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Codes of practice rely on the effective length method to assess the stability of multi-storey frames. The
effective length method involves isolating a critical column within a frame and evaluating the rotational
and translational stiffness of its end restraints, so that the critical buckling load may be obtained.

The non-contradictory complementary information (NCCI) document SN008a (Oppe et al., 2005) to BS
EN 1993-1 (BSI, 2005) provides erroneous results in certain situations because it omits the contribution
made to the rotational stiffness of the end restraints by columns above and below, and to the transla-
tional stiffness of end restraints by other columns in the same storey.

Two improvements to the method are proposed in this paper. First, the axial load in adjoining columns
is incorporated into the calculation of the effective length. Second, a modification to the effective length
ratio is proposed that allows the buckling load of adjacent columns to be considered. The improvements
are shown to be effective and consistently provide results within 2% of that computed by structural anal-
ysis software, as opposed to the up to 80% discrepancies seen using the NCCI (Oppe et al., 2005).
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many codes of practice rely on the effective length method to
assess the stability of frames. The effective length method allows
the buckling capacity of a member in a structural system to be cal-
culated by considering an equivalent pin ended column in Euler
buckling. This paper will focus on the non-contradictory comple-
mentary information (NCCI) document SN008a [1] to BS EN
1993-1 [2], although many of the findings presented in this paper
are also relevant to many other national codes of practice. The
NCCI provides a simple method to determine the effective lengths
of columns in multi-storey steel frames. Errors in this approach
have been identified that arise as the method fails to correctly
recognise the contribution made:

1. by adjoining columns, to the rotational stiffness of end
restraints; and

2. by other columns in the same storey, to the translational stiff-
ness of end restraints.

Issue (1) concerns both braced and unbraced frames. Using the
NCCI [1] it is found that the stiffer an adjoining column, the greater
the effective length of the column being analysed, which is
counter-intuitive. This is demonstrated by considering columns
AB and CD in Fig. 1. If AB and CD are stiffened and the loading
unchanged, then the rotations at B and C are reduced. The deflected
shape shows that the effective length of BC is reduced in this situ-
ation, whereas the equations of the NCCI [1] show it to increase, as
shown later. A simple improvement to the method is proposed to
address this, which incorporates the adjoining columns’ axial load
into the calculation of the effective length. The improvement is
shown to be very effective and consistently provides results within
2% of that computed by structural analysis software.

Issue (2) concerns unbraced frames, and occurs because of the
simplifying assumption made in the NCCI [1] that all columns in
a storey buckle simultaneously and therefore columns in this
storey have end restraints with zero translational stiffness. If
the method is applied to unbraced frames where columns of
varying stiffness exist in the same storey or columns have differ-
ent applied loads, then significant errors will be encountered
that are potentially unconservative, as seen in Section 3.2.1
below. To address this issue, a modification factor is adopted
which is applied to the effective length ratio obtained using
the sway design chart, and accounts for columns that will have
end restraints with translational stiffnesses between zero
(sway case) and infinity (non-sway case) and even negative
translational stiffnesses. These are often called partial sway
frames. The results obtained from using this factor are shown
to be reliable and accurate.
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Nomenclature

C carry-over factor
E Young’s modulus
gx distribution coefficient at node X
I second moment of area
IIJ second moment of area of column IJ
j curvature of an elastic member
KIJ nominal rotational stiffness of column IJ
KXY nominal rotational stiffness of an adjoining column XY

K 0IJ rotational stiffness of column IJ modified for axial load

K 00IJ rotational stiffness of column IJ at node I modified for
axial load and support conditions at node J

K 00JI rotational stiffness of column IJ at node J modified for
axial load and support conditions at node I

K 00XY rotational stiffness of an adjoining column XY modified
for axial load and far end support conditions

P
Kc;I sum of rotational stiffness of the columns converging at

node IP
Kb;I sum of rotational stiffness of the beams converging at

node I modified for axial load and far end support con-
ditions

LE,IJ effective length of column IJ
LIJ physical length of column IJ
Mx moment at node X
P applied compression
Pc,IJ critical buckling load for column IJ given by Eq. (3)
PE,IJ Euler buckling load for column IJ given when LE,IJ = LIJ in

Eq. (3)
PIJ applied compression on column IJ
hx rotation at node X
S stiffness coefficient
v deflection

A. Webber et al. / Engineering Structures 102 (2015) 132–143 133
1.1. Elastic stability

Buckling is an instability phenomenon in structural systems
subjected to compression loads. In columns it is associated with
the transition from a straight configuration to a laterally deformed
state [3]. The critical load describes the load at which this transi-
tion occurs.

Critical loads can be calculated by solving for equilibrium of the
laterally deformed column. Assuming deflections and rotations are
small, the curvature of a member, j, can be defined by Eq. (1). If the
member is perfectly elastic and the material obeys Hooke’s Law,
deflection theory [4] states that the bending moment is propor-
tional to the curvature, with the member’s flexural stiffness as
the constant of proportionality, Eq. (2):

j ¼ d2v
dx2 ð1Þ

M ¼ �EI
d2v
dx2 ð2Þ

where v is the deflection; E is Young’s modulus, I is the second
moment of area.

With the substitution k2 = P/EI, the solution for the critical buck-
ling load is given by Eq. (3) where the boundary conditions of the
column are used to define the effective length:
Fig. 1. The contribution of adjoining columns
Pc ¼
p2EI

L2
E

; ð3Þ

where E is the Young’s modulus, I is the second moment of area, Pc

is the critical buckling load, and LE is the effective length of the
column.

1.2. Effective length

The effective length, LE; depends on the boundary conditions of
the column as shown for example in [5]. A pin ended elastic col-
umn will have a buckled configuration of a sinusoidal wave. The
distance between points of contraflexure, which defines the effec-
tive length, is critical in evaluating the stability of the column.
Effective lengths given in the codes are generally greater than
the theoretical values, as full rigidity at supports is difficult, if
not impossible, to achieve.

Theoretical analysis uses idealised end restraints, whose trans-
lational and rotational stiffnesses are set to either zero or infinity.
In some instances it may be acceptable for the designer to assume
a column has these idealised end restraint conditions, especially
for preliminary design purposes when a more rigorous analysis is
to follow, but care is needed due to the substantial influence that
end restraints have on the buckling capacity. In most real struc-
tures, the rotational and translational stiffness of the end restraints
is somewhere between rigid and free.
to rotational stiffness at end restraints.
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2. Frame stability

Being able to determine the effective length of framed columns
is important, as it provides a simple approach to assessing frame
stability. To find the effective length of an individual column
within a frame, the rotational and translational stiffness of its
end restraints must be considered.

A braced frame would usually be categorised as a non-sway
frame (lateral displacements are sufficiently small that the sec-
ondary forces and moments can be ignored) and the translational
stiffness of a column’s end restraints are taken as infinity.

In an unbraced frame, the secondary effects caused by lateral
displacements are usually significant and consequently the trans-
lational stiffness of a column’s end restraints is taken as zero.

If all connections between beams and columns are assumed to be
fully rigid (i.e. there is no rotation of the beam relative to the column
at a connection) it may seem sensible to take an effective length ratio
for a column in an unbraced frame of 1.0. However this could be an
onerous over simplification because the connecting members will
deform when the column buckles. The connecting members restrain
the buckling column and provide rotational stiffness. It is also possi-
ble that adjoining members provide negative rotational stiffness if
they too are subjected to significant axial load and have buckled.

A significant source of inaccuracy in the design of columns
using the effective length method is uncertainty in the estimation
of rotational boundary conditions for the column. This has been
recognised in the literature [6,7]. The effective length method con-
siders columns individually, even though the presence of other
members is crucial to buckling behaviour. The contribution of
adjoining members is taken into account indirectly through the
summation of stiffnesses of the members at the top and bottom
of a column. This approach was used by Wood [8], whose work
forms the theoretical basis for buckling calculation in BS EN 1993
[2]. However, the work of Wood [8] produces unusual results in
some situations, which will be considered later.

The work of Cheong-Siat-Moy [9] provides early insight into the
need to consider both individual element and overall system beha-
viour for accurate buckling analysis, while Bridge and Fraser [10]
extended this to consider negative rotational stiffnesses.
Hellesland and Bjorhovde [11] also show the importance of fully
considering the contributions of adjacent elements to rotational
stiffnesses. They propose a ‘weighted mean’ approach to determin-
ing frame buckling from individual element analyses, and impor-
tantly applied this method to frames in which column stiffnesses
change significantly between storeys. Aristizabal-Ochoa [12] fur-
ther examined the effect of uniformly distributed axial loads, and
the behaviour of frames with partial side-sway [13].
Cheong-Siat-Moy [9] proposed the use of a fictitious lateral load
as a method to evaluate the buckling capacity of columns as an
alternative to the effective length method, but this has not been
adopted by designers.

Ultimately, the critical load of an individual column within a
frame cannot be obtained without considering the loads in the rest
of the structure as this will affect the stiffness of the column’s end
restraints and change its effective length. Codes of practice get
around this by assuming worst-case scenarios such as that adjoin-
ing columns in the storey above and below buckle simultaneously
with the column under investigation, and as such reduce the rota-
tional stiffness of its end restraints, and that other columns in the
same storey buckle simultaneously. Both of these can lead to
over-conservative results.

2.1. Stiffness distribution method

The stiffness distribution method, which is used in SN008a [1]
employs the stability function ‘S’ (Eq. (4)) and carry over factor
‘C’ (Eq. (5)) for non sway cases [14]. For the sway case (see
Fig. 2), the stability function is ‘n’ and the carry over factor ‘o’,
and equations for these coefficients may be found in the literature
[14]. They define the end moments of a fixed-pin column IJ that is
rotated by h at its pinned end I, as displayed in Fig. 2 for sway and
non-sway frames.

S ¼
kLIJ sin kLIJ

� �
� kLIJ cos kLIJ

� �� �
2� 2 cos kLIJ

� �
� kLIJ sin kLIJ

� � ð4Þ

C ¼
kLIJ � sin kLIJ

� �
sin kLIJ
� �

� kLIJ cos kLIJ
� � ð5Þ

where k ¼
ffiffiffiffiffi
PIJ

EIIJ

q
, LIJ is the length of column IJ, PIJ is the axial load on

column IJ, IIJ is the second moment of area of column IJ.
Since Eqs. (4) and (5) depend only on kLIJ , which can alterna-

tively be given by Eq. (6), they are functions of the ratio of the axial
load to Euler load (P/PE). Such values have been tabulated exten-
sively in the literature [14,15].

kLIJ ¼ LIJ

ffiffiffiffiffiffiffi
PIJ

EIIJ

s
¼ p

ffiffiffiffiffiffiffiffi
PIJ

PE;IJ

s
ð6Þ

where PE,IJ is the Euler buckling load of column IJ, given when
LIJ = LE,IJ

When the axial load P equals zero, the stiffness coefficient S
equals four. Therefore the moment required to rotate the column
in Fig. 2(a) by theta degrees is given by Eq. (7):

MI ¼ 4hI
EI
L

ð7Þ

Wood’s [8] general definition for rotational stiffness is given by
Eq. (8):

KIJ ¼
MI

4EhI
ð8Þ

The resistance of the fixed-pinned column IJ (Fig. 3) to rotation
at the pinned node I, when the axial load is zero, is therefore given
by Eq. (9):

KIJ ¼
IIJ

LIJ
ð9Þ

This is called the nominal rotational stiffness and can be modified
to take account of axial load in the column by using the stability
function ‘S’, as shown in Eq. (10):

K 0IJ ¼
S
4

KIJ ð10Þ

where S is given by Eq. (4).
If the end ‘J’ is in fact not fully rigid, but has a rotational stiffness

due to the presence of adjoining beams then this will result in a
reduced rotational stiffness at end I, which is related to the relative
stiffness of the adjoining beams at end J.

To find this reduction in K 0IJ we need to contemplate the follow-
ing scheme, which is illustrated in Fig. 3:

� Consider the column IJ where end I is free and end J is initially
fixed, Fig. 3(a).
� End I is rotated by h, which requires an applied moment of

MI = SEKIJ, where S is the general stiffness coefficient for either
sway/non-sway case, and KIJ is the nominal rotational stiffness
from Eq. (9) and E is the Young’s modulus (Fig. 3(a)).
� The moment carried over to end J is CMI where C is the general

carry-over factor.
� This step is explained by considering the general case of a

moment applied at a node ‘X’ which has three adjoining
members (one column and two beams, for example). The



Fig. 2. Demonstration of end moments for fixed-pinned struts in (a) non sway and (b) sway frames.

Fig. 3. Moment required to rotate the free end of a column by h, with adjoining beams at far end.
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applied moment will be distributed into each adjoining
member according to their relative rotational stiffness. The
moment distributed into the column in this example is given
by Eq. (11):

Mcolumn ¼ MXgX ð11Þ

where MX is the applied moment at node X;gX is the distribution
coefficient (the ratio of the column’s rotational stiffness to the total
rotational stiffness of the members at the joint), given by Eq. (12):

gX ¼
Kc;X

Kc;X þ
P

Kb;X
ð12Þ

where Kc;X is the rotational stiffness of the single column at node X;
and

P
Kb;X is the sum of the rotational stiffness of each beam at

node X.

� Then, by keeping end I held at h, and replacing the fixed support
at end J by adjoining beams (Fig. 3(b)) and releasing the
moment CMI , it follows from Eq. (12) that the moment in the
column at end J is �CMIgJ and the moment distributed back
to end I is �CMIgJC (Fig. 3(b)).
� Therefore the net moment required to rotate end I by h, for the

column which is not fully rigid at joint J, is:

MI � CMIgJC ð13Þ

Hence, the reduction in K 0IJ is found by combining Eqs. (8) and
(13). The resistance of a column IJ to rotation at node I, with adjoin-
ing beams at node J, is then given by Eq. (14) and notated as K 00IJ :
K 00IJ ¼
MI � CMIgJC

4EhI
¼ K 0IJ 1� C2gJ

� �
ð14Þ

where gJ is the distribution coefficient for node J from Eq. (12) and

K 0IJ is the rotational stiffness of the column at node I when node J is
fixed, obtained from Eq. (10).

Combining Eqs. (10), (12) and (14), Eq. (15) is obtained:

K 00IJ ¼
KIJS

4
1� C2

KIJS
4

KIJ S
4 þ

P
Kb;J

 ! !
ð15Þ

Beyond a certain value of PIJ/PE,IJ, applying the corresponding
values of S and C to Eq. (15), will result in a negative rotational
stiffness.

The criteria for buckling is that the rotational stiffness at a joint
is zero. If node I is pinned then the critical load will be obtained
from Eq. (16):

K 00IJ ¼ 0 ð16Þ

However in a frame the rotational restraint provided by any
adjoining beams at node I would also need to be considered.
Therefore the critical axial load in the column is reached when
Eq. (17) is satisfied.

K 00IJ þ
X

Kb;I ¼ 0 ð17Þ

where
P

Kb;I is the rotational stiffness of the beams at node I. This is
found by first combining Eqs. (15) and (17) to give Eq. (18):

KIJS
4

1� C2
KIJ S

4
KIJS

4 þ
P

Kb;J

 ! !
þ
X

Kb;I ¼ 0 ð18Þ



I

J

L

Deflected shape

Fig. 4. A simple multi-storey frame.
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Rearranging the distribution coefficient (Eq. (12)) to solve forP
Kb;I and

P
Kb;J gives:

X
Kb;I ¼ KIJ

1
gI
� 1

	 

ð19Þ

X
Kb;J ¼ KJI

1
gJ
� 1

 !
ð20Þ

Substituting these into Eq. (18), noting that the KIJ terms can
now be removed, gives Eq. (21):

S
4

1� C2
S
4

S
4þ 1

gJ
� 1

� �
0
@

1
A

0
@

1
Aþ 1

gI
� 1

	 

¼ 0 ð21Þ

Therefore, when gI and gJ are known, the resulting equation can
be satisfied by applying the appropriate stability functions corre-
sponding to the critical value of PIJ/PE,IJ which causes instability,
from which we can get the column’s effective length ratio, Eq. (22).

PIJ

PE;IJ
¼

p2EIIJ

L2
E;IJ

p2EIIJ

L2
IJ

¼ LIJ

LE;IJ

	 
2

ð22Þ

Wood constructed design charts from Eq. (21), which require
the designer to know only the top and bottom distribution coeffi-
cients (gI and gJ) to find the effective length ratio. The charts are
symmetrical about their horizontal and vertical axes, which means
the designer can apply the top or bottom distribution coefficients
(gI and gJ) to either the x- or y-axis.

2.1.1. Multi-storey frames
For the method to be applied to continuous columns in

multi-storey frames an adjustment to the distribution coefficient
was suggested. Wood [8] recommended the rotational stiffness of
an adjoining column is added to both the numerator and denomi-
nator of the distribution coefficient as shown in Eq. (23), which can
be compared to Eq. (12).

gX ¼
P

Kc;XP
Kc;X þ

P
Kb;X

ð23Þ

where Kc;X is the rotational stiffness of each column at node X; and
Kb;X is the rotational stiffness of each beam at node X.

The rationale behind this is that both upper and lower columns
at any joint are required to be restrained by the beams at that level
[8] suggesting that both columns are subjected to sufficient axial
load that they both have negative stiffness at the same time. This
approach also allows the same design charts as for a single storey
frame to be used to find the effective length ratio.

Applying this method to the column IJ in Fig. 4, Eq. (21) still
holds true as the same design charts are being used. Multiplying
by KIJ (see Eqs. (19)–(21)) and substituting values from Eq. (23) into
Eq. (21), Eq. (24) is obtained:

KIJS
4

1� C2
KIJ S

4

KIJS
4 þ

KIJ

P
Kb;JP

Kc;J

0
B@

1
CA

0
B@

1
CA

2
64

3
75þ KIJ

P
Kb;IP

Kc;I

� �
¼ 0 ð24Þ

Since KIJ
1
gJ
� 1

 !
¼ KIJ

P
Kc;J þ

P
Kb;JP

Kc;J
� 1

	 

¼ KIJ

P
Kb;JP

Kc;J
ð25Þ

The first expression in Eq. (24) represents the effective rota-
tional stiffness of column IJ at node I (K 00IJ), and the second expres-
sion represents the rotational stiffness of the adjoining members at
node I.
It can be seen from the second term that the rotational stiffness
of the beams at node I (

P
Kb;I) has been shared between each col-

umn in proportion to their nominal stiffness, i.e. rotational

restraint provided to column IJ at node I is KIJ

KIJþKXY;I

P
Kb;I (where

KXY,I is the restraint provided by column XY at node I).
Therefore, the greater the nominal stiffness of an adjoining col-

umn relative to that of column IJ, the lower the rotational restraint
provided to column IJ, and subsequently the lower its buckling
load. This is the reason for the anomalies described in Section 1.

This is despite the fact that it is apparent that the greater the
nominal stiffness of an adjoining column, the less likely it will
require restraining.

Eq. (24) can now alternatively be written as Eq. (26):

KIJS
4

1� C2
KIJS

4
KIJS

4 þ
P

Kb;J � KXY ;JP
Kc;J

P
Kb;J

0
B@

1
CA

0
B@

1
CA

þ
X

Kb;I �
KXY;IP

Kc;I

X
Kb;I ¼ 0 ð26Þ

where KXY;I is the nominal stiffness of the adjoining column XY at
node I. Therefore the resistance of the adjoining column to rotation
at node I at the critical load can be seen to be estimated from Eq.
(27):

K 00XY;I ¼ �
KXY;IP

Kc;I

X
Kb;I ð27Þ

There is no consideration given to the adjoining column’s axial
load or far-end restraint conditions.

The incorporation of an adjoining column’s stiffness also has the
effect of reducing K 00IJ , therefore reducing the critical load further.

2.1.2. Effective rotational stiffness of adjoining members
For the calculation of the distribution coefficients in Eq. (23),

the NCCI recommends using the nominal rotational stiffness from
Eq. (9) for columns and an effective rotational stiffness for beams
[1], modifying the nominal stiffness of a beam to take account of
its far end restraint condition and axial load. Wood [8] devised
an approach to find a beam’s modified rotational stiffness in
multi-storey frames, which allows consideration of the rotation
at the ends of a beam. Using the slope deflection equation
MA ¼ EK 4hA þ 2hBð Þ [16] the modified rotational stiffness of a beam
AB can be related to the rotation at its ends, as Eq. (28):

K 0A ¼
MA

4EhA
¼ EK 4hA þ 2hBð Þ

4EhA
¼ KA 1þ 0:5

hB

hA

	 

ð28Þ
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where hB is the rotation at the far end, and hA is the rotation at the
near end.

In the critical buckling mode shape of a sway frame, beams
bend in double curvature and the rotations at both ends of a beam
are equal hA ¼ hB ! hB

hA
¼ 1. Therefore the beams modified rota-

tional stiffness would be:

K 0 ¼ K 1þ 0:5� 1ð Þ ¼ 1:5K ð29Þ

In the critical buckling mode shape of a non-sway frame, beams
bend in single curvature and the rotation at both ends of a beam
are equal but opposite hA ¼ �hB ! hB

hA
¼ �1. Therefore the beams

modified rotational stiffness would be:

K 0 ¼ K 1þ 0:5��1ð Þ ¼ 0:5K ð30Þ
2.2. NCCI SN008a

BS EN 1993 [2] refers to the NCCI document SN008a [1]. The
method presented in the NCCI for determining the effective length
of columns is the same as that presented in Annex E of BS 5950
[17].

The procedure to determine the effective length of steel col-
umns in frames outlined in SN008a [1] is simple to undertake.
Distribution coefficients calculated for the top and bottom of the
column (notated as g1 and g2 in SN008a [1]) allow the effective
length ratio to be extracted from design charts for both sway or
non-sway cases. Distribution coefficients can theoretically vary
from zero (analogous of a fully rigid support) to one (representing
a pure pin).

The distribution coefficients for the top and bottom column
nodes are calculated from Eq. (23).

The rotational stiffness is assumed to be linear elastic. The rota-
tional stiffness of a member with a fixed far-end and no axial load
can be determined from Eq. (9), which is used in SN008a [1] to cal-
culate column stiffness regardless of their real far end restraint
conditions and axial load. The rotational stiffness of adjoining
beams can however be modified in SN008a [1]. At present the
design charts are only appropriate for frames with fully rigid con-
nections, as the NCCI does not provide any guidance on how to
design for semi-rigid connections.

Following the recommendations of BS 5950 Annex E [17], any
restraining member required to carry more than 90% of its moment
capacity should be assigned a K value of zero. Similarly, if either
end of the column being designed is required to carry more than
90% of its moment-carrying capacity, then the distribution coeffi-
cient (g) should be taken as 1.

In the sway frame design chart, the effective length ratio can
vary from one to infinity, with an effective length ratio of infinity
corresponding to a sway frame column that has pinned supports
at both ends (a mechanism).

2.3. The AISC LRFD method

The American Institute for Steel Construction (AISC) Load and
Resistance Factor Design (LRFD) manual [18] presents a similar
method to the NCCI [1] for the calculation of the effective length
of columns in multi storey frames. After evaluating stiffness ratios
at the top and bottom of the column, the effective length ratio is
read from design nomographs. Like the NCCI, the AISC method
assumes adjoining columns buckle simultaneously and therefore
adjoining columns provide negative rotational stiffness at
restraints. Both methods are examples of linear static analysis of
the equilibrium of a column in its deformed state.

In unbraced frames, stronger columns will brace weaker col-
umns in the same storey, and the AISC commentary [18] allows
the column effective length ratio (w) to be modified to account
for this effect by Eq. (31).

w0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Pu

Pui

IiP
I

w2
0

vuut P

ffiffiffiffiffiffiffiffiffiffi
5
8

wi0

r
ð31Þ

where w0i is the modified column effective length ratio;
P

Pu is the
required axial compressive strength of all columns in a storey; Pui is
the required compressive strength of the column under investiga-
tion;

P I
w2

0
is the ratio of the second moment of area to the effective

length factor of each column in the storey based on the sway align-
ment charts found in [18], Ii is the second moment of area of the
column under investigation; wi0 is the unmodified effective length
factor for the column.

Eq. (31) allows for column end nodes with translational stiff-
ness’ somewhere between zero and infinity, corresponding to the
support conditions of a weaker column that is being braced by a
stronger one. It also allows for negative translational stiffness, as
encountered when the column under investigation is bracing a
weaker adjacent column or a leaning column (a leaning column
has pinned supports and therefore has no translational stiffness).
The application of this modification factor is demonstrated in
Section 3.2.1 below.

3. Application

The effective length method will be used to evaluate the stabil-
ity of a variety of framed columns. The results obtained will be
compared to that computed using structural analysis software
Autodesk Robot Structural Analysis [19] which will be used to per-
form an eigenvalue buckling analysis. This type of analysis is
directly comparable to the Euler formula as it makes all the same
assumptions, such as initially straight, perfectly elastic members,
and uses a linearised expression for curvature (the one difference
being that for compatibility reasons the curvature of members is
represented using a cubic form instead of sinusoidal).

3.1. The effect of a column from an adjacent storey

The effective length method will be used to assess the stability
of the frames in Figs. 5 and 6, considered first as non-sway and
then as sway frames. Both frames have regular spaced columns
and an even distribution of load (which is common in real building
structures). Consequently, it is expected that frame instability will
be caused by the buckling of all columns in a single storey as the
columns in this storey will have reached their critical load. The
effective length method will be used to find the elastic buckling
load of a column in the critical storey. The frames are identical,
other than the height of the top storey.

All members are 203 � 203 � 60 UC and all connections are
fully rigid. Columns buckle about their weak axis
(Iminor = 2070 cm4) whilst the beams bend about their strong axis
(Imajor = 6130 cm4), both in the plane of the frame. The beams carry
no axial load and do not reach their flexural capacity. The distribu-
tion of the design loads are shown in Figs. 5 and 6 along with frame
geometry. The frames are braced out of plane. Base nodes of the
columns are taken as fully rigid (g = 0). Frame B might be expected
to buckle at a lower load compared to frame A since its top storey
column is more slender.

3.1.1. Example 1 – Non sway
Frames A and B are first considered to be non-sway frames. For

Frame A (Fig. 5), the NCCI approach suggests that the columns in
the middle storey buckle first and cause frame instability. The elas-
tic critical load of column BC therefore defines the load in the rest
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Fig. 5. Frame A: multi-storey fully rigid steel with stiff top storey.
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of the frame at instability, and is found to be 3846 kN. The axial
load in column BC at frame instability, found using an Eigenvalue
analysis in Robot [19], is 7054 kN. The NCCI predicts Frame A will
buckle at a load 45% lower than that computed by Robot. The cal-
culations for this section are summarised in Table 1. In the
non-sway computational analysis supports were added at all nodes
which prevented horizontal movement only. These were removed
when calculating the sway frames.

Applying the NCCI approach to Frame B (Fig. 6) suggests that
column FG will buckle first, at an elastic critical load of 4653 kN.
Using Robot, it is found that the axial load in column FG at frame
instability is 5622 kN. In this instance the NCCI is closer, but still
predicts a collapse load 17% lower than that found using Robot.

Furthermore the NCCI predicts that Frame A buckles at a lower
load than Frame B, which from observation does not seem correct.
Robot supports the intuitive prediction that Frame B is less stable
than Frame A.

The distribution coefficients calculated for nodes B and F using
the NCCI are gB ¼ 0:808 and gF ¼ 0:585. This shows that according
to the NCCI, node F has more rotational stiffness than node B,
which is evidently incorrect, as the short column AB is stiffer than
slender column EF. The distribution coefficients calculated for
nodes C and G are the same (gC ¼ gG ¼ 0:663) as the members con-
verging on these nodes are identical. So the effective length ratio of

column BC and FG, read from the design charts, are LE;BC
LBC
¼ 0:825 and

LE;FG
LFG
¼ 0:750. The calculations for this section are summarised in

Table 1.
Table 1
Calculations for Frame A and Frame B as non-sway frames.

Frame A

Distribution coefficients gB ¼ KBAþKBC

KBAþKBCþ
P

K 0b;B
¼ 0:808

gC ¼ KCBþKCD

KCBþKCDþ
P

K 0b;C
¼ 0:663

gD ¼ 0

Effective length ratios and
elastic critical loads using
[1]

LE;BC
LBC
¼ 0:825! PC;BC ¼ 3846 kN

LE;CD
LCD
¼ 0:825! PC;CD ¼ 11;913 kN

Conclusion When column BC buckles the axial load in column CD
(3846 � 1.5 = 5,769 kN < 11,913 kN) therefore BC is cr
3.1.2. Example 2 – Sway frames
Frame A and Frame B are now considered to be sway frames.
The NCCI predicts that in both frames, the middle storey col-

umns buckle first. The calculated elastic critical loads of BC and
FG are calculated as PC;BC ¼ 1211 kN and PC;FG ¼ 1623 kN, contrary
to the expected result that PC;BC > PC;FG. The analysis using Robot
[19] computes the elastic critical loads of columns BC and FG as
PC;BC ¼ 2230 kN and PC;FG ¼ 1984 kN.

The error again arises from the calculation of the distribution
coefficients for the top nodes, where node B is less stiff than node
F. The calculations for this section are summarised in Table 2.
3.2. The effect of columns in the same storey

Another limitation of the NCCI approach is that it assumes all
columns in a storey buckle simultaneously. One of the conse-
quences is that in unbraced frames the contribution made by adja-
cent columns in the same storey to the translational stiffness of the
column being checked is ignored. In the NCCI, the translational
stiffness of the end restraints is assumed to be either zero or infin-
ity for sway or non-sway frames respectively [1].

In unbraced frames, stronger columns will brace weaker col-
umns in the same storey. If the column being analysed is partially
braced by a stiffer column then its end restraints will have transla-
tional stiffness between zero and infinity. If the column being
checked is partially bracing a less stiff column, or fully bracing a
pin ended column, the translational stiffness of the restraints will
Frame B

gE ¼ KEF

KEFþ
P

K 0b;E
¼ 0:360

gF ¼ KFEþKFG

KFEþKFGþ
P

K 0b;F
¼ 0:585

gG ¼ gC ¼ 0:663

LE;EF
LEF
¼ 0:675! PC;EF ¼ 2553 kN

LE;FG
LFG
¼ 0:750! PC;FG ¼ 4653 kN

is:
itical.

When column EF reaches its critical load, the axial load in column FG is
(2553 � 2 = 5106 kN > 4653 kN) therefore column FG buckles first.



Table 2
Calculations for Frame A and Frame B as sway frames.

Frame A Frame B

Distribution coefficients gB ¼ KBAþKBC

KBAþKBCþ
P

K 0b;B
¼ 0:585

gC ¼ KCBþKCD

KCBþKCDþ
P

K 0b;C
¼ 0:396

gD ¼ 0

gE ¼ KEF

KEFþ
P

K 0b;E
¼ 0:158

gF ¼ KFEþKFG

KFEþKFGþ
P

K 0b;F
¼ 0:319

gG ¼ gC ¼ 0:396

Effective length ratios and elastic
critical loads using [1]

LE;BC
LBC
¼ 1:47! PC;BC ¼ 1211 kN LE;EF

LEF
¼ 1:16! PC;EF ¼ 865 kN

LE;FG
LFG
¼ 1:27! PC;FG ¼ 1;623 kN

Conclusion From inspection column BC is the critical
column and will buckle first

When column EF reaches its critical load, the axial load in column FG is
(865 � 2 = 1730 kN > 1623 kN) therefore column FG buckles first.
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Frame D - No leaning column

Fig. 8. Frame D: Portal frame without a leaning column.
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be negative and the NCCI can overestimate the elastic critical load,
as shown in Example 3 below.

3.2.1. Example 3
The NCCI approach has been used to find the elastic critical

loads of column JK in Frame C, Fig. 7, and column NQ in Frame D,
Fig. 8. The results, given in Table 3, highlight the potential errors
encountered by ignoring the possibility of restraints having nega-
tive translational stiffness. All members are 203x203x60 UC and
all connections are fully rigid. Columns buckle about their weak
axis (Iminor = 2070 cm4) whilst the beams bend about their strong
axis (Imajor = 6130 cm4), both in the plane of the frame.

The critical load of column JK found using the NCCI is almost
double that found using Robot. The critical column for Frame C is
LM, so it would be expected that the buckling load of this column
will define frame instability. However, using the NCCI, the effective
length of column LM would be infinity as both ends are pinned and
it is part of a sway frame; therefore it is unable to take any load.
The designer may decide that it is fully braced by column JK, and
as such read from the non-sway design chart, in which case they
would obtain an effective length ratio of one, and an elastic critical
load of 2554 kN, which is evidently much too high. The NCCI gives
the designer no options in these cases and without careful thought
can lead to potentially unconservative errors.

Applying the AISC modification factor (section 2.3) to Frame C,
the effective length ratio is given by Eq. (32) and the elastic critical
load by Eq. (33), which is in very good agreement with the com-
puter analysis.
J

LK

M

4m

P P

4m

Frame C - Leaning column

Fig. 7. Frame C: portal frame with a leaning column.
w0AB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Pu

PuAB

IABP I
w2

0

vuut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2w0;AB

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1:12ð Þ

p
¼ 1:50 ð32Þ

PC ¼
p2EI

k L2
� � ¼ p2EI

1:5 40002
� � ¼ 1163 kN ð33Þ
3.3. Conclusion

The stiffness distribution method developed by Wood [8] seems
logical and effective for single storey frames. For continuous col-
umns in multi-storey frames, the approach adopted by Wood [8]
assumes adjoining columns to have negative rotational stiffness.
As a result the NCCI approach has been shown to provide unreli-
able results in certain cases, by incorrectly evaluating the contribu-
tion made by adjoining columns to the rotational stiffness of end
restraints. This occurs because the method fails to assess the load
in the rest of the structure, which evidently has an effect on the
stiffness of end restraints.
4. Proposal

There are numerous proposed improvements to the effective
length method, but none have replaced the method used in BS
5950 [20] and now the NCCI [1]. The principle reason for this is that



Table 3
Results for Example 3.

NCCI Robot Robot � NCCI

Distribution coefficients Effective length ratio [1] Elastic critical load (Eq. (3)) (kN) Elastic critical load (kN)

Column JK Node K gK = 0.310 1.117 2100 1137 0.52
Node J gJ= 0

Column NQ Node Q gQ = 0.184 1.063 2347 2340 1.00
Node N gN = 0

C
P
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many of the proposed methods are far too complicated and
time-consuming to apply by hand, and consequently are unsuit-
able for preliminary design purposes and impractical to the
Design Engineer.

BS 5950 [20] and the NCCI [1] also provide formulae to deter-
mine the effective length ratio from distribution coefficients as
an alternative to design charts. These formulae are more conserva-
tive than the design charts, and more precise formulae have been
developed by Smyrell [21] using curve fitting techniques.

Lui [22] developed a method to determine the effective length
ratio of framed columns, which explicitly takes into account trans-
lational stiffness by applying a fictitious horizontal force to the
frame. It also allows for the existence of weaker and stronger col-
umns (or leaning columns) in the same storey. The formula has
been shown to provide reliable results when applied to frames
where columns in a single storey are of different strengths [23].

4.1. Improved rotational stiffness for adjoining beams

Mageirou and Gantes [7] derived the rotational stiffness’ of
members using the slope-deflection method, similar to Wood’s
derivation [8] of the rotational stiffness of adjoining beams. The
options for far-end restraint conditions were expanded to include
roller supports with various rotational stiffnesses. These options
are applicable to the far-end restraint conditions of columns in
sway frames and therefore allow an adjoining column’s rotational
stiffness to be modified appropriately for the calculation of the dis-
tribution coefficient. The work of Mageirou and Gantes [7] is also
applicable for members with semi-rigid connections, in sway,
non-sway and partially sway frames.

Gantes and Mageirou [6] give rotational stiffness values similar
to those in the NCCI [1], as shown in Table 4. Gantes and Mageirou
[6] define rotational stiffness as K = M/h, so that the stiffness of a
fixed end member with no axial load is given by 4EI/L. Wood used
Eq. (8), so the nominal stiffness is I/L. Therefore, the formulae can
be made equivalent by dividing those proposed by Gantes and
Mageirou [6] by 4E (ultimately the methods from both Wood [8]
and Gantes and Mageirou [6] provide the same results).

Mageirou and Gantes [7] have also improved the accuracy to
which axial load affects the rotational stiffness and their method
is less conservative than the NCCI method, as is shown by the coef-
ficients of P/PE used in each equation.
Table 4
Modified rotational stiffness for beams with various far end restraint conditions.

Rotational conditions at far end Mageriou and
Gantes [6]

NCCI [1]

Fixed support (no rotation, no
translation)

4 EI
L 1� 0:33 P

PE

� �
1:0 I

L 1� 0:4 P
PE

� �
Pinned support (free rotation, no

translation)
3 EI

L 1� 0:66 P
PE

� �
0:75 I

L 1� 1:0 P
PE

� �
Single curvature (rotation equal and

opposite to that at near end, no
translation)

2 EI
L 1� 0:82 P

PE

� �
0:50 I

L 1� 1:0 P
PE

� �

Roller fixed support (free translation,
no rotation)

EI
L 1� 0:82 P

PE

� �
–

Double curvature 6 EI
L 1� 0:16 P

PE

� �
1:50 I

L 1� 0:2 P
PE

� �
4.2. Semi-rigid connections

The assumption of a fully rigid connection implies that no rela-
tive rotation of the connection occurs and that the end moment of
a beam is completely transferred to the column. On the other hand,
a pinned connection implies no rotational restraint is provided and
the moment is zero at the connection.

Several non-linear models have been developed that provide a
closer approximation to the true moment-rotation behaviour of
connections, which employ curve fitting techniques that require
the input of connection-dependent parameters that have been tab-
ulated in the literature [7,24].

4.3. New proposal

The main source of discrepancy in the current NCCI method
comes from the evaluation of the rotational stiffness of the adjoin-
ing columns. An opportunity to modify the NCCI method, so that
the rotational stiffness of adjoining columns is appropriately con-
sidered, has been identified. Distribution coefficients are proposed
for use with the design charts of NCCI [1]:

gI ¼
KIJ

KIJ þ K 00XY;I þ
P

K 00b;I
ð34Þ

gJ ¼
KJI

KJI þ K 00XY;J þ
P

K 00b;J
ð35Þ

where KIJ is the nominal stiffness of the column IJ which is being
analysed; K 00XY;I and K 00XY;J are the effective rotational stiffness of the

adjoining columns at nodes I and J; and
P

K 00b;I and
P

K 00b;J are the
effective rotational stiffness of the beams converging at nodes I
and J, evaluated from Table 4.

Rearranging the distribution coefficients gives Eqs. (36) and
(37).

1
gI
� 1

	 

¼

K 00XY ;I þ
P

K 00b;I
KIJ

ð36Þ
A

B

D

P

P

Fig. 9. Multi-storey frame design loads.



Table 5
Proposed effective rotational stiffness’ of adjoining columns.

Support conditions at far end Effective rotational stiffness of
an adjoining column XY, K 00XY

Fixed support (no rotation, no translation) IXY
LXY

1� 0:33 Pd;XY
Pd;IJ

LXY
0:7LIJ

� �2
	 


Pinned support (free rotation, no
translation)

0:75 IXY
LXY

1� 0:66 Pd;XY
Pd;IJ

LXY
0:7LIJ

� �2
	 


Single curvature (rotation equal and
opposite to that at near end, no
translation)

0:5 IXY
LXY

1� 0:82 Pd;XY
Pd;IJ

LXY
0:7LIJ

� �2
	 


Roller support (no rotation, free
translation)

0:25 IXY
LXY

1� 0:82 Pd;XY
Pd;IJ

LXY
LIJ

� �2
	 


A. Webber et al. / Engineering Structures 102 (2015) 132–143 141
1
gJ
� 1

 !
¼

K 00XY;J þ
P

K 00b;J
KJI

ð37Þ

Inputting Eqs. (36) and (37) into the governing design chart Eq.
(21) and multiplying by KIJ, the criterion for buckling is given by
Eq. (38):

KIJS
4

1� C2
KIJ S

4
KIJS

4 þ K 00XY;J þ K 00b;J

 ! !
þ K 00XY;I þ

X
K 00b;I ¼ 0 ð38Þ

The first term of Eq. (38) represents the effective rotational stiff-
ness of the column under consideration, K 00IJ (Eq. (39)).

K 00IJ ¼
KIJS

4
1� C2

KIJ S
4

KIJ S
4 þ K 00XY ;J þ

P
K 00b;J

 ! !
ð39Þ
Table 6
Test 1 – Non-sway frame results.

Robot (kN) NCCI (kN)

Frame A Column BC 7054 3846
Frame B Column FG 5622 4653

Table 7
Calculations for Frame A and Frame B as non-sway frames using the proposed method.

Frame A

Column BC
KBC ¼ I

L ¼ 20700000
4000 ¼ 5175

K 00AB ¼ 0:5 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ 9809

K 00CD ¼ I
L 1� 0:33 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ 2979

K 0b ¼ 0:5 I
L ¼ 3065ðsingle curvatureÞ

gB ¼ KBC

KBCþK 00BAþ
P

K 0b;B
¼ 0:245

gC ¼ KCB

KCBþK 00CDþ
P

K 0b;C
¼ 0:362

LE;BC
LBC
¼ 0:650! PC;BC ¼ 7146 kN

At this stage the accuracy can be improved by substituting the found value for LE into t
formula for the adjoining column and repeating the analysis.

Column CD
KCD ¼ I

L ¼ 20700000
3000 ¼ 6900

K 00BC ¼ 0:5 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ �2544

K 0b ¼ 3065ðsingle curvatureÞ

gC ¼ KCD

KCDþK 00CBþ
P

K 0b;C
¼ 0:658

gD ¼ 0
LE;CD
LCD
¼ 0:616! PC;CD ¼ 12;266 kN

Conclusion: When column BC buckles the axial load in column CD is
(7146 � 1.5 = 10,719 kN < 12,266 kN) therefore column BC is critical
The term
KIJ S

4
KIJ S

4 þK 00XY ;Jþ
P

K 00b;J
in Eq. (39) is the proportion of the

carried-over moment transferred back into the column under
consideration.

The criterion for buckling can then be given by Eq. (40):

K 00IJ þ K 00XY;I þ
X

K 00b;I ¼ 0 ð40Þ

To properly evaluate the rotational stiffness of an adjoining col-
umn, its far-end restraint conditions and axial load need to be con-
sidered. The effective rotational stiffness of a beam with axial load
can be determined from Table 4. To use the same equations to
obtain the rotational stiffness of adjoining columns, you would
require knowledge of its axial load when the critical load of the col-
umn under investigation is reached.

Consider the frame in Fig. 9, where a load P is applied to the col-
umn at each floor.

The column CA carries an axial load P; column AB carries axial
load 2P; and column BD carries axial load 3P. To determine the
effective length of column AB then its load at buckling is

PC;AB ¼ p2EI
L0AB

2 where L0 is a crude approximation of its effective length,

which will be taken as its real length for sway frames, or 0.7 times
its real length for non-sway frames. This ensures the axial load in
adjoining columns is not underestimated.

The load in columns AC and BD can then be estimated as
PAC ¼ 0:5PC;AB and PBD ¼ 1:5PC;AB. A general equation to estimate
the load in an adjoining column (XY) at the point when the critical
Robot/NCCI Proposed (kN) Robot/proposed

1.83 7146 0.99
1.21 5654 0.99

Frame B

Column EF
KEF ¼ I

L ¼ 3450

K 00FG ¼ 0:5 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ �1262

K 0b ¼ 0:5 I
L ¼ 3065

gE ¼ KEF

KEFþ
P

K 0b;E
¼ 0:360

gF ¼ KFE

KFEþK 00FGþ
P

K 0b;F
¼ 0:415

LE;EF
LEF
¼ 0:642! PC;EF ¼ 2827 kN

he K’’

Column FG
KFG ¼ I

L ¼ 5175

K 00EF ¼ 0:5 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ �1523

K 00GH ¼ I
L 1� 0:33 Pd;XY

Pd;IJ

LXY
0:7LIJ

� �2
	 


¼ 2979

K 0b ¼ 3065

gF ¼ KFG

KFGþK 00FEþ
P

K 0b;F
¼ 0:529

gG ¼ KGF

KGFþK 00GHþ
P

K 0b;G
¼ 0:362

LE;FG
LFG
¼ 0:670! PC;FG ¼ 5859 kN

Conclusion: When column EF buckles, the axial load in column FG is
(2827 � 2 = 5654 kN < 5859 kN) therefore EF is critical.



Table 8
Test 2 – Sway Frame Results.

Robot (kN) NCCI (kN) Robot/NCCI Proposed (kN) Robot/proposed

Frame A Column BC 2230 1211 1.84 2087 1.07
Frame B Column FG 1984 1623 1.20 1958 1.01

Table 9
Calculations for Frame A and Frame B as sway frames using the proposed method.

Frame A Frame B

Column BC Column EF
KBC ¼ I

L ¼ 5175

K 00AB ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 5042

K 00CD ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 532

K 0b ¼ 1:5 I
L ¼ 9195ðdouble curvatureÞ

gB ¼ KBC

KBCþK 00BAþ
P

K 0b;B
¼ 0:181

gC ¼ KCB

KCBþK 00CDþ
P

K 0b;C
¼ 0:215

LE;BC
LBC
¼ 1:12! PC;BC ¼ 2087 kN

KEF ¼ I
L ¼ 3450

K 00FG ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 351

K 0b ¼ 1:5 I
L ¼ 9195

gE ¼ KEF

KEFþ
P

K 0b;E
¼ 0:158

gF ¼ KFE

KFEþK 00FGþ
P

K 0b;F
¼ 0:155

LE;EF
LEF
¼ 1:09! PC;EF ¼ 979 kN

Column CD Column FG
KCD ¼ I

L ¼ 20700000
3000 ¼ 6900

K 00BC ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 36

K 0b ¼ 9195

gC ¼ KCD

KCDþK 00CBþ
P

K 0b;C
¼ 0:272

gD ¼ 0
LE;CD
LCD
¼ 1:09! PC;CD ¼ 3917 kN

KFG ¼ I
L ¼ 5175

K 00EF ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 67

K 00GH ¼ 0:25 I
L 1� 0:82 Pd;XY

Pd;IJ

LXY
LIJ

� �2
	 


¼ 532

K 0b ¼ 9195

gF ¼ KFG

KFGþK 00FEþ
P

K 0b;F
¼ 0:219

gG ¼ KGF

KGFþK 00GHþ
P

K 0b;G
¼ 0:215

LE;FG
LFG
¼ 1:135! PC;FG ¼ 2032 kN

Conclusion: When column BC buckles the axial load in column CD is
(2087 � 1.5 = 3131 kN < 3817 kN) therefore column BC is critical

Conclusion: When column FG buckles, the axial load in column EF is
(979 � 2 = 1958 kN < 2032 kN) therefore EF is critical.
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load in the column under consideration (IJ) is reached for a frame
with any load distribution is given in Eq. (41).

PXY ¼
Pd;XY

Pd;IJ
PC;IJ ð41Þ

where PXY is the load in the adjoining column, Pd,IJ is the design load
of the column that has reached its critical load PC,IJ, and Pd,XY is the
design load of the adjoining column.

In a sway frame, the rotational stiffness of an adjoining column
with a fixed roller support (no rotation, free horizontal translation)
at its far-end can therefore be approximated from Eq. (42) (see
Table 4).

K 00XY ¼ 0:25
IXY

LXY
1� 0:82

PXY

PE;XY

	 

ð42Þ

Substituting Eq. (41) into Eq. (42), Eq. (43) is obtained:

K 00XY ¼ 0:25
IXY

LXY
1� 0:82

Pd;XY

Pd;IJ

LXY

LIJ

	 
2
 !

ð43Þ

where LXY is the height of the adjacent storey and LIJ the height of
the critical storey. This equation assumes the critical column and
the adjoining column have the same EI value.

In a similar manner for a non-sway frame, the adjoining column
with a fixed far-end can be approximated by Eq. (44).

K 00XY ¼
I
L

1� 0:33
Pd;XY

Pd;IJ

LXY

0:7LIJ

	 
2
 !

ð44Þ

The proposed effective rotational stiffness of adjoining columns
are summarised in Table 5.
The first three far-end support conditions listed in Table 5 cor-
respond to columns in non-sway frames, and as such have the 0.7
effective length ratio included. Only the last rotational condition
can be used for columns in sway frames.

4.4. Testing

The proposed method has been used to assess the stability of
the frames in Figs. 5 and 6. The results are compared to those found
using Robot and the NCCI for both non-sway (Test 1) and sway
(Test 2) conditions.

4.4.1. Test 1 – Non-sway frames
For Frame A in Fig. 5 the proposed method predicts that column

BC buckles first at a load of 7146 kN, which is within 1.3% of the
load found using Robot.

It was shown in section 3.1.1 that using the NCCI approach on
Frame B in Fig. 6 suggests column FG buckles first at a load of
4653 kN. The method proposed above predicts column EF buckles
first at a load of 2827 kN, at which point column FG would carry
a load of 5654 kN. This is within 0.6% of the load found using
Robot (5622 kN). The results are summarised in Table 6, with the
modified calculations shown in Table 7.

4.4.2. Test 2 – Sway frames
The proposed method predicts column BC in Frame A (Fig. 5) is

the critical column, and has an elastic critical load of 2087 kN. The
NCCI also predicts BC would buckle first, but at the lower load of
1211 kN. The proposed method is in agreement with Robot, which
obtained a load in column BC at frame instability of 2230 kN.
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Similarly, the proposed method predicts column EF will buckle
first in Frame B (Fig. 6) at a load of 979 kN, with a predicted axial
load in column FG at frame instability of 1958 kN. This is within
1.3% of that computed by Robot, as summarised in Table 8 with
the related calculations in Table 9.

The proposed approach correctly recognises the contribution
made by an adjoining column to the rotational stiffness. The results
obtained from the proposed method have been shown to be in
good agreement to that computed from a finite element eigenvalue
analysis.
5. Conclusion

The current NCCI method consistently underestimates the crit-
ical load of columns in multi-storey frames because of the conser-
vative assumption that adjoining columns buckle simultaneously
with the column being investigated. Subsequently, adjoining col-
umns only reduce the rotational stiffness of end restraints. A fur-
ther consequence of this assumption is that the stiffer an
adjoining column, the greater the reduction in rotational stiffness
of that end restraint. However it is apparent that a stiffer adjoining
column is less likely to buckle.

To address these issues, a simple improvement to the calcula-
tion of the distribution coefficients has been proposed, which suc-
ceeds in accurately assessing the rotational stiffness of adjoining
columns by considering the axial load in these columns when
the column under investigation buckles. This is shown to signifi-
cantly improve the accuracy of the results obtained from design
charts without overcomplicating the design or even changing the
design procedure.

In frames with leaning columns, or where stronger columns
brace weaker columns, it is recommended that the NCCI should
adopt AISC LRFD’s modification factor [18], which has been shown
to be a very simple and effective solution. Without this modifica-
tion, the critical load of frames with leaning columns could be sig-
nificantly over estimated, which may lead to the under design of
frames with potentially disastrous results.

A limitation of the NCCI method is that it can only be applied to
multi-storey frames with fully rigid connections. It has been
demonstrated that the rotational stiffness of adjoining beams can
be modified to account for the rotational stiffness of the
beam-to-column connection. However, difficulty comes in assess-
ing the rotational stiffness of the connections. Providing tables
matching the different connection types to the corresponding rota-
tional stiffness, in conjunction with limiting criteria, is one possi-
bility. Whilst not a perfectly accurate solution, provided they are
less than the real stiffness then the method should be suitable
and will improve the accuracy of the results.

It is recognised that simplicity is an advantage in design codes.
The methods presented here are intended to clarify and extend the
current design guidance, retaining simplicity whilst achieving
greater accuracy. It is noted that analytical techniques such as
those shown in this paper are very useful to design engineers at
preliminary design stages. However, where very high accuracy is
required or very complex structures must be analysed, computa-
tional methods are widely available and these can also be used.
5.1. Future work

More work is required to determine an appropriate analytical
method for assessing the rotational stiffness of semi-rigid connec-
tions in frames. New full size laboratory tests carried out on elastic
frames could be used to observe the buckling modes of
multi-storey frames, and measure points of contraflexure on the
columns, with the aim of calculating their effective lengths.
Additional work is required to extend the approach to
three-dimensional frames.

6. Data access statement

All data created during this research are openly available from
the University of Bath data archive at <http://dx.doi.org/10.
15125/BATH-00131>.
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