
1

Coding for Segmented Edit Channels

Mahed Abroshan, Ramji Venkataramanan and Albert Guillén i Fàbregas

Abstract

We consider insertion and deletion channels with the additional assumption that the channel input

sequence is implicitly divided into segments such that at most one edit can occur within a segment.

No segment markers are available in the received sequence. We propose code constructions for the

segmented deletion, segmented insertion, and segmented insertion-deletion channels based on subsets of

Varshamov-Tenengolts codes chosen with pre-determined prefixes and/or suffixes. The proposed codes,

constructed for any finite alphabet, are zero-error and can be decoded segment-by-segment. We also

derive an upper bound on the rate of any zero-error code for the segmented edit channel, in terms of

the segment length. This upper bound shows that the rate scaling of the proposed codes as the segment

length increases is the same as that of the maximal code.

I. INTRODUCTION

We consider the problem of constructing codes for segmented edit channels, where the channel

input sequence is implicitly divided into disjoint segments. Each segment can undergo at most

one edit, which can be either an insertion or a deletion. There are no segment markers in the

received sequence.

This model, introduced by Liu and Mitzenmacher [1], is a simplified version of the general

edit channel, where the insertions and deletions can be arbitrarily located in the input sequence.

Constructing codes for general edit channels is well known to be challenging problem; see, e.g.,

M. Abroshan and R. Venkataramanan are with the Department of Engineering, University of Cambridge, UK,

(ma675@cam.ac.uk, ramji.v@eng.cam.ac.uk).

Albert Guillén i Fàbregas is with ICREA, Institució Catalana de Recerca i Estudis Avançats, the Department of Information

and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain, and with the Department of Engineering,

University of Cambridge, UK, (guillen@ieee.org).

This work has been funded in part by the European Research Council under ERC grant agreements 259663 and 725411, and

by the Spanish Ministry of Economy and Competitiveness under grant TEC2016-78434-C3-1-R.

This paper was presented in part at the 2017 IEEE International Symposium on Information Theory, Aachen, Germany, June

2017.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/146463223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

[2]–[9]. The assumption of segmented edits not only simplifies the coding problem, but is also

likely to hold in many edit channels that arise in practice, e.g., in data storage and in sequenced

genomic data, where the number of edits is small compared to the length of the input sequence.

As explained in [1], when edits (deletions or insertions of symbols) occur due to timing mismatch

between the data layout and the data-reading mechanism, there is often a minimum gap between

successive edits. The segmented edit model includes such cases, though it also allows for nearby

edits that cross a segment boundary. Furthermore, a complete understanding of the segmented

edit model may provide insights into the open problem of constructing efficient, high-rate codes

for general edit channels. As we show in this paper, the segmented edit assumption allows for

the construction of low-complexity, zero-error codes with the optimal rate scaling for any finite

alphabet.

Let us consider three examples to illustrate the model. For simplicity, we consider a binary

alphabet and assume that the segment length, denoted by b, is 3 in each case.

1) Segmented Deletion Channel: Each segment can undergo at most one deletion; no insertions

occur. Consider the following pair of input and output sequences:

X = 011 100 010 −→ Y = 0110010, (1)

with the underlined bits in X being deleted by the channel to produce the output sequence Y . It

is easily verified that many other input sequences could have produced the same output sequence,

e.g., 010 100 010, 010 101 010, 011 000 100 etc. The receiver has no way of distinguishing between

these candidate input sequences. In particular, despite knowing the segment length and that

deletions occurred, it does not know in which two segments the deletions occurred.

2) Segmented Insertion Channel: Each segment can undergo at most one insertion; no deletions

occur. The inserted bit can be placed anywhere within the segment, including before the first bit

or after the last bit of the segment. For example, consider

X = 011 100 010 −→ Y = 011101000110, (2)

with the underlined bits in Y indicating the insertions. Two inserted bits can appear between

two segments whenever there is an insertion after the last bit of first segment and before the

first bit of the next segment.

3) Segmented Insertion-Deletion Channel: This is the most general case, where a segment

could undergo either an insertion or a deletion, or remain unaffected. For example, consider

X = 011 100 010 −→ Y = 0101000110, (3)



3

with the underlined bits on the left indicating deletions, and the underlined bits on the right

indicating insertions. Unlike the previous two cases, the receiver cannot even infer the exact

number of edits that have occurred. In the example above, an input sequence 9 bits (three

segments) long could result in a 10-bit output sequence in two different ways: either via one

segment with an insertion, or via two segments with insertions and the other with a deletion.

The above examples demonstrate that one cannot reduce the problem to one of correcting

one edit in a b-bit input sequence. To see this, consider the example in (1), and suppose that

we used a single-deletion correcting code for each segment. Such a code would declare the first

three bits of Y to be the first segment of X , which would result in incorrect decoding of the

following segments.

In this paper, we construct zero-error codes for each of the three segmented edit models above,

for any finite alphabet of size q ≥ 2. Our codes can easily be constructed even for relatively large

segment sizes (several tens), and can be decoded segment-by-segment in linear time. Moreover,

the proposed codes have rate R of at least

R ≥ log2 q −
1

b
log2(b+ 1)− κ

b
log2 q, (4)

where the constant κ is at most 2.5 for the segmented deletion channel, 4 for the segmented

insertion channel, and 8 for the segmented insertion-deletion channel. (Slightly better bounds on

κ are obtained for the binary case q = 2.)

We also derive an upper bound in terms of the segment length b on the maximum rate of any

code for the segmented edit channel. This upper bound (Theorem 1) shows that the rate R of

any zero-error code with code length n satisfies

R ≤ log2 q −
1

b
log2 b−

1

b
log2(q − 1) +

1

b
+

log2(2q)

n
+O

(
ln b

b4/3

)
. (5)

Comparing (4) and (5), we see that the rate scaling for the proposed codes is the same as that

of the maximal code with the rate penalty being O(1/b).

The starting point for our code constructions is the family of Varshamov-Tenengolts (VT) codes

[2], [10], [11]. Each code in this family is a single-edit correcting code. In our constructions, the

codewords in each segment are drawn from subsets of VT codes satisfying certain prefix/suffix

conditions, which are carefully chosen to enable fast segment-by-segment VT decoding.



4

A. Comparison with previous work

The segmented edit assumption places a restriction on the kinds of edit patterns that can be

introduced in the input sequence. Other models with restrictions on edit patterns include the

forbidden symbol model considered in [12].

We now highlight some similarities and differences from the codes proposed by Liu and

Mitzenmacher in [1] for the binary segmented deletion and segmented insertion channels.

Code construction: The code in [1] is a binary segment-by-segment code specified via sufficient

conditions [1, Theorems 2.1, 2.2] that ensure that as decoding proceeds, there are at most two

choices for the starting position of the next undecoded segment. Finding the maximal code that

satisfies these conditions corresponds to an independent set problem, which is challenging for

large b. The maximal code satisfying these conditions was reported in [1] for b = 8, 9. For larger

b, a greedy algorithm was used to find a set of codewords satisfying the conditions. It was also

suggested that one could restrict the code to a subset of VT codes that satisfy the sufficient

conditions.

In comparison, our codes are directly defined as subsets of VT codes that satisfy certain

simple prefix/suffix conditions; these conditions are different from those in [1]. Our conditions

ensure that upon decoding each segment, there is no ambiguity in the starting position of the

next segment. These subsets of VT codes are relatively simple to enumerate, so it is possible to

find the largest code satisfying our conditions for b of the order of several tens. Table I lists the

number of codewords per segment for the three segmented edit channels for q = 2 and lengths

up to b = 24. For the segmented deletion and segmented insertion-deletion channels, another

difference from the code in [1] is that our codebook for each segment is chosen based on the

final bit of the previous segment.

Rate: The VT subsets and sufficient conditions we define allow us to obtain a lower bound

of the form (4) on the rate of our code for any segment length b. Though the maximal codes

satisfying the Liu-Mitzenmacher conditions have rate very close to the largest possible with

segment-by-segment decoding, finding the maximal code satisfying these conditions is com-

putationally hard, so one has to resort to greedy algorithms to construct codes for larger b.

This is reflected in the rate comparison: for b = 8, 9, the optimal Liu-Mitzenmacher code for

segmented deletions is larger than our code (12,20 vs. 8,13 codewords). However for b = 16,

the code obtained in [1] using a greedy algorithm has 652 codewords, whereas our code has 964



5

codewords, as shown in Table I. For large b, our codes are nearly optimal since the rate penalty

decays as κ/b.

For the segmented insertion channel, it is shown in Sec. V-C that our code construction satisfies

the sufficient conditions specified [1]. The lower bound on the rate of our code affirmatively

answers the conjecture in [1] that the rates of the maximal codes satisfying the sufficient

conditions increases with b.

Encoding and decoding complexity: Being subsets of VT codes, our codes can also be effi-

ciently encoded even for large segment sizes b, without the need for look-up tables [13], [14].

As segment-by-segment decoding is enforced by design, the decoding complexity grows linearly

with the number of segments for both our codes and those in [1]. Within each segment, the

decoding complexity of our code is also linear in b, since VT codes can be decoded with linear

complexity [2]. In general, for each segment, the maximal Liu-Mitzenmacher codes have to be

decoded via look-up tables, in which case the complexity is exponential in b. Using subsets of

VT codes was suggested in [1] as a way to reduce the decoding complexity.

Finally, we remark that codes proposed in this paper are the first for the binary segmented

insertion-deletion model, and for all the non-binary segmented edit models.

B. Organization of the paper

The remainder of the paper is organized as follows. In Section II, we formally define the

channel model, and review binary and non-binary VT codes. In Section III, we derive an upper

bound on the rate of any code for a segmented edit channel, in terms of the segment length. In

Sections IV, V, and VI, we present our code constructions for the segmented deletion channel,

segmented insertion channel, and the segmented insertion-deletion channel, respectively. For each

model, we first treat the binary case to highlight the key ideas, and then extend the construction

to general non-binary alphabets.

II. CHANNEL MODEL AND PRELIMINARIES

The channel input sequence is denoted by X = x1x2 · · ·xn, with xi ∈ X for i = 1, . . . , n,

where X = {0, . . . , q − 1} is the input alphabet, with q ≥ 2. The channel input sequence

is divided into k segments of b symbols each. We denote the subsequence of X , from index

i to index j, with i < j by X(i : j) = xixi+1 · · ·xj . The i-th segment of X is denoted by

Si = si,1 · · · si,b = X
(
b(i− 1) + 1 : bi

)
for i = 1, . . . , k.



6

TABLE I: Number of codewords per segment of the proposed codes. Lower bounds computed from (50), (63), and (82) are

given in brackets.

b Deletion Insertion Insertion-Deletion

8 8 (8) 6 (6) 1 (1)

9 13 (13) 10 (10) 2 (1)

10 24 (24) 18 (18) 2 (1)

11 44 (43) 33 (32) 2 (2)

12 79 (79) 60 (59) 4 (3)

13 147 (147) 111 (110) 6 (5)

14 276 (274) 208 (205) 12 (9)

15 512 (512) 384 (384) 16 (16)

16 964 (964) 724 (723) 34 (31)

17 1,824 (1,821) 1,368 (1,366) 59 (57)

18 3,450 (3,450) 2,588 (2,587) 114 (108)

19 6,554 (6,554) 4,916 (4,916) 206 (205)

20 12,490 (12,484) 9,369 (9,363) 399 (391)

21 23,832 (23,832) 17,847 (17,874) 746 (745)

22 45,591 (45,591) 34,194 (34,193) 1,435 (1,425)

23 87,392 (87,382) 65,544 (65,536) 2,736 (2,731)

24 167,773 (167,773) 125,831 (125,830) 5,257 (5,243)

In the segmented deletion channel, the channel output Y = Y (1 : m) = y1 · · · ym, with

m ≤ n is obtained by deleting at most one symbol in each segment, i.e., at most one symbol

in Si, i = 1, . . . , k, is deleted. Similarly, in the segmented insertion channel, the channel output

Y = y1 . . . ym, with m ≥ n is obtained by inserting at most one symbol per segment. In the

segmented insertion-deletion channel, the channel output is such that each segment Si, i =

1, . . . , k undergoes at most one edit. In all cases, we assume that the decoder knows k and b,

but not the segment boundaries.

We consider coded communication using a code C = {X(1), . . . , X(M)} ⊆ X n of length n, M

codewords and rate R = 1
n
log2M . We consider segment-by-segment coding, where Ms is the

number of codewords per segment. The overall code of length n = kb has (Ms)
k codewords,

and rate

R =
1

n
log2(Ms)

k (6)

=
1

b
log2Ms. (7)



7

The decoder produces an estimate X̂ of the transmitted sequence. We denote the corresponding

segment estimates by Ŝi = ŝi,1 · · · ŝi,b, for i = 1, . . . , k. Thus X̂ = (Ŝ1, . . . , Ŝk). We consider

zero-error codes that always ensure the recoverability of the transmitted sequence, i.e., codes for

which X̂ = X .

A. Binary VT codes

First consider the case where q = 2, i.e., X = {0, 1}. Suppose that k = 1, and thus n = b,

i.e., there is at most one edit in the entire binary sequence. For this model, one can use binary

VT codes which are zero-error single-edit correcting codes [2], [10], i.e., when the transmitted

codeword suffers a single insertion or a deletion, the decoder always corrects the edit. Moreover,

the complexity of the VT decoding algorithm is linear in the code length b. The details of the

decoding algorithm can be found in [2] for the case of a single deletion; the decoding algorithm

to correct from a single insertion can be found in [11, Sec. II].

The VT syndrome of a binary sequence S = s1 . . . sb is defined as

syn(S) =
b∑

j=1

j sj (mod(b+ 1)). (8)

For positive integers b and 0 ≤ a ≤ b, we define the VT code of length b and syndrome a,

denoted by

VTa(b) =
{
S ∈ {0, 1}b : syn(S) = a

}
(9)

i.e., the set of sequences S of length b that satisfy syn(S) = a. For example,

VT1(3) =
{
s1s2s3 :

3∑
j=1

j sj = 1 mod 4
}
= {100, 011}. (10)

The b + 1 sets VTa(b) ⊂ {0, 1}b, for 0 ≤ a ≤ b, partition the set of all sequences of length b.

Each of these sets VTa(b) is a single-edit correcting code. In particular, if S, S ′ ∈ VTa(b), then

D1(S) ∩ D1(S
′) = ∅, and I1(S) ∩ I1(S ′) = ∅, (11)

where D1(S) denotes the set of subsequences obtained by deleting one bit from S, and I1(S)

is the set of supersequences obtained by inserting one bit in S.

For 0 ≤ a ≤ b, the cardinalities of these sets satisfy [2, Corollary 2.3]

|VT0(b)| ≥ |VTa(b)| ≥ |VT1(b)|. (12)



8

The largest of the sets VTa(b), 0 ≤ a ≤ b, will have at least 2b

b+1
sequences out of the 2b possible.

This induces a rate R ≥ 1 − 1
b
log2(b + 1) for the largest of these codes. The code VT0(b) has

been shown to be maximal for single edit correction for b ≤ 8, and has been conjectured to be

maximal for arbitrary b [2].

B. Non-binary VT codes

Here we consider the case where X = {0, . . . , q− 1}, with q > 2. Again, suppose that k = 1

and thus n = b, i.e., there is at most one edit in the sequence. For this model, one can use q-

ary VT codes, introduced by Tenengolts [11]. These are zero-error single-edit correcting codes,

analogous to the binary VT codes. We briefly describe the code construction below.

For each non-binary sequence S, define a length (b − 1) auxiliary binary sequence AS =

α2, . . . , αb as follows. For 2 ≤ i ≤ b,

αi =

1 if si ≥ si−1

0 if si < si−1

(13)

We also define the modular sum as

sum(X) =
b∑
i=1

si (mod q). (14)

The q-ary VT code with length b and parameters (a, c) is defined as [11]

VTa,c(b) =
{
S ∈ X b : syn(AS) = a, sum(S) = c

}
, (15)

for 0 ≤ a ≤ b−1 and c ∈ X . Similarly to the binary case, the sets VTa,c(b) for 0 ≤ a ≤ b−1 and

c ∈ X partition the space X b of all q-ary sequences of length b. Clearly, the largest codebook

has at least qb

qb
codewords which implies the following rate lower bound for the largest VT code

among all choices of (a.c):

R ≥ log2 q −
1

b
log2 b−

1

b
log2 q. (16)

The complexity of the decoding algorithm for q-ary VT codes is linear in the code length b.

The details of the decoder can be found in [11, Sec. II].



9

III. UPPER BOUND ON RATE

In this section, we derive an upper bound on the rate of any code for q-ary segmented edit

channels, for q ≥ 2. The upper bound is valid for all zero-error codes, including those that

cannot be decoded segment-by-segment.

Theorem 1. For each of the three segmented edit models, with segment length b, the rate R of

any zero-error code with code length n = kb satisfies

R ≤ log2 q −
1

b
log2 b−

1

b
log2(q − 1) +

1

b
+

log2(2q)

kb
+O

(
ln b

b4/3

)
. (17)

Remarks:

1) In the theorem, the alphabet size q is held fixed as the segment size b grows. The number

of segments per codeword, k, is arbitrary, and need not grow with b.

2) The theorem is obtained via non-asymptotic bounds on the size and the rate of any zero-error

code. These bounds, given in (38)–(42), may be of independent interest.

3) The dominant terms in the upper bound may be interpreted as follows for the case of

the segmented deletion channel. For a noiseless q-ary input channel the rate is log2 q

bits/transmission. The log2 b/b term corresponds to a penalty required to convey the run in

which the deletion occurred in each segment. The log2(q− 1)/b term is a penalty required

to convey the value of the deleted symbol.

Proof of Theorem 1: We give the proof for the segmented deletion model with segment

length b. The argument for the segmented insertion model is similar.

The proof technique is similar to that used by Tenengolts in [11, Theorem 2]. The high-level

idea is the following. The codewords are split into two groups: the first group contains the

codewords in which a large majority of segments have at least b (q−1)
q
−O(b2/3) runs. The other

group contains the remaining codewords. As b grows larger, the fraction of length b sequences

with close to b (q−1)
q

runs (the ‘typical’ value) approaches 1. So we carefully bound the number

of codewords in the first group, while the number of codewords in the second group can be

bounded by a direct counting argument.

Consider a code C of length n = kb, i.e., each codeword has k segments of length b. Let

M = |C| = 2nR denote the size of the code. For integers r ≥ 0 and 0 ≤ l ≤ k, define



10

M(r, l) ⊂ C as the set of the codewords that have exactly l segments with more than r runs.

Let M(r, l) = |M(r, l)|. Note that for any r ≥ 0, we have
k∑
l=0

M(r, l) =M. (18)

For any l ≤ k and a codeword x ∈M(r, l), let ρl(x) denote the number of distinct sequences

of length (n − l) by deleting exactly l symbols from x (following the segmented assumption).

We then have

(r − 1)l ≤ ρl(x). (19)

To show (19), we only need to consider r ≥ 3 as the inequality is trivial for r ≤ 2. Considering

the l segments that each have at least (r + 1) runs, there are at least (r − 1)l ways of choosing

one run from each segment so that the l chosen runs are non-adjacent. For each such choice

of l non-adjacent runs, we get a distinct subsequence of length (n− l) by deleting one symbol

from each run. This proves (19).

Since C is a zero-error code, for two distinct codewords x1, x2 ∈ M(r, l), the set of length

(n − l) sequences obtained via l deletions (in a segmented manner) from x1 must be distinct

from the corresponding set for codeword x2. We therefore have

qn−l ≥
∑

x∈M(r,l)

ρl(x) (20)

(a)

≥
∑

x∈M(r,l)

(r − 1)l (21)

=M(r, l)(r − 1)l, (22)

where (a) is obtained from (19). We therefore obtain

M(r, l) ≤ qn−l

(r − 1)l
. (23)

Fix α ∈ (0, 1). Summing (23) over αk ≤ l ≤ k, we obtain∑
l≥αk

M(r, l) ≤
∑
l≥αk

qn−l

(r − 1)l
(24)

≤ 2qn−αk

(r − 1)αk
. (25)

Now choose

r =
(q − 1)

q
b−

√
2κ(q − 1)b ln b

q
, (26)



11

where κ > log(2q)
log b

will be specified later. Using this r in (23), and noting that n = kb, we have∑
l≥αk

M(r, l) ≤ 2qkb−αk

(r − 1)αk
(27)

=
2qkb

(b(q − 1))αk
(
1−

√
2κq ln b
(q−1)b −

q
(q−1)b

)αk . (28)

For l < αk, we use the looser bound

M(r, l) ≤
(

k

k − l

)[
q

r−1∑
t=0

(q − 1)t
(
b− 1

t

)]k−l
qbl, (29)

which is obtained as follows. We first choose the (k− l) segments with at most r runs. Then, a

segment with t runs is determined by the choice of the first symbol, and the starting positions

and values of the next (t− 1) runs. There are q choices for the first symbol,
(
b−1
t−1

)
choices for

the starting position of the next (t− 1) runs, and (q− 1)t−1 choices for the values of these runs.

Therefore, the number of possible length b sequences with at most r runs is q
∑r

t=1

(
b−1
t−1

)
(q −

1)t−1 = q
∑r−1

t=0

(
b−1
t

)
(q − 1)t. We then obtain (29) by noting that: i) there are (k − l) segments

with at most r runs, and ii) there are at most qbl choices for the remaining l segments.

We write the right hand side of (29) as(
k

k − l

)[
q
r−1∑
t=0

(q − 1)t
(
b− 1

t

)]k−l
qbl =

(
k

k − l

)[
qb+1

r−1∑
t=0

(
1− 1

q

)t(
1

q

)b−t(
b− 1

t

)]k−l
qbl

(30)

≤ 2kqbk+k−l

[
r−1∑
t=0

(
1− 1

q

)t(
1

q

)b−t(
b− 1

t

) ]k−l
.

(31)

It is shown in Appendix A that
r−1∑
t=0

(
1− 1

q

)t(
1

q

)b−t(
b− 1

t

)
≤ 1

bκ
. (32)

Using (32) to bound (31), and then substituting in (29), we obtain

M(r, l) ≤ 2kqbk+k−l

bκ(k−l)
. (33)

Summing over 0 ≤ l < αk and considering κ > log(2q)
log b

, we obtain∑
l<αk

M(r, l) ≤ 2kq(b+1)k

bκk

∑
l<αk

(
bκ

q

)l
(34)

≤ 2kq(b+1−α)k+1

bκ(1−α)k
. (35)



12

Combining the bounds in (28) and (35), we have

M =
k∑
l=0

M(r, l) (36)

≤ 2qkb

(b(q − 1))αk
(
1−

√
2κq ln b
(q−1)b −

q
(q−1)b

)αk +
2kq(b+1−α)k+1

bκ(1−α)k
(37)

≤ 2max{T1, T2} (38)

where

T1 =
2qkb

(b(q − 1))αk
(
1−

√
2κq ln b
(q−1)b −

q
(q−1)b

)αk , T2 =
2kq(b+1−α)k+1

bκ(1−α)k
. (39)

Therefore the rate can be bounded as

R =
logM

kb
≤ 1

kb
+max

{
log T1
kb

,
log T2
kb

}
. (40)

From (39), we have

log T1
kb

≤ log2 q −
α log2(b(q − 1))

b
− α

b
log2

(
1−

√
2κq ln b

(q − 1)b
− q

(q − 1)b

)
+

1

kb
, (41)

log T2
kb

≤ log2 q −
κ(1− α) log2 b

b
+

(1− α) log2 q
b

+
1

b
+

log2 q

kb
. (42)

Now choose α and κ as follows:

α = 1− 1
3
√
b
, (43)

κ =
α

1− α
log2(b(q − 1))

log2 b
(44)

=
(

3
√
b− 1

) log2(b(q − 1))

log2 b
. (45)

Note that we have α → 1 and 2κq ln b
(q−1)b → 0 as b → ∞. Using the fact that ln(1/(1 − x)) ≤ 2x

for x ∈ (0, 1/2] in (41), we have the following bound on T1 for sufficiently large b:

log T1
kb

≤ log2 q −
α log2(b(q − 1))

b
+

1

kb
+

2α

b ln 2

(√
2κq ln b

(q − 1)b
+

q

(q − 1)b

)

= log2 q −
log2(b(q − 1))

b
+

log2(b(q − 1))

b4/3
+

1

kb
+

2α

b ln 2

(√
2κq ln b

(q − 1)b
+

q

(q − 1)b

)
.

(46)

Also substituting the values of α, κ from (43) and (45) in (42), we have
log T2
kb

≤ log2 q −
log2(b(q − 1))

b
+

1

b
+

log2(b(q − 1))

b4/3
+

log2 q

b4/3
+

log2 q

kb
. (47)

Finally, substituting the values of α, κ into the last term in (46), it can be seen that this term is

O(
√
ln b/b4/3), which yields the desired result.



13

IV. SEGMENTED DELETION CORRECTING CODES

In this section, we show how to construct a segment-by-segment zero-error code for the

segmented deletion channel. For simplicity, we first introduce binary codes and explain the

binary decoder. We then highlight the differences in the non-binary case.

If the decoder knew the segment boundaries, then simply using a VT code for each segment

would suffice. Since the segment boundaries are not known, recall from the example in (1) that

this approach is inadequate if segment-by-segment decoding is to be used. Our construction

chooses a subset of a VT code for each segment, with prefixes determined by the last symbol

of the previous segment.

A. Binary Code Construction

For 0 ≤ a ≤ b, define the following sets.

A0
a ,

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 00

}
,

A1
a ,

{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 11

}
.

(48)

For c ∈ {0, 1}, the set Aca ⊆ VTa(b) is the set of VT codewords that start with prefix cc. We

now choose the sets with the largest number of codewords, i.e., we choose A0
a0

and A1
a1

where

we define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a|. (49)

By defining Ms = min{|A0
a0
|, |A1

a1
|}, we can now construct A0 ⊆ A0

a0
by choosing any Ms

sequences from A0
a0

; similarly construct A1 ⊆ A1
a1

by choosing any Ms sequences from A1
a1

.

The sets A0 and A1 are subsets of the VT codes VTa0(b) and VTa1(b), containing sequences

starting with 00 and 11, respectively.

Finally, the overall code of length n = kb is constructed by choosing a codeword for each

segment from either A0 or A1. The codeword for the first segment is chosen from A0. The

codeword for segment i = 2, . . . , k is chosen as follows: if the last code bit in segment (i− 1)

equals 0, then the codeword for segment i is chosen from A1; otherwise it is chosen from A0.

B. Rate

The rate of the above codes can be bounded from below as

R ≥ 1− 1

b
log2(b+ 1)− 2

b
. (50)



14

Indeed, there are 2b−2 binary sequences of length b whose first two bits equal 0. Each of these

sequences belongs to exactly one of the sets A0
0, . . . ,A0

b . Therefore, the largest among these

(b+ 1) sets will contain at least 2b−2/(b+ 1) sequences and thus,

|A0
a0
| ≥ 2b−2

b+ 1
. (51)

A similar argument gives the same lower bound for |A1
a1
|, hence

Ms ≥
2b−2

b+ 1
. (52)

Taking logarithms gives (50).

From (50), we see that the rate penalty with respect to VT codes is at most 2
b

due to the

prefix of length 2. As an example, for b = 16 our code has 964 codewords, while the greedy

algorithm described in [1], gives 740; this is reduced to 652 when the search is restricted to VT

codes. More examples are reported in Table I.

C. Decoding

Thanks to the segment-by-segment code construction, decoding will also proceed segment by

segment. Decoding proceeds in the following simple steps.

In order to decode segment i, for i = 1, . . . , k, assume that the first i− 1 segments have been

decoded correctly. Thus the decoder knows the correct starting position of segment i in Y ; we

denote it by pi + 1.

By examining the last bit of segment (i− 1), the decoder learns the correct syndrome for the

codeword in segment i, i.e., either a0 or a1; recall that segment 1 was drawn from A0. Without

loss of generality, assume it is a0; the decoding for a1 is identical.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(53)

and compares it to the correct syndrome (assumed to be a0). There are two possibilities:

a) â = a0: The decoder concludes that there is no deletion in segment i. This is because

if there was a deletion in segment i, then Y (pi + 1 : pi + b) cannot have VT syndrome

a0 unless Y (pi + 1 : pi + b) = Si — indeed, if Y (pi + 1 : pi + b) 6= Si, then both these

length b sequences would have syndrome a0 and Y (pi+1 : pi+ b− 1) as a subsequence,

contradicting the property of VT codes in (11).



15

In this case, the decoder outputs Ŝi = Y
(
pi+1 : pi+ b

)
. The starting position of the next

segment in Y is pi + b+ 1.

b) â 6= a0: The decoder knows there is a deletion in segment i and feeds Y
(
pi+1:pi+b−1

)
to the VT decoder to recover the codeword. The output of the VT decoder is the decoded

segment Ŝi. The starting position of the next segment in Y is pi + b.

2) The decoder now checks the last bit of the decoded segment ŝi,b. If ŝi,b = 0, the decoder

knows that segment (i + 1) has been drawn from A1; otherwise it has been drawn from

A0. Thus the decoder is now ready to decode segment (i+ 1).

D. Non-binary Code Construction

We now construct segmented deletion correcting codes for alphabet size q > 2. For a =

0, . . . , b− 1, and c = 0, . . . , q − 1, define following sets:

Aja,c ,
{
S ∈ X b : syn(AS) = a, sum(S) = c, s1, s2 ∈ X \ {j}

}
. (54)

for j = 0, . . . , q − 1. Now for each j = 0, . . . , q − 1 define

{aj, cj} = argmax
0≤a≤b−1
0≤c≤q−1

|Aja,c|. (55)

Similarly to the binary case, the sets Ajaj ,cj for 0 ≤ j ≤ q−1 are used to construct the codebook.

Choose the first segment from A0
a0,c0

. For encoding ith segment (i > 1) we choose a word from

Ajaj ,cj if j is the last symbol of segment i− 1. The size each set Ajaj ,cj , for 0 ≤ j ≤ q − 1, can

be bounded from below as

Ms ≥
qb−2(q − 1)2

qb
. (56)

Indeed, for any j ∈ {0, (q − 1)}, there are qb−2(q − 1)2 sequences of length b with the first

two symbols are not equal to j. Each of these symbols belong to one of the sets Aja,c, where

0 ≤ a ≤ b − 1, and 0 ≤ c ≤ q − 1. Therefore the largest set has size at least qb−2(q−1)2
qb

. This

gives a lower bound on the rate

R ≥ log2 q −
1

b
log2 b−

1

b
log2 q −

2

b
log2

(
q

q − 1

)
. (57)

Decoding proceeds in a similar way to the binary case. The main difference is that instead of

computing (53), the decoder computes

â = syn(AZ), ĉ = sum(Z) (58)



16

where

Z = Y (pi + 1 : pi + b). (59)

Then, the conditions in cases 1) a) and 1) b) are replaced by {â = a0 and ĉ = c0} and by

{â 6= a0 or ĉ 6= c0}, respectively.

V. SEGMENTED INSERTION CORRECTING CODES

A. Binary Code Construction

As in the deletion case, we define a subset of VT codewords such that upon decoding a

segment, there is no ambiguity in the starting position of the next segment. We define the

following set of sequences

Aa ,
{
S ∈ {0, 1}b : syn(S) = a, s1s2 = 01, s3s4 6= 01, S 6= 011 · · · 1

}
(60)

and

a0 = argmax
0≤a≤b

|Aa|. (61)

Similarly to the previous section, the sets Aa ⊆ VTa(b) are sets of VT codewords with a prefix

of a certain form. Our code is thus the maximal code in this family, i.e., C = Aka0 . In contrast

to the deletion case, the codeword for each segment is drawn from the same set Aa0 .

In order to find the size of the code, we use similar arguments to those in the previous section.

There are 2b−2 sequences with prefix 01, out of which 2b−4 are removed because they have prefix

0101; 01 · · · 1 is excluded from Aa by construction. Each of the 2b−2−2b−4−1 sequences belong

to exactly one of the sets A0, . . . ,Ab. Therefore, the largest of these b+1 sets will have size at

least

|Aa0 | ≥
2b−2 − 2b−4 − 1

b+ 1
. (62)

This yields the following lower bound for the rate for b ≥ 6:

R ≥ 1− 1

b
log2(b+ 1)− 2.5

b
. (63)

Hence the rate penalty is at most 2.5
b

due to the added constraints on the prefix.



17

B. Decoding

Decoding proceeds on a segment-by-segment basis, and as in the case of deletions, the code

structure ensures that before decoding segment i, the previous (i − 1) segments have been

correctly decoded. Thus the decoder knows the correct starting position of segment i in Y ; as

before, denote it by pi + 1.

1) The decoder computes the VT syndrome

â = syn
(
Y (pi + 1 : pi + b)

)
(64)

and compares it to the correct syndrome a0. There are two possibilities:

a) â 6= a0: The decoder knows that there has been an insertion in this segment and feeds

Y
(
pi + 1 : pi + b + 1

)
to the VT decoder to recover the codeword. The output of the

VT decoder is the decoded segment Ŝi. The decoder proceeds decoding segment i + 1,

skipping step 2. The starting position in Y for decoding segment i+ 1 is pi + b+ 2.

b) â = a0: The decoder concludes that there is no insertion in Y
(
pi + 1 : pi + b

)
. This is

because if there was an insertion in segment i, then Y (pi + 1 : pi + b) cannot have VT

syndrome a0 unless Y (pi + 1 : pi + b) = Si — indeed, if Y (pi + 1 : pi + b) 6= Si, then

both these length b sequences would have syndrome a0 and Y (pi + 1 : pi + b + 1) as a

supersequence, which contradicts the property of VT codes in (11).

In this case, the decoder outputs Ŝi = Y
(
pi + 1 : pi + b

)
.

2) If case 1.b) holds, the decoder has to check whether ypi+b+1 could be an inserted bit at the

very end of the segment. To this end, the Y (pi + b+ 1 : pi + b+ 4) is checked against the

prefix conditions for segment i+ 1 set in Aa0 .

a) If ypi+b+1ypi+b+2 6= 01: the decoder understands that there is an irregularity caused by

either an insertion in ypi+b+1, or in ypi+b+2 or both. Therefore it deletes ypi+b+1 and

proceeds to decode segment i+ 1 starting from ypi+b+2.

b) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 6= 01, then ypi+b+1 is the correct start of segment

i+ 1.

c) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 = 01: In this case, the decoder needs to decide

among three alternatives by decoding segment i+ 1:

i) ypi+b+3 = 0 is an inserted bit in segment i + 1 and no inserted bit in segment i; let

Ỹ1 = ypi+b+1ypi+b+2ypi+b+4 · · · ypi+2b+1 denote the length b sequence resulting from

deleting ypi+b+3 from the received sequence. If syn(Ỹ1) = a0 then Ŝi+1 = Ỹ1.



18

ii) ypi+b+4 = 1 is an inserted bit in segment i + 1 and no inserted bit in segment i; let

Ỹ2 = ypi+b+1ypi+b+2ypi+b+3ypi+b+5 · · · ypi+2b+1 denote the length b sequence resulting

from deleting ypi+b+4 from the received sequence. If syn(Ỹ2) = a0 then Ŝi+1 = Ỹ2.

iii) ypi+b+1 = 0, ypi+b+2 = 1 are inserted bits in segments i and i + 1, respectively; let

Ỹ3 = ypi+b+3ypi+b+4 · · · ypi+2b+2 denote the length b sequence resulting from deleting

ypi+b+1, ypi+b+2 from the received sequence. If syn(Ỹ3) = a0 then Ŝi+1 = Ỹ3.

When Y (bi + 1 : bi + 4) = 0101, we now show that the three cases listed in step 2.c) are

mutually exclusive, and hence only one of them will give a matching VT syndrome. What needs

to be checked is that the syndromes of Ỹ1, Ỹ2, Ỹ3 will all be different. From the very properties

of VT codes we know that syn(Ỹ1) 6= syn(Ỹ2). Now find that

syn(Ỹ1)− syn(Ỹ3) (mod(b+ 1)) (65)

=
b∑

j=1

j ỹ1,j −
b∑

j=1

j ỹ3,j (mod(b+ 1)) (66)

= 5 +

pi+2b+1∑
j=pi+b+5

yj − 2− bypi+2b+2 (mod(b+ 1)) (67)

= 3 + wH
(
Y (pi + b+ 5 : pi + 2b+ 1)

)
+ ypi+2b+2 (mod(b+ 1)) (68)

6= 0 (69)

where wH(Z) denotes the Hamming weight of sequence Z. The last step of (69) holds because

3 + wH
(
Y (pi + b+ 5 : pi + 2b+ 1)

)
+ ypi+2b+2 (mod(b+ 1)) (70)

can equal to 0 only if wH
(
Y (pi + b+ 5 : pi + 2b+ 1)

)
= b− 3 and ypi+2b+2 = 1, implying that

both Ỹ1 = Ỹ3 = 011 · · · 1. Since this sequence has been explicitly excluded from the codebook,

we always have strict inequality, and hence syn(Ỹ1) 6= syn(Ỹ3). Furthermore, since

syn(Ỹ2)− syn(Ỹ3) = syn(Ỹ1)− syn(Ỹ3)− 1 (71)

is always non-zero, we conclude that there is no ambiguity at the decoder .

C. The Liu-Mitzenmacher conditions for binary segmented codes

In [1], Liu and Mitzenmacher specified three conditions such that any set of binary sequences

satisfying these conditions is a zero-error code for both the segmented insertion channel and

the segmented deletion channel. We list these conditions in Appendix B, and show that the



19

segmented insertion correcting code Aa0 described in Sec. V-A satisfies these conditions. This

shows that the segmented insertion correcting code can also be used for the segmented deletion

channel, with the decoder proposed in [1]. The deletion correcting code described in Section

IV has a slightly higher rate than the insertion correcting code in in Sec. V-A. Moreover, the

construction for the deletion case is more direct and can be generalized to non-binary alphabets

and the segmented insertion-deletion channel.

However, the binary deletion correcting code proposed in Sec. IV-A (or more precisely, the

combined set of codewords A0
a ∪ A1

a) cannot be guaranteed to satisfy the Liu-Mitzenmacher

conditions. Therefore, the construction in Sec. IV-A may not be a zero-error code for the

segmented insertion channel, even with an optimal decoder.

It was conjectured in [1] that the rate and size of the maximal code satisfying the three

sufficient conditions grows with b. As our insertion correcting code Aa0 satisfies the sufficient

conditions, the lower bounds on its rate and size given in (62) and (63) confirm this conjecture.

D. Non-binary Code Construction

For the segmented insertion channel with alphabet size q > 2, we use prefix VT codes similar

to those for the binary case. In this case, however, we set a prefix of length 3. This incurs a

small penalty in rate with respect to the binary code described in Section V-A, but results in a

slightly simpler decoder. Define the following sets for all a = 0, . . . , b− 1 and c = 0, . . . , q − 1

Aa,c ,
{
S ∈ X b : syn(AS) = a, sum(S) = c, s1s2s3 = 001

}
. (72)

Now choose the largest set as the codebook, i.e., C = Aa0,c0 where

{a0, c0} = argmax
0≤a≤b−1
0≤c≤q−1

|Aa,c|. (73)

Similar to the binary case, the number of codewords can be bounded from below as

Ms ≥
qb−3

qb
, (74)

which gives the following lower bound on the rate:

R ≥ log2 q −
1

b
log2 b−

4

b
log2 q. (75)

Decoding proceeds in a similar manner to the binary case. As the code is somewhat different

from the binary one, we give a few more details about the decoder. Assume that the first (i− 1)

segments have been decoded correctly, and let pi+1 is the starting point of the ith segment. Let

Z = Y (pi + 1 : pi + b), (76)



20

and compute

â = syn(AZ), ĉ = sum(Z). (77)

1) â 6= a0 or ĉ 6= c0: The decoder knows there has been an insertion in the ith segment and

feeds Y
(
pi + 1 : pi + b + 1

)
to the non-binary VT decoder to recover the codeword. The

output of the VT decoder is the decoded segment Ŝi. The starting position of the next

segment in Y is pi + b+ 2.

2) â = a0 and ĉ = c0: The decoder concludes that there is no insertion in segment i and outputs

Ŝi = Y
(
pi + 1 : pi + b

)
. The decoder must then investigate the possibility of an insertion

at the very end of the ith segment in order to find the correct starting point of the next

segment. This is done as follows. First, if the symbol ypi+b+1 is not equal to 0, it is an

insertion. The decoder deletes the inserted symbol, and the starting position for the next

segment is (pi + b+ 2). Next, if ypi+b+1 = 0 and there is any symbol different from 0 or 1

in position (pi+ b+2) or (pi+ b+3), it is an inserted symbol thanks to the binary prefix.

The decoder deletes the inserted symbol and sets the starting position of the next segment

to (pi + b+ 1). If neither of these cases hold, the decoder follows Table II.

TABLE II: State of ypi+b+1 when â = a0 and ĉ = c0.

Y (pi + b+ 1 : pi + b+ 3) State of ypi+b+1 = 0 Starting point of next segment

001 No action (ypi+b+1 is not an insertion) pi + b+ 1

000 Delete the first zero (ypi+b+1 is an insertion) pi + b+ 2

010 Delete the 1 (ypi+b+1 may or may not be inserted) pi + b+ 1

VI. SEGMENTED INSERTION-DELETION CORRECTING CODES

A. Binary Code Construction

Since we now have both insertion and deletions, the decoder must first identify the type of

edit in a segment prior to correcting it. Define the following sets:

A0
a ,

{
S ∈ {0, 1}b : syn(S) = a, s1s2s3s4s5 = 00111, sb−2 = sb−1 = sb

}
(78)

A1
a ,

{
S ∈ {0, 1}b : syn(S) = a, s1s2s3s4s5 = 11000, sb−2 = sb−1 = sb

}
. (79)



21

As in previous sections, these are subsets of VT codewords with certain constraints. In this case,

in order to be able to identify the edit type, both prefix and suffix constraints have been added.

Based on the above sets, we further define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a| (80)

and Ms = min{|A0
a0
|, |A1

a1
|}. We construct the sets A0,A1 by choosing Ms sequences from

A0
a0
,A1

a1
, respectively. Finally, the overall code of length n = kb is constructed by choosing a

codeword for each segment from either A0 or A1. The codeword for the first segment is chosen

from A0. For i ∈ {2, . . . , k}, if the last bit of segment (i−1) is 0, then the codeword for segment

i is drawn from A1 and otherwise from A0.

The size and rate are lower-bounded using the same arguments as in the previous sections.

For b ≥ 7, we obtain

Ms ≥
2b−7

b+ 1
(81)

which yields a rate lower bound given by

R ≥ 1− 1

b
log(b+ 1)− 7

b
. (82)

Due to the prefix and suffix constraints, our segmented insertion-deletion correcting codes have

a rate penalty of at most 7
b
.

B. Decoding

As in the previous two cases, decoding proceeds segment-by segment. We ensure that before

decoding segment i, the previous (i− 1) segments have all been correctly decoded. Hence, the

decoder knows the correct starting position in Y for segment i, which is denoted by pi+1. The

decoder also knows whether Si belongs to A0 or to A1. We discuss the case where Si ∈ A0, so

syn(Si) = a0; the case where Si ∈ A1 is similar, with the roles of the bits reversed.

The decoder computes the syndrome syn
(
Y (pi+1 : pi+ b)

)
, and checks whether it equals a0.

There are two possibilities:

1) syn
(
Y (pi + 1 : pi + b)

)
6= a0: This means that there is an edit in this segment, we should

identify the type of edit and correct it. We show that can be done without ambiguity by using

the fact that three last bits of each segment (suffix) are the same, and considering prefix of

the next segment. The decoder’s decision for each combination of the three consecutive bits

(ypi+b−1, ypi+b, ypi+b+1) is listed in Table III. Once the type of edit is known, the decoder



22

TABLE III: Type of edit when syn
(
Y (pi + 1 : pi + b)

)
6= a0

State of sequence Type of edit

ypi+b−1 = ypi+b = ypi+b+1 Insertion

ypi+b−1 = ypi+b 6= ypi+b+1 Deletion

ypi+b−1 = ypi+b+1 6= ypi+b and syn(Z) 6= a0, where Z = [Y (pi + 1 : pi + b− 1), ypi+b+1] Deletion

ypi+b−1 = ypi+b+1 6= ypi+b and syn(Z) = a0 and ypi+b+1 = ypi+b+2 = ypi+b+3 Deletion

ypi+b−1 = ypi+b+1 6= ypi+b and syn(Z) = a0 and (ypi+b+1 6= ypi+b+2 or ypi+b+1 6= ypi+b+3) Insertion

ypi+b−1 6= ypi+b = ypi+b+1 and ypi+b−2 = ypi+b−1 Deletion

ypi+b−1 6= ypi+b = ypi+b+1 and ypi+b−2 6= ypi+b−1 Insertion

corrects the segment using the appropriate VT decoder. We now justify the decisions listed

in Table III.

a) If ypi+b−1 = ypi+b = ypi+b+1: The edit is an insertion. To see this, assume by contradiction

that it was a deletion. Then at least one of ypi+b and ypi+b+1 are the first bit of the prefix

of Si+1, and ypi+b−1 is a suffix bit of Si. This is not possible because by construction,

the first two prefix bits of Si+1 must be different from the suffix bits of Si.

b) If ypi+b−1 = ypi+b 6= ypi+b+1: The edit is a deletion. To see this, suppose that the edit was

an insertion; then the suffix condition can only be satisfied if ypi+b+1 is the inserted bit.

However, this implies that syn
(
Y (pi + 1 : pi + b)

)
= a0, which is contradiction.

c) If ypi+b−1 = ypi+b+1 6= ypi+b: The edit could be either an insertion, or a deletion, according

to the rules in lines 3, 4, 5 of Table III. If the the edit is an insertion, then ypi+b is the

inserted bit, therefore by omitting this bit, the sequence Z = [Y (pi+1:pi+b−1), ypi+b+1]

should have VT-syndrome equal to a0. Therefore, if syn(Z) 6= a0, then the edit is deletion;

if syn(Z) = a0, we need to check the prefix of the next segment to determine the type

of edit.

If syn(Z) = a0: If ypi+b+1 = ypi+b+2 = ypi+b+3, then the edit in segment i is a deletion (it

can be verified that the prefix condition for segment (i+1) cannot otherwise be satisfied

with at most one edit),. In all other cases the edit in segment i is insertion, with ypi+b

being the inserted bit. We observe that when syn(Z) = a0, Si = Z with either type of

edit, but the decoder needs to infer the type of edit in order to guarantee the correct

starting position for the next segment.

d) If ypi+b−1 6= ypi+b = ypi+b+1: In this case, ypi+b−2 determines the type of edit: if ypi+b−2 =



23

TABLE IV: State of ypi+b+1 when syn(Y (pi + 1 : pi + b)) = a0.

Y (pi + b+ 1 : pi + b+ 5) State of ypi+b+1

1uvst Inserted

000uv Inserted

011uv Not Inserted

01000 Not possible

01001 Inserted

01010 Not possible

01011 Not inserted

00100 Not possible

00101 and syn(Z1) matches Inserted

00101 and syn(Z2) matches Not Inserted

00110 Not Inserted

00111 Not Inserted

ypi+b−1 the edit is a deletion, otherwise it is an insertion. This can be seen by examining

the suffix condition: if the edit is an insertion then ypi+b−1 is the inserted bit therefore

ypi+b−2 belongs to suffix of Si, hence ypi+b−2 = ypi+b = ypi+b+1. On the other hand, if

the edit is a deletion, then ypi+b−2 and ypi+b−1 belongs to suffix of Si, so they should be

equal.

Hence we have shown that whenever syn
(
Y (pi+1 : pi+ b)

)
6= a0, we can uniquely decode

Si and determine the correcting starting position for the next segment.

2) syn
(
Y (pi + 1 : pi + b)

)
= a0: In this case, by combining the arguments in step 1.a) of the

deletion decoder and step 1.b) of the insertion encoder, we conclude that Ŝi = Y (pi+1:pi+

b). To determine the correct starting position for the next segment, we have to investigate

the possibility of an insertion at the end of the block, i.e., determine whether ypi+b+1 is

an inserted bit. This can be done by examining the prefix of Si+1. We consider five bits,

Y (pi + b + 1 : pi + b + 5), and for all 32 cases determine the state of ypi+b+1. For the

simplicity, assume that the last bit of Si is 1, so that the prefix for Si+1 is 00111; the other

case is identical, with 0 and 1 interchanged.

First, if ypi+b+1 = 1, then it is an inserted bit (this is 16 of the 32 cases). Table IV lists the

type of edit for each of the other cases when ypi+b+1 = 0. These are justified below.

a) If Y (pi + b+ 1 : pi + b+ 5) = 011uv for some bits u, v, then ypi+b+1 is not an insertion



24

corresponding to segment i: if it was inserted, then decoding for segment (i+ 1) would

start with the bits 11 . . ., which cannot be matched with the prefix 00111 with only one

edit. Hence the correct starting position for decoding segment (i+ 1) is pi + b+ 1.

b) If Y (pi + b+ 1 : pi + b+ 5) = 000uv, then ypi+b+1 (or another 0 from the run) is an

insertion for segment i, as 000u does not match 0011 unless we remove a zero form the

run.

c) The cases Y (pi + b+ 1 : pi + b+ 5) = 01000,01010, 00100 cannot occur as they cannot

be matched with the required prefix 00111 through any valid edits for segment i + 1,

whether or not ypi+b+1 is inserted.

d) If Y (pi + b+ 1 : pi + b+ 5) = 01001 , then ypi+b+1 is an insertion for segment i as this

is the only option consistent with the prefix 00111.

e) If Y (pi + b+ 1 : pi + b+ 5) = 0011u or 01011, then ypi+b+1 = 0 is not an insertion for

segment i, and is the starting bit for decoding segment (i+ 1).

f) If Y (pi + b+ 1 : pi + b+ 5) = 00101, we need to compare the VT syndromes of two

sequences to determine the status of ypi+b+1. We will also decode Si+1 in the process.

If ypi+b+1 = 0 is inserted, then ypi+b+3 = 1 should also be inserted, therefore Si+1 = Z1

where Z1 = [00, Y (pi + b + 5 : pi + 2b + 2)]. On the other hand, if ypi+b+1 is not

inserted then ypi+b+4 = 0 should be an inserted bit, therefore, Si+1 = Z2 where Z2 =

[001, Y (pi + b + 5 : pi + 2b + 1)]. However, Z1 and Z2 will always produce different

syndromes and only one of them will be equal to a0, the correct syndrome for segment

(i + 1). Thus we can correctly identify whether ypi+b+1 was an insertion for segment i

or not.

Hence we have shown that whenever syn(Y (pi+1 : pi+ b)) = a0, we can uniquely decode

Si and determine the correcting starting position for the next segment.

The decoding algorithm described above was simulated in Matlab to confirm that the code

is indeed zero-error. The Matlab files for implementing the codes proposed for all three binary

segmented edit models are available at [15].



25

C. Non-binary Code Construction

We now construct segmented insertion-deletion correcting codes for alphabet size q > 2. For

a = 0, . . . , b− 1, and c = 0, . . . , q − 1, define following sets:

A0
a,c ,

{
S ∈ X b : syn(AS) = a, sum(S) = c, s1s2s3s4s5 = 00111, sb−2 = sb−1 = sb

}
, (83)

A1
a,c ,

{
S ∈ X b : syn(AS) = a, sum(S) = c, s1s2s3s4s5 = 11000, sb−2 = sb−1 = sb

}
. (84)

For j = 0, 1 define

{aj, cj} = argmax
0≤a≤b−1
0≤c≤q−1

|Aja,c|. (85)

We use the sets A0
a0,c0

and A1
a1,c1

to construct the codebook by alternating depending on the last

symbol of the previous segment. We set Ms = min{A0
a0,c0

,A1
a1,c1
} and construct the sets A0,A1

by choosing Ms sequences from A0
a0,c0

,A1
a1,c1

, respectively. The codeword for the first segment

is chosen from A0. For i ∈ {2, . . . , k}, if the last symbol of segment (i− 1) is an even number,

then the codeword for segment i is drawn from A1; if the last symbol of segment (i− 1) is an

odd number, the codeword is drawn from A0.

The number of codewords per segment satisfies

Ms ≥
qb−7

qb
(86)

and thus a lower bound on the rate is

R ≥ log2 q −
1

b
log2 b−

8

b
log2 q. (87)

The decoding is almost identical to the binary case. As with previous decoders, to decode

segment i, it is assumed that the first (i − 1) segments have been decoded correctly. Let Z =

Y (pi + 1 : pi + b), where pi + 1 is the starting position of the ith segment. Compute

â = syn(AZ), ĉ = sum(Z). (88)

The decoder checks whether {â = a0 and ĉ = c0} or {â 6= a0 or ĉ 6= c0}. In the first case, the

decoder sets Ŝi = Y (pi + 1 : pi + b) and in order to find the starting point of segment i + 1,

follows the same case breakdown as in the binary decoder (see case 2 of the binary decoder).

On the other hand, if {â 6= a0 or ĉ 6= c0}, thanks to the prefix-suffix code structure being the

same as the binary one, the decoder follows exactly the same case breakdown (see case 1 of the

binary decoder) in order to identify the type of edit and correct it.



26

VII. CONCLUSION

We have considered three segmented edit channel models and proposed zero-error codes for

each of them over alphabets of size q ≥ 2. The proposed codes are constructed using carefully

chosen subsets of VT codes, and can be decoded in a segment-by-segment fashion in linear

time. The rate scaling for the codes is shown to be the same as that of the maximal code; the

upper bound of Theorem 1 shows that the rate penalty is of order 1/b.

One direction for future work is to obtain tighter non-asymptotic upper and lower bounds

on the cardinality of these codes. For tighter upper bounds, the linear programming technique

from [16] is a promising approach. For tighter lower bounds, one approach would be to use the

known formulas for the cardinality of VT codes [2], and adapt them to our setting where prefix

and/or suffix constraints are added.

APPENDIX

A. Proof of (32)

Let U be a Binomial
(
b, q−1

q

)
random variable, with mean µ = b(q−1)

q
. Then, using a standard

Chernoff bound for a binomial random variable (see, for example [17, Theorem 4.5]), we have

for any ε > 0:

P(U ≤ µ(1− ε)) ≤ exp

(
−µε2

2

)
. (89)

Choosing ε =
√

2κq ln b
(q−1)b , we have

µ(1− ε) = b(q − 1)

q
−

√
2κ(q − 1)b ln b

q
(90)

= r, (91)

where r is defined in (26). Using this in (89), we obtain

P(U ≤ r) = P(U ≤ µ(1− ε)) (92)

≤ exp

(
−µε2

2

)
(93)

= b−κ, (94)



27

where the last equality is obtained by substituting the values of µ and ε. Finally, note that

P(U ≤ r) ≥ P(U ≤ (r − 1))

=
r−1∑
t=0

(
1− 1

q

)t(
1

q

)b−t(
b

t

)

≥
r−1∑
t=0

(
1− 1

q

)t(
1

q

)b−t(
b− 1

t

)
.

(95)

Combining (95) and (94) yields the desired inequality.

B. The Liu-Mitzenmacher conditions

Let I1(X) denote the set of all sequences obtained by adding one bit to the binary sequence

X . Then C ⊆ {0, 1}b is a binary zero-error code for both the segmented insertion channel and

the segmented deletion channel (with segment length b) if the following conditions are satisfied.

1) For any U, V ∈ C, with U 6= V , I1(U) ∩ I1(V ) = ∅;

2) For any U, V ∈ C, with U 6= V , prefix(I1(U))∩ suffix(I1(V )) = ∅;

3) Any string of the form y∗(zy)∗ or y∗(zy)∗z, where y, z ∈ {0, 1}, is not in C.

Here prefix(X) denotes the subsequence of X obtained excluding the last bit, suffix(X) the

subsequence obtained excluding the first bit, and X∗ is the regular expression notation referring

to 0 or more copies of sequence X . The set prefix(I1(U)) is defined as {prefix(X):X ∈ I1(U)}.

The set suffix(I1(V )) is defined similarly.

We now show that the insertion correcting code Aa0 defined in Sec. V-A satisfies these

conditions. Since Aa0 is a subset of a VT code and is hence a single insertion correcting code,

the first condition is satisfied.

We next verify the third condition. All the codewords in Aa0 start with 01. It is easy to see that

any sequence starting with 01 and violating the third condition in either of the two ways must

have 0101 as its first four bits. But these sequences are excluded from Aa0 , so each codeword

in Aa0 satisfies the third condition.

It remains to prove that the second condition is satisfied. Assume towards contradiction that

there exist codewords U, V ∈ Aa0 such that U 6= V and the set W = prefix(I1(U)) ∩

suffix(I1(V )) is non-empty. Suppose that the sequence Z ∈ W , and Z1 ∈ I1(U) and Z2 ∈ I1(V )

are length (b+ 1) sequences such that that Z = prefix(Z1) = suffix(Z2).

Since U ∈ Aa0 and Z1 ∈ I1(U), prefix(Z1) will start with a 0, unless the inserted bit in Z1 is a

1 and is inserted exactly at the beginning of U , i.e., unless Z1 = [1, U ]. Also, since Z2 ∈ I1(V ),



28

suffix(Z2) will start with 1 unless Z2 is obtained by adding a bit at the beginning of V , i.e.

Z2 = [h, V ], for h ∈ {0, 1}. Since Z = prefix(Z1) = suffix(Z2), clearly one of the above two

cases should hold. First, assume that Z starts with 1 and therefore we have Z1 = [1, U ]. Now

since U ∈ Aa0 starts with 01, we have

Z = prefix(Z1) (96)

= Z1(1 : b) (97)

= [1, U(1 : b− 1)] (98)

= [101, U(3 : b− 1)]. (99)

Now we also know that Z = suffix(Z2), so suffix(Z2) = [101, U(3 : b − 1)]. Now, notice that

Z2 ∈ I1(V ) and first bit of V is 0, so the first two bits of Z2 cannot be 11. We therefore have

Z2 = [0101, U(3 : b− 1)]. (100)

But we know that V ∈ Aa0 cannot start with 0101, so either the third or the fourth bit in Z2 is

the inserted bit. Therefore, we know that

V = [01z, U(3 : b− 1)], (101)

for z ∈ {0, 1}. We also know that

U = [01, U(3 : b− 1), ub], (102)

where ub ∈ {0, 1}. But this contradicts condition 1 (which has already been verified) because

we obtain the same length (b+1) sequence by: i) inserting ub to the end of V , and ii) inserting

z after the second bit of U .

Next consider the second case where Z starts with a 0. As explained above, we then have

Z2 = [h, V ], and hence, Z = suffix(Z2) = V . Therefore prefix(Z1) = V , so one can obtain Z1

by adding the last bit of Z1 to V . Therefore Z1 ∈ I1(U)∩I1(V ), which is a contradiction. This

completes the proof that Aa0 satisfies all the three conditions.

ACKNOWLEDGEMENT

The authors thank the associate editor and the two anonymous referees for several helpful

comments which led to an improved paper.



29

REFERENCES

[1] Z. Liu and M. Mitzenmacher, “Codes for deletion and insertion channels with segmented errors,” IEEE Trans Inf. Theory,

vol. 56, no. 1, pp. 224–232, 2010.

[2] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and Designs, Ohio State University (Ray-Chaudhuri

Festschrift), pp. 273–291, 2000. Online: https://arxiv.org/abs/math/0207197.

[3] M. C. Davey and D. J. C. MacKay, “Reliable communication over channels with insertions, deletions, and substitutions,”

IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 687–698, 2001.

[4] E. A. Ratzer, “Marker codes for channels with insertions and deletions,” Ann. Telecommn., vol. 60, no. 1, pp. 29–44, 2005.

[5] K. A. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke, “On Helberg’s generalization of the Levenshtein code

for multiple deletion/insertion error correction,” IEEE Trans on Inf. Theory, vol. 58, no. 3, pp. 1804–1808, 2012.

[6] D. Cullina, N. Kiyavash, and A. A. Kulkarni, “Restricted composition deletion correcting codes,” IEEE Trans Inf. Theory,

vol. 62, no. 9, pp. 4819–4832, 2016.

[7] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting multiple deletions,” in Proc.

Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1884–1892, 2016.

[8] V. Guruswami and C. Wang, “Deletion codes in the high-noise and high-rate regimes,” IEEE Trans Inf. Theory, vol. 63,

no. 4, pp. 1961–1970, 2017.

[9] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction from insertions in synchronization codes,” IEEE

Trans Inf. Theory, vol. 63, no. 4, pp. 2428–2445, 2017.

[10] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,” Automatica i Telemekhanica,

vol. 26, no. 2, pp. 288–292, 1965. (in Russian), English Translation in Automation and Remote Control, (26, No. 2, 1965),

286-290.

[11] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion,” IEEE Trans on Inf. Theory, vol. 30, no. 5,

pp. 766–769, 1984.

[12] A. Kulkarni, “Insertion and deletion errors with a forbidden symbol,” in Proc. IEEE Inf. Theory Workshop, 2014.

[13] K. A. S. Abdel-Ghaffar and H. C. Ferreira, “Systematic encoding of the Varshamov-Tenengolts codes and the Constantin-

Rao codes,” IEEE Trans Inf. Theory, vol. 44, pp. 340–345, Jan 1998.

[14] M. Abroshan, R. Venkataramanan, and A. Guillén i Fàbregas, “Efficient systematic encoding of non-binary VT codes,”

2017. (Online) https://arxiv.org/abs/1708.04071.

[15] “Matlab scripts for implementing codes for segmented edit channels.” Available at: https://github.com/MahedAb/

Segmented Edit Channels.

[16] A. A. Kulkarni and N. Kiyavash, “Nonasymptotic upper bounds for deletion correcting codes,” IEEE Trans Inf. Theory,

vol. 59, no. 8, pp. 5115–5130, 2013.

[17] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized algorithms and probabilistic analysis. Cambridge

Univ. Press, 2005.

https://arxiv.org/abs/math/0207197
https://arxiv.org/abs/1708.04071
https://github.com/MahedAb/Segmented_Edit_Channels
https://github.com/MahedAb/Segmented_Edit_Channels

	Introduction
	Comparison with previous work
	Organization of the paper

	Channel Model and Preliminaries
	Binary VT codes
	Non-binary VT codes

	Upper Bound on Rate
	Segmented Deletion Correcting Codes
	Binary Code Construction
	Rate
	Decoding
	Non-binary Code Construction

	Segmented Insertion Correcting Codes
	Binary Code Construction
	Decoding
	The Liu-Mitzenmacher conditions for binary segmented codes
	Non-binary Code Construction

	Segmented Insertion-Deletion Correcting Codes
	Binary Code Construction
	Decoding
	Non-binary Code Construction

	Conclusion
	Appendix
	Proof of (32)
	The Liu-Mitzenmacher conditions

	References

