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Abstract— When developing a robot, design iterations in
the physical world are necessary, even though they are often
costly and not systematic. Here we present an automated
iterative design process without using modelling or simulation,
which we refer to as “model-free design optimisation” based
on Bayesian optimisation. This paper particularly focuses on
the co-optimisation of morphology and controller, by using a
mechanism to balance parameter specific costs (i.e. morphology
samplings are more expensive than control ones) for effective
and efficient design optimisation processes. A hopping robot
was employed for a feasibility analysis of the proposed optimi-
sation method, in which minimalistic two-dimensional and four-
dimensional design optimisation experiments were performed
in real life. The results show that the proposed approach
is capable of improving both of the robot design problems
within a defined time limit. The method is also compared to
optimisation performances of a human designer under the same
conditions. While the human optimisation performs better in
the 2-dimensional search space, the automated method found
the best solution quicker in the 4-dimensional case.

I. INTRODUCTION

Development of robotic systems generally requires many
design iterations in the real world. Mathematical modelling
and computer simulations are helpful tools, but development
and evaluation of robots in real life are inevitable for many
applications that cannot be accurately simulated, despite the
high economical and temporal costs. This paper investigates
how real-world design iterations of robots can be systemati-
cally performed by using automated optimisation techniques,
which we refer to as “model-free design optimisation”.

The use of optimisation algorithms to design robots has
been studied intensively in the past, particularly in the
context of robot locomotion [1], [2], [3], which is the focus
of this paper. The main body of literature reports on opti-
misation methods for locomotion controllers by using, for
example, reinforcement learning [4], nonlinear optimisation
[5], or evolutionary algorithms [6]. Focus is commonly
placed on the optimisation of control architectures, which
is interesting and important on its own right, but there has
been an increasing interest of co-optimisation of morphol-
ogy (mechanical structure) and control simultaneously. Co-
optimisation of morphology and control is of fundamental
importance, as the robot dynamics only result as a function
of both design aspects. Significant work of co-optimisation
is due to Sims [7] and Lipson [8], which use evolutionary
algorithms for optimisation, and the real-life optimisation as
presented in [9], [10], [11].
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Fig. 1: Hopping robot CHIARO.

From this perspective, this paper proposes the use of data-
driven optimisation algorithm, Bayesian optimisation, for
the problems of morphology-controller co-optimisation. The
algorithm is known as one of the most efficient methods
to optimise black-box functions, especially for the prob-
lems where sampling is expensive. Unlike the conventional
model-based robot design optimisation such as [12], this
approach allows optimisation without explicit mathematical
modelling, and the process can take place in real life.
The approach was previously used to optimise locomotion
robot controllers [13], [9], but it was either not applied
for co-optimisation of morphology and control or only for
crawling-like locomotion. Therefore we apply this method to
the design optimisation of both morphology and controller
of highly dynamical locomotion robots, and evaluate the
degrees to which the algorithm can handle the expensive
samplings. As the case study, we employ a hopping robot
which we have been developing in the past years [14] and
is shown in Fig. 1. Prior to optimisation, we restrict the
parameter dimensionality of morphological and controller
designs, and let the algorithm explore the design space for
better locomotion performance.

One of the most important considerations in this frame-
work is to properly maintain the balance between exploration
of morphological parameters and that of controllers, because
the former sampling is significantly more expensive than the
latter. For this reason, this paper proposes a mechanism, that
we call “Dynamic Scheduling”, which considers parameter
specific costs within Bayesian optimisation dynamically for
each iteration. As it becomes clearer later in this paper, this
mechanism turns out to be crucial for the design optimisation
of dynamic robot, which are shown through the case study.

The rest of paper is structured as follows. First, we



introduce the model-free robot design Optimisation. Second,
we explain how this framework can be implemented for
a comprehensive test, which is followed by experimental
results and analysis. Finally, we discuss the implications and
future work.

II. MODEL-FREE DESIGN OPTIMISATION

A. Bayesian optimisation Algorithm

In our task of optimising a complex dynamical system
subject to effects that are challenging to model (e.g. en-
vironment interactions), optimisation algorithms that don’t
rely on an accurate model are the preferred choice. Bayesian
optimisation1 is such a method and can sample efficiently
from black-box functions where gradient information is not
easily obtained. It is a method employed to minimise the
number of iterations required to find the maximum of an
objective function f(θ), where θ is the parameter vector.
Efficient sampling is crucial if sampling is expensive – which
is commonly the case in real-world design iterations. We are
interested in finding the parameter vector which maximises
the objective function, i.e. θ∗ = maxθ f(θ).

1) Gaussian process model: Assuming the objective func-
tion is already evaluated at n points with argument val-
ues θ1:n ≡ [θ1, ...,θn]T and function values f1:n ≡
[f(θ1), ..., f(θn)]T , these points are used as training to
determine the parameters for their covariance function. We
employ a typical Matérn kernel (with smoothness parameter
ς = 3/2) as defined in [15]. For points θi and θj the
covariance can be calculated as:

k(θi,θj) = σ2
f (1 +

√
3r) exp(−

√
3r) (1)

where

r =

√√√√ n∑
d=1

(θid − θjd)2
l2d

(2)

The hyperparameters of Matérn kernel with automatic rel-
evance detection are σf i.e. signal variance and ld i.e. the
lengthscale hyperparameter for d-th model parameter.

For each pair of training points, the covariance function
is evaluated and arranged to a matrix as follows:

K =


k(θ1,θ1) k(θ1,θ2) . . . k(θ1,θn)
k(θ2,θ1) k(θ2,θ2) . . . k(θ2,θn)

...
...

. . .
...

k(θn,θ1) k(θn,θ2) . . . k(θn,θn)

 (3)

The hyperparameters are found by maximising their
marginal likelihood which, according to Bayes theorem,
is the same as maximising the marginal likelihood of the
training data given the model parameters. This is done
using local iterative gradient-based optimisation methods as
described in [15]. Once the hyperparameters that explain the

1More details of the algorithm can be found in our
previous work published in the repository: https://www.
mathworks.com/matlabcentral/fileexchange/
59060-bayesian-optimisation-of-slip-model-parameters?
s_tid=srchtitle

training data the best have been found, they are used to
predict the expected values µ(θk) and the confidence σ(θk)
of any point θk in the parameter space as follows.

µ(θk) = kTkK
−1f1:n (4)

σ2(θk) = −kTkK−1kk (5)

where kk = [k(θ1,θk), . . . , k(θn,θk)]T . The process of
training the hyperparameters and drawing predictions from
the Gaussian process is repeated every time as a new point
is sampled.

2) Acquisition function: The acquisition function that we
use in this paper is the expected improvement (EI) which is
calculated by integrating the improvement over the probabil-
ity density of the prediction as in [16].

EI(θ) =

∫ ∞
0

I · N
(
µ(θ)−max(f1:n)− ξ − I, σ(θ)

)
dI

=
(
µ(θ)−max(f1:n)− ξ

)
Φ(Z) + σ(θ)φ(Z)

(6)

where
Z =

µ(θ)−max(f1:n)− ξ
σ(θ)

(7)

and Φ(Z) and φ(Z) denote the cumulative density function
and probability density function of the standard normal
distribution respectively [16]. It is important to note that
probability of improvement is very sensitive to the choice
of the trade-off parameter ξ. If ξ is too small, the function
will only be sampled closed to its existing maximum value,
whereas if ξ is too large, it will only be sampled in the
regions where the least points have been sampled. Expected
improvement is less sensitive and [17] suggests that the
trade-off parameter could be set to ξ = 0.01 throughout the
optimisation for the best results.

Finally, to find the next sampling point, the acquisition
function is maximised.

θn+1 = argmax
θ

EI(θ) (8)

Though this equation introduces another optimisation prob-
lem, the evaluation of these values is sufficiently cheap. In
this project 105 points are placed on the grid according to
the significance of the hyperparameters, i.e. the spacing of
the sampling grid is proportional to the lengthscale hyperpa-
rameter in all directions.

B. Robot Platform

To test the model-free design optimisation we employ
the hopping robot called CHIARO, which we have been
investigating in many of our previous projects [14], [20],
[18], [19]. The robot consists of two hinged bodies which
are connected with springs as shown in Fig. 1. The robot
exhibits hopping locomotion when torque is applied between
the bodies. The resonant frequency of the system is exploited
to create a forward hopping motion with minimal energy
input. CHIARO was first modelled and constructed in [20],
which had a circular foot shape and was controlled using
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Fig. 2: (a) Morphology parameters are defined as curvatures
at discrete points on the foot, and the foot shape is derived
through integration of the curvature resulting in 2D foot
shapes in a Height-Length domain. (b) Foot shape samples
which were designed by the model-free design optimisation
for improved locomotion speed in the robot.

a sinusoidal input at its resonance frequency. It was found
that locomotion speeds can be maximised when an open-
loop pulse torque input is given to the motor of the robot
[19], which we employ in the experiments of this paper. Even
though the earlier work showed that foot shapes in general
has an effect of the stability and speed of hopping locomotion
[14], [18], no systematic investigations were made to analyse
the performance with more complex foot shapes.

To parametrise CHIARO’s foot shape, we define its curva-
ture at discrete points along the foot. The number of defined
curvatures is m, each placed uniformly over the horizontal
axis of the foot with the length L = 30 cm. The curvature
along the rest of the foot shape is interpolated linearly
between the discrete points. Integrating the curvature twice
results in a foot shape as shown in Fig. 2 for m = 1, 2, 3, 4.

Additional sides are added to provide mounting points to
CHIARO’s body. We only allow for non-negative curvatures
to obtain a convex shape. The integration constants are
chosen such that the heel and the toe of the feet are on
the same level to account for the attachment to the robot’s
main body. Some foot shapes that were built during the
experiments are shown in Fig. 2(b).

III. EXPERIMENTAL METHOD

A. Experiment procedure

Experiments of model-free design optimisation start by
defining an objective function and robot design parameters.
Once the parameter landscape is set, the remaining procedure
is automated as shown in Fig. 3. Namely the morphology
and control parameters were automatically determined based
on the algorithm, and then the robot platform is configured
for testing. When morphology is chosen to be changed, new
feet are laser-cut and assembled into the robot body, which
usually requires approximately 20 minutes in total. The robot
is connected to a computer over a USB interface and the
target torque input is controlled using a MATLAB script.
The robot is then placed in a locomotion track as shown
in Fig. 3. The track has railings on each side to ensure
consistency of the robot motion. The track is covered with a
rubber mat for improved traction between CHIARO and the
floor. Both, the body and the leg of CHIARO, are equipped
with 4 trackable markers which are recorded by 12 infrared
cameras of a motion capturing system to deduce locomotion
speed. With each set of chosen parameters, 3 measurements
are made and the average speed of them is taken as the true
value. Each run is limited to t = 10 s and the average speed
is calculated by comparing the initial and final position of
CHIARO. The outcome of this experiment is then given to
the optimisation algorithm to obtain the next sampling point.
For each experiment below, we set the time limit to 10 hours
with the possibility of earlier termination when saturated.
From the start of each experiment, we counted the duration
of every relevant process including the time for laser cutting
the feet, as well as locomotion experiments and computation
time of the optimisation algorithm.

B. Choice of design parameters

The choice of design parameters substantially influences
the experimental results. We are interested in co-optimising
morphology and control, which requires at least a 2-
dimensional parameter space. We conducted two sets of
experiments to test different dimensionality. In the first set
of experiments, the algorithm optimises in a 2-dimensional
parameter space, i.e. the curvature of the foot, and an
actuation frequency of motor oscillation, θM = κ, θC =
f . The choice of parameters was affected by both: the
theoretical expected influence on the model and feasibility of
implementation. In the second set of experiments, we extend
the parameter space dimension to 4, i.e. two parameters for
the foot curvature (defining curvature at the toe and the heel),
and two parameters for motor control. The second control
parameter, in addition to the actuation frequency, is the duty



(a) Flowchart

(b) Experimental Setup

Fig. 3: (a) Flowchart summarising the model-free design
optimisation in real-world, and (b) an illustration of experi-
mental setup for the hopping robot CHIARO.

cycle of the pulse wave. The parameter vectors are then
θM = [ κ1

κ2
] and θC =

[
f
λ

]
. All other parameters were fixed

to the values based on our previous research [19], e.g. the
duty cycle of the motor oscillation to be set at λ = 0.25 (in
the first set of experiments) and the target torque amplitude
at T = 80 mN m.

C. Dynamic scheduling

Another parameter selection has to be made between
morphology and control, because the cost of samplings (time
requires to test) is significantly different. In our experimental
setup, the time to evaluate different morphology is approxi-
mately three times longer (30 min) than the control only (10
min). This information has to be provided to the Bayesian op-
timisation procedure in order to maximise the improvement
over the limited time, as a similar procedure was proposed in
[21]. For this reason, we introduce two variables ηMC and
ηC , which indicate expected improvement of morphology-

control optimisation and that of control optimisation only,
respectively:

ηMC = max
θM ,θC

(
EI

([
θM
θC

]))
(9)

ηC = max
θC

(
EI

([
θ(current)
M

θC

]))
(10)

With these two variables, the algorithm determines to per-
form control parameter optimisation when ζηC > ηMC ,
where ζ is a correction factor to represent the cost of sam-
pling (therefore we set ζ = 30min

10min = 3 for all the experiments
below). Conversely, optimisation of both morphology and
control parameters is performed when the above inequality
is false.

D. Experiment with a human designer procedure

For the purpose of benchmarking, the proposed optimi-
sation method was compared to another set of experiments
in which a human designer was instructed to optimise loco-
motion speed of CHIARO in the exactly same conditions.
The human designer has an engineering background and
has previously used the experimental platform, but not for
optimisation of morphology and control. Unlike Bayesian
optimisation, the human designer has access to his experi-
ences and can analyse the motion capturing data to decide
on the next sampling point. Although the human designer
would have advantages in the sampling strategies because
of the prior knowledge and more information about the
experiments, we performed the comparative study as fairly
as possible. For this reason, the experiments were performed
with the human designers first, which is then followed by
the Bayesian optimisation.

IV. EXPERIMENTAL RESULTS

A. Optimisation speed

The locomotion speed of CHIARO in each trial was
plotted in Fig. 4 along with the cumulative maximum values.
The speed improvement is shown both for the 2-dimensional
experiments and the 4-dimensional ones. Note that the prior
to the 4-dimensional optimisation was the information gained
from the 2-dimensional experiment, because the human
designer had a similar advantage. The figure shows that in
the 2-dimensional experiments, both human and machine
converged to the final speed of v = 0.26 m s−1 which
is believed to be the maximum value within the given
search range. However, the human designer outperforms the
Bayesian optimisation procedure in terms of time to find
the maximal locomotion speed. While the human designer
reaches the maximum value within 3 hours, Bayesian op-
timisation reached the maximum speed after 6 hours. This
can be understood from the fact that Bayesian optimisation
needed to explore the search space to a greater extent than
the human designer, as the latter had access to motion data
and prior experience.

In the 4-dimensional experiments, in contrast, Bayesian
optimisation outperforms the human designer. While the
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Fig. 4: Comparison of optimisation process for the human
designer and the model-free design optimisation. Results are
shown for the 2-dimensional and 4-dimensional parameter
space.

human designer needed almost 7 hours to find the highest
locomotion speed at 0.336 m s−1, the Bayesian optimisation
reached to similar highest speed 0.339 m s−1 in less than
4 hours (Table II). We ascribe this result to the fact that
Bayesian optimisation started with the prior from the 2-
dimensional case and had, hence, a fair representation of
the larger parameter space.

B. Analysis of sampling strategies

Fig. 5 shows the sampling points in the 2-dimensional
parameter space together with the final Gaussian process
model in both human and Bayesian optimisation. The re-
sults show that while the human designer quickly started
narrowing down the best parameter regions, the Bayesian
optimisation explored one morphology (curvature 2m−1) in
particular. This contrast in the exploration strategies could be
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Fig. 5: Gaussian Process model prediction of the locomotions
speed and expected improvement for (a) a human designer,
and (b) the model-free design optimisation. The red crosses
indicate the parameter sampling points (corresponding to a
frequency/curvature pair) in the real-world robot for the 2-
dimensional parameter space experiment.

understood from the fact that the human designer had a better
intuition about the influence of frequency to the behaviour
of the hopping robot. In contrast, the Bayesian optimisation
explores the parameter space based on the correction factor
ζ, which accounts for parameter-specific sampling costs. The
8 sampling points with the same curvature amounted for
80 minutes of experiments, while 8 points with changing
curvature would have caused 240 minutes of experiments.
This strategy can be understood as the effect of dynamic
scheduling that we employed in the algorithm.

In the 4-dimensional parameter space, we found that
the human designer and the Bayesian optimisation were
exploring and exploiting the empirical knowledge in a similar
manner. Fig. 6 shows the parameters to be explored during
the experiments. Both the human and Bayesian optimisation
explored similar regions of morphology, whereas sampling of
the control parameters differs with respect to the frequency
similar to the 2-dimensional experiments. This suggests that
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Fig. 6: Sampling behaviours of the human designer and
the Bayesian optimisation in the 4-dimensional experiment,
plotted on the parameter spaces of (a) Morphology and (b)
Control.

an accurate model of the real system was formed in the
Bayesian optimisation, in contrast to the human designer
who may have struggled to map the intuition of the system
behaviour onto the vastly larger 4-dimensional parameter
space.

C. Parameters and behaviours for best performances

Finally we also compare the quality of optimisation results
by analysing the physical behaviours of the robot. Because
the design parameters obtained by the Bayesian optimisation
and human design process are similar in both 2-dimensional
and 4-dimensional experiments, the locomotion behaviours
of the robot are also very similar as shown in Table I and II.

The most important difference between the trajectories of
the best model obtained in 2-dimensional and 4-dimensional
experiments is the posture. Having two parameters for the
curvature of the feet allows to modify the posture at the
rest position. Fig. 7 indicates that the rest position in the
4-dimensional experiments tilts forward, which provides a
flatter take-off angle at touchdown and hence a faster motion.
During the forward motion of the robot, the posture keeps
varying and the ground contact points are chaotic throughout

TABLE I: Fastest robot in 2-D optimisation

Parameters Bayesian Human

κ (m−1) 5.3 5.0
f (Hz) 4.3 4.2
v (ms−1) 0.250± 0.003 0.252± 0.003
Optimisation time (h) 6.8 2.7

TABLE II: Fastest robot in 4-D optimisation

Parameters Bayesian Human

κ1 (m−1) 8.0 8.0
κ2 (m−1) 3.9 4.2
f (Hz) 4.14 4.25
λ 0.39 0.45
v (ms−1) 0.339± 0.006 0.336± 0.001
Optimisation time (h) 3.7 6.8

the experiments. Even though the locomotion results of both
human designer and Bayesian optimisation are very similar,
the qualitative behaviours are considerably different, as the
Bayesian optimisation found a more non-periodic solution
of locomotion, which are usually very difficult for human to
optimise.

V. CONCLUSIONS

This paper introduced a design optimisation framework of
physical robots based on the state-of-the-art Bayesian opti-
misation algorithm. Design optimisation of physical robots
can be characterised by the fact that simulation is often
very challenging, thus “model-free approach” is useful. In
addition, robot design iterations also require optimisation
of both mechanical and control parameters with significant
differences in parameter specific sampling costs. In order to
account for these challenges, we proposed the Bayesian opti-
misation method along with a dynamic scheduling function,
which make a better balance of the parameter specific costs
of sampling.

We performed feasibility tests of the proposed framework
for the design problem of our hopping robot, and compare
the performance against a human designer. In general the
proposed design optimisation method work fairly well that
it found optimal solutions in both 2-dimensional and 4-
dimensional design problems. The performance comparison
against the human designer was also satisfactory in a sense
that the proposed algorithm outperformed especially in the
more challenging 4-dimensional optimisation problem.

Having said that, the results of the presented experimental
results have to be interpreted with care. Due to the time
constraints, we only conducted the experiments in a highly
constrained manner. The optimisation performance depends
on various factors, including the initialisation of the op-
timisation and choices of design parameters. In addition,
human designers are likely to sample with different strate-
gies, doubtlessly affecting the performance. A professional
designer can make on average faster progress than a designer
with limited understanding of mechanics and robotics. All of



Fig. 7: Trajectories of CHIARO with different parameters
obtained using Bayesian optimisation and human design
process in 2-dimensional and 4-dimensional parameter space
respectively. The red line shows the trajectory of the tip of
the body and the blue line shows the trajectory of the joint.
Small dots indicate time intervals of 1 s, starting at t = 0 s.

these unanswered questions need to be further investigated
systematically in the future.
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