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Abstract

Graph representations are often used to model structured data at an individ-

ual or population level and have numerous applications in pattern recognition

problems. In the field of neuroscience, where such representations are commonly

used to model structural or functional connectivity between a set of brain re-

gions, graphs have proven to be of great importance. This is mainly due to the

capability of revealing patterns related to brain development and disease, which

were previously unknown. Evaluating similarity between these brain connectiv-

ity networks in a manner that accounts for the graph structure and is tailored

for a particular application is, however, non-trivial. Most existing methods

fail to accommodate the graph structure, discarding information that could be

beneficial for further classification or regression analyses based on these simi-

larities. We propose to learn a graph similarity metric using a siamese graph

convolutional neural network (s-GCN) in a supervised setting. The proposed

framework takes into consideration the graph structure for the evaluation of

similarity between a pair of graphs, by employing spectral graph convolutions

that allow the generalisation of traditional convolutions to irregular graphs and

operates in the graph spectral domain. We apply the proposed model on two

datasets: the challenging ABIDE database, which comprises functional MRI

data of 403 patients with autism spectrum disorder (ASD) and 468 healthy
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controls aggregated from multiple acquisition sites, and a set of 2,500 subjects

from UK Biobank. We demonstrate the performance of the method for the

tasks of classification between matching and non-matching graphs, as well as

individual subject classification and manifold learning, showing that it leads to

significantly improved results compared to traditional methods.

Keywords: functional brain connectivity, spectral graph convolutions,

convolutional neural networks, autism spectrum disorder, UK Biobank

1. Introduction

During the last decade, there has been increasing interest in the study of the

human connectome (Sporns, 2011), which involves representing a set of brain

regions along with their structural and/or functional interactions as networks.

These brain connectivity networks result from the subdivision of the brain into5

regions using anatomical landmarks, cytoarchitecture or function (Arslan et al.,

2017). Their topological properties have been thoroughly explored in recent neu-

roscience studies (Achard et al., 2006; Rubinov and Sporns, 2010). This is pri-

marily due to the fact that associations between the topological organisation of

these networks and brain development (Hagmann et al., 2010), function (Smith10

et al., 2015) as well as disease (Catani and ffytche, 2005; Fornito et al., 2015)

have been established. Recent advances in neuroimaging have led to signifi-

cant improvements in the spatial resolution of functional Magnetic Resonance

Imaging (fMRI). Therefore, resting-state fMRI (rs-fMRI) is currently one of the

most widespread approaches to map the putative connections between spatially15

remote brain regions by means of correlations between their corresponding time

series. The obtained functional connectivity networks incorporate the strength

of these connections in their edge labels (Sporns, 2013), yielding a so-called

labelled graph representation.

Apart from the study of statistically significant group differences with net-20

work theoretical approaches (Rudie et al., 2013), brain networks, or graphs

in mathematical terms, can be studied at a subject level in order to identify
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distinctive patterns related to brain disease or development (Kawahara et al.,

2017). In this context, disruptions to the functional network organisation of

the human brain have been associated with neurological disorders, such as at-25

tention deficit hyperactivity disorder (ADHD) (Konrad and Eickhoff, 2010) and

autism spectrum disorder (ASD) (Abraham et al., 2017). These findings suggest

that the study of functional brain organisation has the potential to identify pre-

dictive biomarkers for neurodevelopmental and neuropsychiatric disorders and

shed light on the disorder’s underlying mechanisms. At the same time, sex-30

(Satterthwaite et al., 2014) and age- (Geerligs et al., 2014) related differences

in functional connectivity networks have also been reported. The above are

common examples of classification and regression problems, which can benefit

from an accurate measure of similarity between the network representations to

allow for the application of statistical and machine learning methods. Auto-35

matically learning meaningful pairwise similarities from graph-structured data

is, additionally, very important in applications like graph-based label propaga-

tion (Wauquier and Keller, 2015; Parisot et al., 2017).

1.1. Inexact graph matching

The problem of evaluating how similar or different two graphs are can be40

addressed through inexact graph matching (Livi and Rizzi, 2013). These ap-

proaches estimate (dis)similarity between two graphs at a global scale and yield

a meaningful pairwise metric that can further facilitate classification, regression

and clustering applications. In these settings, the estimation of (dis)similarity

between a pair of graphs has, most commonly, been dealt with using one of45

the following approaches (Livi and Rizzi, 2013): graph embedding, graph ker-

nels, motif counting and graph edit distance. In graph embedding techniques, a

feature vector representation is used to summarise either the complete set of net-

work edges or its topology in terms of well-known network features, e.g. nodal

strength and degree, network efficiency and modularity. The brain network50

representations obtained with these techniques can, then, be directly fed into

traditional classification and regression algorithms in a straightforward manner.
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Hence, graph embedding has been widely used to estimate brain network simi-

larity (Dosenbach et al., 2010; Richiardi et al., 2011; Zeng et al., 2012; Abraham

et al., 2017), although it often discards valuable information about the graph55

structure. Graph kernels, e.g. random walk kernels or the Weisfeiler-Lehman

graph kernel (Shervashidze et al., 2011), have been employed to compare func-

tional connectivity networks (Mokhtari and Hossein-Zadeh, 2013; Jie et al., 2014;

Takerkart et al., 2014), but often fail to capture global properties as they com-

pare features of smaller subgraphs. Motif counting, in turn, is a computationally60

expensive process, since it involves counting the occurrences of important recur-

ring subgraph patterns (Shervashidze et al., 2009). Methods based on graph edit

distance neatly model both structural and label variation within the graphs and

are particularly useful to identify unknown node correspondences in brain con-

nectivity networks (Raj et al., 2010; Ktena et al., 2017a), but are limited by the65

a priori definition of the edit costs. Automated methods have been proposed to

address this problem of manually defining the cost functions, e.g. by utilising a

Gaussian mixture model (GMM) (Neuhaus and Bunke, 2007) or self-organising

maps (SOMs) (Neuhaus and Bunke, 2005), to learn the edit operation costs

from the data samples. These early works paved the way for performing metric70

learning directly in the graph domain.

1.2. Non-Euclidean Convolutional Neural Networks

Previous works by Zagoruyko and Komodakis (2015) and Kumar et al. (2016)

on the comparison of image patches explored different neural network models,

including siamese and triplet convolutional networks, to learn a similarity met-75

ric. These network architectures employed standard 2D convolutions to yield

hierarchies of image features and model the different factors that affect the final

appearance of 2D images. However, the application and generalisation of convo-

lutions to graph-structured data and irregular domains, such as brain connectiv-

ity networks, is not straightforward. This research topic has recently attracted80

a lot of attention and relevant work is focusing on the challenging problem of

defining a local neighbourhood structure, which is required for convolution op-
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erations (Henaff et al., 2015; Niepert et al., 2016; Masci et al., 2016). Niepert

et al. (2016) attempted to address this challenge by employing a graph labelling

procedure for the selection of a node sequence that served as a receptive field,85

but the labelling function limited node features to categorical, non-continuous

values. An important step forward has been the introduction of the concept of

signal processing on graphs by Shuman et al. (2013), which allowed to perform

data processing tasks, like filtering, through the use of computational harmonic

analysis. The extension of CNNs to irregular graphs was, then, rendered feasible90

by formulating convolutions in the graph spatial domain as multiplications in

the graph spectral domain. Defferrard et al. (2016) relied on this property to

define strictly localised filters by means of Chebyshev polynomials and employed

a recursive formulation that allows fast filtering operations. Kipf and Welling

(2016) later introduced a renormalisation trick to speedup computations, while95

Levie et al. (2017) proposed Cayley polynomial filters, a new class of parametric

rational complex functions, to compute localised regular filters.

Alternative methods apply convolutions directly in the graph spatial do-

main, rather than the graph spectral domain. These approaches include using

anisotropic heat kernels to extract intrinsic patches on manifolds (Boscaini et al.,100

2016) or, alternatively, representing local patches in polar coordinates (Masci

et al., 2015). A recent work by Simonovsky and Komodakis (2017) proposed

to use filter weights conditioned on the edge labels, instead, and dynamically

generate those for each input sample. This group of methods addresses the

problem of generalisation across different domains and have clear geometric in-105

terpretations on manifolds, where they have so far been applied. However, their

interpretation on generic graphs is not straightforward neither as principled as

the spectral approaches.

1.3. Contributions

In Ktena et al. (2017b) we proposed a novel method for learning a similarity110

metric between irregular graphs and demonstrated its potential in a classifica-

tion task on functional connectivity networks with known node correspondences.
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This method employs spectral graph convolutions to identify patterns that are

significant for the estimation of similarity between a pair of graphs, allowing the

learned metric to properly accommodate the graph structure. Our hypothesis115

is that a more accurate similarity metric of connectomes can be obtained when

taking into account their graph structure, instead of operating on their vec-

torised equivalent. Additionally, learning the similarity function is considered

beneficial when working with brain connectivity networks, since it allows fine-

tuning the metric to a particular application, in contrast to more traditional120

approaches like euclidean distances or graph kernels that are commonly used in

connectomics research. We used a siamese graph convolutional neural network

that employed the polynomial filters formulated in Defferrard et al. (2016) and a

global loss function that, according to Kumar et al. (2016), is robust to outliers

and provides better regularisation. To the best of our knowledge, this has been125

the first application of metric learning with spectral graph convolutions on brain

connectivity networks. In this work, we extend our preliminary study, exploring

the impact of the different framework components and objective functions in a

cross-validation setting. More specifically:

• We propose a modification to the global loss function that leads to bet-130

ter generalisation in applications on heterogeneous data, like the ABIDE

database used in this work.

• We provide an extended validation on two large databases by 1) evaluating

the influence of different loss functions and 2) comparing our approach to

alternative methods that can be used for similarity estimation between135

pairs of graphs. We show that the learned similarities are more accurate

for classification and manifold learning.

• We demonstrate the model performance on two different databases; the

functional connectivity networks of 871 subjects from the challenging

Autism Brain Imaging Data Exchange (ABIDE) database (Di Martino140

et al., 2014), which contains heterogeneous rs-fMRI data acquired at mul-

tiple international sites with different protocols, as well as a larger dataset
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of 2,500 subjects from the UK Biobank (Sudlow et al., 2015). Our goal

is to distinguish between patients with autism spectrum disorder (ASD)

and healthy controls (HC) in the ABIDE case, while for UK Biobank the145

task is to distinguish between male and female subjects.

The learned metric leads to 12.9% better accuracy compared to baseline

methods for disease classification with the ABIDE database and a 10.3% im-

provement for gender classification with UK Biobank compared to a metric

learning approach operating on the vectorised connectivity matrices. Our imple-150

mentations can be found online at https://github.com/sk1712/gcn_metric_

learning.

2. Materials and Methods

Figure 1 gives an overview of the proposed model for similarity metric learn-

ing on functional brain networks. In this section, we first present the datasets155

used and the process through which functional brain networks are derived from

the original fMRI image data in 2.1. Additionally, we introduce the concept of

graph convolutions and describe how the filtering operation can be performed

in the graph spectral domain in 2.3. Finally, we describe the proposed net-

work architecture in 2.4 and the loss functions explored as alternative objective160

functions in 2.5.

We introduce below a set of notations that will be used throughout this pa-

per. We perform metric learning on N subjects using a siamese neural network

with C graph convolutional layers. Each subject s is represented by a labelled

graph G = {V, E}, where each node vi ∈ V corresponds to a brain ROI and165

is associated with a signal csi : vi → RR containing the node’s functional con-

nectivity profile for an atlas with R regions. We denote the normalised graph

Laplacian as L, and the ith filter of the jth layer parametrised on the Laplacian

as gθi,j (L).
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raw fMRI timeseries connectivity matrix labelled graph

Pearson’s 
correlation

graph 
construction

(a) Estimation of single subject connectivity matrix and labelled graph representation. Pear-

son’s correlation is used to obtain a functional connectivity matrix from the raw fMRI time-

series. After specifying the graph structure for all subjects, based on spatial or functional

information, each row/column of the connectivity matrix serves as a signal for the correspond-

ing node (node label).

Similarity metric learningInput connectivity 
graphs

Graph Convolutional 
Network I

(G1, y1)

(G2, y2)

Graph Convolutional 
Network II

shared weights
(siamese)

…

…
similarity
estimate

Dot product 
layer

C

C

(b) Siamese graph convolutional neural network for metric learning. A pair of graphs with the

same structure but different signals is fed to this network, which outputs a similarity estimate

between the two graphs. A same class (matching) / different class (non-matching) binary

label is used for each pair during training.

Figure 1: Overview of the pipeline used for similarity metric learning on functional connec-

tivity networks.

2.1. Datasets170

2.1.1. ABIDE database

This dataset is provided by the Autism Brain Imaging Data Exchange (ABIDE)

initiative (Di Martino et al., 2014) and has been preprocessed with the Config-
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urable Pipeline for the Analysis of Connectomes (C-PAC)1 (Craddock et al.,

2013). This pipeline involves skull striping, slice timing correction, motion cor-175

rection, global mean intensity normalisation, nuisance signal regression, band-

pass filtering (0.01-0.1Hz) and registration of fMRI images to standard anatom-

ical space (MNI152). The ABIDE database includes N = 871 subjects, 403

individuals suffering from ASD and 468 healthy controls, that met the imaging

quality and phenotypic information criteria and were acquired with different180

imaging protocols at 20 acquisition sites. At this point it should be noted

that the data is very different from one international site to the next, resulting

from the different acquisition protocols at each site. We, subsequently, extract

the mean time series for a set of brain regions based on the Harvard Oxford

(HO) atlas, which comprises R = 110 cortical and subcortical ROIs (Desikan185

et al., 2006), and normalise them to zero mean and unit variance. The Fisher’s

transformed correlation matrices of the normalised timeseries are, then, used to

specify the signal on the graph nodes c ∈ RR×R, i.e. each ROI is represented

by its functional connectivity profile with the rest of the regions corresponding

to one row of the correlation matrix. The process used to obtain the labelled190

graph representation is illustrated in Figure 1a.

2.1.2. UK Biobank

This is a large prospective study, planning to consistently acquire multimodal

imaging data for 100,000 predominantly healthy subjects, in order to assist early

disease prediction in the ageing population. As part of the acquired modalities,195

rs-fMRI data is available for the initial 5,000 participants’ data release. These

are accompanied by numerous non-imaging data, like age, sex, alcohol consump-

tion, cognitive test scores and several others. We randomly select a subset of

2,500 subjects from this first release, including 1,181 male and 1,319 female

subjects. The already preprocessed rs-fMRI images have been corrected for mo-200

tion (Bannister et al., 2007) and distortion (Andersson et al., 2003), as well as

1http://preprocessed-connectomes-project.org/abide/
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high-pass filtered to remove temporal drift. Miller et al. (2016) further apply

an independent component analysis (ICA) based algorithm to automatically

identify and remove artefacts. The ‘cleaned’ data is then fed to a group-level

dimensionality reduction (Smith et al., 2014) and ICA to parcellate the brain205

into 100 spatially independent components that are not contiguous. Functional

connectivity networks are, subsequently, estimated with L2-regularised partial

correlation (Smith et al., 2011) and, after removing artefactual group-ICA com-

ponents, comprise R = 55 nodes for each subject. Similarly to the ABIDE

database, each row of the connectivity matrix, c ∈ RR×R, is used as the corre-210

sponding node’s signal.

2.2. From fMRI Data to Graphs

Spectral graph convolutional networks filter signals defined on a common

graph structure for all samples, meaning that they are not transferable from

one domain to another, since these operations are parametrised on the graph’s215

Laplacian. This is a constraint of the spectral approaches, which, however,

provide a neat and principled way of performing convolutions in the irregular

graph domain, where the notion of translation is not straightforward (Shuman

et al., 2013). This property of the spectral filters is discussed in more detail in

section 2.3. Although brain networks are very often treated as complete graphs,220

modelling brain connectivity as an irregular graph is more representative of their

inherent complex architecture (Sporns et al., 2004). As a result, we model a

common graph structure with two different approaches and explore their impact

on the estimated similarities.

2.2.1. Spatial graph225

The first approach we explore for defining the graph structure is based on

anatomical information. We use the k-NN graph G = {V, E} of the regions

spatial coordinates, where each ROI is represented by a node vi ∈ V (located at

the centre of the ROI) and the edges E = {eij} of the graph represent the spatial

distances between connected nodes using eij = d(vi, vj) =
√
||vi − vj ||2 in terms230
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of 3D coordinates. Only the k spatially nearest nodes are then connected to

the node vi. For each subject, node vi is associated with a signal csi : vi →

RR, s = 1, ..., N which contains the node’s connectivity profile in terms of

Fisher’s transformed Pearson’s correlation between the representative rs-fMRI

time series of each ROI.235

2.2.2. Functional graph

As an alternative, we estimate the mean functional connectivity matrix

among the training samples Ā = 1
Ntrain

∑Ntrain

i=1 Ai and obtain the k-nn graph

using the correlation distance between all region pairs. This kind of structure

is more meaningful from a neuroscientific point of view, because it reflects the240

average functional connection strength between pairs of brain regions within a

population. It is also data-driven, unlike the spatial structure which is purely

based on anatomical information. Due to this fact it is more prone to introduc-

ing a bias towards the training set, if the latter does not contain enough samples

to capture population variability. It should also be noted that we need to ob-245

tain an average connectivity matrix, because the filters learned with the spectral

convolutions are tied to a specific domain. Hence, the individual connectivity

matrices cannot be used, since the eigenbases of their Laplacian matrices will

differ. The node signals are defined similarly to the above spatial graph, so only

the structure of the graph itself is modified.250

2.3. Spectral Graph Filtering and Convolutions

Traditional convolution operators rely on the regular grid-like structure of

e.g. 2D and 3D images and it is, therefore, not trivial to generalise the con-

volution operation to the graph setting. Shuman et al. (2013) showed that

this generalisation can be made feasible by the definition of filters in the graph255

spectral domain. If A ∈ RR×R is the adjacency matrix associated with a graph

G and D the diagonal degree matrix, for which the diagonal elements are given

by di =
∑
i 6=j Aij , then the graph Laplacian is defined as L = D − A. Its

normalised equivalent is given by L = IR − D−1/2AD−1/2, where IR is the
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identity matrix, and constitutes an essential operator in spectral graph analy-260

sis (Shuman et al., 2013). The normalised Laplacian L can be decomposed as

L = UΛUT , where U is the matrix of eigenvectors and Λ the diagonal matrix of

eigenvalues {λl}l=0,1,...,R−1. The eigenvalues represent the frequencies of their

associated eigenvectors, i.e. eigenvectors associated with larger eigenvalues os-

cillate more rapidly between connected nodes, and for a connected graph G they265

satisfy 0 = λ0 < λ1 ≤ · · · ≤ λmax. The graph Fourier transform of a signal

c can, then, be expressed as ĉ = UT c. This allows to define a convolution on

a graph as a multiplication in the spectral domain of the signal c with a filter

gθ = diag(θ) as:

gθ ∗ c = UgθU
T c, (1)

where θ ∈ RR is a vector of Fourier coefficients and gθ can be regarded as a270

function of the eigenvalues of L, i.e. gθ(Λ) (Shuman et al., 2013).

The first formulation of spectral CNNs was directly parametrised on the

eigenvectors of the Laplacian (Bruna et al., 2013), which required expensive

computations of the eigendecomposition and did not guarantee that the filters

represented in the spectral domain would be localised in the graph spatial do-275

main. A polynomial parametrisation of the filters directly on the Laplacian

can be used to address these limitations (Hammond et al., 2011), since K-order

polynomials are exactly K-localised and define the number of hops around the

central node taken into account for the convolution. Defferrard et al. (2016) pro-

posed to approximate the filters by a truncated expansion in terms of Chebyshev280

polynomials to further reduce computational complexity. The Chebyshev poly-

nomials are recursively defined as Tk(c) = 2cTk−1(c)− Tk−2(c), with T0(c) = 1

and T1(c) = c, which essentially reduces the computational complexity of the

filtering operation. Filtering of a signal c with a K-localised filter can, then, be

performed using:285

y = gθ(L) ∗ c =

K∑
k=0

θkTk(L̃)c, (2)
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with L̃ = 2
λmax

L − IR, where λmax denotes the largest eigenvalue of L. The

output of the jth layer for a sample s in a Graph Convolutional Network (GCN)

is then given by:

ys,j =

Fin∑
i=1

gθi,j (L)cs,i ∈ RR, (3)

yielding Fin×Fout vectors of trainable Chebyshev coefficients θi,j ∈ RK , where

cs,i denotes the input feature maps, Fin the number of input filters and Fout the290

number of output filters. Therefore, the total number of trainable parameters

per layer is Fin × Fout ×K.

2.4. Network Architecture

Our siamese network, presented in Fig. 1b, consists of two identical path-

ways of C graph convolutional layers sharing the same weights, each taking a295

connectivity graph as input. An inner product layer combines the outputs from

the two branches of the network and is followed by a single fully connected

(FC) output layer with one output, that corresponds to the similarity estimate.

The FC layer accounts for integrating global information about graph similarity

from the preceding localised filters. Each convolutional layer is succeeded by a300

non-linear activation, i.e. Rectified Linear Unit (ReLU), but we avoid a non-

linearity in the output layer as this was observed to cause a vanishing gradient

problem. Therefore, the learned metric is unbounded.

2.5. Loss Functions

We investigate the performance of three different loss functions for the prob-305

lem under consideration: the commonly used hinge loss (Zagoruyko and Ko-

modakis, 2015), the global loss function used in our previous work (Ktena et al.,

2017b), and a modification of this global loss that we introduce in this paper.

The global loss function Kumar et al. (2016), is expected to provide a better

performance than the hinge loss due to its increased robustness to outliers and310

better regularisation. Finally, we provide a modification to this loss that re-

laxes constraints on the variance of the learned distances, so as to increase the
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generalisability on heterogeneous data. It should be noted that an additional

l2 regularisation term on the learned weights is introduced to the loss function

in every case. More details about these objective functions that our model is315

aiming to minimise are provided below.

2.5.1. Hinge loss

The hinge loss is an objective function commonly used for “maximum-

margin” classification. It has been employed for similarity metric learning of

local image patches (Zagoruyko and Komodakis, 2015) and is described by the320

following equation:

Jhinge =
1

N

N∑
i=1

max(0, 1− yioi), (4)

where yi is the ground truth label of the pair (i.e. 1 for matching graphs vs.

-1 for non-matching graphs) and oi is the siamese network output. An output

oi higher than 1 for matching graphs or lower than -1 for non-matching graphs

is not penalized, whereas outputs within the range (-1, 1) or on the wrong side325

of the hyperplane y = 0 are penalized in a linear fashion compared to their

distance from the correct value. It is worth noticing that this loss function does

not impose any constraints on the variance of the network outputs for each class.

2.5.2. Global loss

Kumar et al. (2016) proposed a pairwise similarity global loss function330

that yields superior results in the problem of metric learning for local image

descriptors compared to a traditional loss. This global loss maximises the mean

similarity µ+ between embeddings belonging to the same class, minimises the

mean similarity between embeddings belonging to different classes µ− and, at

the same time, minimises the variance of pairwise similarities for both matching,335

σ2+, and non-matching, σ2−, pairs of graphs. The formula of the global loss

function suggested by Kumar et al. (2016) is given by:

Jglobal = ( σ2+ + σ2−) + λ max (0,m− (µ+ − µ−)), (5)
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Figure 2: The goal of our loss function is to maximise the mean of the matching graphs

similarity µ+, minimise the mean of the non-matching graphs similarity µ−, while restricting

the variance of matching and non-matching classes, σ2+ and σ2−, respectively, below a certain

threshold.

where λ balances the importance of the mean and variance terms, and m is the

margin between the means of matching and non-matching similarity distribu-

tions.340

2.5.3. Constrained variance loss

Rather than minimising the variance, an objective that can cause the simi-

larity estimates of the training samples to collapse around the class means, we

propose to constrain the variance for each class below a certain threshold. The

formulation of our proposed global loss function is, then, the following:345

Jconvar = max(0, σ2+ − a) + max(0, σ2− − a) + max (0,m− (µ+ − µ−)), (6)

where a is the variance threshold. This formulation only penalises the variance

when it exceeds the threshold a, allowing similarity estimates to vary around

the means and accommodate the diversity inherent in heterogeneous databases

such as the multi-site fMRI data. When a = 0, the constrained variance loss

reduces to the global loss (Figure 2). The loss function is differentiable with350
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Site 1 Site 1 Site 2 Site 3

Site 3Site 2Site 1

Da
ta
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se
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Testing set

Training pairs (bipartite graph)

Testing pairs

Figure 3: Illustration of the experimental setup used to train and test the siamese graph

convolutional network on the ABIDE database. For each cross-validation fold, a certain per-

centage of subjects from each site is preserved for training and the rest for testing. From the

training subjects a bipartite graph is constructed (after randomly splitting them into two sets)

to obtain the training pairs and reduce the number of combinations between them. Since the

number of testing subjects is much lower than the number of training subjects, all possible

combinations between them are used as testing pairs.

gradients derived by:

∂Jconvar

∂o(xi,x
+
i , gΘ)

=
2

N
[1{σ2+>a}(o(xi,x

+
i , gΘ)− µ+)− 1

2
1{(µ+−µ−)<m}(µ

+ − µ−)]

∂Jconvar

∂o(xi,x
−
i , gΘ)

=
2

N
[1{σ2−>a}(o(xi,x

−
i , gΘ)− µ−) +

1

2
1{(µ+−µ−)<m}(µ

+ − µ−)]

(7)

where o(xi,x
+
i , gθ) represents network similarity output for matching graphs,

o(xi,x
−
i , gθ) the equivalent for non-matching graphs.

3. Results

3.1. Experimental setup355

We evaluate the performance of the proposed model in a 5-fold cross-validation

setting. In this setting the subjects are randomly partitioned into 5 equal size

subsamples. For each run, a single subsample is retained as test data, while the
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remaining 4 subsamples are used as training data. For the ABIDE database, we

also ensure that subjects from all 20 sites are included in both training and test360

sets, to account for differences in the acquisition protocol. An illustration of

this experimental setup is provided in Figure 3. Similarly to the experimental

setup used in Zagoruyko and Komodakis (2015) for image patches, we train

the network on matching and non-matching pairs.

Furthermore, for the ABIDE database, matching pairs correspond to graphs365

representing individuals of the same class, i.e. patients with autism spectrum

disorder (ASD) or healthy controls (HC), while non-matching pairs correspond

to graphs representing one HC and one subject with ASD. For UK Biobank,

matching pairs are defined as graphs representing individuals of the same sex,

i.e. both males or both females, while non-matching pairs include one male and370

one female subject.

We train a siamese network with C = 2 convolutional layers consisting of f =

64 features each. The different network hyper-parameters are optimised using

cross-validation. We use stochastic gradient descent with Adaptive Moment

Estimation (ADAM) (Kingma and Ba, 2014) as the optimization algorithm,375

learning rate 0.001 and polynomial filters of order K = 3, meaning that filters

at each convolution are taking into account neighbours that are at most K steps

away from a node. The number of neighbours for the graph structure is set to

k = 10 for both datasets. The dropout ratio at the FC layer and regularisation

parameter are set to 0.2 and 0.0005, respectively, for the ABIDE database, while380

for UK Biobank a dropout of 0.5 and a regularisation parameter of 0.05 are used.

For the global loss function, the margin m is set to 1.0, while the weight λ is 1.0

as in Kumar et al. (2016). For the constrained variance loss we set a = m/2.

In each fold the training set contains 720 subjects for the ABIDE database

and 2000 subjects for UK Biobank, which we randomly split into two sets to385

construct a bipartite graph representing the training pairs (see Figure 3) and

reduce training time (the number of all possible combinations is much higher).

That way we make sure that all subjects are fed to the network the same number

of times to avoid biases. The test set consists of all combinations between the
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remaining 151 and 500 subjects for ABIDE and UK Biobank, respectively. In390

the ABIDE task, a binary feature is also introduced at the FC layer indicating

whether the pair subjects were scanned at the same site or not.

3.2. Metric learning evaluation

3.2.1. Estimated similarities

Figure 4a shows the pairwise distances between ABIDE functional connec-395

tivity matrices for the full test set and the 5 biggest sites after applying di-

mensionality reduction (PCA) and preserving R = 110 components, equal to

the number of atlas regions. This figure illustrates that networks are hardly

comparable using standard distance functions, even within the same acquisition

site. At this point it should be noted that “all sites” refers to all pairs from the400

test set, even if the subjects were scanned at different sites. Figure 4b, in turn,

shows the similarity estimates for the same random split, using the proposed

loss function. It can be observed that the proposed metric learning architec-

ture is significantly (p < 0.05) improving the separation between matching and

non-matching pairs for the total test set, as well as for most individual sites.405

Additionally, the proposed loss seems to lead to better separation for sites 9 and

14, but the number of pairs is low to lead to statistically significant differences.

It should be noted that Euclidean distances for these two sites were initially

higher for the matching pairs compared to the non-matching pairs, which is the

inverse of the desired behaviour.410

Figure 5a illustrates the distances estimated with principal component anal-

ysis (PCA) with 55 components, equal to the number of ICA non-artefactual

components, for UK Biobank in comparison to the similarities obtained with s-

GCN and the constrained variance loss (Figure 5b). These distances/similarities

correspond to all pairs between the subjects in the test set. It can be observed415

that the s-GCN model leads to better separation between matching and non-

matching graph pair similarities, similarly to the ABIDE database.
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Figure 4: (a) Boxplots showing the computed euclidean distance, after applying dimension-

ality reduction with PCA on the training data of the ABIDE database. This indicates how

challenging the problem of metric learning is for brain graphs, given that for certain acquisition

sites the estimated distances for the matching graphs have a higher mean than the distances

of the non-matching graphs (sites 14 and 16). (b) Box-plots showing similarity estimates for

the same matching and non-matching graphs. Results with the proposed loss function (Eq. 6)

are presented for all sites and the 5 largest sites (number of pairs for each case indicated in

parentheses). Differences between the similarity distributions of the two classes (matching vs.

non-matching) are indicated as significant (*) or non significant (n.s.) using a permutation

test with 10000 permutations. Results presented in (a) and (b) correspond to the same set of

subjects.
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Figure 5: (a) Boxplots showing the computed euclidean distance, after applying dimensional-

ity reduction with PCA on the training data of UK Biobank. (b) Box-plots showing similarity

estimates for the same matching and non-matching graphs. Results with the proposed loss

function (Eq. 6) are given on the right. Differences between the similarity distributions of

the two classes (matching vs. non-matching) are indicated as significant (*) or non significant

(n.s.) using a permutation test with 10000 permutations. Results presented in (a) and (b)

correspond to the same set of subjects.

3.2.2. Pair classification results

Figure 6 illustrates the results on the test set of the ABIDE database through

receiver operating characteristic (ROC) curves for the biggest site, as well as420

across all sites, for the task of matching (same class) vs. non-matching (dif-

ferent class) graphs classification. The estimated area under curve (AUC) for

the different loss functions is also indicated in parentheses. The ROC curve

illustrates the diagnostic ability of a binary classifier while varying its discrim-

ination threshold. In the case of s-GCN this threshold is compared directly425

with the similarity estimates, while for Euclidean distances it is compared to

the reciprocal of the estimated distances between a pair of subjects. We fur-

ther compare to the distances learned with a Large Margin Nearest Neighbour

(LMNN) classifier, which aims to learn a global linear transformation of the

input space that precedes k-nn classification using Euclidean distances (Wein-430

berger and Saul, 2009). In other words, it learns a Mahalanobis distance metric

for k-nn classification from labeled examples, but does not take into account

the graph structure as it operates on the embedded vectors of the connectivity
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Figure 6: Receiver operating characteristic curves (ROCs) on the test set (a) for all sites and

the biggest site (b) from the ABIDE database for the task of matching vs. non-matching

pair classification. The area under curve (AUC) is indicated for the hinge, global Kumar

et al. (2016) and the proposed loss using s-GCN with the spatial graph structure, as well

as Euclidean distances after dimensionality reduction and Large-Margin Nearest Neighbour

(LMNN) metric learning

.

matrices. Pairs with estimated similarities above the threshold are, then, classi-

fied as matching, while pairs below the threshold are classified as non-matching.435

The ROC curve is obtained by plotting the true positive rate against the false

positive rate for different thresholds. The true positive rate, also known as sen-

sitivity, measures the proportion of matching pairs that are correctly identified

as such. The false positive rate, in turn, is calculated as the ratio between the

number of non-matching pairs wrongly classified as matching and the total num-440

ber of non-matching pairs. The area under the ROC curve (AUC) is equal to

the probability that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one. Therefore, AUC values closer to

1 are preferable, while an AUC of 0.5 corresponds to chance level.

It can be observed in figs. 6a and 6b that the AUC obtained with Euclidean445

distances is at chance level both for the largest site and all sites in the ABIDE

database. Improved results are observed for site 6 when using LMNN, which are

more comparable to the sGCN with hinge loss, but this performance improve-
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Figure 7: Receiver operating characteristic curves (ROCs) on the test set for all pairs from the

UK Biobank dataset for the task of matching vs. non-matching pairs classification. The area

under curve (AUC) is indicated for the hinge, global Kumar et al. (2016) and the proposed

loss using s-GCN with the functional graph structure, as well as Euclidean distances after

dimensionality reduction and Large-Margin Nearest Neighbour (LMNN) metric learning

.

ment is not verified for all sites, probably because of the heterogeneity of the data

from different sites. For the proposed s-GCN model with a spatial graph struc-450

ture improved performance is achieved, which is more striking between pairs

from the same site. We use as a baseline the AUC obtained with Euclidean

distances between pairs after preserving the 110 principal components from the

training set. For LMNN all features are used to learn the linear transformation,

while the learning rate is set to 10−5 and 10−7 for ABIDE and UK Biobank,455

respectively. These parameters are chosen using grid search cross-validation.

Among the different loss functions, the proposed loss seems to outperform the

global and hinge loss. Results by means of AUC are similar for the functional

graph structure and are, thus, omitted in this section.

Figure 7 presents the ROC curves for the different loss functions, PCA/Euclidean460

with 55 components and LMNN for the task of identifying subject pairs of the

same gender vs. pairs of different gender. The improvement in performance

with s-GCN is, in this case, more prevalent than the ABIDE database and the

ROC curves are smoother, since the size of both training and test sets is larger

for UK Biobank. Although the proposed modification to the global loss still out-465
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Figure 8: Summary results with 5-fold cross-validation for k-nn classification accuracy with

k=9 for all sites and the largest sites of the ABIDE database separately. The number of

subjects in the test set from the remaining sites is too small to perform this kind of evaluation

on a per site basis.

performs the traditional global loss, the hinge loss is leading to slightly improved

results. This can attributed to the fact that the proposed loss is advantageous

for heterogeneous data, while UK Biobank fMRI data are all acquired with the

same scanner. The siamese network still outperforms LMNN, which does not

take into account the graph structure.470

3.2.3. Subject classification results

In this experiment, the estimated pairwise similarities are used to assign a

class membership (ASD or HC for ABIDE, male or female for UK Biobank)

for each subject in the test set based on a k-nearest neighbour (k-nn) classifier.

The accuracy of k-nn classification is highly dependent on the metric used to475

compute the similarities between different samples. Therefore, a meaningful

metric that reflects the underlying similarities between data samples should be

able to facilitate classification with a simple k-nn classifier. In this process,

each subject is classified by a majority vote of its neighbours, with the subject

being assigned to the most common class among its k nearest neighbours in480
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Figure 9: Summary results with 5-fold cross-validation for k-nn classification accuracy with

k=9 for UK Biobank.

terms of the learned metric, and for this reason k is generally an odd number.

We compare the different loss functions and graph structures, spatial and func-

tional, for the ABIDE database by means of k-nn classification accuracy, with

k = 9 chosen empirically and summarise the results in Figure 8. Results for UK

Biobank are presented in Figure 9. We use as a baseline a k-nn classifier based485

on the euclidean distances between the subjects after applying PCA and further

compare to a random walk kernel, which takes into account the graph structure

to estimate graph similarities (Vishwanathan et al., 2010) and LMNN as pre-

viously. The classification results by means of accuracy/percentage of correctly

predicted subjects are obtained with 5-fold cross-validation for both databases.490

These are reported for subjects from all sites together, as well as the biggest

site separately, for the ABIDE database since the rest of the sites did not have

enough representatives in the test set to perform such a task.

It can be observed that across all sites, the proposed loss leads to improved

performance with the same network architecture compared to the hinge and495

global losses. This is the case for both graph structures, spatial and functional.

For all sites, the metric learning approach leads to improved classification accu-

racy compared to the standard Euclidean distance after dimensionality reduc-

tion and the random walk kernel. This is a fair comparison, since in both cases
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only a pairwise (dis)similarity matrix between subjects is provided to the classi-500

fier. Compared to the k-nn classifier based on Euclidean distances, the learned

metric demonstrates improved performance by 12.9% for all sites, 19.4% for the

biggest site. Furthermore, the performance achieved with the learned metric is

better by 14.7% and 17.1% compared to the random walk kernel for all sites

and the biggest site, respectively. LMNN is, surprisingly, performing marginally505

worse than Euclidean distances for all sites, although it leads to improved per-

formance for the biggest site. This can be due to the fact that the biggest site

dominates the learned LMNN metric, leading to a negative impact on the rest of

the sites. As far as the graph structure is concerned, the data-driven functional

structure does not seem to improve the classification performance for all sites,510

but only for the biggest site. This can be attributed to the fact that this site

is dominating the training set (with a total of 172 subjects in the database),

whereas the remaining sites have much less subjects (maximum 11-86 subjects

each) contributing to the estimation of the graph structure.

As illustrated in Figure 9, only the functional structure is available for UK515

Biobank, since the parcels used to construct the functional connectivity net-

works are obtain with spatial-ICA and are, therefore, not spatially contiguous.

Differences between the different loss functions are marginal, i.e. the proposed

loss leads to 1.0% improved performance compared to the hinge loss and 1.9%

compared to the global loss. However, the comparison to alternative methods is520

more striking, mostly due to the larger size of the available dataset (13.3% bet-

ter than PCA/Euclidean and 10.3% better than LMNN). Notably, the random

walk kernel performs very poorly for this dataset.

3.2.4. Manifold learning

Another useful application of a meaningful similarity metric is manifold525

learning. Manifold learning techniques aim to discover a low-dimensional em-

bedding of high-dimensional data by employing non-linear dimensionality reduc-

tion, and aim to facilitate visualisation and interpretation of the data. Locally

linear embedding (LLE) is one of the most common manifold learning methods,
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which seeks a lower-dimensional projection of the data which preserves distances530

within local neighbourhoods (Roweis and Saul, 2000). We, therefore, use the

inferred pairwise dissimilarities, i.e. the distance matrix of the subjects in the

test set, to learn a lower dimensional non-linear embedding of the data and use

it as a qualitative means of evaluation. LLE uses an eigenvector-based opti-

mization technique to find the low-dimensional embedding of points, such that535

each point is still described with the same linear combination of its neighbors.

Figure 10 visualises the embeddings of the two databases (ABIDE and UK

Biobank) in two dimensions using LLE with k = 9 neighbours and aims to

compare the learned metric to the baseline in a qualitative manner. It can be

observed that for both databases the learned metric leads to better separation540

of the two classes (ASD vs HC for ABIDE and male vs female for UK Biobank)

compared to the Euclidean distances. This is further highlighted by the centre

of mass for each class in this low-dimensional embedding of the data. These

are located further apart in figs. 10e and 10f compared to figs. 10a and 10b,

respectively, indicating that the learned metric leads to more meaningful local545

distances between subjects, a result more pronounced for UK Biobank data.

LMNN figs. 10c and 10d is also performing better than Euclidean distances in

this qualitative evaluation, with visual results being more favourable with UK

Biobank as a more homogeneous database, but the improvement gained with

sGCN is still noticeable, especially for ABIDE.550

4. Discussion

In this work, we use a siamese graph convolutional neural network, which

employs the polynomial filters formulated in Defferrard et al. (2016), to learn a

similarity metric between brain connectivity graphs for classification and man-

ifold learning. We extend the preliminary work on metric learning for irregular555

graphs (Ktena et al., 2017b) and perform a more thorough evaluation of the pro-

posed method. We leverage the recent concept of graph convolutions through

a siamese architecture and propose a modification to the global loss function
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used previously to accommodate heterogeneous data. The method is extensively

evaluated on two large databases, i.e. the functional brain connectivity graphs560

from the heterogeneous ABIDE database used in the previous work, as well

as a larger set of subjects from UK Biobank. We, further, explore the impact

of three different loss functions, i.e. the commonly used hinge loss, the global

loss and the constrained variance loss introduced in this paper, on the learned

metric in different settings, including matching vs. non-matching graph clas-565

sification, subject classification and manifold learning experiments. We obtain

promising quantitative and qualitative results for both datasets and significant

improvements over the baselines, which are more obvious for UK Biobank that

comprises a larger and more homogeneous dataset. This is a clear indicator

that the diversity of acquisition protocols and the limited number of subjects570

limits the overall performance on the ABIDE database. While applied to brain

networks, our proposed method is flexible and general enough to be applied to

any problem involving comparisons between graphs, e.g. shape analysis.

One of the main shortcomings of the proposed model is the fixed graph re-

quirement. This is due to the fact that the learned filters are tied to the specific575

domain/graph Laplacian and cannot be altered between samples or during in-

ference. We, therefore, explore the effect of two different graph structures on the

ABIDE database, one based on spatial proximity of the atlas contiguous parcels

and one based on purely functional information. Although the spatial structure

is less meaningful from a neuroscientific point of view, no significant differences580

are observed between the two graph structures for the ABIDE database. This

can be attributed to the fact that the functional structure is biased towards

the largest acquisition site, limiting its positive influence on the learned metric,

and the redundancy of information within the graph structure that is already

existing in the node features. However, the potential of the functional graph585

structure is validated with the UK Biobank dataset. Another interesting option

would be to use the structural connectivity as the graph structure, when this is

available, while preserving functional connectivity information as node features.

The proposed loss function, leads to an improvement over the more traditional
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hinge and global losses for the classification tasks, which is more prominent for590

the heterogeneous ABIDE database.

Although this approach is different from the traditional one used in connec-

tomics research, where brain networks are treated as complete graphs, i.e. every

node is connected to every other node with a different weight, the edge weight

information is still modelled in the form of a node’s “connectivity profile” as595

its corresponding feature vector. The proposed modelling approach allows for

the extension and integration of additional, potentially multimodal, information

characterising each graph node, like e.g. cortical thickness. This is particularly

useful in the study of neuropsychiatric and neurodegenerative diseases and such

features have already been investigated in conjunction with autism (Chung600

et al., 2005) and Alzheimer’s disease (Querbes et al., 2009) among others. Al-

ternative frameworks that operate purely on connectivity matrices would not

be able to accommodate and model multimodal information regarding struc-

tural and functional connectivity, as well as anatomical features, as part of a

node’s feature vector. Furthermore, one could argue that the raw time series605

could be used instead, as a more intuitive feature vector to represent the graph

nodes, however there is no guarantee that the time series of different subjects are

temporally aligned in a way that leads to cross-subject feature correspondence.

The choice of this polynomial parametrisation further provides a principled

way of applying graph convolutions, while it addresses the challenging prob-610

lems of defining a local neighbourhood and transferring the notion of transla-

tion from the Euclidean domain. Modelling brain connectivity as an irregular

graph is more representative of its inherent architecture and can address the

increased noise that arises when estimating brain connectivity networks, espe-

cially based on functional data. Last but not least, from a technical standpoint,615

the polynomial parametrization of the spectral filters adopted in this work al-

lows to capture the graph signal at a varying neighbourhood size/proximity

around each node, i.e. k-hops away for a kth order polynomial. Alternative

approaches, like the work of (Kawahara et al., 2017) require the introduction of

a new layer to capture a larger “field of view” and learn a specific filter bank620
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for each edge of the graph, instead of frequency filters that are applicable to

the whole graph. This leads to a larger set of parameters and may give rise to

overfitting problems, especially when working with relatively small neuroimag-

ing datasets. The framework used in this work has also been shown to allow

pooling operations (Defferrard et al., 2016), which paves the way for the ex-625

ploration of hierarchical parcellations (e.g. Blumensath et al. (2013)) in future

studies on brain connectivity.

Generating and visualising discriminative network regions or connections

with these graph convolutional network frameworks, in a similar manner that

saliency maps have recently been proposed for natural images (Zintgraf et al.,630

2017) would be particularly beneficial for the neuroscience community. These

would shed light on the underlying mechanisms of disconnection syndromes as

well as network patterns giving rise to population differences in brain connectiv-

ity. The spectral methods aim to yield more interpretable patterns compared to

spatial approaches and hierarchical parcellations would assist in exploring these635

patterns at multiple scales. Another important aspect of this work is the ability

to handle heterogeneous data aggregated at multiple imaging sites, with differ-

ent acquisition protocols, using a tailored architecture, which could potentially

be improved with adversarial training.

One of the main advantages of this work is that the same model and net-640

work architecture are able to address very diverse classification tasks given as

input datasets preprocessed with different pipelines and graphs representing

different types of functional connectivity (e.g. full correlation and partial cor-

relation). A particularly exciting prospect would be to use autoencoders and

adversarial training to learn lower dimensional representations of the connec-645

tivity networks that are site independent and able to handle heterogeneity that

arises from diverse acquisition protocols or other factors, such as age or gen-

der. Additionally, exploring the use of generalisable GCNs defined in the graph

spatial domain Monti et al. (2016) would allow to train similarity metrics be-

tween graphs of different structures. Last but not least, alternative applications650

of the learned metric to other biomedical image analysis tasks, which can be
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modelled as graphs Paragios et al. (2016), including semi-supervised clustering

or graph-based label propagation techniques Parisot et al. (2017) could benefit

from the integration of similarity metric learning in their pipeline and are yet

to be explored.655
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Geometric deep learning on graphs and manifolds using mixture model CNNs.770

arXiv preprint arXiv:1611.08402 .

Neuhaus, M., Bunke, H., 2005. Self-organizing maps for learning the edit costs

in graph matching. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics) 35, 503–514.

Neuhaus, M., Bunke, H., 2007. Automatic learning of cost functions for graph775

edit distance. Information Sciences 177, 239–247.

Niepert, M., Ahmed, M., Kutzkov, K., 2016. Learning convolutional neural net-

works for graphs, in: Proceedings of the 33rd Annual International Conference

on Machine Learning. ACM.

Paragios, N., Ferrante, E., Glocker, B., Komodakis, N., Parisot, S., Zacharaki,780

E.I., 2016. (hyper)-graphical models in biomedical image analysis. Medical

Image Analysis 33, 102–106.

Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueck-

ert, D., 2017. Spectral graph convolutions on population graphs for disease

prediction, in: International Conference on Medical Image Computing and785

Computer-Assisted Intervention, pp. 177–185.

34



Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J.F., Duret,

V., Puel, M., Berry, I., Fort, J.C., Celsis, P., et al., 2009. Early diagnosis

of alzheimer’s disease using cortical thickness: impact of cognitive reserve.

Brain 132, 2036–2047.790

Raj, A., Mueller, S., Young, K., Laxer, K., Weiner, M., 2010. Network-level

analysis of cortical thickness of the epileptic brain. NeuroImage 52, 1302–

1313.

Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.,

2011. Decoding brain states from fMRI connectivity graphs. Neuroimage 56,795

616–626.

Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally

linear embedding. science 290, 2323–2326.

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectiv-

ity: uses and interpretations. NeuroImage 52, 1059–1069.800

Rudie, J.D., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E., Thompson,

P., Bookheimer, S., Dapretto, M., 2013. Altered functional and structural

brain network organization in autism. NeuroImage: clinical 2, 79–94.

Satterthwaite, T.D., Wolf, D.H., Roalf, D.R., Ruparel, K., Erus, G., Vandekar,

S., Gennatas, E.D., Elliott, M.A., Smith, A., Hakonarson, H., et al., 2014.805

Linked sex differences in cognition and functional connectivity in youth. Cere-

bral cortex 25, 2383–2394.

Shervashidze, N., Schweitzer, P., Leeuwen, E.J.v., Mehlhorn, K., Borgwardt,

K.M., 2011. Weisfeiler-lehman graph kernels. Journal of Machine Learning

Research 12, 2539–2561.810

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.,

2009. Efficient graphlet kernels for large graph comparison, in: Artificial

Intelligence and Statistics, pp. 488–495.

35



Shuman, D., Narang, S., Frossard, P., Ortega, A., Vandergheynst, P., 2013. The

emerging field of signal processing on graphs: Extending high-dimensional815

data analysis to networks and other irregular domains. IEEE Signal Process-

ing Magazine 30, 83–98.

Simonovsky, M., Komodakis, N., 2017. Dynamic edge-conditioned filters in

convolutional neural networks on graphs, in: Proceedings of the IEEE Inter-

national Conference on Computer Vision.820

Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L., Beckmann, C.F.,

2014. Group-pca for very large fMRI datasets. NeuroImage 101, 738–749.

Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F.,

Nichols, T.E., Ramsey, J.D., Woolrich, M.W., 2011. Network modelling meth-

ods for fMRI. Neuroimage 54, 875–891.825

Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E.,

Glasser, M.F., Ugurbil, K., Barch, D.M., Van Essen, D.C., Miller, K.L., 2015.

A positive-negative mode of population covariation links brain connectivity,

demographics and behavior. Nature Neuroscience 18, 1565–1567.

Sporns, O., 2011. The human connectome: a complex network. Annals of the830

New York Academy of Sciences 1224, 109–125.

Sporns, O., 2013. Structure and function of complex brain networks. Dialogues

Clin Neurosci 15, 247–262.

Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C., 2004. Organization,

development and function of complex brain networks. Trends in cognitive835

sciences 8, 418–425.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey,

P., Elliott, P., Green, J., Landray, M., et al., 2015. Uk biobank: an open

access resource for identifying the causes of a wide range of complex diseases

of middle and old age. PLoS medicine 12, e1001779.840

36



Takerkart, S., Auzias, G., Thirion, B., Ralaivola, L., 2014. Graph-based inter-

subject pattern analysis of fMRI data. PloS one 9, e104586.

Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M., 2010.

Graph kernels. Journal of Machine Learning Research 11, 1201–1242.

Wauquier, P., Keller, M., 2015. Metric learning approach for graph-based label845

propagation. arXiv preprint arXiv:1511.05789 .

Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin

nearest neighbor classification. Journal of Machine Learning Research 10,

207–244.

Zagoruyko, S., Komodakis, N., 2015. Learning to compare image patches via850

convolutional neural networks, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 4353–4361.

Zeng, L.L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.,

2012. Identifying major depression using whole-brain functional connectivity:

a multivariate pattern analysis. Brain 135, 1498–1507.855

Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M., 2017. Visualizing deep

neural network decisions: Prediction difference analysis, in: International

Conference on Learning Representations (ICLR).

37



(a) (b)

(c) (d)
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Figure 10: Locally linear embedding (LLE) for the ABIDE database (left) and UK Biobank

(right) using Euclidean distances (a-b) after dimensionality reduction, metric learning for

large margin nearest neighbour (LMNN) classification (c-d) and similarities learned with s-

GCN and the proposed loss function (e-f). The star markers indicate the centre of mass for

each class. For both databases the learned metric leads to better separation between the two

classes.
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