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ABSTRACT
In the common Ewald summation technique for the evaluation of electrostatic forces,
the average electric field E is strictly zero. Finite uniform E can be accounted for
by adding it as a new degree of freedom in an extended Lagrangian. Representing
the uniform polarization P as the time integral of the internal current and E as
the time derivative of an uniform vector field A we define such an extended La-
grangian coupling A to the total current jt (internal plus external) and hence derive
a Hamiltonian resembling the minimal coupling Hamiltonian of electrodynamics.
Next applying a procedure borrowed from nonrelativistic molecular electrodynamics
the jt ·A coupling is transformed to P ·D form where D is the electric displacement
acting as an electrostatic boundary condition. The resulting Hamiltonian is identical
to the constant-D Hamiltonian obtained by Stengel, Spaldin and Vanderbilt (SSV)
using thermodynamic arguments (Nature Physics 5, 304 (2009)). The corresponding
SSV constant-E Hamiltonian is derived from an alternative extended Lagrangian.
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1. Introduction

In their seminal 2009 paper Stengel, Spaldin and Vanderbilt (SSV)[1] presented two
finite field Hamiltonians, one for constant macroscopic Maxwell field E and one for
constant electric displacement field D. In the formulation for a classical molecular
dynamics (MD) system the constant-E Hamiltonian is written as

HE =

N∑
i

p2
i

2mi
+ VPBC

(
rN
)
− Ω

8π
E2 − ΩE ·P (1)

and the constant-D Hamiltonian as

HD =

N∑
i

p2
i

2mi
+ VPBC

(
rN
)

+
Ω

8π
(D− 4πP)2 (2)
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where pi = mivi is the momentum of particle i with position vector ri and velocity
vi = ṙi. The mass of particle i is mi. The potential VPBC

(
rN
)

is the potential energy
of the N particle system with the electrostatic interactions evaluated using standard
Ewald summation (no surface term)[2, 3]. Ω is the volume of the periodic supercell.

The electric field E in Eq. 1 is the uniform Maxwell field and is a fixed parameter.
P is the uniform polarization and is a dynamical degree of freedom. While E acts
as an applied field, it implicitly includes all screening interactions and is not to be
confused with the bare external field E0. This property is specific to standard Ewald
summation (“tin foil” boundary conditions) as already noted by Yeh and Berkowitz
in their finite field MD study of liquid water[4].

True to the background in solid state physics, uniform polarization P in the SSV
method is not based on a multipole expansion of molecular charge distributions but
is defined in terms of the internal current j

j =
dP

dt
= Ṗ (3)

Conform the convention in the dielectric theory of insulators, the magnetisation M is
set to zero[5, 6]. For a classical system of point charges j is a simple direct sum of the
contributions of the individual particles

j =
1

Ω

N∑
i

qivi (4)

where qi is the charge of particle i. Carrying out the time integral we recover an
expression for polarization as a dipole density

P =
1

Ω

N∑
i

qi (ri − ri(0)) (5)

referred, however, to the positions ri(0) at t = 0, the start of the time integration. P of
Eq. 5 is the polarization generated by the (transient) flow of all charges in the system,
including possible free (mobile) charge[7]. If a particle crosses the boundary of the MD
cell it must be followed into the next cell, rather than reintroduced on the opposite
side of the cell it left. P is identical to the itinerant polarization introduced by Caillol,
Levesque and Weiss in their pioneering MD calculations of the electric response of
aqueous ionic solutions (electrolytes)[3, 8–10] (See also Sega et al.[11]).

D in Eq. 2 is the dielectric displacement and is a fixed parameter. D is related to
the Maxwell field and polarization as

D = E + 4πP (6)

Eq. 6 is the fundamental equation of the Maxwell theory of dielectric materials. It
should be kept in mind, again, that in the SSV approach all charge in the system
is accounted for by the polarization. With explicit external charge removed the key
source of D is the charge on the “virtual” electrodes at infinity (the tin foil) acting
as the electric boundary conditions for Ewald summation. For constant-D (Eq. 2)
this charge is fixed (open circuit conditions) while for constant-E the tin foil charge
fluctuates in time responding to the polarization[1, 12, 13]). This is distinctly different
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form the practice in the physical chemistry of ionic solutions where D is the electric
field generated by the mobile ions treated as external charge (see the example of
Refs. 8–11). This also implies that in the SSV picture ∆V = −EL can be directly
interpreted as the voltage over the MD cell in the usual orthorombic geometry of the
field E along a side with length L. As a result, the Hamiltonians Eq. 1 and 2 are
perfectly adapted for applications to electrochemical model systems[7].

The constant field Hamiltonians Eqs. 1 and 2 were derived by Stengel, Spaldin and
Vanderbilt on the basis of thermodynamic arguments[1, 12, 13] following in essence
Landau and Lifschitz[14]. HE and HD are however fully microscopic Hamiltonians
and it should be possible to obtain these expressions from a Lagrangian using the
formal arguments of theoretical mechanics. In this contribution we show that this can
be achieved by using a simplified (non-radiative) form of non-relativistic molecular
electrodynamics[15–21]. We are exploiting the extensive literature on transforming the
velocity form (coupling of momentum to vector potential) to the length form (coupling
of dipole moment to electric field) of the Hamiltonian of atoms and molecules in an
electromagnetic magnetic field. This long and profound development was initiated by
the classic paper of Power and Zienau[22]. The simplification for our system is that
magnetic effects will be ignored. The challenge is to adapt this formalism intended
for finite systems in vacuum to uniform fields under periodic boundary conditions.
The formalism outlined below, treating the Maxwell field as a dynamical variable, has
also some connection to the so called Maxwell equations molecular dynamics (MEMD)
method developed by Maggs[23–26]. This concerns in particular the realization that
uniform Maxwell fields and polarization require special treatment[27].

2. Constant-D

2.1. Electrodynamics-like Lagrangian and Hamiltonian in j · A form

A uniform electric field cannot be specified in terms of a charge density using Gauss
law. Neither is it accounted for by Ewald summation in the standard form (“tin foil”
boundary conditions). The uniform electric field under Ewald periodic boundary con-
ditions will have to be treated as an additional dynamical degree of freedom E with
an equation of motion derived from an extended Lagrangian. This requires defining
a velocity for E. The alternative suggested by electrodynamics[28] is to use the time
integral A of E as the basic dynamical variable.

E = −dA
dt

= −Ȧ (7)

The sign is for reasons of consistency with the vector potential A(r) of
electrodynamics[17, 28]. A of Eq. 7 is, however, by definition uniform. Hence

∇ ·A = 0, ∇×A = 0 (8)

which eliminates magnetic induction B. Substituted in Faradays’s law this would imply

∇×E = −1

c

∂B

∂t
= 0 (9)
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consistent with Eq. 7 with c set to unity. In this quasistatic nonmagnetic limit the
electrodynamical Lagrangian is simplified to

LD =
1

2

N∑
i

miv
2
i +

Ω

8π
Ȧ2 − VPBC

(
rN
)

+ Ω j t ·A (10)

j t is the total uniform current density consisting of a external (controlled) current j0
and the internal current j of Eq. 4

j t = j0 + j (11)

As we will argue below, rather than corresponding to a flow of explicit external charge,
j0 must be regarded as a displacement current.

The canonical momenta of the particles are obtained from LD of Eq. 10 as

pi =
∂LD

∂vi
= mivi + qiA (12)

The canonical momentum pi of particle i differs from its kinetic momentum mivi simi-
lar to the minimal coupling scheme of electrodynamics. Substituting in the Lagrangian
equations of motion.

d

dt

∂L

∂vi
=
∂L

∂ri
(13)

we obtain

miv̇i + qiȦ = −∂VPBC

∂ri
(14)

Inserting Eq. 7 we recover the expected Newtonian equation of motion of a charged
particle in an electric field

miv̇i = −∂VPBC

∂ri
+ qiE (15)

The qiE term in Eq. 15 adds the force exerted by the uniform electric field which is
missing from VPBC consistent with the SSV interpretation of E as the Maxwell field.

To derive the equation of motion of E we first write down the canonical momentum
ΠA of A as imposed by the Lagrangian Eq. 10

ΠA =
∂LD

∂Ȧ
=

Ω

4π
Ȧ = − Ω

4π
E (16)

where in the second identity we have used Eq. 7. The Lagrangian equations of motion
follow as usual by working out

d

dt

∂LD

∂Ȧ
=
∂LD

∂A
(17)
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and we find

Ė = −4πj t (18)

Eq. 18 can be regarded as a “dielectric” (non-magnetic) limit of the Ampere-Maxwell
equation as already pointed out by Maggs[27] (See also Hirst[5]). Substitution of
Eqs. 11 and 3 separates the internal and external currents

Ė = −4π
(
j0 + Ṗ

)
(19)

Eq. 19 together with Eq. 15 are a coupled set of equations of motion which determine
the time evolution of the system, particles and uniform electric field. Comparing to the
fundamental equation 6 of dielectric theory we are led to introduce a uniform electric
displacement

Ḋ = −4πj0 (20)

which can vary in time depending on the controlled time dependence of the external
current j0. A discussion of the physical interpretation of Eq. 20 will be deferred to
section 3.

The Hamiltonian of the dynamics defined by Eq. 10 is obtained from the equation

HD =

N∑
i

pi · vi + ΠA · Ȧ− LD (21)

Substituting Eqs. 10, 11, 12 and 16 yields

HD =
1

2

N∑
i

miv
2
i +

∑
i

qivi ·A +
Ω

8π
Ȧ2 + VPBC

(
rN
)
−

(
Ωj0 +

N∑
i

qivi

)
·A

=
1

2

N∑
i

miv
2
i +

Ω

8π
Ȧ2 + VPBC

(
rN
)
− Ω j0 ·A (22)

Reintroducing canonical momenta for the particles (Eq. 12) and replacing Ȧ by E
according to Eq. 7 the Hamiltonian can be expressed as

HD =

N∑
i

1

2mi
(pi − qiA)2 +

Ω

8π
E2 + VPBC

(
rN
)
− Ω j0 ·A (23)

Eq. 23 has the same from as the minimal coupling Hamiltonian of electrodynamics
(Recall however that the divergence and curl of all fields vanish).

2.2. Transformation to Hamiltonian in P · D form

The quantity A was introduced as a device to formulate a second order differen-
tial equation in time determining the time evolution of the uniform Maxwell field E.
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Explicit dependence on A can be eliminated exploiting again the parallel to electrody-
namics. This will also replace the coupling to j0 by a coupling to D, its time integral
(see Eq. 20). The idea is to transform the Lagrangian Eq. 10 by adding the total time
derivative of a conveniently chosen function F (rN ,A)[17]

L̃D = LD +
dF

dt
(24)

According to Hamilton’s principle, the dynamics is not affected, only the canonical
momenta change and therefore the Hamiltonian. The function we will use is

F =
Ω

4π
(D− 4πP) ·A (25)

Evaluating the time derivative

dF

dt
= −Ω jt ·A +

Ω

4π
(D− 4πP) · Ȧ (26)

where we have used Eqs. 11, 3 and 20. Adding to LD according to Eq. 24 and substi-
tuting Eq. 10 we see that the current coupling term cancels

L̃D =
1

2

N∑
i

miv
2
i +

Ω

8π
Ȧ2 − VPBC

(
rN
)

+
Ω

4π
(D− 4πP) · Ȧ (27)

Canonical momenta are back to the regular kinetic momenta

p̃i =
∂L̃

∂vi
= mivi (28)

Now, however, the expression for the canonical momentum of A consists of multiple
terms

Π̃A =
∂L̃D

∂Ȧ
=

Ω

4π
(−E + D− 4πP) (29)

where we have inserted Eq. 7 for Ȧ. It is easy to verify that the equations of motion
remain the same. The forces on the particles have changed to

∂L̃D

∂ri
= −∂VPBC

∂ri
− Ω

∂P

∂ri
· Ȧ (30)

The gradient of polarization is still simply the charge qi/Ω times the unit matrix
(Eq. 5) while Ȧ is minus the electric field (Eq. 7). Together with Eq. 29 this indeed
leads again to Eq. 15.

The equation of motion for A is found from Eq. 17 applied to the Lagrangian
L̃D. The force ∂L̃D/∂A on A vanishes, because the new Lagrangian is no longer an
explicit function of A. The conclusion is that the canonical momentum of A has been
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transformed in a constant of motion and thus according to Eq. 29

dΠ̃A

dt
=

Ω

4π

(
−Ė + Ḋ− 4πṖ

)
= 0 (31)

Because of our definition Eq. 20 for the time derivative of D, Eq. 31 is identical to the
equation of motion Eq. 19. The dielectric relation Eq. 6 is satisfied at the microscopic
level because it is invariant under the dynamics. Note also that this formal mechanical
argument fails if we had immediately had set D− 4πP in Eq. 27 to E = −Ȧ.

The Hamiltonian corresponding to the Lagrangian Eq. 27 follows applying the gen-
eral relation Eq. 21 using the transformed canonical momenta of Eqs. 28 and 29. The
key term is the Π̃ · Ȧ product. Using Eqs. 29 and 7 we can write

Π̃A · Ȧ =
Ω

4π
Ȧ2 +

Ω

4π
(D− 4πP) · Ȧ (32)

The second term in Eq. 32 fully cancels out the coupling term in the expression of
Eq. 27 for L̃D. What is left is only the kinetic term ΩȦ2/8π. Substituting Ȧ = −E =
4πP−D we finally obtain

H̃D =

N∑
i

p2
i

2mi
+

Ω

8π
(D− 4πP)2 + VPBC

(
rN
)

(33)

Eq. 33 is the constant-D Hamiltonian of Eq. 2. Alternatively we could have held on to
the canonical momentum Π̃A instead of the time derivative Ȧ finding the canonical
expression for H̃,

H̃D =

N∑
i

p2
i

2mi
+

Ω

8π

(
4π

Ω
Π̃A − (D− 4πP)

)2

+ VPBC

(
rN
)

(34)

The Π̃A term is of no consequence for the calculation of the energy. It is a constant of
motion (Eq. 31) equal to zero assuming that this was the initial value. It is required
however if one would wish to derive the first order Hamiltonian equations of motion.

3. Constant-E

How can we modify the derivation of section 2 to obtain the expression for the constant-
E Hamiltonian of Eq. 1? While D was fixed and E was a dynamical degree of freedom
for constant-D, under constant-E conditions it is the other way around. This suggest
introducing a “time-potential” X for D similar to A of Eq. 7 for E.

Ẋ = −D (35)

D in turn was defined as the time derivative of the external current j0 in Eq. 20 which
should be compared to the equivalent relation Eq. 18 for E. Under constant-E clearly
Ė = 0 which according to Eq. 19 implies that the fluctuations in the external current
j0 and polarization (internal current) cancel each other. However, there is no explicit
external charge crossing the system. Not having to count ionic charge as external
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charge was what attracted us to the SSV approach in the first place. j0 must therefore
be seen as a (transient) displacement current associated with the variation in time
of the external charge on the virtual electrodes representing the electric boundary
conditions in Ewald summation. After relaxing to zero, its time integral leaves a finite
electric displacement D.

Having decided for X of Eq. 35 as the dynamical degree of freedom for constant-E
we have to specify a kinetic energy and a coupling term to the internal current. Rather
than adapting the constant-D Lagrangian of section 2 we will postulate a Lagrangian
LE and show that the chosen form leads to the correct equations of motion. The
Lagrangian we will use is

LE =
1

2

N∑
i

miv
2
i + VPBC −

Ω

8π

(
Ẋ + 4πP

)2
(36)

with the polarization P again derived from the internal current j according to Eqs. 3
and 5. Expanding the square we see that Eq. 36 is of similar form as the transformed
Lagrangian L̃D of Eq. 27 except for the alarming minus sign of the kinetic energy
of X. Such counter intuitive minus signs are characteristic of constant-E functionals.
We will return to this issue in section 4 after investigating the equations of motion
generated by Eq. 36.

In common with Eq. 27 the Lagrangian of Eq. 36 is not explicitly dependent on
currents and the canonical momentum of the particles is also equal to the kinetic
momentum (pi = mivi, see Eq. 28). The forces are more involved

∂LE

∂ri
= −∂VPBC

∂ri
− Ω

(
Ẋ + 4πP

)
· ∂P

∂ri

= −∂VPBC

∂ri
+ qi (D− 4πP) (37)

where we have used in the second equality Eq. 35. Substituting Eq. 6 we find Eq. 15
as required. However it still remains to be established that Eq. 6 in fact holds every-
where along a trajectory. This should follow from the equation of motion for X (or
equivalently D). We first obtain the canonical momentum conjugate to X.

ΠX =
∂LE

∂Ẋ
= − Ω

4π

(
Ẋ + 4πP

)
=

Ω

4π
(D− 4πP) (38)

The forces on the field integral X vanish. ΠX of Eq. 38 is a constant of motion just
as the momentum Π̃A derived from the Lagrangian Eq. 27. The dynamics conserves
the sum D− 4πP allowing us to equate D− 4πP with the constant Maxwell field E.
Moreover the momentum conjugate to X is also in effect equal to E (provided we keep
volume fixed).

ΠX =
Ω

4π
E (39)

This is the negative of Eq. 16, the momentum of A in the original current dependent
minimal coupling Lagrangian of Eq. 10. Recall, however, that ΠA of Eq. 16 is not
conserved.
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The expression for the Hamiltonian is found going through the regular steps. The all
important term accounting for the dependence on the fields yields after substituting
Eqs. 35 and 39

ΠX · Ẋ +
Ω

8π

(
Ẋ + 4πP

)2
= − Ω

4π
E ·D +

Ω

8π
(D− 4πP)2

= − Ω

4π
E · (E + 4πP) +

Ω

8π
E2

= − Ω

8π
E2 − ΩE ·P (40)

where in the second equality we have substituted for D using Eq. 6. The resulting
Hamiltonian is equal to Eq. 1 including the negative sign for the E2 term. Retaining
the momentum we find the expression for the Hamiltonian in canonical form

HE =

N∑
i

p2
i

2mi
− 2π

Ω
Π2

X − 4πΠX ·P + VPBC

(
rN
)

(41)

Substituting Eq. 39 leads back to the Hamiltonian Eq. 1. However, the negative squared
kinetic term is disconcerting. Fortunately, HE of Eq. 41 is invariant under changes in
X. The momentum ΠX is a constant of motion, avoiding mechanical instability. Even
so, the mysterious minus sign is there for a purpose. It is needed to recover the correct
Hamiltonian equations of motion for X, as is verified below

Ẋ =
∂HE

∂ΠX
= −4π

Ω
ΠX − 4πP (42)

Inserting Eq. 39 we end up with Eq. 35 with the consistent sign.

4. Summary and Outlook

The constant-E Hamiltonian of Eq. 1 and constant-D Hamiltonian of Eq. 2 are a recent
development in the Modern Theory of Polarization[29–32]. Eq. 3 is a central equation in
this formalism leading to the famous Berry-phase expression for electronic polarization
in periodic condensed phase systems. For classical systems straight forward integration
of the internal current in Eq. 3 over time gives the dipole density expression of Eq. 5.
For simple point charge (SPC) models of liquid water the polarization of Eq. 5 is
rigorously equal to the sum of molecular dipoles divided by the volume of the MD cell.
The Hamiltonians of Eqs. 1 and 2 can be directly applied in a finite field, constant
volume calculation of the dielectric constant of liquid water[4, 13, 33]. Eq. 5 also
holds for SPC models of ionic aqueous solution but with the subtlety that the dipole
density must now be interpreted as itinerant polarization. This makes polarization
multivalued similar to the Berry-phase expression for electronic polarization[30, 31].
However, when properly taken into account, Eqs. 1 and 2 can be equally used to
simulate ionic solutions under finite field conditions[7, 34].

With the present contribution we hope to have given a clarification of the mechan-
ical foundations of the finite field Hamiltonians HE of Eq. 1 and HD of Eq. 2. As a
byproduct we obtained canonical expressions for these Hamiltonians, given in Eqs. 34
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and 41. The canonical Hamiltonians contain the conjugate momenta of the time in-
tegrals of the uniform fields which are the fundamental electric dynamical degrees of
freedom in the extended Lagrangian. In practice explicit dependence on these conju-
gate momenta is however of no consequence for constant field molecular dynamics.
Both quantities are constants of motion. As a result the fundamental relation of di-
electrics (Eq. 6) is conserved by HD in its canonical form Eq. 34 as can be seen from
Eq. 29. HE in canonical form Eq. 41 conserves the Maxwell field E. According to
Eq. 39 the conjugate momentum of X is simply proportional to E.

The minus E2 term in the electric enthalpy, the expectation value of HE of Eq. 1,
has been a stumbling block in the development of variational Poisson Boltzmann
methods[35, 36]. The status of the uniform Maxwell field as a conserved dynamical
variable in constant-E molecular dynamics adds a mechanical perspective to this term.
A formal mechanical treatment, including canonical field momenta, could also be of
interest in Liouville equation based time dependent perturbation theory[37]. Clearly
there is a lot left to do in constant electric field molecular dynamics. There is already
a static magnetic counter part of the modern theory of polarization(see the review by
Resta[32]) which raises the question of coupling to magnetic fields. We also reiterate
that all derivations in the paper assume that volume is held fixed. The constant pres-
sure variant is a further interesting extension but likely not easy either[1, 14]. A firm
mechanical foundation is hopefully of some help to meet these challenges.
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