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Abstract

Functional connectomes are commonly analysed as sparse graphs, constructed by thresholding cross-correlations between
regional neurophysiological signals. Thresholding generally retains the strongest edges (correlations), either by retaining
edges surpassing a given absolute weight, or by constraining the edge density. The latter (more widely used) method risks
inclusion of false positive edges at high edge densities and exclusion of true positive edges at low edge densities. Here we
apply new wavelet-based methods, which enable construction of probabilistically-thresholded graphs controlled for type I
error, to a dataset of resting-state fMRI scans of 56 patients with schizophrenia and 71 healthy controls. By thresholding
connectomes to fixed edge-specific P value, we found that functional connectomes of patients with schizophrenia were
more dysconnected than those of healthy controls, exhibiting a lower edge density and a higher number of (dis)connected
components. Furthermore, many participants’ connectomes could not be built up to the fixed edge densities commonly
studied in the literature (∼5-30%), while controlling for type I error. Additionally, we showed that the topological
randomisation previously reported in the schizophrenia literature is likely attributable to “non-significant” edges added
when thresholding connectomes to fixed density based on correlation. Finally, by explicitly comparing connectomes
thresholded by increasing P value and decreasing correlation, we showed that probabilistically thresholded connectomes
show decreased randomness and increased consistency across participants. Our results have implications for future
analysis of functional connectivity using graph theory, especially within datasets exhibiting heterogenous distributions of
edge weights (correlations), between groups or across participants.
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1. Introduction

Relationships between neurophysiological signals are
thought to underlie communication in the brain (Fries,
2005); a complete description of such “functional connectiv-
ity” is called a functional connectome (Biswal et al., 2010).
Functional connectomes are commonly analysed as sparse
graphs, constructed by thresholding statistical associations
(usually, correlations) between pairs of regional neurophys-
iological signals. Within graph theory, the relationships
are called edges or links, while the brain regions are called
nodes (Bullmore and Sporns, 2009). Thresholding retains
the strongest edges, either by retaining edges surpassing
a given absolute weight, or (more commonly) by ensuring
that all connectomes have a fixed edge density, calculated
as the ratio of the number of edges in the network to the
total possible number of edges (Fornito et al., 2013). The
resulting sparse graphs can subsequently be characterised
using summary measures of topological organization, indica-
tive of features such as network integration or segregation
(Rubinov and Sporns, 2010).
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As such measures are non-trivially dependent on the
density of the underlying graph (van Wijk et al., 2010),
weighted functional connectomes are traditionally thresh-
olded to fixed edge density to enable comparisons of graph-
theoretical measures across participants. Analyses using
fixed-density thresholding are usually carried out across
a range of thresholds to mitigate the fact that the choice
of a single fixed density is arbitrary. While there have
been recent efforts to determine a-priori thresholds (e.g.
De Vico Fallani et al. (2017), based on the cost-efficiency
trade-off (Bullmore and Sporns, 2012)), a statistically prin-
cipled framework for thresholding individual graphs and
analysing brain network connectivity has been lacking.

Recently, new wavelet-based methods have been pro-
posed, which enable simultaneous denoising (Patel et al.,
2014) and probabilistic inference (Patel and Bullmore, 2016)
on functional connectomes constructed from individual
subjects. These methods define the spatial variability in
effective degrees of freedom (df ) at each region or voxel
after denoising and motion artefact removal, using wavelet
despiking. These can then be used to convert edge statistics
(correlations) into P values or probabilities (as described in
Patel and Bullmore (2016) and Methods 2.2), thus enabling
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the construction of probabilistically-thresholded graphs.
We note that application of P value thresholding to net-
works constructed using global denoising methods (such
as scrubbing) and/or Pearson correlation unadjusted for
effective df will not yield the same benefits as the methods
applied here (see also Fig. 2 and Results 3.5), and will
inflate type I error Patel and Bullmore (2016). Here we
apply these new methods to resting-state fMRI data of
patients with schizophrenia and healthy participants.

Schizophrenia has been described as a disorder involv-
ing both disconnectivity (Friston and Frith, 1995; Friston,
1998) and dysconnectivity (Bullmore et al., 1997; Stephan
et al., 2006); the former referring to weaker or missing con-
nections, the latter to aberrant connectivity more generally
(Stephan et al., 2006; Fornito et al., 2012). Dysconnectivity
in schizophrenia has been extensively studied using mul-
tiple methods, including graph theory (see e.g.: Bullmore
and Sporns (2009) and Fornito et al. (2013) for reviews
on analyses of neuroimaging data using graph theory, and
Fornito et al. (2012) and van den Heuvel and Fornito (2014)
for its specific applications to schizophrenia). These have
generally reported global reductions in both structural (eg:
van den Heuvel et al. (2010); Zalesky et al. (2011); Griffa
et al. (2015)) and functional (Lynall et al., 2010; Zalesky
et al., 2012; Lo et al., 2015) connectivity in schizophre-
nia. Some functional studies have shown localised increases
in functional connectivity (Liu et al., 2008; Skudlarski
et al., 2010), although these may reflect differences in pre-
processing (e.g. use of partial correlations (Liu et al., 2008)
or zero-centering of the correlation distributions (Skud-
larski et al., 2010)). Furthermore, functional connectivity
studies generally agree that brain networks are topologi-
cally altered in schizophrenia, although the nature of these
changes and the specific topological measures used to assess
them vary between studies (for review, see Fornito et al.
(2012) and van den Heuvel and Fornito (2014)).

Among these studies, thresholding to fixed edge density
has been more common. The popularity of fixed-density
thresholding is likely due to the known dependence of “tra-
ditional” higher-order graph-theoretical measures on edge
density (van Wijk et al., 2010). Several studies (Rubinov
et al., 2009; Alexander-Bloch et al., 2010; Lynall et al.,
2010) converge on topological alterations such as increased
efficiency and/or reduced clustering, consistent with a sub-
tle randomisation of the connectome in schizophrenia; this
has been proposed as an endophenotype of the disorder (Lo
et al., 2015). However, it has been hypothesized that this
“randomisation” might result from the application of fixed-
density thresholds to functional connectomes of patients
with schizophrenia, presenting decreased edge weights: “in
the presence of a global reduction of mean functional con-
nectivity in patients [. . . ] any analysis of graphs matched
for connection density, κ, will result in the inclusion of
proportionally more low-value (non-significant) edges in pa-
tients’ networks. If these values merely reflect noise, their
inclusion will produce a more random topology” (Fornito
et al., 2012). A recent study demonstrated that group

differences in mean functional connectivity (correlation) do
indeed lead to group differences in topological organisation,
and proposed to correct for between-group differences in
mean functional correlation using regression or permutation
(van den Heuvel et al., 2017).

Here, we present the first analysis of neuroimaging
data using the methods for combined denoising and proba-
bilistic inference presented in Patel and Bullmore (2016).
We thresholded functional MRI scans of 56 patients with
schizophrenia and 71 healthy controls (the COBRE dataset)
based on statistical significance of edges, after taking into
account the effects of motion and other artefacts. We
aimed to investigate the general implications of proba-
bilistic thresholding on graph theoretic analysis of brain
network connectivity. In this context we used data from
patients with schizophrenia to revisit the dysconnectiv-
ity and topological randomisation hypotheses using these
new statistically principled thresholding methods. Specific
questions included: (i) To what density can each partici-
pants’ connectome be reconstructed, while ensuring that
all retained edges remain statistically significant after ac-
counting for the effects of motion? Does this density have
diagnostic potential? (ii) Conversely, what proportion of
connectomes can be reconstructed up to fixed densities
generally considered in the literature? (iii) (To what ex-
tent) are differences in topological organization sensitive
to “non-significant” edges usually added when thresholding
connectomes to fixed density?

2. Methods

2.1. MRI data and pre-processing
Raw anatomical and functional MRI scans of 72 patients

with schizophrenia and 75 healthy controls were made avail-
able by the Mind Research Network and University of New
Mexico (http://fcon_1000.projects.nitrc.org/indi/
retro/cobre.html). Informed consent was obtained from
all subjects according to institutional guidelines required
by the Institutional Review Board at the University New
Mexico (UNM).

All participants were scanned on a 3 Tesla SIEMENS
TIM scanner. Structural data was collected using a multi-
echo MPRAGE (MEMPR) sequence with the following
parameters: TR = 2.53 s, TE = [1.64, 3.5, 5.36, 7.22, 9.08]
ms, TI = 900 ms, matrix size 256 x 256, 176 slices, voxel
size = 1 x 1 x 1 mm3. Resting-state data was collected with
echo-planar imaging (EPI) TR = 2 s, TE = 29 ms, matrix
size 64 x 64, 32 slices, voxel size = 3 x 3 x 4 mm3, scan
duration = 304 s (152 volumes). Subjects were instructed
to keep their eyes open during the scan. Subject ages
ranged from 18 to 65 years old. Diagnostic information
was collected using the Structured Clinical Interview used
for DSM Disorders (SCID).

Core image processing of the structural and functional
images was done in AFNI. This included: skullstrip of
the structural image, slice timing correction, rigid-body
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head movement correction (to the first frame of data),
obliquity transform of the functional to the structural im-
age, affine co-registration of the functional to the struc-
tural image using a grey matter mask, non-linear stan-
dard space transform to the MNI152 template in standard
space, spatial smoothing (6mm FWHM) and within-run
intensity normalisation to a whole-brain median of 1000.
Subsequent time series denoising steps included: voxel-
wise wavelet despiking using the BrainWavelet Toolbox
(www.brainwavelet.org), segmentation of CSF signal us-
ing FSL fast, and linear regression of 6 movement param-
eters, their first-order derivatives and CSF signal. All
pre-processing steps were performed using AFNI software
(Cox, 1996), except CSF segmentation which was performed
using FSL FAST (Smith et al., 2004), and time series de-
noising which was done using the BrainWavelet Toolbox
for denoising motion artefacts (Patel et al., 2014).

Following data processing, participants with a mean
spike percentage (the percentage of gray mater voxels con-
taining a motion-related spike in the wavelet domain, aver-
aged across time points) greater than 7.5% were excluded
from further analysis. This threshold was chosen as it
was the highest threshold that enabled the elimination of
a between-group bias in motion and average effective df
(after subject exclusion). This resulted in the exclusion
of 15 patients with schizophrenia and 3 healthy controls.
Additionally, one patient was excluded due to a truncated
run during acquisition, and one healthy control due to
reconstruction errors. Thus, 56 patients with schizophrenia
and 71 healthy controls were included in the study. The
framewise displacement (FD) in the two groups, expressed
as median [first, third quartiles] ([Q1,Q3]) was 0.27 [0.20,
0.40] in healthy controls, 0.35 [0.22, 0.47] in patients with
schizophrenia.

2.2. Wavelet despiking and estimation of effective df
Wavelet despiking is a method for voxel-wise spatially-

adaptive denoising of motion artefacts across frequencies
that accounts for the highly non-linear nature of these
artefacts. The first step of the algorithm is to perform a
maximal overlap discrete wavelet transform (MODWT) on
the time series (length = t) from each voxel which derives
a set of frequency bands (or scales = j ) from the signal
creating a set of t × j wavelet coefficients. Denoising is
conducted in the time-scale plane on these t× j coefficients
for each voxel. The algorithm identifies chains of maximal
and minimal wavelet coefficients across frequencies and
splits the coefficients for each voxel time series into two
additive sets: one representing noise coefficients (Φ), the
other representing non-noise or ‘signal’ coefficients (α), as
described in equation 1:

W̃X,j,t = W̃α,j,t + W̃Φ,j,t (1)

where W̃X,j,t is the MODWT of voxel time-series Xt.

In the final step, the algorithm recomposes the denoised
time series from α, setting all Φ = 0 (a process known as
hard thresholding), to yield a denoised time series of length
t.

Effective degrees of freedom (η̂j or simply df ) are esti-
mated for each scale in the time-scale plane from the ‘signal’
coefficients, α, using equation 2 below, as described in Patel
and Bullmore (2016); M is the number of non-boundary
coefficients (please see Patel and Bullmore (2016) for a full
description).

η̂j = max

{⌊
Mj −MΦ,j

2j

⌋
, 1

}
(2)

This results in estimation of η̂ (df ) for each voxel at
each wavelet scale.

2.3. Graph construction
Individual networks were constructed using a parcella-

tion of cortex into 470 nodes (Patel and Bullmore, 2016).
50 nodes were excluded due to incomplete coverage between
subjects and dropout, defined as regions with insufficient
signal coverage across the full cohort. Edge weights were
calculated as Pearson correlations in the wavelet domain be-
tween the remaining 420 nodes, separately for each wavelet
scale. Based on previous work indicating that wavelet
scale 2 (0.060-0.125 Hz) is the most sensitive to differences
between patients with schizophrenia and healthy controls
(Lynall et al., 2010), the results primarily focus on this
scale; still, the main analyses were repeated at scales 1 and
3 (see Supplementary Information). For a schematic repre-
sentation of the graph construction pipeline, see Fig. 1A.

Subject-specific df maps were parcellated using the
same template used for parcellating the time series. This
gave regional (or nodal) df estimates for each wavelet
scale. When constructing graphs from this set of nodal
df, edges were assigned the minimum df of the connecting
nodes. So if node 1 had df = 30, and node 2 had df =
40, the edge df connecting these nodes was assigned df =
30. The correlation (r) values between nodal time series
were then converted to 2-tailed P values using the Fisher
r-to-Z transform and comparing to the standard normal
distribution, normalising for edge df (equation 3).

Zj = 0.5 · ln

(
1 + rj
1 − rj

)
·
√
η̂j − 3 (3)

Unthresholded functional connectomes were charac-
terised using the global mean correlation and node strength,
calculated respectively as the mean of the upper triangular
parts and rows (or equally, columns) of each participant’s
adjacency matrix. Positive and negative correlations were
not separately considered in this analysis.
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2.4. Probabilistic thresholding methods
Throughout this paper, we use the terms “probabilistic

thresholding” and “P value thresholding” (or “P-thresholding”)
interchangeably, as the P value is an estimate of connection
probability. (Specifically, it is the probability of correctly
rejecting the null hypothesis, or of obtaining an observed
edge test statistic at least as extreme as the one we ob-
served, if the experiment were to be repeated.) We use
the term “significant” to mean FDR-adjusted P < 0.01.
However, we note that the method itself is deterministic,
in that for a given network and threshold, the same edges
will be retained.

An illustration of differences in topological organisation
that may arise when thresholding connectomes based on
correlations or P values is shown in Fig. 1B.

2.4.1. Fixed P value thresholding
First, we thresholded each participant’s graph at an

FDR-adjusted significance level of α = 0.01 – an approach
which bears some similarity to (absolute) weight-based
thresholding (Fornito et al., 2013) but additionally con-
trols for type I error (“false positives”; Patel and Bullmore
(2016)). We term all edges surviving this probabilistic
threshold “significant edges”. Very few negatively-weighted
edges survived (within and across participants), and in-
clusion of these edges had a negligible effect on down-
stream topological measures (see Supplementary Informa-
tion). Negative edges were therefore excluded from the
main analysis.

To study topological disconnectivity, P-thresholded con-
nectomes for individual subjects were binarised by assigning
all retained edges a uniform weight of 1. Upon thresholding
and binarisation, many of the individual connectomes frac-
tionated into multiple components. Therefore, we studied
the topological disconnectivity within each participant’s
connectome as a signal of interest, evaluating it using sev-
eral global summary measures:

1. Edge density: the ratio of the number of edges present
in the P-thresholded graph to the total number of
possible edges.

2. Connected components analysis: these are sub-graphs
within which any node is reachable from any other
node by a path. We evaluated both the number of
connected components, and the size of the largest
component for each participant.

3. The percolation threshold: this is the threshold that
determines connectedness of all nodes. In this case it
is the (FDR-adjusted) P value below which all nodes
form part of a single “giant” connected component,
while above it the graph begins to fractionate into
multiple (dis)connected components.

Additionally, we calculated the average Euclidean dis-
tances spanned by retained edges.

Further, we assessed local measures analogous to the
global ones – node degree (the number of edges connected

to a node), local edge density (degree normalised by number
of edges in the graph), a nodal connected component score
(defined as the size of the component the node is connected
to, normalised relative to the largest component), and
average distance spanned by a node’s edges.

Summary measures were compared between groups us-
ing two-tailed Mann-Whitney U (MWU) non-parametric
tests. Effect sizes were quantified using the “simple differ-
ence formula” which results in a rank-biserial correlation r.
All possible combinations of pairs of measurements from
the two groups are classified as either favourable (f ) or
unfavourable (u) to the null hypothesis; then, the rank-
biserial r is calculated as the difference between the two (r
= f - u) (Kerby, 2014). The rank-biserial correlation is a
(signed) value between 1 and -1; we used healthy controls
as the reference population, resulting in positive values of
r for measures that are increased in schizophrenia, and
negative values of r for decreases in schizophrenia.

Finally, we examined whether functional connectomes
thresholded using fixed P values exhibit some of the known
hallmarks of topological organisation, including the pres-
ence of highly connected hub nodes (Sporns et al., 2007) and
decomposability into densely intra-connected but sparsely
inter-connected modules (Sporns and Betzel, 2016).

2.4.2. Fixed density thresholding
In a second analysis, we thresholded individual connec-

tomes to fixed edge density (from 1 to 35%, in steps of 1%),
adding edges in order of increasing P value. In doing so, we
studied the evolution of the maximum df -corrected P value
per participant as a function of edge density. This analysis
also indicates the maximum edge density that one can add
edges to by P value for a given participant – once a thresh-
old of P = 1 is reached, all remaining edges are equally
unlikely and no further edges may be added by P value.
Furthermore, we asked what proportion of our participants’
connectomes could be built up to a given fixed edge density,
under the condition that all df -corrected P values remain
statistically significant (PFDR < 0.01). In adding edges in
order of increasing P value beyond a threshold of P = 0.01,
an increasing number of negative edges might be added (SI
Fig. S2). However, negative edges were again excluded as
they had no qualitative impact on the results.

For each individual’s fixed-density graph, we assessed
topological integration and segregation. Global integration
was quantified using the global efficiency, which is defined as
the average of the inverse shortest path length (Latora and
Marchiori, 2001). Global segregation was quantified using
transitivity, which is the ratio between numbers of triangles
and connected triples of nodes in the network (Newman,
2010). We note that the interpretation of transitivity as a
measure of topological segregation relies on its application
to sparse networks (here, 1-35% edge density). Transitivity
is maximal in the extreme case of a fully connected graph,
in which one might also say that integration is maximal.
We did not enforce node-connectedness (e.g. with minimum
spanning tree (MST) thresholding (Alexander-Bloch et al.,
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Figure 1: Methods of probabilistic graph construction and analysis. A) Pipeline for graph construction using wavelet df. During
pre-processing and denoising with wavelet despiking (Patel et al., 2014), voxel-wise effective degrees of freedom (df ) are extracted (Patel and
Bullmore, 2016). Following parcellation of cortex into nodes and construction of a functional correlation network, edge-specific df values are
used to obtain edge-specific P values, which (following FDR adjustment for multiple comparisons) can be used to threshold the network. B)
Illustration of potential differences between graphs thresholded based on correlations, or df -adjusted P values. Graph thresholding, either to
variable edge density using an absolute threshold (τ ; first column) or to fixed edge density using a proportional threshold (κ; second column)
has traditionally been performed using correlation (first row). However, application of analogous thresholding methods using df -adjusted P
values (second row) can lead to different topologies.

2010; Fornito et al., 2016)), as doing so would introduce
non-significant edges. However, we quantified the number
of connected components, for each participant and at each
edge density.

Using these measures, we investigated whether topolog-
ical randomisation in schizophrenia reported in the liter-
ature may be driven by inclusion of non-significant edges
(Fornito et al., 2012), which we define as any edge with
PFDR ≥ 0.01. This analysis was conducted in 3 parts:

1. We first compared the topology between groups at
fixed connection densities, adding edges to individual
connectomes by increasing P value (until we reached
P = 1), but disregarding whether we had included
non-significant edges. This was our comparator to the
literature where connectomes are commonly thresh-
olded to fixed density regardless of the statistical sig-
nificance of edges. We expected that the schizophre-
nia group would show greater randomisation.

2. We then repeated the analysis in (1), but at each
density, we only included subjects where all edges
satisfied PFDR < 0.01 (i.e. where all edges were signif-
icant by our definition). We expected the topological
randomisation effect to disappear, implying that it is
driven by inclusion of non-significant edges.

3. Finally, at each density, we subdivided both the
schizophrenia and control groups into two subgroups:

those subjects with non-significant edges at that den-
sity, and those without. Here we aimed to show defini-
tively that it is inclusion of non-significant edges that
drives the randomisation effect.

Group differences were again evaluated using two-tailed
Mann-Whitney U tests, and effect sizes using the simple
difference formula (Kerby, 2014). For analyses (2) and
(3) above, as group sizes varied as a function of density,
we used permutation testing to ensure our results were
not driven by differences in statistical power. For analysis
(2), we sampled N subjects from each whole group (i.e.
controls or schizophrenia patients with all edge P < 1 at
a given density) without replacement, where NN is the
number of subjects used for the analysis at that density, and
evaluated the effect size. For analysis (3), we shuffled group
labels. In both cases, the permutation was run 10,000 times,
and permutation-test P values (Pperm) were calculated as
the proportion of effect sizes of randomly sampled (or
permuted) participants that exceeded the empirical effect
size.

Finally, we repeated the above fixed-density analyses
using values of efficiency and transitivity which were nor-
malised with respect to their average values in 100 ran-
domised networks with preserved degree distributions (Ru-
binov and Sporns, 2010), within each participant and at
each density. Additionally, due to the previously reported
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Figure 2: Impact of adjustment of P values for effective df. Illustration of the effect of adjustment of P values for effective df, on one
example participant from each group. A) Without adjustment of P values for effective df, the relationship between the Pearson correlation and
the P value is perfectly monotonic; thus, identical edges are added to the graph in order of decreasing r or increasing P. B) However, following
adjustment of P values for effective df, different edges may be added in order of decreasing r and increasing P.

relationships between group differences in mean correlation
and topological measures (van den Heuvel et al., 2017), we
evaluated differences in mean (unthresholded) correlation
between subsets of participants whose edges were or were
not significant at each density.

2.5. Comparison of probabilistic and correlation-based thresh-
olding

Our final analysis consisted in comparing probabilistic
thresholding, where edges are added in order of increasing
P value (adjusted for effective df ), and correlation-based
thresholding, where edges are added in order of decreasing
correlation. We note that in time-series with fixed nominal
degrees of freedom (equal to the number of time points,
which is an overestimate of the true effective df ), the two
approaches will lead to identical results, due to the perfectly
monotonic relationship between the correlation coefficient
and the P value (Fig. 2A). However, following adjustment
for effective df, the P values become df -dependent – and
thus different edges may be added in order of increasing P
and decreasing r (Fig. 2B).

To compare the two approaches explicitly, we con-
structed for each participant a set of fixed-density graphs
(in the range from 1 to 35% edge density) by adding edges
in order of decreasing correlation coefficient r. We then
compared these to networks constructed in order of increas-
ing P value (whose construction is described above) using
several approaches.

We first evaluated the proportion of edges that differ
between the two networks, within participants and as a
function of edge density.

Further, we evaluated differences in global efficiency
and transitivity as a function of edge density. Within-group
differences between topological measures derived from P
or r-based thresholds were evaluated using the Wilcoxon

signed-rank test (WSR; a non-parametric test of paired
sample differences). We repeated these analyses using
values of efficiency and transitivity which were normalised
with respect to their average values in 100 randomised
networks with preserved degree distributions (Rubinov and
Sporns, 2010), for each thresholding method (increasing
P or decreasing r), within each participant and at each
density.

Finally, we examined whether thresholding by P value
results in greater consistency of edges compared to thresh-
olding by correlation. For each thresholding method (r
and P) and at each edge density, we quantified the con-
sistency of each edge edge by counting the number of
times each particular edge was found across each group
(controls and patients). We then converted this data to
histograms by counting the number of edges that were
observed for each level of consistency. Finally, we assessed
the difference in these histograms of consistency between r-
and P-thresholded networks. The significance of any ob-
served differences was determined by repeating the above
procedure 10’000 times, following permutation or r- and
P-thresholded networks within group; a P value was calcu-
lated as the proportion of permuted differences surpassing
the empirical difference. The procedure is illustrated in
Fig. 7A. As in previous analyses where networks were
thresholded by fixed P value, we excluded participants
whose connectomes contained edges with P = 1.

3. Results

3.1. Edge weight (correlation) distributions
The inter-regional wavelet correlation coefficients, or

edge weights, were normally distributed and predominantly
positive in both groups. Mean edge weights were signifi-
cantly greater in the control group (mean weight: median
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Figure 3: Decreased (unthresholded) correlations in patients with schizophrenia. A) Edge weights in unthresholded networks, as
distributions within individual participants (thin lines) as well as averaged within groups (bold lines; top), and averaged within participants
(bottom). Distributions were constructed using kernel density estimates. B) Maps of nodal connectivity strength, calculated as average
correlation per node. (i) Median node strength of healthy controls, (ii) median node strength of patients with schizophrenia and (iii) difference
in median node strength between groups (controls – patients). In map (iii), only the 389 nodes showing a significant difference are shown (Xia
et al., 2013).

= 0.37, first and third quartiles ([Q1,Q3]) = [0.29,0.45])
than in the schizophrenia group (mean weight: median =
0.27, [Q1,Q3] = [0.20,0.34]; rank-biserial r = -0.45, PMWU
= 1.2 · 10−5; Fig. 3A). The edge weight distribution for the
schizophrenia group included more negative correlations
than the control distribution.

At a nodal level of analysis, edge weights were signifi-
cantly reduced in the schizophrenia group compared to the
control group at 389 nodes (FDR-adjusted PMWU < 0.01).
These nodal differences were attributable to greater nodal
connectivity strength in healthy controls compared to pa-
tients with schizophrenia. There were no significant differ-
ences in nodal connectivity strength attributable to greater
connectivity strength in participants with schizophrenia
compared to healthy controls.

3.2. Properties of probabilistically-thresholded connectomes
We found that functional connectomes of patients with

schizophrenia (thresholded at PFDR < 0.01) were signifi-
cantly more disconnected than those of healthy controls,
exhibiting a lower edge density (rank-biserial r = -0.47,
PMWU = 6.5 · 10−6; Fig. 4Ai), higher numbers of connected
components (rank-biserial r = 0.38, PMWU = 2.1 · 10−4;
Fig. 4Aii), and consequently a higher percolation thresh-
old (rank-biserial r = 0.20, PMWU = 0.052). In the
schizophrenia group, the median connection density of these
probabilistically-thresholded graphs was 4.0%, [Q1,Q3] =
[2.6%,7.9%]; the median number of connected components
was 17, [Q1,Q3] = [9,30]; and the median percolation thresh-
old P value was 0.57, [Q1,Q3] = [0.16,1]. In the equivalently

thresholded graphs for the control group, the median con-
nection density was 13.8%, [Q1,Q3] = [4.7%,28.4%]; the
median number of connected components was 8, [Q1,Q3] =
[3.25,17.75]; and the median percolation threshold P value
was 0.27, [Q1,Q3] = [0.069,0.82].

The reduced edge density of connectomes of patients
with schizophrenia is seen in a visualisation of significant
edges present in at least 90% of participants in each group
(Fig. 4B).

Edges in the probabilistically-thresholded networks spanned
shorter distances in patients with schizophrenia (rank-
biserial r = -0.45, PMWU = 1.3 · 10−5). The median average
connection distance in patients was 48.7 mm, [Q1,Q3] =
[40.5 mm, 58.0 mm], while the median average connection
distance in controls was 60.6 mm, [Q1,Q3] = [52.6 mm,
69.2 mm]).

Finally, the variable-density networks presented the
same hallmarks of topological organisation as fixed-density
networks. Both groups exhibited spatially heterogeneous
degree distributions, with highly connected “hub” nodes
located in parietal and occipital cortices (consistent with
other studies that did not apply global signal regression,
which tends to shift hubs from primary to association ar-
eas; Yan et al. (2013)). Similarly to (unthresholded) node
strength, patients with schizophrenia exhibited decreased
node degree (FDR-adjusted PMWU < 0.01) at 382/420
nodes (SI Fig. S1A). However, these decreases were driven
by group differences in edge density – when local connectiv-
ity was assessed using a measure of local edge density (de-
gree normalised by the participants’ edge density) no nodes
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Figure 4: Connectomes thresholded based on fixed P value are more disconnected in patients with schizophrenia. A)
Differences in i) edge density and ii) the number of connected components, with P values corresponding to two-tailed Mann-Whitney U tests.
The x-axes indicate histogram frequency normalised by the number of participants (in each group). B) Illustrations of reduced edge density in
schizophrenia, depicted as edges present in at least 90% participants per group, using brain network plots (only nodes connected to an edge are
visualized; Xia et al. (2013)). C) Maximal FDR-adjusted P values as a function of fixed edge density threshold, for individual participants
(thin lines) and averaged within groups (bold lines). D) Number of participants whose edges satisfy PFDR < 0.01 (continuous lines with
markers) and P < 1 (dotted lines), as a function of edge density. Once a P value of P = 1 is reached, further edges cannot be added by P value
as all remaining edges are equally unlikely.

showed significant differences between the two groups. Sim-
ilarly, the two groups showed no significant differences in
the size of the connected component per node (normalised
by the largest component in the graph). Furthermore,
the P-thresholded graphs were decomposable into densely
intra-connected but sparsely inter-connected modules using
the Louvain community algorithm (Blondel et al., 2008).
For a resolution parameter of γ = 1, a consensus modular
organisation (Lancichinetti and Fortunato, 2012) across
participants (100 runs per participant) within each group
yielded four modules per group (SI Fig. S1B), which were
highly similar – only 26/420 nodes were assigned to different
modules in the two groups.

3.3. To what density can functional connectomes be built?
Next, we used probabilistic thresholding to address an

important question: to what density can we build func-
tional connectomes to avoid adding false-positive edges?
Here, we built networks by adding edges in order of in-
creasing PFDR and thresholded to a fixed edge density (see
Methods). We found that the largest edge PFDR in any
given subject’s network rose rapidly as the network density
was increased from 1 to 35% (Fig. 4C). In other words,

many of the graphs needed to be constrained at very low
connection densities to prevent inclusion of non-significant
edges; this was true for both groups. Accordingly, if we re-
quire all edges in any given subject’s network to have PFDR
< 0.01 (which we term “significant edges”), the number of
subjects meeting this criterion drops off rapidly as edge
density is increased. The drop-off is faster for patients with
schizophrenia (Fig. 4D) meaning that the maximum con-
nection density that graphs can be built to, while ensuring
that all participants’ connectomes contain only significant
edges (edges with PFDR < 0.01), is much lower in the
schizophrenia group. For example, the maximum edge den-
sity while ensuring that 95% of connectomes contain only
significant edges is only 2% in the control group and 1%
in the schizophrenia group. Similarly, the maximum edge
density while ensuring that 50% of connectomes contain
only significant edges is 13% in the control group and 4%
in the schizophrenia group.

3.4. What can probabilistic thresholding tell us about mea-
sures of integration and segregation?

Next, we used probabilistic thresholding to address the
hypothesis of topological randomisation in schizophrenia,
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Figure 5: Effects on global efficiency of adding non-significant edges to functional connectomes. A) Global efficiency as a
function of edge density, in all participants with edge P < 1 at each density (regardless of edge significance). B) Global efficiency as a function
of edge density in the subset of participants whose edges are all significant at each density (left axis). The number of participants compared
decreases as a function of edge density (right axis). C,D) Top: Density-dependent proportion of significant and non-significant participants, for
healthy controls (C), and patients with schizophrenia (D). Bottom: Global efficiency as a function of edge density, between significant and
non-significant healthy controls (C) and patients with schizophrenia (D). Black dots indicate PMWU < 0.05, black circles indicate permutation
test Pperm < 0.05. Thick lines indicate medians; shaded lines indicate quartiles. Effect sizes and P values of all two-tailed Mann-Whitney U
tests are reported in SI Table S2.

by studying group differences in topological integration
(global efficiency) and segregation (transitivity). As de-
scribed in section 2.4.2, we first thresholded all participants’
networks to fixed edge density, disregarding whether this
included non-significant edges or not (but only considering
participant at densities at which their connectomes con-
tained edges with P < 1). Consistent with the literature,
patients with schizophrenia showed significantly increased
efficiency, indicative of greater topological randomisation,
across a range of densities (PMWU < 0.05 at 2-35% density;
Fig. 5A).

In the next analysis, at each density, we included only
subjects where all edges met the criterion PFDR < 0.01.
In other words, we excluded subjects (at each density)
whose connectomes contained non-significant edges. As
expected, the difference in global efficiency between groups
disappeared at nearly all densities (PMWU < 0.05 at 5 and
7% density; Fig. 5B).

To identify whether it was indeed inclusion of non-
significant edges which led to the spurious result of greater
topological randomisation in schizophrenia, we subdivided
each of our two groups into two further subgroups at each
connection density: those that did not contain any non-

significant edges (i.e. all edge PFDR < 0.01), and those
that did. The ratios of the size of these subgroups (as
well as a third subgroup of participants whose remaining
edges all display P = 1 and who were not considered in
the analyses) are depicted in Fig. 5C and D (top row). We
then compared the “significant” edge subgroup with the
“non-significant” (or noisy) subgroup. We found that global
efficiency was significantly increased in the group that con-
tained non-significant edges compared to the group where
all edges showed PFDR < 0.01, across connection densities,
for both healthy controls (both PMWU and Pperm < 0.05
at 3-35% density; Fig. 5C) and patients with schizophrenia
(PMWU < 0.05 at 1-35% density, Pperm < 0.05 at 1% and
3-35% density; Fig. 5D). This suggests that it is in fact the
inclusion of non-significant edges that artefactually inflates
efficiency, through increased randomisation.

These results were generally consistent when normalised
with respect to random networks (where values of ran-
domised efficiency tend to 1, as expected; SI Fig. S3).
Although differences in efficiency between full groups (par-
ticipants with all edge P < 1) were reduced relative to
un-normalised efficiency (PMWU < 0.05 at 22% and 33%
edge density; SI Fig. S3A), subsets of non-significant partic-
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Figure 6: Differences in topology between networks thresholded by decreasing correlation or increasing P value. A) The
percentage of edges that differs between functional connectomes thresholded by increasing P or decreasing r, as a function of fixed edge density,
within (i) healthy controls and (ii) patients with schizophrenia. At low edge densities, ∼2.8% edges differ between the two approaches, while at
higher edge densities, this decreases to ∼1.2% differing edges. B) Within-participant differences in efficiency between connectomes thresholded
by increasing P and decreasing r. Plots represent the median difference in efficiency across participants. Efficiency is generally increased in
connectomes thresholded by r (compared to those thresholded by P), in both healthy controls (i) and patients with schizophrenia (ii). C)
Within-participant differences in transitivity between connectomes thresholded by increasing P and decreasing r. Plots represent the median
difference in transitivity across participants. Transitivity is increased in connectomes thresholded by r (compared to those thresholded by P) at
low edge densities, and increased at higher edge densities, in both healthy controls (i) and patients with schizophrenia (ii). Effect sizes and P
values for results displayed in panels B and C are contained in SI Table S10.

ipants showed substantial decreases in normalised efficiency
relative to subsets of significant participants, both within
healthy controls (PMWU < 0.05 at 3-35% density, Pperm <
0.05 at 5-25% and 28-35% edge density; SI Fig. S3C) and
within patients with schizophrenia (PMWU < 0.05 at 1-35%
density, Pperm < 0.05 at 1%, 3%, 13-15% and 16-35% edge
density; SI Fig. S3D).

Patients with schizophrenia showed decreased transi-
tivity at higher edge densities (PMWU < 0.05 at 20-23%
and 32-35% density) when comparing all participants with
P < 1 (SI Fig. S4A). These differences disappeared when
comparing subsets of significant participants (all PMWU
and Pperm > 0.05; SI Fig. S4B). Subsequently, transitivity
was lower in the non-significant healthy controls (PMWU
and Pperm < 0.05 at 7-25% and 28-35% density; SI Fig.
S4C), and in non-significant patients with schizophrenia
(PMWU and Pperm < 0.05 at 1% and 12-35% density; SI

Fig. S4D). Conversely, when normalised with respect to
random networks, patients with schizophrenia exhibited
higher transitivity than healthy controls when comparing
all participants with P < 1 (PMWU < 0.05 at 1-34% density;
SI Fig. S5A). When comparing subsets of significant par-
ticipants, these differences were reduced (PMWU < 0.05 at
1-6% density; SI Fig. S5B). Furthermore, “non-significant”
participants displayed higher transitivity than “significant”
ones, both within healthy controls (PMWU < 0.05 at 7-25%
and 28-35%, Pperm < 0.05 at 2-35% density; SI Fig. S5C)
and patients with schizophrenia (PMWU < 0.05 at 1% and
12-35% density, Pperm < 0.05 at 1-35% density; SI Fig.
S5D).

Furthermore, when all participants (with all edge P
< 1) were compared, patients with schizophrenia showed
a lower number of (larger) connected components, across
densities (PMWU < 0.05 at 1-30% and 32% density; SI
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Fig. S6A). However, when subsets of significant partici-
pants were compared, these differences were less extensive
(PMWU < 0.05 at 1-10% density; SI Fig. S6B). Accordingly,
non-significant participants displayed a lower number of
(smaller) connected components than significant partici-
pants, both within healthy controls (both PMWU and Pperm
< 0.05 at 3-35% density; SI Fig. S6C) and within patients
with schizophrenia (both PMWU and Pperm < 0.05 at 1-35%
density; SI Fig. S6D).

Finally, we observed differences in mean correlation
(of unthresholded networks) between healthy controls and
patients with schizophrenia (comparing only connectomes
with all edge P < 1 at a given density) revealed differences
across edge densities (PMWU < 0.05 at 1-27%, 29-30%
and 33-35% density; SI Fig. S7A). These effects largely
disappeared when only subsets of significant participants
were compared (PMWU < 0.05 at 1-5% density; SI Fig.
S7B). Further, non-significant participants displayed lower
mean correlation, both within healthy controls (both PMWU
and Pperm < 0.05 at 2-35% density; SI Fig. S7C) and
patients with schizophrenia (both PMWU and Pperm < 0.05
at 1-35% density; SI Fig. S7D).

3.5. Comparing r and P based thresholding
When constructing correlations using an equal number

of data points (i.e.: time points in fMRI time-series), and
assuming that N(df ) = N(time-points), the relationship
between the Pearson correlation coefficient r and the corre-
sponding P value is perfectly monotonic (Fig. 2A). In this
case, adding edges to a graph in order of (i) decreasing r
or (ii) increasing P leads to identical topologies. However,
wavelet-despiked time series exhibit regional heterogeneity
in effective df after denoising for motion, which means that
the relationship between r and P isn’t perfectly monotonic
anymore (Fig. 2B). In this case, different edges may be
added in order of (i) decreasing r or (ii) increasing P.

3.5.1. Differences in topology between r- and P-thresholded
connectomes

We quantified the proportion of edges that differ be-
tween r- and P-thresholded connectomes, as a function of
edge density (Fig. 6A). The difference lay between 0 and
10% of edges present at a given edge density, with an aver-
age of ∼2.8% edges differing between r and P-thresholded
connectomes at low edge densities, slowly decreasing to an
average of ∼1.2% edges differing at higher edge densities.
As with previous analyses involving thresholding of connec-
tomes to fixed edge density by increasing P value, we only
included participants with all edge P < 1 at each density.

Furthermore, we evaluated differences in measures of
topological organisation between connectomes thresholded
using increasing P and decreasing r. Global efficiency was
weakly increased in r-thresholded networks relative to P-
thresholded networks at a range of edge densities in both
healthy controls (PWSR < 0.05 at 4-35% density, Fig. 6Bi),
and patients with schizophrenia (PWSR < 0.05 at 2-35%

density, Fig. 6Bii). Transitivity was lower in P-thresholded
networks at low edge densities in both healthy controls
(PWSR < 0.05 at 1-5% density, Fig. 6Ci) and patients with
schizophrenia (PWSR < 0.05 at 2% density, Fig. 6Cii). How-
ever, at higher edge densities, transitivity was increased in
P-thresholded networks relative to correlation-thresholded
networks, in both healthy controls (PWSR < 0.05 at 10-35%
density) and in patients with schizophrenia (PWSR < 0.05
at 10-35% density).

Results were highly consistent following normalisation
of topological measures in r- and P-thresholded connec-
tomes by corresponding average values from sets of 100
randomised networks with preserved degree distributions
(Si Fig. S8).

3.5.2. Consistency of edges in r- vs. P-thresholded connec-
tomes

We further compared the consistency with which edges
were present within both groups when thresholding in order
of decreasing correlation or increasing P value (Fig. 7A). As
in previous analyses where networks were thresholded by
fixed P value, we excluded participants whose connectomes
contained edges with P = 1. Exclusion of these subjects is
indicated by a drop-off in the maximum possible consistency
at higher densities (grey panels in top-right area of Fig. 7B).

We found a generally increased edge consistency in P-
thresholded connectomes relative to r-thresholded ones, in
both groups. The general pattern is of fewer edges being
present in lower numbers of participants (blue bands on the
left hand-side of Fig. 7B i and ii), and of more edges being
present in a greater number of participants (a prevalence
of light red on the right hand side of Fig. 7B i and ii);
this is particularly evident at higher connection densities.
However, while these differences were generally not signif-
icant (except at the lowest edge densities), there was an
overall increase of consistency in P-thresholded networks
compared to r-thresholded networks, as evidences by an
increased frequency of edges absent from all participants
when thresholding by P relative to r (left inset in Fig. 7B i
and ii). This difference was significant at numerous edge
densities, both within healthy controls (Pperm < 0.01 at
11-12%, 14-24%, 26-28%, 30% and 35%; Fig. 7Bi) and
within patients with schizophrenia (Pperm < 0.01 at 9%
and 13-35%; Fig. 7Bii).

3.6. Sensitivity analyses
To rule out effects of age on our results, we evaluated

within-group correlations between age and the average edge
weight (of unthresholded connectomes) and the edge density
and number of connected components (of connectomes
thresholded by fixed P value). Furthermore, we investigated
differences in these measures between male and female
participants. We found no substantial evidence that these
covariates affect our results. All correlations and P values
are reported in supplementary table S1.

Furthermore, we investigated consistency of results
across wavelet scales 1 (0.125-0.25 Hz) and 3 (0.03-0.06 Hz),
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Figure 7: P-thresholded connectomes show increased edge consistency compared to r-thresholded connectomes. A) At each
edge density and for each thresholding method (r and P), we quantified the consistency of each edge by counting the number of times each
edge was present across the group at a given density. We then counted the number of edges that were found to occur at each level of
consistency (i.e. the frequency of edges as a function of consistency). We did so for both r- and P-thresholding methods, and then evaluated
the difference between the two methods. We estimated the significance of these differences by repeating the above procedure 10’000 times
following permutation or r- and P-thresholded networks within group; P values were estimated as the proportions of empirical differences
surpassing the permuted ones. As in previous analyses where networks were thresholded by fixed P value, we only considered participants with
edge P < 1 at each density. B) Connectomes thresholded by decreasing P value showed an overall increased consistency of edges compared to
connectomes thresholded by decreasing r. This was evidenced by an increased frequency of edges absent in all participants in P-thresholded
networks (left inset histograms), in both (i) healthy controls and (ii) patients with schizophrenia.
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as well across more lenient and stringent FDR-adjusted P
value thresholds of α = 0.05 and α = 0.001. All results
were qualitatively consistent with results reported above.
For results of these analyses (including median values and
interquartile ranges per group, as well as effect sizes and
P values for group differences), see supplementary tables
S2 and S3. At wavelet scale 4 (0.015-0.03 Hz), there were
insufficient degrees of freedom for the addition of even a
single edge.

3.7. (In)dependence of results on motion
To confirm that the wavelet despiking algorithm had

satisfactorily corrected the fMRI time series for effects of
head micro movements during scanning, we demonstrated
that correlations between pairs of regional fMRI time series
showed no distance-dependent artefacts (Satterthwaite et al.
(2012); SI Fig. S8A).

We also found that there was no significant difference
between groups in the global mean effective df (r = -
0.16, PMWU = 0.12; SI Fig. S8B). The median of the
mean effective df across patients with schizophrenia was
36.4, [Q1,Q3] = [35.7,36.7], while the median of the mean
effective df across healthy controls was 36.6, [Q1,Q3] =
[36.2,36.7]. Moreover, there were no significant between
group differences in nodal effective df (SI Fig. S8C; all
FDR-adjusted nodal PMWU > 0.12). These results indicate
that, in both groups, movement-corrected fMRI time series
have considerably lower effective df than their nominal df ;
but the absence of between-group differences in effective
df indicates that the severity of head movement artefact,
and therefore the number of df lost to wavelet despiking,
was not significantly different between healthy controls and
patients with schizophrenia.

Finally, although node degree is correlated to regional
df within participants (median [Q1,Q3] Spearman ρ = 0.23
[0.11,0.34] for healthy controls, 0.21 [0.08,0.36] for patients
with schizophrenia), as already reported for node strength
in (Patel and Bullmore, 2016), there is no difference in
the extent of these relationships between the two groups
(rank-biserial df = -0.036, P = 0.73; Fig. S9C).

4. Discussion

In this article we demonstrate novel applications for
probabilistically-thresholded functional connectomes based
on edge-specific P values adjusted for loss of degrees of
freedom (df ) due to motion (Patel and Bullmore, 2016).
We apply these methods to a population of healthy con-
trols and patients with schizophrenia, and demonstrate
reduced edge density and increased disconnectedness in
patient connectomes when thresholding to variable density
by P value (at PFDR<0.01). We confirm that comparison
of functional connectomes with different weight distribu-
tions (such as patients with schizophrenia and controls)
using arbitrary weight-based thresholds risks introduction
of “non-significant” false positive edges and thus group dif-
ferences in topological organisation (Fornito et al., 2012;

van den Heuvel et al., 2017). The probabilistic threshold-
ing methods we propose to mitigate this risk are statis-
tically principled and simple to implement. We further
demonstrate that only few individual connectomes can be
constructed to the typically studied densities of 5-30%.
Routinely thresholding to these densities without account-
ing for edge probabilities increases the risk of type I error.
Using the wavelet-despiking-based probabilistic connectiv-
ity methods we describe additionally allows identification
of the maximum connection density to which a connectome
can be built to enable control over false positive results. Fi-
nally, we explicitly compare the application of thresholding
connectomes by P value (following adjustment for effective
df ) to existing thresholding methods based on correlation
(equivalent to assuming nominal df ), demonstrating that
(i) different edges are retained, (ii) these lead to differences
in topology and (iii) the edges retained based on increasing
P value are more consistent across subjects than edges
retained based on decreasing correlation.

4.1. Thresholding methods
Studies of functional connectome topology are typically

conducted by retaining edges above a fixed weight (abso-
lute thresholding), or by retaining a fixed proportion of the
strongest edges (proportional or fixed-density thresholding;
Fornito et al. (2013)). Of the two, fixed-density thresh-
olding is most popular, likely because many measures of
topological organisation depend on the edge density of the
underlying graph (van Wijk et al., 2010). Furthermore, a
recent study showed that differences in topological organi-
sation between males and females, and between younger
and older participants, were more stable following “propor-
tional” (fixed-density) thresholding than “absolute” (fixed-
amplitude) thresholding; in the latter case between-group
differences alternated in direction (sign) across thresholds,
and the evolution of differences in topological measures
as a function of threshold magnitude was non-monotonic
(Garrison et al., 2015).

However, it is known that thresholding to fixed edge
density can lead to confounding effects when comparing
groups with different distributions of edge weights – in a
group with higher edge weights, this would lead to ignoring
potentially important edges, while in a group with lower
edge weights, this would lead to including weak or “non-
significant” edges (van Wijk et al., 2010).

Fixed-amplitude thresholding is far less popular than
fixed-density thresholding, having primarily been applied
in earlier studies of functional connectivity (e.g.: Liu et al.
(2008); van den Heuvel et al. (2009)). However, if applied in
a principled manner, it can yield simple and interpretable
graph-theoretical measures such as edge density, which
might hold diagnostic promise. In a previous study of func-
tional connectivity in schizophrenia, Alexander-Bloch et al.
(2010) noted that the topological (dis)connectedness of a
graph occurs at different (absolute) amplitudes of correla-
tion for patients with schizophrenia and healthy controls,
and remarked that this difference might have diagnostic
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potential. Accordingly, we find group differences within the
edge density and disconnectedness of connectomes thresh-
olded using fixed P values.

We note that there may have been previous studies of
functional connectomes where association matrices were
thresholded based on P values; however, these have as-
sumed nominal df (number of points in the time-series),
which we know to be an over-estimate of the effective df
(Patel and Bullmore, 2016). Additionally, in a graph where
all nodes possess equal df, the relationship between Pear-
son correlation r (the most common measure of association
between regional neurophysiological time series) and the
corresponding P value is perfectly monotonic (that is: as
r increases, P decreases, and a given value of r maps to
a single value of P). However, given the inhomogeneity
of artefacts in space and time, we know that the rela-
tionship between r and P cannot be perfectly monotonic
after denoising, because the loss of df is not spatially
or temporally homogeneous (Patel and Bullmore, 2016).
Wavelet despiking enables construction of probabilistic con-
nectomes after quantifying the inhomogeneous loss of df.
This is what gives rise to differences in topological organisa-
tion between functional connectomes thresholded (to fixed
density) based on correlations or df -corrected P values.
Although only small proportions of edges differ between
connectomes thresholded by increasing df -adjusted P value
or decreasing correlation (up to ∼10%, depending on the
participant and edge density), these differences are suffi-
cient to lead to differences in topological organisation. The
probabilistically-thresholded connectomes display reduced
efficiency and generally increased transitivity (at higher
densities), and thus reduced randomness, consistent with
the exclusion of “noisier” edges at any given edge density.
Further, the probabilistically-thresholded networks also
show increased consistency across subjects.

Beyond hard thresholding to arbitrary densities, global
probabilistic methods have been proposed which estimate
dependence of the minimum absolute threshold on the num-
ber of samples (fMRI frames) and the number of nodes,
whilst maintaining appropriate global FWER control (De
Vico Fallani et al., 2014). Other methods include integrat-
ing across a range of arbitrary thresholds (Ginestet et al.,
2011), or attempting to choose thresholds in an informed,
non-arbitrary manner (De Vico Fallani et al., 2017) based
on the cost-efficiency trade-off (Bullmore and Sporns, 2012).
Methods presented herein extend beyond global probabilis-
tic and principled thresholding methods by taking into
account the spatially and temporally inhomogenous loss of
df and thus the heterogeneity of correlation probabilities
across the brain.

It is worth stating that thresholding is a difficult prob-
lem. While it is possible to estimate type I error (false
positive rate) based on some assumptions on the statis-
tical properties of the data, due to the lack of ground
truth, it is difficult to assess type 2 error (false negative
rate) in resting-state data. Thus, while it seems sensible
to eliminate non-significant estimates of functional asso-

ciations between regions, very tight control over type I
error (and thus thresholding to very sparse densities) may
theoretically lead to increased type 2 error and removal
of signal. Indeed, weak correlations may contain diagnos-
tic information, specifically with respect to schizophrenia
(Bassett et al., 2012). Thus, “soft thresholding” methods de-
signed to suppress rather than remove weaker connections
(Schwarz and McGonigle, 2011), and methods to analyse
unthresholded (fully connected) weighted connectomes (Ru-
binov and Sporns, 2011) have much value. Moving forward,
wavelet-despiking based methods could be extended to
unthresholded graphs by providing a df -based temporal
weighting for each regional time series, thus effectively ad-
justing for loss of df and detection power upon estimation
of association between regional neurophysiological time
series.

4.2. Topological randomisation and schizophrenia
A number of studies have reported increased topological

randomisation of functional connectomes in patients with
schizophrenia (Rubinov et al., 2009; Alexander-Bloch et al.,
2010; Lynall et al., 2010; Lo et al., 2015). However, as
suggested by Fornito et al. (2012), this was likely a conse-
quence of applying fixed-density thresholds to groups with
different edge weight distributions: “in the presence of a
global reduction of mean functional connectivity in patients
[. . . ] any analysis of graphs matched for connection density,
κ, will result in the inclusion of proportionally more low-
value (non-significant) edges in patients’ networks. If these
values merely reflect noise, their inclusion will produce a
more random topology.” Methodologies such as those we
propose here, where cohorts are matched by connectivity
probabilities, can be used to control for this.

When using traditional density thresholding, comparing
cohorts regardless of differences in weight distributions, we
found increased global efficiency in patients with schizophre-
nia relative to controls. With progressive randomisation,
the path length of a graph decreases (Watts and Stro-
gatz, 1998) while its global efficiency increases (Latora and
Marchiori, 2001); this finding therefore aligns with previ-
ous reports of increased “randomisation” in schizophrenia.
However, this effect disappears when controlling cohorts
for type 1 error, i.e. when excluding connectomes which
contain edges with probabilities PFDR > 0.01 (and thus
non-significant edges) from analysis. We further show,
by comparing within each cohort connectomes with non-
significant edges (PFDR > 0.01) and those without, at a
range of edge densities, that differences in global efficiency
are driven by inclusion of non-significant edges. In other
words, inclusion of noise increases efficiency and produces
a more random topology. These findings remained qualita-
tively consistent when normalising with respect to random
networks with preserved degree distributions (Rubinov and
Sporns, 2010).

Together, these findings confirm the hypothesis ad-
vanced by Fornito et al. (2012) that increased randomisa-
tion in schizophrenia results from correlation-based thresh-
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olding to fixed edge density. At a lower level, these differ-
ences seem to be driven by a noise-driven “coalescence” of
the fixed-density patient connectomes relative to healthy
ones. When all participants are compared (regardless of
edge significance), patients with schizophrenia exhibit lower
numbers of (larger) connected components, in line with a
previous study using fixed-density correlation-based thresh-
olding (Bassett et al., 2012). However, these differences are
substantially less extensive when only connectomes with
edge PFDR < 0.01 are included in analysis. Accordingly,
connectomes with non-significant edges exhibit lower num-
bers of (larger) connected components. As the topological
path length between pairs of disconnected nodes is infinite,
the corresponding contribution to efficiency (which depends
inversely on the path length) will be null, and the global
efficiency will decrease (Fornito et al., 2016). The lower
number of connected components in non-significant connec-
tomes suggests that randomly placed non-significant edges
are likely to act as “bridges” between disparate clusters of
significant edges.

In line with previous reports of decreased segregation
in functional connectomes of patients with schizophrenia,
reported as decreased local efficiency (Liu et al., 2008)
and clustering in both patients (Alexander-Bloch et al.,
2010; Lynall et al., 2010) and their siblings (Lynall et al.,
2010), we found decreased transitivity (a global measure
of segregation) - although only at certain edge densities.
Still, general decreases in transitivity in non-significant
connectomes (both within healthy controls and patients
with schizophrenia) suggest that the addition of noisy edges
increases topological randomness by increasing transitiv-
ity. When normalising with respect to random networks
with preserved degree distributions, we found increased
normalised transitivity in patients relative to controls, and
in connectomes with non-significant edges relative to those
without non-significant edges. These disparities between
our findings and the literature might be explained by the
application of different measures – whereas the widely used
average clustering coefficient has a dependence on the de-
gree distribution of the underlying graph, transitivity does
not (Newman, 2010). Furthermore, we can speculate that
transitivity might be less affected by noisy edges than effi-
ciency, as the addition of a single “noisy” edge will affect
all paths traversing that edge, whereas it will only affect
transitive closure in the immediate vicinity of the nodes it
is connected to.

Our findings on topological randomisation align with
a recent study by van den Heuvel et al. (2017), which
demonstrates that group differences in overall functional
connectivity strength leads to group differences in topo-
logical organisation of fixed-density connectomes, across
several empirical and simulated case-control datasets. We
note a relationship between our experiments and those in
van den Heuvel et al. (2017): when comparing subsets of
significant participants to ensure control over type I error,
the difference in mean correlation between healthy controls
and patients with schizophrenia is reduced. Subsequently,

subsets of significant and non-significant participants show
large differences in mean correlation. van den Heuvel et al.
(2017) postulate possible strategies to control for effects of
group differences in average functional connectivity, includ-
ing the use of regression and permutation testing (van den
Heuvel et al., 2017).

Here we describe a statistically-reasoned approach to
limit inclusion of non-significant edges, which may result
in artefactual group differences in topological organisation.
This methodology, based on the probabilistic connectivity
method described in Patel and Bullmore (2016), generates
estimates of effective df from robust denoising of motion
artefacts by wavelet despiking (Patel et al., 2014). To the
best of our knowledge, wavelet-based methods used here
(Patel et al., 2014; Patel and Bullmore, 2016) are the only
currently available means of estimating the spatial and tem-
poral variability in loss of confidence in time series recorded
from motion-affected brain areas. As discussed in Patel and
Bullmore (2016) and as demonstrated here on a dataset of
healthy controls and patients with schizophrenia, this loss
of effective df has substantial effects on the estimates of
topological organisation of functional connectomes.

4.3. Recommendations
Below, we offer guideline suggestions relating to graph

construction and analysis, without focusing on denoising or
other pre- or post-processing steps (although these should
be carefully considered). Moreover, while we focus on
Pearson’s correlation as a measure of association between
regional time-series, the following guidelines also apply to
other methods of connectivity estimation. Finally, while
this paper focuses on functional brain networks, most of
the following points are also relevant to structural brain
networks, as further discussed below. We recommend the
following with respect to network construction:

1. If studying functional networks, we advise careful con-
sideration of time series frequencies analysed. Here we
show that scale 4 frequencies (0.015-0.03 Hz) do not
contain enough df after signal denoising to make any
meaningful inference on associations between pairs
of time series. Inferences at these low frequencies are
likely to be erroneous.

2. Prior to the application of any potential threshold,
the full weight distributions should be characterised.
In particular, effects of mean connectivity, such as
group differences or effects of age (depending on the
question of interest of the study) should be well un-
derstood.

3. The application of methods for the characterisation of
fully weighted, unthresholded networks (e.g. Rubinov
and Sporns (2011)) should be considered.

4. If thresholding, we advise doing so according to some
criterion of connection ’likelihood’, rather than con-
nection weights (e.g. correlations). The probabilistic
method presented herein is an example of such a
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criterion, for the specific case of fMRI correlation net-
works. If studying functional networks which include
negatively weighted edges, be aware of the potential
effects on topological organisation of including these.

5. The choice of threshold should ideally be principled.
Probabilistic thresholding lends itself well to a prin-
cipled choice of threshold, based on statistical signifi-
cance. In the present study, we retained edges with
PFDR < 0.01. Still, it is worth verifying that results
are not exclusive to a single threshold.

6. In networks thresholded to variable edge density (e.g.
by fixed P value, such as PFDR < 0.01 used herein),
“higher-order” graph theoretical measures (such as
efficiency) will retain a dependence on edge density
(van Wijk et al., 2010). In this case, it may be
preferable to focus on simpler graph measures such
as edge density itself, or the architecture of connected
components.

7. For density-based thresholding, we would advise iden-
tifying what proportion of subjects contain significant
or non-noisy edges at each edge density. At lower
edge densities, a greater proportion of connectomes
will contain only significant edges.

8. If wishing to enforce node-connectedness, the minimum-
spanning tree method can potentially be applied
(Alexander-Bloch et al., 2010); however, this risks
the inclusion of a large proportion of false-positive
edges, particularly at low edge densities. Therefore,
the impact of such steps should be investigated.

9. It is worth investigating the relationship between any
graph-theoretical measure used and mean connec-
tivity. Previous work indicates that this might be
weaker at lower edge densities (van den Heuvel et al.,
2017). Investigation of this relationship will ensure
that any effects reported in graph-theoretical mea-
sures are not driven by potential underlying effects
of mean connectivity.

We note that many of the above suggestions are relevant
to the thresholding of structural networks as well. For
example, the fact that inclusion of noisy edges may lead to
erroneous conclusions is pertinent to the case of structural
connectivity derived from diffusion imaging (Zalesky et al.,
2016). Moreover, various attempts have been made in the
spirit of these recommendations to retain connections based
on some criterion of connection “likelihood” rather than
simply assuming that the strongest edges are the most
likely. Examples include identification of edges which are
consistently detected (de Reus and van den Heuvel, 2013) or
consistently strong (Roberts et al., 2017) across participants
in structural networks derived from diffusion imaging, or
edges which are consistently strong across bootstrapped
samples of participants in structural correlation networks
(Váša et al., 2017).

Following the above recommendations should help safe-
guard against the introduction of potentially artefactual

group differences in topological organisation in future anal-
yses of brain connectivity.

4.4. Further considerations and future work
We note that the methods of adjusting regional df and

consequently edge-wise P values for the effects of spatially
(and temporally) heterogeneous denoising using wavelet
despiking, proposed in Patel and Bullmore (2016) and ap-
plied here, do not provide a universal solution to dealing
with all noisy data. The df correction is needed to remove
bias in interpretability of connectivity values; that is, to
disentangle whether low connectivity is due to low df or
due to low intrinsic connectivity (as discussed in Patel and
Bullmore (2016)) and subsequently to control for type I
error. While application of wavelet despiking will denoise
regional time-series and subsequent adjustment of P values
for effective df will take the effects of denoising into account
when thresholding, these methods (like all other methods)
are unable to “restore” the lost signal in these regions. Thus,
users of the methods presented herein should remain aware
of potential biases, such as (i) group differences in average
or regional df (not present in the current analyses), (ii)
within-subject relationships between regional df and con-
nectivity (present in the current analyses, but not different
between groups) or (iii) exclusion of a different number of
subjects from each group (whether due to high motion at
the beginning of the analysis pipeline, or low edge proba-
bililty when thresholding to high edge densities), leading to
potential imbalances in sample size between groups. Taken
together, the methods applied herein enable mitigation of
the effects of motion on functional connectomes; however,
they do not offer a panacea to attempted analysis of low
quality data – whether due to high motion, low SNR or
other reasons.

The ability to robustly estimate associations between
the activity of pairs of regions depends on factors other
than motion. Perhaps the most important of these is the
length of the time series. Earlier reports suggested that esti-
mates of functional correlation strength stabilise within five
minutes (Van Dijk et al., 2010) and that graph-theoretical
measures of functional connectome organisation stabilise
only after two minutes (Whitlow et al., 2011). However,
more recent studies suggest that reliability does substan-
tially increase with increasing scan duration, plateauing at
12 minutes (Birn et al., 2013) with increased reliability of
14 minutes relative to 7 minutes (Termenon et al., 2016). A
recent meta-analysis confirmed increasing test-retest relia-
bility of graph-theoretic fMRI studies with increasing scan
duration, especially beyond five minutes (Andellini et al.,
2015). Interestingly, whole brain reliability seemed stable
with increasing sampling rate for scans of equal duration
(Liao et al., 2013), suggesting that the duration of the
acquisition has importance above and beyond the sampling
rate. From a purely statistical point of view, the larger
the number of samples (either longer time series or faster
sampling rate), the larger the number of effective df ; this
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should translate to a higher density a graph can be built
to while ensuring control over type 1 error.

We also note that the dependence of network topology
on factors such as scan duration or (in the case of P value
thresholding) the significance level (e.g.: α = 0.05, 0.01 or
0.001) precludes us from claiming that there exists a single
“true” functional network topology that our method is able
to recover – rather, the topology will be conditional on
such factors. Still, we believe that in limiting the inclusion
of spurious edges, our method comes closer than existing
thresholding approaches to estimating the accurately de-
noised topology. Similarly, we do not claim that there are
definitely no differences in topological organisation between
patients with schizophrenia and healthy controls, even in
graphs thresholded to fixed edge density by df -adjusted
P value, simply on the basis of our rejection of the null
hypothesis. However, it seems likely, based on our results
and those of van den Heuvel et al. (2017), that the previ-
ously reported differences were methodologically grounded
in the thresholding of networks to fixed edge density based
on correlation – and we suggest that this can be avoided
by using the methods presented in this paper.

Additionally, loss of power might arise from the averag-
ing of voxel-wise signals over functionally inhomogeneous
regions of interest. Random sub-parcellations of anatomi-
cal atlases (Cammoun et al., 2012; Romero-Garcia et al.,
2012), as used here, lead to hundreds of regions whose
small size should limit the spatial blurring of functional
boundaries. Data-driven parcellations might improve the
ability to detect changes in functional connectivity across
conditions and development (Yeo et al., 2011; Glasser et al.,
2016).

Furthermore, new multi-variate methods of inter-regional
association are being developed which appear more accurate
than simple correlations (Geerligs et al., 2016); extending
such methods to take into account the regionally heteroge-
neous loss of degrees of freedom due to motion and other
scanning artifacts (Patel and Bullmore, 2016) should yield
ever-more precise estimates of functional connectivity.

Analysis of dynamic variability of functional connectiv-
ity is an increasingly popular avenue (e.g.: Zalesky et al.
(2014); Karahanoğlu and Van De Ville (2015)) that we
did not explore here. In this context, the importance of
denoising methods that preserve the structure of neurophys-
iological time-series (Kundu et al., 2012; Patel et al., 2014),
and can further adjust estimates of the optimal sliding-
window size (Leonardi and Van De Ville, 2015; Zalesky
and Breakspear, 2015) to ensure fixed effective df across
time (Patel and Bullmore, 2016) should become increas-
ingly clear. Methods such as frame censoring (scrubbing)
(Power et al., 2012), widely used in the neuroimaging com-
munity, are unsuited to denoise artefacts in such cases as
they disrupt the temporal structure of the BOLD signal.

Beyond altered connectivity, intrinsic properties of re-
gional neurophysiological signal are altered in schizophrenia.
Such alterations are found in the power (Zalesky et al., 2012;
Yang et al., 2014) and entropy (Yang et al., 2015) of the

BOLD signal. Interestingly, these alterations correlate to
measures of functional dysconnectivity in patients with
schizophrenia, although regional and inter-regional signal
properties may be differentially sensitive to disease deficits
(Bassett et al., 2012; Zalesky et al., 2012). Moreover, it is
known, from studies using MEG, that inter-frequency cou-
pling is affected in schizophrenia (Siebenhühner et al., 2013;
Brookes et al., 2016); while fMRI bandwidth is too nar-
row for investigations of inter-frequency effects, recording
methods with high temporal resolution such as EEG and
MEG could equally benefit from processing and analysis
using the methods discussed here.

Finally, the lack of clinical or behavioural measures
prevented us from evaluating the true diagnostic relevance
of the probabilistic thresholding methods presented here.
Studying such relationships is a necessary target of fu-
ture work, if fMRI connectomics are to become clinically
useful (Matthews and Hampshire, 2016). An important
question is whether probabilistically thresholded functional
connectomes lead to stronger relationships between mea-
sures of graph (dys)connectivity and cognitive, behavioural
or clinical scores. Still, given the likely multivariate nature
of relationships between brain connectivity and cognition
(Mišić and Sporns, 2016), identifying such relationships is
non-trivial.

4.5. Conclusions
In summary, probabilistic thresholding of denoised func-

tional connectomes at fixed P value confirms greater dyscon-
nectivity in schizophrenia, with fewer significant connec-
tions between regions. Thresholding to fixed edge density
(by effective-df -adjusted P value) supports the view that
previously reported increases in randomisation within func-
tional connectomes of patients with schizophrenia were
linked to inclusion of noisy edges within the patients’ con-
nectomes, which exhibit shifted correlation distributions.
Finally, while only a small proportion of edges differ be-
tween functional connectomes thresholded to fixed edge
density based on edge weights and P values, these edges
may lead to significant alterations in global topological
organisation. Our results warrant care during analysis of
connectomes constructed using correlations, and emphasise
the need for exploration of potential “lower-order” causes
(such as shifts in edge weight distributions between groups
or across participants) of alterations in “higher-order” topo-
logical properties of brain network organisation. The code
to denoise fMRI data using wavelet despiking, extract (re-
gionally heterogeneous) effective df and adjust edge-wise
P values for these is available at www.brainwavelet.org
(BrainWavelet Toolbox v2.0), which will enable readers to
implement the methods presented in this article in their
analyses.
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