can be
informed by external data. For example, if a gene has a high probability of loss of function
intolerance [55], then the prior corresponding to a model of high-impact variants in that
gene could be up-weighted relative to competing models. We can also compute the posterior
probability of variant pathogenicity averaged over all association models using the following
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expression:

P(z|γ > 0,y,G,c, I) =
∑

g
u=1P(z|γ = u,y,G(u),c(u))P(γ = u|y,G(u),c(u))

∑
g
u=1P(γ = u|y,G(u),c(u))

.

Other quantities of interest, such as the expected posterior number of cases explained by
pathogenic variants, can be averaged over models in the same way.

4.4 Simulation study

We conducted a simulation study under different scenarios and using different methods
in order to evaluate power to detect associations, assess accuracy in variant pathogenicity
classification and investigate the effect of integration of variant-level co-data on inference.
We generated random allele count matrices for 1,000 individuals at k rare variant sites with
allele frequencies of 0.0017 and 0.03 respectively for the dominant and recessive modes
of inheritance. We used k = 25 for the main simulation study. We labelled the first five
variants pathogenic and the remaining variants non-pathogenic. The case/control labels were
simulated using the expression in Equation 4.1, assuming si = 2 (i.e. diploidy), a particular
mode of inheritance (either dominant or recessive) and a particular combination of values for
τ and π ∈ {0, 1

10 ,
2

10 , ...,1} such that π > τ . Our selection of τ and π is comprehensive but
for rare diseases we would expect τ < 0.5 and π ≫ 0.5. For each combination of mode of
inheritance, value of τ and value of π , 5,000 allele count matrices were generated and 5,000
corresponding case/control vectors were generated. The 5,000 datasets were copied and the
case/control labels corresponding to the copied set were permuted to break the association
between the genotypes and the phenotype. Thus, under each scenario, we had a pool of
10,000 datasets, of which half were generated under a model of association and half were
generated under a model of no association.

In order to assess the performance of different methods in a realistic setting, we evaluated
their ability to rank non-permuted datasets amongst a large set of permuted datasets. Under
each simulation scenario, we generated mixtures of ten non-permuted and 990 permuted
datasets selected at random from the corresponding pool. We then applied each method and
computed the mean positive predictive value (PPV), over 10,000 repetitions, at 80% power.
The PPV, which is equal to one minus the false discovery rate (FDR), is inversely related to
power. Thus, a higher PPV for a given power implies greater power for a given FDR. We
preferred to evaluate PPV rather than power because it changes monotonically as the rank
threshold for declaring a positive result is lowered, while the empirical FDR does not.
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We selected the methods ADA, CAST and SKAT for comparison as they represent diverse
approaches: ADA enables individual variant-level inference, CAST is based on the popular
Burden test but can account for either dominant or recessive inheritance modes, and SKAT
is a popular and flexible method designed for rare variants affecting complex traits. The
other methods mentioned above were either inapplicable (e.g. vbdm requires a continuous
response), too computationally expensive to incorporate into the simulation study (BRI),
unavailable (BRVD) or shown to be inferior to ADA in a previous publication [61]. Note
that ADA p-values were computed using 10,000 permutations instead of the default 1,000
in order to reduce the number of ties.

The results were ranked based on the posterior probability that γ = 1 for BeviMed
and the negative log p-value of association for the other methods. Variants were ranked
according to BeviMed’s marginal posterior probability for the components of z and according
to inclusion in ADA’s variant selection. The other methods do not provide variant-level
inference. Although the backwards elimination procedure is implemented for SKAT, it is so
slow as to make its use impractical in even a moderately sized study such as this.

Under a dominant model, BeviMed had a slightly higher PPV than the other methods
while, under a recessive model, it greatly outperformed competing methods: when π = 0.8
and τ = 0.2, BeviMed had a PPV of 100%, whilst SKAT, CAST and ADA had a PPV of
42%, 8% and 2% respectively (Figure 4.1A, B). This favourable performance was achieved
despite using the same priors for model parameters τ and π , irrespective of the values of
τ and π used to simulate the data. We note that BeviMed’s performance for τ = 0.2 was
approximately the same for the following three pairs of values for the hyperparameters αω

and βω): (2,8), which is the default, (1,1), which places a uniform prior on expit(ω) and
(2,1), which places higher prior weight on values of expit(ω) near 1.

For τ = 0.2 and high π , BeviMed was able to provide accurate rankings of variants by
estimated pathogenicity, particularly under a dominant mode of inheritance (area under the
curve = 0.97 at π = 0.9, Figure 4.1C). ADA’s average classification of variant pathogenicity
at π = 0.9 gave a true positive rate of 0.78 and a false positive rate of 0.063, while BeviMed’s
true positive rate at that same false positive rate was 0.88.

We evaluated the performance of BeviMed in relation to the most competitive alternative
method, SKAT, using the same parameters described above, but increasing the total number
variants k to 50, 100, 150 and 200. Power decreased for both methods as the total number
of variants increased, but the discrepancy in power between BeviMed and SKAT increased
(Figure 4.1E). For example, under the dominant model, BeviMed’s PPV at k = 200 and
π = 1.0 was 83% while SKAT’s PPV was only 34%.
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To demonstrate the effect of including prior information regarding variant pathogenicity
on BeviMed’s inference, we conducted a further study whereby we simulated datasets with
m = mdom, τ = 0.2 and π = 0.85 and modified the values of the variant-specific co-data
c̃ j as follows. The values of c̃ j for all variants was set to either 1 or 0. The number of
truly pathogenic variants which were assigned the value 1 was set to 0,1,2,3,4 or 5, and
the number of truly non-pathogenic variants which were assigned the value 1 was set to
0,4,8,12,16 or 20. Thus, the proportions of correctly and incorrectly up-weighted variants
were varied between 0 and 1 in increments of 0.2. In the extreme, the co-data could support
the true classification perfectly or support an entirely incorrect classification perfectly. As
SKAT can incorporate variant-specific relative weights, we applied it to the same simulated
data, setting SKAT’s weights for up-weighted variants to twice that of the others. This choice
of up-weighting factor was as low as possible whilst ensuring that, when the weights were
perfectly concordant with the true pathogenicity of the variants, the PPV was approximately
the same for SKAT as for BeviMed. Expected PPV at 80% power was estimated as described
above, based on 5,000 truly associated and 5,000 permuted datasets, for BeviMed and SKAT
under each combination of proportions of correctly up-weighted and incorrectly up-weighted
variants.

The results show that BeviMed is substantially more robust to deleterious weightings
(Figure 4.1D, left). When the co-data matched the truth perfectly, the power for BeviMed and
SKAT was approximately the same (by design), but when the co-data was entirely counter-
productive, BeviMed’s PPV was 0.46 and SKAT’s PPV was 0.06. BeviMed’s advantage was
achieved naturally in our Bayesian setting through modulation of φ , which had a posterior
expectation of 1.93 when the co-data was most useful but only 0.46 when it was least useful
(Figure 4.1D, right).

Computational performance

We compared the execution times of the different association tests, including SKAT with
backwards elimination, on simulated datasets generated as described above using N ∈
{1000,5000,100000}, k ∈ {25,100,1000} and allele frequency of 1/1,000. The results,
displayed in Table 4.2, show that CAST is the fastest method, as it uses a straightforward
Fisher’s exact test. However, CAST is substantially less powerful than BeviMed under both
dominant and recessive models (Figure 1). BeviMed has comparable execution time to
SKAT for small datasets and surpasses it for large datasets, as BeviMed’s complexity scales
with ∑i, j Gi j > 0, which typically increases only linearly with N. SKAT was also run using
the other kernels available in the R package [53]: identity by state, quadratic and two-way
interactions. All three modes were substantially slower than BeviMed and linear SKAT
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Fig. 4.1 Results of the simulation study. A, B Mean PPV at power of 80% over repeat
simulation of the BeviMed, SKAT, ADA, and CAST rare variant association tests for data
simulated using the expression in Equation 4.1 for various combinations of values of τ and
π . C Receiver operating characteristic (ROC) curves for the classification of variants as
pathogenic by BeviMed for different values of π . D Left: mean PPV at power of 80% for
BeviMed and SKAT at τ = 0.2 and π = 0.85, for varying proportions of pathogenic and
non-pathogenic variants being up-weighted in the co-data variables. Right: posterior mean
of φ corresponding to the applications of BeviMed on the left-hand grid. E Mean PPV at
power of 80% over repeat simulation of the BeviMed and SKAT association tests for different
values of k.
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(Table 4.2), less powerful than BeviMed in the simulation study and less powerful than linear
SKAT under at least one mode of inheritance. BeviMed has vastly superior performance
to the other methods which can infer the pathogenicity of variants, whilst also reporting
posterior uncertainty in pathogenicity status. The complete set of applications to the data
from the NBR–RD, which comprises two phenotypes, 35,205 loci, two modes of inheritance
and four variant classes, took 7 hours to complete using 16 CPU cores.

Software used in comparisons The source code for ADA was downloaded from
http://homepage.ntu.edu.tw/~linwy/ADAprioritized.html. Parts of the ADA code were re-
implemented in C++ in order to complete our simulation study in a reasonable amount of
time.
The implementation of the SKAT method from the R package SKAT [53] (version 1.2.1) was
used in the simulation study.
The source code for the BE-SKAT method was downloaded from
http://www.columbia.edu/~ii2135/ (package version 1.0).

4.5 Application to real data

The NBR–RD has generated whole genome sequencing data for 6,586 unrelated individu-
als with diverse rare diseases in an effort to identify novel genetic etiologies. We applied
BeviMed to the data, setting the case/control status based on two dichotomous phenotypes
represented in the study: pathologically low numbers of platelets in the blood stream (throm-
bocytopenia) with absence of syndromic features (∑i yi = 184), and Roifman syndrome
(∑i yi = 3).

Hereditary thrombocytopenia can be caused by variants in a large number of genes
with diverse functions, including genes encoding transcription factors, cytoskeletal proteins
and membrane proteins [56]. Severe thrombocytopenia is typically monogenic and non-
syndromic forms are usually dominant. Roifman syndrome is a rare autosomal recessive
disease with symptoms including growth retardation, spondyloepiphyseal dysplasia and
cognitive delay, initially described by Roifman et al [94]. Last year, variants in the non-
coding gene RNU4ATAC were identified as the cause of this disease on the basis of pedigree
studies involving six cases [70]. Within the bleeding and platelet disorders branch of the
NBR–RD dataset, three unrelated cases with Roifman were enrolled because they presented
with immune thrombocytopenia. It has recently been described that defects in RNU4ATAC
lead to abnormal minor intron retention in hundreds of genes [41].

http://homepage.ntu.edu.tw/~linwy/ADAprioritized.html
http://www.columbia.edu/~ii2135/
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For each gene, we considered single nucleotide variants (SNVs) and short insertions/dele-
tions (indels) with an allele frequency in ExAC [55] and the whole-genome sequencing com-
ponent of UK10K [115] less than 1/1,000 and large deletions overlapping exons with an in-
ternal frequency less than 1/1,000. SNVs and indels had to have a HIGH or MODERATE Variant
Effect Predictor (VEP)[69] impact or they had to have a VEP Sequence Ontology-coded con-
sequence that included non_coding_transcript_exon_variant, 5_prime_UTR_variant
or 3_prime_UTR_variant. If a variant had consequences in relation to multiple transcripts
of the same gene, only the highest-impact consequence was retained. In total, we considered
1,338,830 variants in 35,205 gene loci, each containing between 1 and 2,615 variants.

We set P(m = mdom|γ = 1) to 0.8 for thrombocytopenia and 0.1 for Roifman syndrome,
to reflect the belief that these diseases tend to be dominantly and recessively inherited,
respectively. For each locus, we considered four association models corresponding to four
classes of variants:

• “High”: large deletions and variants with a HIGH impact annotation,

• “Moderate”: variants with a MODERATE or HIGH impact annotation or a consequence
including non_coding_transcript_exon_variant but none of the UTR-related
consequences,

• “5′ UTR”: variants without a MODERATE or HIGH impact annotation and a consequence
including 5_prime_UTR_variant,

• “3′ UTR”: variants without a MODERATE or HIGH impact annotation and a consequence
including 3_prime_UTR_variant.

The hyperparameters were assigned default values except for αω and βω , which we set
to (2,1) instead of (2,8) under the “High” model. This reflects a belief that a greater
proportion of variants are likely to be pathogenic under the “High” model than under the
other three models. When we fitted the “Moderate” model, we up-weighted the variants
that were also included in the “High” class relative to the others by setting their uncentred
weights c̃ j to one rather than zero. For coding loci, we assigned prior probabilities of 0.004,
0.003, 0.002 and 0.001 to the four models above, respectively, in order to reflect the relative
biological plausibility of the different classes of variants being involved in disease. For
non-coding genes, we assigned a prior probability of the “Moderate” model equal to 0.01.
Thus, P(γ > 0) = 0.01 for all genes. For completeness, we also applied SKAT to the four
classes of variants described above separately, using default settings, and retained the result
with the lowest p-value for each locus.
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Identifying associations with thrombocytopenia

The median value of the posterior probability of association with thrombocytopenia across
all gene loci was 0.0064. The independent gene loci for which the posterior probability
of association exceeded 0.9 are shown in Table 4.1. We show the posterior probability of
association, the posterior probability of the mode of inheritance parameter, the estimated
number of cases explained by the pathogenic variants, the estimated number of pathogenic
variants which are present in the cases and the total number of variants considered. These
results corroborate established knowledge of platelet disorders. ACTN1 related macrothrom-
bocytopenia is a dominant bleeding and platelet disorder recognised since 2013 [49]. GP1BB
has traditionally been linked to a recessive bleeding and platelet disorder called Bernard-
Soulier syndrome [96], but earlier this year we reported a dominant mode of inheritance
resulting in a milder platelet phenotype [101]. The posterior on the mode of inheritance
parameter strongly favoured dominance in this case, which is consistent with an absence of
Bernard-Soulier cases in our dataset. RUNX1 encodes a transcription factor linked with a
dominant platelet disorder with associated myeloid malignancy. MYH9 harbours variants
responsible for MYH9-related disorder, which is characterised by macrothrombocytopenia
and occasional Döhle-like inclusion bodies in neutrophils and pathologies of the ear, eye,
kidney or liver. Finally, variants in the 5′ UTR of ANKRD26 were reported to result in non-
syndromic macrothrombocytopenia in 2011 [82] after an initial erroneous report that variants
in the neighbouring gene ACBD5 were responsible [85]. The association we have identified is
driven by variants in the 5′ UTR, despite this class of variants being down-weighted relative
to the classes comprising variants with missense or high-impact predicted consequences on
the translated gene product. The variant level results of the inference shown in Figure 4.2
indicate the high posterior probability of association for the first eight variants in the 5′ UTR.
It is noteworthy that one of the variants, which encodes c.−113A>C and was reported in a
follow-up [76] to the original 2011 paper, does not appear to be pathogenic, as five out of the
six individuals with the variant, including one homozygous for the alternate allele, do not
have a bleeding or platelet disorder.

There were four additional loci having P(γ = 1|y) > 0.9. They all tagged a true as-
sociation in Table 4.1 but were labelled with the names of neighbouring genes and had
lower posterior probabilities of association. A missense variant encoding Ile308Thr in
WAC was in linkage disequilibrium with one of the 5′ UTR variants in ANKRD26, inducing
P(γ = 1|y) = 0.993 for the WAC locus. The other three results were induced by the presence
of deletions in RUNX1 spanning three neighbouring RNA genes or pseudogenes: AF015262.2
(P(γ = 1|y) = 0.978), RPL34P3 (P(γ = 1|y) = 0.976) and EZH2P1 (P(γ = 1|y) = 0.974).
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Fig. 4.2 Results obtained by applying our inference procedure to rare allele counts in
ANKRD26 against the thrombocytopenia case/control label. Exons are represented by grey
blocks starting from the 5′ UTR on the left and ending with the 3′ UTR on the right. The
bar chart above shows the marginal posterior probabilities of pathogenicity conditional on
dominant inheritance for individual rare variants observed amongst the cases and controls.
A small amount of jitter due to Monte Carlo sampling error can be observed. The bar chart
beneath shows the breakdown of heterozygous and homozygous carriers of the variants
between cases and controls.

The alternate method which was most powerful based on the results of the simulation,
SKAT, did not rank the loci listed above as highly, even when only the variant class with
the lowest p-value was retained for each gene. RUNX1, ANKRD26, MYH9 and ACTN1 and
GP1BB had ranks of 1,3, 8, 16 and 74, respectively, with none of the other loci in the top 20
ranks being known to be implicated in thrombocytopenia.

Identifying variants responsible for Roifman syndrome

The locus with the highest posterior probability of association with the Roifman syndrome
case label was RNU4ATAC (P(γ = 1) = 1.000), driven by four different single nucleotide
variants in this non-coding gene. Two of the cases were compound heterozygous, including
for a variant observed in 6 controls, and one was homozygous. As all but one of the variants
were seen only in heterozygosity, the posterior probability of variant pathogenicity conditional
on recessive inheritance was relatively high across the gene but markedly lower than the
causal variants observed in the cases, which had a posterior probability of pathogenicity very
close to 1 (Figure 4.3). All other genes had a posterior probability of association less than
0.9 and the expected number of cases explained by the variants in other loci was less than 2.
SKAT assigned RNU4ATAC a p-value of zero, but this was also the case for 34 other genes,
which were tied in the top rank.
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RNU4ATAC chr2:122288456−122288583 ENST00000580972
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122288507 G>A
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122288514 T>C
122288515 G>A
122288516 C>G
122288518 A>G
122288518 indel
122288519 A>C
122288520 C>T
122288521 G>A
122288522 C>T
122288523 C>T
122288525 G>A
122288525 indel
122288526 indel
122288527 A>C
122288528 C>T
122288528 C>G
122288529 A>G
122288532 A>C
122288534 indel
122288537 C>G
122288538 G>A
122288539 C>T
122288541 T>A
122288542 C>A
122288560 indel
122288566 G>A
122288567 G>C
122288569 G>A
122288570 C>T
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122288571 A>G
122288572 indel
122288574 T>G
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122288577 indel
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Fig. 4.3 Results of applying the inference procedure to rare allele counts in RNU4ATAC
against the Roifman syndrome case label. The bar chart on the left shows the break down
of heterozygous and homozygous carriers of the variants in cases and controls. Compound
heterozygous individuals with two rare alleles in RNU4ATAC were observed, and for each
such individual a line is drawn linking the two variants. The bar chart on the right shows
the marginal posterior probabilities of pathogenicity conditional on recessive inheritance
for each rare variant. A small amount of jitter due to Monte Carlo sampling error can be
observed.
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ANKRD26 1.000 1.000 5′ UTR 10.792 7.792 87
RUNX1 1.000 1.000 Moderate 8.153 8.191 214
MYH9 1.000 1.000 Moderate 10.964 9.116 141
GP1BB 0.999 1.000 Moderate 8.223 7.228 69
ACTN1 0.999 1.000 Moderate 9.867 7.867 121

Table 4.1 Independent loci with a posterior probability of association with thrombocytopenia
greater than 0.9.

4.6 Discussion

We have presented a Bayesian genetic association method for rare diseases that is more
powerful than existing methods, particularly for the recessive mode of inheritance, and
provides summary statistics on variant-level pathogenicity and mode of inheritance very
efficiently. It enables mode of inheritance to be integrated out or inferred from the data.
Indeed, we were able to determine a dominant mode of inheritance for variants in a gene,
GP1BB, that has been associated only with a recessive disease for more than thirty years.
Given an association under a particular mode of inheritance, our method also estimates
the number of cases explained by pathogenic variants and the number of variants that are
pathogenic.

Prior information specific to a particular set of variants under consideration can modulate
the evidence of association, which can be critical when the number of cases with a shared
genetic etiology is small. For example, the prior on the model indicator γ can be adjusted
to reflect locus-specific genomic and epigenomic knowledge in order to encourage regions
with higher prior plausibility of involvement in the disease phenotype to rank more highly
than if the same prior had been used across all regions. As inference would typically be
applied to many regions, the priors on γ across different applications should be chosen with
care to avoid a high overall FDR for a given threshold on the posterior probability of γ . The
prior probability of pathogenicity for a particular variant, given the association model, can be
modulated by knowledge about the variant, such as predicted consequence, allele frequency
or conservation. These variant weights are interpretable as prior shifts in the log odds of
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Association tests with variant identification
BeviMed 0.03 0.09 0.07 0.23 38.90
ADA 3.69 11.30 18.76 59.23 –
BE-SKAT 53.46 175.18 137.39 799.80 –
Association tests without variant identification
CAST 0.01 0.01 0.02 0.05 1.77
SKAT 0.02 0.05 0.09 0.30 140.82
SKAT (IBS) 3.73 4.38 548.47 675.62 –
SKAT (quadratic) 4.08 4.12 571.69 598.96 –
SKAT (2wayIX) 4.09 4.37 580.90 575.67 –

Table 4.2 Execution times in seconds of different association tests for datasets with different
N and k. BE-SKAT refers to SKAT with backwards elimination of variants. SKAT (IBS)
refers to application of SKAT using the weighted identity by state kernel function. The
p-values for ADA and BE-SKAT were computed using their default number of permutations,
respectively 1,000 and 300. Dashes indicate that the method took longer than 1 hour to
compute.

pathogenicity, which provides an intuitive basis for assigning particular values to them. In
sharp contrast to frequentist approaches, we use a flexible prior on the effect sizes of the
weightings that reflects the uncertainty in their utility.

The results of inference on different subsets of rare variants in a locus (selected, for
example, on the basis of their predicted consequences) can be interpreted and combined
easily in a Bayesian framework using a model selection procedure. The posterior probability
of variant pathogenicity and other quantities of interest can be averaged over models. In
addition to increasing statistical power if particular classes of variants in a locus are the
only ones that confer disease risk, this feature also allows inference of the kind of variants
responsible for disease, which may suggest particular genetic etiologies. In our applications,
we were able to identify a set of variants in the 5′ UTR of a gene that causes a platelet
disorder. The high posterior probability of pathogenicity of variants in the 5′ UTR to the
exclusion of coding variants, even those observed only in cases, was made possible by our
model selection procedure.
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Variants highlighted by a method such as ours would usually undergo assessment by a
multidisciplinary diagnostic team and it would resolve increasing numbers of cases over
time. In our application to real data, we have kept the case/control labels the same for
each application. However, in the context of genetically heterogeneous diseases, we would
recommend relabelling any case whose phenotype has been fully accounted for by pathogenic
or likely pathogenic variants in a different locus as a control. This boosts specificity as it
makes it less likely for a non-pathogenic rare variant carried by a case to induce a high
probability of association.

The model assumes that relatedness between individuals is sufficiently low as not to
be associated with either case/control status or the genotypes. In practice, we recommend
removal of any first, second and third degree relatives. Our method is designed to be
applied to up to thousands of rare variants at a time and efforts should be made to ensure all
potentially implicated variants in a locus are included in the model, or the set of models, under
comparison. Rare variants would typically be unlinked within a locus but may occasionally
be linked across loci. For example, large deletions may span multiple genes and certain pairs
of rare variants could be in linkage disequilibrium. In these situations, a non-pathogenic
rare variant in one locus linked to a pathogenic variant in another locus could induce a
non-causal association. Such associations can either be filtered post-hoc through comparison
of inference results in nearby loci or avoided altogether by joint modelling of variants across
multiple nearby loci.

Although Bayesian inference is typically thought of as slow, our implementation can
handle data from over a million variants spread across tens of thousands of regions called
in thousands of samples in a few hours. BeviMed is thus capable of handling with ease the
demands of modern genomic datasets in the coding and the regulatory regions of the genome.





Chapter 5

Gene-docs: a web application for
browsing phenotypic and genetic data

I have contributed to the ongoing analysis of the phenotypic and genetic data generated
by the BPD arm of the NBR–RD project as part of analysis team with a variety of back-
grounds, including statistical analysts and clinicians. The raw data relating to individuals
recruited to the NBR–RD project are stored at a secure data centre. Remote access to the
data requires experience with unix software, particularly for connecting to remote servers
securely. The data are typically stored in large, compressed files and require experience with
specialised software for browsing and querying. It is therefore difficult for collaborators
without bioinformatics training to make use of the data in their research. Furthermore, as
there are many different diseases represented amongst the probands, cumulatively carrying
millions of different rare variants, many separate analyses are required in order to infer which
hypotheses are most probable and should be followed up in further work. Sharing up-to-date
results of such inference in an interpretable way is therefore an important part of the research.

In order to improve access to the data and share the results of analysis, I have developed
Gene-docs, a web application which provides a user interface for querying the genetic and
phenotypic information so that it can be reviewed effectively, and providing prioritised results
of analysis. It has been deployed successfully for the data generated by the NBR–RD project,
proving its efficacy for a large rare disease sequencing project. The underlying functionality,
responsible for querying the variant call and phenotype data and performing analysis, is
written in R. The presentation layer is written in a combination of languages: php, javascript
and html. Part of this work comprised development of a computational pipeline to run
systematic analyses of the data, including BeviMed and SimReg.

In order to apply BeviMed to the collection, probands must first be clustered into groups
with similar clinical phenotypes suggestive of a possible shared genetic aetiology so that
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probands in the each group can be treated as cases whilst the rest of the probands can
be treated as controls. The task is challenging because of the extensive heterogeneity of
phenotypes and diversity of clinical coding practices, and therefore cannot be undertaken by
unsupervised computational methods alone. Guided by expert biological and clinical opinion,
a set of rules were developed to classify cases into groups of with potentially shared disease
aetiology based on their phenotypes. These ‘case group rules’ are used to automatically link
new cases with group labels based solely on their phenotype, without specific input required
from clinicians or analysts. In a scenario where new data are made available steadily, this
reduces the time spent assigning people to case groups, reduces the chance that mistakes are
made, and means that new results can be forwarded for further investigation sooner after data
are released.

SimReg is applied in a similar fashion to variants in each gene, except that instead
of using case/control labels, the HPO phenotype of each proband is used. The results of
systematically applying SimReg and BeviMed are presented as tables, where gene/gene-
phenotype associations respectively with the highest posterior probabilities of association
are display and arranged in descending order of posterior probability of association. For
SimReg, this table contains columns containing the gene involved, the posterior probability
of association, and a summary of the inferred characteristic phenotype giving the three most
marginally associated HPO terms. Each result is then linked to a page which gives the full
details of the inference, including the raw data and inferred characteristic phenotype as an
ontological plot. For BeviMed, the table of results includes columns containing the gene,
probability of association, probability of dominant inheritance given association, modal
model (i.e. corresponding to a particular class of variants as described in Section 4), expected
number of cases explained and expected number of variants involved. Results are linked
to pages showing the detailed results of the inference and raw data, including the table of
variants in the region to which the analysis was applied annotated with bar charts giving the
marginal posterior probability of involvement of each variant (see Figure 5.2). Tabulating the
most significant results of analysis and linking them to the raw data significantly speeds up
the process of deciding on whether new associations are biologically plausible and worth
following up.

Gene-docs has multiple forms designed to handle different kinds of queries (see Fig-
ure 5.1). A form enabling data lookup by gene generates tables of variants within the query
gene, listing individuals harbouring each variant. Users can select filters dictating which
variant to include based on functional class, predicted consequence, allele frequency thresh-
olds based on ExAC [55] and CADD Phred score thresholds [45]. Users have the option of
specifying a dichotomous disease phenotype, which triggers BeviMed to run in real time
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Fig. 5.1 Screenshot of the Gene-docs main page showing links to pages containing the results
for the systematic application of BeviMed and SimReg, and forms for submitting various
queries against the phenotypic and genetic data. Forms are organised into sections: the
‘Genes’ section contains forms which allow data pertinent to given genes to be looked up;
the ‘Table of pedigrees’ links to a table of statistics about all pedigrees in the BPD study
with links to detailed individual pedigree pages; the ‘Individuals’ section contains forms
which allow genetic data relevant to given samples or sets of samples to be looked up and
the ‘Phenotypes’ section contains a form which allows phenotypic data to be looked up by
individual, a form which allows individuals to be sorted in order of phenotypic similarity to a
given individual, and a link to detailed phenotypic information on the members of each case
group.
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Fig. 5.2 Screenshot of a table of variants from gene specific page for GP1BB with BeviMed
annotation of variant posterior probabilities of pathogenicity. Each row corresponds to one
variant in the locus, with the sample IDs of individuals carrying alleles for the variant in the
‘Cases’ column. Bold text indicates a case, whilst regular text indicates a control. Asterisks
indicate that people were excluded from the analysis because they were either unaffected
or relatives of a proband, and gene names in brackets next to a sample ID indicate that a
variant in the named gene has been identified as the causative variant. In addition to the
information which identifies each variant, i.e. the chromosome, position, reference sequence
and alternate sequence, the table also contains the dbSNP [98] ID (ID), the VEP Sequence
Ontology-coded consequence (Type), the amino acid change (Amino Acid) and unshown
columns the affected transcript identifier [3], the CADD Phred score and allele frequency in
various reference cohorts.

allowing annotation of the variants with probabilities of pathogenicity given association with
the gene (Figure 5.2). javascript enabling the variants to be filtered based on probability of
pathogenicity is included in the page. Further to the table of variants, a table of additional
information for each individual with alleles in the given gene is generated. Information
included in the table includes sequence/patient IDs, enrolling centre names, gender, ethnicity,
clinical notes and phenotypic information.

Another form allows lookup by sample ID(s), bringing up detailed phenotypic information
about the query samples, including graphs showing the HPO encoded phenotype rendered
using ontologyPlot. There is also a form for looking up families of individuals by pedigree
ID. On the pedigree page, the R package kinship2 [112] is used to draw an annotated
pedigree diagram (Figure 5.3). In addition to the standard phenotypic and metadata for
pedigree members, where pedigrees have affected sequenced members, variant call data are
analysed to bring up a table of rare variants which cosegregate with affection status within
the pedigree, ordered by the phenotypic similarity to the ontological phenotype profiles of
model organisms for genes orthologous to the ones harbouring the variants.
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Fig. 5.3 Screenshot of top part of Gene-docs pedigree specific page showing pedigree diagram
and table of statistics about participating members of the pedigree, including identifiers,
gender, diagnostic status (Status), names of applicable syndromes (OrphaName), HPO terms
relevant to mode of inheritance (M.O.I. Terms) and the names of case groups to which the
individual has been assigned (Labels).
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For each case group rule, Gene-docs generates a page tabulating detailed meta and
phenotypic information for each affected ‘case’ (with respect to the given rule). The table of
phenotypic information is sorted by ascending order of mean phenotypic similarity to the
other cases in the group in order to ease the process of identifying individuals who do not
belong in the group. The phenotype based rules are useful in a project such as the NBR–RD
project where affected individuals are regularly recruited because the groups can be derived
autonomously.

Another form allows searching by phenotype, generating a list of HPO coded cases
ordered by phenotypic similarity to the query phenotype. The query phenotype can be
specified as an individual if generating a list of cases phenotypically similar to the individual
is desired.



Chapter 6

Conclusions

Historically, linkage-based analysis of pedigrees has been used to identify genes which
contain variants responsible for rare diseases. The falling cost of high-throughput sequencing
has led to the initiation of international whole-genome rare disease sequencing projects,
increasing power to detect association between genomic loci and disease across large cohorts.
Despite these advances, methodological development for rare diseases has not kept pace:
methods for analysing such data have not properly taken account of the composite nature of
rare disease phenotypes and the mixture of pathogenic and benign variants in conjunction
with Mendelian modes of inheritance. Furthermore, frequentist methods have been preferred
to Bayesian methods to test for association between disease status and genomic loci [51], as
they often allow p-values to be computed rapidly. However, there are many sources of prior
information which are relevant to rare disease, for example tissue-specific expression data
and mouse model phenotypes. Including such information in the analysis could be critical to
boost signal over a critical threshold when analysing diseases with very low case numbers. It
is therefore important that Bayesian methods are developed which appropriately account for
key aspects of rare diseases and which are scalable to modern datasets comprising thousands
or hundreds of thousands of indviduals.

Rare disease phenotypes are now frequently encoded using terms from the HPO. A lack
of software for representing such data in mainstream statistical programming environments
has made such ontologically encoded data difficult to analyse. In Chapter 2 I described
ontologyX, a suite of R packages which enable ontological data for arbitrary ontologies to
be manipulated and analysed effectively: ontologyIndex provides a simple set of functions
for reading ontologies, transforming ontological annotation and supporting extension to
higher-level functionality; ontologySimilarity enables semantic similarity computation for
annotation sets belonging to arbitrary ontologies and is thousands of times faster than existing
R packages, and ontologyPlot makes visualising sets of ontological terms and relationships
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between them straightforward. I then showed how ontological similarity can be used to
analyse rare disease phenotypes, including testing for significant phenotypic similarity of
subgroups of rare disease cases in a larger cohort, and how using ontological similarity
between mouse models for gene knock-outs and the ontologically encoded disease of a
family can be used to support prioritisation of candidate causal variants for a family with
a rare disease. Finally, I showed how the software can be used to construct clusters of rare
disease cases based on unsupervised clustering of ontologically encoded phenotypes, and that
by using ontologically encoded model organism phenotypes to inform a subsequent gene-set
enrichment analysis of clusters, good power for detecting associations can be achieved.

In Chapter 3 I described SimReg [37], a method based on a statistical model which
links disease risk to ontologically encoded phenotypes, in which a latent disease phenotype
is inferred from the data. We demonstrated effectiveness of this method by applying it
to over 2,000 rare disease cases belonging to the NBR–RD project and inferred many
genuine associations between diseases and genes. Prior knowledge about the kinds of disease
phenotype involved is incorporated into the prior distribution for the latent phenotype by
up-weighting the prior probability mass on disease phenotypes by a factor which depends
on the similarity to the ontological profile for the gene derived from the literature. This
approach boosted the evidence for the association between DIAPH1 and hearing impairment,
leading to the discovery of a novel association between the gene and bleeding abnormality
and thrombocytopenia [109]. Since publication, SimReg has also been incorporated into
an open-source web application for phenotypic and genetic data called ‘Phenopolis’ [84],
where it is used to augment summaries of data relevant to genes with inference summaries
including the characteristic phenotype.

In Chapter 4 I described ‘BeviMed’ [38], a method based on a statistical model which
links disease risk to an individual’s configuration of alleles at rare variant sites in a locus.
It explicitly models a mixture of pathogenic and non-pathogenic alleles, and dominant and
recessive inheritance by presence of at least one and two pathogenic alleles respectively. It is
faster and more powerful than comparable existing methods and is feasible for application
to modern datasets. It has been applied to the data generated by the NBR–RD project and
shortlisted numerous true associations and implicated many novel variants in disease [113,
118]. The output of the method applied across multiple genomic loci can be tabulated,
prioritised by the probability of association, displaying information about inferred aetiology
(i.e. the posterior distribution on the class of variants involved), inferred mode of inheritance,
and estimated number of cases explained and variants involved.

In Chapter 5, I described a computational analysis pipeline and web application for
presenting genetic data, phenotypic data and analytical results together in a way which
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enables collaborators without bioinformatics training to fine-grained access to raw data and
browse significant results of analysis. During the course of my PhD studies, development
of the application has been guided by feedback from clinical researchers and ongoing
development of new methods, with many features added over time. Consequently it is widely
used amongst researchers involved in the NBR–RD project and has helped streamline the
discovery and publication process on several occasions.

The methods presented in this thesis formalise essential properties of the genetic basis of
rare diseases in statistical models, and have been applied to large datasets, resulting in the
discovery of novel aetiologies of disease. However, further methodological development
will be necessary in order to fully exploit the data generated by large sequencing studies for
rare diseases. Association methods which model the relationship between HPO encoded
phenotypes and rare variation while accounting for genetic heterogeneity within a locus could
increase power to detect genomic regions in many unsolved rare diseases. In future work
I intend to develop such a method, which extends the model for phenotypic heterogeneity
presented in Chapter 3 in order to account for local genetic heterogeneity and Mendelian
inheritance as is done by the model presented in Chapter 4. The challenge will be modelling
the response as a vector of genotypes at rare variant sites rather than a single aggregate
genotype, while conditioning on a latent parameter representing the mode of inheritance,
a latent parameter representing the pathogenicity of each variant and the latent parameter
representing the characteristic HPO phenotype. This will substantially increase the size of
the model space and make inference computationally challenging, requiring the development
of new algorithms.

Variation in DNA sequence at non-coding loci can influence gene expression regulation,
for example by affecting the propensity of proteins called transcription factors for binding
to DNA and effecting their normal role in transcription. Genetic variation can also effect
the folding of DNA into three-dimensional structures, affecting accessibility of the DNA to
transcription machinery (including transcription factors) and the ability of distal regulatory
DNA elements to interact with that machinery. Recent results reveal the role of non-exonic
DNA sequences in a variety of diseases through their effects on transcription binding sites
and the three-dimensional structure of DNA [106]. However, the size of the non-coding
genome relative to the number of WGS samples sequenced so far means that naively testing
segments of the genome for association with disease is underpowered. Therefore methods for
identifying which regions of the genome are more likely to be involved in gene expression
regulation can be informative. For instance, in ATAC-seq [10], which stands for ‘Assay for
Transposase-Accessible Chromatin Sequencing’, determining which loci of the genome are
potentially involved in regulation for a particular tissue type. Additionally, mechanisms
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depending on non-coding loci for maintaining normal gene expression may not be as sensitive
to the specific sequence of nucleotides as normal protein structure is. Therefore models
which up-weight the importance other aspects of DNA sequences in non-coding loci — for
example the size of copy number variations, which could play a role in the three-dimensional
structure of DNA — may be helpful for investigating involvement in disease.

The work presented in this thesis will prove useful for analysing variation affecting the
regulatory regions of the genome, and serve as a good starting point for further methodologi-
cal development in the field.
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Appendix A

ontologyX comparisons and examples

This appendix contains the code used to generate the comparisons and examples given for
ontologyIndex, ontologyPlot and ontologySimilarity in Chapter 2.
The following versions of software packages were used to generate the results presented in
this thesis:
ontologyIndex 2.2, ontologyPlot 1.4, ontologySimilarity 2.2, GOSim 1.11, GOSemSim 1.99.4
and ontoCAT 1.26.0.

Performance comparison with ontoCAT

library(ontoCAT)

library(ontologyIndex)

set.seed (1)

if (!exists("hpo_file_path")) stop("Download HPO from: http

:// purl.obolibrary.org/obo/hp.obo and set hpo_file_path 

variable to its path")

#original computation based on HPO data -version: releases

/2016 -04 -01

hpo_ontologyIndex <- get_OBO(hpo_file_path)

hpo_ontoCAT <- getOntology(hpo_file_path)

ancestors <- expression(



118 ontologyX comparisons and examples

ontoCAT=ontoCAT :: getAllTermParentsById(object=

hpo_ontoCAT , id=term),

ontologyIndex=ontologyIndex :: get_ancestors(

hpo_ontologyIndex , terms=term)

)

descendants <- expression(

ontoCAT=ontoCAT :: getAllTermChildrenById(object=

hpo_ontoCAT , id=term),

ontologyIndex=ontologyIndex :: get_descendants(

hpo_ontologyIndex , roots=term)

)

n_terms <- length(hpo_ontologyIndex$id)

desc_times <- lapply(descendants , function(x) { system.time

(sapply(hpo_ontologyIndex$id, function(term) eval(x)))

})

anc_times <- lapply(ancestors , function(x) { system.time(

sapply(hpo_ontologyIndex$id , function(term) eval(x))) })

#print results table

print(data.frame(check.names=FALSE , stringsAsFactors=FALSE ,

"Descendants (ms)"=sapply(desc_times , function(x) 1000*

as.numeric(x["elapsed"])/n_terms), "Ancestors (ms)"=

sapply(anc_times , function(x) 1000*as.numeric(x["elapsed

"])/n_terms)))
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Using ontologyPlot to visualise QPCTL and CRNN GO an-
notation

library(ontologyIndex)

library(ontologyPlot)

library(ontologySimilarity)

data(go)

data(gene_GO_terms)

data(GO_IC)

cc <- go$id[go$name == "cellular_component"]

cc_anno <- lapply(gene_GO_terms[c("QPCTL","CRNN")],

function(x) get_ancestors(go ,

intersection_with_descendants(go, roots=cc, x)))

all_terms <- unique(unlist(use.names=FALSE , cc_anno))

QPCTL <- cc_anno$QPCTL

CRNN <- cc_anno$CRNN

terms <- remove_uninformative_terms(go, list(QPCTL , CRNN))

pdf(file="GO-plot.pdf", width =10.5, height =4)

par(mfrow=c(1, 2))

onto_plot(go , terms=all_terms ,

width=calibrate_sizes(GO_IC[all_terms], low=1, high

=3),

fontsize =50,

fillcolor=rgb(0, all_terms %in% QPCTL , all_terms %

in% CRNN , 0.5))

onto_plot(go , terms=terms ,

width=calibrate_sizes(GO_IC[terms], low=1, high =3),

fillcolor=rgb(0, terms %in% QPCTL , terms %in% CRNN ,

0.5))

dev.off ()
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Comparing performance of semantic similarity computation

library(ontologyIndex)

library(ontologySimilarity)

library(GOSemSim)

library(GOSim)

set.seed (1)

initialise <- expression(

ontologySimilarity ={ data(go); IC_os <-

descendants_IC(go) },

GOSim=GOSim ::: initialize (),

GOSemSim=hsGO <- godata("org.Hs.eg.db", keytype = "

SYMBOL", ont="MF", computeIC=TRUE)

)

# GOSim uses Entrez Gene IDs which we need to map to HGNC

symbols for comparison with GOSemSim and

ontologySimilarity. We obtained the mapping using the

table downloaded from the HUGO Gene Nomenclature

Committee website , using the custom download page (http

:// www.genenames.org/cgi -bin/download) and selecting the

"Approved Symbol" and "Entrez Gene ID" columns , and

saving it as "symbol.txt" in the working directory.

stopifnot(file.exists("symbol.txt"))

symbol_map <- read.table(file="symbol.txt", header=TRUE ,

sep="\t", comment.char="", stringsAsFactors=FALSE)

env <- environment ()

ini_times <- lapply(initialise , function(x) { cat(

as.character(x), "\n"); system.time(eval(x, envir=env))

})

IC <- slot(hsGO , "IC")
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gene_anno <- with(data=slot(hsGO , "geneAnno"), split(f=

SYMBOL , x=GO))

n_genes <- 100

n_terms <- 1000

genes <- names(gene_anno)[1: n_genes]

terms <- names(which(IC < Inf & IC > 0))[1: n_terms]

#create expressions for calculation of term/gene similarity

matrices for comparison

#note that different values are obtained in the matrices as

different sources of information content are used.

term_similarity_matrix <- expression(

GOSim=getTermSim(terms , method="Lin", verbose=FALSE

),

GOSemSim=mgoSim(terms , terms , semData=hsGO , measure

="Lin", combine=NULL),

#ontologySimilarity uses Lin 's expression for term

similarity by default

ontologySimilarity=get_term_sim_mat(go,

information_content=IC_os[get_ancestors(go ,

terms)], row_terms=terms , col_terms=terms),

"ontologySimilarity (indexed)"=NA

)

gene_similarity_matrix <- expression(

GOSim=getGeneSim(as.character(na.omit(symbol_map$

Entrez.Gene.ID[match(genes , symbol_map$

Approved.Symbol)])),similarity="funSimMax",

similarityTerm="Lin",verbose=FALSE),

GOSemSim=mgeneSim(genes , semData=hsGO , measure="Lin

", combine="BMA", verbose=FALSE),
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ontologySimilarity=get_sim_grid(ontology=go,

information_content=IC_os , term_sets=gene_anno[

genes]),

"ontologySimilarity (indexed)"=local ({ term_sim_mat

<- get_term_sim_mat(go, information_content=

IC_os[get_ancestors(go , unique(unlist(use.names=

FALSE , gene_anno[genes])))]); get_sim_grid(

term_sim_mat=term_sim_mat , term_sets=gene_anno[

genes]) })

)

calc_times <- lapply(list(term_sim=term_similarity_matrix ,

gene_sim=gene_similarity_matrix), function(calc_type)

lapply(calc_type , function(x) if (is.na(x)) NA else

system.time(eval(x))))

#print results table

print(data.frame(check.names=FALSE , stringsAsFactors=FALSE ,

"Term sim (s)"=sapply(calc_times$term_sim , function(x)

as.numeric(x["elapsed"])), "Gene sim (s)"=sapply(

calc_times$gene_sim , function(x) as.numeric(x["elapsed"

]))))
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SimReg manual

Introduction

SimReg has a function sim_reg for performing ‘Bayesian Similarity Regression’. Its output
consists of a posterior probability of association between ontological term sets and a binary
response variable, and, conditional on the association, a ‘characteristic ontological profile’
such that ontological similarity to the profile increases the probability of the binary variable
taking the value TRUE. The procedure has been used in the context of linking an ontologically
encoded phenotype (as HPO terms) to a binary genotype (indicating the presence or absence
of a rare variant within a given gene), and this guide will adopt the same type of application.

The function accepts arguments that include the logical response variable y, the onto-
logically encoded predictor variable x, and additional arguments for tuning the compromise
between execution speed and precision for the procedure. It returns an object of class
sim_reg_output, which contains the results of the inference. The probability of associa-
tion, i.e. the probability that model selection indicator gamma = 1, can be extracted from
the output object using the prob_association function. The posterior distribution of the
characteristic ontological profile phi may be of interest, which can be extracted using the
function get_term_marginals.

In this example, we will apply sim_reg to randomly generated data, including ontological
term sets comprising terms from the HPO. Random HPO term sets will be generated in
two ways: independently of and conditional upon a logical vector, y — which is set to 10
TRUEs followed by 90 FALSEs — and stored respectively in the variables x_independent
and x_dependent. sim_reg will then be applied to each of the randomly generated sets of
term sets and y, and the results will be compared.

Initially, an HPO template for the typical phenotype of a hypothetical disease is created.
The template is stored in the variable template and set to include HPO terms HP:0005537,
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HP:0000729 and HP:0001873, corresponding to phenotype abnormalities ‘Decreased mean
platelet volume’, ‘Autistic behavior’ and ‘Thrombocytopenia’ respectively. A set of terms
which includes those terms in template is then generated at random and stored in the
variable terms, to be used as a pool from which to draw random term sets for use in the
analysis. To generate the independent HPO term sets, x_independent, 100 sets of five terms
are sampled from terms, and each is mapped to its corresponding minimal set. To generate
the HPO term sets which depend on y, x_dependent, 100 sets of terms were generated as
for x_independent, but the sets of terms corresponding to components of y taking the value
TRUE were augmented with two terms randomly selected from template.

library ( o n t o l o g y I n d e x )
library ( SimReg )
data ( hpo )
s e t . s e e d ( 1 )

t e m p l a t e <- c ( "HP:0005537" , "HP:0000729" , "HP:0001873" )
terms <- g e t _ a n c e s t o r s ( hpo , c ( t e m p l a t e , sample ( hpo$ id , s i z e =50) ) )

y <- c ( rep (TRUE, 10) , rep (FALSE , 90) )
x _ i n d e p e n d e n t <- r e p l i c a t e ( s i m p l i f y =FALSE , n =100 ,

exp r = m i n i m a l _ s e t ( hpo , sample ( terms , s i z e =5) ) )

n o _ a s s o c <- s im_reg ( o n t o l o g y =hpo , x= x _ i n d e p e n d e n t , y=y )
p r o b _ a s s o c i a t i o n ( n o _ a s s o c )

## [ 1 ] 0 .0005632741

x_dependen t <- lapply ( y , function ( y _ i ) m i n i m a l _ s e t ( hpo , c (
sample ( terms , s i z e =5) , if ( y _ i ) sample ( t e m p l a t e , s i z e =2) ) ) )

a s s o c <- s im_reg ( o n t o l o g y =hpo , x= x_dependen t , y=y )
p r o b _ a s s o c i a t i o n ( a s s o c )

## [ 1 ] 0 .9999682

We note that we infer a higher probability of association inferred when applying the inference
to the set of terms generated dependently on y. Note that by default, the probability of an
association has a prior of 0.05, but this can be set by passing a gamma_prior_prob argument.
We can also visualise the estimated characteristic ontological profile, using the function
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Thrombocytopenia
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Abnormal platelet
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0

●
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0.01

Fig. B.1 The output of using the function plot_term_marginals to plot the marginal
probabilities of inclusion of terms in φ .

plot_term_marginals, and note that the inferred characteristic phenotype corresponds
well to template (see Figure B.1).

p l o t _ t e r m _ m a r g i n a l s ( hpo , g e t _ t e r m _ m a r g i n a l s ( a s s o c ) , max_terms =8)

Including prior phenotypic information

This section demonstrates how to set the prior on the variable phi. This is done in order to
incorporate prior information about likely disease phenotypes, for example, based on the
phenotype of a mouse model for an orthologous gene knock-out. The information is supplied
to the function sim_reg as a parameter called term_weights and should be a numeric
vector of relative weights for terms included in the sample space of phi (by default, the
sample space of phi includes all terms present amongst the terms in x and their ancestors).

library ( o n t o l o g y I n d e x )
library ( o n t o l o g y S i m i l a r i t y )
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library ( SimReg )
data ( hpo )
s e t . s e e d ( 1 )
terms <- g e t _ a n c e s t o r s ( hpo , c ( hpo$ i d [ match (

c ( "Abnormality of thrombocytes" , "Hearing abnormality" ) ,
hpo$name ) ] , sample ( hpo$ id , s i z e =50) ) )

To illustrate the approach, we will construct a scenario where there is moderate evidence for
an association between ‘Hearing abnormality’ and a binary summary of genetic data within a
locus, and where there is also a prior expectation that the disease phenotype associated with
pathogenic variants in the locus would involve hearing abnormality. We randomly generate
data to reflect the moderate evidence for association, and then apply the inference with and
without including the prior information and observe the effect on the posterior probability of
association.

h e a r i n g _ a b n o r m a l i t y <- hpo$ i d [ match ( "Hearing abnormality" , hpo$
name ) ]

g e n o t y p e s <- c ( rep (TRUE, 2 ) , rep ( FALSE , 98) )

# g i v e a l l s u b j e c t s 5 random t e r m s and add ‘ h e a r i n g a b n o r m a l i t y ’
# f o r t h o s e wi th y _ i =TRUE
p h e n o t y p e s <- lapply ( geno types , function ( y _ i ) m i n i m a l _ s e t ( hpo , c (
if ( y _ i ) h e a r i n g _ a b n o r m a l i t y else character ( 0 ) , sample ( terms , s i z e

=5) ) ) )
# n o t e t h a t t h e r e a r e t h r e e c a s e s wi th t h e r a r e v a r i a n t
# ( i . e . hav in g y [ i ] == TRUE) and a l l o f them have t h e ‘ Hea r ing

a b n o r m a l i t y ’ HPO t e r m .

s im_reg ( o n t o l o g y =hpo , x= pheno types , y= g e n o t y p e s )

## P r o b a b i l i t y o f a s s o c i a t i o n : 0 . 4 7
## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Name p
## Hea r ing a b n o r m a l i t y 0 . 6 3
## Abnorma l i t y o f t h e e a r 0 . 3 7
## Abnorma l i t y o f d i g i t 0 . 0 3
## Abnorma l i t y o f l i m b s 0 . 0 3
## Abnorma l i t y o f l imb bone morphology 0 . 0 3
## Abnorma l i t y o f t h e uppe r l imb 0 . 0 2
## Abnorma l i t y o f l imb bone 0 . 0 2
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## Abnorma l i t y o f t h e p h a l a n g e s o f t h e t o e s 0 . 0 2
## Abnorma l i t y o f t o e 0 . 0 2
## A p l a s i a / h y p o p l a s i a i n v o l v i n g bones o f t h e e x t r e m i t i e s 0 . 0 2
## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We construct the term_weights parameter to capture our knowledge about the gene from the
model organism by setting weights for all terms to one, except those which involve hearing,
which are assigned weights of 10. Note that one must set the names of the term_weights
vector.

#we s e t t h e p r i o r w e i gh t o f a l l t e r m s which have t h e word ‘ h e a r i n g
’

# i n t o t e n t i m e s t h a t o f t e r m s which don ’ t .
t e r m _ w e i g h t s <- ifelse ( g r e p l ( x=hpo$name , i g n o r e =TRUE,

p a t t e r n ="hearing" ) , 10 , 1 )
names ( t e r m _ w e i g h t s ) <- hpo$ i d

Prior information about phenotype (hereafter referred to as the ‘literature phenotype’) may
be available as a set of ontological terms (for example, it may be available as MPO terms
from the Mouse Genome Informatics (MGI) website, http://www.informatics.jax.org/). If so,
another method of setting the weights is to use a phenotypic similarity function to obtain a
numeric vector of similarities for use as prior weights for inclusion of terms in phi. This
may be more convenient, particularly when dealing with large numbers of genes. In the
SimReg paper, the vector is set using the Resnik-based similarities of terms to the terms in
the literature phenotype. In order to calculate the similarities based on Resnik’s similarity
measure, we must first compute the information content for the terms, equal to the negative
log frequency. The frequencies can be calculated with respect to different collections of
phenotypes. Here, we will calculate it with respect to the frequencies of terms within
our collection, phenotypes, by calling the get_term_info_content function from the
ontologyIndex package. Note, it could also be calculated with respect to the frequency of
the term amongst the HPO annotation of OMIM diseases (available from the HPO website,
http://human-phenotype-ontology.github.io). The function get_term_set_to_term_sims

in the package ontologySimilarity can then be used to calculate the similarities between
the terms in the sample space of phi and the literature phenotype. It calculates a matrix of
similarities between the individual terms in the literature phenotype and terms in the sample
space. In the following example, the hypothetical model organism phenotype will be set to
abnormality of the thrombocytes and hearing abnormality.

t h r o m b o c y t e s <- hpo$ i d [ match ( "Abnormality of thrombocytes" , hpo$
name ) ]
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l i t e r a t u r e _ p h e n o t y p e <- c ( h e a r i n g _ a b n o r m a l i t y , t h r o m b o c y t e s )
i n f o <- g e t _ t e r m _ i n f o _ c o n t e n t ( hpo , p h e n o t y p e s )

t e r m _ w e i g h t s _ r e s n i k <- apply ( g e t _ t e r m _ s e t _ t o _ t e r m _ s i m s (
o n t o l o g y =hpo , i n f o r m a t i o n _ c o n t e n t = i n f o , terms=names ( i n f o ) ,
te rm_sim_method="resnik" ,
t e r m _ s e t s =list ( l i t e r a t u r e _ p h e n o t y p e ) ) , 2 , mean )

This can then be passed to sim_reg through the term_weights parameter.

s im_reg (
o n t o l o g y =hpo ,
x= pheno types ,
y= geno types ,
t e r m _ w e i g h t s = t e r m _ w e i g h t s _ r e s n i k

)

## P r o b a b i l i t y o f a s s o c i a t i o n : 0 . 8
## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Name p
## Hea r ing a b n o r m a l i t y 0 . 6 7
## Abnorma l i t y o f t h e e a r 0 . 3 3
## Abnorma l i t y o f d i g i t 0 . 0 2
## Abnorma l i t y o f l i m b s 0 . 0 1
## Abnorma l i t y o f l imb bone morphology 0 . 0 1
## Abnorma l i t y o f t h e p h a l a n g e s o f t h e t o e s 0 . 0 1
## Abnorma l i t y o f l imb bone 0 . 0 1
## Abnorma l i t y o f t h e uppe r l imb 0 . 0 1
## Abnorma l i t y o f t o e 0 . 0 1
## A p l a s i a / h y p o p l a s i a i n v o l v i n g bones o f t h e e x t r e m i t i e s 0 . 0 1
## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Note that including the term_weights parameter has increased the mean posterior value of
gamma.
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Introduction

BeviMed is a procedure for evaluating the evidence of association between allele configura-
tions across rare variants, typically within a genomic locus, and a case/control label. It is
capable of inferring the posterior probability of association, and conditional on association,
the probability of each mode of inheritance and probability of involvement of each variant. It
works by applying Bayesian model comparison between two models indexed by γ . Under
the model labelled γ = 0, the probability of case status is independent of allele configuration
at the given rare variant sites. Under the model labelled γ = 1, the probability of case status
is linked to the configuration of alleles, and a latent partition of variants into pathogenic
and non-pathogenic groups conditional on a mode of inheritance. It can also perform model
selection on multiple alternative models, each of which includes a different subset of variants.
This has the effect of inducing a prior correlation on the variant pathogenicities, which can
boost power if only a particular (though unknown) class of variants is responsible for disease.

The aim of the package is to facilitate prioritisation of large numbers of sets of variants,
typically drawn from different loci, by rapid inference of the posterior distributions of γ ,
mode of inheritance parameter m, and indicator of pathogenicity across variants, z. This
guide describes the interface of the package in detail, relating it to the underlying statistical
model and including some implementation details. See the ‘BeviMed Introduction’ vignette
for a quick start guide. Unless otherwise stated, N refers to the number of individuals, k
refers to the number of rare variants, m refers to the mode of inheritance (either mdom or
mrec), and ‘evidence’ refers to the integrated likelihood of the data under a given model. The
acronym ‘MOI’ will often be used to refer to mode of inheritance.
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Functions and classes

BeviMed has functions for evaluating models γ = 0, γ = 1 with m = mdom, and γ = 1 with
m = mrec with respect to the data — a logical length N vector of case/control labels y, and an
N × k integer matrix of allele counts G:

• gamma0_evidence, which computes the evidence for model γ = 0, P(y|γ = 0).

• bevimed_m, which samples from the posterior distribution of the model γ = 1 condi-
tional on a given mode of inheritance. The output yields the evidence P(y|m,γ = 1,G)

and probabilities of variant pathogenicity, P(z j|m,γ = 1,y,G) for j = 1, . . . ,k.

• bevimed, which evaluates all three models in turn by calling gamma0_evidence and
bevimed_m with respect to each mode of inheritance. By allowing prior probabilities
and computing the evidence for each model, it allows the posterior quantities of interest
to be computed using Bayes’ theorem.

– model indicator γ , P(γ = 1|y,G)

– mode of inheritance m given association, P(m|γ = 1,y,G).

• bevimed_polytomous, which evaluates model γ = 0 and an arbitrary number of
association models using bevimed_m, corresponding to different subsets of variants
within G and given modes of inheritance.

bevimed is simple to apply:

obj <- bevimed(y=y, G=G)

It returns an object of class BeviMed, which contains the whole output of the inference.
A summary of the inference can be printed by evaluating the object in an interactive session:

> obj <- bevimed(y=y, G=G)

## --------------------------------------------------------

## Posterior probability of association:

## 0.038 [prior: 0.01]

## Posterior probability of dominance given association:

## 0.799 [prior: 0.5]

## --------------------------------------------------------

## Model Post Prior Cases Variants
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## dominant 0.799 0.5 4.56 2.44

## recessive 0.201 0.5 1.13 1.61

##

## Post: posterior probability of model given association

## Prior: prior probability of model given association

## Cases: posterior expected number of cases explained

## Variants: posterior expected number of variants involved

## --------------------------------------------------------

## Probabilities of pathogenicity for individual variants

##

## Var Probability pathogenic

## 1 [0.77 ============= ]

## 2 [0.60 ========== ]

## 3 [0.68 ============ ]

## 4 [0.16 === ]

## 5 [0.39 ======= ]

## --------------------------------------------------------

An object of class BeviMed is a list containing slots:

• "parameters", a list of parameter values used to call the function.

• "models", a list of BeviMed_m objects returned by the bevimed_m function, one
for each association model - typically one per mode of inheritance (i.e. dominant
and recessive). The BeviMed_m class is a list containing samples from the posterior
distributions of model parameters conditional on a given mode of inheritance (see help
page ?bevimed_m for more details). As a list, the model specific results can be looked
up by model using the $ operator, e.g. x$models$dominant.

The function bevimed_m uses an MCMC algorithm to sample from the posterior distribution
of the parameters in model γ = 1. Each individual has an associated ‘minimum number of
alleles at pathogenic variant sites’ required to have a pathogenic configuration of alleles.
This is determined by the min_ac argument (defaulting to 1), and can be set to reflect the
desired mode of inheritance. For example, in dominant inheritance, at least one pathogenic
allele would render an allele configuration pathogenic, and thus the min_ac argument could
be set to 1. In X-linked recessive inheritance, at least 1 and 2 pathogenic alleles would be
required for a pathogenic configuration respectively for males and females, and thus the
min_ac argument could be given as a numeric vector of length N with 1s for males and 2s



132 BeviMed manual

for females. bevimed accepts a ploidy argument: an integer vector the same length as y
which specifies the ploidy of each individual in the locus (defaulting to 2). Internally, it
uses this argument to set min_ac automatically when it calls bevimed_m based on mode of
inheritance.

Objects of class BeviMed typically consume a large amount of memory. Summarising
objects of class BeviMed with summary — which retains important summary statistics as a
list — may be useful when performing multiple applications. Specific summary statistics can
be obtained by looking them up in these summary lists (see help page ?summary.BeviMed
for names used for each statistic).

bevimed passes arguments to bevimed_m through the ‘...’ argument. However, some-
times it is preferable to pass different arguments to bevimed_m depending on mode of
inheritance. bevimed therefore allows mode of inheritance specific arguments to be passed
through dominant_args and recessive_args, which should be named lists of arguments
then only used in the corresponding calls to bevimed_m. For example, it might be thought
that a smaller proportion of variants would be linked to disease given a dominant mode of
inheritance than would given recessive inheritance, in which case dominant_args could be
used to pass a prior with a lower mean for the parameter omega to the dominant application
of bevimed_m.

Similarly, bevimed_polytomous evaluates association models depending on variants
corresponding to those in the given variant_sets argument: a list of integer vectors, one
for each model, each indexing variants with respect to their column position in G. Arguments
are passed to bevimed_m through the ‘...’ argument, as with bevimed, but model specific
arguments are passed using the parameter model_specific_args: a list of the same length
as variant_sets. The mode of inheritance parameter for each association model can be
specified using a character vector the same length as variant_sets containing elements
"dominant" or "recessive" (defaults to "dominant"). The prior probability of association for
each model can also be specified as a numeric vector of probabilities using the argument
prior_prob_association.

In this example we use bevimed_polytomous to compare two models in the situation
where the disease status depends on only the allele configuration at the first variant site from
amongst 5 columns: one depending on just the first variant and one depending on all the
variants.

> bevimed_polytomous(y=G[,1] > 0, G=G,

+ variant_sets=list(first=1, all=1:ncol(G)))
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## --------------------------------------------------------

## Posterior probability of association:

## 0.132 [prior: 0.01]

## Posterior probability of dominance given association:

## 1 [prior: 1]

## --------------------------------------------------------

## Model Post Prior Cases Variants

## first 0.721 0.5 2.91 0.969

## all 0.279 0.5 2.82 0.941

##

## Post: posterior probability of model given association

## Prior: prior probability of model given association

## Cases: posterior expected number of cases explained

## Variants: posterior expected number of variants involved

## --------------------------------------------------------

## Probabilities of pathogenicity for individual variants

##

## Var Probability pathogenic

## 1 [0.96 ================ ]

## 2 [0.01 ]

## 3 [0.00 ]

## 4 [0.01 ]

## 5 [0.01 ]

## --------------------------------------------------------

Priors on model parameters

The user can control the prior distributions of the model parameters when applying the
inference functions bevimed, bevimed_polytomous, bevimed_m and gamma0_evidence

as listed below.

• The probability of association, P(γ = 1|y), with argument prior_prob_association
in the bevimed function (defaults to 0.01).

• The probability of dominant inheritance given association, P(m = mdom), with the
prior_prob_dominant in the bevimed function (defaults to 0.5).
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• The hyper parameters of the beta prior for the probability τ0 of observing the case label
under model γ = 0. Values for the hyper parameters can be passed to the bevimed

and gamma0_evidence functions as the tau0_shape argument (defaults to a vague
parameterisation of α = β = 1).

• The hyper parameters of the beta prior for τ and π , respectively the probabilities of
observing the case label for individuals with non-pathogenic and pathogenic allele
configurations under model γ = 1. The default for τ is the same as for τ0, but the
default for π has a mean close to 1, as typically for rare diseases the variants are high
penetrance, i.e. have a high probability of causing the disease phenotype. Values for
these hyper parameters can be passed as arguments tau_shape and pi_shape to the
bevimed and bevimed_m functions.

• The prior on the indicators of variant pathogenicity, z. By default, all variants have
a shared prior on their probability of pathogenicity, z j ∼ Bernoulli(ω) with ω ∼
beta(α = 2,β = 8). The hyper parameters for ω can be specified by the user using the
parameter omega_shape. However the user can also control the prior on pathogenicity
for individual variants. This is done using the variant_weights parameter, a numeric
vector of length k labelled c in the model specification. The effect of the c values is
given by the logistic equation:

z j ∼ Bernoulli(p j),

logit p j = ω +φc j,

logφ ∼ N(µφ ,σ
2
φ ),

where φ is the scaling factor for c. By default, c is centralised on 0 so that ω is
interpretable as the global rate of pathogenicity in the locus, and φ has a mean of 1, so
c j is interpretable as a shift in the log odds on the prior probability of variant j being
pathogenic. Thus, one could for example of use the untransformed CADD Phred score
for each variant as a weight. The raw values of c as given in the variant_weights

arguments will be used if the parameter standardise_weights is set to FALSE.
The hyper parameters µφ and σφ for the prior distribution of logφ are respectively
represented by arguments log_phi_mean and log_phi_sd. Hyper parameters for ω

and φ and the values for c can be passed to functions bevimed and bevimed_m.

Estimating the scaling factor φ in this way has the advantage of maintaining power
even when the weights are counter-productive, as φ can take values close to 0 making
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the weights redundant. However, it is possible to make the effect of variant weights c
fixed by setting the parameter estimate_phi to FALSE, in which case φ is fixed at 1.

Application to real data

It is an assumption of model γ = 1 that variants are not linked across loci. We therefore rec-
ommend removal of any first, second and third degree relatives, and filtering variants are for
low allele frequency across all ethnic groups before applying the function. Various software
is available for performing these tasks: as an example ‘SAMtools’ and ‘KING’ can be used
for variant filtering and inferring relatedness respectively. There is also various software for
reading VCF files into R. The ‘BeviMed with VCFs’ vignette contains instructions on how to
read allele counts across variants in a given locus into R from a VCF file directly as a matrix
using simple functions depending on the program ‘tabix’. However, although this method
could be effective for testing a single locus, typically testing association between a disease
and multiple loci is required, in which case reading variants belonging to multiple loci at the
same time is likely to be more efficient. Often, it will be most effective to read data for as
many variants as possible into memory (e.g. breaking up the VCF by chromosome), and
looping through loci one at a time, applying bevimed the allele count matrix of its variants.

Typically loci would correspond to genes, but it is also applicable to non-coding loci. In
order to increase power, variants which are unlikely to be involved in disease can be filtered
out, or have their probability of pathogenicity down-weighted using the variant_weights
parameter. For example, synonymous variants could be removed, and loss-of-function
variants could be up-weighted. It is also straightforward to apply the inference to multiple
sets of variants corresponding to different classes of variants for a single locus using the
bevimed_polytomous function. For example, a set containing only loss-of-function variants
could be used to evaluate evidence for association between the disease and a ‘knocked-out’
gene. This increases power if the only variants of a particular class increase disease risk.
Prior probabilities of association with each model set can then be combined with the evidence
to obtain the posterior probability of association with each model/variant set.

Although typically testing association between a disease and multiple loci is required,
BeviMed only provides procedures for dealing with a single locus. This is because most of
the time such an analysis is computationally expensive due to the large number of applications
required or large quantity of genetic data which must be loaded, and full control is required
in order to best exploit the resources available. Here we provide a simple example script
which applies the inference to multiple loci and tabulates the results with columns for gene
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name, posterior probability of association and probability of dominant inheritance given the
association. Let chr1genes be a data.frame of chromosome 1 genes with columns for
name, start position and end position (the ‘biomaRt’ package could be used to obtain such a
table), and y be a logical vector indicating disease status, the same length as the number of
samples in the VCF.

source(paste0(system.file(package="BeviMed", "/scripts/vcf.R")))

all_variants <- vcf2matrix("my-vcf.vcf.gz",

chr="1", from=1, to=1e9, include_variant_info=TRUE)

row_indices_per_gene <- lapply(1:nrow(chr1genes),

function(i) {

which(all_variants$info$POS >= chr1genes$start[i] &

all_variants$info$POS <= chr1genes$end[i])

})

names(row_indices_per_gene) <- chr1genes$gene

results <- mclapply(

mc.cores=16L,

X=chr1genes$gene,

FUN=function(gene) {

G <- all_variants$G[variant_inds[[gene]],,drop=FALSE]

c(

list(gene=gene),

summary(bevimed(y=y, G=G))) })

results_table <- do.call(what=rbind, lapply(results, function(x) data.frame(

Gene=x[["gene"]],

prob_assoc=sum(x[["prob_association"]]),

prob_dominance=x[["prob_association"]]["dominant"]/

sum(x[["prob_association"]]),

check.names=FALSE,

stringsAsFactors=FALSE

)))
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Performance and tuning

As an MCMC based procedure, statistics produced from bevimed have Monte Carlo error. In
the implementation in the BeviMed package, z is the only parameter which is sampled and is
updated using Gibbs sampling of each component z j in turn. If variant weights are included,
ω and φ are also sampled using Metropolis-Hastings within Gibbs steps, causing estimates of
the evidence to have higher variance for the same number of samples. By default, bevimed
draws 1,000 samples from each of 7 tempered chains in the MCMC algorithm, running at
temperatures t =

( l
6

)2
for l ∈ {0,1, . . . ,6}. We have found that this parameterisation leads

to quick execution and stable results for sample sizes up to 5,000 and loci containing over
2,000 variants, also allowing for the inclusion of variant weights. However, if much larger
sample sizes or larger numbers of variants are used — particularly if variant weights are
included — it may become necessary to modify the parameters controlling the sampling
routine in order to improve the accuracy of the results. Strategies for doing this include:

• increase the number of samples drawn per tempered chain using the samples_per_chain
argument,

• increase the number tempered chains or change the distribution of temperatures using
the temperatures argument,

• pass the tune_temps argument to bevimed, specifying the number of temperatures to
select by interval bisection for use in the final application,

• if estimating φ and ω , set tune_omega_and_phi_proposal_sd=TRUE in the call to
bevimed in order to adaptively tune the standard deviations of the Metropolis-Hastings
proposal distributions so that the acceptance rate falls within a given range, defaulting
to [0.3,0.7]. If this option is used, a tuning run of the MCMC algorithm is applied,
which estimates a proposal standard deviation for each temperature using successive
blocks of tune_block_size samples until the desired acceptance rate is obtained.

It is also possible to instruct bevimed_m to halt sampling once the estimated evidence
lies within a given confidence interval, or once there is sufficient confidence that the ev-
idence is greater than some threshold. The latter might be useful, for instance, if many
regions were being tested for association and only those with very strong evidence for
association were of interest). By default, bevimed_m does not attempt to stop sampling,
and always draws samples_per_chain samples for each tempered chain. In terms of the
argument names, by setting stop_early=TRUE, bevimed_m draws up to blocks batches of
samples_per_chain samples, stopping as soon as the estimated log evidence lies within
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a confidence interval of width tolerance (defaults to 1) with confidence of confidence
(defaults to 0.95) based on simulations simulations (defaults to 1,000), or as soon as there
is confidence confidence that it is below log_evidence_threshold.

By default the function bevimed_m stores the complete set of samples drawn during the
MCMC process (after burn-in samples are removed) and therefore this function typically
uses lots of memory. The vast majority of memory usage is expended storing the trace of
samples of z, the indicator of pathogenicity for each variant) and x, the indicator of having a
pathogenic configuration for each individual. Storing these traces enables useful summary
statistics — for example the expected number of explained cases — to be computed from the
output. However, users may only be interested in the probability of association, for example,
if prioritising many sets of variants. In this situation, the arguments return_x_trace and
return_z_trace can be set to FALSE when calling bevimed_m in order to conserve memory,
but still allow the evidence and probabilities of association to be computed.

The inference functions bevimed_m, bevimed and bevimed_polytomous always sample
from the posterior distribution of pathogenicity of each variant represented in allele count
matrix G. However, G does not necessarily contain data relevant to pathogenicity for all
variants which are represented in it. This occurs when the allele counts for a variant are
zero for all individuals, or when conditioning on recessive inheritance and alleles for the
variant are only present for individuals whose total allele count is less than their ploidy.
The function subset_variants can be used to remove such variants, returning either a
transformed matrix or the indices of the variants in the original set for which there is data
relevant to pathogenicity in G. Typically, G would only contain variants which were observed
in at least one of the individuals, so using this function a priori is not likely to result in
a speed up when applied conditioning on dominant inheritance, as no variants would be
removed. However, it is often the case that only a small number of variants are observed in
compound heterozygotes/homozygotes, so it is likely to result in a speed up conditioning on
recessive inheritance.
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