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Abstract

Flow resistance of liquids flowing through microchannels can be reduced by replacing flat, no-

slip boundaries with boundaries adjacent to longitudinal grooves containing an inert gas, resulting

in apparent slip. With applications of such textured microchannels in areas such as microfluidic

systems and direct liquid cooling of microelectronics, there is a need for predictive mathematical

models that can be used for design and optimization. In this work, we describe a model that

incorporates the physical effects of gas viscosity (interfacial shear), meniscus protrusion (into the

grooves) and channel aspect ratio and show how to generate accurate solutions for the laminar

flow field using Chebyshev collocation and domain decomposition numerical methods. While the

coupling of these effects are often omitted from other models, we show that it plays a significant

role in the behavior of such flows. We find that, for example, the presence of gas viscosity may cause

meniscus protrusion to have a more negative impact on the flow rate than previously appreciated.

Indeed, we show that there are channel geometries for which meniscus protrusion increases the flow

rate in the absence of gas viscosity and decreases it in the presence of gas viscosity. In this work,

we choose a particular definition of channel height: the distance from the base of one groove to

the base of the opposite groove. Practically, such channels are used in constrained geometries and

therefore are of prescribed heights consistent with this definition. This choice allows us to easily

make meaningful comparisons between textured channels and no-slip channels occupying the same

space.

∗ Email address for correspondence: s.game14@imperial.ac.uk
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I. INTRODUCTION

Superhydrophobic surfaces that seemingly repel water can be constructed by introducing

microscale features, such as grooves or pillars, on an otherwise flat surface [1]. While perhaps

the most notable example, the lotus leaf [2], occurs naturally, with modern micro- and

nanoscale fabrication techniques superhydrophobic surfaces can now be manufactured in

laboratory environments [3]. The superhydrophobicity of these surface is owed to the liquid

being in the Cassie state, where the spaces between grooves or pillars contain a vapor and,

usually, an inert gas (we will henceforth use “gas” to describe the contents of the grooves).

When the liquid is flowing, it experiences an apparent slip due to the presence of the liquid-

gas interface [1]. As such, textured surfaces can be employed in continuous flow microfluidic

channels to, in effect, reduce flow resistance and allow for larger volumetric flow rates for

a given pressure gradient. Necessary conditions for the liquid to remain in the Cassie state

are given in Lam et al. [4]. For cases in which the surface tension of the meniscus and

atmospheric gas pressure are insufficient to support flow in the Cassie state, other means of

doing so have been explored [5, 6].

Experimental work on such textured microchannels performed by Ou et al. [7] demon-

strated that the same flow rate through a textured microchannel can be achieved by driving

the flow with a significantly smaller pressure drop as compared to a standard smooth parallel-

plate channel. The potential of textured microchannels has also been demonstrated for liquid

metal-based cooling of electronics, as heat can be more effectively transported away from

microchips using channels with superhydrophobic patterning [4].

Given the potential microfluidic applications for textured channels, there has been a sub-

stantial effort to develop mathematical models to quantify flow resistance for a given texture,

and further, to find the optimal channel geometries and texture patterns. Many studies have

idealized the gas-liquid interface as flat and neglected gas viscosity. For a laminar, Poiseuille

flow through a parallel plate channel textured on one side with longitudinal ridges, Philip

solved for the velocity field [8] and then integrated the solution [9] to determine the mean

velocity as a function of solid fraction and hydraulic diameter-to-ridge pitch ratio. Philip

also found analytic expressions for the velocity field and mean velocity for a number of other

cases, including laminar Poiseuille flow through a circular tube textured with longitudinal

ridges. In this case, the menisci were not flat, but their curvature matched that of the ridges.
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Lauga and Stone [10] used Philip’s results to provide an expression for slip length for the

circular tube geometry where the ridges are oriented parallel to the flow.

In the case of flow between parallel plates for which there is a symmetric and periodic

texturing on both channel boundaries, Teo and Khoo [11] solved dual series equations for

the velocity field, for arbitrary values of the channel height-to-pitch ratio and solid fraction.

They found that for a height-to-pitch ratio of 1 and a solid fraction of 0.25, the slip length

for a channel with both walls textured is 31% greater than that of a channel with only

one wall textured. They also determined asymptotic expressions for the slip length for both

small and large values of the channel height-to-pitch ratio and solid fraction.

While these studies have provided much insight into the fundamental fluid mechanics of

these flows, other physically-relevant effects, such as meniscus curvature and gas viscosity,

also need to be accounted for to make a quantitative assessment of and eventually optimize

actual devices. Detailed micro PIV experiments performed by Ou and Rothstein [12] and Tsai

et al. [13] have demonstrated a strong correlation between the details of the fluid velocity

near the liquid-gas interfaces and the overall decrease in flow resistance, highlighting the

importance of meniscus curvature effects. Through a perturbation analysis, Sbragaglia and

Prosperetti [14] have indeed shown that meniscus curvature does impact the effective slip

length. In particular, they find that the relationship between meniscus curvature and slip

length sensitively depends on the channel height-to-pitch ratio. For relatively large height-to-

pitch ratios (>1), the proportionally small increase in liquid domain area gained by meniscus

deflection is overcome by the increase in shear stress at the ridge level. Hence, the flow rate

decreases with an increased meniscus deflection (into the groove). The reverse is true for small

height-to-pitch ratios. More recently, Teo and Khoo [15] used finite element methods to solve

this problem for arbitrary, but constant, meniscus curvatures in the shear-free meniscus case.

They found that the slip length doubles when the meniscus is fully deflected (90°) compared

to when it is flat, for a height-period ratio of 1 and solid fraction of 0.25.

The effect of gas viscosity was explored by Maynes et al. [16] in the case of a flat meniscus.

They demonstrated analytically and experimentally its importance under certain physically

realistic conditions. The analysis involved finding the velocity field of both the liquid and

the gas, replacing the no-shear boundary condition with the continuity of velocity and shear

stress over the liquid-gas interface. A dual-series solution was found in the gas phase, whereas

a finite volume method was used to calculate the liquid velocity. They found that for a gas-
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liquid viscosity ratio of 0.0097, the shear stress from the gas phase can have a significant

effect on the flow resistance. For example, at a solid fraction of 0.031, ridge pitch to hydraulic

diameter ratio of 1 and cavity depth to hydraulic diameter ratio of 0.1, the slip length is

reduced by nearly 50% relative to the shear-free meniscus case. This result illustrates the

importance of including the gas phase for accurate calculations of the slip length, even at

small viscosity ratios. Ng et al. [17] produced more general results using eigenfunction series

expansions, enabling the study of arbitrary gas-liquid viscosity ratios as well as the effect of

molecular slip on the solid-liquid interface.

While the aforementioned studies have shown the individual importance of the additional

effects of meniscus curvature and gas viscosity, their combined effect on flow resistance in

textured channels has yet to be explored. In this paper, we describe a mathematical model

that includes both of these effects and show how to solve it numerically using Chebyshev col-

location methods, in combination with coordinate transforms to handle meniscus curvature

and domain decomposition techniques to accurately capture changes in boundary condi-

tions at the (solid-liquid-gas) triple contact line. Within this numerical framework each of

the physical effects mentioned above can be easily incorporated and any combination of the

effects can be explored for parallel plate, as well as finite channel cross-section geometries.

We do not need to assume that the meniscus curvature is small, which is particularly relevant

when considering liquid metals such as galinstan.

Using this computational approach, we show that gas viscosity can reverse the effect of

meniscus protrusion on flow rate. In particular, for channel geometries in which the flow

rate monotonically increases with meniscus protrusion angle in the shear-free case, a gas

viscosity ratio of 0.01 can cause the flow rate to monotonically decrease with meniscus

protrusion angle. We also use our approach to test the validity of the periodic channel

model when applied to channels with a finite cross-section. For thin channels, we find that

the flow given by the periodic channel model coincides with that of the finite channel at

the center of the cross-section, as one might expect. However, when the channel height is

comparable to its width we find that the periodic model completely breaks down and does

not accurately describe the flow anywhere in the channel. Finally, through our examination

of the parameter space, we identify several design criteria to allow textured channels to

deliver optimal performance, including the usage of few, but large, gas regions, as well as

the need to carefully choose their depth as to minimize the effects of gas shear stress and
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maximize the cross-sectional area of the liquid.

The paper is organized as follows. In section II, we discuss the mathematical model,

detailing the geometry, boundary conditions and governing equations of the problem. In

section III, we develop our numerical framework. In section IV, we verify our method against

results in the literature. In section V, we provide our results and, finally, in section VI, we

give our conclusions.

II. MATHEMATICAL MODEL

A. Geometry and assumptions

Consider a steady, unidirectional, and fully-developed laminar flow of a liquid of viscosity

µl through a channel bounded above and below by parallel plates textured with gas-filled

grooves so that the liquid is in the Cassie state. One period of such a channel is depicted in

Fig. 1(a). The total height of the channel including the grooves is h and we let δ denote the

depth of the grooves and l denote the groove period. The grooves are longitudinal and taken

to be aligned with the flow direction z. We consider the cases in which the channel cross-

section is infinite and periodic in the transverse direction, and that in which the cross-section

has a finite number of evenly spaced grooves (see Fig. 3).

The flow in the liquid is driven by an imposed pressure gradient ∇pl = −Gez, where G is

constant. Due to flow unidirectionality, this is also the liquid pressure gradient at each cross-

section. Thus, the pressure for each cross section is constant, and as a result, the meniscus

comprising the liquid-gas interface is a circular arc with constant curvature K. We assume

that the curvature changes due to pressure variations in the z-direction are sufficiently slow

that meniscus curvature can be taken to be constant in the z-direction, and hence preserve

the unidirectionality of the flow.

Between the ridges, we assume that there is flow of a gas with viscosity µg that is also

steady, unidirectional, and fully developed. It is, however, not driven by an imposed pressure

gradient, but by its mechanical coupling with the liquid through boundary conditions im-

posed at the liquid-gas interface. As in Maynes et al. [16], we assume that the gas domains

are not exposed to the atmosphere, and therefore impose the constraint that there is no net

gas flow. This is enforced by a constant pressure gradient in the gas which must be found

5



h

θ
δ

l

a/2

gas

gas

(a)

H

θ
∆

x
y

1

φ/2

gas

gas

(b)

FIG. 1: A single period of the channel cross-section given in terms of (a) dimensional and

(b) non-dimensional parameters.

as part of our solution.

B. Non-dimensionalization

The equations are non-dimensionalized using the groove period l to scale lengths, G to

scale the pressure gradients in the gas and the liquid, and Gl2/µl to scale the velocities of the

liquid and gas phases. Using these, the following set of nondimensional parameters emerge:

∆ = δ/l, (1)

H = h/l, (2)

φ = a/l, (3)

θ = arcsin[Kl/2(1− φ)], (4)

β = µg/µl. (5)

In the above expressions, ∆ is the normalized gas depth, H is the normalized channel height,

φ is the solid fraction of the textured boundaries, θ is the meniscus contact angle and β is the

viscosity ratio. In Fig. 1(b) we illustrate one period of the channel cross-section, showing the
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relevant non-dimensional parameters. In addition we have the dimensionless channel width

W , which is an integer equal to the number of grooves on each bounding surface.

C. Governing equations

The velocities in the gas and liquid domains are denoted by u(g) and u(l) respectively,

and satisfy the Navier Stokes equations:

ρi

(
∂u(i)

∂t
+ u(i) · ∇u(i)

)
= −∇pi + µi∇2u(i), (6)

∇ · u(i) = 0, (7)

where i is either of g and l. Along with the viscosities described above, we have pg and pl

and ρg and ρl describing the pressures and densities of the liquid and gas respectively.

Imposing the unidirectionality of the liquid and gas flows, u(i) = (0, 0, w(i)(x, y)), non-

dimensionalizing using the scalings introduced in the previous section, and maintaining the

same notation for brevity, the governing equations become

w(l)
xx + w(l)

yy = −1 (8)

in the liquid and

β(w(g)
xx + w(g)

yy ) = γ (9)

in the gas. Note that here and henceforth all quantities are dimensionless. The constant γ

is the (unknown) pressure gradient that enforces the constraint

¨
A

w(g)dxdy = 0, (10)

where A is the cross section of any of the gas domains. This imposes that the net flow of

gas is equal to zero as the ends of the grooves are assumed to be closed. The gas pressure

gradient is always in the opposite direction to the liquid pressure gradient to counteract the

gas velocity induced by the liquid along the meniscus.

To determine the liquid and gas velocity fields, we solve these equations subject to bound-

ary conditions that impose no-slip at the solid-liquid and solid-gas interfaces, enforce velocity
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FIG. 2: The boundary conditions for the first period of a finite cross section with W = 2.

Symmetry conditions are imposed along the dashed lines. The dotted line indicates the

liquid-gas interface.

and shear stress continuity at the liquid-gas interface, and preserve the required symmetries.

Specifically, at the physical boundaries of the domain, we have

w(g) = 0 (solid-gas) (11)

w(l) = 0 (solid-liquid) (12)

w(l) = w(g), w(l)
n = βw(g)

n (liquid-gas) (13)

on the three types of interfaces present in the domain (see Fig. 2). The unit vector n is

the normal to the boundary of the liquid-gas interface and points out of the liquid domain

towards the gas. Its appearance as a subscript denotes the directional derivative with respect

to the normal direction.

Within the interior of the channel, we can identify one vertical and one horizontal line

about which the flow should be symmetric. Therefore, for computational efficiency, we con-

sider one quarter of the domain and impose appropriate boundary conditions along the

symmetry lines. For the horizontal line, we impose the condition w
(l)
y = 0 while for the

vertical line we take w
(l)
x = 0. An example of the symmetry lines is depicted by the dashed

lines in Fig. 2 which shows a quarter of the domain with geometry having two grooves at
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the bottom surface and two at the top; the position of the vertical symmetry line is adjusted

accordingly depending on the even number of grooves on either surface.

After solving for the liquid and gas flows and gas pressure gradient, we can compute the

liquid volumetric flow rate from the formula,

Q =

¨
S

w(l)dxdy, (14)

where S is taken to be either a single period of the liquid domain or, if the channel has a

finite cross-section, its entirety. The liquid volumetric flow rate will depend on all the non-

dimensional parameters given previously, hence Q ≡ Q(∆, H, φ, θ, β) for periodic channels

and Q ≡ Q(∆, H, φ, θ, β,W ) for finite cross-section channels. The primary goal of this study

is to quantify and understand these dependencies.

III. NUMERICAL FRAMEWORK

In this section, we describe the methods that we used to generate numerical solutions to

the mathematical model described above. Our method consists of first decomposing the

computational domain (the lower-left quarter of the channel cross section) into smaller

subdomains using the natural boundaries provided by the (solid-liquid-gas) triple contact

points. This allows us to numerically accommodate the sudden change in boundary condition

at these points. After decomposing the domain, each subdomain is mapped to a canonical

rectangular domain over which the governing equations are discretized using a Chebyshev

collocation (spectral) method. After imposing continuity conditions to link together solutions

from neighbouring domains, the result is a large, but sparse, linear system whose solution

comprises the liquid and gas velocity fields and gas pressure gradients. We first describe our

method for the more complicated case where the channel has finite cross-section, and then

mention how to modify it to recover the periodic case.

A. Domain decomposition

Examining the boundary conditions described above, we see that at the triple contact

points, there is an abrupt change in the boundary conditions, as well as a sudden change in

curvature of the liquid domain boundary. Using these points to define boundaries as shown

9



FIG. 3: A diagram showing how the domain is decomposed for the case where W = 4.

in Fig. 3, we can identify liquid subdomains in which the boundary condition imposed on

the lower liquid boundary is continuous. For a channel with W grooves on each side, this will

lead to W + 1 liquid subdomains and W/2 gas subdomains in the computational domain.

Hence, there are a total of 3W/2 + 1 subdomains that we index by m. Each subdomain will

be one of five distinct subdomain types:

(A) The left-most liquid subdomain (m = 1) is unique in its boundary condition require-

ments and hence has a type to itself. In particular it requires a no-slip boundary

condition on the left-hand side. See subdomain 1 in Fig. 3.

(B) This consists of liquid subdomains directly above gas subdomains (m is even and

m ≤ W + 1). These have gas-liquid interface boundary conditions on the lower side.

See subdomains 2, 4 in Fig. 3.

(C) This consists of any liquid subdomain above a solid/liquid interface which is not at

either end of our computational domain (m is odd and 1 < m < W + 1). These

have no-slip conditions on the lower side. Note that in the case W = 2 there are no
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subdomain of this type. See subdomain 3 in Fig. 3.

(D) The right most liquid subdomain (m = W + 1) is unique in its boundary condition

requirements and hence also has a type to itself. These have symmetry conditions on

the right-hand side. See subdomain 5 in Fig. 3.

(E) The gas subdomains (m > W + 1) are the last type. These have gas-liquid interface

boundary conditions on the upper side, and gas-solid interface conditions elsewhere.

See subdomains 6, 7 in Fig. 3.

B. Coordinate transformations

After identifying the subdomains and classifying them based on their type, we map each

one to the canonical [−1, 1]× [−1, 1] domain suitable for Chebyshev collocation. This trans-

formation, coupled with domain decomposition, provides an effective way to accommodate

meniscus curvature. Taking the origin in the physical (x, y) domain to be the point half way

up the left-most channel wall (see Fig. 3), the transformed variables ξm and ηm for the liquid

subdomains m ≤ W + 1, are given by

ξm =
2
(
x−

∑m−1
k=1 Wk

)
Wm

− 1, ηm =
2y

h(x)
+ 1, (15)

where Wk is the normalized horizontal width of the kth subdomain and h(x) is the dis-

tance from the symmetry line of the channel to the lower boundary of the liquid domain.

Henceforth, for clarity, within the context of one particular subdomain, we will write ξ and

η to denote ξm and ηm respectively. Using the mapping (15), the derivatives of a function

F (x, y) = f(ξ, η) with respect to x and y are given by

Fx 7→ fξξx + fηηx =
2

Wm

fξ −
2(η − 1)

Wmh1(ξ)
h′1(ξ)fη, Fy 7→ fξξy + fηηy =

2

h1(ξ)
fη, (16)

where h1(ξ) = h(x). Hence, for subdomain types (A), (C) and (D), above a solid-liquid

interface, h1(ξ) = H/2 − ∆. For subdomains of type (B), above a liquid-gas interface, we

have

h1(ξ) =

[(
1− φ
2 sin θ

)2

−
(
Wmξ

2

)2
] 1

2

−

[(
1− φ
2 sin θ

)2

−
(
Wm

2

)2
] 1

2

+H/2−∆. (17)
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and consequently,

h′1(ξ) =
−W 2

mξ sin θ

2 [(1− φ)2 − (Wmξ sin θ)2]
1
2

. (18)

For the gas domains (subdomains of type (E)), the mapping from (x, y) to (ξ, η) is given

by

ξ =
2(x−

∑2m−2W−3
k=1 Wk)

Wm

− 1, η =
4y + 2H

H − 2h(x)
− 1. (19)

Note that the x substitution is the same as for domain 2m− 2W − 2, which corresponds to

the liquid domain directly above this gas domain. From this transformation, the derivatives

of some function F (x, y) = f(ξ, η) are given by

Fx =
2

Wm

fξ +
2(η + 1)

Wm[H/2− h1(ξ)]
h′1(ξ)fη, Fy =

2

H/2− h1(ξ)
fη. (20)

C. Transformed equations and boundary conditions

Using the coordinate transforms described above, we rewrite the governing equations

(8), (9) and (10), in terms of the coordinates ξ and η for each subdomain. For conciseness,

all derivatives will be written in terms of x and y with the understanding that we can

computationally transform these to (ξ, η) space via the derivative maps above to carry out

the calculation. In practical terms, this means that each time an x or y derivative appears

in the following, we would apply the discretized form of (16) (or (20) for a gas subdomain)

as per Section III D. The following presentation corresponds to a channel with finite cross

section.

In liquid subdomains (of type (A), (B), (C), (D)), we need to solve,

∂2wm
∂x2

(ξm, ηm) +
∂2wm
∂y2

(ξm, ηm) = −1, (21)

while for the gas subdomains (type (E)), we have

β

(
∂2wm
∂x2

(ξm, ηm) +
∂2wm
∂y2

(ξm, ηm)

)
= γm (22)

for the gas flow and ˆ 1

−1

ˆ 1

−1
wm(ξm, ηm)

dx

dξm

dy

dηm
dξm dηm = 0 (23)

12



for the flux constraint.

We solve these equation subject to boundary conditions (11), (12) and (13) in the trans-

formed coordinate system, as well as additional conditions that enforce continuity of the

velocity field and its first derivative between the liquid subdomains. Such conditions are

necessary for convergence of the solution to a second-order PDE [18, 19]. Since only one

condition can be applied on each side of a subdomain boundary, in the liquid subdomains,

we enforce velocity continuity at ξ = −1 and continuity of its first derivative at ξ = 1. At

the liquid-gas interface, we apply velocity continuity at η = −1 in the liquid and the shear

stress conditions at η = 1 in the gas. Specific details of the boundary conditions for different

domains are provided in Appendix A.

What has been described so far pertains to a channel with finite cross-section. For periodic

grooves and infinite channels we can use the results given by setting W = 2 and changing

the conditions (34) and (47) to

w1(−1, η1) = w3(1, η1) (24)

∂w3

∂x
(1, η3) =

∂w1

∂x
(−1, η3), (25)

respectively, in order to enforce periodicity in the liquid velocity and its first derivative.

D. Discretization

To generate a numerical solution, we apply a Chebyshev collocation method to discretize

the transformed equations and boundary conditions. We briefly describe the essential fea-

tures of our approach here and refer the reader to standard texts [18–20] for more details.

In each subdomain, we solve for (N + 1)× (N + 1) values of the velocity field on the grid

of Chebyshev points,

(ξi, ηj) := (cos (iπ/N) , cos (jπ/N)) (26)

for i, j = 0, 1, . . . N , by imposing that the transformed equation is satisfied at the interior

points (i, j = 1, . . . N − 1), and the boundary conditions are satisfied when either i or j is

equal to 0 or N . As a result, the partial derivatives with respect to ξ and η appearing in the

governing equations and boundary conditions are approximated by Chebyshev differentiation
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matrices D
(ξ)
N and D

(η)
N (see references [18, 19]) respectively, that operate on a (N+1)2 vector

containing the unknown values of the velocity, wij, at the Chebyshev points. Along with these

unknowns, we must also solve for the pressure gradient γ in the gas domains by enforcing a

discrete version of the no-flux constraint Eq. (23),

N∑
i=0

N∑
j=0

[
(1− φ)(H/2− h1(ξi))

4

]
w

(g)
ij aiaj = 0, (27)

where ai is the weight at node i of the Clenshaw-Curtis quadrature scheme (see Dahlquist et

al. [21]). Note that the expression inside the square brackets is the Jacobian of the coordinate

transform performed in the gas domain, and its inclusion allows us to compute the integral

in ξ, η space.

Given the linearity of the equations, boundary conditions, and integral constraints, the

discretized equations yield a linear system of equations for the values of the velocity and gas

pressure gradients at all of the Chebyshev points in all of the subdomains. This system may

be expressed as


A B 0

C D E

0 F 0



w(l)

w(g)

γ

 =


G

0

0

 (28)

where w(l) is the vector containing the values of the velocity at the Chebyschev points in

all of the liquid subdomains, w(g) is the vector containing the values of the velocity at

the Chebyschev points in all of the gas subdomains, and γ is the vector of gas pressure

gradients. Thus, the matrix A arises due to the discretization of the equations in the liquid

domains, as well as the boundary conditions imposed in these domains that couple the flows

in neighbouring liquid subdomains; matrix B provides the coupling between the liquid and

gas flows through the continuity boundary condition imposed in the liquid domains. In the

second row, C is the coupling between the gas and liquid flows through the continuity of

shear stress, D arises from discretizing the governing equations in the gas domains, and E

links the gas pressure gradient to the governing equations. Finally, the matrix F arises by

applying the quadrature scheme to the no-flux integral constraints in the gas domains and

the vector G is equal to −1 if the row corresponds to the discretized equations for the flow,

or 0 if the row is a boundary condition.
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In our implementation, we build these matrices and vectors in MATLAB and solve the

system directly using the backslash command. Since the coupling of the solution between

subdomains only occurs through the boundary conditions, the matrices appearing in Eq.

(28) are sparse. For finite channels with many periods, we only need to store the non-zero

entries, leading to a substantial savings of memory.

E. Comments on the stress singularities

At the triple contact points, there are singularities in the gas and liquid velocity fields

leading to infinite first derivatives. Solving the linear system given in (28) seems to give a

convergent approximation to these velocity fields, and leads to far less oscillatory behaviour

than a one-domain solution [19] (for the same number of nodes). However, some oscillations

remain, and while the behaviour of the singularities is captured to a far greater extent than

in one-domain solutions, not treating the singularities leads to slower convergence (as the

number of nodes increases) and lower accuracy.

A more efficient approach is to treat the singularities in a semi-analytical way as we

describe next. For the results given in section IV below, the singularities have been removed

(and then reincorporated into the final solution), using a method similar to, but not identical

to that described by Peyret [19]. In practice, this means that we solve numerically for w̃(l)

and w̃(g), instead of w(l) and w(g), where

w̃(l) = w(l) −
W∑
k=1

αkfk, (29)

w̃(g) = w(g) −
W∑
k=1

αkgk, (30)

and αk are singularity strengths to be found as part of the solution. The vectors fk for the

liquid and gk for the gas contain the values of the singular parts of the respective velocity

fields as detailed in Appendix B. Since the singularities in one gas domain do not directly

contribute to the singularities in other gas domains, gk is given the value 0 corresponding

to positions in gas domains unaffected by the kth singularity. Hence, we add a new row and

column to our matrix equation (28) for each unknown strength. The extra column acts to

subtract the singular function from the problem, which in practice involves imposing the
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boundary conditions (the singular functions satisfy the homogeneous Laplace equation) on

the function, and subtracting the result from the appropriate part of the linear system. The

extra row acts to impose an additional condition that the normal derivative at the point

corresponding to the kth singularity (from the perspective of the subdomain above the

gas-liquid interface) is zero. In practice, any condition that imposes a finite first derivative

(not directed along the ridge) should suffice and alter the derived singularity strengths by

a very small amount. This small alteration is acceptable as the final solution calculated is

not particularly sensitive on the strengths of the singularity used [19]. We then solve the

resultant linear system. In Appendix B we give the specific forms of the singular functions.

The method of finding the singularity strength by imposing that the normal derivative

be equal to zero was found to perform well compared to two other methods attempted. The

alternative methods were: (i) an iterative approach to minimize the value of the perturbation

function in a small disk around the singularity - as in Peyret [19]; and (ii) an equivalent

technique using an overdetermined matrix system and solved using MATLAB’s backslash

command to minimize the perturbation function in the disk as before. The derivative method

we ultimately used was tested on the example case of singularity removal in Peyret [19],

and the singularity strengths we derived were in very good agreement with those provided.

The choice of the normal derivative was convenient since normal derivative conditions were

already being used elsewhere on the meniscus, but otherwise arbitrary.

IV. VERIFICATION

We begin by assessing the accuracy of our method in capturing effects such as gas viscos-

ity and meniscus curvature, by comparing with known results in the literature. When gas

viscosity is included, but meniscus curvature is neglected, we compare against results from

Maynes et al. [16] and Ng et al. [17]. In both of those studies, the channel is taken to be

periodic and have dimensionless height H = 2.8, but the solid fraction and viscosity ratio

are larger for Ng et al. [17] with φ = 0.25 and β = 0.01, as compared to φ = 0.125 and

β = 0.0097 in Maynes et al. [16]. In Fig. 4(a) we show comparisons of the fluid velocity along

the flat meniscus (y = 0) obtained by our computations and the studies mentioned above;

the solid and dashed curves show our computations and superimpose the results of Maynes

et al. [16] using open circles and those of Ng et al. [17] using triangles. For both cases, we see
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very good agreement between our computations and those previously obtained. Note also

that these results demonstrate that the velocity at the gas-liquid interface increases as the

solid fraction decreases.

For the opposite scenario where meniscus curvature is present and gas viscosity is ignored,

we compare our solutions with the asymptotic results of Sbragaglia and Prosperetti [14] and

the numerical solutions obtained by Teo and Khoo [15] for the flow between a channel with

one wall textured and the other a no-slip surface. Both studies give their results in terms

of effective slip lengths, which are readily converted to flow rates (conversions are given

in Equation 8 in either paper). Figure 4(b) shows the volumetric flow rate, Q, from those

studies as a function of the protrusion angle θ, as well as the values from our computations.

This shows very good agreement with the one-term asymptotic result of Sbragaglia and

Prosperetti at small values of θ (less than approximately 0.5 radians, i.e., approximately

28 degrees) and for larger values of θ with Teo and Khoo’s results and well within their

maximum uncertainty of 0.5%. The computations also indicate that the flow rate increases

with θ. This can be attributed to the fact that at small channel height-to-pitch ratios, typical

in the results presented, the effect of an increased cross-sectional area outweighs the increase

in shear stress at the ridge level.

We are also interested in the performance of our numerical framework. As shown in Fig.

5(a), with a 20th (or larger) order Chebyshev approximation, we can calculate Q to within

0.01%. Hence for the preceding calculations, this was deemed sufficient. However, for cases

in which the problem is close to singular (for example where the meniscus approaches the

opposite gas-solid interface), a higher order approximation was used for to accurately capture

the solution. This was typically N = 30 or N = 40 as required.

This method is highly efficient. In Fig. 5(b) we give the time taken for a standard desktop

computer to calculate the velocity field as we increase the width of the channel (and hence

the number of subdomains) for N = 20.
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FIG. 4: (a) The velocity at the liquid-gas interface against x for a periodic channel with

H = 2.8, θ = 0, and ∆ = 0.4. The solid curve shows our results and the circles show those

from Maynes et al. [16] for φ = 0.125 and β = 0.0097. Similarly, the dashed curve shows

our results and the triangles are those from Ng et al. [17] for φ = 0.25 and β = 0.01. (b)

The volumetric flow rate as a function of θ for a periodic channel with H = 1.5, β = 0,

∆ = 0.5, φ = 0.5. The solid curve corresponds to our results while the triangles give the

values obtained by Teo and Khoo [15] and the dashed straight line was computed using the

asymptotic formula from Sbragaglia and Prosperetti [14].

V. NUMERICAL RESULTS

A. Velocity field

We begin by performing computations to explore how the introduction of gas-filled

grooves affects the flow in the channel. Figure 6 shows the velocity field in two periodic

channels - contours of constant velocity are depicted in the figures. While both channels

have a no-slip condition imposed on the upper boundary, the channel in panel 6(b) on the

right has gas-filled grooves on the bottom boundary and that in panel 6(a) has another

no-slip wall. The gas-liquid viscosity ratio is β = 0.01 and the meniscus is taken to be flat

in this case. We see that the presence of the groove alters the parabolic flow found in the

no-slip channel, compressing the lower value contours towards the triple contact points and

increasing the liquid velocity near the centre of the cross section. For this case, the maximum
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FIG. 5: (a) The percentage difference between Q calculated with a 60th and Nth order

Chebyshev approximation, given against N and computed in the periodic case (b) The

time taken to compute the finite channel case for N = 20 given against W . Other

parameter values in both cases are φ = 0.5, H = 2, θ = 1, ∆ = 0.2.

liquid velocity is increased by more than 30% due to the presence of the groove. The figure

also illustrates the flow reversal in the gas region due to the induced pressure gradient that

enforces a zero gas flux condition in the cross-section of the groove.

In periodic channels of infinite extent in the x−direction, the high velocity regions appear-

ing above each liquid-gas interface will be identical by definition. In finite channels, however,

the presence of side walls will affect the high velocity regions above grooves that are near

these boundaries. Figure 7 shows the dimensionless velocity at the liquid-gas interface for

a channel with four grooves (W = 4) along the upper and lower walls. Recall that, in the

finite channel, the x coordinate is defined such that x = 0 corresponds to the left-most end

wall; also, recall that lengths are non-dimensionalized with the groove period. Hence, the

velocities for 0 < x < 1 in Fig. 7 are those above the first groove, and 1 < x < 2 the second

groove. By symmetry, the interfacial velocity profiles above the third and fourth grooves are

reflections of those shown for the second and first grooves respectively, about x = 2.

Figure 7(a) shows the computed velocity for different values of the contact angle θ and a

passive gas region β = 0, while Fig. 7(b) shows the interfacial velocity for flat menisci and a

range of viscosity ratios β = 0, 0.01, 0.02. Increasing β increases the interfacial shear stress
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FIG. 6: Velocity contours in (left) a no-slip channel and (right) a textured channel with

H = 1.4, φ = 0.4, ∆ = 0.4, β = 0.01 and θ = 0. The grey regions indicate the ridges and

the dotted line shows the gas-liquid interface.

and hence decreases the fluid velocity at the interface as seen in Fig. 7(b); the maximum

velocity decreases by more than 10% when β is changed from 0 to 0.02. It is also seen from

Fig. 7(a) that increasing θ also decreases the interfacial velocity at the centre of the groove,

while increasing the interfacial velocity at either end. This increase in velocity towards the

ends of the grooves can be explained mathematically by the increased strength in the contact

line singularity at larger θ (see Appendix B). This phenomenon is explored in more depth

by Kirk et al. [22] and Sbragaglia and Prosperetti [14]. These differences, however, are small

compared to those due to the proximity of the groove to the end walls of the channel,

as illustrated by both Fig. 7(a) and Fig. 7(b). We find that the velocity at the liquid-gas

interface above the groove next to the end wall is approximately 40% less than that of its

neighbour. Additionally, for each groove, the velocity profiles, which are symmetrical in the

periodic case, now have a visible skew towards the centre of the channel. The asymmetry is

more severe in the velocity profile for the interface closest to the end wall.

While there are dramatic changes in the fluid velocity profile near the end walls, it is
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FIG. 7: Velocity profiles along the lower liquid boundary (w|∂S) for a channel with

H = 2.4, ∆ = 0.2, W = 4, φ = 0.25 and (a) β = 0 and the two indicated values of θ as well

as (b) θ = 0 and the three indicated values of β.

important to quantify how far these effects extend toward the centre of the channel, especially

when the upper and lower walls possess many grooves. To fix matters and illustrate the

effects, we pick a relatively wide channel of dimensionless width W = 20 that contains 20

symmetrically placed grooves on the upper and lower walls. The channel also has vertical

sidewalls at x = 0 and x = 20. We proceed with a comparison of the flow in this channel

with what would be obtained if the channel was of infinite horizontal extent with periodic

grooves. We expect the periodic flow to coincide with the finite channel flow in the middle

of a sufficiently wide channel. However, it is important for practical applications to quantify

such differences since parameters, such as the channel height, can vary. We carry out a

pointwise comparison by calculating the mean velocity in the liquid region averaged over y,

i.e. we define wm(x) =
´ 0
yl
w(x, y)dy/|yl(x)| where yl(x) is the position of the lower boundary

(note that yl(x) < 0) of the liquid region comprised of the union of the solid ridge surfaces

and the liquid-gas interfaces. The mean velocity wm(x) is computed for the periodic as well

as finite channel cases, and the results are compared in the form of a percentage decrease in

the finite channel from the periodic groove case. Note that wm(0) = 0 for the finite channel

case since the origin is fixed at the left-most end wall - see Fig. 3. The percentage decrease

from the periodic groove case is thus defined to be 100% there. The results are presented in
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Fig. 8 - for a meniscus contact angle θ = π/10, solid fraction φ = 0.5, groove height ∆ = 0.1

and viscosity ratio β = 0.01 - for dimensionless channel heights H ranging from 1 to 16.

As expected, the percentage decrease reduces as we move towards the channel center, for

all values of H. Observe that for small values of H/W the finite and periodic channel values

become nearly identical a small distance away from the end wall. For example when H = 1

(H/W = 1/20) the percentage decrease is insignificant for x > 2, approximately, i.e., by

the point when we are two grooves away from the end wall; for H = 2 (H/W = 1/10) we

need to be at x > 4, approximately. For small values of H/W , therefore, the periodic model

can provide an accurate characterization of the flow for a majority of the channel. As H/W

increases, one must move further towards the centre of the channel to find regions where the

finite and periodic channel velocities agree. For example, for H = 4 (H/W = 1/5) we need

to be at x > 6, approximately, for the periodic channel to be in close agreement. Hence,

for this height we have good agreement for less than half of the grooves. Once H becomes

comparable to W , the finite and periodic calculations can give significantly different values

across the entire channel. For instance, when H = 8 or 16 (i.e., H/W = 2/5 and 4/5) we

find that there is a difference of approximately 5% and 30%, respectively, in the middle of

the channel.

Interestingly, repeating the results displayed in Fig. 8 but with a no-slip channel (of

height 1, 2, 4, etc.) produces an almost identical figure. There are very minor differences in

the H = 1 curve, but all of the other curves appear to be indistinguishable. Therefore, for

these parameter values, we can obtain the range of validity of the periodicity assumption by

studying instead the easier problem of a no-slip rectangular cross-section. This indicates that,

for sufficiently large heights, edge effects and the effects of patterning are mostly decoupled.

In theory, this may allow for the approximation of the mean velocity, and therefore the flow

rate, in the finite channel, from the periodic channel using only knowledge from a no-slip

rectangle. However, we expect it to be much harder to infer the flow field in the finite channel

in this manner. We also expect the strength of this correspondence to reduce as the solid

fraction reduces.
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FIG. 8: The percentage decrease in mean velocity in a finite channel as compared to the

periodic case, given against the spatial variable x. Parameter values are θ = π/10, W = 20,

φ = 0.5, ∆ = 0.1, β = 0.01 and the five indicated values of H.

B. Normalized volumetric flow rate

In the previous section, we quantified how the introduction of gas-filled ridges can in

general increase the velocity of the liquid. We are interested in evaluating how these changes

in the velocity impact the overall flow rate for a given pressure gradient along the channel

as we vary the solid fraction, meniscus curvature, and gas viscosity. To assess this, we focus

on variations in the normalized volumetric flow rate

Q̄ =
Q

Qno-slip

, (31)

as the properties of the channel are changed. In expression (31), Q is the flow rate in

the liquid, while Qno-slip is the flow rate through a no-slip channel of height H (see Fig.

1(b)). The latter is chosen for comparison, since in practical device applications there exist

space constraints whether the channel is structured with gas-filled grooves or not; if the

channel is not structured then the no-slip geometry for comparison purposes should be a

channel of height H. For the periodic case it follows readily that Qno-slip = H3/12, while

for finite channels the volumetric flow rate was computed numerically. Thus the quantity Q̄

incorporates the cost of introducing solid regions to the no-slip channel to create the gas-
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filled grooves to generate slip, but which reduce the liquid cross-sectional area. We require,

then, that any velocity enhancement due to channel texturing must overcome the loss of

liquid area to create the ridges. We find that by focusing on this quantity rather than the

apparent slip length that is more commonly found in the literature, we can meaningfully

quantify the effectiveness of gas lubrication in practical situations.

Note that, in the periodic case, it is straightforward to covert results for Q̄ back into

results for Q by multiplying by H3/12. Results in terms of the apparent slip length can

then be inferred, as well as different normalizations for the flow rate. For instance, it may

be of interest to normalize by the flow rate through a no-slip channel of height H − 2∆, or

a no-slip channel with a matching liquid cross-sectional area.

In what follows we examine the dependence of Q̄ when one parameter is changed while

keeping the others fixed. We first investigate variations in Q̄ with solid fraction for finite

cross-section channels having height to width ratio H/W = 0.2, and for flat menisci θ = 0.

The results are shown in Fig. 9 for different values of W - recall that an increase in W

corresponds to an increase in the number of ridges on the upper and lower channel walls.

We observe that regardless of the value of W , the ratio Q̄ decreases as the solid fraction is

increased, and converges to the same value of the normalized flow rate Q̄ = 0.528 as φ→ 1.

The value of Q̄ = 0.528 corresponds to the ratio of flow rates for two no-slip channels, one

with height H − 2∆ and the other with height H.

The decrease in Q̄ with increased solid fraction shown in Fig. 9 is expected; the results

also indicate how to distribute the no-slip portion of the boundary in order to maximize

Q̄ for a given geometry. It can be seen from the results that for a fixed value of φ, higher

flow rates are achieved when fewer large groves are used rather than many smaller ones. For

example, when W = 2 we obtain Q̄ = 1 at φ ≈ 0.65, in which case most of the channel

is a no-slip boundary. When W = 8, this does not occur until the solid fraction is as low

as φ ≈ 0.3. For the lowest solid fractions shown, φ = 0.1, we achieve values of Q̄ > 4 with

W = 2 which is more than 2.5 times greater than the value found with W = 8.

In the remainder of the computations presented we concentrate on periodic channels

with fixed height. This can be justified by assuming a sufficiently large width-height aspect

ratio (a realistic assumption for the values of H considered) and referring to Fig. 8 that

provides the computed differences in volumetric flux between finite and periodic geometries.

By removing end-wall effects other physical effects can be elucidated in more detail. The
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FIG. 9: The normalized flow rate as a function of φ for H = W/5, θ = 0, ∆ = W/50,

β = 0.01 and the three indicated values of W . Note that Q̄ approaching a constant smaller

than 1 as φ approaches 1 follows from our choice of normalization.

effect of ridge depth ∆ and protrusion angle θ on the volumetric flow rate is investigated

next. Figure 10(a) depicts the variation in Q̄ as a function of the distance between the

meniscus apex and the opposite gas-solid interface, defined by

∆m = ∆−
(

1− φ
2 sin θ

)
(1− cos θ). (32)

The parameter ∆m depends on both ∆ and θ, the latter of which is kept constant on each

curve. Using ∆m instead of ∆ in Fig. 10(a) ensures that the domain of all three curves is

the same. Since H is held constant, increasing ∆ (and hence ∆m) results in a decrease in

the size of the liquid domain. We see that for each value of θ, Q̄ varies non-monotonically

with ∆m with maximum values occurring in the range ∆m ≈ 0.01 − 0.02. For very small

values of ∆m, there is only a thin layer of gas between the liquid-gas interface and solid-gas

surface at the bottom of the grooves. This leads to high values of gas-shear, which in turn

slow down the flow in the liquid. As ∆m is increased, the gas shear decreases, but this takes

place at the expense of devoting more of the channel cross-section to create deeper ridges,

which in turn tends to reduce Q̄. The balance of these two effects produces the maxima in

Q̄ seen in Fig. 10(a). In contrast to the smaller meniscus protrusion angles, for the case of
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FIG. 10: Effect of parameters on the normalized volumetric flow rate Q̄: (a) variation of Q̄

with ∆m for H = 0.4, φ = 0.4, β = 0.01 and the three indicated values of θ; (b) variation

of Q̄ with θ for φ = 0.2, ∆ = 0.11, H = 2 and the three indicated values of β. Note that

since the total channel height H is kept constant, varying ∆m varies the liquid domain

area, thus affecting the flow rate.

θ = π/5 a minimum is found near ∆m = 0.09. Once again, it results from the balance of gas

shear effects and the usage of area to create the ridges that yields this minimum. As H−2∆

is very close to zero near this value of ∆m, the solid-liquid boundaries on opposite sides

of the channel nearly touch. As a result, most of the flowing liquid is above the liquid-gas

boundaries, making gas shear important. Reducing the gas shear by increasing the gas depth

leads to sufficiently higher flow rates to counteract the loss for liquid area.

The effect of meniscus protrusion angle θ on Q̄ in a periodic channel, keeping all other

parameters fixed, is shown in Fig. 10(b). While increasing θ will also inevitably decrease

∆m, this takes place while keeping ∆ fixed, in contrast to Fig. 10(a). Sbragaglia and Pros-

peretti [14] and Teo and Khoo [15] show that for sufficiently large height-period aspect ratios,

meniscus protrusion can result in a decrease in flow rate, despite the liquid domain actu-

ally increasing in size. Their results also indicate that for the particular channel geometry

considered in Fig. 10(b), we expect an increase in flow rate in the absence of gas viscosity,

as verified by the β = 0 curve. However, we find that for β = 0.01 or 0.02, increasing the

meniscus protrusion angle leads to a decrease in the volumetric flow rate. The reduction
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in flow can hence be linked to gas shear, and highlights the importance of including gas

viscosity in the model. For this case, we see that for most of the values of θ the decay is

linear, however at around θ = 0.45 the value of Q̄ sharply decreases as the meniscus ap-

proaches the opposite gas-liquid interface. The effect of including gas viscosity is two-fold.

First, increasing θ increases the length of the gas-liquid interface over which the shear stress

in the gas acts to slow down the liquid. Second, as θ increases, ∆m decreases, leading to

higher values of interfacial shear-stress. The combination of these two effects can counteract

that of an increased liquid domain that would ordinarily lead to an increase in flow rate.

Due to the large number of parameters present - see (1)-(5) - the computations presented

above were used to quantify the effect on the flow in the structured channel as one parameter

was varied and the others kept fixed. In what follows we extend the results by compiling

two sets of contour plots of Q̄ as a function of two parameters in each case. The first set

considers variations of Q̄ as the channel height H and the solid fraction φ are varied for fixed

∆ = 0.1 and θ = 0, and viscosity ratios β = 0 and β = 0.01, respectively (Figs 11(a) and

11(b)). The second set of results fixes the channel height to H = 2 and the solid fraction to

φ = 0.2 and compiles the variation of Q̄ with the meniscus protrusion angle θ and the ridge

height ∆, again for viscosity ratios β = 0, 0.01 (Figs 12(a) and 12(b)). These parameters

are of importance in practical applications and such results provide a quantitative basis for

understanding the impact of gas-filled ridges on flow rates and the optimization of their

effects.

Figures 11(a) and 11(b) show the contours of Q̄ for periodic channels with heights in the

range 0.3 ≤ H ≤ 8 and solid fractions 0.1 ≤ φ ≤ 0.9. Results are shown for an inviscid

gas cavity β = 0 and a typical gas-liquid viscosity ratio β = 0.01, respectively. We find,

with the exception of very thin channels, that a channel characterized with solid fractions

φ < 0.5, yields volumetric flow rates Q̄ greater than unity - i.e. the structured channel is

more efficient in transporting liquid than the equivalent (larger cross-section) unstructured

channel. The computations indicate that the largest enhancement occurs in the lower-left

hand corners of Figs 11(a) and 11(b), where the solid fraction is very low and the channel is

thin. However, the flow rate decreases to zero as H → 0.2, which corresponds to a vanishing

liquid region in this case. The results also show that the monotonic decrease in Q̄ with φ

documented in Fig. 9 appears to also hold for periodic channels and for all values of H. At

higher values of φ, where the flow rate is smaller than that in the equivalent no-slip channel
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FIG. 11: Normalized flow rate contours, in the periodic case, as a function of H and φ with

θ = 0, ∆ = 0.1 and (a) β = 0, (b) β = 0.01.

of height H, the results indicate that an increase in H leads to a monotonic increase in

Q̄. For lower values of φ < 5, however, where we have flow enhancement characterized by

Q̄ > 1, we find that for fixed φ there can be a non-monotonic dependence of the flow rate

on H for small values of H. For β = 0.01 for example shown in Fig. 11(b), the contours

have local maxima at around H ≈ 0.5, whereas for β = 0 shown in Fig. 11(a) this occurs at

H ≈ 0.3 which corresponds to a very small liquid domain. We can conclude, therefore, that

in order to maximize flow rate, the channel should be designed to a solid fraction as low as

possible, and the channel height should be about half the width of one period or smaller,

i.e. H / 0.5.

In Fig. 12(a) and Fig. 12(b), we show the contours of Q̄ for viscosity ratios β = 0 and

β = 0.02 respectively, and a range of θ and ∆, extending the results shown in Fig. 10(b). The

other two parameters are fixed at φ = 0.2 and H = 2. The shaded region indicates values of

∆ and θ for which the liquid-gas interface intersects the solid-gas boundary, i.e., ∆m ≤ 0.

We find that in order to achieve flow enhancement, the ridge depth must be sufficiently

low, which for this case requires ∆ < 0.23, approximately. It is found, then, that Q̄ always

decreases monotonically with θ as observed in Fig. 10(b). The results in Fig. 12(b) include

gas viscosity, and we find now that for fixed values of θ, the flow rate Q̄ depends non-

monotonically on the ridge height ∆. As discussed earlier, this is linked to the competing
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FIG. 12: Normalized flow rate contours, in the periodic case, as a function of θ and ∆ with

φ = 0.2, H = 2 and (a) β = 0, (b) β = 0.02. The grey area is the parameter range for

which the meniscus intersects the solid boundary. Note that since the total channel height

H is kept constant, varying ∆ varies the liquid domain area, thus affecting the flow rate.

factors of shear-stress along the meniscus and the relative size of the liquid domain. The

results of Fig. 12(a) and Fig. 12(b) also indicate that varying ∆ and θ appears to have a

less dramatic effect on Q̄ than changing the height or the solid fraction. Nonetheless, we

can still find parameter values of θ and ∆ that can increase the flow rate by more than

40%. The results indicate that the maximum increase in flow rate is achieved by minimizing

the meniscus curvature (so as to minimize the shear stress in the gas) and having a small

but finite value of the ridge height, which for this case is ∆ ≈ 0.06. From Fig. 12(b) we

also observe that, depending on the value of ∆, increasing the protrusion angle θ can either

provide a modest increase in Q̄ (for example ∆ = 0.25), or a decrease (for example ∆ = 0.07).

By contrast, we see from Fig. 12(a) that for fixed values of ∆, Q̄ monotonically increases

with θ. This contrast can only be observed when accounting for both meniscus curvature

and gas viscosity.
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VI. CONCLUSIONS

We have presented a computationally efficient numerical framework based on Chebyschev

collocation that allows us to study the combined effects of gas viscosity, meniscus curvature,

and finite channel cross-sections on liquid flows through textured microchannels. A key as-

pect of this method is the combined usage of domain decomposition and singularity removal

to accurately capture singularities in the flow due to the abrupt change in boundary condi-

tions at the triple contact points, along with coordinate transformations to handle meniscus

curvature. Using this method, we quantified the validity of the commonly used periodic

channel assumption, showing that it yields an accurate characterization of the flow away

from the end walls in very flat channels, but breaks down when the channel height is com-

parable to the channel width. Furthermore, we explored in detail how the normalized flow

rate through these channels varies with the parameters governing channel aspect ratio, solid

fraction, height of the gas ridges, and meniscus curvature. In particular, we showed that

the normalized flow rate can vary non-monotonically with the cavity height, and can in-

crease with meniscus protrusion in the absence of gas viscosity but decrease with meniscus

protrusion in its presence. Both of these results are linked to the effect of shear stress on

the liquid-gas interface, highlighting the importance of including gas viscosity in the models

and capturing the flow in the gas. Finally, these results suggest several important principles

that can be useful in optimizing flow enhancement: these include constructing channels with

fewer, wider grooves while aiming to minimize meniscus curvature; the groove depth should

be carefully chosen to be sufficiently small so as to maximize the area taken up by the liquid,

but deep enough to minimize the effects of gas shear stresses.

While our model incorporates many of the features present in real textured channel flows,

there are still several assumptions that may be relaxed. For example, our model assumes the

atomistic nature of the gas can be ignored and coupling to the liquid flow can be described

by a no-slip condition. Specifically, we have assumed that the Knudsen number,

Kn =
`

L
, (33)

where ` is the mean free path of the gas and L is a representative physical length scale

(e.g. the groove depth or width), is very low, Kn � 1. Small Knudsen number effects can

readily be incorporated into our model by introducing a Navier slip condition at the gas
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boundaries to capture molecular slip [23]. Perhaps more importantly, in experiments the

meniscus curvature is itself nor prescribed, but is set by the inlet and outlet pressures and

will vary along the length of the channel. Thus, the geometry of the liquid domain becomes

coupled to the pressure variation along the channel and would need to be determined as

part of a full three-dimensional computation. Consequently, the two-dimensional results

presented here are indicative of the flow resistance encountered at various points along

the three-dimensional channel (assuming the meniscus curvature varies sufficiently slowly),

rather than being predictive of the flow rate through it. We expect this limitation to be

particularly relevant for channels of small heights, in which changes to meniscus geometry

are of greater relative importance. Additionally, the numerical approach we have used in

this study can also can be applied to the equations that include heat and/or mass transport

in textured channels. This model could then be used to better understand, or even optimize,

the usage of patterned channels in microprocessor cooling applications.

APPENDIX A: DETAILS OF BOUNDARY CONDITIONS BETWEEN DECOM-

POSED DOMAINS

Here we provide details of the boundary conditions imposed at the ends of each type of

subdomain described in section III C.

Specifically, the boundary conditions for the subdomain of type (A) are

w1(−1, η1) = 0 (34)

∂w1

∂x
(1, η1) =

∂w2

∂x
(−1, η1) (35)

w1(ξ1,−1) = 0 (36)

∂w1

∂y
(ξ1, 1) = 0 (37)

respectively corresponding to no-slip, continuity of the x derivative between subdomains 1

and 2, no-slip and symmetry (in the y direction).

For subdomains of type (B) we have

wm(−1, ηm) = wm−1(1, ηm) (38)
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∂wm
∂x

(1, ηm) =
∂wm+1

∂x
(−1, ηm) (39)

wm(ξm,−1) = w(W+1+m/2)(ξm, 1) (40)

∂wm
∂y

(ξm, 1) = 0 (41)

respectively corresponding to continuity of velocity between subdomains m and m − 1,

continuity of the x derivative between subdomains m and m + 1, continuity of velocity on

the liquid-gas interface and symmetry (in the y direction).

For subdomains of type (C) we have

wm(−1, ηm) = wm−1(1, ηm) (42)

∂wm
∂x

(1, ηm) =
∂wm+1

∂x
(−1, ηm) (43)

wm(ξm,−1) = 0 (44)

∂wm
∂y

(ξm, 1) = 0 (45)

respectively corresponding to continuity of velocity between subdomains m and m − 1,

continuity of the x derivative between subdomains m and m+ 1, no-slip and symmetry (in

the y direction).

For the subdomain (W + 1) of type (D) we have

wW+1(−1, ηW+1) = wW (1, ηW+1) (46)

∂wW+1

∂x
(1, ηW+1) = 0 (47)

wW+1(ξW+1,−1) = 0 (48)

∂wW+1

∂y
(ξW+1, 1) = 0 (49)

respectively corresponding to continuity of velocity between subdomains W + 1 and W ,

symmetry (in the x direction), no-slip and symmetry (in the y direction).

For subdomains of type (E) we have

wm(−1, ηm) = 0 (50)

wm(1, ηm) = 0 (51)
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FIG. 13: The equations and boundary conditions satisfied by the singular parts of the

velocity fields

wm(ξm,−1) = 0 (52)

β
∂wm
∂n

(ξm, 1) =
∂w(2m−2M−2)

∂n
(ξm,−1) (53)

respectively corresponding to no-slip (first three) and continuity of shear stress on the gas-

liquid interface.

APPENDIX B: SINGULARITY REMOVAL

The singular parts of the velocity field satisfy the equations and boundary conditions

illustrated in Fig. 13. It can be shown by separation of variables in polar coordinates (defined

using the singularity location as the origin) that the general form of the solution is:

u1 = αrλ sinλϕ (54)

u2 = α
sin (λ(π + θ))

sin (λ(π/2− θ))
rλ sin (λ(3π/2− ϕ)) (55)

where r is the radial coordinate and ϕ is the angular coordinate (with the anticlockwise

direction as positive and the ridge as ϕ = 0) and 0 < λ < 1 is found numerically from

β sin (λ(π + θ)) cos (λ(θ − π/2)) = cos (λ(π + θ)) sin (λ(θ − π/2)) (56)

The singular functions corresponding to singularities on the left of the groove (rather

than the right as shown above) can be found by reflecting the solution above in x.
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FIG. 14: The singularity exponent λ given as a function of the viscosity ratio β and the

protrusion angle θ.

In Fig. 14, we provide contour plots of the singularity exponent λ against θ and β. Note

that while the presence of a small viscosity ratio β ≈ 0.02 can have a significant effect of the

flow rate (see Fig. 10(b), for example), it has limited impact on the singularity exponent.

Hence, for applications such as those in the present paper, good accuracy can be achieved by

making the approximation λ ≈ π/[2(π + θ)], which results from setting β = 0 in (56). It is

interesting to note that gas viscosity always increases the singularity exponent (making the

profile less singular) while the protrusion angle generally decreases the exponent (making

the profile more singular).
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