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SUMMARY

Complex I (NADH:ubiquinone oxidoreductase) is
central to energy metabolism in mammalian mito-
chondria. It couples NADH oxidation by ubiquinone
to proton transport across the energy-conserving in-
ner membrane, catalyzing respiration and driving
ATP synthesis. In the absence of substrates, active
complex I gradually enters a pronounced resting or
deactive state. The active-deactive transition occurs
during ischemia and is crucial for controlling how
respiration recovers upon reperfusion. Here, we set
a highly active preparation of Bos taurus complex I
into the biochemically defined deactive state, and
used single-particle electron cryomicroscopy to
determine its structure to 4.1 Å resolution. We show
that the deactive state arises when critical structural
elements that form the ubiquinone-binding site
become disordered, and we propose reactivation
is induced when substrate binding to the NADH-
reduced enzyme templates their reordering. Our
structure both rationalizes biochemical data on the
deactive state and offers new insights into its physi-
ological and cellular roles.

INTRODUCTION

Complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme

in oxidative phosphorylation, uses NADH oxidation and ubiqui-

none reduction to build the proton motive force across the inner

mitochondrial membrane, catalyzing respiration and driving ATP

synthesis (Hirst, 2013; Sazanov, 2015). Mammalian complex I,

one of the largest membrane-bound enzymes in the cell, con-

tains 45 subunits with a combined mass of 1 MDa; the 14 fully

conserved core subunits are required for catalysis, while the

31 supernumerary subunits may be required for enzyme assem-

bly, stability, or regulation (Fiedorczuk et al., 2016; Hirst et al.,

2003; Stroud et al., 2016; Vinothkumar et al., 2014; Walker,

1992; Zhu et al., 2016). The ‘‘active-deactive’’ transition of

mammalian complex I has recently come to prominence as a

physiologically relevant mechanism of regulation. In the absence

of substrates, complex I relaxes into a profound resting state,
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known as the deactive state, that can be reactivated by addition

of NADH and ubiquinone (Babot et al., 2014a; Galkin and Mon-

cada, 2017; Kotlyar and Vinogradov, 1990; Vinogradov, 1998).

Notably, because the respiratory chain cannot catalyze in the

absence of O2 (lack of an electron acceptor prevents electron

flux along the chain), ischemia promotes complex I deactivation

(Galkin et al., 2009; Maklashina et al., 2002, 2004). Forming the

deactive state may be protective because, upon reintroduction

of O2 to the ischemic tissue, it is unable to catalyze the reverse

electron transport reaction that causes a damaging burst of

reactive oxygen species production (Chouchani et al., 2014).

Controlling complex I reactivation thus provides a rational strat-

egy for combating ischemia-reperfusion injury (Burwell et al.,

2009; Chouchani et al., 2013). Conversely, forming the deactive

state may also tend to increase ischemia-reperfusion injury

because it is more susceptible to oxidative damage than the

active state (Gorenkova et al., 2013), and strategies to target

and protect the deactive state may also prove effective.

Rapid progress has been made recently in the structure of

mammalian complex I due to a proliferation of structures for

the Bos taurus (bovine) (Vinothkumar et al., 2014; Zhu et al.,

2015, 2016), Sus scrofa (porcine) (Gu et al., 2016; Wu et al.,

2016), and Ovis aries (ovine) (Fiedorczuk et al., 2016; Letts

et al., 2016a) enzymes, both in their isolated forms and in super-

complex assemblies. All 45 subunits of the mammalian complex

have been assigned (Vinothkumar et al., 2014; Zhu et al., 2015,

2016) and modeled (Fiedorczuk et al., 2016; Wu et al., 2016;

Zhu et al., 2016), and in data from the bovine complex three

different structural classes were identified (Zhu et al., 2016).

The three classes were tentatively assigned to different func-

tional states of the complex. In the state referred to as class 1,

several regions around the ubiquinone-binding site were disor-

dered,whereas clear densities for themwere observed in class 2.

One of these regions is the loop between the first and second

transmembrane helices (TMHs) of subunit ND3, which contains

the reactive cysteine residue (Cys39) used as a biochemical

marker for the deactive state (Galkin et al., 2008). Cys39 can

only bemodified with thiol-reactive reagents such asN-ethylma-

leimide (NEM) in the deactive state (Galkin et al., 2008; Gavrikova

and Vinogradov, 1999). Because the cysteine is occluded in

class 2, but likely more accessible on its unstructured loop in

class 1, class 1 was tentatively assigned to the deactive state,

and class 2 to the active state (Zhu et al., 2016). A less populated

class that is most similar to class 1, class 3, was also observed

and refined to lower resolution. Its density map contains
blished by Elsevier Ltd.
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Figure 1. Spectrophotometric Catalytic Activity Assay of NADH:

Decylubiquinone Oxidoreduction by Isolated Deactive Complex I

Assay traces comparing enzyme that had been treated by 4 mM NEM (red)

with enzyme that had not been treated (green). Without the NEM treatment the

deactive protein gradually reactivates, reaching its maximal rate after 150 s.

The NEM treatment prevents reactivation and the background rate is only from

the small proportion of active enzyme present. Experiments were carried out

using 200 mMNADH, 200 mM decylubiquinone, and 0.5 mg mL�1 complex I, as

described in the STAR Methods.
additional regions of disorder, including part of the transverse

helix that runs along the membrane domain appearing to strap

it together, and so class 3 was ascribed to enzyme molecules

in the process of dissociation (Zhu et al., 2016).

These tentative assignments of the active and deactive struc-

tures suggest that the deactive state results when structural

elements around the ubiquinone-binding site, including loops

in the ND1, ND3, and 49 kDa subunits, become disordered

(Zhu et al., 2016). It has been proposed that the localized disor-

der disrupts the substrate-binding site (rendering it catalytically

inactive), but that ubiquinone interacting with the site, when the

enzyme is reduced, serves as a template to restructure it (the de-

active state slowly reactivates when NADH and ubiquinone are

provided) (Dröse et al., 2016; Zhu et al., 2016). We refer to this

model as the ‘‘unfolded Q-site’’ model. Alternatively, other re-

searchers have proposed the ‘‘truncated Q-site’’ model. In the

crystal structure of complex I from Yarrowia lipolytica (Zicker-

mann et al., 2015), considered to be in the deactive state, the

top of the ubiquinone-binding cavity is occluded by the b1-b2

loop of the 49 kDa subunit, preventing the ubiquinone head

group reaching its binding site. The b1-b2 loop was subse-

quently modeled in a similar configuration in the structure of

ovine complex I (Fiedorczuk et al., 2016), and this structure

also ascribed to the deactive enzyme.

Here, to define the structure of the deactive state, we prepared

biochemically defined samples of deactive bovine complex I and

determined their structure by single-particle cryoelectron micro-

scopy (cryo-EM). Our preparations exhibit the well-known

biochemical characteristics of the deactive state of the mamma-

lian enzyme (Babot et al., 2014a; Galkin et al., 2008; Kotlyar and

Vinogradov, 1990; Vinogradov, 1998) and are highly catalytically

active following reactivation. The structure of the deactive

complex matches the previously described class 1 structure

(Zhu et al., 2016) and supports the unfolded Q-site model for

the deactive transition. Thus, our model provides a structural

foundation for interpreting the wealth of mechanistic, biochem-

ical, and physiological data on the deactive transition in
mammalian complex I and for understanding the role of deactive

complex I in ischemia-reperfusion injury.

RESULTS

Preparation of Highly Active Complex I in the
Deactive State
First, we developed a protocol to purify highly active bovine

complex I set fully in the deactive state. Our method was devel-

oped from the complex I preparation of Jones et al. (2016) but

with the final gel filtration step performed in the detergent

cymal-7, rather than in n-dodecyl b-D-maltoside (DDM), as it

was observed previously that cymal-7 gave a higher density

of particles on cryo-EM grids (Vinothkumar et al., 2014). To

convert the complex to the deactive state, the suspension of

mitochondrial membranes from which the preparation begins

was incubated at 37�C for 15 min, before the detergent was

added for solubilization. The temperature and length of incuba-

tion were optimized by using NEM to determine the proportion

of the complex that is in the deactive state (Galkin et al., 2008).

NEM is able to react with Cys39 in the ND3 subunit in the de-

active enzyme but not in the active enzyme, and once Cys39

has been derivatized by NEM the complex is unable to reacti-

vate. Therefore, the activities observed in the presence and

absence of NEM can be used to quantify the deactive and

active states. Figure 1 shows that, in the presence of NEM,

the purified deactive enzyme prepared here displayed a very

slow, constant rate of catalysis, whereas in its absence a pro-

nounced lag phase was observed as the enzyme slowly reacti-

vated. Furthermore, the maximal rate of catalysis was

�20 times higher in the absence of NEM (when it is due to

both the active and deactive states) than in its presence

(when it is due to only the active state), indicating that the

complex was �95% in the deactive state. Finally, by paying

particular attention to the time taken for each stage of the

preparation, the specific activity of the enzyme imaged here

(following reactivation) was improved from the value described

previously: from 14 ± 3 mmol NADH min�1 mg�1 (Jones

et al., 2016) to 22.2 to 24.7 mmol NADH min�1 mg�1

(�390 NADH s�1). The activities of equivalent preparations car-

ried out without the deactivation step were comparable. These

activities match those of the mammalian complex in its native

membrane (Jones et al., 2016) and are similar to the highest

activities reported for isolated bacterial complex I (Sazanov

et al., 2003; Verkhovsky et al., 2012), so they confirm both

the integrity of the purified complex and the reversibility of

the deactivation procedure.

Imaging, Classification, and Structure Modeling for the
Deactive Enzyme
Quantifoil holey carbon grids were used previously to image

mammalian complex I (Fiedorczuk et al., 2016; Vinothkumar

et al., 2014; Zhu et al., 2016). However, in common with many

other proteins, the complex binds to the oxidatively modified

carbon, depleting it from the vitreous ice in the holes and leading

to poorly distributed particles and low particle numbers for imag-

ing. Self-assembled monolayers with controlled surface proper-

ties and lower protein affinities have been developed to mitigate

this problem (Meyerson et al., 2014), and here we usedUltrAuFoil
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Figure 2. Comparison of the Number of Particles Observed Per
Micrograph Using PEGylated Gold and Quantifoil Holey Car-

bon Grids

The samples of deactive complex I used were at concentrations of 4.4 mg

mL�1 (PEGylated gold UltrAuFoil 0.6/1) and 4.2mgmL�1 (Quantifoil 0.6/1). The

PEGylated gold grids were prepared using a Vitrobot (see STARMethods) and

the Quantifoil grids by manual blotting as described previously (Vinothkumar

et al., 2014; Zhu et al., 2016). The data are from two automated data collection

sessions on a Titan Krios microscope (see STAR Methods for imaging pa-

rameters) and the particles were picked manually in each case.
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Figure 3. Classification andRefinement of theCryo-EMDensityMap

for Deactive Complex I

The RELION pipeline (Scheres, 2012) was used to process data from the de-

active preparation. Following manual particle picking and 2D and 3D classifi-

cation to discard bad particles, 3D refinement and particle polishing were

performed. Subsequently, the particles were classified using an angular

sampling up to 0.9� and with the resolution limited to 8 Å (see STARMethods).

All three classes provided were populated. The dominant class refined to

4.1 Å, and a minor class to 7.5 Å. The remaining class is negligible as it con-

tained so few particles.
gold grids (Russo and Passmore, 2014) derivatized with a poly-

ethylene glycol (PEG) linked by an alkanethiol; the 11-carbon

alkanethiol forms a robust bond to the gold surface and exposes

the biocompatible PEG-6 group to the protein solution (Meyer-

son et al., 2014). In a side-by-side comparison with the previ-

ously used Quantifoil grids, we found four times more particles

could be imaged per hole using the PEGylated gold grids (see

Figure 2), plus the particle distribution was improved and less

aggregation was observed (see Figure S1). Subsequently, it

also became clear that the particles adopt a broader set of orien-

tations on the PEGylated gold than the Quantifoil grids (see Fig-

ure S2). In addition to altered grid-protein interactions, varying

ice thicknesses may also contribute to the improved distribution,

and the amorphous carbon Quantifoil grids may absorb deter-

gent from the solution, altering the properties of the air-water

interface during grid preparation and increasing the chance of

aggregation.

The deactive complex on the PEGylated gold grids was

imaged at 300 kV using a Titan Krios electron microscope and

a Falcon-II direct electron detector (McMullan et al., 2014). In

total, ca. 148,000 particles were picked manually, and ca.

125,000 particles were retained following two-dimensional (2D)

and coarsely sampled three-dimensional (3D) classification.

Using the RELION software suite (Scheres, 2012, 2014), the

dataset was first refined to produce a 4.7 Å resolution density

map. Following per-particle frame alignment and B-factor

weighting (Scheres, 2014), the final resolution was 4.13 Å

(defined where the Fourier shell correlation [FSC] = 0.143)

(Rosenthal and Henderson, 2003) (see Figure S3).

The ca. 125,000 particles with improved signal to noise

following frame alignment and B-factor weighting were then sub-

jected to 3D classification with incrementally increasing angular
314 Structure 26, 312–319, February 6, 2018
sampling (up to 0.9�) (Scheres, 2016). The results are shown in

Figure 3. Classification into three classes resulted in a dominant

class containing 87.5% of the particles, a minor class containing

9.7%, and a negligible third class containing 2.7%. When the

classification was repeated but with six classes, a similar pattern

emerged: two major classes contained 87.0% and 7.9% of the

particles (matching their equivalent classes from before) and

the remaining four classes were all negligible (1.3%, 1.6%,

0.6%, and 1.5%). The two largest classes from the first evalua-

tion were refined individually, leading to cryo-EM density maps

of formally 4.13 and 7.50 Å resolution. The map for the dominant

class at 4.13 Å resolution, which we assign to the structure of de-

active complex I, was taken forward tomodel building (see Table

S1). Although the formal resolution of 4.13 Å is only marginally

higher than reported previously for the bovine complex (4.27 Å

for class 1 and 4.35 Å for class 2) (Zhu et al., 2016), several re-

gions of the map displayed substantially improved features

(see Figure S4 for example densities). Consequently, by incorpo-

rating information from the recently published ovine model and

map (Fiedorczuk et al., 2016), we were able to assign sequence

to the large domain of the 75 kDa (NDUFS1) core subunit (see



Figure 4. The Structure of Deactive Complex I Is Characterized by

Localized Unfolding

(A and B) Structure of intact complex I with an arrow showing the view taken of

the ubiquinone-binding region (A). The distal section of the membrane domain

(shown in wheat) is not included in (B) and (C). (B) View of the ubiquinone-

binding region with the subunits involved shown in color as indicated.

(C) Close-up of the ubiquinone-binding region, from the same perspective as in

(B) with the ubiquinone-binding channel predicted for the class 2 structure

(Zhu et al., 2016) shown in blue. The colors are lighter versions of those used in

(B). The areas that become disordered in the deactive state (the loops between

TMHs 1 and 2 in ND3, TMHs 5 and 6 in ND1, b1 and b2 in the 49 kDa [NDUFS2]

subunit, and parts of the 39 kDa [NDUFS9] subunit) are shown in red. His59 is

one of the residues likely to interact with the bound ubiquinone head group;

Cys39 is the marker residue for the deactive state. The figure was created by

combining 5LC5.PDB for the active enzyme (Zhu et al., 2016) with information

about the deactive state described here.
Table S2), to provide a fully assigned model for all 14 core sub-

units (note that we refer to the subunits using both their bovine

and human nomenclatures as summarized in Tables S2 and

S3). In addition, we were able to fully assign the sequences of

the 42 kDa (NDUFA10), 18 kDa (NDUFS4), 13 kDa (NDUFS6),

10 kDa (NDUFV3), PGIV (NDUFA8), SGDH (NDUFB5), and B22

(NDUFB9) supernumerary subunits, and to increase the level of

sequence assignment in the B16.6 (NDUFA13), B15 (NDUFB4),

B14.5a (NDUFA7), and B14.5b (NDUFC2) subunits (see

Table S3). Overall, our model contains 7,811 residues, of

which 7,004 (90%) are assigned, increased from 71% in the

previous class 1 model for the bovine enzyme (Zhu et al., 2016).

Structural Rearrangements of the Ubiquinone-Binding
Site Region in Deactive Complex I
The cryo-EM density map for the biochemically defined deactive

enzyme contains specific regions of localized disorder around

the ubiquinone-binding site. Continuous densities for the loop
between TMHs 5 and 6 in the ND1 subunit, the loop between

TMHs 1 and 2 in the ND3 subunit (containing Cys39), the short

loop between the b1 and b2 strands in the 49 kDa (NDUFS2)

subunit (containing His59, one of the ligands to the bound

ubiquinone head group), and several nearby loops in the

39 kDa (NDUFA9) subunit are not observed in the map (see

Figure 4). The same regions are absent from the previously

described class 1 density map but were clearly observed in the

class 2 map, despite its resolution being lower (Zhu et al.,

2016) (see Figure S5 for example densities). Therefore, the loss

of ordered structures around the ubiquinone-binding site is char-

acteristic of the deactive enzyme. The ubiquinone access chan-

nel was tentatively identified in the class 2 map, leading from an

entrance in ND1 to the binding site for the ubiquinone head

group, at the top of a cleft between the 49 kDa and PSST sub-

units (Zhu et al., 2016). A similar channel was identified in the

crystal structure of complex I from Thermus thermophilus, which

does not exhibit a clear active-deactive transition and can thus

be assumed to be in an active state (Baradaran et al., 2013).

The channel cannot be identified in the structure of the deactive

enzyme because key structural elements that form it are

disordered and missing from the model. We conclude that the

ubiquinone-binding channel has lost its structural integrity in

the deactive complex.

Assignment of Classes 1, 2, and 3
The preparation of bovine complex I imaged by Zhu et al. (2016)

comprised a mixture of deactive and active enzymes and three

structural classes (classes 1, 2, and 3) were distinguished. Disor-

dered regions observed here in the biochemically defined

deactive complex were disordered in class 1 but not in class 2.

The 5.6 Å resolution of the class 3 density map is too low for a

similar comparison, but class 3 is clearly distinguished by addi-

tional disorder (not present in classes 1 and 2) in the C-terminal

section of ND5 (including the transverse helix and TMH16) and

part of the adjacent subunit B14.7 (NDUFA11), consistent with

it being partially dissociated and irreversibly inactivated (Zhu

et al., 2016). ND5 and B14.7 (NDUFA11) are both represented

by clear density in the deactive enzyme (see Figure S5), support-

ing assignment of class 1 to the deactive state. Two global com-

parisons were further used to compare the deactive enzymewith

classes 1, 2, and 3. Previously, small shifts and rotations in

different enzyme domains were observed between the classes.

For example, with the structures superimposed on ND1 (in the

‘‘heel’’ of the enzyme), the hydrophilic domain rotates by 3.4�

and the membrane domain by 3.9� between classes 1 and 2,

and the distal portion of the membrane domain a further 3.1� be-
tween classes 1 and 3 (Zhu et al., 2016). To capture these global

rearrangements, map/model correlations were calculated to

evaluate how well the Ca chains from classes 1, 2, and 3 fit the

deactive complex I density map (see Table 1). In addition, root-

mean-square deviation (RMSD) values were obtained for

different sections of the membrane domain, following alignment

of the hydrophilic domains of the deactive model and classes 1,

2, and 3 (see Table 1). Both approaches support the assignment

of class 1 to the deactive enzyme. Furthermore, the minor (9.7%)

class in the deactive preparation matches the class 3 structure

reported previously (Zhu et al., 2016); it displays disorder in

both theC-terminal section ofND5and subunit B14.7 (NDUFA11)
Structure 26, 312–319, February 6, 2018 315



Table 1. Comparison of the Structure of the Deactive Enzyme

with the Previously Determined Class 1, 2, and 3 Structures

Map/Model Correlation

Class 1

PDB: 5LDW

Class 2

PDB: 5LC5

Class 3

PDB: 5LDX

Dominant class

(this study)

0.1988* 0.1496 0.1772

Minor class (this study) 0.1097 0.1026 0.1218*

Ovine-brij (EMD-4084) 0.1615 0.1388 0.1775*

Ovine supercomplex

(EMD-8130)

0.1376* 0.1206 0.1285

Porcine supercomplex

(EMD-9539)

0.0718 0.0745* 0.0635

RMSD values (dominant class)

Hydrophilic domain 1.75 1.77 1.77

Hydrophobic domain: all 1.33* 5.88 3.16

Hydrophobic domain:

proximal

0.90* 3.55 1.03

Hydrophobic domain:

distal

1.63* 7.42 4.28

RMSD values (minor class)

Hydrophilic domain 1.78 1.80 1.77

Hydrophobic domain: all 5.33 7.37 1.94*

Hydrophobic domain:

proximal

1.70 3.89 0.94*

Hydrophobic domain:

distal

7.23 9.53 2.54*

Map/model correlations were fromUCSFChimera and obtained by fitting

the Ca chains for classes 1, 2, and 3 into the maps from the deactive

preparation, where larger values indicate a better fit. RMSD values are

for the Ca coordinates for the deactive complex (dominant class)

compared with classes 1, 2, and 3, where smaller values indicate a better

fit. Following superposition (using the Pymol ‘‘super’’ routine) of all the

models on the Ca structures of the core subunits in their hydrophilic do-

mains (chains B, C, D, E, F, G, and I), RMSD values were calculated for

sets of core subunits in the membrane domain. The core hydrophobic

domain consists of chains A, H, J, K, L, M, and N, the proximal domain

of chains A, H, J, K, and N, and the distal domain of chains L and M.

The N terminus (residues 1–39) of chain D was excluded. A model for

theminor class was generated by performing real-space rigid-body fitting

of each of the dominant class model chains to the minor class density in

Phenix (Adams et al., 2010). Values that match best to the different clas-

ses are marked with asterisks.
and has the highest map/model correlation with class 3 (see

Table 1). This match is consistent with a small proportion of

partially denatured enzyme in grids of the deactive complex.

With class 1 confirmed as the deactive state, increased struc-

turing of the ubiquinone-binding site in class 2 and the similarities

between the ubiquinone-binding channels detected in class 2

and in complex I from T. thermophilus (Baradaran et al., 2013;

Zhu et al., 2016) argue strongly that class 2 represents the active

enzyme, the state that is ready for substrate binding.

Comparison with Structures from Other Mammalian
Species
Using similar criteria, the classes represented by published cryo-

EM structures from other mammalian species were evaluated.
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For the isolated ovine complex in brij-35 at 3.9 Å resolution (Fie-

dorczuk et al., 2016), no continuous densities are present for the

loops that are disordered in the bovine deactive state (despite

the overall resolution being higher than that of the active class 2

structure) or for the C-terminal section of ND5 or subunit

B14.7 (NDUFA11) that are disordered in bovine class 3 (see Fig-

ure S5). RMSD calculations of the protein models between

different species are confounded by variations in sequence

numbering, but map/structure correlations (see Table 1) support

the ovine structure matching the bovine class 3 (inactive) state.

Previously, the ovine structure was assigned to the deactive

state (Fiedorczuk et al., 2016), and a second, lower-resolution

class (not available for analysis) to the active state. However,

the specific activity of the preparation (in the detergent brij-35

to increase particle density on the grids) was only 3.5 mmol

NADH min�1 mg�1 (Fiedorczuk et al., 2016; Letts et al., 2016b),

equivalent to �16% of the activity reported here and consistent

with a large proportion of inactive enzyme. For complex I in the

ovine supercomplex in digitonin (Letts et al., 2016a), the resolu-

tion is too low to observe specific loops, but map/structure cor-

relations suggest it is predominantly in the class 1 (deactive)

state. For complex I in the porcine supercomplex, also in digi-

tonin (Gu et al., 2016;Wu et al., 2016), map/structure correlations

indicate it is in the class 2 (active) state and this is supported by

clear density for the ND3, ND1, 49 kDa (NDUFS2), and 39 kDa

(NDUFA9) subunit loops (see Figure S5). A recent structure of

the bovine supercomplex is too low resolution to allow either

specific structural elements or map/model correlations to distin-

guish the class (Sousa et al., 2016). Finally, although supercom-

plex formation is independent of the deactive/active status of

complex I (Ciano et al., 2013), incorporating complex I into a

supercomplex may both stabilize the unstable region around

the C-terminus of ND5 and subunit B14.7 (NDUFA11) that is

buttressed against complex III and influence the conformation

of the membrane arm as it curves around it.
DISCUSSION

The complex I preparations used here have specific activities at

least 2-fold higher than those used in our previous cryo-EM

studies of bovine complex I (Sharpley et al., 2006; Zhu et al.,

2016). However, based on particle classification (Scheres,

2016), the fraction of class 3 inactive particles has only

decreased from �20% to �10%, questioning whether the class

populations observed on the grids accurately reflect the class

populations in solution. Many proteins denature at the large

air-water interface present during cryo-EM grid formation (Pass-

more and Russo, 2016), so class 1 and 2 molecules may

augment the class 3 population or become more completely de-

natured and (having lost their distinctive L shape) invisible to the

analysis. Our observation cautions against relying on the classi-

fication of mixed populations of subtly different particles when

assigning biochemically known states, and suggests that

higher-resolution structures of mammalian complex I set in cata-

lytically relevant states will require homogeneous preparations

combined with solution conditions that maintain their stability

during grid preparation. Here, the deactive complex was pre-

pared in a homogeneous state that is reflected in the class



populations on the cryo-EM grids, giving confidence in its struc-

tural assignment.

The structure of bovine complex I set in the deactive state sup-

ports the unfolded Q-site model (Dröse et al., 2016; Zhu et al.,

2016) for the deactive transition of the mammalian enzyme.

The competing truncated Q-site model was originally proposed

using structural data from Y. lipolytica complex I (Zickermann

et al., 2015). However, the structure described has an inhibitor

bound adjacent to the loop that truncates the channel, which

may stabilize it in an alternative conformation. Furthermore, the

transition is less pronounced in Y. lipolytica than in mammalian

species: interconversions between the active and deactive

states are faster and associated with much lower activation en-

ergies (Grivennikova et al., 2003; Maklashina et al., 2003). Thus,

the structural changes of the deactive transition in the yeast

enzyme may be less extensive than in the mammalian enzyme.

The ubiquinone-binding channel was observed to be similarly

truncated in the structure of ovine complex (Fiedorczuk et al.,

2016). However, the ovine complex has very low specific activity,

correlates structurally to the inactive class 3 bovine complex,

and the density for the loop in question is not well resolved

(see Figure S5). The ovine structure (and bovine class 3) probably

represent inactive states that cannot be reactivated.

The flexibility of the structural elements that become disor-

dered in the deactive state (see Figure 4) is further underlined

by the different conformations they adopt in structural models

determined for different species, from the mammalian (Fiedorc-

zuk et al., 2016; Wu et al., 2016), yeast (Zickermann et al., 2015),

and bacterial (Baradaran et al., 2013) enzymes, consistent with

them having important functional roles. The ND3 loop appears

to be a ‘‘tether’’ from the membrane domain, on the front of

the hydrophilic domain and ubiquinone-binding channel; the

ND1 loop forms the base of the ubiquinone-binding channel at

the hydrophobic-hydrophilic domain interface; the b1-b2 loop

in the 49 kDa (NDUFS2) subunit carries a histidine that ligates

the ubiquinone head group. All these loops are crucial for both

the integrity of the ubiquinone-binding channel and the structure

of the domain interface, which they appear to maintain in an acti-

vated state (analogous to a compressed spring) in the active

enzyme. Upon deactivation, the interface relaxes, with conse-

quent changes to the relative arrangement of the two domains.

Thus, we propose that the deactive state is a reversibly formed

off-pathway state and not, as suggested previously (Zickermann

et al., 2015), a catalytic intermediate. The disordered elements

are confined by adjacent secondary structures, and the disor-

dered region in general may be stabilized by the supernumerary

39 kDa (NDUFA9) subunit on the outside of the core complex. In

the inactive class 3 structure, loss of structural integrity in the

ND5 transverse helix appears to allow further relaxation within

the membrane domain and the proximal section of the mem-

brane domain to begin to break from the rest of the complex

(Zhu et al., 2016). Thus, like the loop in ND3, the transverse helix

can also be considered to be a tether that maintains the enzyme

in an active conformation.

Structural knowledge of the deactive state of mammalian

complex I now provides a basis for understanding many of its

biochemical features. (1) Cys39 in subunit ND3, which is both

used as a marker for the deactive state (Galkin et al., 2008)

and targeted in strategies to minimize ischemia-reperfusion
injury, by using cysteine-modifying agents to slow reactivation

or to protect the cysteine against irreversible oxidation (Chou-

chani et al., 2013; Galkin et al., 2009; Gorenkova et al., 2013),

is on the (disordered) loop between TMHs 1 and 2. It is occluded

in the active state andmust become solvent accessible in the de-

active state. (2) Structural disorder in the ND3, ND1, and 39 kDa

(NDUFA9) subunits in the deactive state explains the results of

cross-linking studies that identified these subunits as changing

conformation in the deactive state (Babot et al., 2014b; Ciano

et al., 2013). (3) Relaxation of the activated interface between

the hydrophobic and hydrophilic domains upon formation of

the deactive state is consistent with the functional connection

between them breaking down upon deactivation. Thus, the pro-

ton transfer subunits in the hydrophobic domain are freed from

control by the redox reaction in the hydrophilic domain and

may function independently of it, resulting in the Na+/H+ anti-

porter activity that has been observed specifically in the deactive

state (Roberts and Hirst, 2012). (4) The unfolded Q-site model for

the deactive state explains why slow reactivation of the deactive

enzyme only occurs in the presence of NADH and ubiquinone

(Kotlyar and Vinogradov, 1990). We propose that ubiquinone

acts as a template to restructure the site in the NADH-reduced

enzyme in an induced-fit mechanism of substrate binding (Kosh-

land, 1994). It is possible that electron transfer from N2 to the

bound ubiquinone is also required for complete activation. The

requirement for ubiquinone to bind to the reduced enzyme ex-

plains why neither reverse electron transfer (ubiquinol:NAD+ ox-

idoreduction) nor its associated reactive species production are

catalyzed by the deactive enzyme upon the reperfusion of

ischemic tissue (Chouchani et al., 2013; Kotlyar and Vinogradov,

1990). (5) The ubiquinone-site inhibitor rotenone has also been

reported to return the deactive enzyme to its active state (Griven-

nikova et al., 1997), consistent with its inhibition of the Na+/H+

antiporter activity of the deactive state (Roberts and Hirst,

2012). (6) The flexibility and ability of the structural elements

that constitute the active site to reorganize around substrates

and inhibitors may explain why so many diverse compounds

are known to inhibit ubiquinone reduction by complex I

(Miyoshi, 1998;Murai andMiyoshi, 2016). Similarly, the instability

of the ubiquinone-binding site region, which propagates

structural flexibility through the enzyme, may explain why the

mammalian enzyme has proved so difficult to purify in a highly

catalytically active state and (so far) to crystallize for structure

determination.

Finally, disordered protein domains are increasingly recog-

nized as central to many diverse molecular processes and as

particularly important in regulatory mechanisms (van der Lee

et al., 2014). The deactive state of complex I is already being

explored as a regulatory mechanism relevant to minimizing

ischemia-reperfusion injury (Chouchani et al., 2013), and the

structure of the deactive state now highlights additional possibil-

ities. Inherent conformational flexibility in the loop of ND3 that

carries the highly conserved Cys39 may transiently expose it to

post-translational modifications that regulate complex I activity

in response to cellular redox status. Alternatively, several disor-

dered regions accumulated into one area may allow an effector

protein to interact, to trap the enzyme in the deactive state, or

promote its formation. Studies of the deactive-active status of

complex I under physiologically relevant conditions and of the
Structure 26, 312–319, February 6, 2018 317



deactive state formed in vivowill be required to investigate these

suggestions in the future.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL DETAILS

d METHOD DETAILS
B Preparation of Complex I Samples

B Catalytic Activity Assays and Determination of the De-

active/Active Enzyme Ratio

B Cryo-EM Grid Preparation

B Electron Microscopy

B Image Processing

B Model Building

d DATA AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and three tables and can be

found with this article online at https://doi.org/10.1016/j.str.2017.12.014.

ACKNOWLEDGMENTS

We thank A. Raine, M. Hartley, and D. Gallagher (MBU) for computational help.

Data were recorded at the UK National Electron Bio-Imaging Centre (eBIC) at

Diamond (proposal EM13581, funded by the Wellcome Trust, MRC and

BBSRC) with help from Dan Clare and Alistair Siebert. This work was sup-

ported by The Medical Research Council, grant numbers U105663141 (to

J.H.) and U105184322 (K.R.V. in R. Henderson’s group).

AUTHOR CONTRIBUTIONS

Conceptualization, J.N.B. and J.H.; Methodology, J.N.B., K.R.V., and J.H.;

Investigation, J.N.B. and K.R.V.; Writing – Original Draft, J.N.B. and J.H.;

Writing – Review & Editing, J.N.B., K.R.V., and J.H.; Visualization, J.N.B. and

J.H.; Supervision, J.H.; Funding Acquisition, J.H.

Received: August 1, 2017

Revised: November 3, 2017

Accepted: December 27, 2017

Published: January 25, 2018

REFERENCES
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James, A.M., Cochemé, H.M., Reinhold, J., Lilley, K.S., et al. (2013).

Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial com-

plex I. Nat. Med. 19, 753–759.

Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijevi�c, D., Sundier, S.Y., Robb,

E.L., Logan, A., Nadtochiy, S.M., Ord, E.N.J., Smith, A.C., et al. (2014).

Ischaemic accumulation of succinate controls reperfusion injury through mito-

chondrial ROS. Nature 515, 431–435.

Ciano, M., Fuszard, M., Heide, H., Botting, C.H., and Galkin, A. (2013).

Conformation-specific crosslinking of mitochondrial complex I. FEBS Lett.

587, 867–872.
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EXPERIMENTAL MODEL DETAILS

Bovine hearts were obtained from Dawn Cardington Abattoir, Bedford, U.K. and were of the common cattle breeds found in the

United Kingdom. The cattle were of mixed gender and typically slaughtered at 18 – 22 months old.

METHOD DETAILS

Preparation of Complex I Samples
Bovine mitochondria andmitochondrial membranes were prepared as described previously (Blaza et al., 2014). Complex I was set in

the deactive state by incubating the membranes (resuspended to 12 mg protein mL-1 in 20 mM Tris-Cl pH 7.55, 1 mM EDTA, 10%

glycerol, 0.0075% PMSF) at 37�C for 15 min. Then, the membranes were diluted to 5 mg mL-1 in the same buffer but ice cold, and

cooled on ice for 10 min. All subsequent steps were performed at 4�C, using a protocol developed from that of Jones et al.

(Jones et al., 2016). Briefly, n-dodecyl b-D-maltoside (DDM, Glycon Biochemicals GmbH) was added dropwise to 1%, the

suspension stirred for 20 min., clarified by centrifugation (47,0003 g for 12 min.) and loaded onto a Q-sepharose column pre-equil-

ibrated in buffer A (20 mM Tris-Cl pH 7.55, 2 mM EDTA, 10% ethylene glycol, 0.2% DDM, 0.02% asolectin (Avanti Polar Lipids) and

0.02% CHAPS (Santa Cruz Biotechnology)). Cytochrome c oxidase and other unwanted proteins were eluted in 27.5% buffer B
e1 Structure 26, 312–319.e1–e3, February 6, 2018
(buffer A with 1 M NaCl added), until the absorbance at 420 nm
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reached 0.025, then complex I was eluted in 36% buffer B. The complex I-containing fractions were pooled and concentrated to

�1 mL, then eluted from a 10/300 superose-6 increase column (GE Healthcare Life Sciences) at 0.5 mL min-1 in 20 mM Tris-Cl

pH 7.55, 150 mM NaCl, and 0.04% Cymal-7 (Anatrace). The manually collected peak fraction with concentration �4 mg mL-1 was

used immediately for grid preparation.

Catalytic Activity Assays and Determination of the Deactive/Active Enzyme Ratio
NADH:decylubiquinone oxidoreductase activities of isolated complex I samples were determined at 32�C using 0.5 mg

complex I mL-1 with 200 mM NADH and 200 mM decylubiquinone in 20 mM Tris-Cl pH 7.5, 0.15% asolectin and 0.15% CHAPS.

The reaction was initiated by addition of NADH and the rate determined following activation of the deactive enzyme, when (typically

2min. after initiation) the kinetic trace (recorded at 340 - 380 nm, 3NADH = 4.81mM-1 cm-1) becomes linear. To determine the deactive/

active enzyme status an aliquot of the complex I stock solution (at �4 mg mL-1) was divided into two and 4 mM NEM added to one

half. The samples were incubated at 4�C for at least 5 minutes (longer incubations did not increase the level of inhibition) before their

addition to the assay mixture to measure their relative maximum rates of catalysis. In the absence of NEM catalysis is from both the

active and deactive enzymes, in the presence of NEM only from the active enzyme.

Cryo-EM Grid Preparation
For the data collection presented, UltrAuFoil gold grids (0.6/1, Quantifoil Micro Tools GmbH) (Russo and Passmore, 2014) were glow

discharged at 20 mA for 60 s then imported to an anaerobic glovebox and placed in ethanol containing 5 mM 11-mercaptoundecyl

hexaethyleneglycol (SPT-0011P6, SensoPath Technologies) for at least 24 hours before grid preparation (Meyerson et al., 2014).

Then, just prior to use, the grids were washed three times in ethanol and left to air-dry. Grids were prepared using an FEI

Vitrobot IV. 2.5 mL of protein solution were applied to the grid at 4�C in 100% relative humidity, and blotted for 8 – 12 s at force

setting -10, before being plunged into liquid ethane. For comparative experiments, UltrAuFoil 1.2/1.3 gold grids and Quantifoil

0.6/1 grids were prepared similarly, but using 8 and 2 s blotting times, respectively, or prepared bymanual blotting as described pre-

viously (Vinothkumar et al., 2014).

Electron Microscopy
Grids were imaged in a 300 keV Titan Krios microscope fitted with a Falcon-II direct electron detector and EPU software at the Elec-

tron Bio-Imaging Centre at The Diamond Light Source. The nominal magnification was set to 59,0003 but, by comparing the final

4.13 Å structure to the previously published class 1 structure, the pixel size was calibrated to 1.38 Å and the magnification to

101,4493. A C2 and objective aperture of 100 mm were used and each image was exposed for 2.5 s with a total dose of �80 elec-

trons/Å2. We collected the first 12 frames (700 ms) to capture the rapid early movement of the sample when the electron beams first

interacts with the grid (Brilot et al., 2012) and after that every four frames were binned together. The defocus range was 1.3-3.1 mm in

0.3 mm increments; defocus was measured in the autofocus routine every 10 mm.

Image Processing
Whole-frame alignment was performing using Unblur (Grant andGrigorieff, 2015) before CTF estimation using CTFFIND4 (Rohou and

Grigorieff, 2015). All resolution estimates are based on the FSC = 0.143 criterion, and the final resolution estimates were made after

the application of a binary mask and phase-randomization to check the effects of the mask. RELION-1.4 was used for data process-

ing (Scheres, 2012).

A total of 148,488 particles were picked manually. Following 2D and 3D classification to remove ‘bad’ particles, 125,006 particles

were used for refinement to a resolution of 4.7 Å. Per-particle frame alignment to correct for movement and B-factor weighting

(Scheres, 2014) were then performed and the resolution, following a second refinement, improved to 4.13 Å with an angular accuracy

of 0.87�. The resulting ‘shiny’ particles were subjected to 3D classification with three classes, with the angular sampling gradually

increased up to 0.9� and the resolution limited to 8 Å to reduce over-fitting; local searches were implemented from 3.75� onwards.

The populations within the classes remained stable for at least 50 further iterations after the different classes had emerged. The

three classes (see Figure 3) were refined individually. The dominant class had a resolution of 4.13 Å and was sharpened with a B-fac-

tor of -110 Å2 before model building.

Model Building
We extended our previous class 1 model (Zhu et al., 2016) to assign more residues, using the improved densities visible in the new

map, and the better densities for the hydrophilic domain in the ovine map (Fiedorczuk et al., 2016). Typically, the approximate

numbering of the unknown residues (Zhu et al., 2016) was found to be quite accurate, with bulky residues being found already placed

in bulky pockets of density. In regions in which the numbering of the residues is still uncertain a poly-Ala chain was used to provide

approximate numbers. The resulting model was further manually fitted in Coot (Emsley et al., 2010) and refined using REFMAC5

(Murshudov, 2016; Murshudov et al., 2011). Sidechains were included where appropriate. Note that we number the residues in

the subunits starting from the first residue of the mature protein (Hirst et al., 2003). Note also that the density assigned to the

10 kDa (NDUFV3) subunit in both the bovine and ovine structures (Fiedorczuk et al., 2016; Zhu et al., 2016) was assigned to the
Structure 26, 312–319.e1–e3, February 6, 2018 e2



N-terminal mitochondrial targeting sequence of the 24 kDa subunit (NDUFV2) in the porcine structure (Wu et al., 2016) but it is cleaved

from the mature protein and not present in the isolated enzyme (Hirst et al., 2003).

DATA AVAILABILITY

The electron microscopy maps and model have been deposited in the Electron Microscopy Databank, accession codes

EMD-3733 for the minor class and EMD-3731 for the major class, and in the Protein Data Bank, accession code PDB: 5O31 for

the major class.
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